CINXE.COM
Search results for: petroleum engineering
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: petroleum engineering</title> <meta name="description" content="Search results for: petroleum engineering"> <meta name="keywords" content="petroleum engineering"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="petroleum engineering" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="petroleum engineering"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3460</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: petroleum engineering</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3460</span> Efficient of Technology Remediation Soil That Contaminated by Petroleum Based on Heat without Combustion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gavin%20Hutama%20Farandiarta">Gavin Hutama Farandiarta</a>, <a href="https://publications.waset.org/abstracts/search?q=Hegi%20Adi%20Prabowo"> Hegi Adi Prabowo</a>, <a href="https://publications.waset.org/abstracts/search?q=Istiara%20Rizqillah%20Hanifah"> Istiara Rizqillah Hanifah</a>, <a href="https://publications.waset.org/abstracts/search?q=Millati%20Hanifah%20Saprudin"> Millati Hanifah Saprudin</a>, <a href="https://publications.waset.org/abstracts/search?q=Raden%20Iqrafia%20Ashna"> Raden Iqrafia Ashna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increase of the petroleum’s consumption rate encourages industries to optimize and increase the activity in processing crude oil into petroleum. However, although the result gives a lot of benefits to humans worldwide, it also gives negative impact to the environment. One of the negative impacts of processing crude oil is the soil will be contaminated by petroleum sewage sludge. This petroleum sewage sludge, contains hydrocarbon compound and it can be calculated by Total Petroleum Hydrocarbon (TPH).Petroleum sludge waste is accounted as hazardous and toxic. The soil contamination caused by the petroleum sludge is very hard to get rid of. However, there is a way to manage the soil that is contaminated by petroleum sludge, which is by using heat (thermal desorption) in the process of remediation. There are several factors that affect the success rate of the remediation with the help of heat which are temperature, time, and air pressure in the desorption column. The remediation process using the help of heat is an alternative in soil recovery from the petroleum pollution which highly effective, cheap, and environmentally friendly that produces uncontaminated soil and the petroleum that can be used again. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petroleum%20sewage%20sludge" title="petroleum sewage sludge">petroleum sewage sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=remediation%20soil" title=" remediation soil"> remediation soil</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20desorption" title=" thermal desorption"> thermal desorption</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20petroleum%20hydrocarbon%20%28TPH%29" title=" total petroleum hydrocarbon (TPH)"> total petroleum hydrocarbon (TPH)</a> </p> <a href="https://publications.waset.org/abstracts/48698/efficient-of-technology-remediation-soil-that-contaminated-by-petroleum-based-on-heat-without-combustion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3459</span> The Role of Innovative Marketing on Achieving Quality in Petroleum Company</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malki%20Fatima%20Zahra%20Nadia">Malki Fatima Zahra Nadia</a>, <a href="https://publications.waset.org/abstracts/search?q=Kellal%20Chaimaa"> Kellal Chaimaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Brahimi%20Houria"> Brahimi Houria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The following research aims to measure the impact of innovative marketing in achieving product quality in the Algerian Petroleum Company. In order to achieve the aim of the study, a random sample of 60 individuals was selected and the answers were analyzed using structural equation modeling to test the study hypotheses. The research concluded that there is a strong relationship between innovative marketing and the quality of petroleum products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marketing" title="marketing">marketing</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation" title=" innovation"> innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20products" title=" petroleum products"> petroleum products</a> </p> <a href="https://publications.waset.org/abstracts/179621/the-role-of-innovative-marketing-on-achieving-quality-in-petroleum-company" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3458</span> Low NOx Combustion of Pulverized Petroleum Cokes </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sewon%20Kim">Sewon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Minjun%20Kwon"> Minjun Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Changyeop%20Lee"> Changyeop Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is aimed to study combustion characteristics of low NOx burner using petroleum cokes as fuel. The petroleum coke, which is produced through the oil refining process, is an attractive fuel in terms of its high heating value and low price. But petroleum coke is a challenging fuel because of its low volatile content, high sulfur and nitrogen content, which give rise to undesirable emission characteristics and low ignitability. Therefore, the research and development regarding the petroleum coke burner is needed for applying this industrial system. In this study, combustion and emission characteristics of petroleum cokes burner are experimentally investigated in an industrial steam boiler. The low NOx burner is designed to control fuel and air mixing to achieve staged combustion, which, in turn reduces both flame temperature and oxygen. Air distribution ratio of triple staged air are optimized experimentally. The result showed that NOx concentration is lowest when overfire air is used, and the burner function at a fuel rich condition. That is, the burner is operated at the equivalence ratio of 1.67 and overall equivalence ratio including overfire air is kept 0.87. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petroleum%20cokes" title="petroleum cokes">petroleum cokes</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20NOx" title=" low NOx"> low NOx</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalence%20ratio" title=" equivalence ratio"> equivalence ratio</a> </p> <a href="https://publications.waset.org/abstracts/29236/low-nox-combustion-of-pulverized-petroleum-cokes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">623</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3457</span> Protection of Floating Roof Petroleum Storage Tanks against Lightning Strokes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20M.%20Mohamed">F. M. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Y.%20Abdelaziz"> A. Y. Abdelaziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The subject of petroleum storage tank fires has gained a great deal of attention due to the high cost of petroleum, and the consequent disruption of petroleum production; therefore, much of the current research has focused on petroleum storage tank fires. Also, the number of petroleum tank fires is oscillating between 15 and 20 fires per year. About 33% of all tank fires are attributed to lightning. Floating roof tanks (FRT’s) are especially vulnerable to lightning. To minimize the likelihood of a fire, the API RP 545 recommends three major modifications to floating roof tanks. This paper was inspired by a stroke of lightning that ignited a fire in a crude oil storage tank belonging to an Egyptian oil company, and is aimed at providing an efficient lightning protection system to the tank under study, in order to avoid the occurrence of such phenomena in the future and also, to give valuable recommendations to be applied to floating roof tank projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title="crude oil">crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=fire" title=" fire"> fire</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20roof%20tank" title=" floating roof tank"> floating roof tank</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20protection%20system" title=" lightning protection system"> lightning protection system</a> </p> <a href="https://publications.waset.org/abstracts/67175/protection-of-floating-roof-petroleum-storage-tanks-against-lightning-strokes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3456</span> Recovery of Petroleum Reservoir by Waterflooding Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zabihullah%20Mahdi">Zabihullah Mahdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Khwaja%20Naweed%20Seddiqi"> Khwaja Naweed Seddiqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeo%20Honma"> Shigeo Honma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Through many types of research and practical studies, it has been identified that the average oil recovery factor of a petroleum reservoir is about 30 to 35 %. This study is focused on enhanced oil recovery by laboratory experiment and graphical investigation based on Buckley-Leverett theory. Horizontal oil displacement by water, in a petroleum reservoir is analyzed under the Buckley-Leverett frontal displacement theory. The extraction and prerequisite of this theory are based and pursued focusing on the key factors that control displacement. The theory is executable to the waterflooding method, which is generally employed in petroleum engineering reservoirs to sustain oil production recovery, and the techniques for evaluating the average water saturation behind the water front and the oil recovery factors in the reservoirs are presented. In this paper, the Buckley-Leverett theory handled to an experimental model and the amount of recoverable oil are investigated to be over 35%. The irreducible water saturation, viz. connate water saturation, in the reservoir is also a significant inspiration for the recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buckley-Leverett%20theory" title="Buckley-Leverett theory">Buckley-Leverett theory</a>, <a href="https://publications.waset.org/abstracts/search?q=waterflooding%20technique" title=" waterflooding technique"> waterflooding technique</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20engineering" title=" petroleum engineering"> petroleum engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=immiscible%20displacement" title=" immiscible displacement"> immiscible displacement</a> </p> <a href="https://publications.waset.org/abstracts/59677/recovery-of-petroleum-reservoir-by-waterflooding-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3455</span> Application of Waterflooding Technique in Petroleum Reservoir</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khwaja%20Naweed%20Seddiqi">Khwaja Naweed Seddiqi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrocarbon resources are important for the redevelopment and sustainable progress of Afghanistan’s infrastructure. This paper aim is to increase the oil recovery of Hitervian reservoir of Angut oil field in north part of Afghanistan by an easy and available method, which is Buckley-Leveret frontal displacement theory. In this paper oil displacement by water that takes placed by injecting water into the under laying petroleum reservoir which called waterflooding technique is investigated. The theory is investigated in a laboratory experiment first then applied in Angut oil field which is now under the operation of a private petroleum company. Based on this study oil recovery of Angut oil field, residual oil saturation, Buckle-Leveret saturation and FBL is determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waterflooding%20technique" title="waterflooding technique">waterflooding technique</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20phase%20fluid%20flow" title=" two phase fluid flow"> two phase fluid flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Buckley-Leveret" title=" Buckley-Leveret"> Buckley-Leveret</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20engineering" title=" petroleum engineering "> petroleum engineering </a> </p> <a href="https://publications.waset.org/abstracts/61843/application-of-waterflooding-technique-in-petroleum-reservoir" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3454</span> Application of Artificial Intelligence in EOR </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoumeh%20Mofarrah">Masoumeh Mofarrah</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20NahanMoghadam"> Amir NahanMoghadam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Higher oil prices and increasing oil demand are main reasons for great attention to Enhanced Oil Recovery (EOR). Comprehensive researches have been accomplished to develop, appraise, and improve EOR methods and their application. Recently, Artificial Intelligence (AI) gained popularity in petroleum industry that can help petroleum engineers to solve some fundamental petroleum engineering problems such as reservoir simulation, EOR project risk analysis, well log interpretation and well test model selection. This study presents a historical overview of most popular AI tools including neural networks, genetic algorithms, fuzzy logic, and expert systems in petroleum industry and discusses two case studies to represent the application of two mentioned AI methods for selecting an appropriate EOR method based on reservoir characterization infeasible and effective way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=EOR" title=" EOR"> EOR</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=expert%20systems" title=" expert systems"> expert systems</a> </p> <a href="https://publications.waset.org/abstracts/13143/application-of-artificial-intelligence-in-eor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3453</span> Literature Review: Application of Artificial Intelligence in EOR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoumeh%20Mofarrah">Masoumeh Mofarrah</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20NahanMoghadam"> Amir NahanMoghadam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Higher oil prices and increasing oil demand are main reasons for great attention to Enhanced Oil Recovery (EOR). Comprehensive researches have been accomplished to develop, appraise and improve EOR methods and their application. Recently Artificial Intelligence (AI) gained popularity in petroleum industry that can help petroleum engineers to solve some fundamental petroleum engineering problems such as reservoir simulation, EOR project risk analysis, well log interpretation and well test model selection. This study presents a historical overview of most popular AI tools including neural networks, genetic algorithms, fuzzy logic and expert systems in petroleum industry and discusses two case studies to represent the application of two mentioned AI methods for selecting an appropriate EOR method based on reservoir characterization in feasible and effective way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=EOR" title=" EOR"> EOR</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=expert%20systems" title=" expert systems"> expert systems</a> </p> <a href="https://publications.waset.org/abstracts/13153/literature-review-application-of-artificial-intelligence-in-eor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3452</span> Oil Exploration in the Niger Delta and the Right to a Healthy Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olufunke%20Ayilara%20Aje-Famuyide">Olufunke Ayilara Aje-Famuyide</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The centrality of the Petroleum Industry in the world energy is undoubted. The world economy almost runs and depends on petroleum. Petroleum industry is a multi-trillion industry; it turns otherwise poor and underdeveloped countries into wealthy nations and thrusts them at the center of international diplomacy. Although these developing nations lack the necessary technology to explore and exploit petroleum resources they are not without help as developed nations, represented by their multinational corporations are ready and willing to provide both the technical and managerial expertise necessary for the development of this natural resource. However, the exploration of these petroleum resources comes with, sometimes, grave, concomitant consequences. These consequences are especially pronounced with respect to the environment. From the British Petroleum Oil rig explosion and the resultant oil spillage and pollution in New Mexico, United States to the Mobil Oil spillage along Nigerian coast, the story and consequence is virtually the same. Nigeria’s Niger Delta Region produces Nigeria’s petroleum which accounts for more than ninety-five percent of Nigeria’s foreign exchange earnings. Between 1999 and 2007, Nigeria earned more than $400 billion from petroleum exports. Nevertheless, petroleum exploration and exploitation has devastated the Niger Delta environment. From oil spillage which pollutes the rivers, farms and wetlands to gas flaring by the multi-national corporations; the consequences is similar-a region that has been devastated by petroleum exploitation. This paper thus seeks to examine the consequences and impact of petroleum pollution in the Niger Delta of Nigeria with particular reference on the right of the people of Niger Delta to a healthy environment. The paper further seeks to examine the relevant international, regional instrument and Nigeria’s municipal laws that are meant to protect the result of the people of the Niger Delta and their enforcement by the Nigerian State. It is quite worrisome that the Niger Delta Region and its people have suffered and are still suffering grave violations of their right to a healthy environment as a result of petroleum exploitation in their region. The Nigerian effort at best is half-hearted in its protection of the people’s right. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environment" title="environment">environment</a>, <a href="https://publications.waset.org/abstracts/search?q=exploration" title=" exploration"> exploration</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum" title=" petroleum"> petroleum</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution "> pollution </a> </p> <a href="https://publications.waset.org/abstracts/27314/oil-exploration-in-the-niger-delta-and-the-right-to-a-healthy-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3451</span> The Effect of Artificial Intelligence on Petroleum Industry and Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mina%20Shokry%20Hanna%20Saleh%20Tadros">Mina Shokry Hanna Saleh Tadros</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The centrality of the Petroleum Industry in the world energy is undoubted. The world economy almost runs and depends on petroleum. Petroleum industry is a multi-trillion industry; it turns otherwise poor and underdeveloped countries into wealthy nations and thrusts them at the center of international diplomacy. Although these developing nations lack the necessary technology to explore and exploit petroleum resources they are not without help as developed nations, represented by their multinational corporations are ready and willing to provide both the technical and managerial expertise necessary for the development of this natural resource. However, the exploration of these petroleum resources comes with, sometimes, grave, concomitant consequences. These consequences are especially pronounced with respect to the environment. From the British Petroleum Oil rig explosion and the resultant oil spillage and pollution in New Mexico, United States to the Mobil Oil spillage along Egyptian coast, the story and consequence is virtually the same. Egypt’s delta Region produces Nigeria’s petroleum which accounts for more than ninety-five percent of Nigeria’s foreign exchange earnings. Between 1999 and 2007, Egypt earned more than $400 billion from petroleum exports. Nevertheless, petroleum exploration and exploitation has devastated the Delta environment. From oil spillage which pollutes the rivers, farms and wetlands to gas flaring by the multi-national corporations; the consequences is similar-a region that has been devastated by petroleum exploitation. This paper thus seeks to examine the consequences and impact of petroleum pollution in the Egypt Delta with particular reference on the right of the people of Niger Delta to a healthy environment. The paper further seeks to examine the relevant international, regional instrument and Nigeria’s municipal laws that are meant to protect the result of the people of the Egypt Delta and their enforcement by the Nigerian State. It is quite worrisome that the Egypt Delta Region and its people have suffered and are still suffering grave violations of their right to a healthy environment as a result of petroleum exploitation in their region. The Egypt effort at best is half-hearted in its protection of the people’s right. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title="crude oil">crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=fire" title=" fire"> fire</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20roof%20tank" title=" floating roof tank"> floating roof tank</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20protection%20systemenvironment" title=" lightning protection systemenvironment"> lightning protection systemenvironment</a>, <a href="https://publications.waset.org/abstracts/search?q=exploration" title=" exploration"> exploration</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum" title=" petroleum"> petroleum</a>, <a href="https://publications.waset.org/abstracts/search?q=pollutionDuvernay%20petroleum%20system" title=" pollutionDuvernay petroleum system"> pollutionDuvernay petroleum system</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20generation" title=" oil generation"> oil generation</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-source%20correlation" title=" oil-source correlation"> oil-source correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=Re-Os" title=" Re-Os"> Re-Os</a> </p> <a href="https://publications.waset.org/abstracts/183788/the-effect-of-artificial-intelligence-on-petroleum-industry-and-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3450</span> Re-Os Application to Petroleum System: Implications from the Geochronology and Oil-Source Correlation of Duvernay Petroleum System, Western Canadian Sedimentary Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junjie%20Liu">Junjie Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Selby"> David Selby</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Obermajer"> Mark Obermajer</a>, <a href="https://publications.waset.org/abstracts/search?q=Andy%20Mort"> Andy Mort</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inaugural application of Re-Os dating, which is based on the beta decay of 187Re to 187Os with a long half-life of 41.577 ± 0.12 Byr and initially used for sulphide minerals and organic rich rocks, to petroleum systems was performed on bitumen of the Polaris Mississippi Valley Type Pb-Zn deposit, Canada. To further our understanding of the Re-Os system and its application to petroleum systems, here we present a study on Duvernay Petroleum System, Western Canadian Sedimentary Basin. The Late Devonian Duvernay Formation organic-rich shales are the only source of the petroleum system. The Duvernay shales reached maturation only during the Laramide Orogeny (80 – 35 Ma) and the generated oil migrated short distances into the interfingering Leduc reefs and overlying Nisku carbonates with no or little secondary alteration post oil-generation. Although very low in Re and Os, the asphaltenes of Duvernay-sourced Leduc and Nisku oils define a Laramide Re-Os age. In addition, the initial Os isotope compositions of the oil samples are similar to that of the Os isotope composition of the Duvernay Formation at the time of oil generation, but are very different to other oil-prone intervals of the basin, showing the ability of the Os isotope composition as an inorganic oil-source correlation tool. In summary, the ability of the Re-Os geochronometer to record the timing of oil generation and trace the source of an oil is confirmed in the Re-Os study of Duvernay Petroleum System. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duvernay%20petroleum%20system" title="Duvernay petroleum system">Duvernay petroleum system</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20generation" title=" oil generation"> oil generation</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-source%20correlation" title=" oil-source correlation"> oil-source correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=Re-Os" title=" Re-Os"> Re-Os</a> </p> <a href="https://publications.waset.org/abstracts/67543/re-os-application-to-petroleum-system-implications-from-the-geochronology-and-oil-source-correlation-of-duvernay-petroleum-system-western-canadian-sedimentary-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3449</span> Phytoremediation Potenciality of ‘Polypogon monspeliensis L. in Detoxification of Petroleum-Contaminated Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mozhgan%20Farzami%20Sepehr">Mozhgan Farzami Sepehr</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Nourozi"> Farhad Nourozi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a greenhouse study, decontamination capacity of the species Polypogon monspoliensis, for detoxification of petroleum-polluted soils caused by sewage and waste materials of Tehran Petroleum Refinery. For this purpose, the amount of total oil and grease before and 45 days after transplanting one-month-old seedlings in the soils of five different treatments in which pollution-free agricultural soil and contaminated soil were mixed together with the weight ratio of respectively 1 to 9 (% 10), 2 to 8 (%20), 3 to 7 (%30) , 4 to 6 (%40), and 5 to 5 (%50) were evaluated and compared with the amounts obtained from control treatment without vegetation, but with the same concentration of pollution. Findings demonstrated that the maximum reduction in the petroleum rate ,as much as 84.85 percent, is related to the treatment 10% containing the plant. Increasing the shoot height in treatments 10% and 20% as well as the root dry and fresh weight in treatments 10% , 20% , and 30% shows that probably activity of more rhizosphere microorganisms of the plant in these treatments has led to the improvement in growth of plant organs comparing to the treatments without pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title="phytoremediation">phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20oil%20and%20%20grease" title=" total oil and grease"> total oil and grease</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizosphere" title=" rhizosphere"> rhizosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganisms" title=" microorganisms"> microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum-contaminated%20soil" title=" petroleum-contaminated soil "> petroleum-contaminated soil </a> </p> <a href="https://publications.waset.org/abstracts/22502/phytoremediation-potenciality-of-polypogon-monspeliensis-l-in-detoxification-of-petroleum-contaminated-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3448</span> Investments in Petroleum Industry Abnormally Normal: A Case Study Based on Petroleum and Natural Gas Companies in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radhika%20Ramanchi">Radhika Ramanchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The oil market during 2014-2015 in India with large price fluctuations is very confusing to individual investor. The drop in oil prices supported stocks of some oil marketing companies (OMCs) like Bharat Petroleum Corporation, Hindustan Petroleum Corporation (HPCL) and Indian Oil Corporation etc their shares rose 84.74%, 128.63% and 59.16%, respectively. Lower oil prices, and lower current account, a smaller subsidy burden are the reasons for outperformance. On the other hand, lower crude prices giving downward pressure on upstream companies like Oil and Natural Gas Corp. Ltd (ONGC) and Reliance Petroleum (RIL) Oil India Ltd (OIL). Not having clarity on a subsidy sharing mechanism is the reason for downward trend on these stocks. Shares of ONGC and RIL have underperformed so far in 2015. When the oil price fall profits of the companies will effect, generate less money and may cut their dividends in Long run. In this situation this paper objective is to study investment strategies in oil marketing companies, by applying CAPM and Security Market Line. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petrol%20industry" title="petrol industry">petrol industry</a>, <a href="https://publications.waset.org/abstracts/search?q=price%20fluctuations" title=" price fluctuations"> price fluctuations</a>, <a href="https://publications.waset.org/abstracts/search?q=sharp%20single%20index%20model" title=" sharp single index model"> sharp single index model</a>, <a href="https://publications.waset.org/abstracts/search?q=SML" title=" SML"> SML</a>, <a href="https://publications.waset.org/abstracts/search?q=Markowitz%20model" title=" Markowitz model"> Markowitz model</a> </p> <a href="https://publications.waset.org/abstracts/46771/investments-in-petroleum-industry-abnormally-normal-a-case-study-based-on-petroleum-and-natural-gas-companies-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3447</span> System Engineering Design of Offshore Oil Drilling Production Platform from Marine Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Njoku%20Paul">C. Njoku Paul </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with systems engineering applications design for offshore oil drilling production platform in the Nigerian Marine Environment. Engineering Design model of the distribution and accumulation of petroleum hydrocarbons discharged into marine environment production platform and sources of impact of an offshore is treated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20of%20offshore%20oil%20drilling%20production%20platform" title="design of offshore oil drilling production platform">design of offshore oil drilling production platform</a>, <a href="https://publications.waset.org/abstracts/search?q=marine" title=" marine"> marine</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20hydrocarbons" title=" petroleum hydrocarbons"> petroleum hydrocarbons</a> </p> <a href="https://publications.waset.org/abstracts/26646/system-engineering-design-of-offshore-oil-drilling-production-platform-from-marine-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3446</span> Comparison of the Distillation Curve Obtained Experimentally with the Curve Extrapolated by a Commercial Simulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L%C3%ADvia%20B.%20Meirelles">Lívia B. Meirelles</a>, <a href="https://publications.waset.org/abstracts/search?q=Erika%20C.%20A.%20N.%20Chrisman"> Erika C. A. N. Chrisman</a>, <a href="https://publications.waset.org/abstracts/search?q=Fl%C3%A1via%20B.%20de%20Andrade"> Flávia B. de Andrade</a>, <a href="https://publications.waset.org/abstracts/search?q=Lilian%20C.%20M.%20de%20Oliveira"> Lilian C. M. de Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> True Boiling Point distillation (TBP) is one of the most common experimental techniques for the determination of petroleum properties. This curve provides information about the performance of petroleum in terms of its cuts. The experiment is performed in a few days. Techniques are used to determine the properties faster with a software that calculates the distillation curve when a little information about crude oil is known. In order to evaluate the accuracy of distillation curve prediction, eight points of the TBP curve and specific gravity curve (348 K and 523 K) were inserted into the HYSYS Oil Manager, and the extended curve was evaluated up to 748 K. The methods were able to predict the curve with the accuracy of 0.6%-9.2% error (Software X ASTM), 0.2%-5.1% error (Software X Spaltrohr). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distillation%20curve" title="distillation curve">distillation curve</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20distillation" title=" petroleum distillation"> petroleum distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=true%20boiling%20point%20curve" title=" true boiling point curve"> true boiling point curve</a> </p> <a href="https://publications.waset.org/abstracts/68293/comparison-of-the-distillation-curve-obtained-experimentally-with-the-curve-extrapolated-by-a-commercial-simulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3445</span> Comparative Analysis of Petroleum Ether and Aqueous Extraction Solvents on Different Stages of Anopheles Gambiae Using Neem Leaf and Neem Stem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tochukwu%20Ezechi%20Ebe">Tochukwu Ezechi Ebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Fechi%20Njoku-Tony"> Fechi Njoku-Tony</a>, <a href="https://publications.waset.org/abstracts/search?q=Ifeyinwa%20Mgbenena"> Ifeyinwa Mgbenena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Comparative analysis of petroleum ether and aqueous extraction solvents on different stages of Anopheles gambiae was carried out using neem leaf and neem stem. Soxhlet apparatus was used to extract each pulverized plant part. Each plant part extract from both solvents were separately used to test their effects on the developmental stages of Anopheles gambiae. The result showed that the mean mortality of extracts from petroleum ether extraction solvent was higher than that of aqueous extract. It was also observed that mean mortality decreases with increase in developmental stage. Furthermore, extracts from neem leaf was found to be more susceptible than extracts from neem stem using same extraction solvent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petroleum%20ether" title="petroleum ether">petroleum ether</a>, <a href="https://publications.waset.org/abstracts/search?q=aqueous" title=" aqueous"> aqueous</a>, <a href="https://publications.waset.org/abstracts/search?q=developmental" title=" developmental"> developmental</a>, <a href="https://publications.waset.org/abstracts/search?q=stages" title=" stages"> stages</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Anopheles%20gambiae" title=" Anopheles gambiae"> Anopheles gambiae</a> </p> <a href="https://publications.waset.org/abstracts/16040/comparative-analysis-of-petroleum-ether-and-aqueous-extraction-solvents-on-different-stages-of-anopheles-gambiae-using-neem-leaf-and-neem-stem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3444</span> Permeable Bio-Reactive Barriers to Tackle Petroleum Hydrocarbon Contamination in the Sub-Antarctic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20L.%20Freidman">Benjamin L. Freidman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sally%20L.%20Gras"> Sally L. Gras</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20Snape"> Ian Snape</a>, <a href="https://publications.waset.org/abstracts/search?q=Geoff%20W.%20Stevens"> Geoff W. Stevens</a>, <a href="https://publications.waset.org/abstracts/search?q=Kathryn%20A.%20Mumford"> Kathryn A. Mumford</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing transportation and storage of petroleum hydrocarbons in Antarctic and sub-Antarctic regions have resulted in frequent accidental spills. Migrating petroleum hydrocarbon spills can have a significant impact on terrestrial and marine ecosystems in cold regions, as harsh environmental conditions result in heightened sensitivity to pollution. This migration of contaminants has led to the development of Permeable Reactive Barriers (PRB) for application in cold regions. PRB’s are one of the most practical technologies for on-site or in-situ groundwater remediation in cold regions due to their minimal energy, monitoring and maintenance requirements. The Main Power House site has been used as a fuel storage and power generation area for the Macquarie Island research station since at least 1960. Soil analysis at the site has revealed Total Petroleum Hydrocarbon (TPH) (C9-C28) concentrations as high as 19,000 mg/kg soil. Groundwater TPH concentrations at this site can exceed 350 mg/L TPH. Ongoing migration of petroleum hydrocarbons into the neighbouring marine ecosystem resulted in the installation of a ‘funnel and gate’ PRB in November 2014. The ‘funnel and gate’ design successfully intercepted contaminated groundwater and analysis of TPH retention and biodegradation on PRB media are currently underway. Installation of the PRB facilitates research aimed at better understanding the contribution of particle attached biofilms to the remediation of groundwater systems. Bench-scale PRB system analysis at The University of Melbourne is currently examining the role biofilms play in petroleum hydrocarbon degradation, and how controlled release nutrient media can heighten the metabolic activity of biofilms in cold regions in the presence of low temperatures and low nutrient groundwater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum" title=" petroleum"> petroleum</a>, <a href="https://publications.waset.org/abstracts/search?q=Macquarie%20island" title=" Macquarie island"> Macquarie island</a>, <a href="https://publications.waset.org/abstracts/search?q=funnel%20and%20gate" title=" funnel and gate"> funnel and gate</a> </p> <a href="https://publications.waset.org/abstracts/37838/permeable-bio-reactive-barriers-to-tackle-petroleum-hydrocarbon-contamination-in-the-sub-antarctic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3443</span> Sustainability of Offshore Petroleum Resources Extraction and Management of Bangladesh: International and Regional Frameworks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Farhad%20Hosen">Muhammad Farhad Hosen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article examines the sustainability of offshore petroleum resource extraction and management in Bangladesh, focusing on international and regional frameworks. The analysis includes international conventions such as UNCLOS, IMO regulations, and SDGs, as well as regional cooperation through organizations like BIMSTEC and SAARC. The objective is to highlight the impact of these frameworks on sustainable extraction practices, address challenges, and offer recommendations for enhancing Bangladesh's legal and regulatory approaches to offshore resource management. The article underscores the need for harmonizing national laws with international standards, enhancing enforcement mechanisms, and promoting regional cooperation to ensure sustainable development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bangladesh" title="Bangladesh">Bangladesh</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20frameworks" title=" international frameworks"> international frameworks</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20petroleum" title=" offshore petroleum"> offshore petroleum</a>, <a href="https://publications.waset.org/abstracts/search?q=regional%20framework" title=" regional framework"> regional framework</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/191015/sustainability-of-offshore-petroleum-resources-extraction-and-management-of-bangladesh-international-and-regional-frameworks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">28</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3442</span> Synthesis of Epoxidized Castor Oil Using a Sulphonated Polystyrene Type Cation Exchange Resin and Its Blend Preparation with Epoxy Resin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20S.%20Sudha">G. S. Sudha</a>, <a href="https://publications.waset.org/abstracts/search?q=Smita%20Mohanty"> Smita Mohanty</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Nayak"> S. K. Nayak </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epoxidized oils can replace petroleum derived materials in numerous industrial applications, because of their respectable oxirane oxygen content and high reactivity of oxirane ring. Epoxidized castor oil (ECO) has synthesized in the presence of a sulphonated polystyrene type cation exchange resin. The formation of the oxirane ring was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) analysis. The epoxidation reaction was evaluated by Nuclear Magnetic Resonance (NMR) studies. ECO is used as a toughening phase to increase the toughness of petroleum-based epoxy resin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resin" title="epoxy resin">epoxy resin</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxidized%20castor%20oil" title=" epoxidized castor oil"> epoxidized castor oil</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphonated%20polystyrene%20type%20cation%20exchange%20resin" title=" sulphonated polystyrene type cation exchange resin"> sulphonated polystyrene type cation exchange resin</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20derived%20materials" title=" petroleum derived materials"> petroleum derived materials</a> </p> <a href="https://publications.waset.org/abstracts/20933/synthesis-of-epoxidized-castor-oil-using-a-sulphonated-polystyrene-type-cation-exchange-resin-and-its-blend-preparation-with-epoxy-resin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3441</span> Separation of Mercury(Ii) from Petroleum Produced Water via Hollow Fiber Supported Liquid Membrane and Mass Transfer Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srestha%20Chaturabul">Srestha Chaturabul</a>, <a href="https://publications.waset.org/abstracts/search?q=Wanchalerm%20Srirachat"> Wanchalerm Srirachat</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanaporn%20Wannachod"> Thanaporn Wannachod</a>, <a href="https://publications.waset.org/abstracts/search?q=Prakorn%20Ramakul"> Prakorn Ramakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Ura%20Pancharoen"> Ura Pancharoen</a>, <a href="https://publications.waset.org/abstracts/search?q=Soorathep%20Kheawhom"> Soorathep Kheawhom </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The separation of mercury(II) from petroleum-produced water from the Gulf of Thailand was carried out using a hollow fiber supported liquid membrane system (HFSLM). Optimum parameters for feed pretreatment were 0.2 M HCl, 4% (v/v) Aliquat 336 for extractant and 0.1 M thiourea for stripping solution. The best percentage obtained for extraction was 99.73% and for recovery 90.11%, respectively. The overall separation efficiency noted was 94.92% taking account of both extraction and recovery prospects. The model for this separation developed along a combined flux principle i.e. convection–diffusion–kinetic. The results showed excellent agreement with theoretical data at an average standard deviation of 1.5% and 1.8%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=separation" title="separation">separation</a>, <a href="https://publications.waset.org/abstracts/search?q=mercury%28ii%29" title=" mercury(ii)"> mercury(ii)</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20produced%20water" title=" petroleum produced water"> petroleum produced water</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow%20fiber" title=" hollow fiber"> hollow fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20membrane" title=" liquid membrane"> liquid membrane</a> </p> <a href="https://publications.waset.org/abstracts/29570/separation-of-mercuryii-from-petroleum-produced-water-via-hollow-fiber-supported-liquid-membrane-and-mass-transfer-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3440</span> Bioactivities and Phytochemical Studies of Petroleum Ether Extract of Pleiogynium timorense Bark</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gehan%20F.%20Abdel%20Raoof">Gehan F. Abdel Raoof</a>, <a href="https://publications.waset.org/abstracts/search?q=Ataa%20A.%20Said"> Ataa A. Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Y.%20Mohamed"> Khaled Y. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Hala%20M.%20Mohammed"> Hala M. Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pleiogynium timorense(DC.) Leenh is one of the therapeutically active plants belonging to the family Anacardiaceae. The bark of Pleiogynium timorense needs further studies to investigate its phytochemical and biological activities. This work was carried out to investigate the chemical composition of petroleum ether extract of Pleiogynium timorense bark as well as to evaluate the analgesic and anti-inflammatory activities. The unsaponifiable matter and fatty acid methyl esters were analyzed by Gas chromatography–mass spectrometry (GC-MS). Moreover, analgesic and anti-inflammatory activities were evaluated using acetic acid-induced writhing test and carrageen hind paw oedema models in rats, respectively. The results showed that twenty one compounds in the unsaponifiable fraction were identified representing 92.54 % of the total beak area, the major compounds were 1-Heptene (35.32%), Butylated hydroxy toluene (19.42%) and phytol (12.53%), whereas fifteen compounds were identified in the fatty acid methyl esters fraction representing 94.15% of the total identified peak area. The major compounds were 9-Octadecenoic acid methyl ester (35.34%) and 9,12-Octadecadienoic acid methyl ester (29.32%). Moreover, petroleum ether extract showed a significant reduction in pain and inflammation in a dose dependent manner. This study aims to be the first step toward the use of petroleum ether extract of Pleiogynium timorense bark as analgesic and anti-inflammatory drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analgesic" title="analgesic">analgesic</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-inflammatory" title=" anti-inflammatory"> anti-inflammatory</a>, <a href="https://publications.waset.org/abstracts/search?q=bark" title=" bark"> bark</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20ether%20extract" title=" petroleum ether extract"> petroleum ether extract</a>, <a href="https://publications.waset.org/abstracts/search?q=Pleiogynium%20timorense" title=" Pleiogynium timorense "> Pleiogynium timorense </a> </p> <a href="https://publications.waset.org/abstracts/93698/bioactivities-and-phytochemical-studies-of-petroleum-ether-extract-of-pleiogynium-timorense-bark" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3439</span> Environmental Potential of Biochar from Wood Biomass Thermochemical Conversion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cora%20Bulm%C4%83u">Cora Bulmău</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil polluted with hydrocarbons spills is a major global concern today. As a response to this issue, our experimental study tries to put in evidence the option to choose for one environmentally friendly method: use of the biochar, despite to a classical procedure; incineration of contaminated soil. Biochar represents the solid product obtained through the pyrolysis of biomass, its additional use being as an additive intended to improve the quality of the soil. The positive effect of biochar addition to soil is represented by its capacity to adsorb and contain petroleum products within its pores. Taking into consideration the capacity of the biochar to interact with organic contaminants, the purpose of the present study was to experimentally establish the effects of the addition of wooden biomass-derived biochar on a soil contaminated with oil. So, the contaminated soil was amended with biochar (10%) produced by pyrolysis in different operational conditions of the thermochemical process. After 25 days, the concentration of petroleum hydrocarbons from soil treated with biochar was measured. An analytical method as Soxhlet extraction was adopted to estimate the concentrations of total petroleum products (TPH) in the soil samples: This technique was applied to contaminated soil, also to soils remediated by incineration/adding biochar. The treatment of soil using biochar obtained from pyrolysis of the Birchwood led to a considerable decrease in the concentrations of petroleum products. The incineration treatments conducted under experimental stage to clean up the same soil, contaminated with petroleum products, involved specific parameters: temperature of about 600°C, 800°C and 1000°C and treatment time 30 and 60 minutes. The experimental results revealed that the method using biochar has registered values of efficiency up to those of all incineration processes applied for the shortest time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochar" title="biochar">biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=remediaton" title=" remediaton"> remediaton</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=TPH" title=" TPH"> TPH</a> </p> <a href="https://publications.waset.org/abstracts/76274/environmental-potential-of-biochar-from-wood-biomass-thermochemical-conversion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3438</span> Improving Ghana's Oil Industry Through Integrated Operations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esther%20Simpson">Esther Simpson</a>, <a href="https://publications.waset.org/abstracts/search?q=Evans%20Addo%20Tetteh"> Evans Addo Tetteh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important sectors in Ghana’s economy is the oil and gas sector. Effective supply chain management is required to ensure the timely delivery of these products to the end users, given the rise in nationwide demand for petroleum products. Contrarily, freight forwarding plays a crucial role in facilitating intra- and intra-country trade, particularly the movement of oil goods. Nevertheless, there has not been enough scientific study done on how marketing, supply chain management, and freight forwarding are integrated in the oil business. By highlighting possible areas for development in the supply chain management of petroleum products, this article seeks to close this gap. The study was predominantly qualitative and featured semi-structured interviews with influential figures in the oil and gas sector, such as marketers, distributors, freight forwarders, and regulatory organizations. The purpose of the interviews was to determine the difficulties and possibilities for enhancing the management of the petroleum products supply chain. Thematic analysis was used to examine the data obtained in order to find patterns and themes that arose. The findings from the study revealed that the oil sector faced a number of issues in terms of supply chain management. Inadequate infrastructure, insufficient storage facilities, a lack of cooperation among parties, and an inadequate regulatory framework were among the obstacles. Furthermore, the study indicated significant prospects for enhancing petroleum product supply chain management, such as the integration of more advanced digital technologies, the formation of strategic alliances, and the adoption of sustainable practices in petroleum product supply chain management. The study's conclusions have far-reaching ramifications for the oil and gas sector, freight forwarding, and Ghana’s economy as a whole. Marketing, supply chain management, and freight forwarding has high prospects from being integrated to improve the efficiency of the petroleum product supply chain, resulting in considerable cost savings for the industry. Furthermore, the use of sustainable practices will improve the industry's sustainability and lessen the environmental effect of the petroleum product supply chain. Based on the findings, we propose that stakeholders in Ghana’s oil and gas sector work together and collaborate to enhance petroleum supply chain management. This collaboration should include the use of digital technologies, the formation of strategic alliances, and the implementation of sustainable practices. Moreover, we urge that governments establish suitable rules to guarantee the efficient and sustainable management of petroleum product supply chains. In conclusion, the integration and combination of marketing, supply chain management, and freight forwarding in the oil business gives a tremendous opportunity for enhancing petroleum product supply chain management. The study's conclusions have far-reaching ramifications for the sector, freight forwarding, and the economy as a whole. Using sustainable practices, integrating digital technology, and forming strategic alliances will improve the efficiency and sustainability of the petroleum product supply chain. We expect that this conference paper will encourage more study and collaboration among oil and gas sector stakeholders to improve petroleum supply chain management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collaboration" title="collaboration">collaboration</a>, <a href="https://publications.waset.org/abstracts/search?q=logistics" title=" logistics"> logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title=" supply chain management"> supply chain management</a> </p> <a href="https://publications.waset.org/abstracts/164845/improving-ghanas-oil-industry-through-integrated-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3437</span> Studying the Simultaneous Effect of Petroleum and DDT Pollution on the Geotechnical Characteristics of Sands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Seyfi">Sara Seyfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> DDT and petroleum contamination in coastal sand alters the physical and mechanical properties of contaminated soils. This article aims to understand the effects of DDT pollution on the geotechnical characteristics of sand groups, including sand, silty sand, and clay sand. First, the studies conducted on the topic of the article will be reviewed. In the initial stage of the tests, this article deals with the identification of the used sands (sand, silty sand, clay sand) by FTIR, µ-XRF and SEM methods. Then, the geotechnical characteristics of these sand groups, including density, permeability, shear strength, compaction, and plasticity, are investigated using a sand cone, head permeability test, Vane shear test, strain gauge penetrometer, and plastic limit test. Sand groups are artificially contaminated with petroleum substances with 1, 2, 4, 8, 10, 12% by weight. In a separate experiment, amounts of 2, 4, 8, 12, 16, 20 mg/liter of DDT were added to the sand groups. Geotechnical characteristics and identification analysis are performed on the contaminated samples. In the final tests, the mentioned amounts of oil pollution and DDT are simultaneously added to the sand groups, and identification and measurement processes are carried out. The results of the tests showed that petroleum contamination had reduced the optimal moisture content, permeability, and plasticity of all samples. Except silty sand’s plasticity, which petroleum increased it by 1-4% and decreased it by 8-12%. The dry density of sand and clay sand increased, but that of silty sand decreased. Also, the shear strength of sand and silty sand increased, but that of clay sand decreased. DDT contamination increased the maximum dry density and decreased the permeability of all samples. It also reduced the optimum moisture content of the sand. The shear resistance of silty sand and clayey sand decreased, and plasticity of clayey sand increased, and silty sand decreased. The simultaneous effect of petroleum and DDT pollution on the maximum dry density of sand and clayey sand has been synergistic, on the plasticity of clayey sand and silty sand, there has been antagonism. This process has caused antagonism of optimal sand content, shear strength of silty sand and clay sand. In other cases, the effect of synergy or antagonism is not observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DDT%20contamination" title="DDT contamination">DDT contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20characteristics" title=" geotechnical characteristics"> geotechnical characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20contamination" title=" petroleum contamination"> petroleum contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a> </p> <a href="https://publications.waset.org/abstracts/186047/studying-the-simultaneous-effect-of-petroleum-and-ddt-pollution-on-the-geotechnical-characteristics-of-sands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3436</span> A Study on Removal of SO3 in Flue Gas Generated from Power Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Y.%20Jo">E. Y. Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Park"> S. M. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20S.%20Yeo"> I. S. Yeo</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Kim"> K. K. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Park"> S. J. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20K.%20Kim"> Y. K. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20D.%20Kim"> Y. D. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20Park"> C. G. Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> SO3 is created in small quantities during the combustion of fuel that contains sulfur, with the quantity produced a function of the boiler design, fuel sulfur content, excess air level, and the presence of oxidizing agents. Typically, about 1% of the fuel sulfur will be oxidized to SO3, but it can range from 0.5% to 1.5% depending on various factors. Combustion of fuels that contain oxidizing agents, such as certain types of fuel oil or petroleum coke, can result in even higher levels of oxidation. SO3 levels in the flue gas emitted by combustion are very high, which becomes a cause of machinery corrosion or a visible blue plume. Because of that, power plants firing petroleum residues need to installation of SO3 removal system. In this study, SO3 removal system using salt solution was developed and several salts solutions were tested for obtain optimal solution for SO3 removal system. Response surface methodology was used to optimize the operation parameters such as gas-liquid ratio, concentration of salts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flue%20gas%20desulfurization" title="flue gas desulfurization">flue gas desulfurization</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20cokes" title=" petroleum cokes"> petroleum cokes</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulfur%20trioxide" title=" Sulfur trioxide"> Sulfur trioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=SO3%20removal" title=" SO3 removal"> SO3 removal</a> </p> <a href="https://publications.waset.org/abstracts/18701/a-study-on-removal-of-so3-in-flue-gas-generated-from-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3435</span> Isolation and Molecular Identification of Phenol Tolerating Bacteria from Petroleum Contaminated Sites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Dankaka">S. M. Dankaka</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Abdullahi"> N. Abdullahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Context: This research was conducted to isolate and identify phenol-tolerant bacteria from petroleum-contaminated sites in the northwestern part of Nigeria. Research Aim: The aim of this study was to identify bacteria with the ability to tolerate different phenol concentrations. Methodology: Samples were obtained from different petroleum-contaminated sites, and bacteria were cultured, followed by morphological, microscopic, and molecular identification. Isolates were grown on phenol-tolerant nutrient agar. The tolerant ability of the isolates was observed at 500 mg/L, 1000 mg/L, and 1500 mg/L concentrations of phenol. Findings: Two bacteria species (NWPK and NWPKD) were obtained. The total viable counts of phenol-utilizing bacteria from NWPK and NWPKD were 2.71x10⁷ and 4.0x10⁶ cfu/g, respectively. The NWPK showed its capacity to tolerate phenol at 2.3x10⁷, 2.5x10⁷, and 1.0x10⁷ cfu/g of 500, 1000, and 1500 mg/L of phenol concentration, respectively, while NWPKD tolerance ability was 1.5x10⁷, 3.8x10⁷ and 1.0x10⁷ cfu/g of 500, 1000 and 1500 mg/L of phenol respectively. The isolates were identified as Citrobacter and Acinetobacter species, respectively, based on 16S rRNA gene sequence analysis. Conclusion: The study found that these isolates showed the ability to withstand and survive high phenol concentrations in the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phenol%20tolerance" title="phenol tolerance">phenol tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20contaminated%20sites" title=" petroleum contaminated sites"> petroleum contaminated sites</a>, <a href="https://publications.waset.org/abstracts/search?q=16S%20rRNA" title=" 16S rRNA"> 16S rRNA</a> </p> <a href="https://publications.waset.org/abstracts/161554/isolation-and-molecular-identification-of-phenol-tolerating-bacteria-from-petroleum-contaminated-sites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3434</span> Study of Petroleum Hydrocarbons Biodegradation and the Role of Biosurfactants Produced by Bacteria Isolated from the Lagoon of Mar Chica in This Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ikram%20Kamal">Ikram Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Blaghen"> Mohamed Blaghen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Petroleum hydrocarbons are serious problems and global pollutants in the environment due to their toxicity, carcinogenicity and persistent organic pollutant properties. One of the approaches to enhance biodegradation of petroleum hydrocarbons is to use biosurfactant. Biosurfactants are amphiphilic biomolecules produced as metabolic by-products from microorganisms they received considerable attention in the field of environmental remediation processes such as bioremediation. Biosurfactants have been considered as a desirable alternative to synthetic surfactants in various applications particularly in the environmental field. In comparison with their synthetic counterparts, biosurfactants have been reported to be less toxic, biodegradable and persistent. In this study we have investigated the potential of bacterial strains collected aseptically from the lagoon Marchika (water and soil) in Nador, Morocco; for the production of biosurfactants. This study also aimed to optimize the biosurfactant production process by changing the variables that influence the type and amount of biosurfactant produced by these microorganisms such as: carbon sources and also other physical and chemical parameters such as temperature and pH. Emulsification index, methylene blue test and thin layer chromatography (TLC) revealed the ability of strains used in this study to produce compounds that could emulsify gasoline. In addition, a HPLC/MS was used to separate and identify different biosurfactants purified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petroleum%20hydrocarbons" title="petroleum hydrocarbons">petroleum hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactants" title=" biosurfactants"> biosurfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title=" biodegradation"> biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=lagoon%20marchika" title=" lagoon marchika"> lagoon marchika</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsification%20index" title=" emulsification index"> emulsification index</a> </p> <a href="https://publications.waset.org/abstracts/48774/study-of-petroleum-hydrocarbons-biodegradation-and-the-role-of-biosurfactants-produced-by-bacteria-isolated-from-the-lagoon-of-mar-chica-in-this-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3433</span> Demulsification of Oil from Produced water Using Fibrous Coalescer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nutcha%20Thianbut">Nutcha Thianbut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the petroleum drilling industry, besides oil and gas, water is also produced from petroleum production. which will have oil droplets dispersed in the water as an emulsion. Commonly referred to as produced water, most industrial water-based produced water methods use the method of pumping water back into wells or catchment areas. because it cannot be utilized further, but in the compression of water each time, the cost is quite high. And the survey found that the amount of water from the petroleum production process has increased every year. In this research, we would like to study the removal of oil in produced water by the Coalescer device using fibers from agricultural waste as an intermediary. As an alternative to reduce the cost of water management in the petroleum drilling industry. The objectives of this research are 1. To study the fiber pretreatment by chemical process for the efficiency of oil-water separation 2. To study and design the fiber-packed coalescer device to destroy the emulsion of crude oil in water. 3. To study the working conditions of coalescer devices in emulsion destruction. using a fiber medium. In this research, the experiment was divided into two parts. The first part will study the absorbency of fibers. It compares untreated fibers with chemically treated alkaline fibers that change over time as well as adjusting the amount of fiber on the absorbency of the fiber and the second part will study the separation of oil from produced water by Coalescer equipment using fiber as medium to study the optimum condition of coalescer equipment for further development and industrial application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=produced%20water" title="produced water">produced water</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber" title=" fiber"> fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=coalescer" title=" coalescer"> coalescer</a> </p> <a href="https://publications.waset.org/abstracts/144197/demulsification-of-oil-from-produced-water-using-fibrous-coalescer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3432</span> The Potential of Tempo-Oxidized Cellulose Nanofibers to Replace EthylenE-propylene-Diene Monomer Rubber </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sibel%20Dikmen%20Kucuk">Sibel Dikmen Kucuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Guner"> Yusuf Guner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, petroleum-based polymers began to be limited due to the effects on the human and environmental point of view in many countries. Thus, organic-based biodegradable materials have attracted much interest in the composite industry because of environmental concerns. As a result of this, it has been asked that inorganic and petroleum-based materials should be reduced and altered with biodegradable materials. In this point, in this study, it is aimed to investigate the potential of the use of TEMPO (2,2,6,6- tetramethylpiperidine 1-oxyl)-mediated oxidation nano-fibrillated cellulose instead of EPDM (ethylene-propylene-diene monomer) rubber, which is a petroleum-based material. Thus, the exchange of petroleum-based EPDM rubber with organic-based cellulose nanofibers, which are environmentally friendly (green) and biodegradable, will be realized. The effect of tempo-oxidized cellulose nanofibers (TCNF) instead of EPDM rubber was analyzed by rheological, mechanical, chemical, thermal, and aging analyses. The aged surfaces were visually scrutinized, and surface morphological changes were examined via scanning electron microscopy (SEM). The results obtained showed that TEMPO oxidation nano-fibrillated cellulose could be used at an amount of 1.0 and 2.2 phr resulting the values stay within tolerance according to customer standard and without any chemical degradation, crack, color change or staining. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EPDM" title="EPDM">EPDM</a>, <a href="https://publications.waset.org/abstracts/search?q=lignin" title=" lignin"> lignin</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20materials" title=" green materials"> green materials</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20fillers" title=" biodegradable fillers"> biodegradable fillers</a> </p> <a href="https://publications.waset.org/abstracts/125514/the-potential-of-tempo-oxidized-cellulose-nanofibers-to-replace-ethylene-propylene-diene-monomer-rubber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3431</span> Petroleum Generative Potential of Eocene-Paleocene Sequences of Potwar Basin, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Bilawal%20Ali%20Shah">Syed Bilawal Ali Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The investigation of the hydrocarbon source rock potential of Eocene-Paleocene formations of Potwar Basin, part of Upper Indus Basin Pakistan, was done using geochemical and petrological techniques. Analysis was performed on forty-five core-cutting samples from two wells. The sequences analysed are Sakesar, Lockhart and Patala formations of Potwar Basin. Patala Formation is one of Potwar Basin's major petroleum-bearing source rocks. The Lockhart Formation samples VR (%Ro) and Tmax data indicate that the formation is early mature to immature for petroleum generation for hydrocarbon generation; samples from the Patala and Sakesar formations, however, have a peak oil generation window and an early maturity (oil window). With 3.37 weight percent mean TOC and HI levels up to 498 mg HC/g TOC, the source rock characteristics of the Sakesar and Patala formations generally exhibit good to very strong petroleum generative potential. The majority of sediments representing Lockhart Formation have 1.5 wt.% mean TOC having fair to good potential with HI values ranging between 203-498 mg HC/g TOC. 1. The analysed sediments of all formations possess primarily mixed Type II/III and Type III kerogen. Analysed sediments indicate that both the Sakesar and Patala formations can possess good oil-generation potential and may act as an oil source rock in the Potwar Basin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Potwar%20Basin" title="Potwar Basin">Potwar Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=Patala%20Shale" title=" Patala Shale"> Patala Shale</a>, <a href="https://publications.waset.org/abstracts/search?q=Rock-Eval%20pyrolysis" title=" Rock-Eval pyrolysis"> Rock-Eval pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Indus%20Basin" title=" Indus Basin"> Indus Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=VR%20%25Ro" title=" VR %Ro"> VR %Ro</a> </p> <a href="https://publications.waset.org/abstracts/179984/petroleum-generative-potential-of-eocene-paleocene-sequences-of-potwar-basin-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petroleum%20engineering&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petroleum%20engineering&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petroleum%20engineering&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petroleum%20engineering&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petroleum%20engineering&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petroleum%20engineering&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petroleum%20engineering&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petroleum%20engineering&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petroleum%20engineering&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petroleum%20engineering&page=115">115</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petroleum%20engineering&page=116">116</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=petroleum%20engineering&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>