CINXE.COM
Search results for: energy storage and conversion
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: energy storage and conversion</title> <meta name="description" content="Search results for: energy storage and conversion"> <meta name="keywords" content="energy storage and conversion"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="energy storage and conversion" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="energy storage and conversion"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10505</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: energy storage and conversion</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10505</span> Photocapacitor Integrating Solar Energy Conversion and Energy Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jihuai%20Wu">Jihuai Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeyu%20Song"> Zeyu Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Lan"> Zhang Lan</a>, <a href="https://publications.waset.org/abstracts/search?q=Liuxue%20Sun"> Liuxue Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar energy is clean, open, and infinite, but solar radiation on the earth is fluctuating, intermittent, and unstable. So, the sustainable utilization of solar energy requires a combination of high-efficient energy conversion and low-loss energy storage technologies. Hence, a photo capacitor integrated with photo-electrical conversion and electric-chemical storage functions in single device is a cost-effective, volume-effective and functional-effective optimal choice. However, owing to the multiple components, multi-dimensional structure and multiple functions in one device, especially the mismatch of the functional modules, the overall conversion and storage efficiency of the photocapacitors is less than 13%, which seriously limits the development of the integrated system of solar conversion and energy storage. To this end, two typical photocapacitors were studied. A three-terminal photocapacitor was integrated by using perovskite solar cell as solar conversion module and symmetrical supercapacitor as energy storage module. A function portfolio management concept was proposed the relationship among various efficiencies during photovoltaic conversion and energy storage process were clarified. By harmonizing the energy matching between conversion and storage modules and seeking the maximum power points coincide and the maximum efficiency points synchronize, the overall efficiency of the photocapacitor surpassed 18 %, and Joule efficiency was closed to 90%. A voltage adjustable hybrid supercapacitor (VAHSC) was designed as energy storage module, and two Si wafers in series as solar conversion module, a three-terminal photocapacitor was fabricated. The VAHSC effectively harmonizes the energy harvest and storage modules, resulting in the current, voltage, power, and energy match between both modules. The optimal photocapacitor achieved an overall efficiency of 15.49% and Joule efficiency of 86.01%, along with excellent charge/discharge cycle stability. In addition, the Joule efficiency (ηJoule) was defined as the energy ratio of discharge/charge of the devices for the first time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=joule%20efficiency" title="joule efficiency">joule efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=perovskite%20solar%20cell" title=" perovskite solar cell"> perovskite solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=photocapacitor" title=" photocapacitor"> photocapacitor</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20solar%20cell" title=" silicon solar cell"> silicon solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title=" supercapacitor"> supercapacitor</a> </p> <a href="https://publications.waset.org/abstracts/168790/photocapacitor-integrating-solar-energy-conversion-and-energy-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10504</span> 3D Simulation for Design and Predicting Performance of a Thermal Heat Storage Facility using Sand </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadjiba%20Mahfoudi">Nadjiba Mahfoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhafid%20Moummi"> Abdelhafid Moummi </a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20El%20Ganaoui"> Mohammed El Ganaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal applications are drawing increasing attention in the solar energy research field, due to their high performance in energy storage density and energy conversion efficiency. In these applications, solar collectors and thermal energy storage systems are the two core components. This paper presents a thermal analysis of the transient behavior and storage capability of a sensible heat storage device in which sand is used as a storage media. The TES unit with embedded charging tubes is connected to a solar air collector. To investigate it storage characteristics a 3D-model using no linear coupled partial differential equations for both temperature of storage medium and heat transfer fluid (HTF), has been developed. Performances of thermal storage bed of capacity of 17 MJ (including bed temperature, charging time, energy storage rate, charging energy efficiency) have been evaluated. The effect of the number of charging tubes (3 configurations) is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design" title="design">design</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20modeling" title=" thermal modeling"> thermal modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20enhancement" title=" heat transfer enhancement"> heat transfer enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=sensible%20heat%20storage" title=" sensible heat storage "> sensible heat storage </a> </p> <a href="https://publications.waset.org/abstracts/20693/3d-simulation-for-design-and-predicting-performance-of-a-thermal-heat-storage-facility-using-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">563</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10503</span> Catalytic Nanomaterials for Energy Conversion and Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yijin%20Kang">Yijin Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical-electrical energy conversion and storage are greatly attractive for the development of sustainable energy. Catalytic processes are heavily involved in such energy conversion and storage. Development of high-performance catalyst nanomaterials relies on tuning material structures at nanoscale. This is in particular manifested in the design of catalysts demanding both high activity and durability. Here, a research system will be presented that connects fundamental investigation on well-defined extended surfaces (e.g. single crystal surfaces), extrapolation onto nanocrystals with highly controlled shape and size, exploration of interfacial interaction using novel nanocrystal superlattices as platform, and finally design of high performance catalysts in which all the possible beneficial properties from complex functional structures are implemented. Using recently published results, it will be demonstrated that optimal and fine balanced activity and durability, as well as tunable functionality, can be achieved by carefully tailoring the nanostructure of catalytic nanomaterials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy" title="energy">energy</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysis" title=" catalysis"> catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalysis" title=" electrocatalysis"> electrocatalysis</a> </p> <a href="https://publications.waset.org/abstracts/56700/catalytic-nanomaterials-for-energy-conversion-and-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10502</span> Hybrid Energy Harvesting System with Energy Storage Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucian%20P%C3%AEslaru-D%C4%83nescu">Lucian Pîslaru-Dănescu</a>, <a href="https://publications.waset.org/abstracts/search?q=George-Claudiu%20Z%C4%83rnescu"> George-Claudiu Zărnescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lauren%C8%9Biu%20Constantin%20Lipan"> Laurențiu Constantin Lipan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rare%C8%99-Andrei%20Chihaia"> Rareș-Andrei Chihaia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the utilization of supercapacitors for energy storage (ES) devices that are designed for energy harvesting (EH) applications has increased substantially. The use of supercapacitors as energy storage devices in hybrid energy harvesting systems allows the miniaturization of electronic structures for energy storage. This study is concerned with the concept of energy management capacitors – supercapacitors and the new electronic structures for energy storage used for energy harvesting devices. Supercapacitors are low-voltage devices, and electronic overvoltage protection is needed for powering the source. The power management device that uses these proposed new electronic structures for energy storage is better than conventional electronic structures used for this purpose, like rechargeable batteries, supercapacitors, and hybrid systems. A hybrid energy harvesting system with energy storage management is able to simultaneously use several energy sources with recovery from the environment. The power management device uses a summing electronic block to combine the electric power obtained from piezoelectric composite plates and from a photovoltaic conversion system. Also, an overvoltage protection circuit used as a voltage detector and an improved concept of charging supercapacitors is presented. The piezoelectric composite plates are realized only by pressing two printed circuit boards together without damaging or prestressing the piezoceramic elements. The photovoltaic conversion system has the advantage that the modules are covered with glass plates with nanostructured film of ZnO with the role of anti-reflective coating and to improve the overall efficiency of the solar panels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supercapacitors" title="supercapacitors">supercapacitors</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20overvoltage%20protection" title=" electronic overvoltage protection"> electronic overvoltage protection</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title=" energy harvesting"> energy harvesting</a> </p> <a href="https://publications.waset.org/abstracts/173799/hybrid-energy-harvesting-system-with-energy-storage-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10501</span> Investigation on Solar Thermoelectric Generator Using D-Mannitol/Multi-Walled Carbon Nanotubes Composite Phase Change Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zihua%20Wu">Zihua Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yueming%20He"> Yueming He</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoxiao%20Yu"> Xiaoxiao Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuanyuan%20Wang"> Yuanyuan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Huaqing%20Xie"> Huaqing Xie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The match of Solar thermoelectric generator (STEG) and phase change materials (PCM) can enhance the solar energy storage and reduce environmental impact from the day-and-night transformation and weather changes. This work utilizes D-mannitol (DM) matrix as the suitable PCM for coupling with thermoelectric generator to achieve the middle-temperature solar energy storage performance at 165℃-167℃. DM/MWCNT composite phase change materials prepared by ball milling not only can keep a high phase change enthalpy of DM material but also have great photo-thermal conversion efficiency of 82%. Based on the self-made storage device container, the effect of PCM thickness on the solar energy storage performance is further discussed and analyzed. The experimental results prove that PCM-STEG coupling system can output more electric energy than pure STEG system because PCM can decline the heat transfer and storage thermal energy to further generate the electric energy through thermal-to-electric conversion when the light is removed. The increase of PCM thickness can reduce the heat transfer and enhance thermal storage, and then the power generation performance of PCM-STEG coupling system can be improved. As the increase of light intensity, the output electric energy of the coupling system rises accordingly, and the maximum amount of electrical energy can reach by 113.85 J at 1.6 W/cm2. The study of the PCM-STEG coupling system has certain reference for the development of solar energy storage and application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20thermoelectric%20generator" title=" solar thermoelectric generator"> solar thermoelectric generator</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20materials" title=" phase change materials"> phase change materials</a>, <a href="https://publications.waset.org/abstracts/search?q=solar-to-electric%20energy" title=" solar-to-electric energy"> solar-to-electric energy</a>, <a href="https://publications.waset.org/abstracts/search?q=DM%2FMWCNT" title=" DM/MWCNT"> DM/MWCNT</a> </p> <a href="https://publications.waset.org/abstracts/177662/investigation-on-solar-thermoelectric-generator-using-d-mannitolmulti-walled-carbon-nanotubes-composite-phase-change-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10500</span> Flywheel Energy Storage Control Using SVPWM for Small Satellites Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noha%20El-Gohary">Noha El-Gohary</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanaa%20El-Shater"> Thanaa El-Shater</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Mahfouz"> A. A. Mahfouz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Sakr"> M. M. Sakr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Searching for high power conversion efficiency and long lifetime are important goals when designing a power supply subsystem for satellite applications. To fulfill these goals, this paper presents a power supply subsystem for small satellites in which flywheel energy storage system is used as a secondary power source instead of chemical battery. In this paper, the model of flywheel energy storage system is introduced; a DC bus regulation control algorithm for charging and discharging of flywheel based on space vector pulse width modulation technique and motor current control is also introduced. Simulation results showed the operation of the flywheel for charging and discharging mode during illumination and shadowed period. The advantages of the proposed system are confirmed by the simulation results of the power supply system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small-satellites" title="small-satellites">small-satellites</a>, <a href="https://publications.waset.org/abstracts/search?q=flywheel%20energy%20storage%20system" title=" flywheel energy storage system"> flywheel energy storage system</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20vector%20pulse%20width%20modulation" title=" space vector pulse width modulation"> space vector pulse width modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20conversion" title=" power conversion"> power conversion</a> </p> <a href="https://publications.waset.org/abstracts/12932/flywheel-energy-storage-control-using-svpwm-for-small-satellites-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10499</span> Efficient Solid Oxide Electrolysers for Syn-Gas Generation Using Renewable Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Kaur">G. Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20P.%20Kulkarni"> A. P. Kulkarni</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Giddey"> S. Giddey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Production of fuels and chemicals using renewable energy is a promising way for large-scale energy storage and export. Solid oxide electrolysers (SOEs) integrated with renewable source of energy can produce 'Syngas' H₂/CO from H₂O/CO₂ in the desired ratio for further conversion to liquid fuels. As only a waste CO₂ from industrial and power generation processes is utilized in these processes, this approach is CO₂ neutral compared to using fossil fuel feedstock. In addition, the waste heat from industrial processes or heat from solar thermal concentrators can be effectively utilised in SOEs to further reduce the electrical requirements by up to 30% which boosts overall energy efficiency of the process. In this paper, the electrochemical performance of various novel steam/CO₂ reduction electrodes (cathode) would be presented. The efficiency and lifetime degradation data for single cells and a stack would be presented along with the response of cells to variable electrical load input mimicking the intermittent nature of the renewable energy sources. With such optimisation, newly developed electrodes have been tested for 500+ hrs with Faraday efficiency (electricity to fuel conversion efficiency) up to 95%, and thermal efficiency in excess of 70% based upon energy content of the syngas produced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title="carbon dioxide">carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20conversion" title=" steam conversion"> steam conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20system" title=" electrochemical system"> electrochemical system</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20production" title=" fuel production"> fuel production</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/90882/efficient-solid-oxide-electrolysers-for-syn-gas-generation-using-renewable-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10498</span> Performance Variation of the TEES According to the Changes in Cold-Side Storage Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young-Jin%20Baik">Young-Jin Baik</a>, <a href="https://publications.waset.org/abstracts/search?q=Minsung%20Kim"> Minsung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Junhyun%20Cho"> Junhyun Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Ho-Sang%20Ra"> Ho-Sang Ra</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Soo%20Lee"> Young-Soo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki-Chang%20Chang"> Ki-Chang Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surplus electricity can be converted into potential energy via pumped hydroelectric storage for future usage. Similarly, thermo-electric energy storage (TEES) uses heat pumps equipped with thermal storage to convert electrical energy into thermal energy; the stored energy is then converted back into electrical energy when necessary using a heat engine. The greatest advantage of this method is that, unlike pumped hydroelectric storage and compressed air energy storage, TEES is not restricted by geographical constraints. In this study, performance variation of the TEES according to the changes in cold-side storage temperature was investigated by simulation method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20system" title="energy storage system">energy storage system</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20pump" title=" heat pump"> heat pump</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20mechanics" title=" fluid mechanics"> fluid mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamics" title=" thermodynamics"> thermodynamics</a> </p> <a href="https://publications.waset.org/abstracts/12812/performance-variation-of-the-tees-according-to-the-changes-in-cold-side-storage-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10497</span> An Overview of Thermal Storage Techniques for Solar Thermal Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Talha%20Shafiq">Talha Shafiq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The traditional electricity operation in solar thermal plants is designed to operate on a single path initiating at power plant and executes at the consumer. Due to lack of energy storage facilities during this operation, a decrease in the efficiency is often observed with the power plant performance. This paper reviews the significance of energy storage in supply design and elaborates various methods that can be adopted in this regard which are equally cost effective and environmental friendly. Moreover, various parameters in thermal storage technique are also critically analyzed to clarify the pros and cons in this facility. Discussing the different thermal storage system, their technical and economical evaluation has also been reviewed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20energy%20storage" title="thermal energy storage">thermal energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=sensible%20heat%20storage" title=" sensible heat storage"> sensible heat storage</a>, <a href="https://publications.waset.org/abstracts/search?q=latent%20heat%20storage" title=" latent heat storage"> latent heat storage</a>, <a href="https://publications.waset.org/abstracts/search?q=thermochemical%20heat%20storage" title=" thermochemical heat storage"> thermochemical heat storage</a> </p> <a href="https://publications.waset.org/abstracts/21035/an-overview-of-thermal-storage-techniques-for-solar-thermal-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">566</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10496</span> Energy Self-Sufficiency Through Smart Micro-Grids and Decentralised Sector-Coupling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Trapp">C. Trapp</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Vijay"> A. Vijay</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khorasani"> M. Khorasani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Decentralised micro-grids with sector coupling can combat the spatial and temporal intermittence of renewable energy by combining power, transportation and infrastructure sectors. Intelligent energy conversion concepts such as electrolysers, hydrogen engines and fuel cells combined with energy storage using intelligent batteries and hydrogen storage form the back-bone of such a system. This paper describes a micro-grid based on Photo-Voltaic cells, battery storage, innovative modular and scalable Anion Exchange Membrane (AEM) electrolyzer with an efficiency of up to 73%, high-pressure hydrogen storage as well as cutting-edge combustion-engine based Combined Heat and Power (CHP) plant with more than 85% efficiency at the university campus to address the challenges of decarbonization whilst eliminating the necessity for expensive high-voltage infrastructure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sector%20coupling" title="sector coupling">sector coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-grids" title=" micro-grids"> micro-grids</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20self-sufficiency" title=" energy self-sufficiency"> energy self-sufficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=decarbonization" title=" decarbonization"> decarbonization</a>, <a href="https://publications.waset.org/abstracts/search?q=AEM%20electrolysis" title=" AEM electrolysis"> AEM electrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20CHP" title=" hydrogen CHP"> hydrogen CHP</a> </p> <a href="https://publications.waset.org/abstracts/144154/energy-self-sufficiency-through-smart-micro-grids-and-decentralised-sector-coupling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10495</span> Electrochemical Study of Ni and/or Fe Based Mono- And Bi- Hydroxides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Benaldjia">H. Benaldjia</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Habib"> N. Habib</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Djefaflia"> F. Djefaflia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nait-Merzoug"> A. Nait-Merzoug</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Harat"> A. Harat</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20El-Haskouri"> J. El-Haskouri</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Guellati"> O. Guellati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the technology has attracted knowledge of energy storage sources similar to batteries, capacitors and super-capacitors because of its very different applications in many fields with major social and economic challenges. Moreover, hydroxides have attracted much attention as a promising and active material choice in large-scale applications such as molecular adsorption/storage and separation for the environment, ion exchange, nanotechnology, supercapacitor for energy storage and conversion, electro-biosensing, and catalysts, due to their unique properties which are strongly influenced by their composition, microstructure, and synthesis method. In this context, we report in this study the synthesis of hydroxide-based nanomaterials precisely based on Ni and Fe using a simple hydrothermal method with mono and bi precursors at optimized growth conditions (6h-120°C). The obtained products were characterized using different techniques, such as XRD, FTIR, FESEM and BET, as well as electrochemical measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title="energy storage">energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=Supercapacitors" title=" Supercapacitors"> Supercapacitors</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=nanohybride" title=" nanohybride"> nanohybride</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-active%20materials." title=" electro-active materials."> electro-active materials.</a> </p> <a href="https://publications.waset.org/abstracts/169193/electrochemical-study-of-ni-andor-fe-based-mono-and-bi-hydroxides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10494</span> Stochastic Energy and Reserve Scheduling with Wind Generation and Generic Energy Storage Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirhossein%20Khazali">Amirhossein Khazali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Kalantar"> Mohsen Kalantar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy storage units can play an important role to provide an economic and secure operation of future energy systems. In this paper, a stochastic energy and reserve market clearing scheme is presented considering storage energy units. The approach is proposed to deal with stochastic and non-dispatchable renewable sources with a high level of penetration in the energy system. A two stage stochastic programming scheme is formulated where in the first stage the energy market is cleared according to the forecasted amount of wind generation and demands and in the second stage the real time market is solved according to the assumed scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20and%20reserve%20market" title="energy and reserve market">energy and reserve market</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20device" title=" energy storage device"> energy storage device</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20programming" title=" stochastic programming"> stochastic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20generation" title=" wind generation"> wind generation</a> </p> <a href="https://publications.waset.org/abstracts/36215/stochastic-energy-and-reserve-scheduling-with-wind-generation-and-generic-energy-storage-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">576</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10493</span> Properties of Ettringite According to Hydration, Dehydration and Carbonation Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bao%20Chen">Bao Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Frederic%20Kuznik"> Frederic Kuznik</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthieu%20Horgnies"> Matthieu Horgnies</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevyn%20Johannes"> Kevyn Johannes</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Morin"> Vincent Morin</a>, <a href="https://publications.waset.org/abstracts/search?q=Edouard%20Gengembre"> Edouard Gengembre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The contradiction between energy consumption, environment protection, and social development is increasingly intensified during recent decade years. At the same time, as avoiding fossil-fuels-thirsty, people turn their view on the renewable green energy, such as solar energy, wind power, hydropower, etc. However, due to the unavoidable mismatch on geography and time for production and consumption, energy storage seems to be one of the most reasonable solutions to enlarge the use of renewable energies. Thermal energy storage (TES), a branch of energy storage solution, mainly concerns the capture, storage and consumption of thermal energy for later use in different scales (individual house, apartment, district, and city). In TES research field, sensible heat and latent heat storage have been widely studied and presented at an advanced stage of development. Compared with them, thermochemical energy storage is still at initial phase but provides a relatively higher theoretical energy density and a long shelf life without heat dissipation during storage. Among thermochemical energy storage materials, inorganic pure or composite compounds like micro-porous silica gel, SrBr₂ hydrate and MgSO₄-Zeolithe have been reported as promising to be integrated into thermal energy storage systems. However, the cost of these materials, one of main obstacles, may hinder the wide use of energy storage systems in real application scales (individual house, apartment, district and even city). New studies on ettringite show promising application for thermal energy storage since its high energy density and large resource from cementitious materials. Ettringite, or calcium trisulfoaluminate hydrate, of which chemical formula is 3CaO∙Al₂O₃∙3CaSO₄∙32H₂O, or C₆AS̅₃H₃₂ as known in cement chemistry notation, is one of the most important members of AFt group. As a common compound in hydrated cements, ettringite has been widely studied for its performances in construction but barely known as a thermochemical material. For this study, we summarize available data about the structure and properties of ettringite and its metastable phase (meta-ettringite), including the processes of hydration, thermal conversion and carbonation durability for thermal energy storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title="building materials">building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=ettringite" title=" ettringite"> ettringite</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-ettringite" title=" meta-ettringite"> meta-ettringite</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20energy%20storage" title=" thermal energy storage"> thermal energy storage</a> </p> <a href="https://publications.waset.org/abstracts/85805/properties-of-ettringite-according-to-hydration-dehydration-and-carbonation-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10492</span> A Functional Thermochemical Energy Storage System for Mobile Applications: Design and Performance Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jure%20Galovi%C4%87">Jure Galović</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Hofmann"> Peter Hofmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermochemical energy storage (TCES), as a long-term and lossless energy storage principle, provides a contribution for the reduction of greenhouse emissions of mobile applications, such as passenger vehicles with an internal combustion engine. A prototype of a TCES system, based on reversible sorption reactions of LiBr composite and methanol has been designed at Vienna University of Technology. In this paper, the selection of reactive and inert carrier materials as well as the design of heat exchangers (reactor vessel and evapo-condenser) was reviewed and the cycle stability under real operating conditions was investigated. The performance of the developed system strongly depends on the environmental temperatures, to which the reactor vessel and evapo-condenser are exposed during the phases of thermal conversion. For an integration of the system into mobile applications, the functionality of the designed prototype was proved in numerous conducted cycles whereby no adverse reactions were observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20applications" title="dynamic applications">dynamic applications</a>, <a href="https://publications.waset.org/abstracts/search?q=LiBr%20composite" title=" LiBr composite"> LiBr composite</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol" title=" methanol"> methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20of%20TCES%20system" title=" performance of TCES system"> performance of TCES system</a>, <a href="https://publications.waset.org/abstracts/search?q=sorption%20process" title=" sorption process"> sorption process</a>, <a href="https://publications.waset.org/abstracts/search?q=thermochemical%20energy%20storage" title=" thermochemical energy storage"> thermochemical energy storage</a> </p> <a href="https://publications.waset.org/abstracts/101968/a-functional-thermochemical-energy-storage-system-for-mobile-applications-design-and-performance-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10491</span> Methodology of Choosing Technology and Sizing of the Hybrid Energy Storage Based on Cost-benefit Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Rafa%C5%82">Krzysztof Rafał</a>, <a href="https://publications.waset.org/abstracts/search?q=Weronika%20Radziszewska"> Weronika Radziszewska</a>, <a href="https://publications.waset.org/abstracts/search?q=Hubert%20Biedka"> Hubert Biedka</a>, <a href="https://publications.waset.org/abstracts/search?q=Oskar%20Grabowski"> Oskar Grabowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Mik"> Krzysztof Mik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a method to choose energy storage technologies and their parameters for the economic operation of a microgrid. A grid-connected system with local loads and PV generation is assumed, where an energy storage system (ESS) is attached to minimize energy cost by providing energy balancing and arbitrage functionalities. The ESS operates in a hybrid configuration and consists of two unique technologies operated in a coordinated way. Based on given energy profiles and economical data a model calculates financial flow for ESS investment, including energy cost and ESS depreciation resulting from degradation. The optimization strategy proposes a hybrid set of two technologies with their respective power and energy ratings to minimize overall system cost in a given timeframe. Results are validated through microgrid simulations using real-life input profiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title="energy storage">energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20energy%20storage" title=" hybrid energy storage"> hybrid energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=cost-benefit%20analysis" title=" cost-benefit analysis"> cost-benefit analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=microgrid" title=" microgrid"> microgrid</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20sizing" title=" battery sizing"> battery sizing</a> </p> <a href="https://publications.waset.org/abstracts/141372/methodology-of-choosing-technology-and-sizing-of-the-hybrid-energy-storage-based-on-cost-benefit-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10490</span> Stability Analysis of DC Microgrid with Varying Supercapacitor Operating Voltages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Annie%20B.%20V.">Annie B. V.</a>, <a href="https://publications.waset.org/abstracts/search?q=Anu%20A.%20G."> Anu A. G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Harikumar%20R."> Harikumar R.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microgrid (MG) is a self-governing miniature section of the power system. Nowadays the majority of loads and energy storage devices are inherently in DC form. This necessitates a greater scope of research in the various types of energy storage devices in DC microgrids. In a modern power system, DC microgrid is a manageable electric power system usually integrated with renewable energy sources (RESs) and DC loads with the help of power electronic converters. The stability of the DC microgrid mainly depends on the power imbalance. Power imbalance due to the presence of intermittent renewable energy resources (RERs) is supplied by energy storage devices. Battery, supercapacitor, flywheel, etc. are some of the commonly used energy storage devices. Owing to the high energy density provided by the batteries, this type of energy storage system is mainly utilized in all sorts of hybrid energy storage systems. To minimize the stability issues, a Supercapacitor (SC) is usually interfaced with the help of a bidirectional DC/DC converter. SC can exchange power during transient conditions due to its high power density. This paper analyses the stability issues of DC microgrids with hybrid energy storage systems (HESSs) arises from a reduction in SC operating voltage due to self-discharge. The stability of DC microgrid and power management is analyzed with different control strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DC%20microgrid" title="DC microgrid">DC microgrid</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20energy%20storage%20system%20%28HESS%29" title=" hybrid energy storage system (HESS)"> hybrid energy storage system (HESS)</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20management" title=" power management"> power management</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20signal%20modeling" title=" small signal modeling"> small signal modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title=" supercapacitor"> supercapacitor</a> </p> <a href="https://publications.waset.org/abstracts/138143/stability-analysis-of-dc-microgrid-with-varying-supercapacitor-operating-voltages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10489</span> Technologies for Solar Energy Storage and Utilization Using Mixture of Molten Salts and Polymers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anteneh%20Mesfin%20Yeneneh">Anteneh Mesfin Yeneneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Shakoor"> Abdul Shakoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Jimoh%20Adewole"> Jimoh Adewole</a>, <a href="https://publications.waset.org/abstracts/search?q=Safinaz%20Al%20Balushi"> Safinaz Al Balushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Al%20Balushi"> Sara Al Balushi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research work focuses on exploring better technologies for solar energy storage. The research has the objective of substituting fossil fuels with renewable solar energy technology. This was the reason that motivated the research team to search for alternatives to develop an eco-friendly desalination process, which fully depends on the solar energy source. The Authors also investigated the potential of using different salt mixtures for better solar energy storage and better pure water productivity. Experiments were conducted to understand the impacts of solar energy collection and storage techniques on heat accumulation, heat storage capacity of various compositions of salt mixtures. Based on the experiments conducted, the economic and technical advantages of the integrated water desalination was assessed. Experiments also showed that the best salts with a higher storage efficiency of heat energy are NaCl, KNO3, and MgCl26H2O and polymers such as Poly Propylene and Poly Ethylene Terephthalate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molten%20salts" title="molten salts">molten salts</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy%20storage%20and%20utilization" title=" solar energy storage and utilization"> solar energy storage and utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a> </p> <a href="https://publications.waset.org/abstracts/128579/technologies-for-solar-energy-storage-and-utilization-using-mixture-of-molten-salts-and-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10488</span> An Electromechanical Device to Use in Road Pavements to Convert Vehicles Mechanical Energy into Electrical Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Duarte">Francisco Duarte</a>, <a href="https://publications.waset.org/abstracts/search?q=Adelino%20Ferreira"> Adelino Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Fael"> Paulo Fael</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the growing need for alternative energy sources, research into energy harvesting technologies has increased considerably in recent years. The particular case of energy harvesting on road pavements is a very recent area of research, with different technologies having been developed in recent years. However, none of them have presented high conversion efficiencies nor technical or economic viability. This paper deals with the development of a mechanical system to implement on a road pavement energy harvesting electromechanical device, to transmit energy from the device surface to an electrical generator. The main goal is to quantify the energy harvesting, transmission and conversion efficiency of the proposed system and compare it with existing systems. Conclusions about the system’s efficiency are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=road%20pavement" title="road pavement">road pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title=" energy harvesting"> energy harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20conversion" title=" energy conversion"> energy conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20modelling" title=" system modelling"> system modelling</a> </p> <a href="https://publications.waset.org/abstracts/61200/an-electromechanical-device-to-use-in-road-pavements-to-convert-vehicles-mechanical-energy-into-electrical-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10487</span> Optimal Scheduling for Energy Storage System Considering Reliability Constraints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wook-Won%20Kim">Wook-Won Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Je-Seok%20Shin"> Je-Seok Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-O%20Kim"> Jin-O Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper propose the method for optimal scheduling for battery energy storage system with reliability constraint of energy storage system in reliability aspect. The optimal scheduling problem is solved by dynamic programming with proposed transition matrix. Proposed optimal scheduling method guarantees the minimum fuel cost within specific reliability constraint. For evaluating proposed method, the timely capacity outage probability table (COPT) is used that is calculated by convolution of probability mass function of each generator. This study shows the result of optimal schedule of energy storage system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20system%20%28ESS%29" title="energy storage system (ESS)">energy storage system (ESS)</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20scheduling" title=" optimal scheduling"> optimal scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20programming" title=" dynamic programming"> dynamic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20constraints" title=" reliability constraints"> reliability constraints</a> </p> <a href="https://publications.waset.org/abstracts/39373/optimal-scheduling-for-energy-storage-system-considering-reliability-constraints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10486</span> A Ti₃C₂O₂ Supported Single Atom, Trifunctional Catalyst for Electrochemical Reactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhanzhao%20Fu">Zhanzhao Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chongyi%20Ling"> Chongyi Ling</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinlan%20Wang"> Jinlan Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water splitting and rechargeable air-based batteries are emerging as new renewable energy storage and conversion technologies. However, the discovery of suitable catalysts with high activity and low cost remains a great challenge. In this work, we report a single-atom trifunctional catalyst, namely Ti₃C₂O₂ supported single Pd atom (Pd1@Ti₃C₂O₂), for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). This catalyst is selected from 12 candidates and possesses low overpotentials of 0.22 V, 0.31 V and 0.34 V for the HER, OER and ORR, respectively, making it an excellent electrocatalyst for both overall water splitting and rechargeable air-based batteries. The superior OER and ORR performance originates from the optimal d band center of the supported Pd atom. Moreover, the excellent activity can be maintained even if the single Pd atoms aggregate into small clusters. This work offers new opportunities for advancing the renewable energy storage and conversion technologies and paves a new way for the development of multifunctional electrocatalysts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=SACs" title=" SACs"> SACs</a>, <a href="https://publications.waset.org/abstracts/search?q=OER" title=" OER"> OER</a>, <a href="https://publications.waset.org/abstracts/search?q=ORR" title=" ORR"> ORR</a>, <a href="https://publications.waset.org/abstracts/search?q=HER" title=" HER"> HER</a> </p> <a href="https://publications.waset.org/abstracts/168154/a-ti3c2o2-supported-single-atom-trifunctional-catalyst-for-electrochemical-reactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10485</span> Prediction of Energy Storage Areas for Static Photovoltaic System Using Irradiation and Regression Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kisan%20Sarda">Kisan Sarda</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhavika%20Shingote"> Bhavika Shingote</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to evaluate regression modelling for prediction of Energy storage of solar photovoltaic (PV) system using Semi parametric regression techniques because there are some parameters which are known while there are some unknown parameters like humidity, dust etc. Here irradiation of solar energy is different for different places on the basis of Latitudes, so by finding out areas which give more storage we can implement PV systems at those places and our need of energy will be fulfilled. This regression modelling is done for daily, monthly and seasonal prediction of solar energy storage. In this, we have used R modules for designing the algorithm. This algorithm will give the best comparative results than other regression models for the solar PV cell energy storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semi%20parametric%20regression" title="semi parametric regression">semi parametric regression</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20%28PV%29%20system" title=" photovoltaic (PV) system"> photovoltaic (PV) system</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20modelling" title=" regression modelling"> regression modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=irradiation" title=" irradiation"> irradiation</a> </p> <a href="https://publications.waset.org/abstracts/65373/prediction-of-energy-storage-areas-for-static-photovoltaic-system-using-irradiation-and-regression-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10484</span> Enhanced Thermal Stability of Dielectric and Energy Storage Properties in 0.4BCZT-0.6BTSn Lead-Free Ceramics Elaborated by Sol-Gel Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Khardazi">S. Khardazi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Zaitouni"> H. Zaitouni</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Neqali"> A. Neqali</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Lyubchyk"> S. Lyubchyk</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Mezzane"> D. Mezzane</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Amjoud"> M. Amjoud</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Choukri"> E. Choukri</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Lyubchyk"> S. Lyubchyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Kutnjak"> Z. Kutnjak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present paper, structural, dielectric, ferroelectric, and energy storage properties of pure perovskite lead-free BCZT, BTSn, and BTSn-BCZT ferroelectric ceramics have been investigated. Rietveld refinement of XRD data confirms the coexistence of the rhombohedral and orthorhombic phases at room temperature in the composite BCZT–BTSn ceramic. Remarkably, an improved recoverable energy density of 137.86 mJ/cm³ and a high energy storage efficiency of 86.19 % at 80°C under a moderate applied electric field of 30 kV/cm were achieved in the designed BCZT–BTSn ceramic. Besides, the sample exhibits excellent thermal stability of the energy storage efficiency (less than 3%) in the temperature range of 70 to 130 °C under 30 kV/cm. Such results make the pb-free BCZT–BTSn ferroelectric ceramic a very promising potential matrix for energy storage capacitor applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title="sol-gel">sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=ferroelectrics" title=" ferroelectrics"> ferroelectrics</a>, <a href="https://publications.waset.org/abstracts/search?q=lead-free" title=" lead-free"> lead-free</a>, <a href="https://publications.waset.org/abstracts/search?q=perovskites" title=" perovskites"> perovskites</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a> </p> <a href="https://publications.waset.org/abstracts/177501/enhanced-thermal-stability-of-dielectric-and-energy-storage-properties-in-04bczt-06btsn-lead-free-ceramics-elaborated-by-sol-gel-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10483</span> Hydrogen Storage Systems for Enhanced Grid Balancing Services in Wind Energy Conversion Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nezmin%20Kayedpour">Nezmin Kayedpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20E.%20Samani"> Arash E. Samani</a>, <a href="https://publications.waset.org/abstracts/search?q=Siavash%20Asiaban"> Siavash Asiaban</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeroen%20M.%20De%20Kooning"> Jeroen M. De Kooning</a>, <a href="https://publications.waset.org/abstracts/search?q=Lieven%20Vandevelde"> Lieven Vandevelde</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillaume%20Crevecoeur"> Guillaume Crevecoeur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing adoption of renewable energy sources, such as wind power, in electricity generation is a significant step towards a sustainable and decarbonized future. However, the inherent intermittency and uncertainty of wind resources pose challenges to the reliable and stable operation of power grids. To address this, hydrogen storage systems have emerged as a promising and versatile technology to support grid balancing services in wind energy conversion systems. In this study, we propose a supplementary control design that enhances the performance of the hydrogen storage system by integrating wind turbine (WT) pitch and torque control systems. These control strategies aim to optimize the hydrogen production process, ensuring efficient utilization of wind energy while complying with grid requirements. The wind turbine pitch control system plays a crucial role in managing the turbine's aerodynamic performance. By adjusting the blade pitch angle, the turbine's rotational speed and power output can be regulated. Our proposed control design dynamically coordinates the pitch angle to match the wind turbine's power output with the optimal hydrogen production rate. This ensures that the electrolyzer receives a steady and optimal power supply, avoiding unnecessary strain on the system during high wind speeds and maximizing hydrogen production during low wind speeds. Moreover, the wind turbine torque control system is incorporated to facilitate efficient operation at varying wind speeds. The torque control system optimizes the energy capture from the wind while limiting mechanical stress on the turbine components. By harmonizing the torque control with hydrogen production requirements, the system maintains stable wind turbine operation, thereby enhancing the overall energy-to-hydrogen conversion efficiency. To enable grid-friendly operation, we introduce a cascaded controller that regulates the electrolyzer's electrical power-current in accordance with grid requirements. This controller ensures that the hydrogen production rate can be dynamically adjusted based on real-time grid demands, supporting grid balancing services effectively. By maintaining a close relationship between the wind turbine's power output and the electrolyzer's current, the hydrogen storage system can respond rapidly to grid fluctuations and contribute to enhanced grid stability. In this paper, we present a comprehensive analysis of the proposed supplementary control design's impact on the overall performance of the hydrogen storage system in wind energy conversion systems. Through detailed simulations and case studies, we assess the system's ability to provide grid balancing services, maximize wind energy utilization, and reduce greenhouse gas emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20power%20control" title="active power control">active power control</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolyzer" title=" electrolyzer"> electrolyzer</a>, <a href="https://publications.waset.org/abstracts/search?q=grid%20balancing%20services" title=" grid balancing services"> grid balancing services</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy%20conversion%20systems" title=" wind energy conversion systems"> wind energy conversion systems</a> </p> <a href="https://publications.waset.org/abstracts/170802/hydrogen-storage-systems-for-enhanced-grid-balancing-services-in-wind-energy-conversion-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10482</span> Polypyrrole Integrated MnCo2O4 Nanorods Hybrid as Electrode Material for High Performance Supercapacitor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Santimoy%20Khilari">Santimoy Khilari</a>, <a href="https://publications.waset.org/abstracts/search?q=Debabrata%20Pradhan"> Debabrata Pradhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ever−increasing energy demand and growing energy crisis along with environmental issues emphasize the research on sustainable energy conversion and storage systems. Recently, supercapacitors or electrochemical capacitors emerge as a promising energy storage technology for future generation. The activity of supercapacitors generally depends on the efficiency of its electrode materials. So, the development of cost−effective efficient electrode materials for supercapacitors is one of the challenges to the scientific community. Transition metal oxides with spinel crystal structure receive much attention for different electrochemical applications in energy storage/conversion devices because of their improved performance as compared to simple oxides. In the present study, we have synthesized polypyrrole (PPy) supported manganese cobaltite nanorods (MnCo2O4 NRs) hybrid electrode material for supercapacitor application. The MnCo2O4 NRs were synthesized by a simple hydrothermal and calcination approach. The MnCo2O4 NRs/PPy hybrid was prepared by in situ impregnation of MnCo2O4 NRs during polymerization of pyrrole. The surface morphology and microstructure of as−synthesized samples was characterized by scanning electron microscopy and transmission electron microscopy, respectively. The crystallographic phase of MnCo2O4 NRs, PPy and hybrid was determined by X-ray diffraction. Electrochemical charge storage activity of MnCo2O4 NRs, PPy and MnCo2O4 NRs/PPy hybrid was evaluated from cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy. Significant improvement of specific capacitance was achieved in MnCo2O4 NRs/PPy hybrid as compared to the individual components. Furthermore, the mechanically mixed MnCo2O4 NRs, and PPy shows lower specific capacitance as compared to MnCo2O4 NRs/PPy hybrid suggesting the importance of in situ hybrid preparation. The stability of as prepared electrode materials was tested by cyclic charge-discharge measurement for 1000 cycles. Maximum 94% capacitance was retained with MnCo2O4 NRs/PPy hybrid electrode. This study suggests that MnCo2O4 NRs/PPy hybrid can be used as a low cost electrode material for charge storage in supercapacitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supercapacitors" title="supercapacitors">supercapacitors</a>, <a href="https://publications.waset.org/abstracts/search?q=nanorods" title=" nanorods"> nanorods</a>, <a href="https://publications.waset.org/abstracts/search?q=spinel" title=" spinel"> spinel</a>, <a href="https://publications.waset.org/abstracts/search?q=MnCo2O4" title=" MnCo2O4"> MnCo2O4</a>, <a href="https://publications.waset.org/abstracts/search?q=polypyrrole" title=" polypyrrole"> polypyrrole</a> </p> <a href="https://publications.waset.org/abstracts/14163/polypyrrole-integrated-mnco2o4-nanorods-hybrid-as-electrode-material-for-high-performance-supercapacitor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10481</span> Electric Propulsion Systems in Aerospace Applications - Energy Balance Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Tulwin">T. Tulwin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20G%C4%99ca"> M. Gęca</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sochaczewski"> R. Sochaczewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent improvements in electric propulsion systems and energy storage systems allow for the electrification of many sectors where it was previously not feasible. This analysis proves the feasibility of electric propulsion in aviation applications reviewing recent energy storage developments. It can be more quiet, energy efficient and more environmentally friendly. Numerical simulations were done to prove that energy efficiency can be improved for rotorcrafts especially in hover conditions. New types of aircraft configurations are reviewed and future trends are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft" title="aircraft">aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=propulsion" title=" propulsion "> propulsion </a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a> </p> <a href="https://publications.waset.org/abstracts/106678/electric-propulsion-systems-in-aerospace-applications-energy-balance-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10480</span> Exploring Distinct Materials for Hydrogen Storage: A Density Functional Theory Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdalla%20Ahmad%20Obeidat">Abdalla Ahmad Obeidat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Developing efficient hydrogen storage materials is critical to advancing clean energy technologies, particularly for applications in fuel cells and renewable energy systems. This study explores materials for hydrogen storage through Density Functional Theory (DFT) calculations, addressing one of the most significant challenges in sustainable energy: the safe and efficient storage and release of hydrogen. Our research provides an in-depth analysis of various candidate compounds' structural and electronic properties, aiming to identify materials with enhanced hydrogen storage capacities. By investigating adsorption mechanisms and optimizing key material properties, we aim to contribute to developing high-performance hydrogen storage solutions. The findings from this work have the potential to impact the field of hydrogen fuel technology significantly, offering insights and advancements that support the transition to sustainable energy systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20storage" title="hydrogen storage">hydrogen storage</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title=" density functional theory"> density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic" title=" electronic"> electronic</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stability" title=" thermal stability"> thermal stability</a> </p> <a href="https://publications.waset.org/abstracts/193719/exploring-distinct-materials-for-hydrogen-storage-a-density-functional-theory-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">14</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10479</span> A Photovoltaic Micro-Storage System for Residential Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alia%20Al%20Nuaimi">Alia Al Nuaimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayesha%20Al%20Aberi"> Ayesha Al Aberi</a>, <a href="https://publications.waset.org/abstracts/search?q=Faiza%20Al%20Marzouqi"> Faiza Al Marzouqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaikha%20Salem%20Ali%20Al%20Yahyaee"> Shaikha Salem Ali Al Yahyaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ala%20Hussein"> Ala Hussein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a PV micro-storage system for residential applications is proposed. The term micro refers to the size of the PV storage system, which is in the range of few kilo-watts, compared to the grid size (~GWs). Usually, in a typical load profile of a residential unit, two peak demand periods exist: one at morning and the other at evening time. The morning peak can be partly covered by the PV energy directly, while the evening peak cannot be covered by the PV alone. Therefore, an energy storage system that stores solar energy during daytime and use this stored energy when the sun is absent is a must. A complete design procedure including theoretical analysis followed by simulation verification and economic feasibility evaluation is addressed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery" title="battery">battery</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20shaving" title=" peak shaving"> peak shaving</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a> </p> <a href="https://publications.waset.org/abstracts/43456/a-photovoltaic-micro-storage-system-for-residential-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10478</span> Feasibility Conditions for Wind and Hydraulic Energy Coupling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antonin%20Jolly">Antonin Jolly</a>, <a href="https://publications.waset.org/abstracts/search?q=Bertrand%20Aubry"> Bertrand Aubry</a>, <a href="https://publications.waset.org/abstracts/search?q=Corentin%20Michel"> Corentin Michel</a>, <a href="https://publications.waset.org/abstracts/search?q=Rebecca%20Freva"> Rebecca Freva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind energy depends on wind strength and varies largely in time. When it is above the demand, it generates a loss while in the opposite case; energy needs are not fully satisfied. To overcome this problem specific to irregular energies, the process of pumped-storage hydroelectricity (PSH) is studied in present paper. A combination of wind turbine and pumped storage system is more predictable and is more compliant to provide electricity supply according to daily demand. PSH system is already used in several countries to accumulate electricity by pumping water during off-peak times into a storage reservoir, and to use it during peak times to produce energy. Present work discusses a feasibility study on size and financial productivity of PSH system actuated with wind turbines specific power. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title="wind turbine">wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroelectricity" title=" hydroelectricity"> hydroelectricity</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=pumped-storage%20hydroelectricity" title=" pumped-storage hydroelectricity"> pumped-storage hydroelectricity</a> </p> <a href="https://publications.waset.org/abstracts/36089/feasibility-conditions-for-wind-and-hydraulic-energy-coupling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10477</span> Chemical Hazards Impact on Efficiency of Energy Storage Battery and its Possible Mitigation's</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abirham%20Simeneh%20Ayalew">Abirham Simeneh Ayalew</a>, <a href="https://publications.waset.org/abstracts/search?q=Seada%20Hussen%20Adem"> Seada Hussen Adem</a>, <a href="https://publications.waset.org/abstracts/search?q=Frie%20Ayalew%20Yimam"> Frie Ayalew Yimam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Battery energy storage has a great role on storing energy harnessed from different alternative resources and greatly benefit the power sector by supply energy back to the system during outage and regular operation in power sectors. Most of the study shows that there is an exponential increase in the quantity of lithium - ion battery energy storage system due to their power density, economical aspects and its performance. But this lithium ion battery failures resulted in fire and explosion due to its having flammable electrolytes (chemicals) which can create those hazards. Hazards happen in these energy storage system lead to minimize battery life spans or efficiency. Identifying the real cause of these hazards and its mitigation techniques can be the solution to improve the efficiency of battery technologies and the electrode materials should have high electrical conductivity, large surface area, stable structure and low resistance. This paper asses the real causes of chemical hazards, its impact on efficiency, proposed solution for mitigating those hazards associated with efficiency improvement and summery of researchers new finding related to the field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20energy%20storage" title="battery energy storage">battery energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20energy%20storage%20efficiency" title=" battery energy storage efficiency"> battery energy storage efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20hazards" title=" chemical hazards"> chemical hazards</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20ion%20battery" title=" lithium ion battery"> lithium ion battery</a> </p> <a href="https://publications.waset.org/abstracts/178880/chemical-hazards-impact-on-efficiency-of-energy-storage-battery-and-its-possible-mitigations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10476</span> Engineering Strategies Towards Improvement in Energy Storage Performance of Ceramic Capacitors for Pulsed Power Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Manan">Abdul Manan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The necessity for efficient and cost-effective energy storage devices to intelligently store the inconsistent energy output from modern renewable energy sources is peaked today. The scientific community is struggling to identify the appropriate material system for energy storage applications. Countless contributions by researchers worldwide have now helped us identify the possible snags and limitations associated with each material/method. Energy storage has attracted great attention for its use in portable electronic devices military field. Different devices, such as dielectric capacitors, supercapacitors, and batteries, are used for energy storage. Of these, dielectric capacitors have high energy output, a long life cycle, fast charging and discharging capabilities, work at high temperatures, and excellent fatigue resistance. The energy storage characteristics have been studied to be highly affected by various factors, such as grain size, optimized compositions, grain orientation, energy band gap, processing techniques, defect engineering, core-shell formation, interface engineering, electronegativity difference, the addition of additives, density, secondary phases, the difference of Pmax-Pr, sample thickness, area of the electrode, testing frequency, and AC/DC conditions. The data regarding these parameters/factors are scattered in the literature, and the aim of this study is to gather the data into a single paper that will be beneficial for new researchers in the field of interest. Furthermore, control over and optimizing these parameters will lead to enhancing the energy storage properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=strategies" title="strategies">strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramics" title=" ceramics"> ceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitors" title=" capacitors"> capacitors</a> </p> <a href="https://publications.waset.org/abstracts/164005/engineering-strategies-towards-improvement-in-energy-storage-performance-of-ceramic-capacitors-for-pulsed-power-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20storage%20and%20conversion&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20storage%20and%20conversion&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20storage%20and%20conversion&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20storage%20and%20conversion&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20storage%20and%20conversion&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20storage%20and%20conversion&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20storage%20and%20conversion&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20storage%20and%20conversion&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20storage%20and%20conversion&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20storage%20and%20conversion&page=350">350</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20storage%20and%20conversion&page=351">351</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20storage%20and%20conversion&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>