CINXE.COM

Search results for: thermodynamics

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: thermodynamics</title> <meta name="description" content="Search results for: thermodynamics"> <meta name="keywords" content="thermodynamics"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="thermodynamics" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="thermodynamics"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 140</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: thermodynamics</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">140</span> Thermodynamics of Chlorination of Acid-Soluble Titanium Slag in Molten Salt for Preparation of TiCl4</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Liang">Li Liang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chinese titanium iron ore reserves with high calcium and magnesium accounted for more than 90% of the total reserves, and acid-soluble titanium slag which is produced by titanium iron ore always used to produce titanium dioxide through sulphate process. To broad the application range of acid-soluble titanium slag, the feasibility and thermodynamics of chlorinated reaction for preparation TiCl4 by titanium slag chlorination in molten slat were conducted in this paper. The analysis results show that TiCl4 can be obtained by chlorinate the acid-dissolved titanium slag with carbon. Component’s thermodynamics reaction trend is: CaO>MnO>FeO(FeCl2)>MgO>V2O5>Fe2O3>FeO(FeCl3)>TiO2>Al2O3>SiO2 in the standard state. Industrial experimental results are consistent with the thermodynamics analysis, the content of TiCl4 is more than 98% in the production. Fe, Si, V, Al, and other impurity content can satisfy the requirements of production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermodynamics" title="thermodynamics">thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=acid-soluble%20titanium%20slag" title=" acid-soluble titanium slag"> acid-soluble titanium slag</a>, <a href="https://publications.waset.org/abstracts/search?q=preparation%20of%20TiCl4" title=" preparation of TiCl4"> preparation of TiCl4</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorination" title=" chlorination"> chlorination</a> </p> <a href="https://publications.waset.org/abstracts/23661/thermodynamics-of-chlorination-of-acid-soluble-titanium-slag-in-molten-salt-for-preparation-of-ticl4" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">594</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">139</span> Thermodynamics of Stable Micro Black Holes Production by Modeling from the LHC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aref%20Yazdani">Aref Yazdani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Tofighi"> Ali Tofighi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study a simulative model for production of stable micro black holes based on investigation on thermodynamics of LHC experiment. We show that how this production can be achieved through a thermodynamic process of stability. Indeed, this process can be done through a very small amount of powerful fuel. By applying the second law of black hole thermodynamics at the scale of quantum gravity and perturbation expansion of the given entropy function, a time-dependent potential function is obtained which is illustrated with exact numerical values in higher dimensions. Seeking for the conditions for stability of micro black holes is another purpose of this study. This is proven through an injection method of putting the exact amount of energy into the final phase of the production which is equivalent to the same energy injection into the center of collision at the LHC in order to stabilize the produced particles. Injection of energy into the center of collision at the LHC is a new pattern that it is worth a try for the first time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro%20black%20holes" title="micro black holes">micro black holes</a>, <a href="https://publications.waset.org/abstracts/search?q=LHC%20experiment" title=" LHC experiment"> LHC experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20holes%20thermodynamics" title=" black holes thermodynamics"> black holes thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=extra%20dimensions%20model" title=" extra dimensions model"> extra dimensions model</a> </p> <a href="https://publications.waset.org/abstracts/128968/thermodynamics-of-stable-micro-black-holes-production-by-modeling-from-the-lhc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">138</span> Rényi Entropy Correction to Expanding Universe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Fazlollahi">Hamidreza Fazlollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Re ́nyi entropy comprises a group of data estimates that sums up the well-known Shannon entropy, acquiring a considerable lot of its properties. It appears as unqualified and restrictive entropy, relative entropy, or common data, and has found numerous applications in information theory. In the Re ́nyi’s argument, the area law of the black hole entropy plays a significant role. However, the total entropy can be modified by some quantum effects, motivated by the randomness of a system. In this note, by employing this modified entropy relation, we have derived corrections to Friedmann equations. Taking this entropy associated with the apparent horizon of the Friedmann-Robertson-Walker Universe and assuming the first law of thermodynamics, dE=T_A (dS)_A+WdV, satisfies the apparent horizon, we have reconsidered expanding Universe. Also, the second thermodynamics law has been examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Friedmann%20equations" title="Friedmann equations">Friedmann equations</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20energy" title=" dark energy"> dark energy</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20law%20of%20thermodynamics" title=" first law of thermodynamics"> first law of thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=Reyni%20entropy" title=" Reyni entropy"> Reyni entropy</a> </p> <a href="https://publications.waset.org/abstracts/164326/renyi-entropy-correction-to-expanding-universe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">137</span> Foliation and the First Law of Thermodynamics for the Kerr Newman Black Hole</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20M.%20Jawwad%20Riaz">Syed M. Jawwad Riaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There has been a lot of interest in exploring the thermodynamic properties at the horizon of a black hole geometry. Earlier, it has been shown, for different spacetimes, that the Einstein field equations at the horizon can be expressed as a first law of black hole thermodynamics. In this paper, considering r = constant slices, for the Kerr-Newman black hole, shown that the Einstein field equations for the induced 3-metric of the hypersurface is expressed in thermodynamic quantities under the virtual displacements of the hypersurfaces. As expected, it is found that the field equations of the induced metric corresponding to the horizon can only be written as a first law of black hole thermodynamics. It is to be mentioned here that the procedure adopted is much easier, to obtain such results, as here one has to essentially deal with (n - 1)-dimensional induced metric for an n-dimensional spacetime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20hole%20space-times" title="black hole space-times">black hole space-times</a>, <a href="https://publications.waset.org/abstracts/search?q=Einstein%27s%20field%20equation" title=" Einstein&#039;s field equation"> Einstein&#039;s field equation</a>, <a href="https://publications.waset.org/abstracts/search?q=foliation" title=" foliation"> foliation</a>, <a href="https://publications.waset.org/abstracts/search?q=hyper-surfaces" title=" hyper-surfaces"> hyper-surfaces</a> </p> <a href="https://publications.waset.org/abstracts/50127/foliation-and-the-first-law-of-thermodynamics-for-the-kerr-newman-black-hole" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">136</span> Pressure-Controlled Dynamic Equations of the PFC Model: A Mathematical Formulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jatupon%20Em-Udom">Jatupon Em-Udom</a>, <a href="https://publications.waset.org/abstracts/search?q=Nirand%20Pisutha-Arnond"> Nirand Pisutha-Arnond</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The phase-field-crystal, PFC, approach is a density-functional-type material model with an atomic resolution on a diffusive timescale. Spatially, the model incorporates periodic nature of crystal lattices and can naturally exhibit elasticity, plasticity and crystal defects such as grain boundaries and dislocations. Temporally, the model operates on a diffusive timescale which bypasses the need to resolve prohibitively small atomic-vibration time steps. The PFC model has been used to study many material phenomena such as grain growth, elastic and plastic deformations and solid-solid phase transformations. In this study, the pressure-controlled dynamic equation for the PFC model was developed to simulate a single-component system under externally applied pressure; these coupled equations are important for studies of deformable systems such as those under constant pressure. The formulation is based on the non-equilibrium thermodynamics and the thermodynamics of crystalline solids. To obtain the equations, the entropy variation around the equilibrium point was derived. Then the resulting driving forces and flux around the equilibrium were obtained and rewritten as conventional thermodynamic quantities. These dynamics equations are different from the recently-proposed equations; the equations in this study should provide more rigorous descriptions of the system dynamics under externally applied pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=driving%20forces%20and%20flux" title="driving forces and flux">driving forces and flux</a>, <a href="https://publications.waset.org/abstracts/search?q=evolution%20equation" title=" evolution equation"> evolution equation</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20equilibrium%20thermodynamics" title=" non equilibrium thermodynamics"> non equilibrium thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=Onsager%E2%80%99s%20reciprocal%20relation" title=" Onsager’s reciprocal relation"> Onsager’s reciprocal relation</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20field%20crystal%20model" title=" phase field crystal model"> phase field crystal model</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamics%20of%20single-component%20solid" title=" thermodynamics of single-component solid"> thermodynamics of single-component solid</a> </p> <a href="https://publications.waset.org/abstracts/45485/pressure-controlled-dynamic-equations-of-the-pfc-model-a-mathematical-formulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">135</span> Pharmaceutical Applications of Newton&#039;s Second Law and Disc Inertia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20Jensen">Nicholas Jensen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the effort to create new drugs to treat rare conditions cost-effectively intensifies, there is a need to ensure maximum efficiency in the manufacturing process. This includes the creation of ultracompact treatment forms, which can best be achieved via applications of fundamental laws of physics. This paper reports an experiment exploring the relationship between the forms of Newton's 2ⁿᵈ Law appropriate to linear motion and to transversal architraves. The moment of inertia of three discs was determined by experiments and compared with previous data derived from a theoretical relationship. The method used was to attach the discs to a moment arm. Comparing the results with those obtained from previous experiments, it is found to be consistent with the first law of thermodynamics. It was further found that Newton's 2ⁿᵈ law violates the second law of thermodynamics. The purpose of this experiment was to explore the relationship between the forms of Newton's 2nd Law appropriate to linear motion and to apply torque to a twisting force, which is determined by position vector r and force vector F. Substituting equation alpha in place of beta; angular acceleration is a linear acceleration divided by radius r of the moment arm. The nevrological analogy of Newton's 2nd Law states that these findings can contribute to a fuller understanding of thermodynamics in relation to viscosity. Implications for the pharmaceutical industry will be seen to be fruitful from these findings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Newtonian%20physics" title="Newtonian physics">Newtonian physics</a>, <a href="https://publications.waset.org/abstracts/search?q=inertia" title=" inertia"> inertia</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceutical%20applications" title=" pharmaceutical applications"> pharmaceutical applications</a> </p> <a href="https://publications.waset.org/abstracts/126921/pharmaceutical-applications-of-newtons-second-law-and-disc-inertia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">134</span> Exergy Analysis of Poultry Litter-to-Energy Production by the Advanced Combustion System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Oludayo%20Alamu">Samuel Oludayo Alamu</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong%20Lee"> Seong Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The need for generating energy from biomass in an efficient way as well as maximizing the yield of total energy from the thermal conversion process has been a major concern for researchers. A holistic approach which involves the combination of First law of thermodynamics (FLT) and the second law of thermodynamics (SLT) is required for conducting an effective assessment of an energy plant since FLT analysis alone fails to identify the quality of the dissipated energy and how much work potential is available. The overall purpose of this study is to investigate the exergy analysis of direct combustion of poultry waste being converted to energy with a handful of environmental assessment of the conversion processes in order to maximize thermal efficiency. The exergy analysis around the shell and tube heat exchanger (STHE) was investigated primarily by varying the operating parameters for different tube shapes and flow direction, and an exergy model was obtained from estimations of the higher heating value and standard entropy of poultry waste from the elemental compositions. The STHE was designed and fabricated by Lee Research Group at Morgan State University. The analysis conducted on theSTHE using the flue gas temperature entering and exiting show that only about one-third of the energy input to the STHE was available to do work with an overall efficiency of 13.8%, while a huge amount was lost to the surrounding. By recirculating the flue gas, the exergy efficiency of the combustion system can be maximized with a greater reduction in the amount of exergy loss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exergy%20analysis" title="exergy analysis">exergy analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=shell%20and%20tube%20heat%20exchanger" title=" shell and tube heat exchanger"> shell and tube heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamics" title=" thermodynamics"> thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20system" title=" combustion system"> combustion system</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20efficiency" title=" thermal efficiency"> thermal efficiency</a> </p> <a href="https://publications.waset.org/abstracts/154358/exergy-analysis-of-poultry-litter-to-energy-production-by-the-advanced-combustion-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">133</span> Catalytic Thermodynamics of Nanocluster Adsorbates from Informational Statistical Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Forrest%20Kaatz">Forrest Kaatz</a>, <a href="https://publications.waset.org/abstracts/search?q=Adhemar%20Bultheel"> Adhemar Bultheel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We use an informational statistical mechanics approach to study the catalytic thermodynamics of platinum and palladium cuboctahedral nanoclusters. Nanoclusters and their adatoms are viewed as chemical graphs with a nearest neighbor adjacency matrix. We use the Morse potential to determine bond energies between cluster atoms in a coordination type calculation. We use adsorbate energies calculated from density functional theory (DFT) to study the adatom effects on the thermodynamic quantities, which are derived from a Hamiltonian. Oxygen radical and molecular adsorbates are studied on platinum clusters and hydrogen on palladium clusters. We calculate the entropy, free energy, and total energy as the coverage of adsorbates increases from bridge and hollow sites on the surface. Thermodynamic behavior versus adatom coverage is related to the structural distribution of adatoms on the nanocluster surfaces. The thermodynamic functions are characterized using a simple adsorption model, with linear trends as the coverage of adatoms increases. The data exhibits size effects for the measured thermodynamic properties with cluster diameters between 2 and 5 nm. Entropy and enthalpy calculations of Pt-O2 compare well with previous theoretical data for Pt(111)-O2, and our Pd-H results show similar trends as experimental measurements for Pd-H2 nanoclusters. Our methods are general and may be applied to wide variety of nanocluster adsorbate systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalytic%20thermodynamics" title="catalytic thermodynamics">catalytic thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=palladium%20nanocluster%20absorbates" title=" palladium nanocluster absorbates"> palladium nanocluster absorbates</a>, <a href="https://publications.waset.org/abstracts/search?q=platinum%20nanocluster%20absorbates" title=" platinum nanocluster absorbates"> platinum nanocluster absorbates</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20mechanics" title=" statistical mechanics"> statistical mechanics</a> </p> <a href="https://publications.waset.org/abstracts/81052/catalytic-thermodynamics-of-nanocluster-adsorbates-from-informational-statistical-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> Picture of the World by the Second Law of Thermodynamic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Igor%20V.%20Kuzminov">Igor V. Kuzminov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to its content, the proposed article is a collection of articles with comments and additions. All articles, in one way or another, have a connection with the Second Law of Thermodynamics. The content of the articles is given in a concise form. The articles were published in different journals at different times. Main topics are presented: gravity, biography of the Earth, physics of global warming-cooling cycles, multiverse. The articles are based on the laws of classical physics. Along the way, it should be noted that the Second Law of thermodynamics can be formulated as the Law of Matter Cooling. As it cools down, the processes of condensation, separation, and changes in the aggregate states of matter occur. In accordance with these changes, a picture of the world is being formed. Also, the main driving force of these processes is the inverse temperature dependence of the forces of gravity. As matter cools, the forces of gravity increase. The actions of these phenomena in the compartment form a picture of the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gravitational%20forces" title="gravitational forces">gravitational forces</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20of%20matter" title=" cooling of matter"> cooling of matter</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20temperature%20dependence%20of%20gravitational%20forces" title=" inverse temperature dependence of gravitational forces"> inverse temperature dependence of gravitational forces</a>, <a href="https://publications.waset.org/abstracts/search?q=planetary%20model%20of%20the%20atom" title=" planetary model of the atom"> planetary model of the atom</a> </p> <a href="https://publications.waset.org/abstracts/172167/picture-of-the-world-by-the-second-law-of-thermodynamic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">131</span> Exergy Analysis of Reverse Osmosis for Potable Water and Land Irrigation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sarai%20Atab">M. Sarai Atab</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Smallbone"> A. Smallbone</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20P.%20Roskilly"> A. P. Roskilly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A thermodynamic study is performed on the Reverse Osmosis (RO) desalination process for brackish water. The detailed RO model of thermodynamics properties with and without an energy recovery device was built in Simulink/MATLAB and validated against reported measurement data. The efficiency of desalination plants can be estimated by both the first and second laws of thermodynamics. While the first law focuses on the quantity of energy, the second law analysis (i.e. exergy analysis) introduces quality. This paper used the Main Outfall Drain in Iraq as a case study to conduct energy and exergy analysis of RO process. The result shows that it is feasible to use energy recovery method for reverse osmosis with salinity less than 15000 ppm as the exergy efficiency increases twice. Moreover, this analysis shows that the highest exergy destruction occurs in the rejected water and lowest occurs in the permeate flow rate accounting 37% for 4.3% respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brackish%20water" title="brackish water">brackish water</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy" title=" exergy"> exergy</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20osmosis%20%28RO%29" title=" reverse osmosis (RO)"> reverse osmosis (RO)</a> </p> <a href="https://publications.waset.org/abstracts/76069/exergy-analysis-of-reverse-osmosis-for-potable-water-and-land-irrigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">130</span> Arsenic(III) Removal from Aqueous Solutions by Adsorption onto Fly Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olushola%20Ayanda">Olushola Ayanda</a>, <a href="https://publications.waset.org/abstracts/search?q=Simphiwe%20Nelana"> Simphiwe Nelana</a>, <a href="https://publications.waset.org/abstracts/search?q=Eliazer%20Naidoo"> Eliazer Naidoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the kinetics, equilibrium and thermodynamics of the adsorption of As(III) ions from aqueous solution onto fly ash (FA) was investigated in batch adsorption system. Prior to the adsorption studies, the FA was characterized by means of x-ray fluorescence (XRF), x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) surface area determination. The effect of contact time, initial As(III) concentration, FA dosage, stirring speed, solution pH and temperature was examined on the adsorption rate. Experimental results showed a very good compliance with the pseudo-second-order equation, while the equilibrium study showed that the sorption of As(III) ions onto FA fitted the Langmuir and Freundlich isotherms. The adsorption process is endothermic and spontaneous, moreover, the maximum percentage removal of As(III) achieved with approx. 2.5 g FA mixed with 25 mL of 100 mg/L As(III) solution was 65.4 % at pH 10, 60 min contact time, temperature of 353 K and a stirring speed of 120 rpm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenic" title="arsenic">arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherm" title=" isotherm"> isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamics" title=" thermodynamics"> thermodynamics</a> </p> <a href="https://publications.waset.org/abstracts/75668/arseniciii-removal-from-aqueous-solutions-by-adsorption-onto-fly-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">129</span> Thermodynamic Analysis of Surface Seawater under Ocean Warming: An Integrated Approach Combining Experimental Measurements, Theoretical Modeling, Machine Learning Techniques, and Molecular Dynamics Simulation for Climate Change Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nishaben%20Desai%20Dholakiya">Nishaben Desai Dholakiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Anirban%20Roy"> Anirban Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjan%20Dey"> Ranjan Dey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding ocean thermodynamics has become increasingly critical as Earth's oceans serve as the primary planetary heat regulator, absorbing approximately 93% of excess heat energy from anthropogenic greenhouse gas emissions. This investigation presents a comprehensive analysis of Arabian Sea surface seawater thermodynamics, focusing specifically on heat capacity (Cp) and thermal expansion coefficient (α) - parameters fundamental to global heat distribution patterns. Through high-precision experimental measurements of ultrasonic velocity and density across varying temperature (293.15-318.15K) and salinity (0.5-35 ppt) conditions, it characterize critical thermophysical parameters including specific heat capacity, thermal expansion, and isobaric and isothermal compressibility coefficients in natural seawater systems. The study employs advanced machine learning frameworks - Random Forest, Gradient Booster, Stacked Ensemble Machine Learning (SEML), and AdaBoost - with SEML achieving exceptional accuracy (R² > 0.99) in heat capacity predictions. the findings reveal significant temperature-dependent molecular restructuring: enhanced thermal energy disrupts hydrogen-bonded networks and ion-water interactions, manifesting as decreased heat capacity with increasing temperature (negative ∂Cp/∂T). This mechanism creates a positive feedback loop where reduced heat absorption capacity potentially accelerates oceanic warming cycles. These quantitative insights into seawater thermodynamics provide crucial parametric inputs for climate models and evidence-based environmental policy formulation, particularly addressing the critical knowledge gap in thermal expansion behavior of seawater under varying temperature-salinity conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=arabian%20sea" title=" arabian sea"> arabian sea</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamics" title=" thermodynamics"> thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/194907/thermodynamic-analysis-of-surface-seawater-under-ocean-warming-an-integrated-approach-combining-experimental-measurements-theoretical-modeling-machine-learning-techniques-and-molecular-dynamics-simulation-for-climate-change-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">7</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">128</span> On the Exergy Analysis of the Aluminum Smelter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayoola%20T.%20Brimmo">Ayoola T. Brimmo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20I.%20Hassan"> Mohamed I. Hassan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The push to mitigate the aluminum smelting industry’s enormous energy consumption and high emission releases is now even more persistent with the recent climate change happenings. Common approaches to achieve this have been focused on improving energy efficiency in the pot line and cast house sections of the smelter. However, the conventional energy efficiency analyses are based on the first law of thermodynamics, which do not shed proper light on the smelter’s degradation of energy. This just gives a general idea of the furnace’s performance with no reference to locations where improvement is a possibility based on the second law of thermodynamics. In this study, we apply exergy analyses on the pot line and cast house sections of the smelter to identify the locality and causes of energy degradation. The exergy analyses, which are based on a real life smelter conditions, highlight the possible locations for technology improvement in a typical smelter. With this established, methods of minimizing the smelter’s exergy losses are assessed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exergy%20analysis" title="exergy analysis">exergy analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolytic%20cell" title=" electrolytic cell"> electrolytic cell</a>, <a href="https://publications.waset.org/abstracts/search?q=furnace" title=" furnace"> furnace</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/39614/on-the-exergy-analysis-of-the-aluminum-smelter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">127</span> Prediction of the Thermodynamic Properties of Hydrocarbons Using Gaussian Process Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Alhazmi">N. Alhazmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Knowing the thermodynamics properties of hydrocarbons is vital when it comes to analyzing the related chemical reaction outcomes and understanding the reaction process, especially in terms of petrochemical industrial applications, combustions, and catalytic reactions. However, measuring the thermodynamics properties experimentally is time-consuming and costly. In this paper, Gaussian process regression (GPR) has been used to directly predict the main thermodynamic properties - standard enthalpy of formation, standard entropy, and heat capacity -for more than 360 cyclic and non-cyclic alkanes, alkenes, and alkynes. A simple workflow has been proposed that can be applied to directly predict the main properties of any hydrocarbon by knowing its descriptors and chemical structure and can be generalized to predict the main properties of any material. The model was evaluated by calculating the statistical error R², which was more than 0.9794 for all the predicted properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermodynamic" title="thermodynamic">thermodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20process%20regression" title=" Gaussian process regression"> Gaussian process regression</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbons" title=" hydrocarbons"> hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a>, <a href="https://publications.waset.org/abstracts/search?q=supervised%20learning" title=" supervised learning"> supervised learning</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=enthalpy" title=" enthalpy"> enthalpy</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20capacity" title=" heat capacity"> heat capacity</a> </p> <a href="https://publications.waset.org/abstracts/145010/prediction-of-the-thermodynamic-properties-of-hydrocarbons-using-gaussian-process-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">126</span> Entropy Analysis of a Thermo-Acoustic Stack</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmadali%20Shirazytabar">Ahmadali Shirazytabar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Namazi"> Hamidreza Namazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inherent irreversibility of thermo-acoustics primarily in the stack region causes poor efficiency of thermo-acoustic engines which is the major weakness of these devices. In view of the above, this study examines entropy generation in the stack of a thermo-acoustic system. For this purpose two parallel plates representative of the stack is considered. A general equation for entropy generation is derived based on the Second Law of thermodynamics. Assumptions such as Rott’s linear thermo-acoustic approximation, boundary layer type flow, etc. are made to simplify the governing continuity, momentum and energy equations to achieve analytical solutions for velocity and temperature. The entropy generation equation is also simplified based on the same assumptions and then is converted to dimensionless form by using characteristic entropy generation. A time averaged entropy generation rate followed by a global entropy generation rate are calculated and graphically represented for further analysis and inspecting the effect of different parameters on the entropy generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermo-acoustics" title="thermo-acoustics">thermo-acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20law%20of%20thermodynamics" title=" second law of thermodynamics"> second law of thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=Rott%E2%80%99s%20linear%20thermo-acoustic%20approximation" title=" Rott’s linear thermo-acoustic approximation"> Rott’s linear thermo-acoustic approximation</a> </p> <a href="https://publications.waset.org/abstracts/32388/entropy-analysis-of-a-thermo-acoustic-stack" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">125</span> Controversies and Contradiction in (IR) Reversibility and the Equilibrium of Reactive Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joao%20Teotonio%20Manzi">Joao Teotonio Manzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reversibility, irreversibility, equilibrium and steady-state that play a central role in the thermodynamic analysis of processes arising in the context of reactive systems are discussed in this article. Such concepts have generated substantial doubts, even among the most experienced researchers, and engineers, because from the literature, conclusive or definitive statements cannot be extracted. Concepts such as the time-reversibility of irreversible processes seem paradoxical, requiring further analysis. Equilibrium and reversibility, which appear to be of the same nature, have also been re-examined in the light of maximum entropy. The goal of this paper is to revisit and explore these concepts based on classical thermodynamics in order to have a better understanding them due to their impacts on technological advances, as a result, to generate an optimal procedure for designing, monitoring, and engineering optimization. Furthermore, an effective graphic procedure for dimensioning a Plug Flow Reactor has been provided. Thus, to meet the needs of chemical engineering from a simple conceptual analysis but with significant practical effects, a macroscopic approach is taken so as to integrate the different parts of this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reversibility" title="reversibility">reversibility</a>, <a href="https://publications.waset.org/abstracts/search?q=equilibrium" title=" equilibrium"> equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=steady-state" title=" steady-state"> steady-state</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamics" title=" thermodynamics"> thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20system" title=" reactive system"> reactive system</a> </p> <a href="https://publications.waset.org/abstracts/144272/controversies-and-contradiction-in-ir-reversibility-and-the-equilibrium-of-reactive-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">124</span> Kinetics, Equilibrium and Thermodynamics of the Adsorption of Triphenyltin onto NanoSiO₂/Fly Ash/Activated Carbon Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olushola%20S.%20Ayanda">Olushola S. Ayanda</a>, <a href="https://publications.waset.org/abstracts/search?q=Olalekan%20S.%20Fatoki"> Olalekan S. Fatoki</a>, <a href="https://publications.waset.org/abstracts/search?q=Folahan%20A.%20Adekola"> Folahan A. Adekola</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhekumusa%20J.%20Ximba"> Bhekumusa J. Ximba</a>, <a href="https://publications.waset.org/abstracts/search?q=Cecilia%20O.%20Akintayo"> Cecilia O. Akintayo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the kinetics, equilibrium and thermodynamics of the adsorption of triphenyltin (TPT) from TPT-contaminated water onto nanoSiO2/fly ash/activated carbon composite was investigated in batch adsorption system. Equilibrium adsorption data were analyzed using Langmuir, Freundlich, Temkin and Dubinin–Radushkevich (D-R) isotherm models. Pseudo first- and second-order, Elovich and fractional power models were applied to test the kinetic data and in order to understand the mechanism of adsorption, thermodynamic parameters such as ΔG°, ΔSo and ΔH° were also calculated. The results showed a very good compliance with pseudo second-order equation while the Freundlich and D-R models fit the experiment data. Approximately 99.999 % TPT was removed from the initial concentration of 100 mg/L TPT at 80oC, contact time of 60 min, pH 8 and a stirring speed of 200 rpm. Thus, nanoSiO2/fly ash/activated carbon composite could be used as effective adsorbent for the removal of TPT from contaminated water and wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isotherm" title="isotherm">isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoSiO%E2%82%82%2Ffly%20ash%2Factivated%20carbon%20composite" title=" nanoSiO₂/fly ash/activated carbon composite"> nanoSiO₂/fly ash/activated carbon composite</a>, <a href="https://publications.waset.org/abstracts/search?q=tributyltin" title=" tributyltin"> tributyltin</a> </p> <a href="https://publications.waset.org/abstracts/52321/kinetics-equilibrium-and-thermodynamics-of-the-adsorption-of-triphenyltin-onto-nanosio2fly-ashactivated-carbon-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">123</span> Excel-VBA as Modelling Platform for Thermodynamic Optimisation of an R290/R600a Cascade Refrigeration System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20El-Awad">M. M. El-Awad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The availability of computers and educational software nowadays helps engineering students acquire better understanding of engineering principles and their applications. With these facilities, students can perform sensitivity and optimisation analyses which were not possible in the past by using slide-rules and hand calculators. Standard textbooks in engineering thermodynamics also use software such as Engineering Equation Solver (EES) and Interactive Thermodynamics (IT) for solving calculation-intensive and design problems. Unfortunately, engineering students in most developing countries do not have access to such applications which are protected by intellectual-property rights. This paper shows how Microsoft ExcelTM and VBA (Visual Basic for Applications), which are normally distributed with personal computers and laptops, can be used as an alternative modelling platform for thermodynamic analyses and optimisation. The paper describes the VBA user-defined-functions developed for determining the refrigerants properties with Excel. For illustration, the combination is used to model and optimise the intermediate temperature for a propane/iso-butane cascade refrigeration system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20optimisation" title="thermodynamic optimisation">thermodynamic optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20education" title=" engineering education"> engineering education</a>, <a href="https://publications.waset.org/abstracts/search?q=excel" title=" excel"> excel</a>, <a href="https://publications.waset.org/abstracts/search?q=VBA" title=" VBA"> VBA</a>, <a href="https://publications.waset.org/abstracts/search?q=cascade%20refrigeration%20system" title=" cascade refrigeration system"> cascade refrigeration system</a> </p> <a href="https://publications.waset.org/abstracts/4046/excel-vba-as-modelling-platform-for-thermodynamic-optimisation-of-an-r290r600a-cascade-refrigeration-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">122</span> Synthesis of Ce Impregnated on Functionalized Graphene Oxide Nanosheets for Transesterification of Propylene Carbonate and Ethanol to Produce Diethyl Carbonate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kumar%20N.">Kumar N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Verma%20S."> Verma S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Park%20J."> Park J.</a>, <a href="https://publications.waset.org/abstracts/search?q=Srivastava%20V.%20C."> Srivastava V. C.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic carbonates have the potential to be used as fuels and because of this, their production through non-phosgene routes is a thrust area of research. Di-ethyl carbonate (DEC) synthesis from propylene carbonate (PC) in the presence of alcohol is a green route. In this study, the use of reduced graphene oxide (rGO) based metal oxide catalysts [rGO-MO, where M = Ce] with different amounts of graphene oxide (0.2%, 0.5%, 1%, and 2%) has been investigated for the synthesis of DEC by using PC and ethanol as reactants. The GO sheets were synthesized by an electrochemical process and the catalysts were synthesized using an in-situ method. A theoretical study of the thermodynamics of the reaction was done, which revealed that the reaction is mildly endothermic. The theoretical value of optimum temperature was found to be 420 K. The synthesized catalysts were characterized for their morphological, structural and textural properties using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), N2 adsorption/desorption, thermogravimetric analysis (TGA), and Raman spectroscopy. Optimization studies were carried out to study the effect of different reaction conditions like temperature (140 °C to 180 °C) and catalyst dosage (0.102 g to 0.255 g) on the yield of DEC. Amongst the various synthesized catalysts, 1% rGO-CeO2 gave the maximum yield of DEC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GO" title="GO">GO</a>, <a href="https://publications.waset.org/abstracts/search?q=DEC" title=" DEC"> DEC</a>, <a href="https://publications.waset.org/abstracts/search?q=propylene%20carbonate" title=" propylene carbonate"> propylene carbonate</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamics" title=" thermodynamics"> thermodynamics</a> </p> <a href="https://publications.waset.org/abstracts/166474/synthesis-of-ce-impregnated-on-functionalized-graphene-oxide-nanosheets-for-transesterification-of-propylene-carbonate-and-ethanol-to-produce-diethyl-carbonate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">121</span> Kinetics and Thermodynamics Adsorption of Phenolic Compounds on Organic-Inorganic Hybrid Mesoporous Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Makhlouf%20Mourad">Makhlouf Mourad</a>, <a href="https://publications.waset.org/abstracts/search?q=Messabih%20Sidi%20Mohamed"> Messabih Sidi Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouchher%20Omar"> Bouchher Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=Houali%20Farida"> Houali Farida</a>, <a href="https://publications.waset.org/abstracts/search?q=Benrachedi%20Khaled"> Benrachedi Khaled</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mesoporous materials are very commonly used as adsorbent materials for removing phenolic compounds. However, the adsorption mechanism of these compounds is still poorly controlled. However, understanding the interactions mesoporous materials/adsorbed molecules is very important in order to optimize the processes of liquid phase adsorption. The difficulty of synthesis is to keep an orderly and cubic pore structure and achieve a homogeneous surface modification. The grafting of Si(CH<sub>3</sub>)<sub>3</sub> was chosen, to transform hydrophilic surfaces hydrophobic surfaces. The aim of this work is to study the kinetics and thermodynamics of two volatile organic compounds VOC phenol (PhOH) and P hydroxy benzoic acid (4AHB) on a mesoporous material of type MCM-48 grafted with an organosilane of the Trimethylchlorosilane (TMCS) type, the material thus grafted or functionalized (hereinafter referred to as MCM-48-G). In a first step, the kinetic and thermodynamic study of the adsorption isotherms of each of the VOCs in mono-solution was carried out. In a second step, a similar study was carried out on a mixture of these two compounds. Kinetic models (pseudo-first order, pseudo-second order) were used to determine kinetic adsorption parameters. The thermodynamic parameters of the adsorption isotherms were determined by the adsorption models (Langmuir, Freundlich).&nbsp;The comparative study of adsorption of PhOH and 4AHB proved that MCM-48-G had a high adsorption capacity for PhOH and 4AHB; this may be related to the hydrophobicity created by the organic function of TMCS in MCM-48-G. The adsorption results for the two compounds using the Freundlich and Langmuir models show that the adsorption of 4AHB was higher than PhOH. The values ​​obtained by the adsorption thermodynamics show that the adsorption interactions for our sample with the phenol and 4AHB are of a physical nature. The adsorption of our VOCs on the MCM-48 (G) is a spontaneous and exothermic process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherm" title=" isotherm"> isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20materials" title=" mesoporous materials"> mesoporous materials</a>, <a href="https://publications.waset.org/abstracts/search?q=Phenol" title=" Phenol"> Phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=P-hydroxy%20benzoique%20acid" title=" P-hydroxy benzoique acid"> P-hydroxy benzoique acid</a> </p> <a href="https://publications.waset.org/abstracts/80877/kinetics-and-thermodynamics-adsorption-of-phenolic-compounds-on-organic-inorganic-hybrid-mesoporous-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> Physics of Black Holes. A Closed Cycle of Transformation of Matter in the Universe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Igor%20V.%20Kuzminov">Igor V. Kuzminov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The proposed article is a development of the topics of gravity, the inverse temperature dependence of gravity, the action of the inverse temperature dependence of gravity, and the second law of thermodynamics, dark matter, the identity of gravity, inertial forces, and centrifugal forces. All interaction schemes are built on the basis of Newton's laws of classical mechanics and Rutherford's planetary model of the structure of the atom. The basis of all constructions is the gyroscopic effect of rotation of all particles of the atomic structure. In this case, interatomic and intermolecular bonds are accepted as the static part of the gyroscope, and the rotation of an electron in an atom is accepted as the dynamic part. The structure of the planet Earth is accepted as a model of the structure of the Black Hole. Namely, gravitational and thermodynamic phenomena in the structure of the planet Earth are accepted as a model. Based on this model, assumptions are made about the processes inside the Black Hole. Moreover, a version is put forward, a scheme of a closed cycle of transformation of matter in the Universe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20hole" title="black hole">black hole</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity" title=" gravity"> gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20temperature%20dependence%20of%20gravitational%20forces" title=" inverse temperature dependence of gravitational forces"> inverse temperature dependence of gravitational forces</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20law%20of%20thermodynamics" title=" second law of thermodynamics"> second law of thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=gyroscopic%20effect" title=" gyroscopic effect"> gyroscopic effect</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20matter" title=" dark matter"> dark matter</a> </p> <a href="https://publications.waset.org/abstracts/192968/physics-of-black-holes-a-closed-cycle-of-transformation-of-matter-in-the-universe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> Integrated Process Modelling of a Thermophilic Biogas Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Obiora%20E.%20Anisiji">Obiora E. Anisiji</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeremiah%20L.%20Chukwuneke"> Jeremiah L. Chukwuneke</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinonso%20H.%20Achebe"> Chinonso H. Achebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20C.%20Okolie"> Paul C. Okolie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work developed a mathematical model of a biogas plant from a mechanistic point of view, for urban area clean energy requirement. It aimed at integrating thermodynamics; which deals with the direction in which a process occurs and Biochemical kinetics; which gives the understanding of the rates of biochemical reaction. The mathematical formulation of the proposed gas plant follows the fundamental principles of thermodynamics, and further analysis were accomplished to develop an algorithm for evaluating the plant performance preferably in terms of daily production capacity. In addition, the capacity of the plant is equally estimated for a given cycle of operation and presented in time histories. A nominal 1500m3 biogas plant was studied characteristically and its performance efficiency evaluated. It was observed that the rate of biogas production is essentially a function of enthalpy ratio, the reactor temperature, pH, substrate concentration, rate of degradation of the biomass, and the accumulation of matter in the system due to bacteria growth. The results of this study conform to a very large extent with reported empirical data of some existing plant and further model validations were conducted in line with classical records found in literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas%20plant" title=" biogas plant"> biogas plant</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas%20production" title=" biogas production"> biogas production</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-reactor" title=" bio-reactor"> bio-reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=rate%20of%20production" title=" rate of production"> rate of production</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=therm" title=" therm"> therm</a> </p> <a href="https://publications.waset.org/abstracts/21926/integrated-process-modelling-of-a-thermophilic-biogas-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> Thermodynamics during the Deconfining Phase Transition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amal%20Ait%20El%20Djoudi">Amal Ait El Djoudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A thermodynamical model of coexisting hadronic and quark–gluon plasma (QGP) phases is used to study the thermally driven deconfining phase transition occurring between the two phases. A color singlet partition function is calculated for the QGP phase with two massless quarks, as in our previous work, but now the finite extensions of the hadrons are taken into account in the equation of state of the hadronic phase. In the present work, the finite-size effects on the system are examined by probing the behavior of some thermodynamic quantities, called response functions, as order parameter, energy density and their derivatives, on a range of temperature around the transition at different volumes. It turns out that the finiteness of the system size has as effects the rounding of the transition and the smearing of all the singularities occurring in the thermodynamic limit, and the additional finite-size effect introduced by the requirement of exact color-singletness involves a shift of the transition point. This shift as well as the smearing of the transition region and the maxima of both susceptibility and specific heat show a scaling behavior with the volume characterized by scaling exponents. Another striking result is the large similarity noted between the behavior of these response functions and that of the cumulants of the probability density. This similarity is worked to try to extract information concerning the occurring phase transition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equation%20of%20state" title="equation of state">equation of state</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamics" title=" thermodynamics"> thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=deconfining%20phase%20transition" title=" deconfining phase transition"> deconfining phase transition</a>, <a href="https://publications.waset.org/abstracts/search?q=quark%E2%80%93gluon%20plasma%20%28QGP%29" title=" quark–gluon plasma (QGP)"> quark–gluon plasma (QGP)</a> </p> <a href="https://publications.waset.org/abstracts/21464/thermodynamics-during-the-deconfining-phase-transition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> How Context and Problem Based Learning Effects Students Behaviors in Teaching Thermodynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mukadder%20Baran">Mukadder Baran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20S%C3%B6zbilir"> Mustafa Sözbilir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to investigate the applicabillity of the Context- and Problem-Based Learning (CPBL) in general chemistry course to the subject of “Thermodynamics” but also the influence of CPBL on students’ achievement, retention of knowledge, their interest, attitudes, motivation and problem-solving skills. The study group included 13 freshman students who were selected with the sampling method appropriate to the purpose among those taking the course of General Chemistry within the Program of Medical Laboratory Techniques at Hakkari University. The application was carried out in the Spring Term of the academic year of 2012-2013. As the data collection tool, Lesson Observation form were used. In the light of the observations held, it was revealed that CPBL increased the students’ intragroup and intergroup communication skills as well as their self-confidence and developed their skills in time management, presentation, reporting, and technology use; and that they were able to relate chemistry to daily life. Depending on these findings, it could be suggested that the area of use of CPBL be widened; that seminars related to constructive methods be organized for teachers. In this way, it is believed that students will not be passive in the group any longer. In addition, it was concluded that in order to avoid the negative effects of the socio-cultural structure on the education system, research should be conducted in places where there is socio-cultural obstacles, and appropriate solutions should be suggested and put into practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemistry" title="chemistry">chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=science" title=" science"> science</a>, <a href="https://publications.waset.org/abstracts/search?q=context-based%20learning" title=" context-based learning"> context-based learning</a> </p> <a href="https://publications.waset.org/abstracts/25343/how-context-and-problem-based-learning-effects-students-behaviors-in-teaching-thermodynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> Quasistationary States and Mean Field Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Curilef">Sergio Curilef</a>, <a href="https://publications.waset.org/abstracts/search?q=Boris%20Atenas"> Boris Atenas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Systems with long-range interactions are very common in nature. They are observed from the atomic scale to the astronomical scale and exhibit anomalies, such as inequivalence of ensembles, negative heat capacity, ergodicity breaking, nonequilibrium phase transitions, quasistationary states, and anomalous diffusion. These anomalies are exacerbated when special initial conditions are imposed; in particular, we use the so-called water bag initial conditions that stand for a uniform distribution. Several theoretical and practical implications are discussed here. A potential energy inspired by dipole-dipole interactions is proposed to build the dipole-type Hamiltonian mean-field model. As expected, the dynamics is novel and general to the behavior of systems with long-range interactions, which is obtained through molecular dynamics technique. Two plateaus sequentially emerge before arriving at equilibrium, which are corresponding to two different quasistationary states. The first plateau is a type of quasistationary state the lifetime of which depends on a power law of N and the second plateau seems to be a true quasistationary state as reported in the literature. The general behavior of the model according to its dynamics and thermodynamics is described. Using numerical simulation we characterize the mean kinetic energy, caloric curve, and the diffusion law through the mean square of displacement. The present challenge is to characterize the distributions in phase space. Certainly, the equilibrium state is well characterized by the Gaussian distribution, but quasistationary states in general depart from any Gaussian function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dipole-type%20interactions" title="dipole-type interactions">dipole-type interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamics%20and%20thermodynamics" title=" dynamics and thermodynamics"> dynamics and thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20field%20model" title=" mean field model"> mean field model</a>, <a href="https://publications.waset.org/abstracts/search?q=quasistationary%20states" title=" quasistationary states"> quasistationary states</a> </p> <a href="https://publications.waset.org/abstracts/84759/quasistationary-states-and-mean-field-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> Numerical Investigation of a New Two-Fluid Model for Semi-Dilute Polymer Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soroush%20Hooshyar">Soroush Hooshyar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamadali%20Masoudian"> Mohamadali Masoudian</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalie%20Germann"> Natalie Germann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many soft materials such as polymer solutions can develop localized bands with different shear rates, which are known as shear bands. Using the generalized bracket approach of nonequilibrium thermodynamics, we recently developed a new two-fluid model to study shear banding for semi-dilute polymer solutions. The two-fluid approach is an appropriate means for describing diffusion processes such as Fickian diffusion and stress-induced migration. In this approach, it is assumed that the local gradients in concentration and, if accounted for, also stress generate a nontrivial velocity difference between the components. Since the differential velocity is treated as a state variable in our model, the implementation of the boundary conditions arising from the derivative diffusive terms is straightforward. Our model is a good candidate for benchmark simulations because of its simplicity. We analyzed its behavior in cylindrical Couette flow, a rectilinear channel flow, and a 4:1 planar contraction flow. The latter problem was solved using the OpenFOAM finite volume package and the impact of shear banding on the lip and salient vortices was investigated. For the other smooth geometries, we employed a standard Chebyshev pseudospectral collocation method. The results showed that the steady-state solution is unique with respect to initial conditions, deformation history, and the value of the diffusivity constant. However, smaller the value of the diffusivity constant is, the more time it takes to reach the steady state. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonequilibrium%20thermodynamics" title="nonequilibrium thermodynamics">nonequilibrium thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=planar%20contraction" title=" planar contraction"> planar contraction</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20solutions" title=" polymer solutions"> polymer solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20banding" title=" shear banding"> shear banding</a>, <a href="https://publications.waset.org/abstracts/search?q=two-fluid%20approach" title=" two-fluid approach"> two-fluid approach</a> </p> <a href="https://publications.waset.org/abstracts/60024/numerical-investigation-of-a-new-two-fluid-model-for-semi-dilute-polymer-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> Thermodynamics of Water Condensation on an Aqueous Organic-Coated Aerosol Aging via Chemical Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuri%20S.%20Djikaev">Yuri S. Djikaev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A large subset of aqueous aerosols can be initially (immediately upon formation) coated with various organic amphiphilic compounds whereof the hydrophilic moieties are attached to the aqueous aerosol core while the hydrophobic moieties are exposed to the air thus forming a hydrophobic coating thereupon. We study the thermodynamics of water condensation on such an aerosol whereof the hydrophobic organic coating is being concomitantly processed by chemical reactions with atmospheric reactive species. Such processing (chemical aging) enables the initially inert aerosol to serve as a nucleating center for water condensation. The most probable pathway of such aging involves atmospheric hydroxyl radicals that abstract hydrogen atoms from hydrophobic moieties of surface organics (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). Taking these two reactions into account, we derive an expression for the free energy of formation of an aqueous droplet on an organic-coated aerosol. The model is illustrated by numerical calculations. The results suggest that the formation of aqueous cloud droplets on such aerosols is most likely to occur via Kohler activation rather than via nucleation. The model allows one to determine the threshold parameters necessary for their Kohler activation. Numerical results also corroborate previous suggestions that one can neglect some details of aerosol chemical composition in investigating aerosol effects on climate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aqueous%20aerosols" title="aqueous aerosols">aqueous aerosols</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20coating" title=" organic coating"> organic coating</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20aging" title=" chemical aging"> chemical aging</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20condensation%20nuclei" title=" cloud condensation nuclei"> cloud condensation nuclei</a>, <a href="https://publications.waset.org/abstracts/search?q=Kohler%20activation" title=" Kohler activation"> Kohler activation</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20droplets" title=" cloud droplets"> cloud droplets</a> </p> <a href="https://publications.waset.org/abstracts/43796/thermodynamics-of-water-condensation-on-an-aqueous-organic-coated-aerosol-aging-via-chemical-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> Numerical Investigation of the Needle Opening Process in a High Pressure Gas Injector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Banholzer">Matthias Banholzer</a>, <a href="https://publications.waset.org/abstracts/search?q=Hagen%20M%C3%BCller"> Hagen Müller</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Pfitzner"> Michael Pfitzner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas internal combustion engines are widely used as propulsion systems or in power plants to generate heat and electricity. While there are different types of injection methods including the manifold port fuel injection and the direct injection, the latter has more potential to increase the specific power by avoiding air displacement in the intake and to reduce combustion anomalies such as backfire or pre-ignition. During the opening process of the injector, multiple flow regimes occur: subsonic, transonic and supersonic. To cover the wide range of Mach numbers a compressible pressure-based solver is used. While the standard Pressure Implicit with Splitting of Operators (PISO) method is used for the coupling between velocity and pressure, a high-resolution non-oscillatory central scheme established by Kurganov and Tadmor calculates the convective fluxes. A blending function based on the local Mach- and CFL-number switches between the compressible and incompressible regimes of the developed model. As the considered operating points are well above the critical state of the used fluids, the ideal gas assumption is not valid anymore. For the real gas thermodynamics, the models based on the Soave-Redlich-Kwong equation of state were implemented. The caloric properties are corrected using a departure formalism, for the viscosity and the thermal conductivity the empirical correlation of Chung is used. For the injector geometry, the dimensions of a diesel injector were adapted. Simulations were performed using different nozzle and needle geometries and opening curves. It can be clearly seen that there is a significant influence of all three parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20pressure%20gas%20injection" title="high pressure gas injection">high pressure gas injection</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20solver" title=" hybrid solver"> hybrid solver</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20injection" title=" hydrogen injection"> hydrogen injection</a>, <a href="https://publications.waset.org/abstracts/search?q=needle%20opening%20process" title=" needle opening process"> needle opening process</a>, <a href="https://publications.waset.org/abstracts/search?q=real-gas%20thermodynamics" title=" real-gas thermodynamics"> real-gas thermodynamics</a> </p> <a href="https://publications.waset.org/abstracts/70970/numerical-investigation-of-the-needle-opening-process-in-a-high-pressure-gas-injector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> Isotherm Study for Phenol Removal onto GAC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lallan%20Singh%20Yadav">Lallan Singh Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Bijay%20Kumar%20Mishra"> Bijay Kumar Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Kumar%20Mahapatra"> Manoj Kumar Mahapatra</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar"> Arvind Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adsorption data for phenol removal onto granular activated carbon were fitted to Langmuir and Freundlich isotherms. The adsorption capacity of phenol was estimated to be 16.12 mg/g at initial pH=5.7. The thermodynamics of adsorption process has also been determined in the present work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20activated%20carbon" title=" granular activated carbon"> granular activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedicine" title=" biomedicine"> biomedicine</a> </p> <a href="https://publications.waset.org/abstracts/8892/isotherm-study-for-phenol-removal-onto-gac" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">615</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> Surface Thermodynamics Approach to Mycobacterium tuberculosis (M-TB) – Human Sputum Interactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20L.%20Chukwuneke">J. L. Chukwuneke</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Achebe"> C. H. Achebe</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Omenyi"> S. N. Omenyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research work presents the surface thermodynamics approach to M-TB/HIV-Human sputum interactions. This involved the use of the Hamaker coefficient concept as a surface energetics tool in determining the interaction processes, with the surface interfacial energies explained using van der Waals concept of particle interactions. The Lifshitz derivation for van der Waals forces was applied as an alternative to the contact angle approach which has been widely used in other biological systems. The methodology involved taking sputum samples from twenty infected persons and from twenty uninfected persons for absorbance measurement using a digital Ultraviolet visible Spectrophotometer. The variables required for the computations with the Lifshitz formula were derived from the absorbance data. The Matlab software tools were used in the mathematical analysis of the data produced from the experiments (absorbance values). The Hamaker constants and the combined Hamaker coefficients were obtained using the values of the dielectric constant together with the Lifshitz equation. The absolute combined Hamaker coefficients A132abs and A131abs on both infected and uninfected sputum samples gave the values of A132abs = 0.21631x10-21Joule for M-TB infected sputum and Ã132abs = 0.18825x10-21Joule for M-TB/HIV infected sputum. The significance of this result is the positive value of the absolute combined Hamaker coefficient which suggests the existence of net positive van der waals forces demonstrating an attraction between the bacteria and the macrophage. This however, implies that infection can occur. It was also shown that in the presence of HIV, the interaction energy is reduced by 13% conforming adverse effects observed in HIV patients suffering from tuberculosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorbance" title="absorbance">absorbance</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20constant" title=" dielectric constant"> dielectric constant</a>, <a href="https://publications.waset.org/abstracts/search?q=hamaker%20coefficient" title=" hamaker coefficient"> hamaker coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=lifshitz%20formula" title=" lifshitz formula"> lifshitz formula</a>, <a href="https://publications.waset.org/abstracts/search?q=macrophage" title=" macrophage"> macrophage</a>, <a href="https://publications.waset.org/abstracts/search?q=mycobacterium%20tuberculosis" title=" mycobacterium tuberculosis"> mycobacterium tuberculosis</a>, <a href="https://publications.waset.org/abstracts/search?q=van%20der%20waals%20forces" title=" van der waals forces"> van der waals forces</a> </p> <a href="https://publications.waset.org/abstracts/40122/surface-thermodynamics-approach-to-mycobacterium-tuberculosis-m-tb-human-sputum-interactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermodynamics&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermodynamics&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermodynamics&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermodynamics&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermodynamics&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10