CINXE.COM
Ralph Kenna - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Ralph Kenna - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="37FCb8F3Ib9HGvOeRXldxtYnGINURxrRiEGg58DScNQhV8zQxbdTOkkOQjxHsAqPbygNr/ksdbH7rinFQHrFMw==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="ralph kenna" /> <meta name="description" content="Ralph Kenna: 2 Followers, 3 Following, 54 Research papers. Research interests: Ensemble, Contrast, and Risk Management and Insurance Finance Actuarial Science…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15276,"monthly_visitors":"113 million","monthly_visitor_count":113468711,"monthly_visitor_count_in_millions":113,"user_count":277169689,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732449683000); window.Aedu.timeDifference = new Date().getTime() - 1732449683000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/KennaRalph" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-9601d1cc3d68aa07c0a9901d03d3611aec04cc07d2a2039718ebef4ad4d148ca.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph","photo":"https://0.academia-photos.com/57856370/15395806/16030371/s65_ralph.kenna.jpg","has_photo":true,"is_analytics_public":false,"interests":[{"id":30303,"name":"Ensemble","url":"https://www.academia.edu/Documents/in/Ensemble"},{"id":83188,"name":"Contrast","url":"https://www.academia.edu/Documents/in/Contrast"},{"id":269617,"name":"Risk Management and Insurance Finance Actuarial Science Corporate Governance Actuarial mathematics","url":"https://www.academia.edu/Documents/in/Risk_Management_and_Insurance_Finance_Actuarial_Science_Corporate_Governance_Actuarial_mathematics"},{"id":213709,"name":"Mathematical","url":"https://www.academia.edu/Documents/in/Mathematical"},{"id":22800,"name":"Health Reform","url":"https://www.academia.edu/Documents/in/Health_Reform"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/KennaRalph","location":"/KennaRalph","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/KennaRalph","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-24311f6c-2421-442e-a8a7-7c2b3fe9676c"></div> <div id="ProfileCheckPaperUpdate-react-component-24311f6c-2421-442e-a8a7-7c2b3fe9676c"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Ralph Kenna" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/57856370/15395806/16030371/s200_ralph.kenna.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Ralph Kenna</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Ralph" data-follow-user-id="57856370" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="57856370"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">2</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">3</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">2</p></div></a><a href="/KennaRalph/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data">447</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="57856370" href="https://www.academia.edu/Documents/in/Ensemble"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/KennaRalph","location":"/KennaRalph","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/KennaRalph","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Ensemble"]}" data-trace="false" data-dom-id="Pill-react-component-c811175c-ef45-4274-a726-55c8d460b570"></div> <div id="Pill-react-component-c811175c-ef45-4274-a726-55c8d460b570"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="57856370" href="https://www.academia.edu/Documents/in/Contrast"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Contrast"]}" data-trace="false" data-dom-id="Pill-react-component-ad2385b8-cc06-4f20-ba4b-53a0e7fd417f"></div> <div id="Pill-react-component-ad2385b8-cc06-4f20-ba4b-53a0e7fd417f"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="57856370" href="https://www.academia.edu/Documents/in/Risk_Management_and_Insurance_Finance_Actuarial_Science_Corporate_Governance_Actuarial_mathematics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Risk Management and Insurance Finance Actuarial Science Corpor..."]}" data-trace="false" data-dom-id="Pill-react-component-5dabceff-48a4-4363-9e6d-130d4a0321b0"></div> <div id="Pill-react-component-5dabceff-48a4-4363-9e6d-130d4a0321b0"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="57856370" href="https://www.academia.edu/Documents/in/Mathematical"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Mathematical"]}" data-trace="false" data-dom-id="Pill-react-component-3f8f4081-602f-47c1-81e1-b2ae32eeb5b2"></div> <div id="Pill-react-component-3f8f4081-602f-47c1-81e1-b2ae32eeb5b2"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="57856370" href="https://www.academia.edu/Documents/in/Health_Reform"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Health Reform"]}" data-trace="false" data-dom-id="Pill-react-component-b393e45e-2399-4bfd-94e7-3edf4d0232b0"></div> <div id="Pill-react-component-b393e45e-2399-4bfd-94e7-3edf4d0232b0"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Ralph Kenna</h3></div><div class="js-work-strip profile--work_container" data-work-id="104605612"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104605612/Violation_of_Lee_Yang_circle_theorem_for_Ising_phase_transitions_on_complex_networks"><img alt="Research paper thumbnail of Violation of Lee-Yang circle theorem for Ising phase transitions on complex networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104605612/Violation_of_Lee_Yang_circle_theorem_for_Ising_phase_transitions_on_complex_networks">Violation of Lee-Yang circle theorem for Ising phase transitions on complex networks</a></div><div class="wp-workCard_item"><span>EPL (Europhysics Letters)</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104605612"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104605612"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104605612; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104605612]").text(description); $(".js-view-count[data-work-id=104605612]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104605612; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104605612']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 104605612, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=104605612]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104605612,"title":"Violation of Lee-Yang circle theorem for Ising phase transitions on complex networks","translated_title":"","metadata":{"publisher":"IOP Publishing","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"EPL (Europhysics Letters)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/104605612/Violation_of_Lee_Yang_circle_theorem_for_Ising_phase_transitions_on_complex_networks","translated_internal_url":"","created_at":"2023-07-15T20:32:40.488-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Violation_of_Lee_Yang_circle_theorem_for_Ising_phase_transitions_on_complex_networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":114618,"name":"Ising Model","url":"https://www.academia.edu/Documents/in/Ising_Model"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":148392,"name":"EPL","url":"https://www.academia.edu/Documents/in/EPL"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":238230,"name":"Scaling","url":"https://www.academia.edu/Documents/in/Scaling"},{"id":3785923,"name":"Lambda","url":"https://www.academia.edu/Documents/in/Lambda"}],"urls":[{"id":32908862,"url":"https://iopscience.iop.org/article/10.1209/0295-5075/111/60009/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104605611"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104605611/Fishers_scaling_relation_above_the_upper_critical_dimension"><img alt="Research paper thumbnail of Fisher's scaling relation above the upper critical dimension" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104605611/Fishers_scaling_relation_above_the_upper_critical_dimension">Fisher's scaling relation above the upper critical dimension</a></div><div class="wp-workCard_item"><span>EPL (Europhysics Letters)</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104605611"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104605611"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104605611; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104605611]").text(description); $(".js-view-count[data-work-id=104605611]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104605611; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104605611']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 104605611, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=104605611]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104605611,"title":"Fisher's scaling relation above the upper critical dimension","translated_title":"","metadata":{"publisher":"IOP Publishing","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"EPL (Europhysics Letters)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/104605611/Fishers_scaling_relation_above_the_upper_critical_dimension","translated_internal_url":"","created_at":"2023-07-15T20:32:40.239-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Fishers_scaling_relation_above_the_upper_critical_dimension","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":148392,"name":"EPL","url":"https://www.academia.edu/Documents/in/EPL"},{"id":238230,"name":"Scaling","url":"https://www.academia.edu/Documents/in/Scaling"},{"id":3292545,"name":"Logarithm","url":"https://www.academia.edu/Documents/in/Logarithm"}],"urls":[{"id":32908861,"url":"https://iopscience.iop.org/article/10.1209/0295-5075/105/26005/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104605609"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104605609/Site_diluted_Ising_model_in_four_dimensions"><img alt="Research paper thumbnail of Site-diluted Ising model in four dimensions" class="work-thumbnail" src="https://attachments.academia-assets.com/104290183/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104605609/Site_diluted_Ising_model_in_four_dimensions">Site-diluted Ising model in four dimensions</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7e58229d83478198576e4a34b8bedd5d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104290183,"asset_id":104605609,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104290183/download_file?st=MTczMjQ0OTY4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104605609"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104605609"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104605609; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104605609]").text(description); $(".js-view-count[data-work-id=104605609]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104605609; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104605609']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 104605609, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7e58229d83478198576e4a34b8bedd5d" } } $('.js-work-strip[data-work-id=104605609]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104605609,"title":"Site-diluted Ising model in four dimensions","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Physical Review E"},"translated_abstract":null,"internal_url":"https://www.academia.edu/104605609/Site_diluted_Ising_model_in_four_dimensions","translated_internal_url":"","created_at":"2023-07-15T20:32:26.861-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":104290183,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104290183/thumbnails/1.jpg","file_name":"0908.pdf","download_url":"https://www.academia.edu/attachments/104290183/download_file?st=MTczMjQ0OTY4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Site_diluted_Ising_model_in_four_dimensi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104290183/0908-libre.pdf?1689481939=\u0026response-content-disposition=attachment%3B+filename%3DSite_diluted_Ising_model_in_four_dimensi.pdf\u0026Expires=1732453280\u0026Signature=Dn1DiSJaqSrrEtTlurw7oDMkEKu9IqT5h8NOJR4IxkBigreln7UmZHlCyocvTNb1e-oz7hD7y7ylq-x48ZMlvS6a9kkBwTz7Qm~OSZwP6NQUSIVw-Y5T-H-07MmO0fSHS4b3TPczv3yJPyAKUu2M8TIAH23yqDqPrUKKj-HXwom-WazoIpzmWbpxjPnWSzsYxFq9LFkyDa75et~rKzAxua0LakDLwiLP0IdMo6VhSwDs2Wpw4bznDlaLs5~PpdN2pEC06LYZ1ENqPQ-u5SqOOVmoQlVLjzhePSjYcSOwevI3aqgaIU1DSb7zKb1EDl6eUYNy6SP0DwBII3eFi7KuUw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Site_diluted_Ising_model_in_four_dimensions","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":104290183,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104290183/thumbnails/1.jpg","file_name":"0908.pdf","download_url":"https://www.academia.edu/attachments/104290183/download_file?st=MTczMjQ0OTY4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Site_diluted_Ising_model_in_four_dimensi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104290183/0908-libre.pdf?1689481939=\u0026response-content-disposition=attachment%3B+filename%3DSite_diluted_Ising_model_in_four_dimensi.pdf\u0026Expires=1732453280\u0026Signature=Dn1DiSJaqSrrEtTlurw7oDMkEKu9IqT5h8NOJR4IxkBigreln7UmZHlCyocvTNb1e-oz7hD7y7ylq-x48ZMlvS6a9kkBwTz7Qm~OSZwP6NQUSIVw-Y5T-H-07MmO0fSHS4b3TPczv3yJPyAKUu2M8TIAH23yqDqPrUKKj-HXwom-WazoIpzmWbpxjPnWSzsYxFq9LFkyDa75et~rKzAxua0LakDLwiLP0IdMo6VhSwDs2Wpw4bznDlaLs5~PpdN2pEC06LYZ1ENqPQ-u5SqOOVmoQlVLjzhePSjYcSOwevI3aqgaIU1DSb7zKb1EDl6eUYNy6SP0DwBII3eFi7KuUw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":963,"name":"Lattice Theory","url":"https://www.academia.edu/Documents/in/Lattice_Theory"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":114618,"name":"Ising Model","url":"https://www.academia.edu/Documents/in/Ising_Model"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":238230,"name":"Scaling","url":"https://www.academia.edu/Documents/in/Scaling"},{"id":434746,"name":"Model System","url":"https://www.academia.edu/Documents/in/Model_System"},{"id":996079,"name":"Four Dimensions","url":"https://www.academia.edu/Documents/in/Four_Dimensions"},{"id":1130298,"name":"Critical Point","url":"https://www.academia.edu/Documents/in/Critical_Point"},{"id":3292545,"name":"Logarithm","url":"https://www.academia.edu/Documents/in/Logarithm"}],"urls":[{"id":32908859,"url":"http://link.aps.org/article/10.1103/PhysRevE.80.031135"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104605608"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104605608/Scaling_behavior_of_the_Heisenberg_model_in_three_dimensions"><img alt="Research paper thumbnail of Scaling behavior of the Heisenberg model in three dimensions" class="work-thumbnail" src="https://attachments.academia-assets.com/104290182/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104605608/Scaling_behavior_of_the_Heisenberg_model_in_three_dimensions">Scaling behavior of the Heisenberg model in three dimensions</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="65dac301003177463d788cc2eabd89c8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104290182,"asset_id":104605608,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104290182/download_file?st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104605608"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104605608"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104605608; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104605608]").text(description); $(".js-view-count[data-work-id=104605608]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104605608; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104605608']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 104605608, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "65dac301003177463d788cc2eabd89c8" } } $('.js-work-strip[data-work-id=104605608]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104605608,"title":"Scaling behavior of the Heisenberg model in three dimensions","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Physical Review E"},"translated_abstract":null,"internal_url":"https://www.academia.edu/104605608/Scaling_behavior_of_the_Heisenberg_model_in_three_dimensions","translated_internal_url":"","created_at":"2023-07-15T20:32:26.609-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":104290182,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104290182/thumbnails/1.jpg","file_name":"1307.pdf","download_url":"https://www.academia.edu/attachments/104290182/download_file?st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Scaling_behavior_of_the_Heisenberg_model.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104290182/1307-libre.pdf?1689481943=\u0026response-content-disposition=attachment%3B+filename%3DScaling_behavior_of_the_Heisenberg_model.pdf\u0026Expires=1732453281\u0026Signature=UYVruUPmqrCJYRQPlfAKe~LDfR~OPOrt7HWh-4BGM2Ti5BEge0CEYl25JDLA9HoKXThCSRd3JEQa78bbWNimuDLcn5ceugD4l3EA5zovM8yuxuzgmLjPRWOTExu7dFYcppMi9KlskPifZ-O440sZqpYPYEzvWiDJOvM1t8RJJOcvXbqQFU1z2RLQTI0oSijicHZfDbAjZKDZF3wePIvflZelCpkK9nqu1IudIGVx0AMHRF1bvdWUj9okBjT46nRiVgT4CuAGAWuShQ8Q4tEopB4i9J8EocCToCVnZQiN5MUGsiqGPDPQlwe5WssSeGAkSWNkjyYgRia9v1mvjxebkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Scaling_behavior_of_the_Heisenberg_model_in_three_dimensions","translated_slug":"","page_count":20,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":104290182,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104290182/thumbnails/1.jpg","file_name":"1307.pdf","download_url":"https://www.academia.edu/attachments/104290182/download_file?st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Scaling_behavior_of_the_Heisenberg_model.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104290182/1307-libre.pdf?1689481943=\u0026response-content-disposition=attachment%3B+filename%3DScaling_behavior_of_the_Heisenberg_model.pdf\u0026Expires=1732453281\u0026Signature=UYVruUPmqrCJYRQPlfAKe~LDfR~OPOrt7HWh-4BGM2Ti5BEge0CEYl25JDLA9HoKXThCSRd3JEQa78bbWNimuDLcn5ceugD4l3EA5zovM8yuxuzgmLjPRWOTExu7dFYcppMi9KlskPifZ-O440sZqpYPYEzvWiDJOvM1t8RJJOcvXbqQFU1z2RLQTI0oSijicHZfDbAjZKDZF3wePIvflZelCpkK9nqu1IudIGVx0AMHRF1bvdWUj9okBjT46nRiVgT4CuAGAWuShQ8Q4tEopB4i9J8EocCToCVnZQiN5MUGsiqGPDPQlwe5WssSeGAkSWNkjyYgRia9v1mvjxebkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":238230,"name":"Scaling","url":"https://www.academia.edu/Documents/in/Scaling"},{"id":343667,"name":"Theoretical Models","url":"https://www.academia.edu/Documents/in/Theoretical_Models"},{"id":1333436,"name":"Monte Carlo Method","url":"https://www.academia.edu/Documents/in/Monte_Carlo_Method"},{"id":2220619,"name":"HEISENBERG-MODEL","url":"https://www.academia.edu/Documents/in/HEISENBERG-MODEL"}],"urls":[{"id":32908858,"url":"http://link.aps.org/article/10.1103/PhysRevE.88.062117"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104605607"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104605607/Scaling_analysis_of_the_site_diluted_Ising_model_in_two_dimensions"><img alt="Research paper thumbnail of Scaling analysis of the site-diluted Ising model in two dimensions" class="work-thumbnail" src="https://attachments.academia-assets.com/104290180/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104605607/Scaling_analysis_of_the_site_diluted_Ising_model_in_two_dimensions">Scaling analysis of the site-diluted Ising model in two dimensions</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ff739a24409fb65613d4558f1cc79f81" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104290180,"asset_id":104605607,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104290180/download_file?st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104605607"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104605607"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104605607; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104605607]").text(description); $(".js-view-count[data-work-id=104605607]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104605607; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104605607']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 104605607, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ff739a24409fb65613d4558f1cc79f81" } } $('.js-work-strip[data-work-id=104605607]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104605607,"title":"Scaling analysis of the site-diluted Ising model in two dimensions","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Physical Review E"},"translated_abstract":null,"internal_url":"https://www.academia.edu/104605607/Scaling_analysis_of_the_site_diluted_Ising_model_in_two_dimensions","translated_internal_url":"","created_at":"2023-07-15T20:32:26.367-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":104290180,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104290180/thumbnails/1.jpg","file_name":"0807.pdf","download_url":"https://www.academia.edu/attachments/104290180/download_file?st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Scaling_analysis_of_the_site_diluted_Isi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104290180/0807-libre.pdf?1689481938=\u0026response-content-disposition=attachment%3B+filename%3DScaling_analysis_of_the_site_diluted_Isi.pdf\u0026Expires=1732453281\u0026Signature=WdwRtycD7~MyMbzJXXSB5sRnGNWkpmcuqBx9~IWZ~d4n2V0qIYXeGe55-7Bap~GwrVnNGuXc2x4mIzlaOLPJmsehCuZ~2moa6QZqoRy17Bfdadc5iAEG1mDrd9EinsLFberMqG~pnEmkl4wEiy1DMF0IyMP12DMTlsHqNYuYQqZzvclvU1DaKyV2DgRuMletERpsxSJ-JGdO6RXGFdfkxle1hv1TPdo0ESq~8mYyOQPz~LMzxnrYveVE6M8wZX57fhunn3kEB8uQrV4xMErtjPYRAKCY7cIYUOxny4TB7ixCntLjy45WrQSuiPcK1XRUDJZO8wkPMJfuT2qxOL0X9A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Scaling_analysis_of_the_site_diluted_Ising_model_in_two_dimensions","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":104290180,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104290180/thumbnails/1.jpg","file_name":"0807.pdf","download_url":"https://www.academia.edu/attachments/104290180/download_file?st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Scaling_analysis_of_the_site_diluted_Isi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104290180/0807-libre.pdf?1689481938=\u0026response-content-disposition=attachment%3B+filename%3DScaling_analysis_of_the_site_diluted_Isi.pdf\u0026Expires=1732453281\u0026Signature=WdwRtycD7~MyMbzJXXSB5sRnGNWkpmcuqBx9~IWZ~d4n2V0qIYXeGe55-7Bap~GwrVnNGuXc2x4mIzlaOLPJmsehCuZ~2moa6QZqoRy17Bfdadc5iAEG1mDrd9EinsLFberMqG~pnEmkl4wEiy1DMF0IyMP12DMTlsHqNYuYQqZzvclvU1DaKyV2DgRuMletERpsxSJ-JGdO6RXGFdfkxle1hv1TPdo0ESq~8mYyOQPz~LMzxnrYveVE6M8wZX57fhunn3kEB8uQrV4xMErtjPYRAKCY7cIYUOxny4TB7ixCntLjy45WrQSuiPcK1XRUDJZO8wkPMJfuT2qxOL0X9A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":963,"name":"Lattice Theory","url":"https://www.academia.edu/Documents/in/Lattice_Theory"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":114618,"name":"Ising Model","url":"https://www.academia.edu/Documents/in/Ising_Model"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":238230,"name":"Scaling","url":"https://www.academia.edu/Documents/in/Scaling"},{"id":827572,"name":"Specific Heat","url":"https://www.academia.edu/Documents/in/Specific_Heat"},{"id":970277,"name":"Two Dimensions","url":"https://www.academia.edu/Documents/in/Two_Dimensions"},{"id":1130298,"name":"Critical Point","url":"https://www.academia.edu/Documents/in/Critical_Point"},{"id":3292545,"name":"Logarithm","url":"https://www.academia.edu/Documents/in/Logarithm"}],"urls":[{"id":32908857,"url":"http://link.aps.org/article/10.1103/PhysRevE.78.031134"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104605606"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104605606/Universal_amplitude_ratios_in_the_Ising_model_in_three_dimensions"><img alt="Research paper thumbnail of Universal amplitude ratios in the Ising model in three dimensions" class="work-thumbnail" src="https://attachments.academia-assets.com/104290181/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104605606/Universal_amplitude_ratios_in_the_Ising_model_in_three_dimensions">Universal amplitude ratios in the Ising model in three dimensions</a></div><div class="wp-workCard_item"><span>Journal of Statistical Mechanics: Theory and Experiment</span><span>, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f3e864cf0ceb27272c51e2743c596474" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104290181,"asset_id":104605606,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104290181/download_file?st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104605606"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104605606"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104605606; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104605606]").text(description); $(".js-view-count[data-work-id=104605606]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104605606; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104605606']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 104605606, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f3e864cf0ceb27272c51e2743c596474" } } $('.js-work-strip[data-work-id=104605606]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104605606,"title":"Universal amplitude ratios in the Ising model in three dimensions","translated_title":"","metadata":{"publisher":"IOP Publishing","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Journal of Statistical Mechanics: Theory and Experiment"},"translated_abstract":null,"internal_url":"https://www.academia.edu/104605606/Universal_amplitude_ratios_in_the_Ising_model_in_three_dimensions","translated_internal_url":"","created_at":"2023-07-15T20:32:26.181-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":104290181,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104290181/thumbnails/1.jpg","file_name":"1107.pdf","download_url":"https://www.academia.edu/attachments/104290181/download_file?st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Universal_amplitude_ratios_in_the_Ising.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104290181/1107-libre.pdf?1689481979=\u0026response-content-disposition=attachment%3B+filename%3DUniversal_amplitude_ratios_in_the_Ising.pdf\u0026Expires=1732453281\u0026Signature=W4f-nx7qR1ZvfrlWylk-NjtdQ6YUQKZYPD0qynu-OZr9HVfjmAZ3oAgRaRc-kVMyUjGc6KDrAF62J4Oak8WtRXB6tFev8rIxYjlSFX9pFGEsVkhi2zB~E9KGjnhRsqUFr5jE9~o5wotOAJDO0~0bVwN~H8fnfLKHc9DPwUmMXvBRZ8FmjBcSdOnXGUHcO5VKDOtT8Tabtyxb9RZc~nRckk~qHlQ-1wi-2~3JLvN1CTzSi-uEaqvTieR~Dd4SKuybDzYR1KNLoe6lChASrssuLepes3hzsg3UO3O3DCcxVFKYX9GlR9fdWmpF5hQlo1cabLIO4hpTvVKY2g4nvnhyiw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Universal_amplitude_ratios_in_the_Ising_model_in_three_dimensions","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":104290181,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104290181/thumbnails/1.jpg","file_name":"1107.pdf","download_url":"https://www.academia.edu/attachments/104290181/download_file?st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Universal_amplitude_ratios_in_the_Ising.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104290181/1107-libre.pdf?1689481979=\u0026response-content-disposition=attachment%3B+filename%3DUniversal_amplitude_ratios_in_the_Ising.pdf\u0026Expires=1732453281\u0026Signature=W4f-nx7qR1ZvfrlWylk-NjtdQ6YUQKZYPD0qynu-OZr9HVfjmAZ3oAgRaRc-kVMyUjGc6KDrAF62J4Oak8WtRXB6tFev8rIxYjlSFX9pFGEsVkhi2zB~E9KGjnhRsqUFr5jE9~o5wotOAJDO0~0bVwN~H8fnfLKHc9DPwUmMXvBRZ8FmjBcSdOnXGUHcO5VKDOtT8Tabtyxb9RZc~nRckk~qHlQ-1wi-2~3JLvN1CTzSi-uEaqvTieR~Dd4SKuybDzYR1KNLoe6lChASrssuLepes3hzsg3UO3O3DCcxVFKYX9GlR9fdWmpF5hQlo1cabLIO4hpTvVKY2g4nvnhyiw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":4392,"name":"Monte Carlo Simulation","url":"https://www.academia.edu/Documents/in/Monte_Carlo_Simulation"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":114618,"name":"Ising Model","url":"https://www.academia.edu/Documents/in/Ising_Model"},{"id":238230,"name":"Scaling","url":"https://www.academia.edu/Documents/in/Scaling"},{"id":504035,"name":"Three Dimensional","url":"https://www.academia.edu/Documents/in/Three_Dimensional"},{"id":827572,"name":"Specific Heat","url":"https://www.academia.edu/Documents/in/Specific_Heat"},{"id":1333436,"name":"Monte Carlo Method","url":"https://www.academia.edu/Documents/in/Monte_Carlo_Method"},{"id":1495455,"name":"Finite Size Scaling","url":"https://www.academia.edu/Documents/in/Finite_Size_Scaling"},{"id":1554800,"name":"Amplitude","url":"https://www.academia.edu/Documents/in/Amplitude"},{"id":2740863,"name":"Limit (Mathematics)","url":"https://www.academia.edu/Documents/in/Limit_Mathematics_"},{"id":4094786,"name":"three-dimensions","url":"https://www.academia.edu/Documents/in/three_dimensions"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104605605"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104605605/Role_of_Fourier_Modes_in_Finite_Size_Scaling_above_the_Upper_Critical_Dimension"><img alt="Research paper thumbnail of Role of Fourier Modes in Finite-Size Scaling above the Upper Critical Dimension" class="work-thumbnail" src="https://attachments.academia-assets.com/104290176/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104605605/Role_of_Fourier_Modes_in_Finite_Size_Scaling_above_the_Upper_Critical_Dimension">Role of Fourier Modes in Finite-Size Scaling above the Upper Critical Dimension</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="520cdf722156291aff4aad9cf2f64fab" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104290176,"asset_id":104605605,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104290176/download_file?st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104605605"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104605605"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104605605; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104605605]").text(description); $(".js-view-count[data-work-id=104605605]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104605605; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104605605']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 104605605, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "520cdf722156291aff4aad9cf2f64fab" } } $('.js-work-strip[data-work-id=104605605]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104605605,"title":"Role of Fourier Modes in Finite-Size Scaling above the Upper Critical Dimension","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Physical Review Letters"},"translated_abstract":null,"internal_url":"https://www.academia.edu/104605605/Role_of_Fourier_Modes_in_Finite_Size_Scaling_above_the_Upper_Critical_Dimension","translated_internal_url":"","created_at":"2023-07-15T20:32:18.856-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":104290176,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104290176/thumbnails/1.jpg","file_name":"1511.pdf","download_url":"https://www.academia.edu/attachments/104290176/download_file?st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Role_of_Fourier_Modes_in_Finite_Size_Sca.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104290176/1511-libre.pdf?1689481938=\u0026response-content-disposition=attachment%3B+filename%3DRole_of_Fourier_Modes_in_Finite_Size_Sca.pdf\u0026Expires=1732453281\u0026Signature=agAuh0PH764bN~ZjQfOsi5zNS6HpaIqCgNX8l-VxhFhHHiPcrG6E8azadQFF9x3vqrAiqlaXRb9KRN3KBN4lyeyt6ZmkMmVuKM2UdPvrHMVUNcMdC4uvLGTe4nZGF3BfrpuJnsu1jHGV6f5Mvyz23CX2QPtmI8M7EAaV6xq3hF0Z5rZReXYI3j4iCHlUQrCCVhOkYhao390r6Bct979PN3ab9~pgiz0wDYDEz3NLpztc2~zo5uv9fTUnaBlhaY5e94yCXolKD8nRV08OAgK~8uUCha5Z~IMjB4OWNt7YAxkPNEqSE9fGdcAZdHWHGY~LzBvtIQJEZkarbmo4cX1vMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Role_of_Fourier_Modes_in_Finite_Size_Scaling_above_the_Upper_Critical_Dimension","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":104290176,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104290176/thumbnails/1.jpg","file_name":"1511.pdf","download_url":"https://www.academia.edu/attachments/104290176/download_file?st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Role_of_Fourier_Modes_in_Finite_Size_Sca.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104290176/1511-libre.pdf?1689481938=\u0026response-content-disposition=attachment%3B+filename%3DRole_of_Fourier_Modes_in_Finite_Size_Sca.pdf\u0026Expires=1732453281\u0026Signature=agAuh0PH764bN~ZjQfOsi5zNS6HpaIqCgNX8l-VxhFhHHiPcrG6E8azadQFF9x3vqrAiqlaXRb9KRN3KBN4lyeyt6ZmkMmVuKM2UdPvrHMVUNcMdC4uvLGTe4nZGF3BfrpuJnsu1jHGV6f5Mvyz23CX2QPtmI8M7EAaV6xq3hF0Z5rZReXYI3j4iCHlUQrCCVhOkYhao390r6Bct979PN3ab9~pgiz0wDYDEz3NLpztc2~zo5uv9fTUnaBlhaY5e94yCXolKD8nRV08OAgK~8uUCha5Z~IMjB4OWNt7YAxkPNEqSE9fGdcAZdHWHGY~LzBvtIQJEZkarbmo4cX1vMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":44187,"name":"Critical phenomena","url":"https://www.academia.edu/Documents/in/Critical_phenomena"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":201464,"name":"Renormalization","url":"https://www.academia.edu/Documents/in/Renormalization"},{"id":238230,"name":"Scaling","url":"https://www.academia.edu/Documents/in/Scaling"},{"id":390056,"name":"Fourier transform","url":"https://www.academia.edu/Documents/in/Fourier_transform"},{"id":494966,"name":"Renormalization Group","url":"https://www.academia.edu/Documents/in/Renormalization_Group"}],"urls":[{"id":32908856,"url":"http://link.aps.org/article/10.1103/PhysRevLett.116.115701"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100525319"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100525319/Exponents"><img alt="Research paper thumbnail of Exponents" class="work-thumbnail" src="https://attachments.academia-assets.com/101324872/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100525319/Exponents">Exponents</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ab1c6ba6951b918b7c73c386e65c773b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101324872,"asset_id":100525319,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101324872/download_file?st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100525319"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100525319"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100525319; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100525319]").text(description); $(".js-view-count[data-work-id=100525319]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100525319; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100525319']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100525319, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ab1c6ba6951b918b7c73c386e65c773b" } } $('.js-work-strip[data-work-id=100525319]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100525319,"title":"Exponents","translated_title":"","metadata":{"grobid_abstract":"By the early 1960's advances in statistical physics had established the existence of universality classes for systems with second-order phase transitions and characterized these by critical exponents which are different to the classical ones. There followed the discovery of (now famous) scaling relations between the power-law critical exponents describing secondorder criticality. These scaling relations are of fundamental importance and now form a cornerstone of statistical mechanics. In certain circumstances, such scaling behaviour is modified by multiplicative logarithmic corrections. These are also characterized by critical exponents, analogous to the standard ones. Recently scaling relations between these logarithmic exponents have been established. Here, the theories associated with these advances are presented and expanded and the status of investigations into logarithmic corrections in a variety of models is reviewed.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"grobid_abstract_attachment_id":101324872},"translated_abstract":null,"internal_url":"https://www.academia.edu/100525319/Exponents","translated_internal_url":"","created_at":"2023-04-21T00:36:02.970-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101324872,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101324872/thumbnails/1.jpg","file_name":"1205.4252.pdf","download_url":"https://www.academia.edu/attachments/101324872/download_file?st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Exponents.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101324872/1205.4252-libre.pdf?1682063608=\u0026response-content-disposition=attachment%3B+filename%3DExponents.pdf\u0026Expires=1732453281\u0026Signature=W8gcJdGM6LkbxcMNnF7Hjt1Vp0~s2-p0o-17RQcRoPnOrzJsmRTJyfLKTF9foup5rVeaPKa6TDpeKlVjnMjhbj-BpJvmMuywC-rRIVGRUxKC7uMbARN8uFQlUvWo5cjYw5qJtxavmCPvH4wM6q9H5cHBxG~ECBg-pk4nVh6-LWx38FkI6louUJ37-E17Mf2osqqz7796O7gQnpoS388dSxmZQd2PhRNnUabS3xL~~FLE~Hmvm3JjR9pPRLO-JDqfoCCZ91KRzIrP3CHXLY7-hPLz1dToVtOLuG6~Vr7UpsdPvA8Ua5mOLShKsHHtuOCE5RMAgJjQP7eaH~F8SQjR3Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Exponents","translated_slug":"","page_count":48,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":101324872,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101324872/thumbnails/1.jpg","file_name":"1205.4252.pdf","download_url":"https://www.academia.edu/attachments/101324872/download_file?st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Exponents.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101324872/1205.4252-libre.pdf?1682063608=\u0026response-content-disposition=attachment%3B+filename%3DExponents.pdf\u0026Expires=1732453281\u0026Signature=W8gcJdGM6LkbxcMNnF7Hjt1Vp0~s2-p0o-17RQcRoPnOrzJsmRTJyfLKTF9foup5rVeaPKa6TDpeKlVjnMjhbj-BpJvmMuywC-rRIVGRUxKC7uMbARN8uFQlUvWo5cjYw5qJtxavmCPvH4wM6q9H5cHBxG~ECBg-pk4nVh6-LWx38FkI6louUJ37-E17Mf2osqqz7796O7gQnpoS388dSxmZQd2PhRNnUabS3xL~~FLE~Hmvm3JjR9pPRLO-JDqfoCCZ91KRzIrP3CHXLY7-hPLz1dToVtOLuG6~Vr7UpsdPvA8Ua5mOLShKsHHtuOCE5RMAgJjQP7eaH~F8SQjR3Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":30797138,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.760.800\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86412258"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86412258/Hyperscaling_above_the_upper_critical_dimension"><img alt="Research paper thumbnail of Hyperscaling above the upper critical dimension" class="work-thumbnail" src="https://attachments.academia-assets.com/90872013/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86412258/Hyperscaling_above_the_upper_critical_dimension">Hyperscaling above the upper critical dimension</a></div><div class="wp-workCard_item"><span>Nuclear Physics B</span><span>, 2012</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="deb17797a287434c91c1e705b76a73e5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90872013,"asset_id":86412258,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90872013/download_file?st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86412258"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86412258"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86412258; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86412258]").text(description); $(".js-view-count[data-work-id=86412258]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86412258; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86412258']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86412258, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "deb17797a287434c91c1e705b76a73e5" } } $('.js-work-strip[data-work-id=86412258]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86412258,"title":"Hyperscaling above the upper critical dimension","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"Nuclear Physics B"},"translated_abstract":null,"internal_url":"https://www.academia.edu/86412258/Hyperscaling_above_the_upper_critical_dimension","translated_internal_url":"","created_at":"2022-09-10T10:07:00.283-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90872013,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90872013/thumbnails/1.jpg","file_name":"1402.pdf","download_url":"https://www.academia.edu/attachments/90872013/download_file?st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hyperscaling_above_the_upper_critical_di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90872013/1402-libre.pdf?1662833751=\u0026response-content-disposition=attachment%3B+filename%3DHyperscaling_above_the_upper_critical_di.pdf\u0026Expires=1732453281\u0026Signature=UycPH8C9qmantr3Vf6jea5K5VY4t3mnO9gY9S54~oIA3ZlaZ12ZDKKsKTSskYgpb98bnMyxi0Ka~Mlqm232e-xifdBE3wQpqmMKqXP5gt1SLoHQxVi1bhyILjSAEPZc9TVQq-3SsSCZiy8ZdWSH~xsjBjUfDNKVcxu44T1LJlcImfw4irJ~hjqpNC9tMAVe2--MCwMJBqUmhIhzCoWelsulatTf6RFWXFJEDRrTtQW60jw-3HAkih1jlb1s3tnJA3DBrMqPs9jW2wwq0Ar-NrnTJHhMcE7Zdczs7zXSNcquJcC6ZZca29vkr-lc31Cwo7dyUapDUgT2gOXCfXzESVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Hyperscaling_above_the_upper_critical_dimension","translated_slug":"","page_count":24,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":90872013,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90872013/thumbnails/1.jpg","file_name":"1402.pdf","download_url":"https://www.academia.edu/attachments/90872013/download_file?st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hyperscaling_above_the_upper_critical_di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90872013/1402-libre.pdf?1662833751=\u0026response-content-disposition=attachment%3B+filename%3DHyperscaling_above_the_upper_critical_di.pdf\u0026Expires=1732453281\u0026Signature=UycPH8C9qmantr3Vf6jea5K5VY4t3mnO9gY9S54~oIA3ZlaZ12ZDKKsKTSskYgpb98bnMyxi0Ka~Mlqm232e-xifdBE3wQpqmMKqXP5gt1SLoHQxVi1bhyILjSAEPZc9TVQq-3SsSCZiy8ZdWSH~xsjBjUfDNKVcxu44T1LJlcImfw4irJ~hjqpNC9tMAVe2--MCwMJBqUmhIhzCoWelsulatTf6RFWXFJEDRrTtQW60jw-3HAkih1jlb1s3tnJA3DBrMqPs9jW2wwq0Ar-NrnTJHhMcE7Zdczs7zXSNcquJcC6ZZca29vkr-lc31Cwo7dyUapDUgT2gOXCfXzESVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":514,"name":"Nuclear Physics","url":"https://www.academia.edu/Documents/in/Nuclear_Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"}],"urls":[{"id":23735493,"url":"https://api.elsevier.com/content/article/PII:S0550321312004063?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78033772"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78033772/O_ct_2_01_5_Partition_function_zeros_for_the_Ising_model_on_complete_graphs_and_on_annealed_scale_free_networks"><img alt="Research paper thumbnail of O ct 2 01 5 Partition function zeros for the Ising model on complete graphs and on annealed scale-free networks" class="work-thumbnail" src="https://attachments.academia-assets.com/85220221/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78033772/O_ct_2_01_5_Partition_function_zeros_for_the_Ising_model_on_complete_graphs_and_on_annealed_scale_free_networks">O ct 2 01 5 Partition function zeros for the Ising model on complete graphs and on annealed scale-free networks</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We analyze the partition function of the Ising model on graphs of two different types: complete g...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We analyze the partition function of the Ising model on graphs of two different types: complete graphs, wherein all nodes are mutually linked and annealed scale-free networks for which the degree distribution decays as P (k) ∼ k. We are interested in zeros of the partition function in the cases of complex temperature or complex external field (Fisher and Lee-Yang zeros respectively). For the model on an annealed scale-free network, we find an integral representation for the partition function which, in the case λ &gt; 5, reproduces the zeros for the Ising model on a complete graph. For 3 &lt; λ &lt; 5 we derive the λ-dependent angle at which the Fisher zeros impact onto the real temperature axis. This, in turn, gives access to the λ-dependent universal values of the critical exponents and critical amplitudes ratios. Our analysis of the Lee-Yang zeros reveals a difference in their behaviour for the Ising model on a complete graph and on an annealed scale-free network when 3 &lt; λ &l...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4b24a9b1e6617e68a8eee2ddb8d35b8a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85220221,"asset_id":78033772,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85220221/download_file?st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78033772"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78033772"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78033772; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78033772]").text(description); $(".js-view-count[data-work-id=78033772]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78033772; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78033772']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 78033772, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4b24a9b1e6617e68a8eee2ddb8d35b8a" } } $('.js-work-strip[data-work-id=78033772]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78033772,"title":"O ct 2 01 5 Partition function zeros for the Ising model on complete graphs and on annealed scale-free networks","translated_title":"","metadata":{"abstract":"We analyze the partition function of the Ising model on graphs of two different types: complete graphs, wherein all nodes are mutually linked and annealed scale-free networks for which the degree distribution decays as P (k) ∼ k. We are interested in zeros of the partition function in the cases of complex temperature or complex external field (Fisher and Lee-Yang zeros respectively). For the model on an annealed scale-free network, we find an integral representation for the partition function which, in the case λ \u0026gt; 5, reproduces the zeros for the Ising model on a complete graph. For 3 \u0026lt; λ \u0026lt; 5 we derive the λ-dependent angle at which the Fisher zeros impact onto the real temperature axis. This, in turn, gives access to the λ-dependent universal values of the critical exponents and critical amplitudes ratios. Our analysis of the Lee-Yang zeros reveals a difference in their behaviour for the Ising model on a complete graph and on an annealed scale-free network when 3 \u0026lt; λ \u0026l...","publication_date":{"day":null,"month":null,"year":2015,"errors":{}}},"translated_abstract":"We analyze the partition function of the Ising model on graphs of two different types: complete graphs, wherein all nodes are mutually linked and annealed scale-free networks for which the degree distribution decays as P (k) ∼ k. We are interested in zeros of the partition function in the cases of complex temperature or complex external field (Fisher and Lee-Yang zeros respectively). For the model on an annealed scale-free network, we find an integral representation for the partition function which, in the case λ \u0026gt; 5, reproduces the zeros for the Ising model on a complete graph. For 3 \u0026lt; λ \u0026lt; 5 we derive the λ-dependent angle at which the Fisher zeros impact onto the real temperature axis. This, in turn, gives access to the λ-dependent universal values of the critical exponents and critical amplitudes ratios. Our analysis of the Lee-Yang zeros reveals a difference in their behaviour for the Ising model on a complete graph and on an annealed scale-free network when 3 \u0026lt; λ \u0026l...","internal_url":"https://www.academia.edu/78033772/O_ct_2_01_5_Partition_function_zeros_for_the_Ising_model_on_complete_graphs_and_on_annealed_scale_free_networks","translated_internal_url":"","created_at":"2022-04-30T04:19:26.364-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85220221,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220221/thumbnails/1.jpg","file_name":"1510.pdf","download_url":"https://www.academia.edu/attachments/85220221/download_file?st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"O_ct_2_01_5_Partition_function_zeros_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220221/1510-libre.pdf?1651318778=\u0026response-content-disposition=attachment%3B+filename%3DO_ct_2_01_5_Partition_function_zeros_for.pdf\u0026Expires=1732453281\u0026Signature=gKfH-BBoOmkd21et8Ih5RAKJ1yK9A~-4pCyPHgLKaJd6XcCt~xsYEgIM5xVceLzvrkVBQ5hP0IHn2I~h-DZOKTLIQ2UT7RL809dONi0FkW1lb-Pa4qxsG8sDPVzdotJzjQ4H1tcVX5~JHT0HrVj23sYbJ0dtKy2NTE3UqL8YDldzWHyKKT6KhrQNBZZXAtzUablYA9rOoA2lTb5EDtAqHmdibpgcwdVLWS22Qgc8etLzvHHlrfDrHKVkEQvtMXIUTxkOjXKdIvAtWABHiobuORFTfvqkxIemmC15-RDnTVOX0phCUEG9v59oFg3rTwDiy8YAOppo6Za1o1y~rqSCkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"O_ct_2_01_5_Partition_function_zeros_for_the_Ising_model_on_complete_graphs_and_on_annealed_scale_free_networks","translated_slug":"","page_count":36,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":85220221,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220221/thumbnails/1.jpg","file_name":"1510.pdf","download_url":"https://www.academia.edu/attachments/85220221/download_file?st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"O_ct_2_01_5_Partition_function_zeros_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220221/1510-libre.pdf?1651318778=\u0026response-content-disposition=attachment%3B+filename%3DO_ct_2_01_5_Partition_function_zeros_for.pdf\u0026Expires=1732453281\u0026Signature=gKfH-BBoOmkd21et8Ih5RAKJ1yK9A~-4pCyPHgLKaJd6XcCt~xsYEgIM5xVceLzvrkVBQ5hP0IHn2I~h-DZOKTLIQ2UT7RL809dONi0FkW1lb-Pa4qxsG8sDPVzdotJzjQ4H1tcVX5~JHT0HrVj23sYbJ0dtKy2NTE3UqL8YDldzWHyKKT6KhrQNBZZXAtzUablYA9rOoA2lTb5EDtAqHmdibpgcwdVLWS22Qgc8etLzvHHlrfDrHKVkEQvtMXIUTxkOjXKdIvAtWABHiobuORFTfvqkxIemmC15-RDnTVOX0phCUEG9v59oFg3rTwDiy8YAOppo6Za1o1y~rqSCkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":85220222,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220222/thumbnails/1.jpg","file_name":"1510.pdf","download_url":"https://www.academia.edu/attachments/85220222/download_file","bulk_download_file_name":"O_ct_2_01_5_Partition_function_zeros_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220222/1510-libre.pdf?1651318775=\u0026response-content-disposition=attachment%3B+filename%3DO_ct_2_01_5_Partition_function_zeros_for.pdf\u0026Expires=1732453281\u0026Signature=BaxNCdMxFj9V3dR4NgubXVbMlwvA-p8HLXxpBaWz3Hi0A-g~wfqd46UOd3OcbC7a~RAwJjQijXZ3VHjj3jIK4mt6e37mROwyENkiMdrXnrjVgUwG45IaM3cR311Bkym9Agw19nwtqZlBabn7csuT2rsC96tMz83PTMW~MU5z79ECKcNBjGmke0DCvgrUzKNGefTThPFFYtkwhz2QVQYw4QdyQHEksLsh6Kt~egkiugDce7n55ICZius5TITRXhiw--fCM48424G3RK6DNgUOz0ZsqAe~sOJhbFlB0ucLkB-pv7stkePA2Rdsx5frBOTa47v95OSnb-t94ijL50knjA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":20060977,"url":"http://export.arxiv.org/pdf/1510.00534"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78033771"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78033771/The_two_point_resistance_of_fan_networks"><img alt="Research paper thumbnail of The two-point resistance of fan networks" class="work-thumbnail" src="https://attachments.academia-assets.com/85220218/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78033771/The_two_point_resistance_of_fan_networks">The two-point resistance of fan networks</a></div><div class="wp-workCard_item"><span>arXiv: Statistical Mechanics</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The problem of the two-point resistance in various networks has recently received considerable at...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The problem of the two-point resistance in various networks has recently received considerable attention. Here we consider the problem on a fan-resistor network, which is a segment of the cobweb network. Using a recently developed approach, we obtain the exact resistance between two arbitrary nodes on such a network. As a byproduct, the analysis also delivers the solution of the spanning tree problem on the fan network.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4a981843ac7a3d8b9265ca1c3a29417b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85220218,"asset_id":78033771,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85220218/download_file?st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78033771"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78033771"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78033771; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78033771]").text(description); $(".js-view-count[data-work-id=78033771]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78033771; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78033771']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 78033771, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4a981843ac7a3d8b9265ca1c3a29417b" } } $('.js-work-strip[data-work-id=78033771]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78033771,"title":"The two-point resistance of fan networks","translated_title":"","metadata":{"abstract":"The problem of the two-point resistance in various networks has recently received considerable attention. Here we consider the problem on a fan-resistor network, which is a segment of the cobweb network. Using a recently developed approach, we obtain the exact resistance between two arbitrary nodes on such a network. As a byproduct, the analysis also delivers the solution of the spanning tree problem on the fan network.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"arXiv: Statistical Mechanics"},"translated_abstract":"The problem of the two-point resistance in various networks has recently received considerable attention. Here we consider the problem on a fan-resistor network, which is a segment of the cobweb network. Using a recently developed approach, we obtain the exact resistance between two arbitrary nodes on such a network. As a byproduct, the analysis also delivers the solution of the spanning tree problem on the fan network.","internal_url":"https://www.academia.edu/78033771/The_two_point_resistance_of_fan_networks","translated_internal_url":"","created_at":"2022-04-30T04:19:26.176-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85220218,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220218/thumbnails/1.jpg","file_name":"1401.4463v1.pdf","download_url":"https://www.academia.edu/attachments/85220218/download_file?st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_two_point_resistance_of_fan_networks.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220218/1401.4463v1-libre.pdf?1651318768=\u0026response-content-disposition=attachment%3B+filename%3DThe_two_point_resistance_of_fan_networks.pdf\u0026Expires=1732453281\u0026Signature=CZkreByZED7WO0tY3j-mep~GKyoljmidPWGX9H3c~fvCJj4j23E3YPFq1Tan294sq2HK6kgBclghHyclRSntDnRol92o604pJv7XBnRhcVlwbERpGtg6-DqkrU0nF42HPfuUcYuBlzA0DGrlewnFEtsMTSEdvxTiCSWgob8-KK91ms2eXlJPfinkMzRIpWyCCIAkAFzt9WWTF~eLnf6oAo39n0yHnQ7IP-uyLoYQviXWhgnj7xStFzwNFKsa11uRvzO~DYuua75ddmUgrd4b~yEpAmDBerX3UzGqdtPn0tRatPGC66jroXW-sbuPfispSiS9HovrYWQQ47C6tSu1cw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_two_point_resistance_of_fan_networks","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":85220218,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220218/thumbnails/1.jpg","file_name":"1401.4463v1.pdf","download_url":"https://www.academia.edu/attachments/85220218/download_file?st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_two_point_resistance_of_fan_networks.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220218/1401.4463v1-libre.pdf?1651318768=\u0026response-content-disposition=attachment%3B+filename%3DThe_two_point_resistance_of_fan_networks.pdf\u0026Expires=1732453281\u0026Signature=CZkreByZED7WO0tY3j-mep~GKyoljmidPWGX9H3c~fvCJj4j23E3YPFq1Tan294sq2HK6kgBclghHyclRSntDnRol92o604pJv7XBnRhcVlwbERpGtg6-DqkrU0nF42HPfuUcYuBlzA0DGrlewnFEtsMTSEdvxTiCSWgob8-KK91ms2eXlJPfinkMzRIpWyCCIAkAFzt9WWTF~eLnf6oAo39n0yHnQ7IP-uyLoYQviXWhgnj7xStFzwNFKsa11uRvzO~DYuua75ddmUgrd4b~yEpAmDBerX3UzGqdtPn0tRatPGC66jroXW-sbuPfispSiS9HovrYWQQ47C6tSu1cw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"}],"urls":[{"id":20060976,"url":"https://arxiv.org/pdf/1401.4463v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78033770"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78033770/Generalized_Ising_Model_on_a_Scale_Free_Network_An_Interplay_of_Power_Laws"><img alt="Research paper thumbnail of Generalized Ising Model on a Scale-Free Network: An Interplay of Power Laws" class="work-thumbnail" src="https://attachments.academia-assets.com/85220215/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78033770/Generalized_Ising_Model_on_a_Scale_Free_Network_An_Interplay_of_Power_Laws">Generalized Ising Model on a Scale-Free Network: An Interplay of Power Laws</a></div><div class="wp-workCard_item"><span>Entropy</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We consider a recently introduced generalization of the Ising model in which individual spin stre...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We consider a recently introduced generalization of the Ising model in which individual spin strength can vary. The model is intended for analysis of ordering in systems comprising agents which, although matching in their binarity (i.e., maintaining the iconic Ising features of ‘+’ or ‘−’, ‘up’ or ‘down’, ‘yes’ or ‘no’), differ in their strength. To investigate the interplay between variable properties of nodes and interactions between them, we study the model on a complex network where both the spin strength and degree distributions are governed by power laws. We show that in the annealed network approximation, thermodynamic functions of the model are self-averaging and we obtain an exact solution for the partition function. This allows us derive the leading temperature and field dependencies of thermodynamic functions, their critical behavior, and logarithmic corrections at the interface of different phases. We find the delicate interplay of the two power laws leads to new univers...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="622910e8149f909841c4efdbb1b5592f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85220215,"asset_id":78033770,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85220215/download_file?st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78033770"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78033770"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78033770; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78033770]").text(description); $(".js-view-count[data-work-id=78033770]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78033770; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78033770']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 78033770, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "622910e8149f909841c4efdbb1b5592f" } } $('.js-work-strip[data-work-id=78033770]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78033770,"title":"Generalized Ising Model on a Scale-Free Network: An Interplay of Power Laws","translated_title":"","metadata":{"abstract":"We consider a recently introduced generalization of the Ising model in which individual spin strength can vary. The model is intended for analysis of ordering in systems comprising agents which, although matching in their binarity (i.e., maintaining the iconic Ising features of ‘+’ or ‘−’, ‘up’ or ‘down’, ‘yes’ or ‘no’), differ in their strength. To investigate the interplay between variable properties of nodes and interactions between them, we study the model on a complex network where both the spin strength and degree distributions are governed by power laws. We show that in the annealed network approximation, thermodynamic functions of the model are self-averaging and we obtain an exact solution for the partition function. This allows us derive the leading temperature and field dependencies of thermodynamic functions, their critical behavior, and logarithmic corrections at the interface of different phases. We find the delicate interplay of the two power laws leads to new univers...","publisher":"MDPI AG","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Entropy"},"translated_abstract":"We consider a recently introduced generalization of the Ising model in which individual spin strength can vary. The model is intended for analysis of ordering in systems comprising agents which, although matching in their binarity (i.e., maintaining the iconic Ising features of ‘+’ or ‘−’, ‘up’ or ‘down’, ‘yes’ or ‘no’), differ in their strength. To investigate the interplay between variable properties of nodes and interactions between them, we study the model on a complex network where both the spin strength and degree distributions are governed by power laws. We show that in the annealed network approximation, thermodynamic functions of the model are self-averaging and we obtain an exact solution for the partition function. This allows us derive the leading temperature and field dependencies of thermodynamic functions, their critical behavior, and logarithmic corrections at the interface of different phases. We find the delicate interplay of the two power laws leads to new univers...","internal_url":"https://www.academia.edu/78033770/Generalized_Ising_Model_on_a_Scale_Free_Network_An_Interplay_of_Power_Laws","translated_internal_url":"","created_at":"2022-04-30T04:19:25.971-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85220215,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220215/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/85220215/download_file?st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Generalized_Ising_Model_on_a_Scale_Free.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220215/pdf-libre.pdf?1651318774=\u0026response-content-disposition=attachment%3B+filename%3DGeneralized_Ising_Model_on_a_Scale_Free.pdf\u0026Expires=1732453281\u0026Signature=ZkV5ot9IcqZd5A8XKxg3mYOTU3IpOQY2XeTysrHLjeEsC1xhDFRDRGw9CzsBVPIf8oa~ZP~bXt1ND-uAoLB450JdA-~EayywuczwGiquTb3DI4PbMd3qcFb036pzxvtBze9qQA5ntS8vazSxctdml0s7hSM4O~kZrWvKjHD8-n1jk8jmHiSHB8BHT9mfUSzJIjPPfcYaqcBbOjlI7OrPI~edl5t9ROdQpAkyOA9qXSiNP53SO4eOMqZUmZo6k-02tzVPQun0PWHG3q5efdQAX0KnDukUgxlijgnVT1UKItj5vzyX2k3-wcLtTGvrgh5kLoFPB8IlFVeXmauYWCtHcw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Generalized_Ising_Model_on_a_Scale_Free_Network_An_Interplay_of_Power_Laws","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":85220215,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220215/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/85220215/download_file?st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Generalized_Ising_Model_on_a_Scale_Free.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220215/pdf-libre.pdf?1651318774=\u0026response-content-disposition=attachment%3B+filename%3DGeneralized_Ising_Model_on_a_Scale_Free.pdf\u0026Expires=1732453281\u0026Signature=ZkV5ot9IcqZd5A8XKxg3mYOTU3IpOQY2XeTysrHLjeEsC1xhDFRDRGw9CzsBVPIf8oa~ZP~bXt1ND-uAoLB450JdA-~EayywuczwGiquTb3DI4PbMd3qcFb036pzxvtBze9qQA5ntS8vazSxctdml0s7hSM4O~kZrWvKjHD8-n1jk8jmHiSHB8BHT9mfUSzJIjPPfcYaqcBbOjlI7OrPI~edl5t9ROdQpAkyOA9qXSiNP53SO4eOMqZUmZo6k-02tzVPQun0PWHG3q5efdQAX0KnDukUgxlijgnVT1UKItj5vzyX2k3-wcLtTGvrgh5kLoFPB8IlFVeXmauYWCtHcw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":85220214,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220214/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/85220214/download_file","bulk_download_file_name":"Generalized_Ising_Model_on_a_Scale_Free.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220214/pdf-libre.pdf?1651318774=\u0026response-content-disposition=attachment%3B+filename%3DGeneralized_Ising_Model_on_a_Scale_Free.pdf\u0026Expires=1732453282\u0026Signature=IIbnKolTZI2ZTrrK6Dsyh0xKkR1HoNYLdle1JaCX6cP~fCjk2HgPsASRx5Re4q1NJmWKiAYU~CJhoxCkNj0uMPzBsprY6GbJVn1cg6wCUoVXV1w-rOPGlhUoyGQLo9Z8o5gChWLlxn2F7yMVZBpWG-lg2D8dc5yc-b9x2LbS34WvxCK1I6UQjjxs2VNxGd3AFjQkLRWhfYRBSXzEYKYmw7aOh7rOtSPtzxHJFeXcKw4y85vCYY8PbIC9gP8mEQCgmHeoMTU1uqZKYM23QCK3lKShAwYEt1xpOrfYeS7s9utthHWLfQmDcWbuDzSVl1uyHCDlqtGwia~kUMVwROAw-w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":36265,"name":"Entropy","url":"https://www.academia.edu/Documents/in/Entropy"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[{"id":20060975,"url":"https://www.mdpi.com/1099-4300/23/9/1175/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78033769"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78033769/Narrative_structure_ofA_Song_of_Ice_and_Firecreates_a_fictional_world_with_realistic_measures_of_social_complexity"><img alt="Research paper thumbnail of Narrative structure ofA Song of Ice and Firecreates a fictional world with realistic measures of social complexity" class="work-thumbnail" src="https://attachments.academia-assets.com/85220363/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78033769/Narrative_structure_ofA_Song_of_Ice_and_Firecreates_a_fictional_world_with_realistic_measures_of_social_complexity">Narrative structure ofA Song of Ice and Firecreates a fictional world with realistic measures of social complexity</a></div><div class="wp-workCard_item"><span>Proceedings of the National Academy of Sciences</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Network science and data analytics are used to quantify static and dynamic structures in George R...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Network science and data analytics are used to quantify static and dynamic structures in George R. R. Martin’s epic novels,A Song of Ice and Fire, works noted for their scale and complexity. By tracking the network of character interactions as the story unfolds, it is found that structural properties remain approximately stable and comparable to real-world social networks. Furthermore, the degrees of the most connected characters reflect a cognitive limit on the number of concurrent social connections that humans tend to maintain. We also analyze the distribution of time intervals between significant deaths measured with respect to the in-story timeline. These are consistent with power-law distributions commonly found in interevent times for a range of nonviolent human activities in the real world. We propose that structural features in the narrative that are reflected in our actual social world help readers to follow and to relate to the story, despite its sprawling extent. It is a...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8e27c96928e6839d5321cc784b14937b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85220363,"asset_id":78033769,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85220363/download_file?st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78033769"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78033769"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78033769; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78033769]").text(description); $(".js-view-count[data-work-id=78033769]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78033769; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78033769']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 78033769, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8e27c96928e6839d5321cc784b14937b" } } $('.js-work-strip[data-work-id=78033769]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78033769,"title":"Narrative structure ofA Song of Ice and Firecreates a fictional world with realistic measures of social complexity","translated_title":"","metadata":{"abstract":"Network science and data analytics are used to quantify static and dynamic structures in George R. R. Martin’s epic novels,A Song of Ice and Fire, works noted for their scale and complexity. By tracking the network of character interactions as the story unfolds, it is found that structural properties remain approximately stable and comparable to real-world social networks. Furthermore, the degrees of the most connected characters reflect a cognitive limit on the number of concurrent social connections that humans tend to maintain. We also analyze the distribution of time intervals between significant deaths measured with respect to the in-story timeline. These are consistent with power-law distributions commonly found in interevent times for a range of nonviolent human activities in the real world. We propose that structural features in the narrative that are reflected in our actual social world help readers to follow and to relate to the story, despite its sprawling extent. It is a...","publisher":"Proceedings of the National Academy of Sciences","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Proceedings of the National Academy of Sciences"},"translated_abstract":"Network science and data analytics are used to quantify static and dynamic structures in George R. R. Martin’s epic novels,A Song of Ice and Fire, works noted for their scale and complexity. By tracking the network of character interactions as the story unfolds, it is found that structural properties remain approximately stable and comparable to real-world social networks. Furthermore, the degrees of the most connected characters reflect a cognitive limit on the number of concurrent social connections that humans tend to maintain. We also analyze the distribution of time intervals between significant deaths measured with respect to the in-story timeline. These are consistent with power-law distributions commonly found in interevent times for a range of nonviolent human activities in the real world. We propose that structural features in the narrative that are reflected in our actual social world help readers to follow and to relate to the story, despite its sprawling extent. It is a...","internal_url":"https://www.academia.edu/78033769/Narrative_structure_ofA_Song_of_Ice_and_Firecreates_a_fictional_world_with_realistic_measures_of_social_complexity","translated_internal_url":"","created_at":"2022-04-30T04:19:25.774-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85220363,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220363/thumbnails/1.jpg","file_name":"2012.01783v1.pdf","download_url":"https://www.academia.edu/attachments/85220363/download_file?st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Narrative_structure_ofA_Song_of_Ice_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220363/2012.01783v1-libre.pdf?1651318769=\u0026response-content-disposition=attachment%3B+filename%3DNarrative_structure_ofA_Song_of_Ice_and.pdf\u0026Expires=1732453282\u0026Signature=BbbsMeNTrh10Wkql7YWRAf3MREy95NDDkY1sPM7YTwWiMZgPPWU7i01DaJ~ny9wHkxR3gYuSeh4yxccVs9wO5SNpMNsay7u4~Gv2SYeV3XajcUz9p5nvjUhD-p6mDXL~PLAZUwLNLsDjYcCVmjcyaZAP42SjABH-4Oa5fuA5siMHadcchNrYWUybr0LDS9lsTEmqPFc7D-Vr93zu2NRzdYaJoPA3PVJV-JrKCS~dHo9RJM2L5lDSJCjhT65PDe880yjolhCQ5JZbUiqtRMQzKZkKFglxFfdDAqlhtb5LmCqXtW~UX1n1-O1TlO9UErF0opB~yV82SSiq1f3u3bGGng__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Narrative_structure_ofA_Song_of_Ice_and_Firecreates_a_fictional_world_with_realistic_measures_of_social_complexity","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":85220363,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220363/thumbnails/1.jpg","file_name":"2012.01783v1.pdf","download_url":"https://www.academia.edu/attachments/85220363/download_file?st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Narrative_structure_ofA_Song_of_Ice_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220363/2012.01783v1-libre.pdf?1651318769=\u0026response-content-disposition=attachment%3B+filename%3DNarrative_structure_ofA_Song_of_Ice_and.pdf\u0026Expires=1732453282\u0026Signature=BbbsMeNTrh10Wkql7YWRAf3MREy95NDDkY1sPM7YTwWiMZgPPWU7i01DaJ~ny9wHkxR3gYuSeh4yxccVs9wO5SNpMNsay7u4~Gv2SYeV3XajcUz9p5nvjUhD-p6mDXL~PLAZUwLNLsDjYcCVmjcyaZAP42SjABH-4Oa5fuA5siMHadcchNrYWUybr0LDS9lsTEmqPFc7D-Vr93zu2NRzdYaJoPA3PVJV-JrKCS~dHo9RJM2L5lDSJCjhT65PDe880yjolhCQ5JZbUiqtRMQzKZkKFglxFfdDAqlhtb5LmCqXtW~UX1n1-O1TlO9UErF0opB~yV82SSiq1f3u3bGGng__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":128,"name":"History","url":"https://www.academia.edu/Documents/in/History"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":2068869,"name":"Academy of Sciences and Letters","url":"https://www.academia.edu/Documents/in/Academy_of_Sciences_and_Letters"}],"urls":[{"id":20060974,"url":"https://syndication.highwire.org/content/doi/10.1073/pnas.2006465117"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78033768"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78033768/Use_of_the_Complex_Zeros_of_the_Partition_Function_to_Investigate_the_Critical_Behavior_of_the_Generalized_Interacting_Self_Avoiding_Trail_Model"><img alt="Research paper thumbnail of Use of the Complex Zeros of the Partition Function to Investigate the Critical Behavior of the Generalized Interacting Self-Avoiding Trail Model" class="work-thumbnail" src="https://attachments.academia-assets.com/85220212/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78033768/Use_of_the_Complex_Zeros_of_the_Partition_Function_to_Investigate_the_Critical_Behavior_of_the_Generalized_Interacting_Self_Avoiding_Trail_Model">Use of the Complex Zeros of the Partition Function to Investigate the Critical Behavior of the Generalized Interacting Self-Avoiding Trail Model</a></div><div class="wp-workCard_item"><span>Entropy</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The complex zeros of the canonical (fixed walk-length) partition function are calculated for both...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The complex zeros of the canonical (fixed walk-length) partition function are calculated for both the self-avoiding trails model and the vertex-interacting self-avoiding walk model, both in bulk and in the presence of an attractive surface. The finite-size behavior of the zeros is used to estimate the location of phase transitions: the collapse transition in the bulk and the adsorption transition in the presence of a surface. The bulk and surface cross-over exponents, ϕ and ϕ S , are estimated from the scaling behavior of the leading partition function zeros.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bcda17b77e015702b545d10c177f4612" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85220212,"asset_id":78033768,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85220212/download_file?st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78033768"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78033768"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78033768; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78033768]").text(description); $(".js-view-count[data-work-id=78033768]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78033768; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78033768']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 78033768, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bcda17b77e015702b545d10c177f4612" } } $('.js-work-strip[data-work-id=78033768]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78033768,"title":"Use of the Complex Zeros of the Partition Function to Investigate the Critical Behavior of the Generalized Interacting Self-Avoiding Trail Model","translated_title":"","metadata":{"abstract":"The complex zeros of the canonical (fixed walk-length) partition function are calculated for both the self-avoiding trails model and the vertex-interacting self-avoiding walk model, both in bulk and in the presence of an attractive surface. The finite-size behavior of the zeros is used to estimate the location of phase transitions: the collapse transition in the bulk and the adsorption transition in the presence of a surface. The bulk and surface cross-over exponents, ϕ and ϕ S , are estimated from the scaling behavior of the leading partition function zeros.","publisher":"MDPI AG","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Entropy"},"translated_abstract":"The complex zeros of the canonical (fixed walk-length) partition function are calculated for both the self-avoiding trails model and the vertex-interacting self-avoiding walk model, both in bulk and in the presence of an attractive surface. The finite-size behavior of the zeros is used to estimate the location of phase transitions: the collapse transition in the bulk and the adsorption transition in the presence of a surface. The bulk and surface cross-over exponents, ϕ and ϕ S , are estimated from the scaling behavior of the leading partition function zeros.","internal_url":"https://www.academia.edu/78033768/Use_of_the_Complex_Zeros_of_the_Partition_Function_to_Investigate_the_Critical_Behavior_of_the_Generalized_Interacting_Self_Avoiding_Trail_Model","translated_internal_url":"","created_at":"2022-04-30T04:19:25.595-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85220212,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220212/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/85220212/download_file?st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Use_of_the_Complex_Zeros_of_the_Partitio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220212/pdf-libre.pdf?1651318771=\u0026response-content-disposition=attachment%3B+filename%3DUse_of_the_Complex_Zeros_of_the_Partitio.pdf\u0026Expires=1732453282\u0026Signature=M9dANs7yB5D6F4LYU2BPVAzP7sdNlYyGAYDXh3mZe1Z86vpoESz8lPK3LCDUuKHix-QcUXohWzM8fCgeU~AI1WydDSN7keYCohiTfA~4HMzx7mgBc-ieqWxmSCH3T4~zkRsPEX8ZNq6lvvxQQQ0WIu3bqTd4n3a40NlRpmZCWGB0bW4xidJ7yAKQwABdyxqIJNOF0IxkiH9eOR2YMy9XasHLpIzBRaPNktN9mzwDSTbRSNkI3~Ec~hsFjEgHDC5qbbxMsOMIknEdWOfD8O910XmKoWYlrPb~kLguvJCTofFZs1ByLJWjNzqnDmAG5zCvGaUBK4vxQ3mzRZ9pJXsjyA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Use_of_the_Complex_Zeros_of_the_Partition_Function_to_Investigate_the_Critical_Behavior_of_the_Generalized_Interacting_Self_Avoiding_Trail_Model","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":85220212,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220212/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/85220212/download_file?st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Use_of_the_Complex_Zeros_of_the_Partitio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220212/pdf-libre.pdf?1651318771=\u0026response-content-disposition=attachment%3B+filename%3DUse_of_the_Complex_Zeros_of_the_Partitio.pdf\u0026Expires=1732453282\u0026Signature=M9dANs7yB5D6F4LYU2BPVAzP7sdNlYyGAYDXh3mZe1Z86vpoESz8lPK3LCDUuKHix-QcUXohWzM8fCgeU~AI1WydDSN7keYCohiTfA~4HMzx7mgBc-ieqWxmSCH3T4~zkRsPEX8ZNq6lvvxQQQ0WIu3bqTd4n3a40NlRpmZCWGB0bW4xidJ7yAKQwABdyxqIJNOF0IxkiH9eOR2YMy9XasHLpIzBRaPNktN9mzwDSTbRSNkI3~Ec~hsFjEgHDC5qbbxMsOMIknEdWOfD8O910XmKoWYlrPb~kLguvJCTofFZs1ByLJWjNzqnDmAG5zCvGaUBK4vxQ3mzRZ9pJXsjyA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":85220213,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220213/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/85220213/download_file","bulk_download_file_name":"Use_of_the_Complex_Zeros_of_the_Partitio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220213/pdf-libre.pdf?1651318774=\u0026response-content-disposition=attachment%3B+filename%3DUse_of_the_Complex_Zeros_of_the_Partitio.pdf\u0026Expires=1732453282\u0026Signature=bUDQbL0hXFtDIhulYs6pzBPEYz8e2A92dUnb7KcpffdtAaRjTxa4jMNeFsGTH-NfOG4e-t71kpuZhCSt6G-7mGj6L4NzL7dDKV7O63x9bPy2fhGG3FS31jqvPGX8ozgwDt3IccVzwYDrmRBMa-DCfLvR-fEPD73~VozwGscV-6H9DbQc1-OjmYG1DRpqsTBLUNd2m2DxVA9bdr0wbtrHmAdJLAgtrXV5DUodSX5W~li6vpnGwO2xAz3mu14aEVPma36HfZBWr8sVslD0rwnd-18MbXKR4cdiCHxtqRAsrTobsLrT2ropT5i45njGCatBJRM6SdBF4Oh534mzDrqIQA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":36265,"name":"Entropy","url":"https://www.academia.edu/Documents/in/Entropy"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[{"id":20060973,"url":"http://www.mdpi.com/1099-4300/21/2/153/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78033767"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78033767/Universal_finite_size_scaling_for_percolation_theory_in_high_dimensions"><img alt="Research paper thumbnail of Universal finite-size scaling for percolation theory in high dimensions" class="work-thumbnail" src="https://attachments.academia-assets.com/85220366/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78033767/Universal_finite_size_scaling_for_percolation_theory_in_high_dimensions">Universal finite-size scaling for percolation theory in high dimensions</a></div><div class="wp-workCard_item"><span>Journal of Physics A: Mathematical and Theoretical</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="46ccf6bcd5382d677815f1d988d5ec68" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85220366,"asset_id":78033767,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85220366/download_file?st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78033767"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78033767"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78033767; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78033767]").text(description); $(".js-view-count[data-work-id=78033767]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78033767; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78033767']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 78033767, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "46ccf6bcd5382d677815f1d988d5ec68" } } $('.js-work-strip[data-work-id=78033767]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78033767,"title":"Universal finite-size scaling for percolation theory in high dimensions","translated_title":"","metadata":{"publisher":"IOP Publishing","grobid_abstract":"We present a unifying, consistent, finite-size-scaling picture for percolation theory bringing it into the framework of a general, renormalization-group-based, scaling scheme for systems above their upper critical dimensions d c. Behaviour at the critical point is non-universal in d \u003e d c = 6 dimensions. Proliferation of the largest clusters, with fractal dimension 4, is associated with the breakdown of hyperscaling there when free boundary conditions are used. But when the boundary conditions are periodic, the maximal clusters have dimension D = 2d/3, and obey random-graph asymptotics. Universality is instead manifest at the pseudocritical point, where the failure of hyperscaling in its traditional form is universally associated with random-graph-type asymptotics for critical cluster sizes, independent of boundary conditions.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Journal of Physics A: Mathematical and Theoretical","grobid_abstract_attachment_id":85220366},"translated_abstract":null,"internal_url":"https://www.academia.edu/78033767/Universal_finite_size_scaling_for_percolation_theory_in_high_dimensions","translated_internal_url":"","created_at":"2022-04-30T04:19:25.378-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85220366,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220366/thumbnails/1.jpg","file_name":"1606.00315.pdf","download_url":"https://www.academia.edu/attachments/85220366/download_file?st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Universal_finite_size_scaling_for_percol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220366/1606.00315-libre.pdf?1651318767=\u0026response-content-disposition=attachment%3B+filename%3DUniversal_finite_size_scaling_for_percol.pdf\u0026Expires=1732453282\u0026Signature=BtbFZRq4RekZ42DSwXwUDW0tjT3Kn0-I3YRyznKFfQ5LQc6-kK0Ep0gBP8ZvqqsU5XEtuWOernw8U6KK4WpWMDpT0iIBRD4SibaaQ710hain8YSybBKxT4OOiSG3vXmfxUNQppC4s0eZiOotP8FOuS5GEaUK6QA4qGIJybHp6h5ZIk78IGYvA6Fdvk2mG7FrvraD1SW26R5JtuvGxC-HJryOSMD4kwHACPZ2fKiu6ugxNbqOKaUrlVPMDQchLvLYGz1DsuwELzHA62N-bp5iZi6iBYqJxUgyntsF8WdUHQuJnHsLOmvoYm-Jj0Nu9oJJTYQZbgaPQ6oQ~GkNEzh-Hg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Universal_finite_size_scaling_for_percolation_theory_in_high_dimensions","translated_slug":"","page_count":27,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":85220366,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220366/thumbnails/1.jpg","file_name":"1606.00315.pdf","download_url":"https://www.academia.edu/attachments/85220366/download_file?st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Universal_finite_size_scaling_for_percol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220366/1606.00315-libre.pdf?1651318767=\u0026response-content-disposition=attachment%3B+filename%3DUniversal_finite_size_scaling_for_percol.pdf\u0026Expires=1732453282\u0026Signature=BtbFZRq4RekZ42DSwXwUDW0tjT3Kn0-I3YRyznKFfQ5LQc6-kK0Ep0gBP8ZvqqsU5XEtuWOernw8U6KK4WpWMDpT0iIBRD4SibaaQ710hain8YSybBKxT4OOiSG3vXmfxUNQppC4s0eZiOotP8FOuS5GEaUK6QA4qGIJybHp6h5ZIk78IGYvA6Fdvk2mG7FrvraD1SW26R5JtuvGxC-HJryOSMD4kwHACPZ2fKiu6ugxNbqOKaUrlVPMDQchLvLYGz1DsuwELzHA62N-bp5iZi6iBYqJxUgyntsF8WdUHQuJnHsLOmvoYm-Jj0Nu9oJJTYQZbgaPQ6oQ~GkNEzh-Hg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[{"id":20060972,"url":"http://stacks.iop.org/1751-8121/50/i=23/a=235001/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78033766"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78033766/Lee_Yang_zeroes_and_logarithmic_corrections_in_the_%CE%A644_theory"><img alt="Research paper thumbnail of Lee-Yang zeroes and logarithmic corrections in the Φ44 theory" class="work-thumbnail" src="https://attachments.academia-assets.com/85220357/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78033766/Lee_Yang_zeroes_and_logarithmic_corrections_in_the_%CE%A644_theory">Lee-Yang zeroes and logarithmic corrections in the Φ44 theory</a></div><div class="wp-workCard_item"><span>Nuclear Physics B - Proceedings Supplements</span><span>, 1993</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e6fcb546906f37aab18c29b22e8403a8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85220357,"asset_id":78033766,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85220357/download_file?st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78033766"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78033766"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78033766; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78033766]").text(description); $(".js-view-count[data-work-id=78033766]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78033766; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78033766']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 78033766, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e6fcb546906f37aab18c29b22e8403a8" } } $('.js-work-strip[data-work-id=78033766]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78033766,"title":"Lee-Yang zeroes and logarithmic corrections in the Φ44 theory","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":1993,"errors":{}},"publication_name":"Nuclear Physics B - Proceedings Supplements"},"translated_abstract":null,"internal_url":"https://www.academia.edu/78033766/Lee_Yang_zeroes_and_logarithmic_corrections_in_the_%CE%A644_theory","translated_internal_url":"","created_at":"2022-04-30T04:19:25.185-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85220357,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220357/thumbnails/1.jpg","file_name":"9210017.pdf","download_url":"https://www.academia.edu/attachments/85220357/download_file?st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lee_Yang_zeroes_and_logarithmic_correcti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220357/9210017-libre.pdf?1651318765=\u0026response-content-disposition=attachment%3B+filename%3DLee_Yang_zeroes_and_logarithmic_correcti.pdf\u0026Expires=1732453282\u0026Signature=fCHiGlOCK7-QAPIso9-msTpfQuGbvllBmvUaBaGD5CJw6SiWYSYDN~yi4gkbzF08Fcbl7iA-9lqZqyM2zOFNK1b3~uM8nxZ1Brh7EchYZAh-uxqmxgmkUA-7Q6DDRzCN1U~sr2or39eA9rLeyuGK86jsiM9neWHG3i7VZ01DQFZtiFo68-plB8qIUoFysXY9MdcG8rb6AJRLfUJL9qeOSxKGTycjPKZIDulZWJ5zMBvPEoCtGbA2GEmcsz4c7Gz5QzS~rqJVVemLpUxq2FngaxmYJmYnXZBsnyR14B3-agSQIQjIhr4ryXIe3F-0m-Giqlt1cPWOkbY1PnGXi5qp0A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Lee_Yang_zeroes_and_logarithmic_corrections_in_the_Φ44_theory","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":85220357,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220357/thumbnails/1.jpg","file_name":"9210017.pdf","download_url":"https://www.academia.edu/attachments/85220357/download_file?st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lee_Yang_zeroes_and_logarithmic_correcti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220357/9210017-libre.pdf?1651318765=\u0026response-content-disposition=attachment%3B+filename%3DLee_Yang_zeroes_and_logarithmic_correcti.pdf\u0026Expires=1732453282\u0026Signature=fCHiGlOCK7-QAPIso9-msTpfQuGbvllBmvUaBaGD5CJw6SiWYSYDN~yi4gkbzF08Fcbl7iA-9lqZqyM2zOFNK1b3~uM8nxZ1Brh7EchYZAh-uxqmxgmkUA-7Q6DDRzCN1U~sr2or39eA9rLeyuGK86jsiM9neWHG3i7VZ01DQFZtiFo68-plB8qIUoFysXY9MdcG8rb6AJRLfUJL9qeOSxKGTycjPKZIDulZWJ5zMBvPEoCtGbA2GEmcsz4c7Gz5QzS~rqJVVemLpUxq2FngaxmYJmYnXZBsnyR14B3-agSQIQjIhr4ryXIe3F-0m-Giqlt1cPWOkbY1PnGXi5qp0A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"},{"id":6974,"name":"Monte Carlo","url":"https://www.academia.edu/Documents/in/Monte_Carlo"},{"id":1130298,"name":"Critical Point","url":"https://www.academia.edu/Documents/in/Critical_Point"}],"urls":[{"id":20060971,"url":"http://api.elsevier.com/content/article/PII:092056329390305P?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78033765"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78033765/Partition_function_zeros_for_the_Ising_model_on_complete_graphs_and_on_annealed_scale_free_networks"><img alt="Research paper thumbnail of Partition function zeros for the Ising model on complete graphs and on annealed scale-free networks" class="work-thumbnail" src="https://attachments.academia-assets.com/85220362/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78033765/Partition_function_zeros_for_the_Ising_model_on_complete_graphs_and_on_annealed_scale_free_networks">Partition function zeros for the Ising model on complete graphs and on annealed scale-free networks</a></div><div class="wp-workCard_item"><span>Journal of Physics A: Mathematical and Theoretical</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="619224c2a6f221639f51887578a020f2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85220362,"asset_id":78033765,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85220362/download_file?st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78033765"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78033765"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78033765; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78033765]").text(description); $(".js-view-count[data-work-id=78033765]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78033765; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78033765']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 78033765, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "619224c2a6f221639f51887578a020f2" } } $('.js-work-strip[data-work-id=78033765]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78033765,"title":"Partition function zeros for the Ising model on complete graphs and on annealed scale-free networks","translated_title":"","metadata":{"publisher":"IOP Publishing","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Journal of Physics A: Mathematical and Theoretical"},"translated_abstract":null,"internal_url":"https://www.academia.edu/78033765/Partition_function_zeros_for_the_Ising_model_on_complete_graphs_and_on_annealed_scale_free_networks","translated_internal_url":"","created_at":"2022-04-30T04:19:24.977-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85220362,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220362/thumbnails/1.jpg","file_name":"1510.pdf","download_url":"https://www.academia.edu/attachments/85220362/download_file?st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Partition_function_zeros_for_the_Ising_m.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220362/1510-libre.pdf?1651318773=\u0026response-content-disposition=attachment%3B+filename%3DPartition_function_zeros_for_the_Ising_m.pdf\u0026Expires=1732453282\u0026Signature=hLwGi~hBeQAPVJmPtc0IrXmNVOcqIsQR2hfqnsdZQlCJlaio~em3wo9DQmuvo-Z9eiL-5ly0WciYQbGJ375Ubq9RA9RaL-REcFE8fxkWzjvnjftCB9O0qYCbh5gKIIot562xs36QRBoIUJMPL3sQDaxrpc57cQJydeFW4zM3823995F7J-4YFZF8r5XJpR8BFXpmNOPVhSYsVb9vBgsraYF3jTgZXjvkCespmupUSTHwCiU4mRrjfjwbUfqB9mHxWFNfVOlMsOitHXegvT2rMw~TsDWBtRrGl1kvnK4t0mdqZXH1~50eI-jpohRTsNGu1a6GGdMa8uJw368847pJOw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Partition_function_zeros_for_the_Ising_model_on_complete_graphs_and_on_annealed_scale_free_networks","translated_slug":"","page_count":36,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":85220362,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220362/thumbnails/1.jpg","file_name":"1510.pdf","download_url":"https://www.academia.edu/attachments/85220362/download_file?st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Partition_function_zeros_for_the_Ising_m.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220362/1510-libre.pdf?1651318773=\u0026response-content-disposition=attachment%3B+filename%3DPartition_function_zeros_for_the_Ising_m.pdf\u0026Expires=1732453282\u0026Signature=hLwGi~hBeQAPVJmPtc0IrXmNVOcqIsQR2hfqnsdZQlCJlaio~em3wo9DQmuvo-Z9eiL-5ly0WciYQbGJ375Ubq9RA9RaL-REcFE8fxkWzjvnjftCB9O0qYCbh5gKIIot562xs36QRBoIUJMPL3sQDaxrpc57cQJydeFW4zM3823995F7J-4YFZF8r5XJpR8BFXpmNOPVhSYsVb9vBgsraYF3jTgZXjvkCespmupUSTHwCiU4mRrjfjwbUfqB9mHxWFNfVOlMsOitHXegvT2rMw~TsDWBtRrGl1kvnK4t0mdqZXH1~50eI-jpohRTsNGu1a6GGdMa8uJw368847pJOw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":5436,"name":"Combinatorics","url":"https://www.academia.edu/Documents/in/Combinatorics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":114618,"name":"Ising Model","url":"https://www.academia.edu/Documents/in/Ising_Model"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[{"id":20060970,"url":"http://stacks.iop.org/1751-8121/49/i=13/a=135001/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78033764"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78033764/Cluster_Monte_Carlo_and_dynamical_scaling_for_long_range_interactions"><img alt="Research paper thumbnail of Cluster Monte Carlo and dynamical scaling for long-range interactions" class="work-thumbnail" src="https://attachments.academia-assets.com/85220359/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78033764/Cluster_Monte_Carlo_and_dynamical_scaling_for_long_range_interactions">Cluster Monte Carlo and dynamical scaling for long-range interactions</a></div><div class="wp-workCard_item"><span>The European Physical Journal Special Topics</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6f80a34dec42a3643c82ced6f24baf70" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85220359,"asset_id":78033764,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85220359/download_file?st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78033764"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78033764"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78033764; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78033764]").text(description); $(".js-view-count[data-work-id=78033764]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78033764; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78033764']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 78033764, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6f80a34dec42a3643c82ced6f24baf70" } } $('.js-work-strip[data-work-id=78033764]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78033764,"title":"Cluster Monte Carlo and dynamical scaling for long-range interactions","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"The European Physical Journal Special Topics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/78033764/Cluster_Monte_Carlo_and_dynamical_scaling_for_long_range_interactions","translated_internal_url":"","created_at":"2022-04-30T04:19:24.849-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85220359,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220359/thumbnails/1.jpg","file_name":"1611.pdf","download_url":"https://www.academia.edu/attachments/85220359/download_file?st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cluster_Monte_Carlo_and_dynamical_scalin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220359/1611-libre.pdf?1651318768=\u0026response-content-disposition=attachment%3B+filename%3DCluster_Monte_Carlo_and_dynamical_scalin.pdf\u0026Expires=1732453282\u0026Signature=ayjrFZcHyp4KFSWNL3KQZFT7WdsSIqsBGkzTNAs9rfV0dHMCvgDR5gclNV2CSghTLvIbddWaG~sD3C7tFHfNqZQ464dmFOh-SzxZCIPbTRuBVEW3e3UwC5lAs8dXVBzvJit2yUjTozlAn53~flg14imjzU0kkV6LuWaMvXA45edPnr~3YIVcEF3K~v0B6EXSED4TiSMVWkr8tyaGxzU1WWSfOu0wTGIW8niAidc1jzLG-dTx4u4VkJ~TiFDVvQJQ9zy6IChoqUd-ePMkFtjVbbGPThuFX1jN1vcUof-e67ooxcaZDUIvEHm3aOOZtw3dqDLhQR06ng7lA4ejCxq8IA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cluster_Monte_Carlo_and_dynamical_scaling_for_long_range_interactions","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":85220359,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220359/thumbnails/1.jpg","file_name":"1611.pdf","download_url":"https://www.academia.edu/attachments/85220359/download_file?st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cluster_Monte_Carlo_and_dynamical_scalin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220359/1611-libre.pdf?1651318768=\u0026response-content-disposition=attachment%3B+filename%3DCluster_Monte_Carlo_and_dynamical_scalin.pdf\u0026Expires=1732453282\u0026Signature=ayjrFZcHyp4KFSWNL3KQZFT7WdsSIqsBGkzTNAs9rfV0dHMCvgDR5gclNV2CSghTLvIbddWaG~sD3C7tFHfNqZQ464dmFOh-SzxZCIPbTRuBVEW3e3UwC5lAs8dXVBzvJit2yUjTozlAn53~flg14imjzU0kkV6LuWaMvXA45edPnr~3YIVcEF3K~v0B6EXSED4TiSMVWkr8tyaGxzU1WWSfOu0wTGIW8niAidc1jzLG-dTx4u4VkJ~TiFDVvQJQ9zy6IChoqUd-ePMkFtjVbbGPThuFX1jN1vcUof-e67ooxcaZDUIvEHm3aOOZtw3dqDLhQR06ng7lA4ejCxq8IA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78033763"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78033763/Comparison_of_methods_to_determine_point_to_point_resistance_in_nearly_rectangular_networks_with_application_to_a_hammock_network"><img alt="Research paper thumbnail of Comparison of methods to determine point-to-point resistance in nearly rectangular networks with application to a 'hammock' network" class="work-thumbnail" src="https://attachments.academia-assets.com/85220358/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78033763/Comparison_of_methods_to_determine_point_to_point_resistance_in_nearly_rectangular_networks_with_application_to_a_hammock_network">Comparison of methods to determine point-to-point resistance in nearly rectangular networks with application to a 'hammock' network</a></div><div class="wp-workCard_item"><span>Royal Society open science</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Considerable progress has recently been made in the development of techniques to exactly determin...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Considerable progress has recently been made in the development of techniques to exactly determine two-point resistances in networks of various topologies. In particular, two types of method have emerged. One is based on potentials and the evaluation of eigenvalues and eigenvectors of the Laplacian matrix associated with the network or its minors. The second method is based on a recurrence relation associated with the distribution of currents in the network. Here, these methods are compared and used to determine the resistance distances between any two nodes of a network with topology of a hammock.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="db42f63eb4287c4bc2dd644466233c9f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85220358,"asset_id":78033763,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85220358/download_file?st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78033763"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78033763"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78033763; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78033763]").text(description); $(".js-view-count[data-work-id=78033763]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78033763; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78033763']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 78033763, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "db42f63eb4287c4bc2dd644466233c9f" } } $('.js-work-strip[data-work-id=78033763]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78033763,"title":"Comparison of methods to determine point-to-point resistance in nearly rectangular networks with application to a 'hammock' network","translated_title":"","metadata":{"abstract":"Considerable progress has recently been made in the development of techniques to exactly determine two-point resistances in networks of various topologies. In particular, two types of method have emerged. One is based on potentials and the evaluation of eigenvalues and eigenvectors of the Laplacian matrix associated with the network or its minors. The second method is based on a recurrence relation associated with the distribution of currents in the network. Here, these methods are compared and used to determine the resistance distances between any two nodes of a network with topology of a hammock.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Royal Society open science"},"translated_abstract":"Considerable progress has recently been made in the development of techniques to exactly determine two-point resistances in networks of various topologies. In particular, two types of method have emerged. One is based on potentials and the evaluation of eigenvalues and eigenvectors of the Laplacian matrix associated with the network or its minors. The second method is based on a recurrence relation associated with the distribution of currents in the network. Here, these methods are compared and used to determine the resistance distances between any two nodes of a network with topology of a hammock.","internal_url":"https://www.academia.edu/78033763/Comparison_of_methods_to_determine_point_to_point_resistance_in_nearly_rectangular_networks_with_application_to_a_hammock_network","translated_internal_url":"","created_at":"2022-04-30T04:19:24.709-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85220358,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220358/thumbnails/1.jpg","file_name":"1411.pdf","download_url":"https://www.academia.edu/attachments/85220358/download_file?st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comparison_of_methods_to_determine_point.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220358/1411-libre.pdf?1651318769=\u0026response-content-disposition=attachment%3B+filename%3DComparison_of_methods_to_determine_point.pdf\u0026Expires=1732453282\u0026Signature=dJ90oA5OYA4vuTVa0VughoR5tbhvLU9XWokrQwS9khJU9vr4~zhRS1MY6EW9nPQXyzvopYPx8taKmUB9Dm6v20dYQyWsumVrpZS1ehVeJ16I0emZrErHb0YhNvYxokj~yF-XoPhFhQQpHWgsA1xnLzboBFRRP26Kod3zPk2TKuGcq7tcwGaNknLzhbCYyfFhNGlNXmzNr2WQ2r1eaB9boF1mrZvtZ956wgofENw4DMfQNXUk3Szql1lQLuy-bYUVjgqGcQNvrzTd9I1ZX9cOwuLpIV5Vsns9foyVQpU1dS0vX-YnT9U~3Jce-mHGdhKTcWQkGeo8L~VvRXtg4vNscA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Comparison_of_methods_to_determine_point_to_point_resistance_in_nearly_rectangular_networks_with_application_to_a_hammock_network","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":85220358,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220358/thumbnails/1.jpg","file_name":"1411.pdf","download_url":"https://www.academia.edu/attachments/85220358/download_file?st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comparison_of_methods_to_determine_point.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220358/1411-libre.pdf?1651318769=\u0026response-content-disposition=attachment%3B+filename%3DComparison_of_methods_to_determine_point.pdf\u0026Expires=1732453282\u0026Signature=dJ90oA5OYA4vuTVa0VughoR5tbhvLU9XWokrQwS9khJU9vr4~zhRS1MY6EW9nPQXyzvopYPx8taKmUB9Dm6v20dYQyWsumVrpZS1ehVeJ16I0emZrErHb0YhNvYxokj~yF-XoPhFhQQpHWgsA1xnLzboBFRRP26Kod3zPk2TKuGcq7tcwGaNknLzhbCYyfFhNGlNXmzNr2WQ2r1eaB9boF1mrZvtZ956wgofENw4DMfQNXUk3Szql1lQLuy-bYUVjgqGcQNvrzTd9I1ZX9cOwuLpIV5Vsns9foyVQpU1dS0vX-YnT9U~3Jce-mHGdhKTcWQkGeo8L~VvRXtg4vNscA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":96098,"name":"Resistance","url":"https://www.academia.edu/Documents/in/Resistance"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78033762"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78033762/On_the_Phase_Diagram_of_the_2d_Ising_Model_with_Frustrating_Dipole_Interaction"><img alt="Research paper thumbnail of On the Phase Diagram of the 2d Ising Model with Frustrating Dipole Interaction" class="work-thumbnail" src="https://attachments.academia-assets.com/85220355/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78033762/On_the_Phase_Diagram_of_the_2d_Ising_Model_with_Frustrating_Dipole_Interaction">On the Phase Diagram of the 2d Ising Model with Frustrating Dipole Interaction</a></div><div class="wp-workCard_item"><span>Ukrainian Journal of Physics</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="046ebfed52511ca72904acd6935a9dde" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85220355,"asset_id":78033762,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85220355/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78033762"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78033762"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78033762; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78033762]").text(description); $(".js-view-count[data-work-id=78033762]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78033762; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78033762']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 78033762, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "046ebfed52511ca72904acd6935a9dde" } } $('.js-work-strip[data-work-id=78033762]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78033762,"title":"On the Phase Diagram of the 2d Ising Model with Frustrating Dipole Interaction","translated_title":"","metadata":{"publisher":"Co. Ltd. Ukrinformnauka","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Ukrainian Journal of Physics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/78033762/On_the_Phase_Diagram_of_the_2d_Ising_Model_with_Frustrating_Dipole_Interaction","translated_internal_url":"","created_at":"2022-04-30T04:19:24.580-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85220355,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220355/thumbnails/1.jpg","file_name":"1402.pdf","download_url":"https://www.academia.edu/attachments/85220355/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Phase_Diagram_of_the_2d_Ising_Mod.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220355/1402-libre.pdf?1651318766=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Phase_Diagram_of_the_2d_Ising_Mod.pdf\u0026Expires=1732453283\u0026Signature=OpE9j8Dcu1V~EGqHBjTigGnVnbtSM7heWsLHynivtMl0h2uiKfh8sRXd7wIXrLH8FDkDfEG0lbWAI~uF2KvLvgp3y4if4K3IsBCFTc6Bu57RGBUuShgTZcIVOpYTNv81yL55MvXLK~~0rgVcoPGsF-kzxzzZiPLeqRNWYcP7o9WPnnSxqQfJHN--NnnkjJdAe~wwBJey0UhZmfH3N2JfvhkDV4m2-hPVaac3P-lp0QKd68FHMszlc~DHrXku9v3s-qwMT6Yu6jCCU4zOPdT5uIL9ctBeohouX7ZPgQizhBknX0rIcKUzi8dJHBJtIu9J8IRbqnz~e8t8pfrpRDQgpA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_Phase_Diagram_of_the_2d_Ising_Model_with_Frustrating_Dipole_Interaction","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":85220355,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220355/thumbnails/1.jpg","file_name":"1402.pdf","download_url":"https://www.academia.edu/attachments/85220355/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Phase_Diagram_of_the_2d_Ising_Mod.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220355/1402-libre.pdf?1651318766=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Phase_Diagram_of_the_2d_Ising_Mod.pdf\u0026Expires=1732453283\u0026Signature=OpE9j8Dcu1V~EGqHBjTigGnVnbtSM7heWsLHynivtMl0h2uiKfh8sRXd7wIXrLH8FDkDfEG0lbWAI~uF2KvLvgp3y4if4K3IsBCFTc6Bu57RGBUuShgTZcIVOpYTNv81yL55MvXLK~~0rgVcoPGsF-kzxzzZiPLeqRNWYcP7o9WPnnSxqQfJHN--NnnkjJdAe~wwBJey0UhZmfH3N2JfvhkDV4m2-hPVaac3P-lp0QKd68FHMszlc~DHrXku9v3s-qwMT6Yu6jCCU4zOPdT5uIL9ctBeohouX7ZPgQizhBknX0rIcKUzi8dJHBJtIu9J8IRbqnz~e8t8pfrpRDQgpA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="6274563" id="papers"><div class="js-work-strip profile--work_container" data-work-id="104605612"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104605612/Violation_of_Lee_Yang_circle_theorem_for_Ising_phase_transitions_on_complex_networks"><img alt="Research paper thumbnail of Violation of Lee-Yang circle theorem for Ising phase transitions on complex networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104605612/Violation_of_Lee_Yang_circle_theorem_for_Ising_phase_transitions_on_complex_networks">Violation of Lee-Yang circle theorem for Ising phase transitions on complex networks</a></div><div class="wp-workCard_item"><span>EPL (Europhysics Letters)</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104605612"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104605612"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104605612; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104605612]").text(description); $(".js-view-count[data-work-id=104605612]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104605612; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104605612']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 104605612, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=104605612]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104605612,"title":"Violation of Lee-Yang circle theorem for Ising phase transitions on complex networks","translated_title":"","metadata":{"publisher":"IOP Publishing","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"EPL (Europhysics Letters)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/104605612/Violation_of_Lee_Yang_circle_theorem_for_Ising_phase_transitions_on_complex_networks","translated_internal_url":"","created_at":"2023-07-15T20:32:40.488-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Violation_of_Lee_Yang_circle_theorem_for_Ising_phase_transitions_on_complex_networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":114618,"name":"Ising Model","url":"https://www.academia.edu/Documents/in/Ising_Model"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":148392,"name":"EPL","url":"https://www.academia.edu/Documents/in/EPL"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":238230,"name":"Scaling","url":"https://www.academia.edu/Documents/in/Scaling"},{"id":3785923,"name":"Lambda","url":"https://www.academia.edu/Documents/in/Lambda"}],"urls":[{"id":32908862,"url":"https://iopscience.iop.org/article/10.1209/0295-5075/111/60009/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104605611"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104605611/Fishers_scaling_relation_above_the_upper_critical_dimension"><img alt="Research paper thumbnail of Fisher's scaling relation above the upper critical dimension" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104605611/Fishers_scaling_relation_above_the_upper_critical_dimension">Fisher's scaling relation above the upper critical dimension</a></div><div class="wp-workCard_item"><span>EPL (Europhysics Letters)</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104605611"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104605611"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104605611; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104605611]").text(description); $(".js-view-count[data-work-id=104605611]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104605611; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104605611']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 104605611, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=104605611]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104605611,"title":"Fisher's scaling relation above the upper critical dimension","translated_title":"","metadata":{"publisher":"IOP Publishing","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"EPL (Europhysics Letters)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/104605611/Fishers_scaling_relation_above_the_upper_critical_dimension","translated_internal_url":"","created_at":"2023-07-15T20:32:40.239-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Fishers_scaling_relation_above_the_upper_critical_dimension","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":148392,"name":"EPL","url":"https://www.academia.edu/Documents/in/EPL"},{"id":238230,"name":"Scaling","url":"https://www.academia.edu/Documents/in/Scaling"},{"id":3292545,"name":"Logarithm","url":"https://www.academia.edu/Documents/in/Logarithm"}],"urls":[{"id":32908861,"url":"https://iopscience.iop.org/article/10.1209/0295-5075/105/26005/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104605609"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104605609/Site_diluted_Ising_model_in_four_dimensions"><img alt="Research paper thumbnail of Site-diluted Ising model in four dimensions" class="work-thumbnail" src="https://attachments.academia-assets.com/104290183/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104605609/Site_diluted_Ising_model_in_four_dimensions">Site-diluted Ising model in four dimensions</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7e58229d83478198576e4a34b8bedd5d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104290183,"asset_id":104605609,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104290183/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104605609"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104605609"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104605609; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104605609]").text(description); $(".js-view-count[data-work-id=104605609]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104605609; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104605609']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 104605609, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7e58229d83478198576e4a34b8bedd5d" } } $('.js-work-strip[data-work-id=104605609]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104605609,"title":"Site-diluted Ising model in four dimensions","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Physical Review E"},"translated_abstract":null,"internal_url":"https://www.academia.edu/104605609/Site_diluted_Ising_model_in_four_dimensions","translated_internal_url":"","created_at":"2023-07-15T20:32:26.861-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":104290183,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104290183/thumbnails/1.jpg","file_name":"0908.pdf","download_url":"https://www.academia.edu/attachments/104290183/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Site_diluted_Ising_model_in_four_dimensi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104290183/0908-libre.pdf?1689481939=\u0026response-content-disposition=attachment%3B+filename%3DSite_diluted_Ising_model_in_four_dimensi.pdf\u0026Expires=1732453280\u0026Signature=Dn1DiSJaqSrrEtTlurw7oDMkEKu9IqT5h8NOJR4IxkBigreln7UmZHlCyocvTNb1e-oz7hD7y7ylq-x48ZMlvS6a9kkBwTz7Qm~OSZwP6NQUSIVw-Y5T-H-07MmO0fSHS4b3TPczv3yJPyAKUu2M8TIAH23yqDqPrUKKj-HXwom-WazoIpzmWbpxjPnWSzsYxFq9LFkyDa75et~rKzAxua0LakDLwiLP0IdMo6VhSwDs2Wpw4bznDlaLs5~PpdN2pEC06LYZ1ENqPQ-u5SqOOVmoQlVLjzhePSjYcSOwevI3aqgaIU1DSb7zKb1EDl6eUYNy6SP0DwBII3eFi7KuUw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Site_diluted_Ising_model_in_four_dimensions","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":104290183,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104290183/thumbnails/1.jpg","file_name":"0908.pdf","download_url":"https://www.academia.edu/attachments/104290183/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Site_diluted_Ising_model_in_four_dimensi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104290183/0908-libre.pdf?1689481939=\u0026response-content-disposition=attachment%3B+filename%3DSite_diluted_Ising_model_in_four_dimensi.pdf\u0026Expires=1732453280\u0026Signature=Dn1DiSJaqSrrEtTlurw7oDMkEKu9IqT5h8NOJR4IxkBigreln7UmZHlCyocvTNb1e-oz7hD7y7ylq-x48ZMlvS6a9kkBwTz7Qm~OSZwP6NQUSIVw-Y5T-H-07MmO0fSHS4b3TPczv3yJPyAKUu2M8TIAH23yqDqPrUKKj-HXwom-WazoIpzmWbpxjPnWSzsYxFq9LFkyDa75et~rKzAxua0LakDLwiLP0IdMo6VhSwDs2Wpw4bznDlaLs5~PpdN2pEC06LYZ1ENqPQ-u5SqOOVmoQlVLjzhePSjYcSOwevI3aqgaIU1DSb7zKb1EDl6eUYNy6SP0DwBII3eFi7KuUw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":963,"name":"Lattice Theory","url":"https://www.academia.edu/Documents/in/Lattice_Theory"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":114618,"name":"Ising Model","url":"https://www.academia.edu/Documents/in/Ising_Model"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":238230,"name":"Scaling","url":"https://www.academia.edu/Documents/in/Scaling"},{"id":434746,"name":"Model System","url":"https://www.academia.edu/Documents/in/Model_System"},{"id":996079,"name":"Four Dimensions","url":"https://www.academia.edu/Documents/in/Four_Dimensions"},{"id":1130298,"name":"Critical Point","url":"https://www.academia.edu/Documents/in/Critical_Point"},{"id":3292545,"name":"Logarithm","url":"https://www.academia.edu/Documents/in/Logarithm"}],"urls":[{"id":32908859,"url":"http://link.aps.org/article/10.1103/PhysRevE.80.031135"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104605608"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104605608/Scaling_behavior_of_the_Heisenberg_model_in_three_dimensions"><img alt="Research paper thumbnail of Scaling behavior of the Heisenberg model in three dimensions" class="work-thumbnail" src="https://attachments.academia-assets.com/104290182/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104605608/Scaling_behavior_of_the_Heisenberg_model_in_three_dimensions">Scaling behavior of the Heisenberg model in three dimensions</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="65dac301003177463d788cc2eabd89c8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104290182,"asset_id":104605608,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104290182/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104605608"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104605608"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104605608; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104605608]").text(description); $(".js-view-count[data-work-id=104605608]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104605608; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104605608']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 104605608, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "65dac301003177463d788cc2eabd89c8" } } $('.js-work-strip[data-work-id=104605608]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104605608,"title":"Scaling behavior of the Heisenberg model in three dimensions","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Physical Review E"},"translated_abstract":null,"internal_url":"https://www.academia.edu/104605608/Scaling_behavior_of_the_Heisenberg_model_in_three_dimensions","translated_internal_url":"","created_at":"2023-07-15T20:32:26.609-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":104290182,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104290182/thumbnails/1.jpg","file_name":"1307.pdf","download_url":"https://www.academia.edu/attachments/104290182/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Scaling_behavior_of_the_Heisenberg_model.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104290182/1307-libre.pdf?1689481943=\u0026response-content-disposition=attachment%3B+filename%3DScaling_behavior_of_the_Heisenberg_model.pdf\u0026Expires=1732453281\u0026Signature=UYVruUPmqrCJYRQPlfAKe~LDfR~OPOrt7HWh-4BGM2Ti5BEge0CEYl25JDLA9HoKXThCSRd3JEQa78bbWNimuDLcn5ceugD4l3EA5zovM8yuxuzgmLjPRWOTExu7dFYcppMi9KlskPifZ-O440sZqpYPYEzvWiDJOvM1t8RJJOcvXbqQFU1z2RLQTI0oSijicHZfDbAjZKDZF3wePIvflZelCpkK9nqu1IudIGVx0AMHRF1bvdWUj9okBjT46nRiVgT4CuAGAWuShQ8Q4tEopB4i9J8EocCToCVnZQiN5MUGsiqGPDPQlwe5WssSeGAkSWNkjyYgRia9v1mvjxebkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Scaling_behavior_of_the_Heisenberg_model_in_three_dimensions","translated_slug":"","page_count":20,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":104290182,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104290182/thumbnails/1.jpg","file_name":"1307.pdf","download_url":"https://www.academia.edu/attachments/104290182/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Scaling_behavior_of_the_Heisenberg_model.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104290182/1307-libre.pdf?1689481943=\u0026response-content-disposition=attachment%3B+filename%3DScaling_behavior_of_the_Heisenberg_model.pdf\u0026Expires=1732453281\u0026Signature=UYVruUPmqrCJYRQPlfAKe~LDfR~OPOrt7HWh-4BGM2Ti5BEge0CEYl25JDLA9HoKXThCSRd3JEQa78bbWNimuDLcn5ceugD4l3EA5zovM8yuxuzgmLjPRWOTExu7dFYcppMi9KlskPifZ-O440sZqpYPYEzvWiDJOvM1t8RJJOcvXbqQFU1z2RLQTI0oSijicHZfDbAjZKDZF3wePIvflZelCpkK9nqu1IudIGVx0AMHRF1bvdWUj9okBjT46nRiVgT4CuAGAWuShQ8Q4tEopB4i9J8EocCToCVnZQiN5MUGsiqGPDPQlwe5WssSeGAkSWNkjyYgRia9v1mvjxebkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":238230,"name":"Scaling","url":"https://www.academia.edu/Documents/in/Scaling"},{"id":343667,"name":"Theoretical Models","url":"https://www.academia.edu/Documents/in/Theoretical_Models"},{"id":1333436,"name":"Monte Carlo Method","url":"https://www.academia.edu/Documents/in/Monte_Carlo_Method"},{"id":2220619,"name":"HEISENBERG-MODEL","url":"https://www.academia.edu/Documents/in/HEISENBERG-MODEL"}],"urls":[{"id":32908858,"url":"http://link.aps.org/article/10.1103/PhysRevE.88.062117"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104605607"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104605607/Scaling_analysis_of_the_site_diluted_Ising_model_in_two_dimensions"><img alt="Research paper thumbnail of Scaling analysis of the site-diluted Ising model in two dimensions" class="work-thumbnail" src="https://attachments.academia-assets.com/104290180/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104605607/Scaling_analysis_of_the_site_diluted_Ising_model_in_two_dimensions">Scaling analysis of the site-diluted Ising model in two dimensions</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ff739a24409fb65613d4558f1cc79f81" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104290180,"asset_id":104605607,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104290180/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104605607"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104605607"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104605607; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104605607]").text(description); $(".js-view-count[data-work-id=104605607]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104605607; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104605607']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 104605607, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ff739a24409fb65613d4558f1cc79f81" } } $('.js-work-strip[data-work-id=104605607]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104605607,"title":"Scaling analysis of the site-diluted Ising model in two dimensions","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Physical Review E"},"translated_abstract":null,"internal_url":"https://www.academia.edu/104605607/Scaling_analysis_of_the_site_diluted_Ising_model_in_two_dimensions","translated_internal_url":"","created_at":"2023-07-15T20:32:26.367-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":104290180,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104290180/thumbnails/1.jpg","file_name":"0807.pdf","download_url":"https://www.academia.edu/attachments/104290180/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Scaling_analysis_of_the_site_diluted_Isi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104290180/0807-libre.pdf?1689481938=\u0026response-content-disposition=attachment%3B+filename%3DScaling_analysis_of_the_site_diluted_Isi.pdf\u0026Expires=1732453281\u0026Signature=WdwRtycD7~MyMbzJXXSB5sRnGNWkpmcuqBx9~IWZ~d4n2V0qIYXeGe55-7Bap~GwrVnNGuXc2x4mIzlaOLPJmsehCuZ~2moa6QZqoRy17Bfdadc5iAEG1mDrd9EinsLFberMqG~pnEmkl4wEiy1DMF0IyMP12DMTlsHqNYuYQqZzvclvU1DaKyV2DgRuMletERpsxSJ-JGdO6RXGFdfkxle1hv1TPdo0ESq~8mYyOQPz~LMzxnrYveVE6M8wZX57fhunn3kEB8uQrV4xMErtjPYRAKCY7cIYUOxny4TB7ixCntLjy45WrQSuiPcK1XRUDJZO8wkPMJfuT2qxOL0X9A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Scaling_analysis_of_the_site_diluted_Ising_model_in_two_dimensions","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":104290180,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104290180/thumbnails/1.jpg","file_name":"0807.pdf","download_url":"https://www.academia.edu/attachments/104290180/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Scaling_analysis_of_the_site_diluted_Isi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104290180/0807-libre.pdf?1689481938=\u0026response-content-disposition=attachment%3B+filename%3DScaling_analysis_of_the_site_diluted_Isi.pdf\u0026Expires=1732453281\u0026Signature=WdwRtycD7~MyMbzJXXSB5sRnGNWkpmcuqBx9~IWZ~d4n2V0qIYXeGe55-7Bap~GwrVnNGuXc2x4mIzlaOLPJmsehCuZ~2moa6QZqoRy17Bfdadc5iAEG1mDrd9EinsLFberMqG~pnEmkl4wEiy1DMF0IyMP12DMTlsHqNYuYQqZzvclvU1DaKyV2DgRuMletERpsxSJ-JGdO6RXGFdfkxle1hv1TPdo0ESq~8mYyOQPz~LMzxnrYveVE6M8wZX57fhunn3kEB8uQrV4xMErtjPYRAKCY7cIYUOxny4TB7ixCntLjy45WrQSuiPcK1XRUDJZO8wkPMJfuT2qxOL0X9A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":963,"name":"Lattice Theory","url":"https://www.academia.edu/Documents/in/Lattice_Theory"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":114618,"name":"Ising Model","url":"https://www.academia.edu/Documents/in/Ising_Model"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":238230,"name":"Scaling","url":"https://www.academia.edu/Documents/in/Scaling"},{"id":827572,"name":"Specific Heat","url":"https://www.academia.edu/Documents/in/Specific_Heat"},{"id":970277,"name":"Two Dimensions","url":"https://www.academia.edu/Documents/in/Two_Dimensions"},{"id":1130298,"name":"Critical Point","url":"https://www.academia.edu/Documents/in/Critical_Point"},{"id":3292545,"name":"Logarithm","url":"https://www.academia.edu/Documents/in/Logarithm"}],"urls":[{"id":32908857,"url":"http://link.aps.org/article/10.1103/PhysRevE.78.031134"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104605606"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104605606/Universal_amplitude_ratios_in_the_Ising_model_in_three_dimensions"><img alt="Research paper thumbnail of Universal amplitude ratios in the Ising model in three dimensions" class="work-thumbnail" src="https://attachments.academia-assets.com/104290181/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104605606/Universal_amplitude_ratios_in_the_Ising_model_in_three_dimensions">Universal amplitude ratios in the Ising model in three dimensions</a></div><div class="wp-workCard_item"><span>Journal of Statistical Mechanics: Theory and Experiment</span><span>, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f3e864cf0ceb27272c51e2743c596474" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104290181,"asset_id":104605606,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104290181/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104605606"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104605606"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104605606; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104605606]").text(description); $(".js-view-count[data-work-id=104605606]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104605606; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104605606']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 104605606, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f3e864cf0ceb27272c51e2743c596474" } } $('.js-work-strip[data-work-id=104605606]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104605606,"title":"Universal amplitude ratios in the Ising model in three dimensions","translated_title":"","metadata":{"publisher":"IOP Publishing","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Journal of Statistical Mechanics: Theory and Experiment"},"translated_abstract":null,"internal_url":"https://www.academia.edu/104605606/Universal_amplitude_ratios_in_the_Ising_model_in_three_dimensions","translated_internal_url":"","created_at":"2023-07-15T20:32:26.181-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":104290181,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104290181/thumbnails/1.jpg","file_name":"1107.pdf","download_url":"https://www.academia.edu/attachments/104290181/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Universal_amplitude_ratios_in_the_Ising.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104290181/1107-libre.pdf?1689481979=\u0026response-content-disposition=attachment%3B+filename%3DUniversal_amplitude_ratios_in_the_Ising.pdf\u0026Expires=1732453281\u0026Signature=W4f-nx7qR1ZvfrlWylk-NjtdQ6YUQKZYPD0qynu-OZr9HVfjmAZ3oAgRaRc-kVMyUjGc6KDrAF62J4Oak8WtRXB6tFev8rIxYjlSFX9pFGEsVkhi2zB~E9KGjnhRsqUFr5jE9~o5wotOAJDO0~0bVwN~H8fnfLKHc9DPwUmMXvBRZ8FmjBcSdOnXGUHcO5VKDOtT8Tabtyxb9RZc~nRckk~qHlQ-1wi-2~3JLvN1CTzSi-uEaqvTieR~Dd4SKuybDzYR1KNLoe6lChASrssuLepes3hzsg3UO3O3DCcxVFKYX9GlR9fdWmpF5hQlo1cabLIO4hpTvVKY2g4nvnhyiw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Universal_amplitude_ratios_in_the_Ising_model_in_three_dimensions","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":104290181,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104290181/thumbnails/1.jpg","file_name":"1107.pdf","download_url":"https://www.academia.edu/attachments/104290181/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Universal_amplitude_ratios_in_the_Ising.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104290181/1107-libre.pdf?1689481979=\u0026response-content-disposition=attachment%3B+filename%3DUniversal_amplitude_ratios_in_the_Ising.pdf\u0026Expires=1732453281\u0026Signature=W4f-nx7qR1ZvfrlWylk-NjtdQ6YUQKZYPD0qynu-OZr9HVfjmAZ3oAgRaRc-kVMyUjGc6KDrAF62J4Oak8WtRXB6tFev8rIxYjlSFX9pFGEsVkhi2zB~E9KGjnhRsqUFr5jE9~o5wotOAJDO0~0bVwN~H8fnfLKHc9DPwUmMXvBRZ8FmjBcSdOnXGUHcO5VKDOtT8Tabtyxb9RZc~nRckk~qHlQ-1wi-2~3JLvN1CTzSi-uEaqvTieR~Dd4SKuybDzYR1KNLoe6lChASrssuLepes3hzsg3UO3O3DCcxVFKYX9GlR9fdWmpF5hQlo1cabLIO4hpTvVKY2g4nvnhyiw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":4392,"name":"Monte Carlo Simulation","url":"https://www.academia.edu/Documents/in/Monte_Carlo_Simulation"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":114618,"name":"Ising Model","url":"https://www.academia.edu/Documents/in/Ising_Model"},{"id":238230,"name":"Scaling","url":"https://www.academia.edu/Documents/in/Scaling"},{"id":504035,"name":"Three Dimensional","url":"https://www.academia.edu/Documents/in/Three_Dimensional"},{"id":827572,"name":"Specific Heat","url":"https://www.academia.edu/Documents/in/Specific_Heat"},{"id":1333436,"name":"Monte Carlo Method","url":"https://www.academia.edu/Documents/in/Monte_Carlo_Method"},{"id":1495455,"name":"Finite Size Scaling","url":"https://www.academia.edu/Documents/in/Finite_Size_Scaling"},{"id":1554800,"name":"Amplitude","url":"https://www.academia.edu/Documents/in/Amplitude"},{"id":2740863,"name":"Limit (Mathematics)","url":"https://www.academia.edu/Documents/in/Limit_Mathematics_"},{"id":4094786,"name":"three-dimensions","url":"https://www.academia.edu/Documents/in/three_dimensions"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104605605"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104605605/Role_of_Fourier_Modes_in_Finite_Size_Scaling_above_the_Upper_Critical_Dimension"><img alt="Research paper thumbnail of Role of Fourier Modes in Finite-Size Scaling above the Upper Critical Dimension" class="work-thumbnail" src="https://attachments.academia-assets.com/104290176/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104605605/Role_of_Fourier_Modes_in_Finite_Size_Scaling_above_the_Upper_Critical_Dimension">Role of Fourier Modes in Finite-Size Scaling above the Upper Critical Dimension</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="520cdf722156291aff4aad9cf2f64fab" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104290176,"asset_id":104605605,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104290176/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104605605"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104605605"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104605605; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104605605]").text(description); $(".js-view-count[data-work-id=104605605]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104605605; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104605605']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 104605605, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "520cdf722156291aff4aad9cf2f64fab" } } $('.js-work-strip[data-work-id=104605605]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104605605,"title":"Role of Fourier Modes in Finite-Size Scaling above the Upper Critical Dimension","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Physical Review Letters"},"translated_abstract":null,"internal_url":"https://www.academia.edu/104605605/Role_of_Fourier_Modes_in_Finite_Size_Scaling_above_the_Upper_Critical_Dimension","translated_internal_url":"","created_at":"2023-07-15T20:32:18.856-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":104290176,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104290176/thumbnails/1.jpg","file_name":"1511.pdf","download_url":"https://www.academia.edu/attachments/104290176/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Role_of_Fourier_Modes_in_Finite_Size_Sca.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104290176/1511-libre.pdf?1689481938=\u0026response-content-disposition=attachment%3B+filename%3DRole_of_Fourier_Modes_in_Finite_Size_Sca.pdf\u0026Expires=1732453281\u0026Signature=agAuh0PH764bN~ZjQfOsi5zNS6HpaIqCgNX8l-VxhFhHHiPcrG6E8azadQFF9x3vqrAiqlaXRb9KRN3KBN4lyeyt6ZmkMmVuKM2UdPvrHMVUNcMdC4uvLGTe4nZGF3BfrpuJnsu1jHGV6f5Mvyz23CX2QPtmI8M7EAaV6xq3hF0Z5rZReXYI3j4iCHlUQrCCVhOkYhao390r6Bct979PN3ab9~pgiz0wDYDEz3NLpztc2~zo5uv9fTUnaBlhaY5e94yCXolKD8nRV08OAgK~8uUCha5Z~IMjB4OWNt7YAxkPNEqSE9fGdcAZdHWHGY~LzBvtIQJEZkarbmo4cX1vMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Role_of_Fourier_Modes_in_Finite_Size_Scaling_above_the_Upper_Critical_Dimension","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":104290176,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104290176/thumbnails/1.jpg","file_name":"1511.pdf","download_url":"https://www.academia.edu/attachments/104290176/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Role_of_Fourier_Modes_in_Finite_Size_Sca.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104290176/1511-libre.pdf?1689481938=\u0026response-content-disposition=attachment%3B+filename%3DRole_of_Fourier_Modes_in_Finite_Size_Sca.pdf\u0026Expires=1732453281\u0026Signature=agAuh0PH764bN~ZjQfOsi5zNS6HpaIqCgNX8l-VxhFhHHiPcrG6E8azadQFF9x3vqrAiqlaXRb9KRN3KBN4lyeyt6ZmkMmVuKM2UdPvrHMVUNcMdC4uvLGTe4nZGF3BfrpuJnsu1jHGV6f5Mvyz23CX2QPtmI8M7EAaV6xq3hF0Z5rZReXYI3j4iCHlUQrCCVhOkYhao390r6Bct979PN3ab9~pgiz0wDYDEz3NLpztc2~zo5uv9fTUnaBlhaY5e94yCXolKD8nRV08OAgK~8uUCha5Z~IMjB4OWNt7YAxkPNEqSE9fGdcAZdHWHGY~LzBvtIQJEZkarbmo4cX1vMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":44187,"name":"Critical phenomena","url":"https://www.academia.edu/Documents/in/Critical_phenomena"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":201464,"name":"Renormalization","url":"https://www.academia.edu/Documents/in/Renormalization"},{"id":238230,"name":"Scaling","url":"https://www.academia.edu/Documents/in/Scaling"},{"id":390056,"name":"Fourier transform","url":"https://www.academia.edu/Documents/in/Fourier_transform"},{"id":494966,"name":"Renormalization Group","url":"https://www.academia.edu/Documents/in/Renormalization_Group"}],"urls":[{"id":32908856,"url":"http://link.aps.org/article/10.1103/PhysRevLett.116.115701"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100525319"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100525319/Exponents"><img alt="Research paper thumbnail of Exponents" class="work-thumbnail" src="https://attachments.academia-assets.com/101324872/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100525319/Exponents">Exponents</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ab1c6ba6951b918b7c73c386e65c773b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101324872,"asset_id":100525319,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101324872/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100525319"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100525319"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100525319; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100525319]").text(description); $(".js-view-count[data-work-id=100525319]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100525319; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100525319']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100525319, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ab1c6ba6951b918b7c73c386e65c773b" } } $('.js-work-strip[data-work-id=100525319]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100525319,"title":"Exponents","translated_title":"","metadata":{"grobid_abstract":"By the early 1960's advances in statistical physics had established the existence of universality classes for systems with second-order phase transitions and characterized these by critical exponents which are different to the classical ones. There followed the discovery of (now famous) scaling relations between the power-law critical exponents describing secondorder criticality. These scaling relations are of fundamental importance and now form a cornerstone of statistical mechanics. In certain circumstances, such scaling behaviour is modified by multiplicative logarithmic corrections. These are also characterized by critical exponents, analogous to the standard ones. Recently scaling relations between these logarithmic exponents have been established. Here, the theories associated with these advances are presented and expanded and the status of investigations into logarithmic corrections in a variety of models is reviewed.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"grobid_abstract_attachment_id":101324872},"translated_abstract":null,"internal_url":"https://www.academia.edu/100525319/Exponents","translated_internal_url":"","created_at":"2023-04-21T00:36:02.970-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101324872,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101324872/thumbnails/1.jpg","file_name":"1205.4252.pdf","download_url":"https://www.academia.edu/attachments/101324872/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Exponents.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101324872/1205.4252-libre.pdf?1682063608=\u0026response-content-disposition=attachment%3B+filename%3DExponents.pdf\u0026Expires=1732453281\u0026Signature=W8gcJdGM6LkbxcMNnF7Hjt1Vp0~s2-p0o-17RQcRoPnOrzJsmRTJyfLKTF9foup5rVeaPKa6TDpeKlVjnMjhbj-BpJvmMuywC-rRIVGRUxKC7uMbARN8uFQlUvWo5cjYw5qJtxavmCPvH4wM6q9H5cHBxG~ECBg-pk4nVh6-LWx38FkI6louUJ37-E17Mf2osqqz7796O7gQnpoS388dSxmZQd2PhRNnUabS3xL~~FLE~Hmvm3JjR9pPRLO-JDqfoCCZ91KRzIrP3CHXLY7-hPLz1dToVtOLuG6~Vr7UpsdPvA8Ua5mOLShKsHHtuOCE5RMAgJjQP7eaH~F8SQjR3Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Exponents","translated_slug":"","page_count":48,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":101324872,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101324872/thumbnails/1.jpg","file_name":"1205.4252.pdf","download_url":"https://www.academia.edu/attachments/101324872/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Exponents.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101324872/1205.4252-libre.pdf?1682063608=\u0026response-content-disposition=attachment%3B+filename%3DExponents.pdf\u0026Expires=1732453281\u0026Signature=W8gcJdGM6LkbxcMNnF7Hjt1Vp0~s2-p0o-17RQcRoPnOrzJsmRTJyfLKTF9foup5rVeaPKa6TDpeKlVjnMjhbj-BpJvmMuywC-rRIVGRUxKC7uMbARN8uFQlUvWo5cjYw5qJtxavmCPvH4wM6q9H5cHBxG~ECBg-pk4nVh6-LWx38FkI6louUJ37-E17Mf2osqqz7796O7gQnpoS388dSxmZQd2PhRNnUabS3xL~~FLE~Hmvm3JjR9pPRLO-JDqfoCCZ91KRzIrP3CHXLY7-hPLz1dToVtOLuG6~Vr7UpsdPvA8Ua5mOLShKsHHtuOCE5RMAgJjQP7eaH~F8SQjR3Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":30797138,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.760.800\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="86412258"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/86412258/Hyperscaling_above_the_upper_critical_dimension"><img alt="Research paper thumbnail of Hyperscaling above the upper critical dimension" class="work-thumbnail" src="https://attachments.academia-assets.com/90872013/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/86412258/Hyperscaling_above_the_upper_critical_dimension">Hyperscaling above the upper critical dimension</a></div><div class="wp-workCard_item"><span>Nuclear Physics B</span><span>, 2012</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="deb17797a287434c91c1e705b76a73e5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90872013,"asset_id":86412258,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90872013/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="86412258"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="86412258"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 86412258; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=86412258]").text(description); $(".js-view-count[data-work-id=86412258]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 86412258; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='86412258']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 86412258, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "deb17797a287434c91c1e705b76a73e5" } } $('.js-work-strip[data-work-id=86412258]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":86412258,"title":"Hyperscaling above the upper critical dimension","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"Nuclear Physics B"},"translated_abstract":null,"internal_url":"https://www.academia.edu/86412258/Hyperscaling_above_the_upper_critical_dimension","translated_internal_url":"","created_at":"2022-09-10T10:07:00.283-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90872013,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90872013/thumbnails/1.jpg","file_name":"1402.pdf","download_url":"https://www.academia.edu/attachments/90872013/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hyperscaling_above_the_upper_critical_di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90872013/1402-libre.pdf?1662833751=\u0026response-content-disposition=attachment%3B+filename%3DHyperscaling_above_the_upper_critical_di.pdf\u0026Expires=1732453281\u0026Signature=UycPH8C9qmantr3Vf6jea5K5VY4t3mnO9gY9S54~oIA3ZlaZ12ZDKKsKTSskYgpb98bnMyxi0Ka~Mlqm232e-xifdBE3wQpqmMKqXP5gt1SLoHQxVi1bhyILjSAEPZc9TVQq-3SsSCZiy8ZdWSH~xsjBjUfDNKVcxu44T1LJlcImfw4irJ~hjqpNC9tMAVe2--MCwMJBqUmhIhzCoWelsulatTf6RFWXFJEDRrTtQW60jw-3HAkih1jlb1s3tnJA3DBrMqPs9jW2wwq0Ar-NrnTJHhMcE7Zdczs7zXSNcquJcC6ZZca29vkr-lc31Cwo7dyUapDUgT2gOXCfXzESVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Hyperscaling_above_the_upper_critical_dimension","translated_slug":"","page_count":24,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":90872013,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90872013/thumbnails/1.jpg","file_name":"1402.pdf","download_url":"https://www.academia.edu/attachments/90872013/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hyperscaling_above_the_upper_critical_di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90872013/1402-libre.pdf?1662833751=\u0026response-content-disposition=attachment%3B+filename%3DHyperscaling_above_the_upper_critical_di.pdf\u0026Expires=1732453281\u0026Signature=UycPH8C9qmantr3Vf6jea5K5VY4t3mnO9gY9S54~oIA3ZlaZ12ZDKKsKTSskYgpb98bnMyxi0Ka~Mlqm232e-xifdBE3wQpqmMKqXP5gt1SLoHQxVi1bhyILjSAEPZc9TVQq-3SsSCZiy8ZdWSH~xsjBjUfDNKVcxu44T1LJlcImfw4irJ~hjqpNC9tMAVe2--MCwMJBqUmhIhzCoWelsulatTf6RFWXFJEDRrTtQW60jw-3HAkih1jlb1s3tnJA3DBrMqPs9jW2wwq0Ar-NrnTJHhMcE7Zdczs7zXSNcquJcC6ZZca29vkr-lc31Cwo7dyUapDUgT2gOXCfXzESVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":514,"name":"Nuclear Physics","url":"https://www.academia.edu/Documents/in/Nuclear_Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"}],"urls":[{"id":23735493,"url":"https://api.elsevier.com/content/article/PII:S0550321312004063?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78033772"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78033772/O_ct_2_01_5_Partition_function_zeros_for_the_Ising_model_on_complete_graphs_and_on_annealed_scale_free_networks"><img alt="Research paper thumbnail of O ct 2 01 5 Partition function zeros for the Ising model on complete graphs and on annealed scale-free networks" class="work-thumbnail" src="https://attachments.academia-assets.com/85220221/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78033772/O_ct_2_01_5_Partition_function_zeros_for_the_Ising_model_on_complete_graphs_and_on_annealed_scale_free_networks">O ct 2 01 5 Partition function zeros for the Ising model on complete graphs and on annealed scale-free networks</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We analyze the partition function of the Ising model on graphs of two different types: complete g...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We analyze the partition function of the Ising model on graphs of two different types: complete graphs, wherein all nodes are mutually linked and annealed scale-free networks for which the degree distribution decays as P (k) ∼ k. We are interested in zeros of the partition function in the cases of complex temperature or complex external field (Fisher and Lee-Yang zeros respectively). For the model on an annealed scale-free network, we find an integral representation for the partition function which, in the case λ &gt; 5, reproduces the zeros for the Ising model on a complete graph. For 3 &lt; λ &lt; 5 we derive the λ-dependent angle at which the Fisher zeros impact onto the real temperature axis. This, in turn, gives access to the λ-dependent universal values of the critical exponents and critical amplitudes ratios. Our analysis of the Lee-Yang zeros reveals a difference in their behaviour for the Ising model on a complete graph and on an annealed scale-free network when 3 &lt; λ &l...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4b24a9b1e6617e68a8eee2ddb8d35b8a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85220221,"asset_id":78033772,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85220221/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78033772"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78033772"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78033772; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78033772]").text(description); $(".js-view-count[data-work-id=78033772]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78033772; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78033772']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 78033772, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4b24a9b1e6617e68a8eee2ddb8d35b8a" } } $('.js-work-strip[data-work-id=78033772]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78033772,"title":"O ct 2 01 5 Partition function zeros for the Ising model on complete graphs and on annealed scale-free networks","translated_title":"","metadata":{"abstract":"We analyze the partition function of the Ising model on graphs of two different types: complete graphs, wherein all nodes are mutually linked and annealed scale-free networks for which the degree distribution decays as P (k) ∼ k. We are interested in zeros of the partition function in the cases of complex temperature or complex external field (Fisher and Lee-Yang zeros respectively). For the model on an annealed scale-free network, we find an integral representation for the partition function which, in the case λ \u0026gt; 5, reproduces the zeros for the Ising model on a complete graph. For 3 \u0026lt; λ \u0026lt; 5 we derive the λ-dependent angle at which the Fisher zeros impact onto the real temperature axis. This, in turn, gives access to the λ-dependent universal values of the critical exponents and critical amplitudes ratios. Our analysis of the Lee-Yang zeros reveals a difference in their behaviour for the Ising model on a complete graph and on an annealed scale-free network when 3 \u0026lt; λ \u0026l...","publication_date":{"day":null,"month":null,"year":2015,"errors":{}}},"translated_abstract":"We analyze the partition function of the Ising model on graphs of two different types: complete graphs, wherein all nodes are mutually linked and annealed scale-free networks for which the degree distribution decays as P (k) ∼ k. We are interested in zeros of the partition function in the cases of complex temperature or complex external field (Fisher and Lee-Yang zeros respectively). For the model on an annealed scale-free network, we find an integral representation for the partition function which, in the case λ \u0026gt; 5, reproduces the zeros for the Ising model on a complete graph. For 3 \u0026lt; λ \u0026lt; 5 we derive the λ-dependent angle at which the Fisher zeros impact onto the real temperature axis. This, in turn, gives access to the λ-dependent universal values of the critical exponents and critical amplitudes ratios. Our analysis of the Lee-Yang zeros reveals a difference in their behaviour for the Ising model on a complete graph and on an annealed scale-free network when 3 \u0026lt; λ \u0026l...","internal_url":"https://www.academia.edu/78033772/O_ct_2_01_5_Partition_function_zeros_for_the_Ising_model_on_complete_graphs_and_on_annealed_scale_free_networks","translated_internal_url":"","created_at":"2022-04-30T04:19:26.364-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85220221,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220221/thumbnails/1.jpg","file_name":"1510.pdf","download_url":"https://www.academia.edu/attachments/85220221/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"O_ct_2_01_5_Partition_function_zeros_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220221/1510-libre.pdf?1651318778=\u0026response-content-disposition=attachment%3B+filename%3DO_ct_2_01_5_Partition_function_zeros_for.pdf\u0026Expires=1732453281\u0026Signature=gKfH-BBoOmkd21et8Ih5RAKJ1yK9A~-4pCyPHgLKaJd6XcCt~xsYEgIM5xVceLzvrkVBQ5hP0IHn2I~h-DZOKTLIQ2UT7RL809dONi0FkW1lb-Pa4qxsG8sDPVzdotJzjQ4H1tcVX5~JHT0HrVj23sYbJ0dtKy2NTE3UqL8YDldzWHyKKT6KhrQNBZZXAtzUablYA9rOoA2lTb5EDtAqHmdibpgcwdVLWS22Qgc8etLzvHHlrfDrHKVkEQvtMXIUTxkOjXKdIvAtWABHiobuORFTfvqkxIemmC15-RDnTVOX0phCUEG9v59oFg3rTwDiy8YAOppo6Za1o1y~rqSCkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"O_ct_2_01_5_Partition_function_zeros_for_the_Ising_model_on_complete_graphs_and_on_annealed_scale_free_networks","translated_slug":"","page_count":36,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":85220221,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220221/thumbnails/1.jpg","file_name":"1510.pdf","download_url":"https://www.academia.edu/attachments/85220221/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"O_ct_2_01_5_Partition_function_zeros_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220221/1510-libre.pdf?1651318778=\u0026response-content-disposition=attachment%3B+filename%3DO_ct_2_01_5_Partition_function_zeros_for.pdf\u0026Expires=1732453281\u0026Signature=gKfH-BBoOmkd21et8Ih5RAKJ1yK9A~-4pCyPHgLKaJd6XcCt~xsYEgIM5xVceLzvrkVBQ5hP0IHn2I~h-DZOKTLIQ2UT7RL809dONi0FkW1lb-Pa4qxsG8sDPVzdotJzjQ4H1tcVX5~JHT0HrVj23sYbJ0dtKy2NTE3UqL8YDldzWHyKKT6KhrQNBZZXAtzUablYA9rOoA2lTb5EDtAqHmdibpgcwdVLWS22Qgc8etLzvHHlrfDrHKVkEQvtMXIUTxkOjXKdIvAtWABHiobuORFTfvqkxIemmC15-RDnTVOX0phCUEG9v59oFg3rTwDiy8YAOppo6Za1o1y~rqSCkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":85220222,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220222/thumbnails/1.jpg","file_name":"1510.pdf","download_url":"https://www.academia.edu/attachments/85220222/download_file","bulk_download_file_name":"O_ct_2_01_5_Partition_function_zeros_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220222/1510-libre.pdf?1651318775=\u0026response-content-disposition=attachment%3B+filename%3DO_ct_2_01_5_Partition_function_zeros_for.pdf\u0026Expires=1732453281\u0026Signature=BaxNCdMxFj9V3dR4NgubXVbMlwvA-p8HLXxpBaWz3Hi0A-g~wfqd46UOd3OcbC7a~RAwJjQijXZ3VHjj3jIK4mt6e37mROwyENkiMdrXnrjVgUwG45IaM3cR311Bkym9Agw19nwtqZlBabn7csuT2rsC96tMz83PTMW~MU5z79ECKcNBjGmke0DCvgrUzKNGefTThPFFYtkwhz2QVQYw4QdyQHEksLsh6Kt~egkiugDce7n55ICZius5TITRXhiw--fCM48424G3RK6DNgUOz0ZsqAe~sOJhbFlB0ucLkB-pv7stkePA2Rdsx5frBOTa47v95OSnb-t94ijL50knjA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":20060977,"url":"http://export.arxiv.org/pdf/1510.00534"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78033771"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78033771/The_two_point_resistance_of_fan_networks"><img alt="Research paper thumbnail of The two-point resistance of fan networks" class="work-thumbnail" src="https://attachments.academia-assets.com/85220218/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78033771/The_two_point_resistance_of_fan_networks">The two-point resistance of fan networks</a></div><div class="wp-workCard_item"><span>arXiv: Statistical Mechanics</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The problem of the two-point resistance in various networks has recently received considerable at...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The problem of the two-point resistance in various networks has recently received considerable attention. Here we consider the problem on a fan-resistor network, which is a segment of the cobweb network. Using a recently developed approach, we obtain the exact resistance between two arbitrary nodes on such a network. As a byproduct, the analysis also delivers the solution of the spanning tree problem on the fan network.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4a981843ac7a3d8b9265ca1c3a29417b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85220218,"asset_id":78033771,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85220218/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78033771"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78033771"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78033771; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78033771]").text(description); $(".js-view-count[data-work-id=78033771]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78033771; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78033771']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 78033771, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4a981843ac7a3d8b9265ca1c3a29417b" } } $('.js-work-strip[data-work-id=78033771]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78033771,"title":"The two-point resistance of fan networks","translated_title":"","metadata":{"abstract":"The problem of the two-point resistance in various networks has recently received considerable attention. Here we consider the problem on a fan-resistor network, which is a segment of the cobweb network. Using a recently developed approach, we obtain the exact resistance between two arbitrary nodes on such a network. As a byproduct, the analysis also delivers the solution of the spanning tree problem on the fan network.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"arXiv: Statistical Mechanics"},"translated_abstract":"The problem of the two-point resistance in various networks has recently received considerable attention. Here we consider the problem on a fan-resistor network, which is a segment of the cobweb network. Using a recently developed approach, we obtain the exact resistance between two arbitrary nodes on such a network. As a byproduct, the analysis also delivers the solution of the spanning tree problem on the fan network.","internal_url":"https://www.academia.edu/78033771/The_two_point_resistance_of_fan_networks","translated_internal_url":"","created_at":"2022-04-30T04:19:26.176-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85220218,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220218/thumbnails/1.jpg","file_name":"1401.4463v1.pdf","download_url":"https://www.academia.edu/attachments/85220218/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_two_point_resistance_of_fan_networks.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220218/1401.4463v1-libre.pdf?1651318768=\u0026response-content-disposition=attachment%3B+filename%3DThe_two_point_resistance_of_fan_networks.pdf\u0026Expires=1732453281\u0026Signature=CZkreByZED7WO0tY3j-mep~GKyoljmidPWGX9H3c~fvCJj4j23E3YPFq1Tan294sq2HK6kgBclghHyclRSntDnRol92o604pJv7XBnRhcVlwbERpGtg6-DqkrU0nF42HPfuUcYuBlzA0DGrlewnFEtsMTSEdvxTiCSWgob8-KK91ms2eXlJPfinkMzRIpWyCCIAkAFzt9WWTF~eLnf6oAo39n0yHnQ7IP-uyLoYQviXWhgnj7xStFzwNFKsa11uRvzO~DYuua75ddmUgrd4b~yEpAmDBerX3UzGqdtPn0tRatPGC66jroXW-sbuPfispSiS9HovrYWQQ47C6tSu1cw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_two_point_resistance_of_fan_networks","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":85220218,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220218/thumbnails/1.jpg","file_name":"1401.4463v1.pdf","download_url":"https://www.academia.edu/attachments/85220218/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_two_point_resistance_of_fan_networks.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220218/1401.4463v1-libre.pdf?1651318768=\u0026response-content-disposition=attachment%3B+filename%3DThe_two_point_resistance_of_fan_networks.pdf\u0026Expires=1732453281\u0026Signature=CZkreByZED7WO0tY3j-mep~GKyoljmidPWGX9H3c~fvCJj4j23E3YPFq1Tan294sq2HK6kgBclghHyclRSntDnRol92o604pJv7XBnRhcVlwbERpGtg6-DqkrU0nF42HPfuUcYuBlzA0DGrlewnFEtsMTSEdvxTiCSWgob8-KK91ms2eXlJPfinkMzRIpWyCCIAkAFzt9WWTF~eLnf6oAo39n0yHnQ7IP-uyLoYQviXWhgnj7xStFzwNFKsa11uRvzO~DYuua75ddmUgrd4b~yEpAmDBerX3UzGqdtPn0tRatPGC66jroXW-sbuPfispSiS9HovrYWQQ47C6tSu1cw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"}],"urls":[{"id":20060976,"url":"https://arxiv.org/pdf/1401.4463v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78033770"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78033770/Generalized_Ising_Model_on_a_Scale_Free_Network_An_Interplay_of_Power_Laws"><img alt="Research paper thumbnail of Generalized Ising Model on a Scale-Free Network: An Interplay of Power Laws" class="work-thumbnail" src="https://attachments.academia-assets.com/85220215/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78033770/Generalized_Ising_Model_on_a_Scale_Free_Network_An_Interplay_of_Power_Laws">Generalized Ising Model on a Scale-Free Network: An Interplay of Power Laws</a></div><div class="wp-workCard_item"><span>Entropy</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We consider a recently introduced generalization of the Ising model in which individual spin stre...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We consider a recently introduced generalization of the Ising model in which individual spin strength can vary. The model is intended for analysis of ordering in systems comprising agents which, although matching in their binarity (i.e., maintaining the iconic Ising features of ‘+’ or ‘−’, ‘up’ or ‘down’, ‘yes’ or ‘no’), differ in their strength. To investigate the interplay between variable properties of nodes and interactions between them, we study the model on a complex network where both the spin strength and degree distributions are governed by power laws. We show that in the annealed network approximation, thermodynamic functions of the model are self-averaging and we obtain an exact solution for the partition function. This allows us derive the leading temperature and field dependencies of thermodynamic functions, their critical behavior, and logarithmic corrections at the interface of different phases. We find the delicate interplay of the two power laws leads to new univers...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="622910e8149f909841c4efdbb1b5592f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85220215,"asset_id":78033770,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85220215/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78033770"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78033770"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78033770; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78033770]").text(description); $(".js-view-count[data-work-id=78033770]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78033770; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78033770']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 78033770, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "622910e8149f909841c4efdbb1b5592f" } } $('.js-work-strip[data-work-id=78033770]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78033770,"title":"Generalized Ising Model on a Scale-Free Network: An Interplay of Power Laws","translated_title":"","metadata":{"abstract":"We consider a recently introduced generalization of the Ising model in which individual spin strength can vary. The model is intended for analysis of ordering in systems comprising agents which, although matching in their binarity (i.e., maintaining the iconic Ising features of ‘+’ or ‘−’, ‘up’ or ‘down’, ‘yes’ or ‘no’), differ in their strength. To investigate the interplay between variable properties of nodes and interactions between them, we study the model on a complex network where both the spin strength and degree distributions are governed by power laws. We show that in the annealed network approximation, thermodynamic functions of the model are self-averaging and we obtain an exact solution for the partition function. This allows us derive the leading temperature and field dependencies of thermodynamic functions, their critical behavior, and logarithmic corrections at the interface of different phases. We find the delicate interplay of the two power laws leads to new univers...","publisher":"MDPI AG","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Entropy"},"translated_abstract":"We consider a recently introduced generalization of the Ising model in which individual spin strength can vary. The model is intended for analysis of ordering in systems comprising agents which, although matching in their binarity (i.e., maintaining the iconic Ising features of ‘+’ or ‘−’, ‘up’ or ‘down’, ‘yes’ or ‘no’), differ in their strength. To investigate the interplay between variable properties of nodes and interactions between them, we study the model on a complex network where both the spin strength and degree distributions are governed by power laws. We show that in the annealed network approximation, thermodynamic functions of the model are self-averaging and we obtain an exact solution for the partition function. This allows us derive the leading temperature and field dependencies of thermodynamic functions, their critical behavior, and logarithmic corrections at the interface of different phases. We find the delicate interplay of the two power laws leads to new univers...","internal_url":"https://www.academia.edu/78033770/Generalized_Ising_Model_on_a_Scale_Free_Network_An_Interplay_of_Power_Laws","translated_internal_url":"","created_at":"2022-04-30T04:19:25.971-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85220215,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220215/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/85220215/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Generalized_Ising_Model_on_a_Scale_Free.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220215/pdf-libre.pdf?1651318774=\u0026response-content-disposition=attachment%3B+filename%3DGeneralized_Ising_Model_on_a_Scale_Free.pdf\u0026Expires=1732453281\u0026Signature=ZkV5ot9IcqZd5A8XKxg3mYOTU3IpOQY2XeTysrHLjeEsC1xhDFRDRGw9CzsBVPIf8oa~ZP~bXt1ND-uAoLB450JdA-~EayywuczwGiquTb3DI4PbMd3qcFb036pzxvtBze9qQA5ntS8vazSxctdml0s7hSM4O~kZrWvKjHD8-n1jk8jmHiSHB8BHT9mfUSzJIjPPfcYaqcBbOjlI7OrPI~edl5t9ROdQpAkyOA9qXSiNP53SO4eOMqZUmZo6k-02tzVPQun0PWHG3q5efdQAX0KnDukUgxlijgnVT1UKItj5vzyX2k3-wcLtTGvrgh5kLoFPB8IlFVeXmauYWCtHcw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Generalized_Ising_Model_on_a_Scale_Free_Network_An_Interplay_of_Power_Laws","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":85220215,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220215/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/85220215/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Generalized_Ising_Model_on_a_Scale_Free.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220215/pdf-libre.pdf?1651318774=\u0026response-content-disposition=attachment%3B+filename%3DGeneralized_Ising_Model_on_a_Scale_Free.pdf\u0026Expires=1732453281\u0026Signature=ZkV5ot9IcqZd5A8XKxg3mYOTU3IpOQY2XeTysrHLjeEsC1xhDFRDRGw9CzsBVPIf8oa~ZP~bXt1ND-uAoLB450JdA-~EayywuczwGiquTb3DI4PbMd3qcFb036pzxvtBze9qQA5ntS8vazSxctdml0s7hSM4O~kZrWvKjHD8-n1jk8jmHiSHB8BHT9mfUSzJIjPPfcYaqcBbOjlI7OrPI~edl5t9ROdQpAkyOA9qXSiNP53SO4eOMqZUmZo6k-02tzVPQun0PWHG3q5efdQAX0KnDukUgxlijgnVT1UKItj5vzyX2k3-wcLtTGvrgh5kLoFPB8IlFVeXmauYWCtHcw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":85220214,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220214/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/85220214/download_file","bulk_download_file_name":"Generalized_Ising_Model_on_a_Scale_Free.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220214/pdf-libre.pdf?1651318774=\u0026response-content-disposition=attachment%3B+filename%3DGeneralized_Ising_Model_on_a_Scale_Free.pdf\u0026Expires=1732453282\u0026Signature=IIbnKolTZI2ZTrrK6Dsyh0xKkR1HoNYLdle1JaCX6cP~fCjk2HgPsASRx5Re4q1NJmWKiAYU~CJhoxCkNj0uMPzBsprY6GbJVn1cg6wCUoVXV1w-rOPGlhUoyGQLo9Z8o5gChWLlxn2F7yMVZBpWG-lg2D8dc5yc-b9x2LbS34WvxCK1I6UQjjxs2VNxGd3AFjQkLRWhfYRBSXzEYKYmw7aOh7rOtSPtzxHJFeXcKw4y85vCYY8PbIC9gP8mEQCgmHeoMTU1uqZKYM23QCK3lKShAwYEt1xpOrfYeS7s9utthHWLfQmDcWbuDzSVl1uyHCDlqtGwia~kUMVwROAw-w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":36265,"name":"Entropy","url":"https://www.academia.edu/Documents/in/Entropy"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[{"id":20060975,"url":"https://www.mdpi.com/1099-4300/23/9/1175/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78033769"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78033769/Narrative_structure_ofA_Song_of_Ice_and_Firecreates_a_fictional_world_with_realistic_measures_of_social_complexity"><img alt="Research paper thumbnail of Narrative structure ofA Song of Ice and Firecreates a fictional world with realistic measures of social complexity" class="work-thumbnail" src="https://attachments.academia-assets.com/85220363/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78033769/Narrative_structure_ofA_Song_of_Ice_and_Firecreates_a_fictional_world_with_realistic_measures_of_social_complexity">Narrative structure ofA Song of Ice and Firecreates a fictional world with realistic measures of social complexity</a></div><div class="wp-workCard_item"><span>Proceedings of the National Academy of Sciences</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Network science and data analytics are used to quantify static and dynamic structures in George R...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Network science and data analytics are used to quantify static and dynamic structures in George R. R. Martin’s epic novels,A Song of Ice and Fire, works noted for their scale and complexity. By tracking the network of character interactions as the story unfolds, it is found that structural properties remain approximately stable and comparable to real-world social networks. Furthermore, the degrees of the most connected characters reflect a cognitive limit on the number of concurrent social connections that humans tend to maintain. We also analyze the distribution of time intervals between significant deaths measured with respect to the in-story timeline. These are consistent with power-law distributions commonly found in interevent times for a range of nonviolent human activities in the real world. We propose that structural features in the narrative that are reflected in our actual social world help readers to follow and to relate to the story, despite its sprawling extent. It is a...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8e27c96928e6839d5321cc784b14937b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85220363,"asset_id":78033769,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85220363/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78033769"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78033769"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78033769; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78033769]").text(description); $(".js-view-count[data-work-id=78033769]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78033769; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78033769']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 78033769, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8e27c96928e6839d5321cc784b14937b" } } $('.js-work-strip[data-work-id=78033769]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78033769,"title":"Narrative structure ofA Song of Ice and Firecreates a fictional world with realistic measures of social complexity","translated_title":"","metadata":{"abstract":"Network science and data analytics are used to quantify static and dynamic structures in George R. R. Martin’s epic novels,A Song of Ice and Fire, works noted for their scale and complexity. By tracking the network of character interactions as the story unfolds, it is found that structural properties remain approximately stable and comparable to real-world social networks. Furthermore, the degrees of the most connected characters reflect a cognitive limit on the number of concurrent social connections that humans tend to maintain. We also analyze the distribution of time intervals between significant deaths measured with respect to the in-story timeline. These are consistent with power-law distributions commonly found in interevent times for a range of nonviolent human activities in the real world. We propose that structural features in the narrative that are reflected in our actual social world help readers to follow and to relate to the story, despite its sprawling extent. It is a...","publisher":"Proceedings of the National Academy of Sciences","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Proceedings of the National Academy of Sciences"},"translated_abstract":"Network science and data analytics are used to quantify static and dynamic structures in George R. R. Martin’s epic novels,A Song of Ice and Fire, works noted for their scale and complexity. By tracking the network of character interactions as the story unfolds, it is found that structural properties remain approximately stable and comparable to real-world social networks. Furthermore, the degrees of the most connected characters reflect a cognitive limit on the number of concurrent social connections that humans tend to maintain. We also analyze the distribution of time intervals between significant deaths measured with respect to the in-story timeline. These are consistent with power-law distributions commonly found in interevent times for a range of nonviolent human activities in the real world. We propose that structural features in the narrative that are reflected in our actual social world help readers to follow and to relate to the story, despite its sprawling extent. It is a...","internal_url":"https://www.academia.edu/78033769/Narrative_structure_ofA_Song_of_Ice_and_Firecreates_a_fictional_world_with_realistic_measures_of_social_complexity","translated_internal_url":"","created_at":"2022-04-30T04:19:25.774-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85220363,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220363/thumbnails/1.jpg","file_name":"2012.01783v1.pdf","download_url":"https://www.academia.edu/attachments/85220363/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Narrative_structure_ofA_Song_of_Ice_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220363/2012.01783v1-libre.pdf?1651318769=\u0026response-content-disposition=attachment%3B+filename%3DNarrative_structure_ofA_Song_of_Ice_and.pdf\u0026Expires=1732453282\u0026Signature=BbbsMeNTrh10Wkql7YWRAf3MREy95NDDkY1sPM7YTwWiMZgPPWU7i01DaJ~ny9wHkxR3gYuSeh4yxccVs9wO5SNpMNsay7u4~Gv2SYeV3XajcUz9p5nvjUhD-p6mDXL~PLAZUwLNLsDjYcCVmjcyaZAP42SjABH-4Oa5fuA5siMHadcchNrYWUybr0LDS9lsTEmqPFc7D-Vr93zu2NRzdYaJoPA3PVJV-JrKCS~dHo9RJM2L5lDSJCjhT65PDe880yjolhCQ5JZbUiqtRMQzKZkKFglxFfdDAqlhtb5LmCqXtW~UX1n1-O1TlO9UErF0opB~yV82SSiq1f3u3bGGng__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Narrative_structure_ofA_Song_of_Ice_and_Firecreates_a_fictional_world_with_realistic_measures_of_social_complexity","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":85220363,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220363/thumbnails/1.jpg","file_name":"2012.01783v1.pdf","download_url":"https://www.academia.edu/attachments/85220363/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Narrative_structure_ofA_Song_of_Ice_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220363/2012.01783v1-libre.pdf?1651318769=\u0026response-content-disposition=attachment%3B+filename%3DNarrative_structure_ofA_Song_of_Ice_and.pdf\u0026Expires=1732453282\u0026Signature=BbbsMeNTrh10Wkql7YWRAf3MREy95NDDkY1sPM7YTwWiMZgPPWU7i01DaJ~ny9wHkxR3gYuSeh4yxccVs9wO5SNpMNsay7u4~Gv2SYeV3XajcUz9p5nvjUhD-p6mDXL~PLAZUwLNLsDjYcCVmjcyaZAP42SjABH-4Oa5fuA5siMHadcchNrYWUybr0LDS9lsTEmqPFc7D-Vr93zu2NRzdYaJoPA3PVJV-JrKCS~dHo9RJM2L5lDSJCjhT65PDe880yjolhCQ5JZbUiqtRMQzKZkKFglxFfdDAqlhtb5LmCqXtW~UX1n1-O1TlO9UErF0opB~yV82SSiq1f3u3bGGng__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":128,"name":"History","url":"https://www.academia.edu/Documents/in/History"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":2068869,"name":"Academy of Sciences and Letters","url":"https://www.academia.edu/Documents/in/Academy_of_Sciences_and_Letters"}],"urls":[{"id":20060974,"url":"https://syndication.highwire.org/content/doi/10.1073/pnas.2006465117"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78033768"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78033768/Use_of_the_Complex_Zeros_of_the_Partition_Function_to_Investigate_the_Critical_Behavior_of_the_Generalized_Interacting_Self_Avoiding_Trail_Model"><img alt="Research paper thumbnail of Use of the Complex Zeros of the Partition Function to Investigate the Critical Behavior of the Generalized Interacting Self-Avoiding Trail Model" class="work-thumbnail" src="https://attachments.academia-assets.com/85220212/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78033768/Use_of_the_Complex_Zeros_of_the_Partition_Function_to_Investigate_the_Critical_Behavior_of_the_Generalized_Interacting_Self_Avoiding_Trail_Model">Use of the Complex Zeros of the Partition Function to Investigate the Critical Behavior of the Generalized Interacting Self-Avoiding Trail Model</a></div><div class="wp-workCard_item"><span>Entropy</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The complex zeros of the canonical (fixed walk-length) partition function are calculated for both...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The complex zeros of the canonical (fixed walk-length) partition function are calculated for both the self-avoiding trails model and the vertex-interacting self-avoiding walk model, both in bulk and in the presence of an attractive surface. The finite-size behavior of the zeros is used to estimate the location of phase transitions: the collapse transition in the bulk and the adsorption transition in the presence of a surface. The bulk and surface cross-over exponents, ϕ and ϕ S , are estimated from the scaling behavior of the leading partition function zeros.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bcda17b77e015702b545d10c177f4612" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85220212,"asset_id":78033768,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85220212/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78033768"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78033768"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78033768; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78033768]").text(description); $(".js-view-count[data-work-id=78033768]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78033768; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78033768']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 78033768, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bcda17b77e015702b545d10c177f4612" } } $('.js-work-strip[data-work-id=78033768]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78033768,"title":"Use of the Complex Zeros of the Partition Function to Investigate the Critical Behavior of the Generalized Interacting Self-Avoiding Trail Model","translated_title":"","metadata":{"abstract":"The complex zeros of the canonical (fixed walk-length) partition function are calculated for both the self-avoiding trails model and the vertex-interacting self-avoiding walk model, both in bulk and in the presence of an attractive surface. The finite-size behavior of the zeros is used to estimate the location of phase transitions: the collapse transition in the bulk and the adsorption transition in the presence of a surface. The bulk and surface cross-over exponents, ϕ and ϕ S , are estimated from the scaling behavior of the leading partition function zeros.","publisher":"MDPI AG","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Entropy"},"translated_abstract":"The complex zeros of the canonical (fixed walk-length) partition function are calculated for both the self-avoiding trails model and the vertex-interacting self-avoiding walk model, both in bulk and in the presence of an attractive surface. The finite-size behavior of the zeros is used to estimate the location of phase transitions: the collapse transition in the bulk and the adsorption transition in the presence of a surface. The bulk and surface cross-over exponents, ϕ and ϕ S , are estimated from the scaling behavior of the leading partition function zeros.","internal_url":"https://www.academia.edu/78033768/Use_of_the_Complex_Zeros_of_the_Partition_Function_to_Investigate_the_Critical_Behavior_of_the_Generalized_Interacting_Self_Avoiding_Trail_Model","translated_internal_url":"","created_at":"2022-04-30T04:19:25.595-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85220212,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220212/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/85220212/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Use_of_the_Complex_Zeros_of_the_Partitio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220212/pdf-libre.pdf?1651318771=\u0026response-content-disposition=attachment%3B+filename%3DUse_of_the_Complex_Zeros_of_the_Partitio.pdf\u0026Expires=1732453282\u0026Signature=M9dANs7yB5D6F4LYU2BPVAzP7sdNlYyGAYDXh3mZe1Z86vpoESz8lPK3LCDUuKHix-QcUXohWzM8fCgeU~AI1WydDSN7keYCohiTfA~4HMzx7mgBc-ieqWxmSCH3T4~zkRsPEX8ZNq6lvvxQQQ0WIu3bqTd4n3a40NlRpmZCWGB0bW4xidJ7yAKQwABdyxqIJNOF0IxkiH9eOR2YMy9XasHLpIzBRaPNktN9mzwDSTbRSNkI3~Ec~hsFjEgHDC5qbbxMsOMIknEdWOfD8O910XmKoWYlrPb~kLguvJCTofFZs1ByLJWjNzqnDmAG5zCvGaUBK4vxQ3mzRZ9pJXsjyA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Use_of_the_Complex_Zeros_of_the_Partition_Function_to_Investigate_the_Critical_Behavior_of_the_Generalized_Interacting_Self_Avoiding_Trail_Model","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":85220212,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220212/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/85220212/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Use_of_the_Complex_Zeros_of_the_Partitio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220212/pdf-libre.pdf?1651318771=\u0026response-content-disposition=attachment%3B+filename%3DUse_of_the_Complex_Zeros_of_the_Partitio.pdf\u0026Expires=1732453282\u0026Signature=M9dANs7yB5D6F4LYU2BPVAzP7sdNlYyGAYDXh3mZe1Z86vpoESz8lPK3LCDUuKHix-QcUXohWzM8fCgeU~AI1WydDSN7keYCohiTfA~4HMzx7mgBc-ieqWxmSCH3T4~zkRsPEX8ZNq6lvvxQQQ0WIu3bqTd4n3a40NlRpmZCWGB0bW4xidJ7yAKQwABdyxqIJNOF0IxkiH9eOR2YMy9XasHLpIzBRaPNktN9mzwDSTbRSNkI3~Ec~hsFjEgHDC5qbbxMsOMIknEdWOfD8O910XmKoWYlrPb~kLguvJCTofFZs1ByLJWjNzqnDmAG5zCvGaUBK4vxQ3mzRZ9pJXsjyA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":85220213,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220213/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/85220213/download_file","bulk_download_file_name":"Use_of_the_Complex_Zeros_of_the_Partitio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220213/pdf-libre.pdf?1651318774=\u0026response-content-disposition=attachment%3B+filename%3DUse_of_the_Complex_Zeros_of_the_Partitio.pdf\u0026Expires=1732453282\u0026Signature=bUDQbL0hXFtDIhulYs6pzBPEYz8e2A92dUnb7KcpffdtAaRjTxa4jMNeFsGTH-NfOG4e-t71kpuZhCSt6G-7mGj6L4NzL7dDKV7O63x9bPy2fhGG3FS31jqvPGX8ozgwDt3IccVzwYDrmRBMa-DCfLvR-fEPD73~VozwGscV-6H9DbQc1-OjmYG1DRpqsTBLUNd2m2DxVA9bdr0wbtrHmAdJLAgtrXV5DUodSX5W~li6vpnGwO2xAz3mu14aEVPma36HfZBWr8sVslD0rwnd-18MbXKR4cdiCHxtqRAsrTobsLrT2ropT5i45njGCatBJRM6SdBF4Oh534mzDrqIQA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":36265,"name":"Entropy","url":"https://www.academia.edu/Documents/in/Entropy"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[{"id":20060973,"url":"http://www.mdpi.com/1099-4300/21/2/153/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78033767"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78033767/Universal_finite_size_scaling_for_percolation_theory_in_high_dimensions"><img alt="Research paper thumbnail of Universal finite-size scaling for percolation theory in high dimensions" class="work-thumbnail" src="https://attachments.academia-assets.com/85220366/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78033767/Universal_finite_size_scaling_for_percolation_theory_in_high_dimensions">Universal finite-size scaling for percolation theory in high dimensions</a></div><div class="wp-workCard_item"><span>Journal of Physics A: Mathematical and Theoretical</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="46ccf6bcd5382d677815f1d988d5ec68" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85220366,"asset_id":78033767,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85220366/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78033767"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78033767"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78033767; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78033767]").text(description); $(".js-view-count[data-work-id=78033767]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78033767; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78033767']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 78033767, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "46ccf6bcd5382d677815f1d988d5ec68" } } $('.js-work-strip[data-work-id=78033767]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78033767,"title":"Universal finite-size scaling for percolation theory in high dimensions","translated_title":"","metadata":{"publisher":"IOP Publishing","grobid_abstract":"We present a unifying, consistent, finite-size-scaling picture for percolation theory bringing it into the framework of a general, renormalization-group-based, scaling scheme for systems above their upper critical dimensions d c. Behaviour at the critical point is non-universal in d \u003e d c = 6 dimensions. Proliferation of the largest clusters, with fractal dimension 4, is associated with the breakdown of hyperscaling there when free boundary conditions are used. But when the boundary conditions are periodic, the maximal clusters have dimension D = 2d/3, and obey random-graph asymptotics. Universality is instead manifest at the pseudocritical point, where the failure of hyperscaling in its traditional form is universally associated with random-graph-type asymptotics for critical cluster sizes, independent of boundary conditions.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Journal of Physics A: Mathematical and Theoretical","grobid_abstract_attachment_id":85220366},"translated_abstract":null,"internal_url":"https://www.academia.edu/78033767/Universal_finite_size_scaling_for_percolation_theory_in_high_dimensions","translated_internal_url":"","created_at":"2022-04-30T04:19:25.378-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85220366,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220366/thumbnails/1.jpg","file_name":"1606.00315.pdf","download_url":"https://www.academia.edu/attachments/85220366/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Universal_finite_size_scaling_for_percol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220366/1606.00315-libre.pdf?1651318767=\u0026response-content-disposition=attachment%3B+filename%3DUniversal_finite_size_scaling_for_percol.pdf\u0026Expires=1732453282\u0026Signature=BtbFZRq4RekZ42DSwXwUDW0tjT3Kn0-I3YRyznKFfQ5LQc6-kK0Ep0gBP8ZvqqsU5XEtuWOernw8U6KK4WpWMDpT0iIBRD4SibaaQ710hain8YSybBKxT4OOiSG3vXmfxUNQppC4s0eZiOotP8FOuS5GEaUK6QA4qGIJybHp6h5ZIk78IGYvA6Fdvk2mG7FrvraD1SW26R5JtuvGxC-HJryOSMD4kwHACPZ2fKiu6ugxNbqOKaUrlVPMDQchLvLYGz1DsuwELzHA62N-bp5iZi6iBYqJxUgyntsF8WdUHQuJnHsLOmvoYm-Jj0Nu9oJJTYQZbgaPQ6oQ~GkNEzh-Hg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Universal_finite_size_scaling_for_percolation_theory_in_high_dimensions","translated_slug":"","page_count":27,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":85220366,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220366/thumbnails/1.jpg","file_name":"1606.00315.pdf","download_url":"https://www.academia.edu/attachments/85220366/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Universal_finite_size_scaling_for_percol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220366/1606.00315-libre.pdf?1651318767=\u0026response-content-disposition=attachment%3B+filename%3DUniversal_finite_size_scaling_for_percol.pdf\u0026Expires=1732453282\u0026Signature=BtbFZRq4RekZ42DSwXwUDW0tjT3Kn0-I3YRyznKFfQ5LQc6-kK0Ep0gBP8ZvqqsU5XEtuWOernw8U6KK4WpWMDpT0iIBRD4SibaaQ710hain8YSybBKxT4OOiSG3vXmfxUNQppC4s0eZiOotP8FOuS5GEaUK6QA4qGIJybHp6h5ZIk78IGYvA6Fdvk2mG7FrvraD1SW26R5JtuvGxC-HJryOSMD4kwHACPZ2fKiu6ugxNbqOKaUrlVPMDQchLvLYGz1DsuwELzHA62N-bp5iZi6iBYqJxUgyntsF8WdUHQuJnHsLOmvoYm-Jj0Nu9oJJTYQZbgaPQ6oQ~GkNEzh-Hg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[{"id":20060972,"url":"http://stacks.iop.org/1751-8121/50/i=23/a=235001/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78033766"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78033766/Lee_Yang_zeroes_and_logarithmic_corrections_in_the_%CE%A644_theory"><img alt="Research paper thumbnail of Lee-Yang zeroes and logarithmic corrections in the Φ44 theory" class="work-thumbnail" src="https://attachments.academia-assets.com/85220357/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78033766/Lee_Yang_zeroes_and_logarithmic_corrections_in_the_%CE%A644_theory">Lee-Yang zeroes and logarithmic corrections in the Φ44 theory</a></div><div class="wp-workCard_item"><span>Nuclear Physics B - Proceedings Supplements</span><span>, 1993</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e6fcb546906f37aab18c29b22e8403a8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85220357,"asset_id":78033766,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85220357/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78033766"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78033766"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78033766; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78033766]").text(description); $(".js-view-count[data-work-id=78033766]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78033766; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78033766']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 78033766, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e6fcb546906f37aab18c29b22e8403a8" } } $('.js-work-strip[data-work-id=78033766]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78033766,"title":"Lee-Yang zeroes and logarithmic corrections in the Φ44 theory","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":1993,"errors":{}},"publication_name":"Nuclear Physics B - Proceedings Supplements"},"translated_abstract":null,"internal_url":"https://www.academia.edu/78033766/Lee_Yang_zeroes_and_logarithmic_corrections_in_the_%CE%A644_theory","translated_internal_url":"","created_at":"2022-04-30T04:19:25.185-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85220357,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220357/thumbnails/1.jpg","file_name":"9210017.pdf","download_url":"https://www.academia.edu/attachments/85220357/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lee_Yang_zeroes_and_logarithmic_correcti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220357/9210017-libre.pdf?1651318765=\u0026response-content-disposition=attachment%3B+filename%3DLee_Yang_zeroes_and_logarithmic_correcti.pdf\u0026Expires=1732453282\u0026Signature=fCHiGlOCK7-QAPIso9-msTpfQuGbvllBmvUaBaGD5CJw6SiWYSYDN~yi4gkbzF08Fcbl7iA-9lqZqyM2zOFNK1b3~uM8nxZ1Brh7EchYZAh-uxqmxgmkUA-7Q6DDRzCN1U~sr2or39eA9rLeyuGK86jsiM9neWHG3i7VZ01DQFZtiFo68-plB8qIUoFysXY9MdcG8rb6AJRLfUJL9qeOSxKGTycjPKZIDulZWJ5zMBvPEoCtGbA2GEmcsz4c7Gz5QzS~rqJVVemLpUxq2FngaxmYJmYnXZBsnyR14B3-agSQIQjIhr4ryXIe3F-0m-Giqlt1cPWOkbY1PnGXi5qp0A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Lee_Yang_zeroes_and_logarithmic_corrections_in_the_Φ44_theory","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":85220357,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220357/thumbnails/1.jpg","file_name":"9210017.pdf","download_url":"https://www.academia.edu/attachments/85220357/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lee_Yang_zeroes_and_logarithmic_correcti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220357/9210017-libre.pdf?1651318765=\u0026response-content-disposition=attachment%3B+filename%3DLee_Yang_zeroes_and_logarithmic_correcti.pdf\u0026Expires=1732453282\u0026Signature=fCHiGlOCK7-QAPIso9-msTpfQuGbvllBmvUaBaGD5CJw6SiWYSYDN~yi4gkbzF08Fcbl7iA-9lqZqyM2zOFNK1b3~uM8nxZ1Brh7EchYZAh-uxqmxgmkUA-7Q6DDRzCN1U~sr2or39eA9rLeyuGK86jsiM9neWHG3i7VZ01DQFZtiFo68-plB8qIUoFysXY9MdcG8rb6AJRLfUJL9qeOSxKGTycjPKZIDulZWJ5zMBvPEoCtGbA2GEmcsz4c7Gz5QzS~rqJVVemLpUxq2FngaxmYJmYnXZBsnyR14B3-agSQIQjIhr4ryXIe3F-0m-Giqlt1cPWOkbY1PnGXi5qp0A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"},{"id":6974,"name":"Monte Carlo","url":"https://www.academia.edu/Documents/in/Monte_Carlo"},{"id":1130298,"name":"Critical Point","url":"https://www.academia.edu/Documents/in/Critical_Point"}],"urls":[{"id":20060971,"url":"http://api.elsevier.com/content/article/PII:092056329390305P?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78033765"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78033765/Partition_function_zeros_for_the_Ising_model_on_complete_graphs_and_on_annealed_scale_free_networks"><img alt="Research paper thumbnail of Partition function zeros for the Ising model on complete graphs and on annealed scale-free networks" class="work-thumbnail" src="https://attachments.academia-assets.com/85220362/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78033765/Partition_function_zeros_for_the_Ising_model_on_complete_graphs_and_on_annealed_scale_free_networks">Partition function zeros for the Ising model on complete graphs and on annealed scale-free networks</a></div><div class="wp-workCard_item"><span>Journal of Physics A: Mathematical and Theoretical</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="619224c2a6f221639f51887578a020f2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85220362,"asset_id":78033765,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85220362/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78033765"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78033765"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78033765; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78033765]").text(description); $(".js-view-count[data-work-id=78033765]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78033765; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78033765']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 78033765, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "619224c2a6f221639f51887578a020f2" } } $('.js-work-strip[data-work-id=78033765]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78033765,"title":"Partition function zeros for the Ising model on complete graphs and on annealed scale-free networks","translated_title":"","metadata":{"publisher":"IOP Publishing","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Journal of Physics A: Mathematical and Theoretical"},"translated_abstract":null,"internal_url":"https://www.academia.edu/78033765/Partition_function_zeros_for_the_Ising_model_on_complete_graphs_and_on_annealed_scale_free_networks","translated_internal_url":"","created_at":"2022-04-30T04:19:24.977-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85220362,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220362/thumbnails/1.jpg","file_name":"1510.pdf","download_url":"https://www.academia.edu/attachments/85220362/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Partition_function_zeros_for_the_Ising_m.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220362/1510-libre.pdf?1651318773=\u0026response-content-disposition=attachment%3B+filename%3DPartition_function_zeros_for_the_Ising_m.pdf\u0026Expires=1732453282\u0026Signature=hLwGi~hBeQAPVJmPtc0IrXmNVOcqIsQR2hfqnsdZQlCJlaio~em3wo9DQmuvo-Z9eiL-5ly0WciYQbGJ375Ubq9RA9RaL-REcFE8fxkWzjvnjftCB9O0qYCbh5gKIIot562xs36QRBoIUJMPL3sQDaxrpc57cQJydeFW4zM3823995F7J-4YFZF8r5XJpR8BFXpmNOPVhSYsVb9vBgsraYF3jTgZXjvkCespmupUSTHwCiU4mRrjfjwbUfqB9mHxWFNfVOlMsOitHXegvT2rMw~TsDWBtRrGl1kvnK4t0mdqZXH1~50eI-jpohRTsNGu1a6GGdMa8uJw368847pJOw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Partition_function_zeros_for_the_Ising_model_on_complete_graphs_and_on_annealed_scale_free_networks","translated_slug":"","page_count":36,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":85220362,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220362/thumbnails/1.jpg","file_name":"1510.pdf","download_url":"https://www.academia.edu/attachments/85220362/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Partition_function_zeros_for_the_Ising_m.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220362/1510-libre.pdf?1651318773=\u0026response-content-disposition=attachment%3B+filename%3DPartition_function_zeros_for_the_Ising_m.pdf\u0026Expires=1732453282\u0026Signature=hLwGi~hBeQAPVJmPtc0IrXmNVOcqIsQR2hfqnsdZQlCJlaio~em3wo9DQmuvo-Z9eiL-5ly0WciYQbGJ375Ubq9RA9RaL-REcFE8fxkWzjvnjftCB9O0qYCbh5gKIIot562xs36QRBoIUJMPL3sQDaxrpc57cQJydeFW4zM3823995F7J-4YFZF8r5XJpR8BFXpmNOPVhSYsVb9vBgsraYF3jTgZXjvkCespmupUSTHwCiU4mRrjfjwbUfqB9mHxWFNfVOlMsOitHXegvT2rMw~TsDWBtRrGl1kvnK4t0mdqZXH1~50eI-jpohRTsNGu1a6GGdMa8uJw368847pJOw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":5436,"name":"Combinatorics","url":"https://www.academia.edu/Documents/in/Combinatorics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":114618,"name":"Ising Model","url":"https://www.academia.edu/Documents/in/Ising_Model"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[{"id":20060970,"url":"http://stacks.iop.org/1751-8121/49/i=13/a=135001/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78033764"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78033764/Cluster_Monte_Carlo_and_dynamical_scaling_for_long_range_interactions"><img alt="Research paper thumbnail of Cluster Monte Carlo and dynamical scaling for long-range interactions" class="work-thumbnail" src="https://attachments.academia-assets.com/85220359/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78033764/Cluster_Monte_Carlo_and_dynamical_scaling_for_long_range_interactions">Cluster Monte Carlo and dynamical scaling for long-range interactions</a></div><div class="wp-workCard_item"><span>The European Physical Journal Special Topics</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6f80a34dec42a3643c82ced6f24baf70" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85220359,"asset_id":78033764,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85220359/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78033764"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78033764"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78033764; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78033764]").text(description); $(".js-view-count[data-work-id=78033764]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78033764; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78033764']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 78033764, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6f80a34dec42a3643c82ced6f24baf70" } } $('.js-work-strip[data-work-id=78033764]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78033764,"title":"Cluster Monte Carlo and dynamical scaling for long-range interactions","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"The European Physical Journal Special Topics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/78033764/Cluster_Monte_Carlo_and_dynamical_scaling_for_long_range_interactions","translated_internal_url":"","created_at":"2022-04-30T04:19:24.849-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85220359,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220359/thumbnails/1.jpg","file_name":"1611.pdf","download_url":"https://www.academia.edu/attachments/85220359/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cluster_Monte_Carlo_and_dynamical_scalin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220359/1611-libre.pdf?1651318768=\u0026response-content-disposition=attachment%3B+filename%3DCluster_Monte_Carlo_and_dynamical_scalin.pdf\u0026Expires=1732453282\u0026Signature=ayjrFZcHyp4KFSWNL3KQZFT7WdsSIqsBGkzTNAs9rfV0dHMCvgDR5gclNV2CSghTLvIbddWaG~sD3C7tFHfNqZQ464dmFOh-SzxZCIPbTRuBVEW3e3UwC5lAs8dXVBzvJit2yUjTozlAn53~flg14imjzU0kkV6LuWaMvXA45edPnr~3YIVcEF3K~v0B6EXSED4TiSMVWkr8tyaGxzU1WWSfOu0wTGIW8niAidc1jzLG-dTx4u4VkJ~TiFDVvQJQ9zy6IChoqUd-ePMkFtjVbbGPThuFX1jN1vcUof-e67ooxcaZDUIvEHm3aOOZtw3dqDLhQR06ng7lA4ejCxq8IA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cluster_Monte_Carlo_and_dynamical_scaling_for_long_range_interactions","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":85220359,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220359/thumbnails/1.jpg","file_name":"1611.pdf","download_url":"https://www.academia.edu/attachments/85220359/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cluster_Monte_Carlo_and_dynamical_scalin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220359/1611-libre.pdf?1651318768=\u0026response-content-disposition=attachment%3B+filename%3DCluster_Monte_Carlo_and_dynamical_scalin.pdf\u0026Expires=1732453282\u0026Signature=ayjrFZcHyp4KFSWNL3KQZFT7WdsSIqsBGkzTNAs9rfV0dHMCvgDR5gclNV2CSghTLvIbddWaG~sD3C7tFHfNqZQ464dmFOh-SzxZCIPbTRuBVEW3e3UwC5lAs8dXVBzvJit2yUjTozlAn53~flg14imjzU0kkV6LuWaMvXA45edPnr~3YIVcEF3K~v0B6EXSED4TiSMVWkr8tyaGxzU1WWSfOu0wTGIW8niAidc1jzLG-dTx4u4VkJ~TiFDVvQJQ9zy6IChoqUd-ePMkFtjVbbGPThuFX1jN1vcUof-e67ooxcaZDUIvEHm3aOOZtw3dqDLhQR06ng7lA4ejCxq8IA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78033763"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78033763/Comparison_of_methods_to_determine_point_to_point_resistance_in_nearly_rectangular_networks_with_application_to_a_hammock_network"><img alt="Research paper thumbnail of Comparison of methods to determine point-to-point resistance in nearly rectangular networks with application to a 'hammock' network" class="work-thumbnail" src="https://attachments.academia-assets.com/85220358/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78033763/Comparison_of_methods_to_determine_point_to_point_resistance_in_nearly_rectangular_networks_with_application_to_a_hammock_network">Comparison of methods to determine point-to-point resistance in nearly rectangular networks with application to a 'hammock' network</a></div><div class="wp-workCard_item"><span>Royal Society open science</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Considerable progress has recently been made in the development of techniques to exactly determin...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Considerable progress has recently been made in the development of techniques to exactly determine two-point resistances in networks of various topologies. In particular, two types of method have emerged. One is based on potentials and the evaluation of eigenvalues and eigenvectors of the Laplacian matrix associated with the network or its minors. The second method is based on a recurrence relation associated with the distribution of currents in the network. Here, these methods are compared and used to determine the resistance distances between any two nodes of a network with topology of a hammock.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="db42f63eb4287c4bc2dd644466233c9f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85220358,"asset_id":78033763,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85220358/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78033763"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78033763"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78033763; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78033763]").text(description); $(".js-view-count[data-work-id=78033763]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78033763; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78033763']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 78033763, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "db42f63eb4287c4bc2dd644466233c9f" } } $('.js-work-strip[data-work-id=78033763]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78033763,"title":"Comparison of methods to determine point-to-point resistance in nearly rectangular networks with application to a 'hammock' network","translated_title":"","metadata":{"abstract":"Considerable progress has recently been made in the development of techniques to exactly determine two-point resistances in networks of various topologies. In particular, two types of method have emerged. One is based on potentials and the evaluation of eigenvalues and eigenvectors of the Laplacian matrix associated with the network or its minors. The second method is based on a recurrence relation associated with the distribution of currents in the network. Here, these methods are compared and used to determine the resistance distances between any two nodes of a network with topology of a hammock.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Royal Society open science"},"translated_abstract":"Considerable progress has recently been made in the development of techniques to exactly determine two-point resistances in networks of various topologies. In particular, two types of method have emerged. One is based on potentials and the evaluation of eigenvalues and eigenvectors of the Laplacian matrix associated with the network or its minors. The second method is based on a recurrence relation associated with the distribution of currents in the network. Here, these methods are compared and used to determine the resistance distances between any two nodes of a network with topology of a hammock.","internal_url":"https://www.academia.edu/78033763/Comparison_of_methods_to_determine_point_to_point_resistance_in_nearly_rectangular_networks_with_application_to_a_hammock_network","translated_internal_url":"","created_at":"2022-04-30T04:19:24.709-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85220358,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220358/thumbnails/1.jpg","file_name":"1411.pdf","download_url":"https://www.academia.edu/attachments/85220358/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comparison_of_methods_to_determine_point.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220358/1411-libre.pdf?1651318769=\u0026response-content-disposition=attachment%3B+filename%3DComparison_of_methods_to_determine_point.pdf\u0026Expires=1732453282\u0026Signature=dJ90oA5OYA4vuTVa0VughoR5tbhvLU9XWokrQwS9khJU9vr4~zhRS1MY6EW9nPQXyzvopYPx8taKmUB9Dm6v20dYQyWsumVrpZS1ehVeJ16I0emZrErHb0YhNvYxokj~yF-XoPhFhQQpHWgsA1xnLzboBFRRP26Kod3zPk2TKuGcq7tcwGaNknLzhbCYyfFhNGlNXmzNr2WQ2r1eaB9boF1mrZvtZ956wgofENw4DMfQNXUk3Szql1lQLuy-bYUVjgqGcQNvrzTd9I1ZX9cOwuLpIV5Vsns9foyVQpU1dS0vX-YnT9U~3Jce-mHGdhKTcWQkGeo8L~VvRXtg4vNscA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Comparison_of_methods_to_determine_point_to_point_resistance_in_nearly_rectangular_networks_with_application_to_a_hammock_network","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":85220358,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220358/thumbnails/1.jpg","file_name":"1411.pdf","download_url":"https://www.academia.edu/attachments/85220358/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comparison_of_methods_to_determine_point.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220358/1411-libre.pdf?1651318769=\u0026response-content-disposition=attachment%3B+filename%3DComparison_of_methods_to_determine_point.pdf\u0026Expires=1732453282\u0026Signature=dJ90oA5OYA4vuTVa0VughoR5tbhvLU9XWokrQwS9khJU9vr4~zhRS1MY6EW9nPQXyzvopYPx8taKmUB9Dm6v20dYQyWsumVrpZS1ehVeJ16I0emZrErHb0YhNvYxokj~yF-XoPhFhQQpHWgsA1xnLzboBFRRP26Kod3zPk2TKuGcq7tcwGaNknLzhbCYyfFhNGlNXmzNr2WQ2r1eaB9boF1mrZvtZ956wgofENw4DMfQNXUk3Szql1lQLuy-bYUVjgqGcQNvrzTd9I1ZX9cOwuLpIV5Vsns9foyVQpU1dS0vX-YnT9U~3Jce-mHGdhKTcWQkGeo8L~VvRXtg4vNscA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":96098,"name":"Resistance","url":"https://www.academia.edu/Documents/in/Resistance"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="78033762"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/78033762/On_the_Phase_Diagram_of_the_2d_Ising_Model_with_Frustrating_Dipole_Interaction"><img alt="Research paper thumbnail of On the Phase Diagram of the 2d Ising Model with Frustrating Dipole Interaction" class="work-thumbnail" src="https://attachments.academia-assets.com/85220355/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/78033762/On_the_Phase_Diagram_of_the_2d_Ising_Model_with_Frustrating_Dipole_Interaction">On the Phase Diagram of the 2d Ising Model with Frustrating Dipole Interaction</a></div><div class="wp-workCard_item"><span>Ukrainian Journal of Physics</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="046ebfed52511ca72904acd6935a9dde" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85220355,"asset_id":78033762,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85220355/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="78033762"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="78033762"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78033762; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78033762]").text(description); $(".js-view-count[data-work-id=78033762]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78033762; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='78033762']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 78033762, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "046ebfed52511ca72904acd6935a9dde" } } $('.js-work-strip[data-work-id=78033762]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":78033762,"title":"On the Phase Diagram of the 2d Ising Model with Frustrating Dipole Interaction","translated_title":"","metadata":{"publisher":"Co. Ltd. Ukrinformnauka","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Ukrainian Journal of Physics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/78033762/On_the_Phase_Diagram_of_the_2d_Ising_Model_with_Frustrating_Dipole_Interaction","translated_internal_url":"","created_at":"2022-04-30T04:19:24.580-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":57856370,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85220355,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220355/thumbnails/1.jpg","file_name":"1402.pdf","download_url":"https://www.academia.edu/attachments/85220355/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Phase_Diagram_of_the_2d_Ising_Mod.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220355/1402-libre.pdf?1651318766=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Phase_Diagram_of_the_2d_Ising_Mod.pdf\u0026Expires=1732453283\u0026Signature=OpE9j8Dcu1V~EGqHBjTigGnVnbtSM7heWsLHynivtMl0h2uiKfh8sRXd7wIXrLH8FDkDfEG0lbWAI~uF2KvLvgp3y4if4K3IsBCFTc6Bu57RGBUuShgTZcIVOpYTNv81yL55MvXLK~~0rgVcoPGsF-kzxzzZiPLeqRNWYcP7o9WPnnSxqQfJHN--NnnkjJdAe~wwBJey0UhZmfH3N2JfvhkDV4m2-hPVaac3P-lp0QKd68FHMszlc~DHrXku9v3s-qwMT6Yu6jCCU4zOPdT5uIL9ctBeohouX7ZPgQizhBknX0rIcKUzi8dJHBJtIu9J8IRbqnz~e8t8pfrpRDQgpA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_Phase_Diagram_of_the_2d_Ising_Model_with_Frustrating_Dipole_Interaction","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":57856370,"first_name":"Ralph","middle_initials":null,"last_name":"Kenna","page_name":"KennaRalph","domain_name":"independent","created_at":"2016-12-09T08:34:18.408-08:00","display_name":"Ralph Kenna","url":"https://independent.academia.edu/KennaRalph"},"attachments":[{"id":85220355,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85220355/thumbnails/1.jpg","file_name":"1402.pdf","download_url":"https://www.academia.edu/attachments/85220355/download_file?st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&st=MTczMjQ0OTY4Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Phase_Diagram_of_the_2d_Ising_Mod.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85220355/1402-libre.pdf?1651318766=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Phase_Diagram_of_the_2d_Ising_Mod.pdf\u0026Expires=1732453283\u0026Signature=OpE9j8Dcu1V~EGqHBjTigGnVnbtSM7heWsLHynivtMl0h2uiKfh8sRXd7wIXrLH8FDkDfEG0lbWAI~uF2KvLvgp3y4if4K3IsBCFTc6Bu57RGBUuShgTZcIVOpYTNv81yL55MvXLK~~0rgVcoPGsF-kzxzzZiPLeqRNWYcP7o9WPnnSxqQfJHN--NnnkjJdAe~wwBJey0UhZmfH3N2JfvhkDV4m2-hPVaac3P-lp0QKd68FHMszlc~DHrXku9v3s-qwMT6Yu6jCCU4zOPdT5uIL9ctBeohouX7ZPgQizhBknX0rIcKUzi8dJHBJtIu9J8IRbqnz~e8t8pfrpRDQgpA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "53d4522cd87edb278597997177c789b0f0112f0f714d8a1cb488e63edd454b9c", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="nXvZEvt0wRf//XdTLsGjzgtYOLE4pzVycdcnbCYaTm1jnVet/7SzkvHpxvEsCPSHslctnZXMWhICOK5OprL7ig==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/KennaRalph" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="KqNgfgZjHacS+IecHtSCEYE791XJjaJpL4OGKt4TgQ7URe7BAqNvIhzsNj4cHdVYODTieWTmzQlcbA8IXrs06Q==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>