CINXE.COM
Juan Santiago | Stanford University - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Juan Santiago | Stanford University - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="yZSwVO/+FuQU3weuYVnxMHBMDDTtXo8MB3DWS7aCP3w+hTRderISxGBtChg3M/3wksNyk8JREEESvTWxAESniQ==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="juan santiago" /> <meta name="description" content="Juan Santiago, Stanford University: 44 Followers, 8 Following, 377 Research papers. Research interests: Acoustic Modelling, Chemical and Environmental…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '08f5d4bdbf66704049a9b210cd6d28ab7fa9ac6b'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15252,"monthly_visitors":"120 million","monthly_visitor_count":120260779,"monthly_visitor_count_in_millions":120,"user_count":278664686,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1734037780000); window.Aedu.timeDifference = new Date().getTime() - 1734037780000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-0fb6fc03c471832908791ad7ddba619b6165b3ccf7ae0f65cf933f34b0b660a7.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-2eebbf16f94e23df09908fc0eb355e7d088296bc7bbbbe96567743814345fdd9.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-086d9084944b0c8a793ea96ac398b4180db6177bb674e9655034fb25e834c8b4.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://stanford.academia.edu/JuanSantiago" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-7c63369d6bc1d9729936224080f1002d6f378f0ed8d4ed7c2ee00a7b16812651.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago","photo":"/images/s65_no_pic.png","has_photo":false,"department":{"id":3056,"name":"Mechanical Engineering","url":"https://stanford.academia.edu/Departments/Mechanical_Engineering/Documents","university":{"id":69,"name":"Stanford University","url":"https://stanford.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":2140,"name":"Acoustic Modelling","url":"https://www.academia.edu/Documents/in/Acoustic_Modelling"},{"id":273176,"name":"Chemical and Environmental Engineering","url":"https://www.academia.edu/Documents/in/Chemical_and_Environmental_Engineering"},{"id":14981,"name":"Cellular Automata","url":"https://www.academia.edu/Documents/in/Cellular_Automata"},{"id":2963,"name":"Mathematical Biology","url":"https://www.academia.edu/Documents/in/Mathematical_Biology"},{"id":3395,"name":"Nonlinear Dynamics and Stochasticity","url":"https://www.academia.edu/Documents/in/Nonlinear_Dynamics_and_Stochasticity"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://stanford.academia.edu/JuanSantiago","location":"/JuanSantiago","scheme":"https","host":"stanford.academia.edu","port":null,"pathname":"/JuanSantiago","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-8c5055dd-3a18-4c60-9a57-e6e6d3984796"></div> <div id="ProfileCheckPaperUpdate-react-component-8c5055dd-3a18-4c60-9a57-e6e6d3984796"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Juan Santiago</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://stanford.academia.edu/">Stanford University</a>, <a class="u-tcGrayDarker" href="https://stanford.academia.edu/Departments/Mechanical_Engineering/Documents">Mechanical Engineering</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Juan" data-follow-user-id="33619649" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="33619649"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">44</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">8</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">6</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="33619649">View All (6)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33619649" href="https://www.academia.edu/Documents/in/Acoustic_Modelling"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://stanford.academia.edu/JuanSantiago","location":"/JuanSantiago","scheme":"https","host":"stanford.academia.edu","port":null,"pathname":"/JuanSantiago","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Acoustic Modelling"]}" data-trace="false" data-dom-id="Pill-react-component-33430a59-e1d8-479b-af1e-ed5b6beea7f5"></div> <div id="Pill-react-component-33430a59-e1d8-479b-af1e-ed5b6beea7f5"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33619649" href="https://www.academia.edu/Documents/in/Chemical_and_Environmental_Engineering"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Chemical and Environmental Engineering"]}" data-trace="false" data-dom-id="Pill-react-component-dd20c909-66da-443f-835c-51f3c3fe9531"></div> <div id="Pill-react-component-dd20c909-66da-443f-835c-51f3c3fe9531"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33619649" href="https://www.academia.edu/Documents/in/Cellular_Automata"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Cellular Automata"]}" data-trace="false" data-dom-id="Pill-react-component-831625d4-4910-4285-92ae-1c75f3d1348f"></div> <div id="Pill-react-component-831625d4-4910-4285-92ae-1c75f3d1348f"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33619649" href="https://www.academia.edu/Documents/in/Mathematical_Biology"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Mathematical Biology"]}" data-trace="false" data-dom-id="Pill-react-component-85d72782-6e9c-458b-9ada-52425913b38c"></div> <div id="Pill-react-component-85d72782-6e9c-458b-9ada-52425913b38c"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33619649" href="https://www.academia.edu/Documents/in/Nonlinear_Dynamics_and_Stochasticity"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Nonlinear Dynamics and Stochasticity"]}" data-trace="false" data-dom-id="Pill-react-component-22f12afe-4104-445d-a45a-f2d21b4078d0"></div> <div id="Pill-react-component-22f12afe-4104-445d-a45a-f2d21b4078d0"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Juan Santiago</h3></div><div class="js-work-strip profile--work_container" data-work-id="126046798"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046798/Stream_lamination_and_rapid_mixing_in_a_microfluidic_jet_for_X_ray_spectroscopy_studies"><img alt="Research paper thumbnail of Stream lamination and rapid mixing in a microfluidic jet for X-ray spectroscopy studies" class="work-thumbnail" src="https://attachments.academia-assets.com/119984106/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046798/Stream_lamination_and_rapid_mixing_in_a_microfluidic_jet_for_X_ray_spectroscopy_studies">Stream lamination and rapid mixing in a microfluidic jet for X-ray spectroscopy studies</a></div><div class="wp-workCard_item"><span>Flow</span><span>, Dec 31, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Microfluidic mixers offer new possibilities for the study of fast reaction kinetics down to the m...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Microfluidic mixers offer new possibilities for the study of fast reaction kinetics down to the microsecond time scale, and methods such as soft X-ray absorption spectroscopy are powerful analysis techniques. These systems impose challenging constraints on mixing time scales, sample volume, detection region size and component materials. The current work presents a novel micromixer and jet device which aims to address these limitations. The system uses a so-called 'theta' mixer consisting of two sintered and fused glass capillaries. Sample and carrier fluids are injected separately into the inlets of the adjacent capillaries. At the downstream end, the two streams exit two micron-scale adjoining nozzles and form a single free-standing jet. The flow-rate difference between the two streams results in the rapid acceleration and lamination of the sample stream. This creates a small transverse dimension and induces diffusive mixing of the sample and carrier stream solutions within a time scale of 0.9 microseconds. The reaction occurs at or very near a free surface so that reactants and products are more directly accessible to interrogation using soft X-ray. We use a simple diffusion model and quantitative measurements of fluorescence quenching (of fluorescein with potassium iodide) to characterize the mixing dynamics across flow-rate ratios. Impact Statement This study presents the design, demonstration and quantification of a novel mixer designed to address constraints associated with reaction rate studies using soft X-ray spectroscopy. Low-flow-rate, rapid micromixers typically use laminar flow focusing where a sample stream is confined within a carrier stream and, often, within a microfluidic device. This limits the possible spectroscopic methods to hard X-ray spectroscopy, including significant absorption by the carrier stream and microfluidic device, and reduced energy resolution. In this study, the sample is laminated at the surface of a free jet to allow direct optical access to the mixing zone. We demonstrate and quantify a mixing time scale of 0.9 µs. The mixing and reaction occur within approximately 0.1 µm from the surface of the jet. This micromixer thus enables the analysis of reactions with fast kinetics using techniques with demanding experimental constraints such as the 3d transition metal Ledge X-ray absorption spectroscopy (XAS).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="55782ee93b56a53548032083271c1a0d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984106,"asset_id":126046798,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984106/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046798"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046798"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046798; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046798]").text(description); $(".js-view-count[data-work-id=126046798]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046798; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046798']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046798, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "55782ee93b56a53548032083271c1a0d" } } $('.js-work-strip[data-work-id=126046798]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046798,"title":"Stream lamination and rapid mixing in a microfluidic jet for X-ray spectroscopy studies","translated_title":"","metadata":{"publisher":"Cambridge University Press","grobid_abstract":"Microfluidic mixers offer new possibilities for the study of fast reaction kinetics down to the microsecond time scale, and methods such as soft X-ray absorption spectroscopy are powerful analysis techniques. These systems impose challenging constraints on mixing time scales, sample volume, detection region size and component materials. The current work presents a novel micromixer and jet device which aims to address these limitations. The system uses a so-called 'theta' mixer consisting of two sintered and fused glass capillaries. Sample and carrier fluids are injected separately into the inlets of the adjacent capillaries. At the downstream end, the two streams exit two micron-scale adjoining nozzles and form a single free-standing jet. The flow-rate difference between the two streams results in the rapid acceleration and lamination of the sample stream. This creates a small transverse dimension and induces diffusive mixing of the sample and carrier stream solutions within a time scale of 0.9 microseconds. The reaction occurs at or very near a free surface so that reactants and products are more directly accessible to interrogation using soft X-ray. We use a simple diffusion model and quantitative measurements of fluorescence quenching (of fluorescein with potassium iodide) to characterize the mixing dynamics across flow-rate ratios. Impact Statement This study presents the design, demonstration and quantification of a novel mixer designed to address constraints associated with reaction rate studies using soft X-ray spectroscopy. Low-flow-rate, rapid micromixers typically use laminar flow focusing where a sample stream is confined within a carrier stream and, often, within a microfluidic device. This limits the possible spectroscopic methods to hard X-ray spectroscopy, including significant absorption by the carrier stream and microfluidic device, and reduced energy resolution. In this study, the sample is laminated at the surface of a free jet to allow direct optical access to the mixing zone. We demonstrate and quantify a mixing time scale of 0.9 µs. The mixing and reaction occur within approximately 0.1 µm from the surface of the jet. This micromixer thus enables the analysis of reactions with fast kinetics using techniques with demanding experimental constraints such as the 3d transition metal Ledge X-ray absorption spectroscopy (XAS).","publication_date":{"day":31,"month":12,"year":2022,"errors":{}},"publication_name":"Flow","grobid_abstract_attachment_id":119984106},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046798/Stream_lamination_and_rapid_mixing_in_a_microfluidic_jet_for_X_ray_spectroscopy_studies","translated_internal_url":"","created_at":"2024-12-03T11:14:24.300-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984106,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984106/thumbnails/1.jpg","file_name":"div-class-title-stream-lamination-and-rapid-mixing-in-a-microfluidic-jet-for-x-ray-spectroscopy-studies-div.pdf","download_url":"https://www.academia.edu/attachments/119984106/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Stream_lamination_and_rapid_mixing_in_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984106/div-class-title-stream-lamination-and-rapid-mixing-in-a-microfluidic-jet-for-x-ray-spectroscopy-studies-div-libre.pdf?1733255840=\u0026response-content-disposition=attachment%3B+filename%3DStream_lamination_and_rapid_mixing_in_a.pdf\u0026Expires=1733909822\u0026Signature=DUTO2zi7GfdOa2W3uLg9wCx9Zl34OtL3qaSNnlZf6gfoeKG5wOzAGXq~sEs3~5KvoghNyqbIJgpAblcGM5G0J5cOPmXtI-SLAkoSe~924w9gPV8eQEcXnDmtUtzbVNoP2eM9iBrKY7K0YYXhBvlnOaclBHhrnedGJk6JMJXa2FniZknn6WSxdUgYdHfxcI8K4h3pO1nh-PndWp799tPMLni6tQt~zvjlnqHP5dCeVel7wITBycNObrPq0aWdaEzl5p7KjaWZ-v20JyYitV~RRqggoSGEgfKgOUzakOug5118CwnFqZeolrgkDdAmN1vttjoASIhzq85Co7Q7u0A0PA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Stream_lamination_and_rapid_mixing_in_a_microfluidic_jet_for_X_ray_spectroscopy_studies","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"Microfluidic mixers offer new possibilities for the study of fast reaction kinetics down to the microsecond time scale, and methods such as soft X-ray absorption spectroscopy are powerful analysis techniques. These systems impose challenging constraints on mixing time scales, sample volume, detection region size and component materials. The current work presents a novel micromixer and jet device which aims to address these limitations. The system uses a so-called 'theta' mixer consisting of two sintered and fused glass capillaries. Sample and carrier fluids are injected separately into the inlets of the adjacent capillaries. At the downstream end, the two streams exit two micron-scale adjoining nozzles and form a single free-standing jet. The flow-rate difference between the two streams results in the rapid acceleration and lamination of the sample stream. This creates a small transverse dimension and induces diffusive mixing of the sample and carrier stream solutions within a time scale of 0.9 microseconds. The reaction occurs at or very near a free surface so that reactants and products are more directly accessible to interrogation using soft X-ray. We use a simple diffusion model and quantitative measurements of fluorescence quenching (of fluorescein with potassium iodide) to characterize the mixing dynamics across flow-rate ratios. Impact Statement This study presents the design, demonstration and quantification of a novel mixer designed to address constraints associated with reaction rate studies using soft X-ray spectroscopy. Low-flow-rate, rapid micromixers typically use laminar flow focusing where a sample stream is confined within a carrier stream and, often, within a microfluidic device. This limits the possible spectroscopic methods to hard X-ray spectroscopy, including significant absorption by the carrier stream and microfluidic device, and reduced energy resolution. In this study, the sample is laminated at the surface of a free jet to allow direct optical access to the mixing zone. We demonstrate and quantify a mixing time scale of 0.9 µs. The mixing and reaction occur within approximately 0.1 µm from the surface of the jet. This micromixer thus enables the analysis of reactions with fast kinetics using techniques with demanding experimental constraints such as the 3d transition metal Ledge X-ray absorption spectroscopy (XAS).","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984106,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984106/thumbnails/1.jpg","file_name":"div-class-title-stream-lamination-and-rapid-mixing-in-a-microfluidic-jet-for-x-ray-spectroscopy-studies-div.pdf","download_url":"https://www.academia.edu/attachments/119984106/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Stream_lamination_and_rapid_mixing_in_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984106/div-class-title-stream-lamination-and-rapid-mixing-in-a-microfluidic-jet-for-x-ray-spectroscopy-studies-div-libre.pdf?1733255840=\u0026response-content-disposition=attachment%3B+filename%3DStream_lamination_and_rapid_mixing_in_a.pdf\u0026Expires=1733909822\u0026Signature=DUTO2zi7GfdOa2W3uLg9wCx9Zl34OtL3qaSNnlZf6gfoeKG5wOzAGXq~sEs3~5KvoghNyqbIJgpAblcGM5G0J5cOPmXtI-SLAkoSe~924w9gPV8eQEcXnDmtUtzbVNoP2eM9iBrKY7K0YYXhBvlnOaclBHhrnedGJk6JMJXa2FniZknn6WSxdUgYdHfxcI8K4h3pO1nh-PndWp799tPMLni6tQt~zvjlnqHP5dCeVel7wITBycNObrPq0aWdaEzl5p7KjaWZ-v20JyYitV~RRqggoSGEgfKgOUzakOug5118CwnFqZeolrgkDdAmN1vttjoASIhzq85Co7Q7u0A0PA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":516,"name":"Optics","url":"https://www.academia.edu/Documents/in/Optics"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":4656,"name":"Chromatography","url":"https://www.academia.edu/Documents/in/Chromatography"},{"id":5427,"name":"Spectroscopy","url":"https://www.academia.edu/Documents/in/Spectroscopy"},{"id":7936,"name":"Quantum Mechanics","url":"https://www.academia.edu/Documents/in/Quantum_Mechanics"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"},{"id":72413,"name":"Flow","url":"https://www.academia.edu/Documents/in/Flow"},{"id":83315,"name":"Diffusion","url":"https://www.academia.edu/Documents/in/Diffusion"},{"id":464372,"name":"Solenoid Valve","url":"https://www.academia.edu/Documents/in/Solenoid_Valve"},{"id":895043,"name":"Micromixer","url":"https://www.academia.edu/Documents/in/Micromixer"}],"urls":[{"id":45906064,"url":"https://www.cambridge.org/core/services/aop-cambridge-core/content/view/1A06DE5E8315DB9FC210FB384C757ACE/S2633425923000156a.pdf/div-class-title-stream-lamination-and-rapid-mixing-in-a-microfluidic-jet-for-x-ray-spectroscopy-studies-div.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046797"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046797/Frequency_analysis_and_resonant_operation_for_efficient_capacitive_deionization"><img alt="Research paper thumbnail of Frequency analysis and resonant operation for efficient capacitive deionization" class="work-thumbnail" src="https://attachments.academia-assets.com/119984104/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046797/Frequency_analysis_and_resonant_operation_for_efficient_capacitive_deionization">Frequency analysis and resonant operation for efficient capacitive deionization</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Jun 7, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Capacitive deionization (CDI) performance metrics can vary widely with operating methods. Convent...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Capacitive deionization (CDI) performance metrics can vary widely with operating methods. Conventional CDI operating methods such as constant current and constant voltage show advantages in either energy or salt removal performance, but not both. We here develop a theory around and experimentally demonstrate a new operation for CDI that uses sinusoidal forcing voltage (or sinusoidal current). We use a dynamic system modeling approach, and quantify the frequency response (amplitude and phase) of CDI effluent concentration. Using a wide range of operating conditions, we demonstrate that CDI can be modeled as a linear time invariant system. We validate this model with experiments, and show that a sinusoid voltage operation can simultaneously achieve high salt removal and strong energy performance, thus very likely making it superior to other conventional operating methods. Based on the underlying coupled phenomena of electrical charge (and ionic) transfer with bulk advection in CDI, we derive and validate experimentally the concept of using sinusoidal voltage forcing functions to achieve resonance-type 2 operation for CDI. Despite the complexities of the system, we find a simple relation for the resonant time scale: the resonant time period (frequency) is proportional (inversely proportional) to the geometric mean of the flow residence time and the electrical (RC) charging time. Operation at resonance implies the optimal balance between absolute amount of salt removed (in moles) and dilution (depending on the feed volume processed), thus resulting in the maximum average concentration reduction for the desalinated water. We further develop our model to generalize the resonant timescale operation, and provide responses for square and triangular voltage waveforms as two examples. To this end, we develop a general tool that uses Fourier analysis to construct CDI effluent dynamics for arbitrary input waveforms. Using this tool, we show that most of the salt removal (~95%) for square and triangular voltage forcing waveforms is achieved by the fundamental Fourier (sinusoidal) mode. The frequency of higher Fourier modes precludes high flow efficiency for these modes, so these modes consume additional energy for minimal additional salt removed. This deficiency of higher frequency modes further highlights the advantage of DCoffset sinusoidal forcing for CDI operation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9d1b97c79bb8974d6b7fb011eaa58cd0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984104,"asset_id":126046797,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984104/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046797"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046797"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046797; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046797]").text(description); $(".js-view-count[data-work-id=126046797]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046797; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046797']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046797, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9d1b97c79bb8974d6b7fb011eaa58cd0" } } $('.js-work-strip[data-work-id=126046797]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046797,"title":"Frequency analysis and resonant operation for efficient capacitive deionization","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"Capacitive deionization (CDI) performance metrics can vary widely with operating methods. Conventional CDI operating methods such as constant current and constant voltage show advantages in either energy or salt removal performance, but not both. We here develop a theory around and experimentally demonstrate a new operation for CDI that uses sinusoidal forcing voltage (or sinusoidal current). We use a dynamic system modeling approach, and quantify the frequency response (amplitude and phase) of CDI effluent concentration. Using a wide range of operating conditions, we demonstrate that CDI can be modeled as a linear time invariant system. We validate this model with experiments, and show that a sinusoid voltage operation can simultaneously achieve high salt removal and strong energy performance, thus very likely making it superior to other conventional operating methods. Based on the underlying coupled phenomena of electrical charge (and ionic) transfer with bulk advection in CDI, we derive and validate experimentally the concept of using sinusoidal voltage forcing functions to achieve resonance-type 2 operation for CDI. Despite the complexities of the system, we find a simple relation for the resonant time scale: the resonant time period (frequency) is proportional (inversely proportional) to the geometric mean of the flow residence time and the electrical (RC) charging time. Operation at resonance implies the optimal balance between absolute amount of salt removed (in moles) and dilution (depending on the feed volume processed), thus resulting in the maximum average concentration reduction for the desalinated water. We further develop our model to generalize the resonant timescale operation, and provide responses for square and triangular voltage waveforms as two examples. To this end, we develop a general tool that uses Fourier analysis to construct CDI effluent dynamics for arbitrary input waveforms. Using this tool, we show that most of the salt removal (~95%) for square and triangular voltage forcing waveforms is achieved by the fundamental Fourier (sinusoidal) mode. The frequency of higher Fourier modes precludes high flow efficiency for these modes, so these modes consume additional energy for minimal additional salt removed. This deficiency of higher frequency modes further highlights the advantage of DCoffset sinusoidal forcing for CDI operation.","publication_date":{"day":7,"month":6,"year":2018,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":119984104},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046797/Frequency_analysis_and_resonant_operation_for_efficient_capacitive_deionization","translated_internal_url":"","created_at":"2024-12-03T11:14:23.990-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984104,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984104/thumbnails/1.jpg","file_name":"1806.02859.pdf","download_url":"https://www.academia.edu/attachments/119984104/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Frequency_analysis_and_resonant_operatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984104/1806.02859-libre.pdf?1733255884=\u0026response-content-disposition=attachment%3B+filename%3DFrequency_analysis_and_resonant_operatio.pdf\u0026Expires=1733909822\u0026Signature=B6ya38eb~0DDazFYDm6GoUs21S5zdxhjIq~C-YY76dqrcShgWifW1q--iVWsuOCTO6y8oChE2Ueh2gel6A3T7icI9Sh6thLrr-AjIwp8auMyBMJtgdLjnvUUpGfmqQ~ReQeOhOurxB2mk8JzuS~yLFz6xl3Xok5a7rth6E~qvNz6oYKmSgaf51LLYoIIeZkFf1hrn7fXwWBTpIjEdW~CyQMw6cGQOwkF5xASzPSSraNAfs7-C7UzVzLpKoYI6HGp2AGStnF7FITRGiImP9M4dIoEsmXstmgYx6nsk-FbCJ2nWOEwZ6pB0zvU0KAJkd4JI3BOF-xEu~ShQ2l0AdvGZw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Frequency_analysis_and_resonant_operation_for_efficient_capacitive_deionization","translated_slug":"","page_count":52,"language":"en","content_type":"Work","summary":"Capacitive deionization (CDI) performance metrics can vary widely with operating methods. Conventional CDI operating methods such as constant current and constant voltage show advantages in either energy or salt removal performance, but not both. We here develop a theory around and experimentally demonstrate a new operation for CDI that uses sinusoidal forcing voltage (or sinusoidal current). We use a dynamic system modeling approach, and quantify the frequency response (amplitude and phase) of CDI effluent concentration. Using a wide range of operating conditions, we demonstrate that CDI can be modeled as a linear time invariant system. We validate this model with experiments, and show that a sinusoid voltage operation can simultaneously achieve high salt removal and strong energy performance, thus very likely making it superior to other conventional operating methods. Based on the underlying coupled phenomena of electrical charge (and ionic) transfer with bulk advection in CDI, we derive and validate experimentally the concept of using sinusoidal voltage forcing functions to achieve resonance-type 2 operation for CDI. Despite the complexities of the system, we find a simple relation for the resonant time scale: the resonant time period (frequency) is proportional (inversely proportional) to the geometric mean of the flow residence time and the electrical (RC) charging time. Operation at resonance implies the optimal balance between absolute amount of salt removed (in moles) and dilution (depending on the feed volume processed), thus resulting in the maximum average concentration reduction for the desalinated water. We further develop our model to generalize the resonant timescale operation, and provide responses for square and triangular voltage waveforms as two examples. To this end, we develop a general tool that uses Fourier analysis to construct CDI effluent dynamics for arbitrary input waveforms. Using this tool, we show that most of the salt removal (~95%) for square and triangular voltage forcing waveforms is achieved by the fundamental Fourier (sinusoidal) mode. The frequency of higher Fourier modes precludes high flow efficiency for these modes, so these modes consume additional energy for minimal additional salt removed. This deficiency of higher frequency modes further highlights the advantage of DCoffset sinusoidal forcing for CDI operation.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984104,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984104/thumbnails/1.jpg","file_name":"1806.02859.pdf","download_url":"https://www.academia.edu/attachments/119984104/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Frequency_analysis_and_resonant_operatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984104/1806.02859-libre.pdf?1733255884=\u0026response-content-disposition=attachment%3B+filename%3DFrequency_analysis_and_resonant_operatio.pdf\u0026Expires=1733909822\u0026Signature=B6ya38eb~0DDazFYDm6GoUs21S5zdxhjIq~C-YY76dqrcShgWifW1q--iVWsuOCTO6y8oChE2Ueh2gel6A3T7icI9Sh6thLrr-AjIwp8auMyBMJtgdLjnvUUpGfmqQ~ReQeOhOurxB2mk8JzuS~yLFz6xl3Xok5a7rth6E~qvNz6oYKmSgaf51LLYoIIeZkFf1hrn7fXwWBTpIjEdW~CyQMw6cGQOwkF5xASzPSSraNAfs7-C7UzVzLpKoYI6HGp2AGStnF7FITRGiImP9M4dIoEsmXstmgYx6nsk-FbCJ2nWOEwZ6pB0zvU0KAJkd4JI3BOF-xEu~ShQ2l0AdvGZw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984109,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984109/thumbnails/1.jpg","file_name":"1806.02859.pdf","download_url":"https://www.academia.edu/attachments/119984109/download_file","bulk_download_file_name":"Frequency_analysis_and_resonant_operatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984109/1806.02859-libre.pdf?1733255864=\u0026response-content-disposition=attachment%3B+filename%3DFrequency_analysis_and_resonant_operatio.pdf\u0026Expires=1733909822\u0026Signature=g97oiP8bgVE8BgQ90GT2pvejea55NPdx4lQn8vM9SsjZpvTBZp4X5JTqcr4rzvCfzDQ-BQ2Mgj8Me37DfYAiNkO8YtnDqMaA2p~ZwtUrt-TRLKyKKxVmJU92keGujrOQDq7CIGtopZA66Y078-Bm6hhvfPy2kzBDKR2h73JAS9j6xkKnguy5To39KMmvRTUlpMo9zjsKlmmuDvk1Hz9AwGb~kxGQfsPZ1n0L0x3nWms2vJVGq9rPFnQb67~EGz8hyOeRjtQxrJdkk6~JsLKLftE5r-8R9PjPZOQgpdZ6r~w6ydUBCVs8pVLQdwZpeftnsIR~Zw2dLfTRvw9Yrd9UHw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2215,"name":"Water","url":"https://www.academia.edu/Documents/in/Water"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":389165,"name":"Voltage","url":"https://www.academia.edu/Documents/in/Voltage"},{"id":3576986,"name":"Waveform","url":"https://www.academia.edu/Documents/in/Waveform"}],"urls":[{"id":45906063,"url":"https://arxiv.org/pdf/1806.02859"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046796"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046796/Coupling_Isotachophoresis_with_Affinity_Chromatography_for_Rapid_and_Selective_Purification_with_High_Column_Utilization_Part_1_Theory"><img alt="Research paper thumbnail of Coupling Isotachophoresis with Affinity Chromatography for Rapid and Selective Purification with High Column Utilization, Part 1: Theory" class="work-thumbnail" src="https://attachments.academia-assets.com/119984108/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046796/Coupling_Isotachophoresis_with_Affinity_Chromatography_for_Rapid_and_Selective_Purification_with_High_Column_Utilization_Part_1_Theory">Coupling Isotachophoresis with Affinity Chromatography for Rapid and Selective Purification with High Column Utilization, Part 1: Theory</a></div><div class="wp-workCard_item"><span>Analytical Chemistry</span><span>, Jun 17, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present a novel technique that couples isotachophoresis (ITP) with affinity chromatography (AC...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present a novel technique that couples isotachophoresis (ITP) with affinity chromatography (AC) to achieve rapid, selective purification with high column utilization. ITP simultaneously preconcentrates an analyte and purifies it, based on differences in mobility of sample components, excluding species that may foul or compete with the target at the affinity substrate. ITP preconcentration accelerates the affinity reaction, reducing assay time, improving column utilization, and allowing for capture of targets with higher dissociation constants. Furthermore, ITP-AC separates the target and contaminants into nondiffusing zones, thus achieving high resolution in a short distance and time. We present an analytical model for spatiotemporal dynamics of ITP-AC. We identify and explore the effect of key process parameters, including target distribution width and height, ITP zone velocity, forward and reverse reaction constants, and probe concentration on necessary affinity region length, assay time, and capture efficiency. Our analytical approach shows collapse of these variables to three nondimensional parameters. The analysis yields simple analytical relations for capture length and capture time in relevant ITP-AC regimes, and it demonstrates how ITP greatly reduces assay time and improves column utilization. In the second part of this two-part series, we will present experimental validation of our model and demonstrate ITP-AC separation of the target from 10,000-fold more-abundant contaminants.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ddb108186452dd12748724bd418d06e8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984108,"asset_id":126046796,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984108/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046796"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046796"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046796; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046796]").text(description); $(".js-view-count[data-work-id=126046796]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046796; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046796']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046796, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ddb108186452dd12748724bd418d06e8" } } $('.js-work-strip[data-work-id=126046796]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046796,"title":"Coupling Isotachophoresis with Affinity Chromatography for Rapid and Selective Purification with High Column Utilization, Part 1: Theory","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"We present a novel technique that couples isotachophoresis (ITP) with affinity chromatography (AC) to achieve rapid, selective purification with high column utilization. ITP simultaneously preconcentrates an analyte and purifies it, based on differences in mobility of sample components, excluding species that may foul or compete with the target at the affinity substrate. ITP preconcentration accelerates the affinity reaction, reducing assay time, improving column utilization, and allowing for capture of targets with higher dissociation constants. Furthermore, ITP-AC separates the target and contaminants into nondiffusing zones, thus achieving high resolution in a short distance and time. We present an analytical model for spatiotemporal dynamics of ITP-AC. We identify and explore the effect of key process parameters, including target distribution width and height, ITP zone velocity, forward and reverse reaction constants, and probe concentration on necessary affinity region length, assay time, and capture efficiency. Our analytical approach shows collapse of these variables to three nondimensional parameters. The analysis yields simple analytical relations for capture length and capture time in relevant ITP-AC regimes, and it demonstrates how ITP greatly reduces assay time and improves column utilization. In the second part of this two-part series, we will present experimental validation of our model and demonstrate ITP-AC separation of the target from 10,000-fold more-abundant contaminants.","publication_date":{"day":17,"month":6,"year":2014,"errors":{}},"publication_name":"Analytical Chemistry","grobid_abstract_attachment_id":119984108},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046796/Coupling_Isotachophoresis_with_Affinity_Chromatography_for_Rapid_and_Selective_Purification_with_High_Column_Utilization_Part_1_Theory","translated_internal_url":"","created_at":"2024-12-03T11:14:23.726-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984108,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984108/thumbnails/1.jpg","file_name":"ac5011052.pdf","download_url":"https://www.academia.edu/attachments/119984108/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Coupling_Isotachophoresis_with_Affinity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984108/ac5011052-libre.pdf?1733255837=\u0026response-content-disposition=attachment%3B+filename%3DCoupling_Isotachophoresis_with_Affinity.pdf\u0026Expires=1734027722\u0026Signature=aLiJuNVM64q2lfNvl56QZooTFaXwVAZpMnuxuTWPF6wOvbXhqQBTQJ3B4Tlw06Gno-NFzjn48fh2Bxej2QzLzJ4XbRqPn8RLELLrl2e75aRUDcjRRp7tqpOrl9AJD4mpc8SDn5iSMRKsmoHP-SJiFaWFZgair6l~OuTGT2e3VCjt9Gopbe12yB5qIGw0ZR18U1ith4oH3nrFFZUCVd3DxLd1By8vm1cb7ZShC~I7XXlaPK8hZitL-R5bVLN7CBG9H9Z8qAwMB3Lh-7FzxLSyCM15EPBHteVGqgzDE52FYBp2dyul95vkAUrWJycCwh65M3Y3mhJBaAWvVBA25qyq9A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Coupling_Isotachophoresis_with_Affinity_Chromatography_for_Rapid_and_Selective_Purification_with_High_Column_Utilization_Part_1_Theory","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"We present a novel technique that couples isotachophoresis (ITP) with affinity chromatography (AC) to achieve rapid, selective purification with high column utilization. ITP simultaneously preconcentrates an analyte and purifies it, based on differences in mobility of sample components, excluding species that may foul or compete with the target at the affinity substrate. ITP preconcentration accelerates the affinity reaction, reducing assay time, improving column utilization, and allowing for capture of targets with higher dissociation constants. Furthermore, ITP-AC separates the target and contaminants into nondiffusing zones, thus achieving high resolution in a short distance and time. We present an analytical model for spatiotemporal dynamics of ITP-AC. We identify and explore the effect of key process parameters, including target distribution width and height, ITP zone velocity, forward and reverse reaction constants, and probe concentration on necessary affinity region length, assay time, and capture efficiency. Our analytical approach shows collapse of these variables to three nondimensional parameters. The analysis yields simple analytical relations for capture length and capture time in relevant ITP-AC regimes, and it demonstrates how ITP greatly reduces assay time and improves column utilization. In the second part of this two-part series, we will present experimental validation of our model and demonstrate ITP-AC separation of the target from 10,000-fold more-abundant contaminants.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984108,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984108/thumbnails/1.jpg","file_name":"ac5011052.pdf","download_url":"https://www.academia.edu/attachments/119984108/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Coupling_Isotachophoresis_with_Affinity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984108/ac5011052-libre.pdf?1733255837=\u0026response-content-disposition=attachment%3B+filename%3DCoupling_Isotachophoresis_with_Affinity.pdf\u0026Expires=1734027722\u0026Signature=aLiJuNVM64q2lfNvl56QZooTFaXwVAZpMnuxuTWPF6wOvbXhqQBTQJ3B4Tlw06Gno-NFzjn48fh2Bxej2QzLzJ4XbRqPn8RLELLrl2e75aRUDcjRRp7tqpOrl9AJD4mpc8SDn5iSMRKsmoHP-SJiFaWFZgair6l~OuTGT2e3VCjt9Gopbe12yB5qIGw0ZR18U1ith4oH3nrFFZUCVd3DxLd1By8vm1cb7ZShC~I7XXlaPK8hZitL-R5bVLN7CBG9H9Z8qAwMB3Lh-7FzxLSyCM15EPBHteVGqgzDE52FYBp2dyul95vkAUrWJycCwh65M3Y3mhJBaAWvVBA25qyq9A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984105,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984105/thumbnails/1.jpg","file_name":"ac5011052.pdf","download_url":"https://www.academia.edu/attachments/119984105/download_file","bulk_download_file_name":"Coupling_Isotachophoresis_with_Affinity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984105/ac5011052-libre.pdf?1733255847=\u0026response-content-disposition=attachment%3B+filename%3DCoupling_Isotachophoresis_with_Affinity.pdf\u0026Expires=1734027722\u0026Signature=B2-2nr5XAFBgBKZ8HQF~wKSBm1yIdUQ7OdhaItHKe2GkmHorczY0iCuhwasBmxH~Koon2VjdwT4VkEmGbDwG2Ja4OLLTysLoLxSnxkbjL-klksC35es2GyzGGZWxByLi7DwH5jts4BwmhINgpeoZUdBBXvyz8bVwy6uH9vwR8qrBqsPLpO7ZAm~2BER9cWTxi7fo7AjuDWRTgZtcATHq6d2BS2fcZjey6nlk4B4V3fmtsntMSSTIkSVRvcp8gLe7JGpuXmGxiMBUdSToiqUcPDSA~Kkc9hVxJMihal4tQx5VHyBhYeszr1l~ELJeD-SSE5y1lvlhCDnJUKjV-MDFGA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry"},{"id":4656,"name":"Chromatography","url":"https://www.academia.edu/Documents/in/Chromatography"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":201241,"name":"Affinity chromatography","url":"https://www.academia.edu/Documents/in/Affinity_chromatography"},{"id":205770,"name":"Isotachophoresis","url":"https://www.academia.edu/Documents/in/Isotachophoresis"},{"id":1145520,"name":"Equipment Design","url":"https://www.academia.edu/Documents/in/Equipment_Design"},{"id":1453163,"name":"Dissociation Constant","url":"https://www.academia.edu/Documents/in/Dissociation_Constant"}],"urls":[{"id":45906062,"url":"https://pubs.acs.org/doi/pdf/10.1021/ac5011052"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046795"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/126046795/On_chip_Isotachophoresis_for_Separation_of_Ions_and_Purification_of_Nucleic_Acids"><img alt="Research paper thumbnail of On-chip Isotachophoresis for Separation of Ions and Purification of Nucleic Acids" class="work-thumbnail" src="https://attachments.academia-assets.com/119984102/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/126046795/On_chip_Isotachophoresis_for_Separation_of_Ions_and_Purification_of_Nucleic_Acids">On-chip Isotachophoresis for Separation of Ions and Purification of Nucleic Acids</a></div><div class="wp-workCard_item"><span>Journal of Visualized Experiments</span><span>, Mar 2, 2012</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d297c8ee4dc890b78f31de360cdc007c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984102,"asset_id":126046795,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984102/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046795"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046795"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046795; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046795]").text(description); $(".js-view-count[data-work-id=126046795]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046795; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046795']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046795, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d297c8ee4dc890b78f31de360cdc007c" } } $('.js-work-strip[data-work-id=126046795]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046795,"title":"On-chip Isotachophoresis for Separation of Ions and Purification of Nucleic Acids","translated_title":"","metadata":{"publisher":"MyJOVE","publication_date":{"day":2,"month":3,"year":2012,"errors":{}},"publication_name":"Journal of Visualized Experiments"},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046795/On_chip_Isotachophoresis_for_Separation_of_Ions_and_Purification_of_Nucleic_Acids","translated_internal_url":"","created_at":"2024-12-03T11:14:23.485-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984102,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984102/thumbnails/1.jpg","file_name":"on-chip-isotachophoresis-for-separation-ions-purification-nucleic.pdf","download_url":"https://www.academia.edu/attachments/119984102/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_chip_Isotachophoresis_for_Separation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984102/on-chip-isotachophoresis-for-separation-ions-purification-nucleic-libre.pdf?1733255843=\u0026response-content-disposition=attachment%3B+filename%3DOn_chip_Isotachophoresis_for_Separation.pdf\u0026Expires=1734027722\u0026Signature=Qtptg0xjNb5nlBG26usMNJXYKQnLNkUiIRsCnBOR3URpnE5JCXWN-wUyISFyUiZPXH0EHtclus7hsKZsoFupFl5cUy7bT15lbBvvuEsVIcmhyMNrLtxVGlN~alWpUZbYBEGyZwWBSa7lhJlN~AeTUcwYPkNHUiswpNV86nPkgSwrBJ0NLy9IJePQ3-TSg1WekcE8Xmq6DnaJQEwqVjmsckmXDPYQjtujAxRvN2PLpUoN9eMb4eE-NjaAfABubOquFunqW1cN69I3nbMz35TOjUIO4W7Zzg7Py2BE54wbIbq6I2s11b4QG0X7H3U606s7wshZJnLCX7WNtl3BpAuy2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_chip_Isotachophoresis_for_Separation_of_Ions_and_Purification_of_Nucleic_Acids","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":null,"owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984102,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984102/thumbnails/1.jpg","file_name":"on-chip-isotachophoresis-for-separation-ions-purification-nucleic.pdf","download_url":"https://www.academia.edu/attachments/119984102/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_chip_Isotachophoresis_for_Separation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984102/on-chip-isotachophoresis-for-separation-ions-purification-nucleic-libre.pdf?1733255843=\u0026response-content-disposition=attachment%3B+filename%3DOn_chip_Isotachophoresis_for_Separation.pdf\u0026Expires=1734027722\u0026Signature=Qtptg0xjNb5nlBG26usMNJXYKQnLNkUiIRsCnBOR3URpnE5JCXWN-wUyISFyUiZPXH0EHtclus7hsKZsoFupFl5cUy7bT15lbBvvuEsVIcmhyMNrLtxVGlN~alWpUZbYBEGyZwWBSa7lhJlN~AeTUcwYPkNHUiswpNV86nPkgSwrBJ0NLy9IJePQ3-TSg1WekcE8Xmq6DnaJQEwqVjmsckmXDPYQjtujAxRvN2PLpUoN9eMb4eE-NjaAfABubOquFunqW1cN69I3nbMz35TOjUIO4W7Zzg7Py2BE54wbIbq6I2s11b4QG0X7H3U606s7wshZJnLCX7WNtl3BpAuy2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":68,"name":"Bioengineering","url":"https://www.academia.edu/Documents/in/Bioengineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":4656,"name":"Chromatography","url":"https://www.academia.edu/Documents/in/Chromatography"},{"id":23861,"name":"Microscale Chemistry","url":"https://www.academia.edu/Documents/in/Microscale_Chemistry"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":32910,"name":"Sample Preparation","url":"https://www.academia.edu/Documents/in/Sample_Preparation"},{"id":83128,"name":"Escherichia coli","url":"https://www.academia.edu/Documents/in/Escherichia_coli"},{"id":87778,"name":"Electrokinetics","url":"https://www.academia.edu/Documents/in/Electrokinetics"},{"id":178906,"name":"Nucleic Acids","url":"https://www.academia.edu/Documents/in/Nucleic_Acids"},{"id":205768,"name":"Electrokinetic Phenomena","url":"https://www.academia.edu/Documents/in/Electrokinetic_Phenomena"},{"id":205770,"name":"Isotachophoresis","url":"https://www.academia.edu/Documents/in/Isotachophoresis"},{"id":283531,"name":"Microchannel","url":"https://www.academia.edu/Documents/in/Microchannel"},{"id":295928,"name":"Amino Acids","url":"https://www.academia.edu/Documents/in/Amino_Acids"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":371425,"name":"Electrophoresis","url":"https://www.academia.edu/Documents/in/Electrophoresis"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"},{"id":1257974,"name":"Ions","url":"https://www.academia.edu/Documents/in/Ions"},{"id":1276642,"name":"Electrolyte","url":"https://www.academia.edu/Documents/in/Electrolyte"}],"urls":[{"id":45906061,"url":"https://www.jove.com/pdf/3890/on-chip-isotachophoresis-for-separation-ions-purification-nucleic"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046794"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046794/Electric_fields_yield_chaos_in_microflows"><img alt="Research paper thumbnail of Electric fields yield chaos in microflows" class="work-thumbnail" src="https://attachments.academia-assets.com/119984101/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046794/Electric_fields_yield_chaos_in_microflows">Electric fields yield chaos in microflows</a></div><div class="wp-workCard_item"><span>Proceedings of the National Academy of Sciences of the United States of America</span><span>, Aug 20, 2012</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="07f9acbdd7a12186eea68b0064a186ff" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984101,"asset_id":126046794,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984101/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046794"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046794"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046794; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046794]").text(description); $(".js-view-count[data-work-id=126046794]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046794; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046794']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046794, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "07f9acbdd7a12186eea68b0064a186ff" } } $('.js-work-strip[data-work-id=126046794]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046794,"title":"Electric fields yield chaos in microflows","translated_title":"","metadata":{"publisher":"National Academy of Sciences","publication_date":{"day":20,"month":8,"year":2012,"errors":{}},"publication_name":"Proceedings of the National Academy of Sciences of the United States of America"},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046794/Electric_fields_yield_chaos_in_microflows","translated_internal_url":"","created_at":"2024-12-03T11:14:23.209-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984101,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984101/thumbnails/1.jpg","file_name":"14353.full.pdf","download_url":"https://www.academia.edu/attachments/119984101/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Electric_fields_yield_chaos_in_microflow.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984101/14353.full-libre.pdf?1733255856=\u0026response-content-disposition=attachment%3B+filename%3DElectric_fields_yield_chaos_in_microflow.pdf\u0026Expires=1734027722\u0026Signature=G1XyqzWM1g~1MsUFSYAVsSg-IzUD~BgVaExFHj6JQ9sDDr7mKY-lNY7sxoHlizeZPw4pOjVzd3~-MSPAvuVMGFhZgZEfzcpNhIl1pLB3ZEJl1K~R~Tf2gMSosYtuji0N50j4YCpyTiM9asDk78MpAeNWIGHh-M~0eh~Pt9FdSmf2zMP2cCnapyz40hBg3mIPzA1HfK-OwUdK-aCVeehPe9Vi4KyaEkA6kstGNW~hbx9ZqWXdk2B2~ijxEEIjhAPdSJITcyqUyuJy7GRVkTh5wBXS1Nx5aKGhEgJkeKhedlPRN65al5ytdRjzkWgvF2KiXhf2RBN-T1zomVCs59s-zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Electric_fields_yield_chaos_in_microflows","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":null,"owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984101,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984101/thumbnails/1.jpg","file_name":"14353.full.pdf","download_url":"https://www.academia.edu/attachments/119984101/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Electric_fields_yield_chaos_in_microflow.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984101/14353.full-libre.pdf?1733255856=\u0026response-content-disposition=attachment%3B+filename%3DElectric_fields_yield_chaos_in_microflow.pdf\u0026Expires=1734027722\u0026Signature=G1XyqzWM1g~1MsUFSYAVsSg-IzUD~BgVaExFHj6JQ9sDDr7mKY-lNY7sxoHlizeZPw4pOjVzd3~-MSPAvuVMGFhZgZEfzcpNhIl1pLB3ZEJl1K~R~Tf2gMSosYtuji0N50j4YCpyTiM9asDk78MpAeNWIGHh-M~0eh~Pt9FdSmf2zMP2cCnapyz40hBg3mIPzA1HfK-OwUdK-aCVeehPe9Vi4KyaEkA6kstGNW~hbx9ZqWXdk2B2~ijxEEIjhAPdSJITcyqUyuJy7GRVkTh5wBXS1Nx5aKGhEgJkeKhedlPRN65al5ytdRjzkWgvF2KiXhf2RBN-T1zomVCs59s-zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984099,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984099/thumbnails/1.jpg","file_name":"14353.full.pdf","download_url":"https://www.academia.edu/attachments/119984099/download_file","bulk_download_file_name":"Electric_fields_yield_chaos_in_microflow.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984099/14353.full-libre.pdf?1733255862=\u0026response-content-disposition=attachment%3B+filename%3DElectric_fields_yield_chaos_in_microflow.pdf\u0026Expires=1734027722\u0026Signature=V36SDjnff8DHa6lizyHEfmDvLwSgHB-F8Lgw-aJEXIipURtQTbFOTBtIIeVwgYSb-kR0V8k03dDyL2uGi39WZyulgAVPPpy6hOwQhL0U5NN5GlRS7-29RRWxwj5OdZlj1y1mHr5frGPPQVTwmCpM~jjhQvcGYYb9VYPrZmSxVFYbKb-gysaUpRoGbKa2Yi4N4YdAi2btuOph6obxebIKULiI6evM6Gug7nzoRw~VDeNTCxxyWD3Jozue8DbfdkIaGRi8~67m0tUMpjHYBOG2T4l3fZj985wZwFeT0axzBMSBMegRsTJStAHMOh3wJfkGAx5KgrWmJhLuZoje3hvgww__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":5493,"name":"Nonlinear dynamics","url":"https://www.academia.edu/Documents/in/Nonlinear_dynamics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":131236,"name":"Electromagnetic Fields","url":"https://www.academia.edu/Documents/in/Electromagnetic_Fields"},{"id":179332,"name":"Hydrodynamics","url":"https://www.academia.edu/Documents/in/Hydrodynamics"},{"id":1008960,"name":"Reynolds Number","url":"https://www.academia.edu/Documents/in/Reynolds_Number"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"},{"id":1202042,"name":"Electric Conductivity","url":"https://www.academia.edu/Documents/in/Electric_Conductivity"},{"id":2770878,"name":"Chaotic","url":"https://www.academia.edu/Documents/in/Chaotic"},{"id":3167069,"name":"attractor","url":"https://www.academia.edu/Documents/in/attractor"}],"urls":[{"id":45906060,"url":"https://www.pnas.org/content/pnas/109/36/14353.full.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046793"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046793/A_Fast_and_Accurate_Isotachophoresis_Simulation_Code"><img alt="Research paper thumbnail of A Fast and Accurate Isotachophoresis Simulation Code" class="work-thumbnail" src="https://attachments.academia-assets.com/119984098/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046793/A_Fast_and_Accurate_Isotachophoresis_Simulation_Code">A Fast and Accurate Isotachophoresis Simulation Code</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We developed a numerical code which allows fast and accurate simulation of isotachophoresis (ITP)...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We developed a numerical code which allows fast and accurate simulation of isotachophoresis (ITP). The multi-species code accounts for equilibrium chemistry, non-uniform electroosmotic flow, and dispersion. Our modeling efforts for the latter are also presented. The goal of our work is to create an efficient, accurate, validated, and uniquely-capable electrophoresis simulation code available for free via the web to the microfluidics community.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ab5bc67915e0130f0f8c2186c8d35dc4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984098,"asset_id":126046793,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984098/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046793"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046793"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046793; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046793]").text(description); $(".js-view-count[data-work-id=126046793]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046793; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046793']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046793, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ab5bc67915e0130f0f8c2186c8d35dc4" } } $('.js-work-strip[data-work-id=126046793]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046793,"title":"A Fast and Accurate Isotachophoresis Simulation Code","translated_title":"","metadata":{"grobid_abstract":"We developed a numerical code which allows fast and accurate simulation of isotachophoresis (ITP). The multi-species code accounts for equilibrium chemistry, non-uniform electroosmotic flow, and dispersion. Our modeling efforts for the latter are also presented. The goal of our work is to create an efficient, accurate, validated, and uniquely-capable electrophoresis simulation code available for free via the web to the microfluidics community.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"grobid_abstract_attachment_id":119984098},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046793/A_Fast_and_Accurate_Isotachophoresis_Simulation_Code","translated_internal_url":"","created_at":"2024-12-03T11:14:21.857-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984098,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984098/thumbnails/1.jpg","file_name":"015_1058.pdf","download_url":"https://www.academia.edu/attachments/119984098/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Fast_and_Accurate_Isotachophoresis_Sim.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984098/015_1058-libre.pdf?1733255835=\u0026response-content-disposition=attachment%3B+filename%3DA_Fast_and_Accurate_Isotachophoresis_Sim.pdf\u0026Expires=1734027722\u0026Signature=XQk0s32Xakw89gLnHAXjrm94nmUevO2OBMsl9721RkLDAm4Mqk86054upuyUr1wGfCVRJB~vA12k6FBGiH0bB27b~6U386fIIvQ3IjOyZgzLjA0d3QL9fETArDKah8nxm4Vp9MTGzFOZ7NQMJtwR8Rh9FfkY4K-IZFvr9qi6oj~oyj4DjHjTCbz-aUCSv0VqL8iBD8B-YMGbBWSWOsABOR0Ur83AaSdGcPo0kd2OcM7htvwy74l9m6K~68jOiUv6Mwsm2Ir4BJp3T3Q7YKRa~HBvQEuu9Ch~deRYm6mzABlJPzUYxRZ3g-tt6bcJ5BYjfhNC~OzUsW9Fy4tUr2~ctw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Fast_and_Accurate_Isotachophoresis_Simulation_Code","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":"We developed a numerical code which allows fast and accurate simulation of isotachophoresis (ITP). The multi-species code accounts for equilibrium chemistry, non-uniform electroosmotic flow, and dispersion. Our modeling efforts for the latter are also presented. The goal of our work is to create an efficient, accurate, validated, and uniquely-capable electrophoresis simulation code available for free via the web to the microfluidics community.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984098,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984098/thumbnails/1.jpg","file_name":"015_1058.pdf","download_url":"https://www.academia.edu/attachments/119984098/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Fast_and_Accurate_Isotachophoresis_Sim.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984098/015_1058-libre.pdf?1733255835=\u0026response-content-disposition=attachment%3B+filename%3DA_Fast_and_Accurate_Isotachophoresis_Sim.pdf\u0026Expires=1734027722\u0026Signature=XQk0s32Xakw89gLnHAXjrm94nmUevO2OBMsl9721RkLDAm4Mqk86054upuyUr1wGfCVRJB~vA12k6FBGiH0bB27b~6U386fIIvQ3IjOyZgzLjA0d3QL9fETArDKah8nxm4Vp9MTGzFOZ7NQMJtwR8Rh9FfkY4K-IZFvr9qi6oj~oyj4DjHjTCbz-aUCSv0VqL8iBD8B-YMGbBWSWOsABOR0Ur83AaSdGcPo0kd2OcM7htvwy74l9m6K~68jOiUv6Mwsm2Ir4BJp3T3Q7YKRa~HBvQEuu9Ch~deRYm6mzABlJPzUYxRZ3g-tt6bcJ5BYjfhNC~OzUsW9Fy4tUr2~ctw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984100,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984100/thumbnails/1.jpg","file_name":"015_1058.pdf","download_url":"https://www.academia.edu/attachments/119984100/download_file","bulk_download_file_name":"A_Fast_and_Accurate_Isotachophoresis_Sim.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984100/015_1058-libre.pdf?1733255836=\u0026response-content-disposition=attachment%3B+filename%3DA_Fast_and_Accurate_Isotachophoresis_Sim.pdf\u0026Expires=1734027722\u0026Signature=PnRs98YRCLAmBMfUwNcmV~M2zHQEwDqj7iVo--hThuz0tGksSNRhJgVk3dVwwOcdJPTm9SK8mzO5Dw4M5kY-uLVTO3UlKcOm3Dc0uYjNsojfY-KphkHDjot5P1Rz7dwBshZVpxm-4biWBLFXpt7YwaIqd9GQapCPbJhC~tPpa8dp7SmwBRSQvjh~ocfj~ICfN6mSQgzmE~C5UnGVHHs7QAl2aWsV9fuBAGjbDBq-5J-2LtOyzPiHZ~HaLJ1meY-1CFG3viMq~aoXwhW4GNY8EIl8PijLWq7oJPcNhGowUVsXSijbBwQUhr~w0-GL1wJr-vJnafrOMhZMrOst~e8HMQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":205770,"name":"Isotachophoresis","url":"https://www.academia.edu/Documents/in/Isotachophoresis"}],"urls":[{"id":45906059,"url":"https://www.rsc.org/binaries/LOC/2008/PDFs/Papers/015_1058.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046792"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046792/On_Chip_Device_for_Isothermal_Chemical_Cycling_Polymerase_Chain_Reaction"><img alt="Research paper thumbnail of On-Chip Device for Isothermal, Chemical Cycling Polymerase Chain Reaction" class="work-thumbnail" src="https://attachments.academia-assets.com/119984096/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046792/On_Chip_Device_for_Isothermal_Chemical_Cycling_Polymerase_Chain_Reaction">On-Chip Device for Isothermal, Chemical Cycling Polymerase Chain Reaction</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We demonstrate a novel chemical cycling polymerase chain reaction (ccPCR) technique for DNA ampli...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We demonstrate a novel chemical cycling polymerase chain reaction (ccPCR) technique for DNA amplification in a fully working device where temperature is held constant in space and time. We demonstrate successful ccPCR amplification while simultaneously focusing products via isotachophoresis (ITP) for identification of the environmental bacteria E. Coli. We electrophoretically drive the DNA sample with ITP through a series of high denaturant concentration zones. The denaturant is neutral so the DNA experiences alternatively low and high concentrations. This effectively replaces the thermal cycling of classical PCR (Figure 1). We performed ccPCR with end-point detection and real-time fluorescence monitoring.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b7019d889d7ab855b951c65fb0f60a83" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984096,"asset_id":126046792,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984096/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046792"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046792"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046792; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046792]").text(description); $(".js-view-count[data-work-id=126046792]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046792; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046792']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046792, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b7019d889d7ab855b951c65fb0f60a83" } } $('.js-work-strip[data-work-id=126046792]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046792,"title":"On-Chip Device for Isothermal, Chemical Cycling Polymerase Chain Reaction","translated_title":"","metadata":{"grobid_abstract":"We demonstrate a novel chemical cycling polymerase chain reaction (ccPCR) technique for DNA amplification in a fully working device where temperature is held constant in space and time. We demonstrate successful ccPCR amplification while simultaneously focusing products via isotachophoresis (ITP) for identification of the environmental bacteria E. Coli. We electrophoretically drive the DNA sample with ITP through a series of high denaturant concentration zones. The denaturant is neutral so the DNA experiences alternatively low and high concentrations. This effectively replaces the thermal cycling of classical PCR (Figure 1). We performed ccPCR with end-point detection and real-time fluorescence monitoring.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"grobid_abstract_attachment_id":119984096},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046792/On_Chip_Device_for_Isothermal_Chemical_Cycling_Polymerase_Chain_Reaction","translated_internal_url":"","created_at":"2024-12-03T11:14:21.482-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984096,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984096/thumbnails/1.jpg","file_name":"364_0039.pdf","download_url":"https://www.academia.edu/attachments/119984096/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Chip_Device_for_Isothermal_Chemical_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984096/364_0039-libre.pdf?1733255834=\u0026response-content-disposition=attachment%3B+filename%3DOn_Chip_Device_for_Isothermal_Chemical_C.pdf\u0026Expires=1734027722\u0026Signature=FLkf9UXyq36d0dGXbA9HApiaLUGlOwJkk9Odt5kghZE42mIFqEAitGC9-VVDb0-Bxg4Wz7a-OJzLXD1jxYLH5SdL6hAifrAnPljTTJrydKPWPnSflHUQcfZodZOs1fpmq~VFAOlwFU5kw2KoAz992vZbIgzqqP0R6kZpoqf0Zi5gyCJLl6HOTtZKvDo~F5hCROQwC3ut0wgh7fF1Ym-rrnoY-4OfKVJ4MnLIeB2k5Ffa4xRgzURoakFAIAZGSADGxj-wDS~uKwKKf-I9Aun2km~dVB2u1UVb0iInuYz2DUzHZQcicDhKIoBuFfSnfKB6E9-XnL7T4O38ENEStjjzxw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_Chip_Device_for_Isothermal_Chemical_Cycling_Polymerase_Chain_Reaction","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":"We demonstrate a novel chemical cycling polymerase chain reaction (ccPCR) technique for DNA amplification in a fully working device where temperature is held constant in space and time. We demonstrate successful ccPCR amplification while simultaneously focusing products via isotachophoresis (ITP) for identification of the environmental bacteria E. Coli. We electrophoretically drive the DNA sample with ITP through a series of high denaturant concentration zones. The denaturant is neutral so the DNA experiences alternatively low and high concentrations. This effectively replaces the thermal cycling of classical PCR (Figure 1). We performed ccPCR with end-point detection and real-time fluorescence monitoring.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984096,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984096/thumbnails/1.jpg","file_name":"364_0039.pdf","download_url":"https://www.academia.edu/attachments/119984096/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Chip_Device_for_Isothermal_Chemical_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984096/364_0039-libre.pdf?1733255834=\u0026response-content-disposition=attachment%3B+filename%3DOn_Chip_Device_for_Isothermal_Chemical_C.pdf\u0026Expires=1734027722\u0026Signature=FLkf9UXyq36d0dGXbA9HApiaLUGlOwJkk9Odt5kghZE42mIFqEAitGC9-VVDb0-Bxg4Wz7a-OJzLXD1jxYLH5SdL6hAifrAnPljTTJrydKPWPnSflHUQcfZodZOs1fpmq~VFAOlwFU5kw2KoAz992vZbIgzqqP0R6kZpoqf0Zi5gyCJLl6HOTtZKvDo~F5hCROQwC3ut0wgh7fF1Ym-rrnoY-4OfKVJ4MnLIeB2k5Ffa4xRgzURoakFAIAZGSADGxj-wDS~uKwKKf-I9Aun2km~dVB2u1UVb0iInuYz2DUzHZQcicDhKIoBuFfSnfKB6E9-XnL7T4O38ENEStjjzxw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984097,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"364_0039.pdf","download_url":"https://www.academia.edu/attachments/119984097/download_file","bulk_download_file_name":"On_Chip_Device_for_Isothermal_Chemical_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984097/364_0039-libre.pdf?1733255836=\u0026response-content-disposition=attachment%3B+filename%3DOn_Chip_Device_for_Isothermal_Chemical_C.pdf\u0026Expires=1734027722\u0026Signature=f~-PDm5sSVBBzq6uTd5pi3eO2RUEovhrACmypS1Kgz41IbC09KeCSeu7B2uph4s2vTkCmcBlK5RRNjbgtfZu3pp~bE4D9HjCHqPcnY5c~ewdIalhziJ1A5pxEWpBCjSJMVfADrGG1Rq-DVLXp3yOCZYhDB9l9CKOjmYyHbXDkWMh2cJCGZ2GoHTiWQ0wTs51F3Zq2cmtD3PL~IYyLhVbzmq21X8eXLxil1nRee-XfqXueXsT8KK9Z-OwZuxCNOTPLTWu6TP6BFGbUaERQINwdkL6CsaW29NkxM6BH8dEJqgHIcbDRXBMFzyoToOhabmr3cBneogW-PSI~jJlMTtS3A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":48057,"name":"DNA","url":"https://www.academia.edu/Documents/in/DNA"},{"id":118339,"name":"Polymerase Chain Reaction","url":"https://www.academia.edu/Documents/in/Polymerase_Chain_Reaction"},{"id":205770,"name":"Isotachophoresis","url":"https://www.academia.edu/Documents/in/Isotachophoresis"},{"id":712036,"name":"LOOP MEDIATED ISOTHERMAL AMPLIFICATION","url":"https://www.academia.edu/Documents/in/LOOP_MEDIATED_ISOTHERMAL_AMPLIFICATION"},{"id":946375,"name":"Temperature Cycling","url":"https://www.academia.edu/Documents/in/Temperature_Cycling"}],"urls":[{"id":45906058,"url":"https://www.rsc.org/binaries/LOC/2008/PDFs/Papers/364_0039.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046791"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046791/An_Electrokinetic_Mobility_Measurement_Technique_Using_Ac_and_DC_Electrophoresis"><img alt="Research paper thumbnail of An Electrokinetic Mobility Measurement Technique Using Ac and DC Electrophoresis" class="work-thumbnail" src="https://attachments.academia-assets.com/119984093/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046791/An_Electrokinetic_Mobility_Measurement_Technique_Using_Ac_and_DC_Electrophoresis">An Electrokinetic Mobility Measurement Technique Using Ac and DC Electrophoresis</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We have developed a hybrid method for measuring the electrophoretic mobility, ,I+, of sub-micron ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We have developed a hybrid method for measuring the electrophoretic mobility, ,I+, of sub-micron particles and the electroosmotic mobility, pu,, of a microchannel in the same experiment. This method combines elements of alternating (AC) and direct (DC) field microelectrophoresis and leverages inertial decoupling between near-wall liquid motion and the liquid flow field away from the wall. Images of particle streaks are captured using epi-fluorescence CCD imaging. This method allows us to explicitly compute probability density functions (PDF's) for ~1~~ and p,, in terms of particle displacements resulting from AC and DC microelectrophoresis.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6edf677f5cdda74970bf81d93a4132d0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984093,"asset_id":126046791,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984093/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046791"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046791"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046791; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046791]").text(description); $(".js-view-count[data-work-id=126046791]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046791; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046791']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046791, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6edf677f5cdda74970bf81d93a4132d0" } } $('.js-work-strip[data-work-id=126046791]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046791,"title":"An Electrokinetic Mobility Measurement Technique Using Ac and DC Electrophoresis","translated_title":"","metadata":{"grobid_abstract":"We have developed a hybrid method for measuring the electrophoretic mobility, ,I+, of sub-micron particles and the electroosmotic mobility, pu,, of a microchannel in the same experiment. This method combines elements of alternating (AC) and direct (DC) field microelectrophoresis and leverages inertial decoupling between near-wall liquid motion and the liquid flow field away from the wall. Images of particle streaks are captured using epi-fluorescence CCD imaging. This method allows us to explicitly compute probability density functions (PDF's) for ~1~~ and p,, in terms of particle displacements resulting from AC and DC microelectrophoresis.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"grobid_abstract_attachment_id":119984093},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046791/An_Electrokinetic_Mobility_Measurement_Technique_Using_Ac_and_DC_Electrophoresis","translated_internal_url":"","created_at":"2024-12-03T11:14:21.190-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984093,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984093/thumbnails/1.jpg","file_name":"146-267.pdf","download_url":"https://www.academia.edu/attachments/119984093/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Electrokinetic_Mobility_Measurement_T.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984093/146-267-libre.pdf?1733255840=\u0026response-content-disposition=attachment%3B+filename%3DAn_Electrokinetic_Mobility_Measurement_T.pdf\u0026Expires=1734027722\u0026Signature=W9jhxvDP7FkNwco12-GCOlSVrT0AFIGhZxFib9evNRN5Ovq7wIfDhkzGWITzbcxdYvb-UV6-mnetfq3alWwzFlccZGo-f65ZmC64tUXnCvsG6QKrne1VHR7u5A8mLaZ4StjP1NPXiFi9N1cH~UJunX32UDasRMY5HFUvdN~DmkVSoLGJZyyaaiTRl2W-VBUUg627MpcBWg8OgUFwxwzlD2x1XLDFzA5W0aPa1zwA~WPjlwJZAPtdsbzn5YuIFznJ6Z4GyTS8-9wQOR3eNserSyxCWPgUjv84X6MkkjA-03DYJMZfJBeUy4psy0OrxrNAutdALU55RaMYmU4~Q96iDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_Electrokinetic_Mobility_Measurement_Technique_Using_Ac_and_DC_Electrophoresis","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"We have developed a hybrid method for measuring the electrophoretic mobility, ,I+, of sub-micron particles and the electroosmotic mobility, pu,, of a microchannel in the same experiment. This method combines elements of alternating (AC) and direct (DC) field microelectrophoresis and leverages inertial decoupling between near-wall liquid motion and the liquid flow field away from the wall. Images of particle streaks are captured using epi-fluorescence CCD imaging. This method allows us to explicitly compute probability density functions (PDF's) for ~1~~ and p,, in terms of particle displacements resulting from AC and DC microelectrophoresis.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984093,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984093/thumbnails/1.jpg","file_name":"146-267.pdf","download_url":"https://www.academia.edu/attachments/119984093/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Electrokinetic_Mobility_Measurement_T.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984093/146-267-libre.pdf?1733255840=\u0026response-content-disposition=attachment%3B+filename%3DAn_Electrokinetic_Mobility_Measurement_T.pdf\u0026Expires=1734027722\u0026Signature=W9jhxvDP7FkNwco12-GCOlSVrT0AFIGhZxFib9evNRN5Ovq7wIfDhkzGWITzbcxdYvb-UV6-mnetfq3alWwzFlccZGo-f65ZmC64tUXnCvsG6QKrne1VHR7u5A8mLaZ4StjP1NPXiFi9N1cH~UJunX32UDasRMY5HFUvdN~DmkVSoLGJZyyaaiTRl2W-VBUUg627MpcBWg8OgUFwxwzlD2x1XLDFzA5W0aPa1zwA~WPjlwJZAPtdsbzn5YuIFznJ6Z4GyTS8-9wQOR3eNserSyxCWPgUjv84X6MkkjA-03DYJMZfJBeUy4psy0OrxrNAutdALU55RaMYmU4~Q96iDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984094,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984094/thumbnails/1.jpg","file_name":"146-267.pdf","download_url":"https://www.academia.edu/attachments/119984094/download_file","bulk_download_file_name":"An_Electrokinetic_Mobility_Measurement_T.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984094/146-267-libre.pdf?1733255840=\u0026response-content-disposition=attachment%3B+filename%3DAn_Electrokinetic_Mobility_Measurement_T.pdf\u0026Expires=1734027722\u0026Signature=eHQlvDefi4dDLJQ5tJxDtbbhdWtXtxqAd9QTK8sTH9naBZURCf157~ROJ13jwU1EYuEH8Hwfci1Ff1-fT-OPpZ4P~WV2VYvEpHKrzmJ8HwoiPJQEnIES78fneumz2a2IXTJZWG2aCtdz2seBF5lnpho0PpNCsjWB1r0kqANOXRo9iVl-U-SvAxAuBn7B2KdRJ4VrxGaFjfDM6dJ9Pr0CPnEDKfesw3Ui4cJ1YW74bQ2fdKtaYUgLDkcviohezC-5lYkBYoJo5Vqjp0xEK5ub-C2GP8uQHQBynWzohaa4PO5fwijNBwohCR48H7S928pSSqkwimetF9cJDK0jAqKRXQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":205768,"name":"Electrokinetic Phenomena","url":"https://www.academia.edu/Documents/in/Electrokinetic_Phenomena"},{"id":283531,"name":"Microchannel","url":"https://www.academia.edu/Documents/in/Microchannel"},{"id":371425,"name":"Electrophoresis","url":"https://www.academia.edu/Documents/in/Electrophoresis"},{"id":2367315,"name":"Particle Tracking Velocimetry","url":"https://www.academia.edu/Documents/in/Particle_Tracking_Velocimetry"}],"urls":[{"id":45906057,"url":"https://www.rsc.org/binaries/LOC/2003/Volume1/146-267.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046790"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046790/On_Chip_Separation_and_Detection_of_Non_Fluorescent_Toxins_in_Water_Using_Fluorescent_Mobility_Markers"><img alt="Research paper thumbnail of On-Chip Separation and Detection of Non-Fluorescent Toxins in Water Using Fluorescent Mobility Markers" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046790/On_Chip_Separation_and_Detection_of_Non_Fluorescent_Toxins_in_Water_Using_Fluorescent_Mobility_Markers">On-Chip Separation and Detection of Non-Fluorescent Toxins in Water Using Fluorescent Mobility Markers</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present an indirect fluorescence detection technique to detect unlabled/untreated toxins such ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present an indirect fluorescence detection technique to detect unlabled/untreated toxins such as phenol, cresol and their derivatives present in water. We leverage isotachophoresis and fluorescent species termed as mobility markers to preconcentrate, separate and indirectly detect the nonfluorescent toxins using standard fluorescence detection system. We easily achieve ~ 1 µM detection sensitivity with high reproducibility with this technique.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2453c4c6c497f12ee8d9694821204085" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984091,"asset_id":126046790,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984091/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046790"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046790"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046790; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046790]").text(description); $(".js-view-count[data-work-id=126046790]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046790; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046790']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046790, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2453c4c6c497f12ee8d9694821204085" } } $('.js-work-strip[data-work-id=126046790]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046790,"title":"On-Chip Separation and Detection of Non-Fluorescent Toxins in Water Using Fluorescent Mobility Markers","translated_title":"","metadata":{"grobid_abstract":"We present an indirect fluorescence detection technique to detect unlabled/untreated toxins such as phenol, cresol and their derivatives present in water. We leverage isotachophoresis and fluorescent species termed as mobility markers to preconcentrate, separate and indirectly detect the nonfluorescent toxins using standard fluorescence detection system. We easily achieve ~ 1 µM detection sensitivity with high reproducibility with this technique.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"grobid_abstract_attachment_id":119984091},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046790/On_Chip_Separation_and_Detection_of_Non_Fluorescent_Toxins_in_Water_Using_Fluorescent_Mobility_Markers","translated_internal_url":"","created_at":"2024-12-03T11:14:20.913-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984091,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"492_0859.pdf","download_url":"https://www.academia.edu/attachments/119984091/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Chip_Separation_and_Detection_of_Non.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984091/492_0859-libre.pdf?1733255839=\u0026response-content-disposition=attachment%3B+filename%3DOn_Chip_Separation_and_Detection_of_Non.pdf\u0026Expires=1734027722\u0026Signature=Hom6uJ3ouACED5wzMIDh7QdvFPqK9UcxJ36YfHpdS4N7HMLDJ2-fkLjQgkyY3-HbMixrrMVDLY8lp8w7m8mzwPvME8vPsQav34Mjpwr8685x2BrCBMfbL4zd72ljOdBaEnF6xoyHi~-kqAkrPR2UqrgdfKe~EGcSsml2A3duGtxqaJTl2PA5E~OJbjU89xjny5AHlj3OD~Jvhyg4DrtQJnLKogsf~3crd15x1gZL-~ORBXNU4en4QcfdkxqarzpFuQhvAGBszZyg31pBzjSSpTwZZDZZipUhSxvnByEG05zM~9g96Lk5J1XH30gTYlLa6eEbnqOYsCcrTuYx7Ea9UA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_Chip_Separation_and_Detection_of_Non_Fluorescent_Toxins_in_Water_Using_Fluorescent_Mobility_Markers","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We present an indirect fluorescence detection technique to detect unlabled/untreated toxins such as phenol, cresol and their derivatives present in water. We leverage isotachophoresis and fluorescent species termed as mobility markers to preconcentrate, separate and indirectly detect the nonfluorescent toxins using standard fluorescence detection system. We easily achieve ~ 1 µM detection sensitivity with high reproducibility with this technique.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984091,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"492_0859.pdf","download_url":"https://www.academia.edu/attachments/119984091/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Chip_Separation_and_Detection_of_Non.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984091/492_0859-libre.pdf?1733255839=\u0026response-content-disposition=attachment%3B+filename%3DOn_Chip_Separation_and_Detection_of_Non.pdf\u0026Expires=1734027722\u0026Signature=Hom6uJ3ouACED5wzMIDh7QdvFPqK9UcxJ36YfHpdS4N7HMLDJ2-fkLjQgkyY3-HbMixrrMVDLY8lp8w7m8mzwPvME8vPsQav34Mjpwr8685x2BrCBMfbL4zd72ljOdBaEnF6xoyHi~-kqAkrPR2UqrgdfKe~EGcSsml2A3duGtxqaJTl2PA5E~OJbjU89xjny5AHlj3OD~Jvhyg4DrtQJnLKogsf~3crd15x1gZL-~ORBXNU4en4QcfdkxqarzpFuQhvAGBszZyg31pBzjSSpTwZZDZZipUhSxvnByEG05zM~9g96Lk5J1XH30gTYlLa6eEbnqOYsCcrTuYx7Ea9UA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984095,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984095/thumbnails/1.jpg","file_name":"492_0859.pdf","download_url":"https://www.academia.edu/attachments/119984095/download_file","bulk_download_file_name":"On_Chip_Separation_and_Detection_of_Non.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984095/492_0859-libre.pdf?1733255839=\u0026response-content-disposition=attachment%3B+filename%3DOn_Chip_Separation_and_Detection_of_Non.pdf\u0026Expires=1734027722\u0026Signature=OS6cYD1KBjwr6wYnk8I9mXNOWW~N~f2n07nZgbtm1MjSEqFzMa9PYKTt4sePWtU2PZBdudLbQc~BetdxcEKSMSbsBbq9hrX4k7WuH2~0f3sah070Ka6yPjfaDWTH7LK7IoryYjXNChGP9j8e3ZBbFXYsH0PhRHXAvPdNE6l3ksbiPZwm56EeyIpHT3t7W95~ZGZr5DdnDnC9RJLrQJz9pRuSK3IZ3eLnvaQ43-D~9LZOjWFr1uumcFXfLWrdA9h7JvLYFxMqXeoOsmSdLjU~5Sdmk3MTyfbaatPB9DH3aq7dcPkF569-2Fbt1ASgCgQGpGJh3Bzvmun8f2CDSDDEgQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":4656,"name":"Chromatography","url":"https://www.academia.edu/Documents/in/Chromatography"},{"id":7698,"name":"Fluorescence","url":"https://www.academia.edu/Documents/in/Fluorescence"},{"id":413191,"name":"Reproducibility","url":"https://www.academia.edu/Documents/in/Reproducibility"}],"urls":[{"id":45906056,"url":"https://www.rsc.org/binaries/LOC/2008/PDFs/Papers/492_0859.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046789"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046789/Making_Shock_Waves_in_Microfluidics_The_Physics_and_Applications_of_Isotachophoresis"><img alt="Research paper thumbnail of Making Shock Waves in Microfluidics: The Physics and Applications of Isotachophoresis" class="work-thumbnail" src="https://attachments.academia-assets.com/119984090/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046789/Making_Shock_Waves_in_Microfluidics_The_Physics_and_Applications_of_Isotachophoresis">Making Shock Waves in Microfluidics: The Physics and Applications of Isotachophoresis</a></div><div class="wp-workCard_item"><span>Bulletin of the American Physical Society</span><span>, Nov 20, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Microfluidics lies at the interfaces between engineering, chemistry, and biology, and aims to dev...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Microfluidics lies at the interfaces between engineering, chemistry, and biology, and aims to develop chemical laboratories on a chip. An important technique is on-chip capillary electrophoresis which has been applied to a wide range of chemical and biochemical assay applications over the last decade. Perhaps the best way of improving the sensitivity of on-chip electrophoresis is to integrate an online sample preconcentration method. At Stanford, we are developing methods to concentrate ions into small volumes using a method called isotachophoresis (ITP). In ITP, sample ions are injected between the high mobility co-ions of a leading electrolyte (LE) and the low mobility co-ions of a trailing electrolyte (TE). Upon application of an electric field, the disparate ion mobilities of the LE and TE cause sample species to segregate and focus into a series of narrow self-sharpening zones which migrate at equal velocity (hence "isotacho"). ITP-type processes have been studied and used for more than 60 years, and yet there remain significant challenges in the robust modeling of these transport processes and the creation of widely applicable assays. We use ITP to create sample ion concentration "shock waves" in microchannels. These concentration waves can be integrated with on-chip electrophoresis for high sensitivity assays, and novel modes of operation. The talk will summarize the basic physics of ITP, experimental studies of ITP, models of ITP, and the development of novel ITP-assays with unprecedented sensitivity and new functionality. For example, using leadingto-sample ion concentration ratios of 10 15 and local electric fields of ∼4 kV/cm, we can achieve order one micron wide ITP zones. We can achieve million fold preconcentration in 120 s and can detect 100 attomolar sample concentrations (to our knowledge the highest demonstrated sensitivity for an electrophoresis-related assay). We have also developed a method that uses ITP to separate, indirectly detect, and identify the electrophoretic mobilities of unlabeled (non-fluorescent) analytes using surrogate fluorescent molecules. Our goal is the development of novel on-chip ITP assays which expand the design space of microfluidic devices.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="34acac5962851a22fbc84532aa2c313d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984090,"asset_id":126046789,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984090/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046789"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046789"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046789; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046789]").text(description); $(".js-view-count[data-work-id=126046789]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046789; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046789']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046789, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "34acac5962851a22fbc84532aa2c313d" } } $('.js-work-strip[data-work-id=126046789]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046789,"title":"Making Shock Waves in Microfluidics: The Physics and Applications of Isotachophoresis","translated_title":"","metadata":{"publisher":"Cambridge University Press","grobid_abstract":"Microfluidics lies at the interfaces between engineering, chemistry, and biology, and aims to develop chemical laboratories on a chip. An important technique is on-chip capillary electrophoresis which has been applied to a wide range of chemical and biochemical assay applications over the last decade. Perhaps the best way of improving the sensitivity of on-chip electrophoresis is to integrate an online sample preconcentration method. At Stanford, we are developing methods to concentrate ions into small volumes using a method called isotachophoresis (ITP). In ITP, sample ions are injected between the high mobility co-ions of a leading electrolyte (LE) and the low mobility co-ions of a trailing electrolyte (TE). Upon application of an electric field, the disparate ion mobilities of the LE and TE cause sample species to segregate and focus into a series of narrow self-sharpening zones which migrate at equal velocity (hence \"isotacho\"). ITP-type processes have been studied and used for more than 60 years, and yet there remain significant challenges in the robust modeling of these transport processes and the creation of widely applicable assays. We use ITP to create sample ion concentration \"shock waves\" in microchannels. These concentration waves can be integrated with on-chip electrophoresis for high sensitivity assays, and novel modes of operation. The talk will summarize the basic physics of ITP, experimental studies of ITP, models of ITP, and the development of novel ITP-assays with unprecedented sensitivity and new functionality. For example, using leadingto-sample ion concentration ratios of 10 15 and local electric fields of ∼4 kV/cm, we can achieve order one micron wide ITP zones. We can achieve million fold preconcentration in 120 s and can detect 100 attomolar sample concentrations (to our knowledge the highest demonstrated sensitivity for an electrophoresis-related assay). We have also developed a method that uses ITP to separate, indirectly detect, and identify the electrophoretic mobilities of unlabeled (non-fluorescent) analytes using surrogate fluorescent molecules. Our goal is the development of novel on-chip ITP assays which expand the design space of microfluidic devices.","publication_date":{"day":20,"month":11,"year":2007,"errors":{}},"publication_name":"Bulletin of the American Physical Society","grobid_abstract_attachment_id":119984090},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046789/Making_Shock_Waves_in_Microfluidics_The_Physics_and_Applications_of_Isotachophoresis","translated_internal_url":"","created_at":"2024-12-03T11:14:20.084-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984090,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984090/thumbnails/1.jpg","file_name":"MWS_DFD07-2007-001562.pdf","download_url":"https://www.academia.edu/attachments/119984090/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Making_Shock_Waves_in_Microfluidics_The.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984090/MWS_DFD07-2007-001562-libre.pdf?1733255836=\u0026response-content-disposition=attachment%3B+filename%3DMaking_Shock_Waves_in_Microfluidics_The.pdf\u0026Expires=1733909822\u0026Signature=VRUHIFSXV1jXG8Mt2i0zRJcfcLPihqTFc5tVtZmSZlM5vC5XavGjk0SdadQKu~5HbbfCvk6fYyn1ayyKqjvIureFnbQVWxbnj1cyxx7JE0vHV9bikGHBhLcRoutWeBbmh-buV-hoOKO9NA-mDGULJBAjQYaslyxcoq3rOuO39YufcN6WaqqUQqZFcBycveCGE3sZZq~8zO4I5c~1v4ffvoZjzVhNOOIagl1ZEXnyKMmyiY2OnWabXyN4WRo6aPd9BxKNMvBQDKJYOZihLX1muYvOWiLik35CUJuwVIAt1Q1x8~dOQmr4YEzz2kBuXuYhbtlUvKnRD1tWfscFBtviQg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Making_Shock_Waves_in_Microfluidics_The_Physics_and_Applications_of_Isotachophoresis","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":"Microfluidics lies at the interfaces between engineering, chemistry, and biology, and aims to develop chemical laboratories on a chip. An important technique is on-chip capillary electrophoresis which has been applied to a wide range of chemical and biochemical assay applications over the last decade. Perhaps the best way of improving the sensitivity of on-chip electrophoresis is to integrate an online sample preconcentration method. At Stanford, we are developing methods to concentrate ions into small volumes using a method called isotachophoresis (ITP). In ITP, sample ions are injected between the high mobility co-ions of a leading electrolyte (LE) and the low mobility co-ions of a trailing electrolyte (TE). Upon application of an electric field, the disparate ion mobilities of the LE and TE cause sample species to segregate and focus into a series of narrow self-sharpening zones which migrate at equal velocity (hence \"isotacho\"). ITP-type processes have been studied and used for more than 60 years, and yet there remain significant challenges in the robust modeling of these transport processes and the creation of widely applicable assays. We use ITP to create sample ion concentration \"shock waves\" in microchannels. These concentration waves can be integrated with on-chip electrophoresis for high sensitivity assays, and novel modes of operation. The talk will summarize the basic physics of ITP, experimental studies of ITP, models of ITP, and the development of novel ITP-assays with unprecedented sensitivity and new functionality. For example, using leadingto-sample ion concentration ratios of 10 15 and local electric fields of ∼4 kV/cm, we can achieve order one micron wide ITP zones. We can achieve million fold preconcentration in 120 s and can detect 100 attomolar sample concentrations (to our knowledge the highest demonstrated sensitivity for an electrophoresis-related assay). We have also developed a method that uses ITP to separate, indirectly detect, and identify the electrophoretic mobilities of unlabeled (non-fluorescent) analytes using surrogate fluorescent molecules. Our goal is the development of novel on-chip ITP assays which expand the design space of microfluidic devices.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984090,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984090/thumbnails/1.jpg","file_name":"MWS_DFD07-2007-001562.pdf","download_url":"https://www.academia.edu/attachments/119984090/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Making_Shock_Waves_in_Microfluidics_The.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984090/MWS_DFD07-2007-001562-libre.pdf?1733255836=\u0026response-content-disposition=attachment%3B+filename%3DMaking_Shock_Waves_in_Microfluidics_The.pdf\u0026Expires=1733909822\u0026Signature=VRUHIFSXV1jXG8Mt2i0zRJcfcLPihqTFc5tVtZmSZlM5vC5XavGjk0SdadQKu~5HbbfCvk6fYyn1ayyKqjvIureFnbQVWxbnj1cyxx7JE0vHV9bikGHBhLcRoutWeBbmh-buV-hoOKO9NA-mDGULJBAjQYaslyxcoq3rOuO39YufcN6WaqqUQqZFcBycveCGE3sZZq~8zO4I5c~1v4ffvoZjzVhNOOIagl1ZEXnyKMmyiY2OnWabXyN4WRo6aPd9BxKNMvBQDKJYOZihLX1muYvOWiLik35CUJuwVIAt1Q1x8~dOQmr4YEzz2kBuXuYhbtlUvKnRD1tWfscFBtviQg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984092,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"MWS_DFD07-2007-001562.pdf","download_url":"https://www.academia.edu/attachments/119984092/download_file","bulk_download_file_name":"Making_Shock_Waves_in_Microfluidics_The.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984092/MWS_DFD07-2007-001562-libre.pdf?1733255836=\u0026response-content-disposition=attachment%3B+filename%3DMaking_Shock_Waves_in_Microfluidics_The.pdf\u0026Expires=1733909822\u0026Signature=X3LGINeKPV0KkaREI8iFih37y~B35whvdQ~yWaEX7laqAnFi-OLnlc1Rp~3KUSUHSEvuxeUo1qexm1Hcudxf5IOhSZyfkBYvGWRhS1nz-gBObBxRqC3JO40zxDEqPbYzD1QXaLT02JaXNX~CShgD1iult1H2u~vTrMHqmbmM8SjYMr5Hr8n3cwcDUa6ksVyrcN5WKoUuPoo1moFv9F39xWDEB~THcn3pFAaLn53QDTWC0OIH5aoYRIPNQ7TvBZsiSTR81AoOZw~x5VbInxOjVliAq7axD8pzFZzkpXew3Uy5BlLBGXIlebYwHf5JeP-jZ9yLdmwMbuNcL~K-a0Qk~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":15375,"name":"Capillary electrophoresis","url":"https://www.academia.edu/Documents/in/Capillary_electrophoresis"},{"id":205770,"name":"Isotachophoresis","url":"https://www.academia.edu/Documents/in/Isotachophoresis"},{"id":322954,"name":"Chip","url":"https://www.academia.edu/Documents/in/Chip"},{"id":837148,"name":"Shock Wave","url":"https://www.academia.edu/Documents/in/Shock_Wave"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"},{"id":1959878,"name":"Electrophoretic Mobility","url":"https://www.academia.edu/Documents/in/Electrophoretic_Mobility"}],"urls":[{"id":45906055,"url":"http://absimage.aps.org/image/DFD07/MWS_DFD07-2007-001562.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046788"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046788/Dispersion_in_isotachophoresis"><img alt="Research paper thumbnail of Dispersion in isotachophoresis" class="work-thumbnail" src="https://attachments.academia-assets.com/119984089/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046788/Dispersion_in_isotachophoresis">Dispersion in isotachophoresis</a></div><div class="wp-workCard_item"><span>Bulletin of the American Physical Society</span><span>, Nov 24, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Submitted for the DFD08 Meeting of The American Physical Society Dispersion in isotachophoresis M...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Submitted for the DFD08 Meeting of The American Physical Society Dispersion in isotachophoresis MORAN BERCOVICI, JUAN G. SAN-TIAGO, Stanford University-Isotachophoresis (ITP) is a widely used separation and preconcentration technique, which has been utilized in numerous applications including drug discovery, toxin detection, and food analysis. In ITP, analytes are segregated and focused between relatively high mobility leading ions and relatively low mobility trailing ions. These electromigration dynamics couple with advective processes associated with non-uniform electroosmotic flow (EOF). The latter generates internal pressure gradients leading to strong dispersive fluxes. This dispersion is nearly ubiquitous and currently limits the sensitivity and resolution of typical ITP assays. Despite this, there has been little work studying these coupled mechanisms. We performed an analytical and experimental study of dispersion dynamics in ITP. To achieve controlled pressure gradients, we suppressed EOF and applied an external pressure head to balance electromigration. Under these conditions, we show that radial electromigration (as opposed to radial diffusion as in Taylor dispersion) balances axial electromigration. To validate the analysis, we monitored the shape of a focusing fluorescent zone as a function of applied electric field. These experiments show that ITP dispersion may result in analyte widths an order of magnitude larger than predicted by the typical non-dispersive theory. Our goal is to develop a simplified dispersion model to capture this phenomenon, and to implement it in a numerical solver for general ITP problems.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a06d9f2c15c32a39c5e7097bdf35037e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984089,"asset_id":126046788,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984089/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046788"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046788"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046788; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046788]").text(description); $(".js-view-count[data-work-id=126046788]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046788; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046788']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046788, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a06d9f2c15c32a39c5e7097bdf35037e" } } $('.js-work-strip[data-work-id=126046788]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046788,"title":"Dispersion in isotachophoresis","translated_title":"","metadata":{"publisher":"Cambridge University Press","grobid_abstract":"Submitted for the DFD08 Meeting of The American Physical Society Dispersion in isotachophoresis MORAN BERCOVICI, JUAN G. SAN-TIAGO, Stanford University-Isotachophoresis (ITP) is a widely used separation and preconcentration technique, which has been utilized in numerous applications including drug discovery, toxin detection, and food analysis. In ITP, analytes are segregated and focused between relatively high mobility leading ions and relatively low mobility trailing ions. These electromigration dynamics couple with advective processes associated with non-uniform electroosmotic flow (EOF). The latter generates internal pressure gradients leading to strong dispersive fluxes. This dispersion is nearly ubiquitous and currently limits the sensitivity and resolution of typical ITP assays. Despite this, there has been little work studying these coupled mechanisms. We performed an analytical and experimental study of dispersion dynamics in ITP. To achieve controlled pressure gradients, we suppressed EOF and applied an external pressure head to balance electromigration. Under these conditions, we show that radial electromigration (as opposed to radial diffusion as in Taylor dispersion) balances axial electromigration. To validate the analysis, we monitored the shape of a focusing fluorescent zone as a function of applied electric field. These experiments show that ITP dispersion may result in analyte widths an order of magnitude larger than predicted by the typical non-dispersive theory. Our goal is to develop a simplified dispersion model to capture this phenomenon, and to implement it in a numerical solver for general ITP problems.","publication_date":{"day":24,"month":11,"year":2008,"errors":{}},"publication_name":"Bulletin of the American Physical Society","grobid_abstract_attachment_id":119984089},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046788/Dispersion_in_isotachophoresis","translated_internal_url":"","created_at":"2024-12-03T11:14:19.784-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984089,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984089/thumbnails/1.jpg","file_name":"MWS_DFD08-2008-001276.pdf","download_url":"https://www.academia.edu/attachments/119984089/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dispersion_in_isotachophoresis.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984089/MWS_DFD08-2008-001276-libre.pdf?1733255836=\u0026response-content-disposition=attachment%3B+filename%3DDispersion_in_isotachophoresis.pdf\u0026Expires=1734027722\u0026Signature=F-8bvEbaKCfuPtEMEKHOw03nll4Gsar5jwQBUDC-DVEvKFF8h~H-UJjM3knhiRzGRGOqq5x2bCbBLTrMxk1M0Maog4H6v6Y~GaqacV-eaqCtQRxMDJ3RHqNjbCHNsNw5A7CBoVLjvPCbKcPrpTiXH2K3uwrOtOmwjzLQ9fRrx~buT0n2rx7X-OVz6DGPDZ47qeH-mgpNyYS3fkeysdAqBRamcwCiC1TzB17VR4NOfHxXCK6zfZ~Q1MDPLBMmMhn1uQhl4s4SeUj4gsnQF7Ocn10Pps7Xc41hH112apDFPkulpHlQjSQKzsOqLTkvLciwIHtz6NqykXBj0aqCNiAyzQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Dispersion_in_isotachophoresis","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":"Submitted for the DFD08 Meeting of The American Physical Society Dispersion in isotachophoresis MORAN BERCOVICI, JUAN G. SAN-TIAGO, Stanford University-Isotachophoresis (ITP) is a widely used separation and preconcentration technique, which has been utilized in numerous applications including drug discovery, toxin detection, and food analysis. In ITP, analytes are segregated and focused between relatively high mobility leading ions and relatively low mobility trailing ions. These electromigration dynamics couple with advective processes associated with non-uniform electroosmotic flow (EOF). The latter generates internal pressure gradients leading to strong dispersive fluxes. This dispersion is nearly ubiquitous and currently limits the sensitivity and resolution of typical ITP assays. Despite this, there has been little work studying these coupled mechanisms. We performed an analytical and experimental study of dispersion dynamics in ITP. To achieve controlled pressure gradients, we suppressed EOF and applied an external pressure head to balance electromigration. Under these conditions, we show that radial electromigration (as opposed to radial diffusion as in Taylor dispersion) balances axial electromigration. To validate the analysis, we monitored the shape of a focusing fluorescent zone as a function of applied electric field. These experiments show that ITP dispersion may result in analyte widths an order of magnitude larger than predicted by the typical non-dispersive theory. Our goal is to develop a simplified dispersion model to capture this phenomenon, and to implement it in a numerical solver for general ITP problems.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984089,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984089/thumbnails/1.jpg","file_name":"MWS_DFD08-2008-001276.pdf","download_url":"https://www.academia.edu/attachments/119984089/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dispersion_in_isotachophoresis.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984089/MWS_DFD08-2008-001276-libre.pdf?1733255836=\u0026response-content-disposition=attachment%3B+filename%3DDispersion_in_isotachophoresis.pdf\u0026Expires=1734027722\u0026Signature=F-8bvEbaKCfuPtEMEKHOw03nll4Gsar5jwQBUDC-DVEvKFF8h~H-UJjM3knhiRzGRGOqq5x2bCbBLTrMxk1M0Maog4H6v6Y~GaqacV-eaqCtQRxMDJ3RHqNjbCHNsNw5A7CBoVLjvPCbKcPrpTiXH2K3uwrOtOmwjzLQ9fRrx~buT0n2rx7X-OVz6DGPDZ47qeH-mgpNyYS3fkeysdAqBRamcwCiC1TzB17VR4NOfHxXCK6zfZ~Q1MDPLBMmMhn1uQhl4s4SeUj4gsnQF7Ocn10Pps7Xc41hH112apDFPkulpHlQjSQKzsOqLTkvLciwIHtz6NqykXBj0aqCNiAyzQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984088,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984088/thumbnails/1.jpg","file_name":"MWS_DFD08-2008-001276.pdf","download_url":"https://www.academia.edu/attachments/119984088/download_file","bulk_download_file_name":"Dispersion_in_isotachophoresis.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984088/MWS_DFD08-2008-001276-libre.pdf?1733255836=\u0026response-content-disposition=attachment%3B+filename%3DDispersion_in_isotachophoresis.pdf\u0026Expires=1734027722\u0026Signature=CDKfgH8PWOq58bNjbSrYqkYOdpk3Svc7zorfLNNq8z9A-tAfQiAkOEgxzNIvB5C6LAmKcWI7FyDP4s3ZlNsWtHloNavS2Dn0R-jnj1v9H~oiK1NilNAet4HuDGmtANtJgUp14Bvywu~Q4hug4K3H-yXVj9izZcJeskZiKGSEPzusLxgFLUOy1kKRPboqn14du2asU8~TqVn6MOD0x5goPr~HjcnkxGHAmJXN581493~moETi2EdjkTOb4UsrceTjkKdPAmBKrH9DgEyQWeHms9zJhU4AzXe0j0V-30-uSxc8MPGTaKL9K8gn2XClLo-s1OaMzGIPAjUgrUkdwXuo1g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":205770,"name":"Isotachophoresis","url":"https://www.academia.edu/Documents/in/Isotachophoresis"}],"urls":[{"id":45906054,"url":"http://absimage.aps.org/image/DFD08/MWS_DFD08-2008-001276.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046787"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046787/Generalized_Electrokinetic_Transport_of_Ions_in_Nanochannels"><img alt="Research paper thumbnail of Generalized Electrokinetic Transport of Ions in Nanochannels" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046787/Generalized_Electrokinetic_Transport_of_Ions_in_Nanochannels">Generalized Electrokinetic Transport of Ions in Nanochannels</a></div><div class="wp-workCard_item"><span>Bulletin of the American Physical Society</span><span>, Nov 18, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Submitted for the DFD07 Meeting of The American Physical Society Generalized Electrokinetic Trans...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Submitted for the DFD07 Meeting of The American Physical Society Generalized Electrokinetic Transport of Ions in Nanochannels 1 FABIO BALDESSARI, JUAN G. SANTIAGO, Stanford University-We present a generalized model for calculating transport of dilute analytes in long, thin nanochannels with overlapped electric double layers, and in the presence of an axial electric field. Differently than published models, we adopt equilibrium between the ionic solutions in the wells and inside the nanochannel to self-consistently predict background electrolyte ion densities and the electric potential field. Furthermore, our model includes the (strong) dependence of ion mobility on local ionic strength of the electrolyte. We present predictions solving simple one-dimensional integrals. We validate our predictions by comparing simulations with measurements of effective mobility of two charged fluorescent analytes in fused silica nanochannels (Bodipy with valence-1, and Fluorescein with valence-2). We present results of separation performance, and we compare electrokinetically-driven field flow fractionation to other established separation methods of the same family</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ec438b4016d31e258e539da8587f9804" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984086,"asset_id":126046787,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984086/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046787"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046787"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046787; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046787]").text(description); $(".js-view-count[data-work-id=126046787]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046787; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046787']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046787, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ec438b4016d31e258e539da8587f9804" } } $('.js-work-strip[data-work-id=126046787]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046787,"title":"Generalized Electrokinetic Transport of Ions in Nanochannels","translated_title":"","metadata":{"publisher":"Cambridge University Press","grobid_abstract":"Submitted for the DFD07 Meeting of The American Physical Society Generalized Electrokinetic Transport of Ions in Nanochannels 1 FABIO BALDESSARI, JUAN G. SANTIAGO, Stanford University-We present a generalized model for calculating transport of dilute analytes in long, thin nanochannels with overlapped electric double layers, and in the presence of an axial electric field. Differently than published models, we adopt equilibrium between the ionic solutions in the wells and inside the nanochannel to self-consistently predict background electrolyte ion densities and the electric potential field. Furthermore, our model includes the (strong) dependence of ion mobility on local ionic strength of the electrolyte. We present predictions solving simple one-dimensional integrals. We validate our predictions by comparing simulations with measurements of effective mobility of two charged fluorescent analytes in fused silica nanochannels (Bodipy with valence-1, and Fluorescein with valence-2). We present results of separation performance, and we compare electrokinetically-driven field flow fractionation to other established separation methods of the same family","publication_date":{"day":18,"month":11,"year":2007,"errors":{}},"publication_name":"Bulletin of the American Physical Society","grobid_abstract_attachment_id":119984086},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046787/Generalized_Electrokinetic_Transport_of_Ions_in_Nanochannels","translated_internal_url":"","created_at":"2024-12-03T11:14:19.513-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984086,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"MWS_DFD07-2007-000417.pdf","download_url":"https://www.academia.edu/attachments/119984086/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Generalized_Electrokinetic_Transport_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984086/MWS_DFD07-2007-000417-libre.pdf?1733255836=\u0026response-content-disposition=attachment%3B+filename%3DGeneralized_Electrokinetic_Transport_of.pdf\u0026Expires=1734027722\u0026Signature=WfuU91d2718YdqPtodG7KGFTbePGU0JcYy3Zu72GsYMHJTk7FVC5eRu5Ht5n8KQmMxg12DYriOta67x5MjUatm1-rCaS3BOmsJAaORih7Qw~xvnvS4M6eQPzdwyB~j7KZWfINu2tjfxxmSSlJiv3DTEBj3d5j7fjoqY-8UnI~G3Y9u4w5TUhcb99XEvxuzByKHoBpJc2rOCcvvj3K4irMF3bABhqEruOEc5LVgsoulVrpZmCfX-JTj03OnaZfaCNGPbEqExirQGaam5otBzTq5~ayWXQBumKwDXxMcNeWv7x19pQaykZDB27a9jUAi1Iuk9vTmAIbGFXVu6zgBPAAg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Generalized_Electrokinetic_Transport_of_Ions_in_Nanochannels","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Submitted for the DFD07 Meeting of The American Physical Society Generalized Electrokinetic Transport of Ions in Nanochannels 1 FABIO BALDESSARI, JUAN G. SANTIAGO, Stanford University-We present a generalized model for calculating transport of dilute analytes in long, thin nanochannels with overlapped electric double layers, and in the presence of an axial electric field. Differently than published models, we adopt equilibrium between the ionic solutions in the wells and inside the nanochannel to self-consistently predict background electrolyte ion densities and the electric potential field. Furthermore, our model includes the (strong) dependence of ion mobility on local ionic strength of the electrolyte. We present predictions solving simple one-dimensional integrals. We validate our predictions by comparing simulations with measurements of effective mobility of two charged fluorescent analytes in fused silica nanochannels (Bodipy with valence-1, and Fluorescein with valence-2). We present results of separation performance, and we compare electrokinetically-driven field flow fractionation to other established separation methods of the same family","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984086,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"MWS_DFD07-2007-000417.pdf","download_url":"https://www.academia.edu/attachments/119984086/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Generalized_Electrokinetic_Transport_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984086/MWS_DFD07-2007-000417-libre.pdf?1733255836=\u0026response-content-disposition=attachment%3B+filename%3DGeneralized_Electrokinetic_Transport_of.pdf\u0026Expires=1734027722\u0026Signature=WfuU91d2718YdqPtodG7KGFTbePGU0JcYy3Zu72GsYMHJTk7FVC5eRu5Ht5n8KQmMxg12DYriOta67x5MjUatm1-rCaS3BOmsJAaORih7Qw~xvnvS4M6eQPzdwyB~j7KZWfINu2tjfxxmSSlJiv3DTEBj3d5j7fjoqY-8UnI~G3Y9u4w5TUhcb99XEvxuzByKHoBpJc2rOCcvvj3K4irMF3bABhqEruOEc5LVgsoulVrpZmCfX-JTj03OnaZfaCNGPbEqExirQGaam5otBzTq5~ayWXQBumKwDXxMcNeWv7x19pQaykZDB27a9jUAi1Iuk9vTmAIbGFXVu6zgBPAAg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984087,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"MWS_DFD07-2007-000417.pdf","download_url":"https://www.academia.edu/attachments/119984087/download_file","bulk_download_file_name":"Generalized_Electrokinetic_Transport_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984087/MWS_DFD07-2007-000417-libre.pdf?1733255836=\u0026response-content-disposition=attachment%3B+filename%3DGeneralized_Electrokinetic_Transport_of.pdf\u0026Expires=1734027722\u0026Signature=P1eeGW2TQn2H~~y-SgA3okitBDg1ShTla9bXPvXd7p9MLxnSONn2Pg0jd8YRCgBkjWBERxOsnDs~1YuAf~4IwFjQyuhWOngWiokiRwMFwK-WGk0XXyDf88O1WS19J0OQzK3fJIl3qK6i2A2VvZO95ve6XBzTuRm6CnkrFsQPZ1W9CdvXjoWB9MN~XPg-jDQWNPExu0YSRzt0EI-5YTlRUfOu8aB3yQdWJUjvFaQjSsyCkkTuG8ESulmNGAYqIeDtYTNKx6mOU6BTTG8ZpczjcoDSkqyxl0X1dftUb-6zdebvCxJqpjbc7TJuu5OzJmN8eGBjfFBqRhVxbQSDUKt-0Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":16059,"name":"Flow Field Flow Fractionation","url":"https://www.academia.edu/Documents/in/Flow_Field_Flow_Fractionation"},{"id":205768,"name":"Electrokinetic Phenomena","url":"https://www.academia.edu/Documents/in/Electrokinetic_Phenomena"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":500014,"name":"Measures of Effectiveness","url":"https://www.academia.edu/Documents/in/Measures_of_Effectiveness"},{"id":651435,"name":"Potential Field","url":"https://www.academia.edu/Documents/in/Potential_Field"},{"id":970774,"name":"Ionic Strength","url":"https://www.academia.edu/Documents/in/Ionic_Strength"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"},{"id":1373617,"name":"Electric Double Layer","url":"https://www.academia.edu/Documents/in/Electric_Double_Layer"},{"id":2413807,"name":"Generic model","url":"https://www.academia.edu/Documents/in/Generic_model"},{"id":3536203,"name":"fused silica","url":"https://www.academia.edu/Documents/in/fused_silica"}],"urls":[{"id":45906053,"url":"http://absimage.aps.org/image/DFD07/MWS_DFD07-2007-000417.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046786"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046786/A_depth_averaged_electrokinetic_flow_model_for_shallow_microchannels"><img alt="Research paper thumbnail of A depth-averaged electrokinetic flow model for shallow microchannels" class="work-thumbnail" src="https://attachments.academia-assets.com/119984084/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046786/A_depth_averaged_electrokinetic_flow_model_for_shallow_microchannels">A depth-averaged electrokinetic flow model for shallow microchannels</a></div><div class="wp-workCard_item"><span>Journal of Fluid Mechanics</span><span>, Jul 11, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Electrokinetic flows with heterogeneous conductivity configuration occur widely in microfluidic a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Electrokinetic flows with heterogeneous conductivity configuration occur widely in microfluidic applications such as sample stacking and multidimensional assays. Electromechanical coupling in these flows may lead to complex flow phenomena, such as sample dispersion due to electro-osmotic velocity mismatch, and electrokinetic instability (EKI). In this work we develop a generalized electrokinetic model suitable for the study of microchannel flows with conductivity gradients and shallow-channel geometry. An asymptotic analysis is performed with the channel depth-to-width ratio as a smallness parameter, and the three-dimensional equations are reduced to a set of depth-averaged equations governing in-plane flow dynamics. The momentum equation uses a Darcy-Brinkman-Forchheimer-type formulation, and the convectivediffusive transport of the conductivity field in the depth direction manifests itself as a dispersion effect on the in-plane conductivity field. The validity of the model is assessed by comparing the numerical results with full three-dimensional direct numerical simulations, and experimental data. The depth-averaged equations provide the accuracy of three-dimensional modelling with a convenient two-dimensional equation set applicable to a wide class of microfluidic devices.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="be8a684542b00fc0a849e73ecc0f9e0d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984084,"asset_id":126046786,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984084/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046786"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046786"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046786; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046786]").text(description); $(".js-view-count[data-work-id=126046786]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046786; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046786']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046786, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "be8a684542b00fc0a849e73ecc0f9e0d" } } $('.js-work-strip[data-work-id=126046786]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046786,"title":"A depth-averaged electrokinetic flow model for shallow microchannels","translated_title":"","metadata":{"publisher":"Cambridge University Press","grobid_abstract":"Electrokinetic flows with heterogeneous conductivity configuration occur widely in microfluidic applications such as sample stacking and multidimensional assays. Electromechanical coupling in these flows may lead to complex flow phenomena, such as sample dispersion due to electro-osmotic velocity mismatch, and electrokinetic instability (EKI). In this work we develop a generalized electrokinetic model suitable for the study of microchannel flows with conductivity gradients and shallow-channel geometry. An asymptotic analysis is performed with the channel depth-to-width ratio as a smallness parameter, and the three-dimensional equations are reduced to a set of depth-averaged equations governing in-plane flow dynamics. The momentum equation uses a Darcy-Brinkman-Forchheimer-type formulation, and the convectivediffusive transport of the conductivity field in the depth direction manifests itself as a dispersion effect on the in-plane conductivity field. The validity of the model is assessed by comparing the numerical results with full three-dimensional direct numerical simulations, and experimental data. The depth-averaged equations provide the accuracy of three-dimensional modelling with a convenient two-dimensional equation set applicable to a wide class of microfluidic devices.","publication_date":{"day":11,"month":7,"year":2008,"errors":{}},"publication_name":"Journal of Fluid Mechanics","grobid_abstract_attachment_id":119984084},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046786/A_depth_averaged_electrokinetic_flow_model_for_shallow_microchannels","translated_internal_url":"","created_at":"2024-12-03T11:14:19.237-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984084,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984084/thumbnails/1.jpg","file_name":"lin_20et_20al_20depth_20averaged_20ek_20flow_20in_20shallow_20microchannels_20JFM_202008.pdf","download_url":"https://www.academia.edu/attachments/119984084/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_depth_averaged_electrokinetic_flow_mod.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984084/lin_20et_20al_20depth_20averaged_20ek_20flow_20in_20shallow_20microchannels_20JFM_202008-libre.pdf?1733255847=\u0026response-content-disposition=attachment%3B+filename%3DA_depth_averaged_electrokinetic_flow_mod.pdf\u0026Expires=1733909822\u0026Signature=hORzHIcvUNcEz7djfZ8LnmeUQEkd98fTTr9l3aekcPiNVni0heKmqTpCQXcsQM2dswjehbI6Mr3fpAzNsOGeRJUtdtlb49zvmA4EDZ9oXaGeAMg~NwVfFD3vIYivbVCv~9gS9p3eG~m-8gmptNYwplsxD3puc-yC1ddDrzcetf1myhpF~dzI4YPT5zttwoH~smfSM5uE0HAa~PIu3x5Jag8UJjFZymVFM8e7YJby19BLIgZPc04AJkltAzifkLHy04Cwyafg~7jqBZsRFhSblYWEQ~pcKUIhZ~YVLzVU7ZWDlkqk1z~GZhVkKs5oE6xSgZLjDLxcmKgs6vYXetQfKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_depth_averaged_electrokinetic_flow_model_for_shallow_microchannels","translated_slug":"","page_count":28,"language":"en","content_type":"Work","summary":"Electrokinetic flows with heterogeneous conductivity configuration occur widely in microfluidic applications such as sample stacking and multidimensional assays. Electromechanical coupling in these flows may lead to complex flow phenomena, such as sample dispersion due to electro-osmotic velocity mismatch, and electrokinetic instability (EKI). In this work we develop a generalized electrokinetic model suitable for the study of microchannel flows with conductivity gradients and shallow-channel geometry. An asymptotic analysis is performed with the channel depth-to-width ratio as a smallness parameter, and the three-dimensional equations are reduced to a set of depth-averaged equations governing in-plane flow dynamics. The momentum equation uses a Darcy-Brinkman-Forchheimer-type formulation, and the convectivediffusive transport of the conductivity field in the depth direction manifests itself as a dispersion effect on the in-plane conductivity field. The validity of the model is assessed by comparing the numerical results with full three-dimensional direct numerical simulations, and experimental data. The depth-averaged equations provide the accuracy of three-dimensional modelling with a convenient two-dimensional equation set applicable to a wide class of microfluidic devices.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984084,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984084/thumbnails/1.jpg","file_name":"lin_20et_20al_20depth_20averaged_20ek_20flow_20in_20shallow_20microchannels_20JFM_202008.pdf","download_url":"https://www.academia.edu/attachments/119984084/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_depth_averaged_electrokinetic_flow_mod.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984084/lin_20et_20al_20depth_20averaged_20ek_20flow_20in_20shallow_20microchannels_20JFM_202008-libre.pdf?1733255847=\u0026response-content-disposition=attachment%3B+filename%3DA_depth_averaged_electrokinetic_flow_mod.pdf\u0026Expires=1733909823\u0026Signature=JF6DPSVgT2n2h8EaWK96~MbsF65db34~cm-Hnz8qNdvfllR-cuGmAiJkXA2Dy9MvL5Q6vdOQI3aua~WouGO3P4GC5bCVn3bbK8KyznW0qr20A6WKhuTkRapvHELQV4F9Tn9vGtqPM8mz~XVleA0nfp~K3V3dMR84cinTHfkqpKwGJ2MU5oZgPZ-VE9ZL~B6gt7F2d1SzE6BfFVHXle1HoepQLReoVeNfDuOY1ttQwcod-HMusCcD3LdLcARc6U~mH-XEffriAOTc2SCSNMrDKF3CzgP0-ckjymr-FrLly06hxhLDIgV0MRUM6XyDHwS7dCd2pl5oBDkEkiS7xh7iLQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984085,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984085/thumbnails/1.jpg","file_name":"lin_20et_20al_20depth_20averaged_20ek_20flow_20in_20shallow_20microchannels_20JFM_202008.pdf","download_url":"https://www.academia.edu/attachments/119984085/download_file","bulk_download_file_name":"A_depth_averaged_electrokinetic_flow_mod.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984085/lin_20et_20al_20depth_20averaged_20ek_20flow_20in_20shallow_20microchannels_20JFM_202008-libre.pdf?1733255858=\u0026response-content-disposition=attachment%3B+filename%3DA_depth_averaged_electrokinetic_flow_mod.pdf\u0026Expires=1733909823\u0026Signature=Qqps2V41VHGBGIN0xqP~SKisU-qu~i5MaEqAJuy90WcUTqz6aaIksTRBctPuUtdqNIkWDzf3b3JGeEkLwzsZ4mqZsVZfSctQh2Z19WPZumkJ0VG7PUCxpDQGr-yz5Ne5Tw7PnBLTvn9GWmHatdDsce1GG3siU-pi07tqQFcLB8MRUpixyWKW3YjI3ra5eVYXoQgXiDDv1vKO4rVTIVhARsYt5lm~JAat1AeMx5KX2tGs0PcVoEC0vzgigr2mdRn-dUBKsjuS~tFHa0Pq5SHI8KJO~st37AzsIAdVFyA7kSisEBo7ckLx2Mxv1vzNzejYzSTA68IQP0~LAtrB5XrZ0w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":2435,"name":"Fluid Mechanics","url":"https://www.academia.edu/Documents/in/Fluid_Mechanics"},{"id":10719,"name":"Direct Numerical Simulation","url":"https://www.academia.edu/Documents/in/Direct_Numerical_Simulation"},{"id":16496,"name":"Fluid Dynamics","url":"https://www.academia.edu/Documents/in/Fluid_Dynamics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":205768,"name":"Electrokinetic Phenomena","url":"https://www.academia.edu/Documents/in/Electrokinetic_Phenomena"},{"id":277944,"name":"asymptotic Analysis","url":"https://www.academia.edu/Documents/in/asymptotic_Analysis"},{"id":283531,"name":"Microchannel","url":"https://www.academia.edu/Documents/in/Microchannel"},{"id":504035,"name":"Three Dimensional","url":"https://www.academia.edu/Documents/in/Three_Dimensional"},{"id":1120502,"name":"Experimental Data","url":"https://www.academia.edu/Documents/in/Experimental_Data"}],"urls":[{"id":45906052,"url":"http://www.stanford.edu/group/microfluidics/Publications/ElectrokineticFlows/lin%20et%20al%20depth%20averaged%20ek%20flow%20in%20shallow%20microchannels%20JFM%202008.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046785"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046785/Taylor_dispersion_in_arbitrarily_shaped_axisymmetric_channels"><img alt="Research paper thumbnail of Taylor dispersion in arbitrarily shaped axisymmetric channels" class="work-thumbnail" src="https://attachments.academia-assets.com/119984103/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046785/Taylor_dispersion_in_arbitrarily_shaped_axisymmetric_channels">Taylor dispersion in arbitrarily shaped axisymmetric channels</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Nov 16, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Advective dispersion of solutes in long thin axisymmetric channels is important to the analysis a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Advective dispersion of solutes in long thin axisymmetric channels is important to the analysis and design of a wide range of devices, including chemical separation systems and microfluidic chips. Despite extensive analysis of Taylor dispersion in various scenarios, most studies focused on long-term dispersion behavior and cannot capture the transient evolution of solute zone across the spatial variations in the channel. In the current study, we analyze the Taylor-Aris dispersion for arbitrarily shaped axisymmetric channels. We derive an expression for solute dynamics in terms of two coupled ordinary differential equations (ODEs). These two ODEs allow prediction of the time evolution of the mean location and axial (standard deviation) width of the solute zone as a function of the channel geometry. We compare and benchmark our predictions with Brownian dynamics simulations for a variety of cases including linearly expanding/converging channels and periodic channels. We also present an analytical description of the physical regimes of transient positive versus negative axial growth of solute width. Finally, to further demonstrate the utility of the analysis, we demonstrate a method to engineer channel geometries to achieve desired solute width distributions over space and time. We apply the latter analysis to generate a geometry that results in a constant axial width and a second geometry that results in a sinusoidal axial variance in space.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d4addd375b0bc581e14fe09d2f92b265" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984103,"asset_id":126046785,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984103/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046785"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046785"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046785; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046785]").text(description); $(".js-view-count[data-work-id=126046785]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046785; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046785']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046785, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d4addd375b0bc581e14fe09d2f92b265" } } $('.js-work-strip[data-work-id=126046785]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046785,"title":"Taylor dispersion in arbitrarily shaped axisymmetric channels","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"Advective dispersion of solutes in long thin axisymmetric channels is important to the analysis and design of a wide range of devices, including chemical separation systems and microfluidic chips. Despite extensive analysis of Taylor dispersion in various scenarios, most studies focused on long-term dispersion behavior and cannot capture the transient evolution of solute zone across the spatial variations in the channel. In the current study, we analyze the Taylor-Aris dispersion for arbitrarily shaped axisymmetric channels. We derive an expression for solute dynamics in terms of two coupled ordinary differential equations (ODEs). These two ODEs allow prediction of the time evolution of the mean location and axial (standard deviation) width of the solute zone as a function of the channel geometry. We compare and benchmark our predictions with Brownian dynamics simulations for a variety of cases including linearly expanding/converging channels and periodic channels. We also present an analytical description of the physical regimes of transient positive versus negative axial growth of solute width. Finally, to further demonstrate the utility of the analysis, we demonstrate a method to engineer channel geometries to achieve desired solute width distributions over space and time. We apply the latter analysis to generate a geometry that results in a constant axial width and a second geometry that results in a sinusoidal axial variance in space.","publication_date":{"day":16,"month":11,"year":2022,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":119984103},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046785/Taylor_dispersion_in_arbitrarily_shaped_axisymmetric_channels","translated_internal_url":"","created_at":"2024-12-03T11:14:18.916-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984103,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984103/thumbnails/1.jpg","file_name":"2211.09255.pdf","download_url":"https://www.academia.edu/attachments/119984103/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Taylor_dispersion_in_arbitrarily_shaped.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984103/2211.09255-libre.pdf?1733256547=\u0026response-content-disposition=attachment%3B+filename%3DTaylor_dispersion_in_arbitrarily_shaped.pdf\u0026Expires=1734027722\u0026Signature=aMSke0JS4f~-1dQ-6rcd53ujkAwt1Xwto1tjUhy3YOzxRCgwdkU10Py91Yitkg7KSwtGV2cTRJlv8TYCFI87GrNhp8r~HlcBztDXksEsTYb~psAlnqbsvJFd234MR9lHBOKoQfSAHWGvkBQ~Owplxykicx9A2EaoSUvnuBK317YDOjYCUwS7rVrgIPW1gewxr9VnR4DmNRjN-ajhfCIFVR~TZ0H59YiIKPpbXnyDQtI~rfJplR0Y3RHbbfVn61wKZp4P8C18-XTddhWxrgwkhp~kwfelOhZ732Tjn7zhxEP3fJ1IfrdK8S5X~mYj0ODt-~ddvyU4jlt~tGYBNDAmWg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Taylor_dispersion_in_arbitrarily_shaped_axisymmetric_channels","translated_slug":"","page_count":32,"language":"en","content_type":"Work","summary":"Advective dispersion of solutes in long thin axisymmetric channels is important to the analysis and design of a wide range of devices, including chemical separation systems and microfluidic chips. Despite extensive analysis of Taylor dispersion in various scenarios, most studies focused on long-term dispersion behavior and cannot capture the transient evolution of solute zone across the spatial variations in the channel. In the current study, we analyze the Taylor-Aris dispersion for arbitrarily shaped axisymmetric channels. We derive an expression for solute dynamics in terms of two coupled ordinary differential equations (ODEs). These two ODEs allow prediction of the time evolution of the mean location and axial (standard deviation) width of the solute zone as a function of the channel geometry. We compare and benchmark our predictions with Brownian dynamics simulations for a variety of cases including linearly expanding/converging channels and periodic channels. We also present an analytical description of the physical regimes of transient positive versus negative axial growth of solute width. Finally, to further demonstrate the utility of the analysis, we demonstrate a method to engineer channel geometries to achieve desired solute width distributions over space and time. We apply the latter analysis to generate a geometry that results in a constant axial width and a second geometry that results in a sinusoidal axial variance in space.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984103,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984103/thumbnails/1.jpg","file_name":"2211.09255.pdf","download_url":"https://www.academia.edu/attachments/119984103/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Taylor_dispersion_in_arbitrarily_shaped.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984103/2211.09255-libre.pdf?1733256547=\u0026response-content-disposition=attachment%3B+filename%3DTaylor_dispersion_in_arbitrarily_shaped.pdf\u0026Expires=1734027722\u0026Signature=aMSke0JS4f~-1dQ-6rcd53ujkAwt1Xwto1tjUhy3YOzxRCgwdkU10Py91Yitkg7KSwtGV2cTRJlv8TYCFI87GrNhp8r~HlcBztDXksEsTYb~psAlnqbsvJFd234MR9lHBOKoQfSAHWGvkBQ~Owplxykicx9A2EaoSUvnuBK317YDOjYCUwS7rVrgIPW1gewxr9VnR4DmNRjN-ajhfCIFVR~TZ0H59YiIKPpbXnyDQtI~rfJplR0Y3RHbbfVn61wKZp4P8C18-XTddhWxrgwkhp~kwfelOhZ732Tjn7zhxEP3fJ1IfrdK8S5X~mYj0ODt-~ddvyU4jlt~tGYBNDAmWg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984107,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984107/thumbnails/1.jpg","file_name":"2211.09255.pdf","download_url":"https://www.academia.edu/attachments/119984107/download_file","bulk_download_file_name":"Taylor_dispersion_in_arbitrarily_shaped.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984107/2211.09255-libre.pdf?1733256915=\u0026response-content-disposition=attachment%3B+filename%3DTaylor_dispersion_in_arbitrarily_shaped.pdf\u0026Expires=1734027722\u0026Signature=SicPxkOafshi4nSlfR7wBm-fMUm2CakGwKsS9uktnFkVnMtZcpNt6voBb--~mHXK-BBbljAgixWa33qBQt0QyMkaqaKPZ4Oev2REUcPH1SOs3WKkSLqgnGf4Jn-p4hnhHiRy0eyW0sCaXxoOCzPV0kMq8n~7vbz0H0HpiTttaxcu2PTuaz8tt~mER~rtLyZNfw8svWr2j6psvlpdWsXwO9dh28xiMuLgl4purFf~tzsnfiBTDfKS~Wu1i59VK1hY3Xkv0LIVLHOaqJxtasOr2SWDrLpRQpCRmmxtguIVhWFXoIFa6N9NRYE-1lkzsjzpG1jZPWBVzwxJ1BREsdYHfw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":394451,"name":"Taylor Series","url":"https://www.academia.edu/Documents/in/Taylor_Series"},{"id":673616,"name":"Rotational Symmetry","url":"https://www.academia.edu/Documents/in/Rotational_Symmetry"},{"id":1025435,"name":"Taylor Dispersion","url":"https://www.academia.edu/Documents/in/Taylor_Dispersion"},{"id":1770555,"name":"Ordinary Differential Equation","url":"https://www.academia.edu/Documents/in/Ordinary_Differential_Equation"}],"urls":[{"id":45906051,"url":"http://arxiv.org/pdf/2211.09255"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046784"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046784/Electrokinetic_Instabilities_and_Sample_Stacking"><img alt="Research paper thumbnail of Electrokinetic Instabilities and Sample Stacking" class="work-thumbnail" src="https://attachments.academia-assets.com/119984083/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046784/Electrokinetic_Instabilities_and_Sample_Stacking">Electrokinetic Instabilities and Sample Stacking</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Electrokinetic instabilities occur in electrokinetic microchannel flows with heterogeneous electr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Electrokinetic instabilities occur in electrokinetic microchannel flows with heterogeneous electrolytes. These instabilities can be leveraged in providing rapid mixing, but are often unwanted in microfluidic applications which use heterogeneous electrolytes to achieve high resolution and new functionality. One important application of heterogeneous electrolytes is field-amplified sample stacking methods which use conductivity gradients to achieve sample preconcentration prior to electrophoretic separation. In this work, we analyze the flow physics of electrokinetic flows with conductivity gradients using theoretical analyses, numerical computations, and experimental observations. Various models including twodimensional and depth-averaged formulations have been developed, and modeling results compare well with experimental observations. Based on this understanding, we have developed novel sample stacking methods with sample preconcentrations exceeding 1,000 fold. The work also provides guidelines for the design and optimization of on-chip chemical and bio-analytical assays.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fea35da1620e2b85c6a0066f18975abf" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984083,"asset_id":126046784,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984083/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046784"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046784"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046784; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046784]").text(description); $(".js-view-count[data-work-id=126046784]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046784; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046784']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046784, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fea35da1620e2b85c6a0066f18975abf" } } $('.js-work-strip[data-work-id=126046784]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046784,"title":"Electrokinetic Instabilities and Sample Stacking","translated_title":"","metadata":{"grobid_abstract":"Electrokinetic instabilities occur in electrokinetic microchannel flows with heterogeneous electrolytes. These instabilities can be leveraged in providing rapid mixing, but are often unwanted in microfluidic applications which use heterogeneous electrolytes to achieve high resolution and new functionality. One important application of heterogeneous electrolytes is field-amplified sample stacking methods which use conductivity gradients to achieve sample preconcentration prior to electrophoretic separation. In this work, we analyze the flow physics of electrokinetic flows with conductivity gradients using theoretical analyses, numerical computations, and experimental observations. Various models including twodimensional and depth-averaged formulations have been developed, and modeling results compare well with experimental observations. Based on this understanding, we have developed novel sample stacking methods with sample preconcentrations exceeding 1,000 fold. The work also provides guidelines for the design and optimization of on-chip chemical and bio-analytical assays.","publication_date":{"day":1,"month":12,"year":2005,"errors":{}},"grobid_abstract_attachment_id":119984083},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046784/Electrokinetic_Instabilities_and_Sample_Stacking","translated_internal_url":"","created_at":"2024-12-03T11:14:18.299-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984083,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984083/thumbnails/1.jpg","file_name":"1034.pdf","download_url":"https://www.academia.edu/attachments/119984083/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Electrokinetic_Instabilities_and_Sample.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984083/1034-libre.pdf?1733255843=\u0026response-content-disposition=attachment%3B+filename%3DElectrokinetic_Instabilities_and_Sample.pdf\u0026Expires=1734027722\u0026Signature=dC5Tql9RTvhInWXp9oQhXhLa4Gvl4AzAAR37TWwDWxCRj5y3Tdt9VCYgrSkaQFS~CQnXl-gQBu0faV4WMIc3qCeHu81PZBYruDbnMELbe7AWO~amGztBmNLS~zHln75X0gcom3VtfUrSQn-vyFLvwAWehz3~xfKseptbqNDEf7Fjwr5wBnBfTfWogKYi98VzXRZ55vrB0~ve5~Ge0Px0W~i5~LX~SQqtnGH0FLn6R3qGztkWkfz08vYEqA3CnSobxUpEtIVXiysM4dS4fbg72VjLTrQAIDkwFY~o5aW7SQbspKTDy91XQuSW97-dMfvo8WM5Cp07O2s1K5k5fadzUg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Electrokinetic_Instabilities_and_Sample_Stacking","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"Electrokinetic instabilities occur in electrokinetic microchannel flows with heterogeneous electrolytes. These instabilities can be leveraged in providing rapid mixing, but are often unwanted in microfluidic applications which use heterogeneous electrolytes to achieve high resolution and new functionality. One important application of heterogeneous electrolytes is field-amplified sample stacking methods which use conductivity gradients to achieve sample preconcentration prior to electrophoretic separation. In this work, we analyze the flow physics of electrokinetic flows with conductivity gradients using theoretical analyses, numerical computations, and experimental observations. Various models including twodimensional and depth-averaged formulations have been developed, and modeling results compare well with experimental observations. Based on this understanding, we have developed novel sample stacking methods with sample preconcentrations exceeding 1,000 fold. The work also provides guidelines for the design and optimization of on-chip chemical and bio-analytical assays.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984083,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984083/thumbnails/1.jpg","file_name":"1034.pdf","download_url":"https://www.academia.edu/attachments/119984083/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Electrokinetic_Instabilities_and_Sample.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984083/1034-libre.pdf?1733255843=\u0026response-content-disposition=attachment%3B+filename%3DElectrokinetic_Instabilities_and_Sample.pdf\u0026Expires=1734027722\u0026Signature=dC5Tql9RTvhInWXp9oQhXhLa4Gvl4AzAAR37TWwDWxCRj5y3Tdt9VCYgrSkaQFS~CQnXl-gQBu0faV4WMIc3qCeHu81PZBYruDbnMELbe7AWO~amGztBmNLS~zHln75X0gcom3VtfUrSQn-vyFLvwAWehz3~xfKseptbqNDEf7Fjwr5wBnBfTfWogKYi98VzXRZ55vrB0~ve5~Ge0Px0W~i5~LX~SQqtnGH0FLn6R3qGztkWkfz08vYEqA3CnSobxUpEtIVXiysM4dS4fbg72VjLTrQAIDkwFY~o5aW7SQbspKTDy91XQuSW97-dMfvo8WM5Cp07O2s1K5k5fadzUg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984082,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984082/thumbnails/1.jpg","file_name":"1034.pdf","download_url":"https://www.academia.edu/attachments/119984082/download_file","bulk_download_file_name":"Electrokinetic_Instabilities_and_Sample.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984082/1034-libre.pdf?1733255843=\u0026response-content-disposition=attachment%3B+filename%3DElectrokinetic_Instabilities_and_Sample.pdf\u0026Expires=1734027722\u0026Signature=Fr5qgQWGDJEHyWa7b8SlJH-ZveUgeZMlWIpObdtvvcUHAO0WTE1FUGfQmO~lVb5L4CZBVqfrV0t1H5UWlYc6gB6Vh96k4kUL7Mt2Ov3KPiTlFu0SmpOaiWokwr1FM~06scwaVN2axV84otVg-Ffzp~0161hba-7fpYUC~mbFTJes9MdC8fGtyFiza9oCuDv~DLjNbVgZqn8D0G5WrBjmPPXWFqIAXTDzP7C9V9659mlT8DLpmUMyp3aWOfkiVKFxVZvcaeRt-MpYVoHK4hPzsGutHhDMnXFqzbzD72fBd2-U3mrwVzeOABi93Nij1SKxc0EmvB60aYUAXNkPGZlfsw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":205768,"name":"Electrokinetic Phenomena","url":"https://www.academia.edu/Documents/in/Electrokinetic_Phenomena"},{"id":223513,"name":"Conductivity","url":"https://www.academia.edu/Documents/in/Conductivity"},{"id":283531,"name":"Microchannel","url":"https://www.academia.edu/Documents/in/Microchannel"},{"id":1276642,"name":"Electrolyte","url":"https://www.academia.edu/Documents/in/Electrolyte"},{"id":1957004,"name":"Stacking","url":"https://www.academia.edu/Documents/in/Stacking"}],"urls":[{"id":45906050,"url":"https://briefs.techconnect.org/wp-content/volumes/Nanotech2005v1/pdf/1034.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046783"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046783/Rotational_Electrophoresis_of_Striped_Metallic_Microrods"><img alt="Research paper thumbnail of Rotational Electrophoresis of Striped Metallic Microrods" class="work-thumbnail" src="https://attachments.academia-assets.com/119984081/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046783/Rotational_Electrophoresis_of_Striped_Metallic_Microrods">Rotational Electrophoresis of Striped Metallic Microrods</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Analytical models are developed for the translation and rotation of metallic rods in a uniform el...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Analytical models are developed for the translation and rotation of metallic rods in a uniform electric field. The limits of thin and thick electric double layers are considered. These models include the effect of stripes of different metals along the length of the particle. Modeling results are compared to experimental measurements for metallic rods. Experiments demonstrate the increased alignment of particles with increasing field strength and the increase in degree of alignment of thin versus thick electric double layers. The metal rods polarize in the applied field and align parallel to its direction due to torques on the polarized charge. The torque due to polarization has a second order dependence on the electric field strength. The particles are also shown to have an additional alignment torque component due to non-uniform densities along their length. The orientation distributions of dilute suspensions of particles are also shown to agree well with results predicted by a rotational convective-diffusion equation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="58e41a49d030b6b7d75291d8a8b01d2d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984081,"asset_id":126046783,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984081/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046783"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046783"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046783; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046783]").text(description); $(".js-view-count[data-work-id=126046783]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046783; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046783']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046783, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "58e41a49d030b6b7d75291d8a8b01d2d" } } $('.js-work-strip[data-work-id=126046783]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046783,"title":"Rotational Electrophoresis of Striped Metallic Microrods","translated_title":"","metadata":{"grobid_abstract":"Analytical models are developed for the translation and rotation of metallic rods in a uniform electric field. The limits of thin and thick electric double layers are considered. These models include the effect of stripes of different metals along the length of the particle. Modeling results are compared to experimental measurements for metallic rods. Experiments demonstrate the increased alignment of particles with increasing field strength and the increase in degree of alignment of thin versus thick electric double layers. The metal rods polarize in the applied field and align parallel to its direction due to torques on the polarized charge. The torque due to polarization has a second order dependence on the electric field strength. The particles are also shown to have an additional alignment torque component due to non-uniform densities along their length. The orientation distributions of dilute suspensions of particles are also shown to agree well with results predicted by a rotational convective-diffusion equation.","publication_date":{"day":28,"month":11,"year":2005,"errors":{}},"grobid_abstract_attachment_id":119984081},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046783/Rotational_Electrophoresis_of_Striped_Metallic_Microrods","translated_internal_url":"","created_at":"2024-12-03T11:14:18.061-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984081,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984081/thumbnails/1.jpg","file_name":"900443.pdf","download_url":"https://www.academia.edu/attachments/119984081/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Rotational_Electrophoresis_of_Striped_Me.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984081/900443-libre.pdf?1733255852=\u0026response-content-disposition=attachment%3B+filename%3DRotational_Electrophoresis_of_Striped_Me.pdf\u0026Expires=1734027722\u0026Signature=Ia4-wwZRx06zhAI9i1qMRBvdrqufKM495yyd7NrjtH5iPHd2f0fPJPqNog9HWahswYdNQtz13o97PTx~cj2YelaQf700eO3Wqnt3E5ol5WGXz6USeZPrync9ZRlwkiESk~eCbvArh90L4gmIxjVfn5rwDHGKmq4ZEgA~KgbcuIk7As-eowAnTJN8aUtn6bHkC3Af7UOWuZkngFwoC7VtglAc6nEjyidkx6X1NKLWMBjc-C47ooaruDszGu2oYQghmpqBPnbgfzbmdH6VEDNKHt14k7P3AvfGrFBS1zlMnslgLORuO9zNheSUBIQ8uab6vY2qNJK8-FWUZRrZd9SJLw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Rotational_Electrophoresis_of_Striped_Metallic_Microrods","translated_slug":"","page_count":32,"language":"en","content_type":"Work","summary":"Analytical models are developed for the translation and rotation of metallic rods in a uniform electric field. The limits of thin and thick electric double layers are considered. These models include the effect of stripes of different metals along the length of the particle. Modeling results are compared to experimental measurements for metallic rods. Experiments demonstrate the increased alignment of particles with increasing field strength and the increase in degree of alignment of thin versus thick electric double layers. The metal rods polarize in the applied field and align parallel to its direction due to torques on the polarized charge. The torque due to polarization has a second order dependence on the electric field strength. The particles are also shown to have an additional alignment torque component due to non-uniform densities along their length. The orientation distributions of dilute suspensions of particles are also shown to agree well with results predicted by a rotational convective-diffusion equation.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984081,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984081/thumbnails/1.jpg","file_name":"900443.pdf","download_url":"https://www.academia.edu/attachments/119984081/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Rotational_Electrophoresis_of_Striped_Me.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984081/900443-libre.pdf?1733255852=\u0026response-content-disposition=attachment%3B+filename%3DRotational_Electrophoresis_of_Striped_Me.pdf\u0026Expires=1734027722\u0026Signature=Ia4-wwZRx06zhAI9i1qMRBvdrqufKM495yyd7NrjtH5iPHd2f0fPJPqNog9HWahswYdNQtz13o97PTx~cj2YelaQf700eO3Wqnt3E5ol5WGXz6USeZPrync9ZRlwkiESk~eCbvArh90L4gmIxjVfn5rwDHGKmq4ZEgA~KgbcuIk7As-eowAnTJN8aUtn6bHkC3Af7UOWuZkngFwoC7VtglAc6nEjyidkx6X1NKLWMBjc-C47ooaruDszGu2oYQghmpqBPnbgfzbmdH6VEDNKHt14k7P3AvfGrFBS1zlMnslgLORuO9zNheSUBIQ8uab6vY2qNJK8-FWUZRrZd9SJLw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984080,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984080/thumbnails/1.jpg","file_name":"900443.pdf","download_url":"https://www.academia.edu/attachments/119984080/download_file","bulk_download_file_name":"Rotational_Electrophoresis_of_Striped_Me.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984080/900443-libre.pdf?1733255851=\u0026response-content-disposition=attachment%3B+filename%3DRotational_Electrophoresis_of_Striped_Me.pdf\u0026Expires=1734027722\u0026Signature=VNsLrO-RDIKCv0qmBFA3bZVzfX9JYB4xKgvGZbRyYcuhzYXRdKwv4TVSwJWUFW5DKSHjgXze0B7Qj7dcutmSUc3Z18KpbqwTUIH3n2HAj4~LcF3ckUAdMv5rgWK3lddsBmMquXtWaAeEnbIvhYnrR-xxOsQDOgoPGarEp8DQm3XXqzcfo~l6I7QlS8OwrTakNipE-jtb689qogAY477Pd3E6WoOqWQCGtb~T8xCDIXsmOli~EWPWmvEZk~~j7DiIvg5wCt2S8wRfRYuA1bhtv1nRtke39awMRkK7y0SjZXvrpXRkwTbCLehu2UhnSVwq2Ep5oEFE98rfwxAl8CIQgg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":48636,"name":"Simulation","url":"https://www.academia.edu/Documents/in/Simulation"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":93037,"name":"Orientation","url":"https://www.academia.edu/Documents/in/Orientation"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":191543,"name":"Polarization","url":"https://www.academia.edu/Documents/in/Polarization"},{"id":212475,"name":"Electric Fields","url":"https://www.academia.edu/Documents/in/Electric_Fields"},{"id":371425,"name":"Electrophoresis","url":"https://www.academia.edu/Documents/in/Electrophoresis"},{"id":736620,"name":"Torque","url":"https://www.academia.edu/Documents/in/Torque"},{"id":808264,"name":"Rotational diffusion","url":"https://www.academia.edu/Documents/in/Rotational_diffusion"},{"id":818658,"name":"Rotation","url":"https://www.academia.edu/Documents/in/Rotation"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"},{"id":1551309,"name":"ROD","url":"https://www.academia.edu/Documents/in/ROD"}],"urls":[{"id":45906049,"url":"https://digital.library.unt.edu/ark:/67531/metadc882585/m2/1/high_res_d/900443.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046782"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046782/The_Effects_of_Concentration_Polarization_on_Molecule_Translocation_in_a_Nanopore_Device"><img alt="Research paper thumbnail of The Effects of Concentration Polarization on Molecule Translocation in a Nanopore Device" class="work-thumbnail" src="https://attachments.academia-assets.com/119984078/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046782/The_Effects_of_Concentration_Polarization_on_Molecule_Translocation_in_a_Nanopore_Device">The Effects of Concentration Polarization on Molecule Translocation in a Nanopore Device</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Nanopores offer the potential for label-free detection of individual proteins [1] and have been i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Nanopores offer the potential for label-free detection of individual proteins [1] and have been identified as a key potential technology for low cost DNA sequencing.[2] To date, most studies of nanopore electrokinetic transport [1,3,4] have neglected the effects of concentration polarization (CP) especially in systems with nonoverlapped electric double layers (EDLs). We present a combined computational and experimental study of conical nanopores with tip diameters of 40-100 nm. Our modeling and experimental work shows that for typical (mM) buffer concentrations, even non-overlapped EDLs fundamentally affect key transport characteristics such as the rate of molecular translocations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ab49df3afc2a95fd0f0b8bf3831af621" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984078,"asset_id":126046782,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984078/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046782"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046782"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046782; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046782]").text(description); $(".js-view-count[data-work-id=126046782]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046782; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046782']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046782, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ab49df3afc2a95fd0f0b8bf3831af621" } } $('.js-work-strip[data-work-id=126046782]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046782,"title":"The Effects of Concentration Polarization on Molecule Translocation in a Nanopore Device","translated_title":"","metadata":{"grobid_abstract":"Nanopores offer the potential for label-free detection of individual proteins [1] and have been identified as a key potential technology for low cost DNA sequencing.[2] To date, most studies of nanopore electrokinetic transport [1,3,4] have neglected the effects of concentration polarization (CP) especially in systems with nonoverlapped electric double layers (EDLs). We present a combined computational and experimental study of conical nanopores with tip diameters of 40-100 nm. Our modeling and experimental work shows that for typical (mM) buffer concentrations, even non-overlapped EDLs fundamentally affect key transport characteristics such as the rate of molecular translocations.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"grobid_abstract_attachment_id":119984078},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046782/The_Effects_of_Concentration_Polarization_on_Molecule_Translocation_in_a_Nanopore_Device","translated_internal_url":"","created_at":"2024-12-03T11:14:17.839-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984078,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984078/thumbnails/1.jpg","file_name":"072_0689.pdf","download_url":"https://www.academia.edu/attachments/119984078/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Effects_of_Concentration_Polarizatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984078/072_0689-libre.pdf?1733255841=\u0026response-content-disposition=attachment%3B+filename%3DThe_Effects_of_Concentration_Polarizatio.pdf\u0026Expires=1734027723\u0026Signature=CrMoZg-hmlAoHBCP1gHj9ZCFqmBUSrL20M4~rsiUg5lxw9bxs39dlhCsXDdBpRFQ6JyFycW44hAYjL0gXPKaLiTY3J8~eaXYRgr2j~8M3DxE9EJaQ5B5YPRMNaTNfmc0zFp2vjEMDLFjVQgEgHNYxRV222xyFyoi1t83nDC2DYURw7cLG1dZINzH5hQxkLyEYPHq2N7IYUToAyv7GJS~tBNuEVjcRi4E0WMJD~emFfsIQ9oY4Xl~w5pZKuVDQZvmuGGs4At8Pw91esEIcqDj7RwCxRNF2Gflgg302n-EBFsLtcyiLvlBVb6aGN2Pkiyx7txfN9BgbtvG4NlRGQYuVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Effects_of_Concentration_Polarization_on_Molecule_Translocation_in_a_Nanopore_Device","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":"Nanopores offer the potential for label-free detection of individual proteins [1] and have been identified as a key potential technology for low cost DNA sequencing.[2] To date, most studies of nanopore electrokinetic transport [1,3,4] have neglected the effects of concentration polarization (CP) especially in systems with nonoverlapped electric double layers (EDLs). We present a combined computational and experimental study of conical nanopores with tip diameters of 40-100 nm. Our modeling and experimental work shows that for typical (mM) buffer concentrations, even non-overlapped EDLs fundamentally affect key transport characteristics such as the rate of molecular translocations.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984078,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984078/thumbnails/1.jpg","file_name":"072_0689.pdf","download_url":"https://www.academia.edu/attachments/119984078/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Effects_of_Concentration_Polarizatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984078/072_0689-libre.pdf?1733255841=\u0026response-content-disposition=attachment%3B+filename%3DThe_Effects_of_Concentration_Polarizatio.pdf\u0026Expires=1734027723\u0026Signature=CrMoZg-hmlAoHBCP1gHj9ZCFqmBUSrL20M4~rsiUg5lxw9bxs39dlhCsXDdBpRFQ6JyFycW44hAYjL0gXPKaLiTY3J8~eaXYRgr2j~8M3DxE9EJaQ5B5YPRMNaTNfmc0zFp2vjEMDLFjVQgEgHNYxRV222xyFyoi1t83nDC2DYURw7cLG1dZINzH5hQxkLyEYPHq2N7IYUToAyv7GJS~tBNuEVjcRi4E0WMJD~emFfsIQ9oY4Xl~w5pZKuVDQZvmuGGs4At8Pw91esEIcqDj7RwCxRNF2Gflgg302n-EBFsLtcyiLvlBVb6aGN2Pkiyx7txfN9BgbtvG4NlRGQYuVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984079,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"072_0689.pdf","download_url":"https://www.academia.edu/attachments/119984079/download_file","bulk_download_file_name":"The_Effects_of_Concentration_Polarizatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984079/072_0689-libre.pdf?1733255842=\u0026response-content-disposition=attachment%3B+filename%3DThe_Effects_of_Concentration_Polarizatio.pdf\u0026Expires=1734027723\u0026Signature=XrVjrPkv8MM3nCk9xdO-YUdTig8Nmg2oTwRxNTnGjaOoFIIHcHtpKu~j-z-RHgGn4uSbAbmwX7bqaaGy5YU4dy-3HbtyvkqkzlppI2msb1EtyE3vtmgeG8PMSAqhrRiwoslqgoofmNU~KKTb-90Vd-bhGfKFyFc-oqSCT6qby1b6nk4AB8iEBd77HBAawGOnt24antjvDy2B8By4PZpR-IkC6I-Hl4LMAIBrVLKNLQ6Que3s7geAS~r-0o3XpUC6WXTlfBEi~btHTy5KxzHnuTrrPwHOONgCvmb-bFa6k5mQfqUbFgfRyoNKyf2o11aX9xZ89Slo0X55worUfAWopg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":75568,"name":"Nanopore DNA sequencing","url":"https://www.academia.edu/Documents/in/Nanopore_DNA_sequencing"},{"id":205768,"name":"Electrokinetic Phenomena","url":"https://www.academia.edu/Documents/in/Electrokinetic_Phenomena"},{"id":3478741,"name":"Nanopore","url":"https://www.academia.edu/Documents/in/Nanopore"}],"urls":[{"id":45906048,"url":"https://www.rsc.org/binaries/LOC/2008/PDFs/Papers/072_0689.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046781"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046781/Rapid_Dna_Hybridization_Reactions_Using_Isotachophoresis"><img alt="Research paper thumbnail of Rapid Dna Hybridization Reactions Using Isotachophoresis" class="work-thumbnail" src="https://attachments.academia-assets.com/119984076/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046781/Rapid_Dna_Hybridization_Reactions_Using_Isotachophoresis">Rapid Dna Hybridization Reactions Using Isotachophoresis</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We use ITP to control and increase the rate of homogenous DNA hybridization reactions. We present...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We use ITP to control and increase the rate of homogenous DNA hybridization reactions. We present a novel physical model, new validation experiments, and new demonstrations of this assay. We studied the coupled physics and chemistry of the dynamics of preconcentration, mixing, and chemical reaction kinetics under ITP. Our experimentally-validated model enables closed form solution for two-species hybridization reaction under ITP, and predicts 10,000 fold speed-up of chemical reaction rate at concentrations of order 10 pM, with greater enhancement of reaction rate at lower concentrations. We experimentally demonstrate 800 fold speed-up using ITP compared to the standard case of reaction in a simple, well mixed reaction chamber.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a99e15171633f8648f7787d2ca945994" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984076,"asset_id":126046781,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984076/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046781"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046781"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046781; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046781]").text(description); $(".js-view-count[data-work-id=126046781]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046781; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046781']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046781, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a99e15171633f8648f7787d2ca945994" } } $('.js-work-strip[data-work-id=126046781]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046781,"title":"Rapid Dna Hybridization Reactions Using Isotachophoresis","translated_title":"","metadata":{"grobid_abstract":"We use ITP to control and increase the rate of homogenous DNA hybridization reactions. We present a novel physical model, new validation experiments, and new demonstrations of this assay. We studied the coupled physics and chemistry of the dynamics of preconcentration, mixing, and chemical reaction kinetics under ITP. Our experimentally-validated model enables closed form solution for two-species hybridization reaction under ITP, and predicts 10,000 fold speed-up of chemical reaction rate at concentrations of order 10 pM, with greater enhancement of reaction rate at lower concentrations. We experimentally demonstrate 800 fold speed-up using ITP compared to the standard case of reaction in a simple, well mixed reaction chamber.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"grobid_abstract_attachment_id":119984076},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046781/Rapid_Dna_Hybridization_Reactions_Using_Isotachophoresis","translated_internal_url":"","created_at":"2024-12-03T11:14:17.593-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984076,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984076/thumbnails/1.jpg","file_name":"241_1285.pdf","download_url":"https://www.academia.edu/attachments/119984076/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Rapid_Dna_Hybridization_Reactions_Using.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984076/241_1285-libre.pdf?1733255841=\u0026response-content-disposition=attachment%3B+filename%3DRapid_Dna_Hybridization_Reactions_Using.pdf\u0026Expires=1734027723\u0026Signature=AiajaDTL5Uz4EdjKr9p-Sw2NU7THbT6t9heFLfP3FhyTr6pj2VG7NT7-l9k5HpY8FrLNLxhSeGNNrVgm4r1C9a7PUIlXoeXCVrsaTbQDOcBdEqaORrWb5-yOoSsh0T-THd-UXBk1vNgQxIUHu9A~Smn4lCjZiWK25ktYu~~SnD1YY8l7eaMgtSs~GvmVwem5OCcAZr7BVEPr~cst2JMZJgH0F6ce-oV77UPX44Rwp~P5h2fVBDR8aiorlmCwYvdLa0dotgutg9cRWJyJ2nAILO3nQiswvM2iEeZEqSYc2CBe3r~ooepb1e3HmC-VyIPqeEPsgJicim68ZNmsUJMd2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Rapid_Dna_Hybridization_Reactions_Using_Isotachophoresis","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":"We use ITP to control and increase the rate of homogenous DNA hybridization reactions. We present a novel physical model, new validation experiments, and new demonstrations of this assay. We studied the coupled physics and chemistry of the dynamics of preconcentration, mixing, and chemical reaction kinetics under ITP. Our experimentally-validated model enables closed form solution for two-species hybridization reaction under ITP, and predicts 10,000 fold speed-up of chemical reaction rate at concentrations of order 10 pM, with greater enhancement of reaction rate at lower concentrations. We experimentally demonstrate 800 fold speed-up using ITP compared to the standard case of reaction in a simple, well mixed reaction chamber.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984076,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984076/thumbnails/1.jpg","file_name":"241_1285.pdf","download_url":"https://www.academia.edu/attachments/119984076/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Rapid_Dna_Hybridization_Reactions_Using.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984076/241_1285-libre.pdf?1733255841=\u0026response-content-disposition=attachment%3B+filename%3DRapid_Dna_Hybridization_Reactions_Using.pdf\u0026Expires=1734027723\u0026Signature=AiajaDTL5Uz4EdjKr9p-Sw2NU7THbT6t9heFLfP3FhyTr6pj2VG7NT7-l9k5HpY8FrLNLxhSeGNNrVgm4r1C9a7PUIlXoeXCVrsaTbQDOcBdEqaORrWb5-yOoSsh0T-THd-UXBk1vNgQxIUHu9A~Smn4lCjZiWK25ktYu~~SnD1YY8l7eaMgtSs~GvmVwem5OCcAZr7BVEPr~cst2JMZJgH0F6ce-oV77UPX44Rwp~P5h2fVBDR8aiorlmCwYvdLa0dotgutg9cRWJyJ2nAILO3nQiswvM2iEeZEqSYc2CBe3r~ooepb1e3HmC-VyIPqeEPsgJicim68ZNmsUJMd2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984077,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984077/thumbnails/1.jpg","file_name":"241_1285.pdf","download_url":"https://www.academia.edu/attachments/119984077/download_file","bulk_download_file_name":"Rapid_Dna_Hybridization_Reactions_Using.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984077/241_1285-libre.pdf?1733255843=\u0026response-content-disposition=attachment%3B+filename%3DRapid_Dna_Hybridization_Reactions_Using.pdf\u0026Expires=1734027723\u0026Signature=Gpe57kXrxzixej9WrKQWE5CTYLZG65lKcy~Df6ryn-EEgg2ZjnNzIBU8yMPik3Js84o6aKLvXyLWwoaB-kJ4nPLn5YvLsOK6TXQPVcxDPhK0YGSJ-BfyIST5VWrnSHsz1TmE3WKphaLEKuqArYuBt9QNUHOFcnUi3KTyhtze3X2CcGvU~44Qw-y8I8MRFOwTzinQn2UBRIDubeM2KyadHBKln3zkHv1VByR44eFK2CvDnp~EyPd6D53hmzk1wYbb0M41puinPizLbNLICHWBkXmepWVzc5lsTCop-qzk2uatz~EKxiGYUDNiDdyygAAfzD3fK5CahRQqSxbLZCME8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":43189,"name":"Chemical Kinetics","url":"https://www.academia.edu/Documents/in/Chemical_Kinetics"},{"id":48057,"name":"DNA","url":"https://www.academia.edu/Documents/in/DNA"},{"id":205770,"name":"Isotachophoresis","url":"https://www.academia.edu/Documents/in/Isotachophoresis"},{"id":539878,"name":"Chemical Reaction","url":"https://www.academia.edu/Documents/in/Chemical_Reaction"},{"id":778709,"name":"Reaction Rate","url":"https://www.academia.edu/Documents/in/Reaction_Rate"}],"urls":[{"id":45906047,"url":"https://www.rsc.org/images/LOC/2011/PDFs/Papers/241_1285.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046780"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046780/Tailored_porous_electrode_resistance_for_controlling_electrolyte_depletion_and_improving_charging_response_in_electrochemical_systems"><img alt="Research paper thumbnail of Tailored porous electrode resistance for controlling electrolyte depletion and improving charging response in electrochemical systems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046780/Tailored_porous_electrode_resistance_for_controlling_electrolyte_depletion_and_improving_charging_response_in_electrochemical_systems">Tailored porous electrode resistance for controlling electrolyte depletion and improving charging response in electrochemical systems</a></div><div class="wp-workCard_item"><span>Journal of Power Sources</span><span>, Sep 1, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The rapid charging and/or discharging of electrochemical cells can lead to localized depletion of...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The rapid charging and/or discharging of electrochemical cells can lead to localized depletion of electrolyte concentration. This depletion can significantly impact the system's time dependent resistance. For systems with porous electrodes, electrolyte depletion can limit the rate of charging and increase energy dissipation. Here we propose a theory to control and avoid electrolyte depletion by tailoring the value and spatial distribution of resistance in a porous electrode. We explore the somewhat counterintuitive idea that increasing local spatial resistances of the solid electrode itself leads to improved charging rate and minimal change in energy loss. We analytically derive a simple expression for an electrode resistance profile that leads to highly uniform electrolyte depletion. We use numerical simulations to explore this theory and simulate spatiotemporal dynamics of electrolyte concentration in the case of a supercapacitor with various tailored electrode resistance profiles which avoid localized depletion. This increases charging rate up to around 2-fold with minimal effect on overall dissipated energy in the system. Broader context Electrochemical systems, including batteries and supercapacitors, are essential in energy storage. The distribution and transport of ions in electrolytes permeating porous electrodes often controls the performance of these devices. In particular, the local depletion of charge carrying ions can dramatically increase the resistance of the system, due to rapid ion removal from solution by the electrode, or due to ionic migration limitations under electric fields in the solution. This increase in local resistance can slow charging and discharging response of the system and leads to high electric fields in the device, with consequences for failure modes such as dendrite growth. Here, we consider the interplay between electronic conduction in the electrode matrix and ionic conduction in the pore space. By tailoring the spatial distribution of resistance in the electrode matrix, we show the potential to control ionic concentration evolution in the pore space, and specifically to eliminate localized electrolyte depletion. This approach holds potential for improving time response of charging (as shown here) and discharging. We here propose to accomplish this by the highly counterintuitive tactic of increasing electrode resistance (in a carefully tailored manner) while minimally affecting overall device efficiency.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b90d98f7a558d5ccae6a659afe677ec9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984075,"asset_id":126046780,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984075/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046780"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046780"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046780; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046780]").text(description); $(".js-view-count[data-work-id=126046780]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046780; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046780']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046780, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b90d98f7a558d5ccae6a659afe677ec9" } } $('.js-work-strip[data-work-id=126046780]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046780,"title":"Tailored porous electrode resistance for controlling electrolyte depletion and improving charging response in electrochemical systems","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"The rapid charging and/or discharging of electrochemical cells can lead to localized depletion of electrolyte concentration. This depletion can significantly impact the system's time dependent resistance. For systems with porous electrodes, electrolyte depletion can limit the rate of charging and increase energy dissipation. Here we propose a theory to control and avoid electrolyte depletion by tailoring the value and spatial distribution of resistance in a porous electrode. We explore the somewhat counterintuitive idea that increasing local spatial resistances of the solid electrode itself leads to improved charging rate and minimal change in energy loss. We analytically derive a simple expression for an electrode resistance profile that leads to highly uniform electrolyte depletion. We use numerical simulations to explore this theory and simulate spatiotemporal dynamics of electrolyte concentration in the case of a supercapacitor with various tailored electrode resistance profiles which avoid localized depletion. This increases charging rate up to around 2-fold with minimal effect on overall dissipated energy in the system. Broader context Electrochemical systems, including batteries and supercapacitors, are essential in energy storage. The distribution and transport of ions in electrolytes permeating porous electrodes often controls the performance of these devices. In particular, the local depletion of charge carrying ions can dramatically increase the resistance of the system, due to rapid ion removal from solution by the electrode, or due to ionic migration limitations under electric fields in the solution. This increase in local resistance can slow charging and discharging response of the system and leads to high electric fields in the device, with consequences for failure modes such as dendrite growth. Here, we consider the interplay between electronic conduction in the electrode matrix and ionic conduction in the pore space. By tailoring the spatial distribution of resistance in the electrode matrix, we show the potential to control ionic concentration evolution in the pore space, and specifically to eliminate localized electrolyte depletion. This approach holds potential for improving time response of charging (as shown here) and discharging. We here propose to accomplish this by the highly counterintuitive tactic of increasing electrode resistance (in a carefully tailored manner) while minimally affecting overall device efficiency.","publication_date":{"day":1,"month":9,"year":2018,"errors":{}},"publication_name":"Journal of Power Sources","grobid_abstract_attachment_id":119984075},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046780/Tailored_porous_electrode_resistance_for_controlling_electrolyte_depletion_and_improving_charging_response_in_electrochemical_systems","translated_internal_url":"","created_at":"2024-12-03T11:14:17.339-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984075,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"1712.pdf","download_url":"https://www.academia.edu/attachments/119984075/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Tailored_porous_electrode_resistance_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984075/1712-libre.pdf?1733256122=\u0026response-content-disposition=attachment%3B+filename%3DTailored_porous_electrode_resistance_for.pdf\u0026Expires=1734027723\u0026Signature=REJffKRtwxiuJW-fZ2wRi9w3mG3MuaVpmAc~0wFa7pQUWu~Ju7ARgECQPKHZuzyPq8oSv26L9WUV6nt4ogbhieUtkRThDq4Vb-7gdjBa7pzClxDal~X2wJy2zPODF9yuvdjB~2BHjbZ-YDbzDrfUgV~SCiZHUK4JDYvUjrkLYwgSe3HpEgenkZ-e-CdhWHQKiEr-S5vIiwH7ci~4hPVp2Wmyw8iAC9tuC-DNXc7D8o6CwOfMh7-8FwE~~g~E~0eWBcP8iuhndq3Ont0phZy4qCTDfR72R-z9qcKGojM9PU2Tj5I3tREHqV79nni8QypVQ273Yb~I3kRgsLIVFJrsBw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Tailored_porous_electrode_resistance_for_controlling_electrolyte_depletion_and_improving_charging_response_in_electrochemical_systems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The rapid charging and/or discharging of electrochemical cells can lead to localized depletion of electrolyte concentration. This depletion can significantly impact the system's time dependent resistance. For systems with porous electrodes, electrolyte depletion can limit the rate of charging and increase energy dissipation. Here we propose a theory to control and avoid electrolyte depletion by tailoring the value and spatial distribution of resistance in a porous electrode. We explore the somewhat counterintuitive idea that increasing local spatial resistances of the solid electrode itself leads to improved charging rate and minimal change in energy loss. We analytically derive a simple expression for an electrode resistance profile that leads to highly uniform electrolyte depletion. We use numerical simulations to explore this theory and simulate spatiotemporal dynamics of electrolyte concentration in the case of a supercapacitor with various tailored electrode resistance profiles which avoid localized depletion. This increases charging rate up to around 2-fold with minimal effect on overall dissipated energy in the system. Broader context Electrochemical systems, including batteries and supercapacitors, are essential in energy storage. The distribution and transport of ions in electrolytes permeating porous electrodes often controls the performance of these devices. In particular, the local depletion of charge carrying ions can dramatically increase the resistance of the system, due to rapid ion removal from solution by the electrode, or due to ionic migration limitations under electric fields in the solution. This increase in local resistance can slow charging and discharging response of the system and leads to high electric fields in the device, with consequences for failure modes such as dendrite growth. Here, we consider the interplay between electronic conduction in the electrode matrix and ionic conduction in the pore space. By tailoring the spatial distribution of resistance in the electrode matrix, we show the potential to control ionic concentration evolution in the pore space, and specifically to eliminate localized electrolyte depletion. This approach holds potential for improving time response of charging (as shown here) and discharging. We here propose to accomplish this by the highly counterintuitive tactic of increasing electrode resistance (in a carefully tailored manner) while minimally affecting overall device efficiency.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984075,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"1712.pdf","download_url":"https://www.academia.edu/attachments/119984075/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Tailored_porous_electrode_resistance_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984075/1712-libre.pdf?1733256122=\u0026response-content-disposition=attachment%3B+filename%3DTailored_porous_electrode_resistance_for.pdf\u0026Expires=1734027723\u0026Signature=REJffKRtwxiuJW-fZ2wRi9w3mG3MuaVpmAc~0wFa7pQUWu~Ju7ARgECQPKHZuzyPq8oSv26L9WUV6nt4ogbhieUtkRThDq4Vb-7gdjBa7pzClxDal~X2wJy2zPODF9yuvdjB~2BHjbZ-YDbzDrfUgV~SCiZHUK4JDYvUjrkLYwgSe3HpEgenkZ-e-CdhWHQKiEr-S5vIiwH7ci~4hPVp2Wmyw8iAC9tuC-DNXc7D8o6CwOfMh7-8FwE~~g~E~0eWBcP8iuhndq3Ont0phZy4qCTDfR72R-z9qcKGojM9PU2Tj5I3tREHqV79nni8QypVQ273Yb~I3kRgsLIVFJrsBw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":540401,"name":"Supercapacitor","url":"https://www.academia.edu/Documents/in/Supercapacitor"},{"id":909150,"name":"Electrode","url":"https://www.academia.edu/Documents/in/Electrode"},{"id":1276642,"name":"Electrolyte","url":"https://www.academia.edu/Documents/in/Electrolyte"},{"id":1852738,"name":"Power Sources","url":"https://www.academia.edu/Documents/in/Power_Sources"}],"urls":[{"id":45906046,"url":"http://arxiv.org/pdf/1712.08826"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046779"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046779/Millisecond_timescale_reactions_observed_via_X_ray_spectroscopy_in_a_3D_microfabricated_fused_silica_mixer"><img alt="Research paper thumbnail of Millisecond timescale reactions observed via X-ray spectroscopy in a 3D microfabricated fused silica mixer" class="work-thumbnail" src="https://attachments.academia-assets.com/119984074/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046779/Millisecond_timescale_reactions_observed_via_X_ray_spectroscopy_in_a_3D_microfabricated_fused_silica_mixer">Millisecond timescale reactions observed via X-ray spectroscopy in a 3D microfabricated fused silica mixer</a></div><div class="wp-workCard_item"><span>Journal of Synchrotron Radiation</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Determination of electronic structures during chemical reactions remains challenging in studies w...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Determination of electronic structures during chemical reactions remains challenging in studies which involve reactions in the millisecond timescale, toxic chemicals, and/or anaerobic conditions. In this study, a three-dimensionally (3D) microfabricated microfluidic mixer platform that is compatible with time-resolved X-ray absorption and emission spectroscopy (XAS and XES, respectively) is presented. This platform, to initiate reactions and study their progression, mixes a high flow rate (0.50–1.5 ml min−1) sheath stream with a low-flow-rate (5–90 µl min−1) sample stream within a monolithic fused silica chip. The chip geometry enables hydrodynamic focusing of the sample stream in 3D and sample widths as small as 5 µm. The chip is also connected to a polyimide capillary downstream to enable sample stream deceleration, expansion, and X-ray detection. In this capillary, sample widths of 50 µm are demonstrated. Further, convection–diffusion-reaction models of the mixer are presented. T...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f41d4de090971d7d69990dbd8bc40af5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984074,"asset_id":126046779,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984074/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046779"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046779"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046779; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046779]").text(description); $(".js-view-count[data-work-id=126046779]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046779; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046779']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046779, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f41d4de090971d7d69990dbd8bc40af5" } } $('.js-work-strip[data-work-id=126046779]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046779,"title":"Millisecond timescale reactions observed via X-ray spectroscopy in a 3D microfabricated fused silica mixer","translated_title":"","metadata":{"abstract":"Determination of electronic structures during chemical reactions remains challenging in studies which involve reactions in the millisecond timescale, toxic chemicals, and/or anaerobic conditions. In this study, a three-dimensionally (3D) microfabricated microfluidic mixer platform that is compatible with time-resolved X-ray absorption and emission spectroscopy (XAS and XES, respectively) is presented. This platform, to initiate reactions and study their progression, mixes a high flow rate (0.50–1.5 ml min−1) sheath stream with a low-flow-rate (5–90 µl min−1) sample stream within a monolithic fused silica chip. The chip geometry enables hydrodynamic focusing of the sample stream in 3D and sample widths as small as 5 µm. The chip is also connected to a polyimide capillary downstream to enable sample stream deceleration, expansion, and X-ray detection. In this capillary, sample widths of 50 µm are demonstrated. Further, convection–diffusion-reaction models of the mixer are presented. T...","publisher":"International Union of Crystallography (IUCr)","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Journal of Synchrotron Radiation"},"translated_abstract":"Determination of electronic structures during chemical reactions remains challenging in studies which involve reactions in the millisecond timescale, toxic chemicals, and/or anaerobic conditions. In this study, a three-dimensionally (3D) microfabricated microfluidic mixer platform that is compatible with time-resolved X-ray absorption and emission spectroscopy (XAS and XES, respectively) is presented. This platform, to initiate reactions and study their progression, mixes a high flow rate (0.50–1.5 ml min−1) sheath stream with a low-flow-rate (5–90 µl min−1) sample stream within a monolithic fused silica chip. The chip geometry enables hydrodynamic focusing of the sample stream in 3D and sample widths as small as 5 µm. The chip is also connected to a polyimide capillary downstream to enable sample stream deceleration, expansion, and X-ray detection. In this capillary, sample widths of 50 µm are demonstrated. Further, convection–diffusion-reaction models of the mixer are presented. T...","internal_url":"https://www.academia.edu/126046779/Millisecond_timescale_reactions_observed_via_X_ray_spectroscopy_in_a_3D_microfabricated_fused_silica_mixer","translated_internal_url":"","created_at":"2024-12-03T11:14:17.090-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984074,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984074/thumbnails/1.jpg","file_name":"ig5094.pdf","download_url":"https://www.academia.edu/attachments/119984074/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Millisecond_timescale_reactions_observed.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984074/ig5094-libre.pdf?1733255847=\u0026response-content-disposition=attachment%3B+filename%3DMillisecond_timescale_reactions_observed.pdf\u0026Expires=1734027723\u0026Signature=az71OZp6pQL8SU4tYILwjrRS87AMtcDxw~Q8h41HrWSlPT7C0e6i7c1pq6PtNXLjnMa90sScaRUIMGJ1lsO8tdm~yZydUAy1JjpnKBksz5REYqlcpcFALWIt0Wv3srJSYDvU-kq3F1jJeuNUJCd11B0CszfuQ4bu3UZ0HgMGhxsx1uiFZNTJJoDOOZo5Mue8AOpmtRT8Kjr58DLE4SBW5OeswLZNps7hIZ1MvIqXOMiNTZb3yIXxYzsEFn0~Uohz-cVxo9Ua30G8TuZhRmWsinO~anvTUPKRPxW7p2sOzWKtsG1Ya9R7~nki5ccI-KZSi0MDAGy-VajYGtnL4PnxfA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Millisecond_timescale_reactions_observed_via_X_ray_spectroscopy_in_a_3D_microfabricated_fused_silica_mixer","translated_slug":"","page_count":15,"language":"en","content_type":"Work","summary":"Determination of electronic structures during chemical reactions remains challenging in studies which involve reactions in the millisecond timescale, toxic chemicals, and/or anaerobic conditions. In this study, a three-dimensionally (3D) microfabricated microfluidic mixer platform that is compatible with time-resolved X-ray absorption and emission spectroscopy (XAS and XES, respectively) is presented. This platform, to initiate reactions and study their progression, mixes a high flow rate (0.50–1.5 ml min−1) sheath stream with a low-flow-rate (5–90 µl min−1) sample stream within a monolithic fused silica chip. The chip geometry enables hydrodynamic focusing of the sample stream in 3D and sample widths as small as 5 µm. The chip is also connected to a polyimide capillary downstream to enable sample stream deceleration, expansion, and X-ray detection. In this capillary, sample widths of 50 µm are demonstrated. Further, convection–diffusion-reaction models of the mixer are presented. T...","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984074,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984074/thumbnails/1.jpg","file_name":"ig5094.pdf","download_url":"https://www.academia.edu/attachments/119984074/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Millisecond_timescale_reactions_observed.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984074/ig5094-libre.pdf?1733255847=\u0026response-content-disposition=attachment%3B+filename%3DMillisecond_timescale_reactions_observed.pdf\u0026Expires=1734027723\u0026Signature=az71OZp6pQL8SU4tYILwjrRS87AMtcDxw~Q8h41HrWSlPT7C0e6i7c1pq6PtNXLjnMa90sScaRUIMGJ1lsO8tdm~yZydUAy1JjpnKBksz5REYqlcpcFALWIt0Wv3srJSYDvU-kq3F1jJeuNUJCd11B0CszfuQ4bu3UZ0HgMGhxsx1uiFZNTJJoDOOZo5Mue8AOpmtRT8Kjr58DLE4SBW5OeswLZNps7hIZ1MvIqXOMiNTZb3yIXxYzsEFn0~Uohz-cVxo9Ua30G8TuZhRmWsinO~anvTUPKRPxW7p2sOzWKtsG1Ya9R7~nki5ccI-KZSi0MDAGy-VajYGtnL4PnxfA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984073,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"ig5094.pdf","download_url":"https://www.academia.edu/attachments/119984073/download_file","bulk_download_file_name":"Millisecond_timescale_reactions_observed.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984073/ig5094-libre.pdf?1733255848=\u0026response-content-disposition=attachment%3B+filename%3DMillisecond_timescale_reactions_observed.pdf\u0026Expires=1734027723\u0026Signature=CKEmu9-YG8DyG-z~fme-uwmDAn~VqCBtTf7o70hhHYp3si9AbnLb8MKOp~TYmIDnJIwF-64e1NR1nYnR71LhBBL4y5CFvvb-0ROMslkA9uDAaYRFciUKTQqbHdaArzpSSgKEte8MdgrYpEYCNd2cXZw55W0cc3tMYeL3hMx4uGRg6EOG9yuxgIe0DN4QBhOaJ2I6t1Jdsu~1JHbjkdJ~1mo1IKY62IlgNxbU1UAhS9wj5mU36xbYIE2Jyzf~LFTkXV95cJuB61okbefxgRmS5qE5GPHf9h3esGwlgOAnFZieaBk1JhOj2MM0JTxzbq4FNgDjlGaz0aeOH1LICxz1cw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":12843,"name":"X ray absorption spectroscopy","url":"https://www.academia.edu/Documents/in/X_ray_absorption_spectroscopy"},{"id":23861,"name":"Microscale Chemistry","url":"https://www.academia.edu/Documents/in/Microscale_Chemistry"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":29617,"name":"Synchrotron Radiation","url":"https://www.academia.edu/Documents/in/Synchrotron_Radiation"},{"id":263152,"name":"Optical physics","url":"https://www.academia.edu/Documents/in/Optical_physics"}],"urls":[{"id":45906045,"url":"http://journals.iucr.org/s/issues/2021/04/00/ig5094/ig5094.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="3334129" id="papers"><div class="js-work-strip profile--work_container" data-work-id="126046798"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046798/Stream_lamination_and_rapid_mixing_in_a_microfluidic_jet_for_X_ray_spectroscopy_studies"><img alt="Research paper thumbnail of Stream lamination and rapid mixing in a microfluidic jet for X-ray spectroscopy studies" class="work-thumbnail" src="https://attachments.academia-assets.com/119984106/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046798/Stream_lamination_and_rapid_mixing_in_a_microfluidic_jet_for_X_ray_spectroscopy_studies">Stream lamination and rapid mixing in a microfluidic jet for X-ray spectroscopy studies</a></div><div class="wp-workCard_item"><span>Flow</span><span>, Dec 31, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Microfluidic mixers offer new possibilities for the study of fast reaction kinetics down to the m...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Microfluidic mixers offer new possibilities for the study of fast reaction kinetics down to the microsecond time scale, and methods such as soft X-ray absorption spectroscopy are powerful analysis techniques. These systems impose challenging constraints on mixing time scales, sample volume, detection region size and component materials. The current work presents a novel micromixer and jet device which aims to address these limitations. The system uses a so-called 'theta' mixer consisting of two sintered and fused glass capillaries. Sample and carrier fluids are injected separately into the inlets of the adjacent capillaries. At the downstream end, the two streams exit two micron-scale adjoining nozzles and form a single free-standing jet. The flow-rate difference between the two streams results in the rapid acceleration and lamination of the sample stream. This creates a small transverse dimension and induces diffusive mixing of the sample and carrier stream solutions within a time scale of 0.9 microseconds. The reaction occurs at or very near a free surface so that reactants and products are more directly accessible to interrogation using soft X-ray. We use a simple diffusion model and quantitative measurements of fluorescence quenching (of fluorescein with potassium iodide) to characterize the mixing dynamics across flow-rate ratios. Impact Statement This study presents the design, demonstration and quantification of a novel mixer designed to address constraints associated with reaction rate studies using soft X-ray spectroscopy. Low-flow-rate, rapid micromixers typically use laminar flow focusing where a sample stream is confined within a carrier stream and, often, within a microfluidic device. This limits the possible spectroscopic methods to hard X-ray spectroscopy, including significant absorption by the carrier stream and microfluidic device, and reduced energy resolution. In this study, the sample is laminated at the surface of a free jet to allow direct optical access to the mixing zone. We demonstrate and quantify a mixing time scale of 0.9 µs. The mixing and reaction occur within approximately 0.1 µm from the surface of the jet. This micromixer thus enables the analysis of reactions with fast kinetics using techniques with demanding experimental constraints such as the 3d transition metal Ledge X-ray absorption spectroscopy (XAS).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="55782ee93b56a53548032083271c1a0d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984106,"asset_id":126046798,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984106/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046798"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046798"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046798; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046798]").text(description); $(".js-view-count[data-work-id=126046798]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046798; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046798']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046798, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "55782ee93b56a53548032083271c1a0d" } } $('.js-work-strip[data-work-id=126046798]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046798,"title":"Stream lamination and rapid mixing in a microfluidic jet for X-ray spectroscopy studies","translated_title":"","metadata":{"publisher":"Cambridge University Press","grobid_abstract":"Microfluidic mixers offer new possibilities for the study of fast reaction kinetics down to the microsecond time scale, and methods such as soft X-ray absorption spectroscopy are powerful analysis techniques. These systems impose challenging constraints on mixing time scales, sample volume, detection region size and component materials. The current work presents a novel micromixer and jet device which aims to address these limitations. The system uses a so-called 'theta' mixer consisting of two sintered and fused glass capillaries. Sample and carrier fluids are injected separately into the inlets of the adjacent capillaries. At the downstream end, the two streams exit two micron-scale adjoining nozzles and form a single free-standing jet. The flow-rate difference between the two streams results in the rapid acceleration and lamination of the sample stream. This creates a small transverse dimension and induces diffusive mixing of the sample and carrier stream solutions within a time scale of 0.9 microseconds. The reaction occurs at or very near a free surface so that reactants and products are more directly accessible to interrogation using soft X-ray. We use a simple diffusion model and quantitative measurements of fluorescence quenching (of fluorescein with potassium iodide) to characterize the mixing dynamics across flow-rate ratios. Impact Statement This study presents the design, demonstration and quantification of a novel mixer designed to address constraints associated with reaction rate studies using soft X-ray spectroscopy. Low-flow-rate, rapid micromixers typically use laminar flow focusing where a sample stream is confined within a carrier stream and, often, within a microfluidic device. This limits the possible spectroscopic methods to hard X-ray spectroscopy, including significant absorption by the carrier stream and microfluidic device, and reduced energy resolution. In this study, the sample is laminated at the surface of a free jet to allow direct optical access to the mixing zone. We demonstrate and quantify a mixing time scale of 0.9 µs. The mixing and reaction occur within approximately 0.1 µm from the surface of the jet. This micromixer thus enables the analysis of reactions with fast kinetics using techniques with demanding experimental constraints such as the 3d transition metal Ledge X-ray absorption spectroscopy (XAS).","publication_date":{"day":31,"month":12,"year":2022,"errors":{}},"publication_name":"Flow","grobid_abstract_attachment_id":119984106},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046798/Stream_lamination_and_rapid_mixing_in_a_microfluidic_jet_for_X_ray_spectroscopy_studies","translated_internal_url":"","created_at":"2024-12-03T11:14:24.300-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984106,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984106/thumbnails/1.jpg","file_name":"div-class-title-stream-lamination-and-rapid-mixing-in-a-microfluidic-jet-for-x-ray-spectroscopy-studies-div.pdf","download_url":"https://www.academia.edu/attachments/119984106/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Stream_lamination_and_rapid_mixing_in_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984106/div-class-title-stream-lamination-and-rapid-mixing-in-a-microfluidic-jet-for-x-ray-spectroscopy-studies-div-libre.pdf?1733255840=\u0026response-content-disposition=attachment%3B+filename%3DStream_lamination_and_rapid_mixing_in_a.pdf\u0026Expires=1733909822\u0026Signature=DUTO2zi7GfdOa2W3uLg9wCx9Zl34OtL3qaSNnlZf6gfoeKG5wOzAGXq~sEs3~5KvoghNyqbIJgpAblcGM5G0J5cOPmXtI-SLAkoSe~924w9gPV8eQEcXnDmtUtzbVNoP2eM9iBrKY7K0YYXhBvlnOaclBHhrnedGJk6JMJXa2FniZknn6WSxdUgYdHfxcI8K4h3pO1nh-PndWp799tPMLni6tQt~zvjlnqHP5dCeVel7wITBycNObrPq0aWdaEzl5p7KjaWZ-v20JyYitV~RRqggoSGEgfKgOUzakOug5118CwnFqZeolrgkDdAmN1vttjoASIhzq85Co7Q7u0A0PA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Stream_lamination_and_rapid_mixing_in_a_microfluidic_jet_for_X_ray_spectroscopy_studies","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"Microfluidic mixers offer new possibilities for the study of fast reaction kinetics down to the microsecond time scale, and methods such as soft X-ray absorption spectroscopy are powerful analysis techniques. These systems impose challenging constraints on mixing time scales, sample volume, detection region size and component materials. The current work presents a novel micromixer and jet device which aims to address these limitations. The system uses a so-called 'theta' mixer consisting of two sintered and fused glass capillaries. Sample and carrier fluids are injected separately into the inlets of the adjacent capillaries. At the downstream end, the two streams exit two micron-scale adjoining nozzles and form a single free-standing jet. The flow-rate difference between the two streams results in the rapid acceleration and lamination of the sample stream. This creates a small transverse dimension and induces diffusive mixing of the sample and carrier stream solutions within a time scale of 0.9 microseconds. The reaction occurs at or very near a free surface so that reactants and products are more directly accessible to interrogation using soft X-ray. We use a simple diffusion model and quantitative measurements of fluorescence quenching (of fluorescein with potassium iodide) to characterize the mixing dynamics across flow-rate ratios. Impact Statement This study presents the design, demonstration and quantification of a novel mixer designed to address constraints associated with reaction rate studies using soft X-ray spectroscopy. Low-flow-rate, rapid micromixers typically use laminar flow focusing where a sample stream is confined within a carrier stream and, often, within a microfluidic device. This limits the possible spectroscopic methods to hard X-ray spectroscopy, including significant absorption by the carrier stream and microfluidic device, and reduced energy resolution. In this study, the sample is laminated at the surface of a free jet to allow direct optical access to the mixing zone. We demonstrate and quantify a mixing time scale of 0.9 µs. The mixing and reaction occur within approximately 0.1 µm from the surface of the jet. This micromixer thus enables the analysis of reactions with fast kinetics using techniques with demanding experimental constraints such as the 3d transition metal Ledge X-ray absorption spectroscopy (XAS).","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984106,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984106/thumbnails/1.jpg","file_name":"div-class-title-stream-lamination-and-rapid-mixing-in-a-microfluidic-jet-for-x-ray-spectroscopy-studies-div.pdf","download_url":"https://www.academia.edu/attachments/119984106/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Stream_lamination_and_rapid_mixing_in_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984106/div-class-title-stream-lamination-and-rapid-mixing-in-a-microfluidic-jet-for-x-ray-spectroscopy-studies-div-libre.pdf?1733255840=\u0026response-content-disposition=attachment%3B+filename%3DStream_lamination_and_rapid_mixing_in_a.pdf\u0026Expires=1733909822\u0026Signature=DUTO2zi7GfdOa2W3uLg9wCx9Zl34OtL3qaSNnlZf6gfoeKG5wOzAGXq~sEs3~5KvoghNyqbIJgpAblcGM5G0J5cOPmXtI-SLAkoSe~924w9gPV8eQEcXnDmtUtzbVNoP2eM9iBrKY7K0YYXhBvlnOaclBHhrnedGJk6JMJXa2FniZknn6WSxdUgYdHfxcI8K4h3pO1nh-PndWp799tPMLni6tQt~zvjlnqHP5dCeVel7wITBycNObrPq0aWdaEzl5p7KjaWZ-v20JyYitV~RRqggoSGEgfKgOUzakOug5118CwnFqZeolrgkDdAmN1vttjoASIhzq85Co7Q7u0A0PA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":516,"name":"Optics","url":"https://www.academia.edu/Documents/in/Optics"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":4656,"name":"Chromatography","url":"https://www.academia.edu/Documents/in/Chromatography"},{"id":5427,"name":"Spectroscopy","url":"https://www.academia.edu/Documents/in/Spectroscopy"},{"id":7936,"name":"Quantum Mechanics","url":"https://www.academia.edu/Documents/in/Quantum_Mechanics"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"},{"id":72413,"name":"Flow","url":"https://www.academia.edu/Documents/in/Flow"},{"id":83315,"name":"Diffusion","url":"https://www.academia.edu/Documents/in/Diffusion"},{"id":464372,"name":"Solenoid Valve","url":"https://www.academia.edu/Documents/in/Solenoid_Valve"},{"id":895043,"name":"Micromixer","url":"https://www.academia.edu/Documents/in/Micromixer"}],"urls":[{"id":45906064,"url":"https://www.cambridge.org/core/services/aop-cambridge-core/content/view/1A06DE5E8315DB9FC210FB384C757ACE/S2633425923000156a.pdf/div-class-title-stream-lamination-and-rapid-mixing-in-a-microfluidic-jet-for-x-ray-spectroscopy-studies-div.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046797"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046797/Frequency_analysis_and_resonant_operation_for_efficient_capacitive_deionization"><img alt="Research paper thumbnail of Frequency analysis and resonant operation for efficient capacitive deionization" class="work-thumbnail" src="https://attachments.academia-assets.com/119984104/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046797/Frequency_analysis_and_resonant_operation_for_efficient_capacitive_deionization">Frequency analysis and resonant operation for efficient capacitive deionization</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Jun 7, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Capacitive deionization (CDI) performance metrics can vary widely with operating methods. Convent...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Capacitive deionization (CDI) performance metrics can vary widely with operating methods. Conventional CDI operating methods such as constant current and constant voltage show advantages in either energy or salt removal performance, but not both. We here develop a theory around and experimentally demonstrate a new operation for CDI that uses sinusoidal forcing voltage (or sinusoidal current). We use a dynamic system modeling approach, and quantify the frequency response (amplitude and phase) of CDI effluent concentration. Using a wide range of operating conditions, we demonstrate that CDI can be modeled as a linear time invariant system. We validate this model with experiments, and show that a sinusoid voltage operation can simultaneously achieve high salt removal and strong energy performance, thus very likely making it superior to other conventional operating methods. Based on the underlying coupled phenomena of electrical charge (and ionic) transfer with bulk advection in CDI, we derive and validate experimentally the concept of using sinusoidal voltage forcing functions to achieve resonance-type 2 operation for CDI. Despite the complexities of the system, we find a simple relation for the resonant time scale: the resonant time period (frequency) is proportional (inversely proportional) to the geometric mean of the flow residence time and the electrical (RC) charging time. Operation at resonance implies the optimal balance between absolute amount of salt removed (in moles) and dilution (depending on the feed volume processed), thus resulting in the maximum average concentration reduction for the desalinated water. We further develop our model to generalize the resonant timescale operation, and provide responses for square and triangular voltage waveforms as two examples. To this end, we develop a general tool that uses Fourier analysis to construct CDI effluent dynamics for arbitrary input waveforms. Using this tool, we show that most of the salt removal (~95%) for square and triangular voltage forcing waveforms is achieved by the fundamental Fourier (sinusoidal) mode. The frequency of higher Fourier modes precludes high flow efficiency for these modes, so these modes consume additional energy for minimal additional salt removed. This deficiency of higher frequency modes further highlights the advantage of DCoffset sinusoidal forcing for CDI operation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9d1b97c79bb8974d6b7fb011eaa58cd0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984104,"asset_id":126046797,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984104/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046797"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046797"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046797; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046797]").text(description); $(".js-view-count[data-work-id=126046797]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046797; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046797']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046797, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9d1b97c79bb8974d6b7fb011eaa58cd0" } } $('.js-work-strip[data-work-id=126046797]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046797,"title":"Frequency analysis and resonant operation for efficient capacitive deionization","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"Capacitive deionization (CDI) performance metrics can vary widely with operating methods. Conventional CDI operating methods such as constant current and constant voltage show advantages in either energy or salt removal performance, but not both. We here develop a theory around and experimentally demonstrate a new operation for CDI that uses sinusoidal forcing voltage (or sinusoidal current). We use a dynamic system modeling approach, and quantify the frequency response (amplitude and phase) of CDI effluent concentration. Using a wide range of operating conditions, we demonstrate that CDI can be modeled as a linear time invariant system. We validate this model with experiments, and show that a sinusoid voltage operation can simultaneously achieve high salt removal and strong energy performance, thus very likely making it superior to other conventional operating methods. Based on the underlying coupled phenomena of electrical charge (and ionic) transfer with bulk advection in CDI, we derive and validate experimentally the concept of using sinusoidal voltage forcing functions to achieve resonance-type 2 operation for CDI. Despite the complexities of the system, we find a simple relation for the resonant time scale: the resonant time period (frequency) is proportional (inversely proportional) to the geometric mean of the flow residence time and the electrical (RC) charging time. Operation at resonance implies the optimal balance between absolute amount of salt removed (in moles) and dilution (depending on the feed volume processed), thus resulting in the maximum average concentration reduction for the desalinated water. We further develop our model to generalize the resonant timescale operation, and provide responses for square and triangular voltage waveforms as two examples. To this end, we develop a general tool that uses Fourier analysis to construct CDI effluent dynamics for arbitrary input waveforms. Using this tool, we show that most of the salt removal (~95%) for square and triangular voltage forcing waveforms is achieved by the fundamental Fourier (sinusoidal) mode. The frequency of higher Fourier modes precludes high flow efficiency for these modes, so these modes consume additional energy for minimal additional salt removed. This deficiency of higher frequency modes further highlights the advantage of DCoffset sinusoidal forcing for CDI operation.","publication_date":{"day":7,"month":6,"year":2018,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":119984104},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046797/Frequency_analysis_and_resonant_operation_for_efficient_capacitive_deionization","translated_internal_url":"","created_at":"2024-12-03T11:14:23.990-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984104,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984104/thumbnails/1.jpg","file_name":"1806.02859.pdf","download_url":"https://www.academia.edu/attachments/119984104/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Frequency_analysis_and_resonant_operatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984104/1806.02859-libre.pdf?1733255884=\u0026response-content-disposition=attachment%3B+filename%3DFrequency_analysis_and_resonant_operatio.pdf\u0026Expires=1733909822\u0026Signature=B6ya38eb~0DDazFYDm6GoUs21S5zdxhjIq~C-YY76dqrcShgWifW1q--iVWsuOCTO6y8oChE2Ueh2gel6A3T7icI9Sh6thLrr-AjIwp8auMyBMJtgdLjnvUUpGfmqQ~ReQeOhOurxB2mk8JzuS~yLFz6xl3Xok5a7rth6E~qvNz6oYKmSgaf51LLYoIIeZkFf1hrn7fXwWBTpIjEdW~CyQMw6cGQOwkF5xASzPSSraNAfs7-C7UzVzLpKoYI6HGp2AGStnF7FITRGiImP9M4dIoEsmXstmgYx6nsk-FbCJ2nWOEwZ6pB0zvU0KAJkd4JI3BOF-xEu~ShQ2l0AdvGZw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Frequency_analysis_and_resonant_operation_for_efficient_capacitive_deionization","translated_slug":"","page_count":52,"language":"en","content_type":"Work","summary":"Capacitive deionization (CDI) performance metrics can vary widely with operating methods. Conventional CDI operating methods such as constant current and constant voltage show advantages in either energy or salt removal performance, but not both. We here develop a theory around and experimentally demonstrate a new operation for CDI that uses sinusoidal forcing voltage (or sinusoidal current). We use a dynamic system modeling approach, and quantify the frequency response (amplitude and phase) of CDI effluent concentration. Using a wide range of operating conditions, we demonstrate that CDI can be modeled as a linear time invariant system. We validate this model with experiments, and show that a sinusoid voltage operation can simultaneously achieve high salt removal and strong energy performance, thus very likely making it superior to other conventional operating methods. Based on the underlying coupled phenomena of electrical charge (and ionic) transfer with bulk advection in CDI, we derive and validate experimentally the concept of using sinusoidal voltage forcing functions to achieve resonance-type 2 operation for CDI. Despite the complexities of the system, we find a simple relation for the resonant time scale: the resonant time period (frequency) is proportional (inversely proportional) to the geometric mean of the flow residence time and the electrical (RC) charging time. Operation at resonance implies the optimal balance between absolute amount of salt removed (in moles) and dilution (depending on the feed volume processed), thus resulting in the maximum average concentration reduction for the desalinated water. We further develop our model to generalize the resonant timescale operation, and provide responses for square and triangular voltage waveforms as two examples. To this end, we develop a general tool that uses Fourier analysis to construct CDI effluent dynamics for arbitrary input waveforms. Using this tool, we show that most of the salt removal (~95%) for square and triangular voltage forcing waveforms is achieved by the fundamental Fourier (sinusoidal) mode. The frequency of higher Fourier modes precludes high flow efficiency for these modes, so these modes consume additional energy for minimal additional salt removed. This deficiency of higher frequency modes further highlights the advantage of DCoffset sinusoidal forcing for CDI operation.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984104,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984104/thumbnails/1.jpg","file_name":"1806.02859.pdf","download_url":"https://www.academia.edu/attachments/119984104/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Frequency_analysis_and_resonant_operatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984104/1806.02859-libre.pdf?1733255884=\u0026response-content-disposition=attachment%3B+filename%3DFrequency_analysis_and_resonant_operatio.pdf\u0026Expires=1733909822\u0026Signature=B6ya38eb~0DDazFYDm6GoUs21S5zdxhjIq~C-YY76dqrcShgWifW1q--iVWsuOCTO6y8oChE2Ueh2gel6A3T7icI9Sh6thLrr-AjIwp8auMyBMJtgdLjnvUUpGfmqQ~ReQeOhOurxB2mk8JzuS~yLFz6xl3Xok5a7rth6E~qvNz6oYKmSgaf51LLYoIIeZkFf1hrn7fXwWBTpIjEdW~CyQMw6cGQOwkF5xASzPSSraNAfs7-C7UzVzLpKoYI6HGp2AGStnF7FITRGiImP9M4dIoEsmXstmgYx6nsk-FbCJ2nWOEwZ6pB0zvU0KAJkd4JI3BOF-xEu~ShQ2l0AdvGZw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984109,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984109/thumbnails/1.jpg","file_name":"1806.02859.pdf","download_url":"https://www.academia.edu/attachments/119984109/download_file","bulk_download_file_name":"Frequency_analysis_and_resonant_operatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984109/1806.02859-libre.pdf?1733255864=\u0026response-content-disposition=attachment%3B+filename%3DFrequency_analysis_and_resonant_operatio.pdf\u0026Expires=1733909822\u0026Signature=g97oiP8bgVE8BgQ90GT2pvejea55NPdx4lQn8vM9SsjZpvTBZp4X5JTqcr4rzvCfzDQ-BQ2Mgj8Me37DfYAiNkO8YtnDqMaA2p~ZwtUrt-TRLKyKKxVmJU92keGujrOQDq7CIGtopZA66Y078-Bm6hhvfPy2kzBDKR2h73JAS9j6xkKnguy5To39KMmvRTUlpMo9zjsKlmmuDvk1Hz9AwGb~kxGQfsPZ1n0L0x3nWms2vJVGq9rPFnQb67~EGz8hyOeRjtQxrJdkk6~JsLKLftE5r-8R9PjPZOQgpdZ6r~w6ydUBCVs8pVLQdwZpeftnsIR~Zw2dLfTRvw9Yrd9UHw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2215,"name":"Water","url":"https://www.academia.edu/Documents/in/Water"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":389165,"name":"Voltage","url":"https://www.academia.edu/Documents/in/Voltage"},{"id":3576986,"name":"Waveform","url":"https://www.academia.edu/Documents/in/Waveform"}],"urls":[{"id":45906063,"url":"https://arxiv.org/pdf/1806.02859"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046796"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046796/Coupling_Isotachophoresis_with_Affinity_Chromatography_for_Rapid_and_Selective_Purification_with_High_Column_Utilization_Part_1_Theory"><img alt="Research paper thumbnail of Coupling Isotachophoresis with Affinity Chromatography for Rapid and Selective Purification with High Column Utilization, Part 1: Theory" class="work-thumbnail" src="https://attachments.academia-assets.com/119984108/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046796/Coupling_Isotachophoresis_with_Affinity_Chromatography_for_Rapid_and_Selective_Purification_with_High_Column_Utilization_Part_1_Theory">Coupling Isotachophoresis with Affinity Chromatography for Rapid and Selective Purification with High Column Utilization, Part 1: Theory</a></div><div class="wp-workCard_item"><span>Analytical Chemistry</span><span>, Jun 17, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present a novel technique that couples isotachophoresis (ITP) with affinity chromatography (AC...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present a novel technique that couples isotachophoresis (ITP) with affinity chromatography (AC) to achieve rapid, selective purification with high column utilization. ITP simultaneously preconcentrates an analyte and purifies it, based on differences in mobility of sample components, excluding species that may foul or compete with the target at the affinity substrate. ITP preconcentration accelerates the affinity reaction, reducing assay time, improving column utilization, and allowing for capture of targets with higher dissociation constants. Furthermore, ITP-AC separates the target and contaminants into nondiffusing zones, thus achieving high resolution in a short distance and time. We present an analytical model for spatiotemporal dynamics of ITP-AC. We identify and explore the effect of key process parameters, including target distribution width and height, ITP zone velocity, forward and reverse reaction constants, and probe concentration on necessary affinity region length, assay time, and capture efficiency. Our analytical approach shows collapse of these variables to three nondimensional parameters. The analysis yields simple analytical relations for capture length and capture time in relevant ITP-AC regimes, and it demonstrates how ITP greatly reduces assay time and improves column utilization. In the second part of this two-part series, we will present experimental validation of our model and demonstrate ITP-AC separation of the target from 10,000-fold more-abundant contaminants.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ddb108186452dd12748724bd418d06e8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984108,"asset_id":126046796,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984108/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046796"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046796"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046796; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046796]").text(description); $(".js-view-count[data-work-id=126046796]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046796; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046796']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046796, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ddb108186452dd12748724bd418d06e8" } } $('.js-work-strip[data-work-id=126046796]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046796,"title":"Coupling Isotachophoresis with Affinity Chromatography for Rapid and Selective Purification with High Column Utilization, Part 1: Theory","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"We present a novel technique that couples isotachophoresis (ITP) with affinity chromatography (AC) to achieve rapid, selective purification with high column utilization. ITP simultaneously preconcentrates an analyte and purifies it, based on differences in mobility of sample components, excluding species that may foul or compete with the target at the affinity substrate. ITP preconcentration accelerates the affinity reaction, reducing assay time, improving column utilization, and allowing for capture of targets with higher dissociation constants. Furthermore, ITP-AC separates the target and contaminants into nondiffusing zones, thus achieving high resolution in a short distance and time. We present an analytical model for spatiotemporal dynamics of ITP-AC. We identify and explore the effect of key process parameters, including target distribution width and height, ITP zone velocity, forward and reverse reaction constants, and probe concentration on necessary affinity region length, assay time, and capture efficiency. Our analytical approach shows collapse of these variables to three nondimensional parameters. The analysis yields simple analytical relations for capture length and capture time in relevant ITP-AC regimes, and it demonstrates how ITP greatly reduces assay time and improves column utilization. In the second part of this two-part series, we will present experimental validation of our model and demonstrate ITP-AC separation of the target from 10,000-fold more-abundant contaminants.","publication_date":{"day":17,"month":6,"year":2014,"errors":{}},"publication_name":"Analytical Chemistry","grobid_abstract_attachment_id":119984108},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046796/Coupling_Isotachophoresis_with_Affinity_Chromatography_for_Rapid_and_Selective_Purification_with_High_Column_Utilization_Part_1_Theory","translated_internal_url":"","created_at":"2024-12-03T11:14:23.726-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984108,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984108/thumbnails/1.jpg","file_name":"ac5011052.pdf","download_url":"https://www.academia.edu/attachments/119984108/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Coupling_Isotachophoresis_with_Affinity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984108/ac5011052-libre.pdf?1733255837=\u0026response-content-disposition=attachment%3B+filename%3DCoupling_Isotachophoresis_with_Affinity.pdf\u0026Expires=1734027722\u0026Signature=aLiJuNVM64q2lfNvl56QZooTFaXwVAZpMnuxuTWPF6wOvbXhqQBTQJ3B4Tlw06Gno-NFzjn48fh2Bxej2QzLzJ4XbRqPn8RLELLrl2e75aRUDcjRRp7tqpOrl9AJD4mpc8SDn5iSMRKsmoHP-SJiFaWFZgair6l~OuTGT2e3VCjt9Gopbe12yB5qIGw0ZR18U1ith4oH3nrFFZUCVd3DxLd1By8vm1cb7ZShC~I7XXlaPK8hZitL-R5bVLN7CBG9H9Z8qAwMB3Lh-7FzxLSyCM15EPBHteVGqgzDE52FYBp2dyul95vkAUrWJycCwh65M3Y3mhJBaAWvVBA25qyq9A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Coupling_Isotachophoresis_with_Affinity_Chromatography_for_Rapid_and_Selective_Purification_with_High_Column_Utilization_Part_1_Theory","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"We present a novel technique that couples isotachophoresis (ITP) with affinity chromatography (AC) to achieve rapid, selective purification with high column utilization. ITP simultaneously preconcentrates an analyte and purifies it, based on differences in mobility of sample components, excluding species that may foul or compete with the target at the affinity substrate. ITP preconcentration accelerates the affinity reaction, reducing assay time, improving column utilization, and allowing for capture of targets with higher dissociation constants. Furthermore, ITP-AC separates the target and contaminants into nondiffusing zones, thus achieving high resolution in a short distance and time. We present an analytical model for spatiotemporal dynamics of ITP-AC. We identify and explore the effect of key process parameters, including target distribution width and height, ITP zone velocity, forward and reverse reaction constants, and probe concentration on necessary affinity region length, assay time, and capture efficiency. Our analytical approach shows collapse of these variables to three nondimensional parameters. The analysis yields simple analytical relations for capture length and capture time in relevant ITP-AC regimes, and it demonstrates how ITP greatly reduces assay time and improves column utilization. In the second part of this two-part series, we will present experimental validation of our model and demonstrate ITP-AC separation of the target from 10,000-fold more-abundant contaminants.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984108,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984108/thumbnails/1.jpg","file_name":"ac5011052.pdf","download_url":"https://www.academia.edu/attachments/119984108/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Coupling_Isotachophoresis_with_Affinity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984108/ac5011052-libre.pdf?1733255837=\u0026response-content-disposition=attachment%3B+filename%3DCoupling_Isotachophoresis_with_Affinity.pdf\u0026Expires=1734027722\u0026Signature=aLiJuNVM64q2lfNvl56QZooTFaXwVAZpMnuxuTWPF6wOvbXhqQBTQJ3B4Tlw06Gno-NFzjn48fh2Bxej2QzLzJ4XbRqPn8RLELLrl2e75aRUDcjRRp7tqpOrl9AJD4mpc8SDn5iSMRKsmoHP-SJiFaWFZgair6l~OuTGT2e3VCjt9Gopbe12yB5qIGw0ZR18U1ith4oH3nrFFZUCVd3DxLd1By8vm1cb7ZShC~I7XXlaPK8hZitL-R5bVLN7CBG9H9Z8qAwMB3Lh-7FzxLSyCM15EPBHteVGqgzDE52FYBp2dyul95vkAUrWJycCwh65M3Y3mhJBaAWvVBA25qyq9A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984105,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984105/thumbnails/1.jpg","file_name":"ac5011052.pdf","download_url":"https://www.academia.edu/attachments/119984105/download_file","bulk_download_file_name":"Coupling_Isotachophoresis_with_Affinity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984105/ac5011052-libre.pdf?1733255847=\u0026response-content-disposition=attachment%3B+filename%3DCoupling_Isotachophoresis_with_Affinity.pdf\u0026Expires=1734027722\u0026Signature=B2-2nr5XAFBgBKZ8HQF~wKSBm1yIdUQ7OdhaItHKe2GkmHorczY0iCuhwasBmxH~Koon2VjdwT4VkEmGbDwG2Ja4OLLTysLoLxSnxkbjL-klksC35es2GyzGGZWxByLi7DwH5jts4BwmhINgpeoZUdBBXvyz8bVwy6uH9vwR8qrBqsPLpO7ZAm~2BER9cWTxi7fo7AjuDWRTgZtcATHq6d2BS2fcZjey6nlk4B4V3fmtsntMSSTIkSVRvcp8gLe7JGpuXmGxiMBUdSToiqUcPDSA~Kkc9hVxJMihal4tQx5VHyBhYeszr1l~ELJeD-SSE5y1lvlhCDnJUKjV-MDFGA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry"},{"id":4656,"name":"Chromatography","url":"https://www.academia.edu/Documents/in/Chromatography"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":201241,"name":"Affinity chromatography","url":"https://www.academia.edu/Documents/in/Affinity_chromatography"},{"id":205770,"name":"Isotachophoresis","url":"https://www.academia.edu/Documents/in/Isotachophoresis"},{"id":1145520,"name":"Equipment Design","url":"https://www.academia.edu/Documents/in/Equipment_Design"},{"id":1453163,"name":"Dissociation Constant","url":"https://www.academia.edu/Documents/in/Dissociation_Constant"}],"urls":[{"id":45906062,"url":"https://pubs.acs.org/doi/pdf/10.1021/ac5011052"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046795"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/126046795/On_chip_Isotachophoresis_for_Separation_of_Ions_and_Purification_of_Nucleic_Acids"><img alt="Research paper thumbnail of On-chip Isotachophoresis for Separation of Ions and Purification of Nucleic Acids" class="work-thumbnail" src="https://attachments.academia-assets.com/119984102/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/126046795/On_chip_Isotachophoresis_for_Separation_of_Ions_and_Purification_of_Nucleic_Acids">On-chip Isotachophoresis for Separation of Ions and Purification of Nucleic Acids</a></div><div class="wp-workCard_item"><span>Journal of Visualized Experiments</span><span>, Mar 2, 2012</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d297c8ee4dc890b78f31de360cdc007c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984102,"asset_id":126046795,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984102/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046795"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046795"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046795; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046795]").text(description); $(".js-view-count[data-work-id=126046795]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046795; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046795']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046795, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d297c8ee4dc890b78f31de360cdc007c" } } $('.js-work-strip[data-work-id=126046795]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046795,"title":"On-chip Isotachophoresis for Separation of Ions and Purification of Nucleic Acids","translated_title":"","metadata":{"publisher":"MyJOVE","publication_date":{"day":2,"month":3,"year":2012,"errors":{}},"publication_name":"Journal of Visualized Experiments"},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046795/On_chip_Isotachophoresis_for_Separation_of_Ions_and_Purification_of_Nucleic_Acids","translated_internal_url":"","created_at":"2024-12-03T11:14:23.485-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984102,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984102/thumbnails/1.jpg","file_name":"on-chip-isotachophoresis-for-separation-ions-purification-nucleic.pdf","download_url":"https://www.academia.edu/attachments/119984102/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_chip_Isotachophoresis_for_Separation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984102/on-chip-isotachophoresis-for-separation-ions-purification-nucleic-libre.pdf?1733255843=\u0026response-content-disposition=attachment%3B+filename%3DOn_chip_Isotachophoresis_for_Separation.pdf\u0026Expires=1734027722\u0026Signature=Qtptg0xjNb5nlBG26usMNJXYKQnLNkUiIRsCnBOR3URpnE5JCXWN-wUyISFyUiZPXH0EHtclus7hsKZsoFupFl5cUy7bT15lbBvvuEsVIcmhyMNrLtxVGlN~alWpUZbYBEGyZwWBSa7lhJlN~AeTUcwYPkNHUiswpNV86nPkgSwrBJ0NLy9IJePQ3-TSg1WekcE8Xmq6DnaJQEwqVjmsckmXDPYQjtujAxRvN2PLpUoN9eMb4eE-NjaAfABubOquFunqW1cN69I3nbMz35TOjUIO4W7Zzg7Py2BE54wbIbq6I2s11b4QG0X7H3U606s7wshZJnLCX7WNtl3BpAuy2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_chip_Isotachophoresis_for_Separation_of_Ions_and_Purification_of_Nucleic_Acids","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":null,"owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984102,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984102/thumbnails/1.jpg","file_name":"on-chip-isotachophoresis-for-separation-ions-purification-nucleic.pdf","download_url":"https://www.academia.edu/attachments/119984102/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_chip_Isotachophoresis_for_Separation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984102/on-chip-isotachophoresis-for-separation-ions-purification-nucleic-libre.pdf?1733255843=\u0026response-content-disposition=attachment%3B+filename%3DOn_chip_Isotachophoresis_for_Separation.pdf\u0026Expires=1734027722\u0026Signature=Qtptg0xjNb5nlBG26usMNJXYKQnLNkUiIRsCnBOR3URpnE5JCXWN-wUyISFyUiZPXH0EHtclus7hsKZsoFupFl5cUy7bT15lbBvvuEsVIcmhyMNrLtxVGlN~alWpUZbYBEGyZwWBSa7lhJlN~AeTUcwYPkNHUiswpNV86nPkgSwrBJ0NLy9IJePQ3-TSg1WekcE8Xmq6DnaJQEwqVjmsckmXDPYQjtujAxRvN2PLpUoN9eMb4eE-NjaAfABubOquFunqW1cN69I3nbMz35TOjUIO4W7Zzg7Py2BE54wbIbq6I2s11b4QG0X7H3U606s7wshZJnLCX7WNtl3BpAuy2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":68,"name":"Bioengineering","url":"https://www.academia.edu/Documents/in/Bioengineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":4656,"name":"Chromatography","url":"https://www.academia.edu/Documents/in/Chromatography"},{"id":23861,"name":"Microscale Chemistry","url":"https://www.academia.edu/Documents/in/Microscale_Chemistry"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":32910,"name":"Sample Preparation","url":"https://www.academia.edu/Documents/in/Sample_Preparation"},{"id":83128,"name":"Escherichia coli","url":"https://www.academia.edu/Documents/in/Escherichia_coli"},{"id":87778,"name":"Electrokinetics","url":"https://www.academia.edu/Documents/in/Electrokinetics"},{"id":178906,"name":"Nucleic Acids","url":"https://www.academia.edu/Documents/in/Nucleic_Acids"},{"id":205768,"name":"Electrokinetic Phenomena","url":"https://www.academia.edu/Documents/in/Electrokinetic_Phenomena"},{"id":205770,"name":"Isotachophoresis","url":"https://www.academia.edu/Documents/in/Isotachophoresis"},{"id":283531,"name":"Microchannel","url":"https://www.academia.edu/Documents/in/Microchannel"},{"id":295928,"name":"Amino Acids","url":"https://www.academia.edu/Documents/in/Amino_Acids"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":371425,"name":"Electrophoresis","url":"https://www.academia.edu/Documents/in/Electrophoresis"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"},{"id":1257974,"name":"Ions","url":"https://www.academia.edu/Documents/in/Ions"},{"id":1276642,"name":"Electrolyte","url":"https://www.academia.edu/Documents/in/Electrolyte"}],"urls":[{"id":45906061,"url":"https://www.jove.com/pdf/3890/on-chip-isotachophoresis-for-separation-ions-purification-nucleic"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046794"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046794/Electric_fields_yield_chaos_in_microflows"><img alt="Research paper thumbnail of Electric fields yield chaos in microflows" class="work-thumbnail" src="https://attachments.academia-assets.com/119984101/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046794/Electric_fields_yield_chaos_in_microflows">Electric fields yield chaos in microflows</a></div><div class="wp-workCard_item"><span>Proceedings of the National Academy of Sciences of the United States of America</span><span>, Aug 20, 2012</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="07f9acbdd7a12186eea68b0064a186ff" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984101,"asset_id":126046794,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984101/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046794"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046794"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046794; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046794]").text(description); $(".js-view-count[data-work-id=126046794]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046794; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046794']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046794, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "07f9acbdd7a12186eea68b0064a186ff" } } $('.js-work-strip[data-work-id=126046794]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046794,"title":"Electric fields yield chaos in microflows","translated_title":"","metadata":{"publisher":"National Academy of Sciences","publication_date":{"day":20,"month":8,"year":2012,"errors":{}},"publication_name":"Proceedings of the National Academy of Sciences of the United States of America"},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046794/Electric_fields_yield_chaos_in_microflows","translated_internal_url":"","created_at":"2024-12-03T11:14:23.209-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984101,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984101/thumbnails/1.jpg","file_name":"14353.full.pdf","download_url":"https://www.academia.edu/attachments/119984101/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Electric_fields_yield_chaos_in_microflow.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984101/14353.full-libre.pdf?1733255856=\u0026response-content-disposition=attachment%3B+filename%3DElectric_fields_yield_chaos_in_microflow.pdf\u0026Expires=1734027722\u0026Signature=G1XyqzWM1g~1MsUFSYAVsSg-IzUD~BgVaExFHj6JQ9sDDr7mKY-lNY7sxoHlizeZPw4pOjVzd3~-MSPAvuVMGFhZgZEfzcpNhIl1pLB3ZEJl1K~R~Tf2gMSosYtuji0N50j4YCpyTiM9asDk78MpAeNWIGHh-M~0eh~Pt9FdSmf2zMP2cCnapyz40hBg3mIPzA1HfK-OwUdK-aCVeehPe9Vi4KyaEkA6kstGNW~hbx9ZqWXdk2B2~ijxEEIjhAPdSJITcyqUyuJy7GRVkTh5wBXS1Nx5aKGhEgJkeKhedlPRN65al5ytdRjzkWgvF2KiXhf2RBN-T1zomVCs59s-zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Electric_fields_yield_chaos_in_microflows","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":null,"owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984101,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984101/thumbnails/1.jpg","file_name":"14353.full.pdf","download_url":"https://www.academia.edu/attachments/119984101/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Electric_fields_yield_chaos_in_microflow.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984101/14353.full-libre.pdf?1733255856=\u0026response-content-disposition=attachment%3B+filename%3DElectric_fields_yield_chaos_in_microflow.pdf\u0026Expires=1734027722\u0026Signature=G1XyqzWM1g~1MsUFSYAVsSg-IzUD~BgVaExFHj6JQ9sDDr7mKY-lNY7sxoHlizeZPw4pOjVzd3~-MSPAvuVMGFhZgZEfzcpNhIl1pLB3ZEJl1K~R~Tf2gMSosYtuji0N50j4YCpyTiM9asDk78MpAeNWIGHh-M~0eh~Pt9FdSmf2zMP2cCnapyz40hBg3mIPzA1HfK-OwUdK-aCVeehPe9Vi4KyaEkA6kstGNW~hbx9ZqWXdk2B2~ijxEEIjhAPdSJITcyqUyuJy7GRVkTh5wBXS1Nx5aKGhEgJkeKhedlPRN65al5ytdRjzkWgvF2KiXhf2RBN-T1zomVCs59s-zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984099,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984099/thumbnails/1.jpg","file_name":"14353.full.pdf","download_url":"https://www.academia.edu/attachments/119984099/download_file","bulk_download_file_name":"Electric_fields_yield_chaos_in_microflow.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984099/14353.full-libre.pdf?1733255862=\u0026response-content-disposition=attachment%3B+filename%3DElectric_fields_yield_chaos_in_microflow.pdf\u0026Expires=1734027722\u0026Signature=V36SDjnff8DHa6lizyHEfmDvLwSgHB-F8Lgw-aJEXIipURtQTbFOTBtIIeVwgYSb-kR0V8k03dDyL2uGi39WZyulgAVPPpy6hOwQhL0U5NN5GlRS7-29RRWxwj5OdZlj1y1mHr5frGPPQVTwmCpM~jjhQvcGYYb9VYPrZmSxVFYbKb-gysaUpRoGbKa2Yi4N4YdAi2btuOph6obxebIKULiI6evM6Gug7nzoRw~VDeNTCxxyWD3Jozue8DbfdkIaGRi8~67m0tUMpjHYBOG2T4l3fZj985wZwFeT0axzBMSBMegRsTJStAHMOh3wJfkGAx5KgrWmJhLuZoje3hvgww__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":5493,"name":"Nonlinear dynamics","url":"https://www.academia.edu/Documents/in/Nonlinear_dynamics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":131236,"name":"Electromagnetic Fields","url":"https://www.academia.edu/Documents/in/Electromagnetic_Fields"},{"id":179332,"name":"Hydrodynamics","url":"https://www.academia.edu/Documents/in/Hydrodynamics"},{"id":1008960,"name":"Reynolds Number","url":"https://www.academia.edu/Documents/in/Reynolds_Number"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"},{"id":1202042,"name":"Electric Conductivity","url":"https://www.academia.edu/Documents/in/Electric_Conductivity"},{"id":2770878,"name":"Chaotic","url":"https://www.academia.edu/Documents/in/Chaotic"},{"id":3167069,"name":"attractor","url":"https://www.academia.edu/Documents/in/attractor"}],"urls":[{"id":45906060,"url":"https://www.pnas.org/content/pnas/109/36/14353.full.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046793"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046793/A_Fast_and_Accurate_Isotachophoresis_Simulation_Code"><img alt="Research paper thumbnail of A Fast and Accurate Isotachophoresis Simulation Code" class="work-thumbnail" src="https://attachments.academia-assets.com/119984098/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046793/A_Fast_and_Accurate_Isotachophoresis_Simulation_Code">A Fast and Accurate Isotachophoresis Simulation Code</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We developed a numerical code which allows fast and accurate simulation of isotachophoresis (ITP)...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We developed a numerical code which allows fast and accurate simulation of isotachophoresis (ITP). The multi-species code accounts for equilibrium chemistry, non-uniform electroosmotic flow, and dispersion. Our modeling efforts for the latter are also presented. The goal of our work is to create an efficient, accurate, validated, and uniquely-capable electrophoresis simulation code available for free via the web to the microfluidics community.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ab5bc67915e0130f0f8c2186c8d35dc4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984098,"asset_id":126046793,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984098/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046793"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046793"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046793; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046793]").text(description); $(".js-view-count[data-work-id=126046793]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046793; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046793']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046793, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ab5bc67915e0130f0f8c2186c8d35dc4" } } $('.js-work-strip[data-work-id=126046793]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046793,"title":"A Fast and Accurate Isotachophoresis Simulation Code","translated_title":"","metadata":{"grobid_abstract":"We developed a numerical code which allows fast and accurate simulation of isotachophoresis (ITP). The multi-species code accounts for equilibrium chemistry, non-uniform electroosmotic flow, and dispersion. Our modeling efforts for the latter are also presented. The goal of our work is to create an efficient, accurate, validated, and uniquely-capable electrophoresis simulation code available for free via the web to the microfluidics community.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"grobid_abstract_attachment_id":119984098},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046793/A_Fast_and_Accurate_Isotachophoresis_Simulation_Code","translated_internal_url":"","created_at":"2024-12-03T11:14:21.857-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984098,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984098/thumbnails/1.jpg","file_name":"015_1058.pdf","download_url":"https://www.academia.edu/attachments/119984098/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Fast_and_Accurate_Isotachophoresis_Sim.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984098/015_1058-libre.pdf?1733255835=\u0026response-content-disposition=attachment%3B+filename%3DA_Fast_and_Accurate_Isotachophoresis_Sim.pdf\u0026Expires=1734027722\u0026Signature=XQk0s32Xakw89gLnHAXjrm94nmUevO2OBMsl9721RkLDAm4Mqk86054upuyUr1wGfCVRJB~vA12k6FBGiH0bB27b~6U386fIIvQ3IjOyZgzLjA0d3QL9fETArDKah8nxm4Vp9MTGzFOZ7NQMJtwR8Rh9FfkY4K-IZFvr9qi6oj~oyj4DjHjTCbz-aUCSv0VqL8iBD8B-YMGbBWSWOsABOR0Ur83AaSdGcPo0kd2OcM7htvwy74l9m6K~68jOiUv6Mwsm2Ir4BJp3T3Q7YKRa~HBvQEuu9Ch~deRYm6mzABlJPzUYxRZ3g-tt6bcJ5BYjfhNC~OzUsW9Fy4tUr2~ctw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Fast_and_Accurate_Isotachophoresis_Simulation_Code","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":"We developed a numerical code which allows fast and accurate simulation of isotachophoresis (ITP). The multi-species code accounts for equilibrium chemistry, non-uniform electroosmotic flow, and dispersion. Our modeling efforts for the latter are also presented. The goal of our work is to create an efficient, accurate, validated, and uniquely-capable electrophoresis simulation code available for free via the web to the microfluidics community.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984098,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984098/thumbnails/1.jpg","file_name":"015_1058.pdf","download_url":"https://www.academia.edu/attachments/119984098/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Fast_and_Accurate_Isotachophoresis_Sim.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984098/015_1058-libre.pdf?1733255835=\u0026response-content-disposition=attachment%3B+filename%3DA_Fast_and_Accurate_Isotachophoresis_Sim.pdf\u0026Expires=1734027722\u0026Signature=XQk0s32Xakw89gLnHAXjrm94nmUevO2OBMsl9721RkLDAm4Mqk86054upuyUr1wGfCVRJB~vA12k6FBGiH0bB27b~6U386fIIvQ3IjOyZgzLjA0d3QL9fETArDKah8nxm4Vp9MTGzFOZ7NQMJtwR8Rh9FfkY4K-IZFvr9qi6oj~oyj4DjHjTCbz-aUCSv0VqL8iBD8B-YMGbBWSWOsABOR0Ur83AaSdGcPo0kd2OcM7htvwy74l9m6K~68jOiUv6Mwsm2Ir4BJp3T3Q7YKRa~HBvQEuu9Ch~deRYm6mzABlJPzUYxRZ3g-tt6bcJ5BYjfhNC~OzUsW9Fy4tUr2~ctw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984100,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984100/thumbnails/1.jpg","file_name":"015_1058.pdf","download_url":"https://www.academia.edu/attachments/119984100/download_file","bulk_download_file_name":"A_Fast_and_Accurate_Isotachophoresis_Sim.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984100/015_1058-libre.pdf?1733255836=\u0026response-content-disposition=attachment%3B+filename%3DA_Fast_and_Accurate_Isotachophoresis_Sim.pdf\u0026Expires=1734027722\u0026Signature=PnRs98YRCLAmBMfUwNcmV~M2zHQEwDqj7iVo--hThuz0tGksSNRhJgVk3dVwwOcdJPTm9SK8mzO5Dw4M5kY-uLVTO3UlKcOm3Dc0uYjNsojfY-KphkHDjot5P1Rz7dwBshZVpxm-4biWBLFXpt7YwaIqd9GQapCPbJhC~tPpa8dp7SmwBRSQvjh~ocfj~ICfN6mSQgzmE~C5UnGVHHs7QAl2aWsV9fuBAGjbDBq-5J-2LtOyzPiHZ~HaLJ1meY-1CFG3viMq~aoXwhW4GNY8EIl8PijLWq7oJPcNhGowUVsXSijbBwQUhr~w0-GL1wJr-vJnafrOMhZMrOst~e8HMQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":205770,"name":"Isotachophoresis","url":"https://www.academia.edu/Documents/in/Isotachophoresis"}],"urls":[{"id":45906059,"url":"https://www.rsc.org/binaries/LOC/2008/PDFs/Papers/015_1058.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046792"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046792/On_Chip_Device_for_Isothermal_Chemical_Cycling_Polymerase_Chain_Reaction"><img alt="Research paper thumbnail of On-Chip Device for Isothermal, Chemical Cycling Polymerase Chain Reaction" class="work-thumbnail" src="https://attachments.academia-assets.com/119984096/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046792/On_Chip_Device_for_Isothermal_Chemical_Cycling_Polymerase_Chain_Reaction">On-Chip Device for Isothermal, Chemical Cycling Polymerase Chain Reaction</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We demonstrate a novel chemical cycling polymerase chain reaction (ccPCR) technique for DNA ampli...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We demonstrate a novel chemical cycling polymerase chain reaction (ccPCR) technique for DNA amplification in a fully working device where temperature is held constant in space and time. We demonstrate successful ccPCR amplification while simultaneously focusing products via isotachophoresis (ITP) for identification of the environmental bacteria E. Coli. We electrophoretically drive the DNA sample with ITP through a series of high denaturant concentration zones. The denaturant is neutral so the DNA experiences alternatively low and high concentrations. This effectively replaces the thermal cycling of classical PCR (Figure 1). We performed ccPCR with end-point detection and real-time fluorescence monitoring.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b7019d889d7ab855b951c65fb0f60a83" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984096,"asset_id":126046792,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984096/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046792"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046792"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046792; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046792]").text(description); $(".js-view-count[data-work-id=126046792]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046792; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046792']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046792, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b7019d889d7ab855b951c65fb0f60a83" } } $('.js-work-strip[data-work-id=126046792]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046792,"title":"On-Chip Device for Isothermal, Chemical Cycling Polymerase Chain Reaction","translated_title":"","metadata":{"grobid_abstract":"We demonstrate a novel chemical cycling polymerase chain reaction (ccPCR) technique for DNA amplification in a fully working device where temperature is held constant in space and time. We demonstrate successful ccPCR amplification while simultaneously focusing products via isotachophoresis (ITP) for identification of the environmental bacteria E. Coli. We electrophoretically drive the DNA sample with ITP through a series of high denaturant concentration zones. The denaturant is neutral so the DNA experiences alternatively low and high concentrations. This effectively replaces the thermal cycling of classical PCR (Figure 1). We performed ccPCR with end-point detection and real-time fluorescence monitoring.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"grobid_abstract_attachment_id":119984096},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046792/On_Chip_Device_for_Isothermal_Chemical_Cycling_Polymerase_Chain_Reaction","translated_internal_url":"","created_at":"2024-12-03T11:14:21.482-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984096,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984096/thumbnails/1.jpg","file_name":"364_0039.pdf","download_url":"https://www.academia.edu/attachments/119984096/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Chip_Device_for_Isothermal_Chemical_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984096/364_0039-libre.pdf?1733255834=\u0026response-content-disposition=attachment%3B+filename%3DOn_Chip_Device_for_Isothermal_Chemical_C.pdf\u0026Expires=1734027722\u0026Signature=FLkf9UXyq36d0dGXbA9HApiaLUGlOwJkk9Odt5kghZE42mIFqEAitGC9-VVDb0-Bxg4Wz7a-OJzLXD1jxYLH5SdL6hAifrAnPljTTJrydKPWPnSflHUQcfZodZOs1fpmq~VFAOlwFU5kw2KoAz992vZbIgzqqP0R6kZpoqf0Zi5gyCJLl6HOTtZKvDo~F5hCROQwC3ut0wgh7fF1Ym-rrnoY-4OfKVJ4MnLIeB2k5Ffa4xRgzURoakFAIAZGSADGxj-wDS~uKwKKf-I9Aun2km~dVB2u1UVb0iInuYz2DUzHZQcicDhKIoBuFfSnfKB6E9-XnL7T4O38ENEStjjzxw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_Chip_Device_for_Isothermal_Chemical_Cycling_Polymerase_Chain_Reaction","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":"We demonstrate a novel chemical cycling polymerase chain reaction (ccPCR) technique for DNA amplification in a fully working device where temperature is held constant in space and time. We demonstrate successful ccPCR amplification while simultaneously focusing products via isotachophoresis (ITP) for identification of the environmental bacteria E. Coli. We electrophoretically drive the DNA sample with ITP through a series of high denaturant concentration zones. The denaturant is neutral so the DNA experiences alternatively low and high concentrations. This effectively replaces the thermal cycling of classical PCR (Figure 1). We performed ccPCR with end-point detection and real-time fluorescence monitoring.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984096,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984096/thumbnails/1.jpg","file_name":"364_0039.pdf","download_url":"https://www.academia.edu/attachments/119984096/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Chip_Device_for_Isothermal_Chemical_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984096/364_0039-libre.pdf?1733255834=\u0026response-content-disposition=attachment%3B+filename%3DOn_Chip_Device_for_Isothermal_Chemical_C.pdf\u0026Expires=1734027722\u0026Signature=FLkf9UXyq36d0dGXbA9HApiaLUGlOwJkk9Odt5kghZE42mIFqEAitGC9-VVDb0-Bxg4Wz7a-OJzLXD1jxYLH5SdL6hAifrAnPljTTJrydKPWPnSflHUQcfZodZOs1fpmq~VFAOlwFU5kw2KoAz992vZbIgzqqP0R6kZpoqf0Zi5gyCJLl6HOTtZKvDo~F5hCROQwC3ut0wgh7fF1Ym-rrnoY-4OfKVJ4MnLIeB2k5Ffa4xRgzURoakFAIAZGSADGxj-wDS~uKwKKf-I9Aun2km~dVB2u1UVb0iInuYz2DUzHZQcicDhKIoBuFfSnfKB6E9-XnL7T4O38ENEStjjzxw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984097,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"364_0039.pdf","download_url":"https://www.academia.edu/attachments/119984097/download_file","bulk_download_file_name":"On_Chip_Device_for_Isothermal_Chemical_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984097/364_0039-libre.pdf?1733255836=\u0026response-content-disposition=attachment%3B+filename%3DOn_Chip_Device_for_Isothermal_Chemical_C.pdf\u0026Expires=1734027722\u0026Signature=f~-PDm5sSVBBzq6uTd5pi3eO2RUEovhrACmypS1Kgz41IbC09KeCSeu7B2uph4s2vTkCmcBlK5RRNjbgtfZu3pp~bE4D9HjCHqPcnY5c~ewdIalhziJ1A5pxEWpBCjSJMVfADrGG1Rq-DVLXp3yOCZYhDB9l9CKOjmYyHbXDkWMh2cJCGZ2GoHTiWQ0wTs51F3Zq2cmtD3PL~IYyLhVbzmq21X8eXLxil1nRee-XfqXueXsT8KK9Z-OwZuxCNOTPLTWu6TP6BFGbUaERQINwdkL6CsaW29NkxM6BH8dEJqgHIcbDRXBMFzyoToOhabmr3cBneogW-PSI~jJlMTtS3A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":48057,"name":"DNA","url":"https://www.academia.edu/Documents/in/DNA"},{"id":118339,"name":"Polymerase Chain Reaction","url":"https://www.academia.edu/Documents/in/Polymerase_Chain_Reaction"},{"id":205770,"name":"Isotachophoresis","url":"https://www.academia.edu/Documents/in/Isotachophoresis"},{"id":712036,"name":"LOOP MEDIATED ISOTHERMAL AMPLIFICATION","url":"https://www.academia.edu/Documents/in/LOOP_MEDIATED_ISOTHERMAL_AMPLIFICATION"},{"id":946375,"name":"Temperature Cycling","url":"https://www.academia.edu/Documents/in/Temperature_Cycling"}],"urls":[{"id":45906058,"url":"https://www.rsc.org/binaries/LOC/2008/PDFs/Papers/364_0039.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046791"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046791/An_Electrokinetic_Mobility_Measurement_Technique_Using_Ac_and_DC_Electrophoresis"><img alt="Research paper thumbnail of An Electrokinetic Mobility Measurement Technique Using Ac and DC Electrophoresis" class="work-thumbnail" src="https://attachments.academia-assets.com/119984093/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046791/An_Electrokinetic_Mobility_Measurement_Technique_Using_Ac_and_DC_Electrophoresis">An Electrokinetic Mobility Measurement Technique Using Ac and DC Electrophoresis</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We have developed a hybrid method for measuring the electrophoretic mobility, ,I+, of sub-micron ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We have developed a hybrid method for measuring the electrophoretic mobility, ,I+, of sub-micron particles and the electroosmotic mobility, pu,, of a microchannel in the same experiment. This method combines elements of alternating (AC) and direct (DC) field microelectrophoresis and leverages inertial decoupling between near-wall liquid motion and the liquid flow field away from the wall. Images of particle streaks are captured using epi-fluorescence CCD imaging. This method allows us to explicitly compute probability density functions (PDF's) for ~1~~ and p,, in terms of particle displacements resulting from AC and DC microelectrophoresis.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6edf677f5cdda74970bf81d93a4132d0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984093,"asset_id":126046791,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984093/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046791"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046791"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046791; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046791]").text(description); $(".js-view-count[data-work-id=126046791]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046791; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046791']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046791, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6edf677f5cdda74970bf81d93a4132d0" } } $('.js-work-strip[data-work-id=126046791]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046791,"title":"An Electrokinetic Mobility Measurement Technique Using Ac and DC Electrophoresis","translated_title":"","metadata":{"grobid_abstract":"We have developed a hybrid method for measuring the electrophoretic mobility, ,I+, of sub-micron particles and the electroosmotic mobility, pu,, of a microchannel in the same experiment. This method combines elements of alternating (AC) and direct (DC) field microelectrophoresis and leverages inertial decoupling between near-wall liquid motion and the liquid flow field away from the wall. Images of particle streaks are captured using epi-fluorescence CCD imaging. This method allows us to explicitly compute probability density functions (PDF's) for ~1~~ and p,, in terms of particle displacements resulting from AC and DC microelectrophoresis.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"grobid_abstract_attachment_id":119984093},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046791/An_Electrokinetic_Mobility_Measurement_Technique_Using_Ac_and_DC_Electrophoresis","translated_internal_url":"","created_at":"2024-12-03T11:14:21.190-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984093,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984093/thumbnails/1.jpg","file_name":"146-267.pdf","download_url":"https://www.academia.edu/attachments/119984093/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Electrokinetic_Mobility_Measurement_T.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984093/146-267-libre.pdf?1733255840=\u0026response-content-disposition=attachment%3B+filename%3DAn_Electrokinetic_Mobility_Measurement_T.pdf\u0026Expires=1734027722\u0026Signature=W9jhxvDP7FkNwco12-GCOlSVrT0AFIGhZxFib9evNRN5Ovq7wIfDhkzGWITzbcxdYvb-UV6-mnetfq3alWwzFlccZGo-f65ZmC64tUXnCvsG6QKrne1VHR7u5A8mLaZ4StjP1NPXiFi9N1cH~UJunX32UDasRMY5HFUvdN~DmkVSoLGJZyyaaiTRl2W-VBUUg627MpcBWg8OgUFwxwzlD2x1XLDFzA5W0aPa1zwA~WPjlwJZAPtdsbzn5YuIFznJ6Z4GyTS8-9wQOR3eNserSyxCWPgUjv84X6MkkjA-03DYJMZfJBeUy4psy0OrxrNAutdALU55RaMYmU4~Q96iDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_Electrokinetic_Mobility_Measurement_Technique_Using_Ac_and_DC_Electrophoresis","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"We have developed a hybrid method for measuring the electrophoretic mobility, ,I+, of sub-micron particles and the electroosmotic mobility, pu,, of a microchannel in the same experiment. This method combines elements of alternating (AC) and direct (DC) field microelectrophoresis and leverages inertial decoupling between near-wall liquid motion and the liquid flow field away from the wall. Images of particle streaks are captured using epi-fluorescence CCD imaging. This method allows us to explicitly compute probability density functions (PDF's) for ~1~~ and p,, in terms of particle displacements resulting from AC and DC microelectrophoresis.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984093,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984093/thumbnails/1.jpg","file_name":"146-267.pdf","download_url":"https://www.academia.edu/attachments/119984093/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Electrokinetic_Mobility_Measurement_T.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984093/146-267-libre.pdf?1733255840=\u0026response-content-disposition=attachment%3B+filename%3DAn_Electrokinetic_Mobility_Measurement_T.pdf\u0026Expires=1734027722\u0026Signature=W9jhxvDP7FkNwco12-GCOlSVrT0AFIGhZxFib9evNRN5Ovq7wIfDhkzGWITzbcxdYvb-UV6-mnetfq3alWwzFlccZGo-f65ZmC64tUXnCvsG6QKrne1VHR7u5A8mLaZ4StjP1NPXiFi9N1cH~UJunX32UDasRMY5HFUvdN~DmkVSoLGJZyyaaiTRl2W-VBUUg627MpcBWg8OgUFwxwzlD2x1XLDFzA5W0aPa1zwA~WPjlwJZAPtdsbzn5YuIFznJ6Z4GyTS8-9wQOR3eNserSyxCWPgUjv84X6MkkjA-03DYJMZfJBeUy4psy0OrxrNAutdALU55RaMYmU4~Q96iDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984094,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984094/thumbnails/1.jpg","file_name":"146-267.pdf","download_url":"https://www.academia.edu/attachments/119984094/download_file","bulk_download_file_name":"An_Electrokinetic_Mobility_Measurement_T.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984094/146-267-libre.pdf?1733255840=\u0026response-content-disposition=attachment%3B+filename%3DAn_Electrokinetic_Mobility_Measurement_T.pdf\u0026Expires=1734027722\u0026Signature=eHQlvDefi4dDLJQ5tJxDtbbhdWtXtxqAd9QTK8sTH9naBZURCf157~ROJ13jwU1EYuEH8Hwfci1Ff1-fT-OPpZ4P~WV2VYvEpHKrzmJ8HwoiPJQEnIES78fneumz2a2IXTJZWG2aCtdz2seBF5lnpho0PpNCsjWB1r0kqANOXRo9iVl-U-SvAxAuBn7B2KdRJ4VrxGaFjfDM6dJ9Pr0CPnEDKfesw3Ui4cJ1YW74bQ2fdKtaYUgLDkcviohezC-5lYkBYoJo5Vqjp0xEK5ub-C2GP8uQHQBynWzohaa4PO5fwijNBwohCR48H7S928pSSqkwimetF9cJDK0jAqKRXQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":205768,"name":"Electrokinetic Phenomena","url":"https://www.academia.edu/Documents/in/Electrokinetic_Phenomena"},{"id":283531,"name":"Microchannel","url":"https://www.academia.edu/Documents/in/Microchannel"},{"id":371425,"name":"Electrophoresis","url":"https://www.academia.edu/Documents/in/Electrophoresis"},{"id":2367315,"name":"Particle Tracking Velocimetry","url":"https://www.academia.edu/Documents/in/Particle_Tracking_Velocimetry"}],"urls":[{"id":45906057,"url":"https://www.rsc.org/binaries/LOC/2003/Volume1/146-267.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046790"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046790/On_Chip_Separation_and_Detection_of_Non_Fluorescent_Toxins_in_Water_Using_Fluorescent_Mobility_Markers"><img alt="Research paper thumbnail of On-Chip Separation and Detection of Non-Fluorescent Toxins in Water Using Fluorescent Mobility Markers" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046790/On_Chip_Separation_and_Detection_of_Non_Fluorescent_Toxins_in_Water_Using_Fluorescent_Mobility_Markers">On-Chip Separation and Detection of Non-Fluorescent Toxins in Water Using Fluorescent Mobility Markers</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present an indirect fluorescence detection technique to detect unlabled/untreated toxins such ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present an indirect fluorescence detection technique to detect unlabled/untreated toxins such as phenol, cresol and their derivatives present in water. We leverage isotachophoresis and fluorescent species termed as mobility markers to preconcentrate, separate and indirectly detect the nonfluorescent toxins using standard fluorescence detection system. We easily achieve ~ 1 µM detection sensitivity with high reproducibility with this technique.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2453c4c6c497f12ee8d9694821204085" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984091,"asset_id":126046790,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984091/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046790"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046790"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046790; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046790]").text(description); $(".js-view-count[data-work-id=126046790]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046790; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046790']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046790, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2453c4c6c497f12ee8d9694821204085" } } $('.js-work-strip[data-work-id=126046790]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046790,"title":"On-Chip Separation and Detection of Non-Fluorescent Toxins in Water Using Fluorescent Mobility Markers","translated_title":"","metadata":{"grobid_abstract":"We present an indirect fluorescence detection technique to detect unlabled/untreated toxins such as phenol, cresol and their derivatives present in water. We leverage isotachophoresis and fluorescent species termed as mobility markers to preconcentrate, separate and indirectly detect the nonfluorescent toxins using standard fluorescence detection system. We easily achieve ~ 1 µM detection sensitivity with high reproducibility with this technique.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"grobid_abstract_attachment_id":119984091},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046790/On_Chip_Separation_and_Detection_of_Non_Fluorescent_Toxins_in_Water_Using_Fluorescent_Mobility_Markers","translated_internal_url":"","created_at":"2024-12-03T11:14:20.913-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984091,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"492_0859.pdf","download_url":"https://www.academia.edu/attachments/119984091/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Chip_Separation_and_Detection_of_Non.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984091/492_0859-libre.pdf?1733255839=\u0026response-content-disposition=attachment%3B+filename%3DOn_Chip_Separation_and_Detection_of_Non.pdf\u0026Expires=1734027722\u0026Signature=Hom6uJ3ouACED5wzMIDh7QdvFPqK9UcxJ36YfHpdS4N7HMLDJ2-fkLjQgkyY3-HbMixrrMVDLY8lp8w7m8mzwPvME8vPsQav34Mjpwr8685x2BrCBMfbL4zd72ljOdBaEnF6xoyHi~-kqAkrPR2UqrgdfKe~EGcSsml2A3duGtxqaJTl2PA5E~OJbjU89xjny5AHlj3OD~Jvhyg4DrtQJnLKogsf~3crd15x1gZL-~ORBXNU4en4QcfdkxqarzpFuQhvAGBszZyg31pBzjSSpTwZZDZZipUhSxvnByEG05zM~9g96Lk5J1XH30gTYlLa6eEbnqOYsCcrTuYx7Ea9UA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_Chip_Separation_and_Detection_of_Non_Fluorescent_Toxins_in_Water_Using_Fluorescent_Mobility_Markers","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We present an indirect fluorescence detection technique to detect unlabled/untreated toxins such as phenol, cresol and their derivatives present in water. We leverage isotachophoresis and fluorescent species termed as mobility markers to preconcentrate, separate and indirectly detect the nonfluorescent toxins using standard fluorescence detection system. We easily achieve ~ 1 µM detection sensitivity with high reproducibility with this technique.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984091,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"492_0859.pdf","download_url":"https://www.academia.edu/attachments/119984091/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Chip_Separation_and_Detection_of_Non.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984091/492_0859-libre.pdf?1733255839=\u0026response-content-disposition=attachment%3B+filename%3DOn_Chip_Separation_and_Detection_of_Non.pdf\u0026Expires=1734027722\u0026Signature=Hom6uJ3ouACED5wzMIDh7QdvFPqK9UcxJ36YfHpdS4N7HMLDJ2-fkLjQgkyY3-HbMixrrMVDLY8lp8w7m8mzwPvME8vPsQav34Mjpwr8685x2BrCBMfbL4zd72ljOdBaEnF6xoyHi~-kqAkrPR2UqrgdfKe~EGcSsml2A3duGtxqaJTl2PA5E~OJbjU89xjny5AHlj3OD~Jvhyg4DrtQJnLKogsf~3crd15x1gZL-~ORBXNU4en4QcfdkxqarzpFuQhvAGBszZyg31pBzjSSpTwZZDZZipUhSxvnByEG05zM~9g96Lk5J1XH30gTYlLa6eEbnqOYsCcrTuYx7Ea9UA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984095,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984095/thumbnails/1.jpg","file_name":"492_0859.pdf","download_url":"https://www.academia.edu/attachments/119984095/download_file","bulk_download_file_name":"On_Chip_Separation_and_Detection_of_Non.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984095/492_0859-libre.pdf?1733255839=\u0026response-content-disposition=attachment%3B+filename%3DOn_Chip_Separation_and_Detection_of_Non.pdf\u0026Expires=1734027722\u0026Signature=OS6cYD1KBjwr6wYnk8I9mXNOWW~N~f2n07nZgbtm1MjSEqFzMa9PYKTt4sePWtU2PZBdudLbQc~BetdxcEKSMSbsBbq9hrX4k7WuH2~0f3sah070Ka6yPjfaDWTH7LK7IoryYjXNChGP9j8e3ZBbFXYsH0PhRHXAvPdNE6l3ksbiPZwm56EeyIpHT3t7W95~ZGZr5DdnDnC9RJLrQJz9pRuSK3IZ3eLnvaQ43-D~9LZOjWFr1uumcFXfLWrdA9h7JvLYFxMqXeoOsmSdLjU~5Sdmk3MTyfbaatPB9DH3aq7dcPkF569-2Fbt1ASgCgQGpGJh3Bzvmun8f2CDSDDEgQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":4656,"name":"Chromatography","url":"https://www.academia.edu/Documents/in/Chromatography"},{"id":7698,"name":"Fluorescence","url":"https://www.academia.edu/Documents/in/Fluorescence"},{"id":413191,"name":"Reproducibility","url":"https://www.academia.edu/Documents/in/Reproducibility"}],"urls":[{"id":45906056,"url":"https://www.rsc.org/binaries/LOC/2008/PDFs/Papers/492_0859.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046789"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046789/Making_Shock_Waves_in_Microfluidics_The_Physics_and_Applications_of_Isotachophoresis"><img alt="Research paper thumbnail of Making Shock Waves in Microfluidics: The Physics and Applications of Isotachophoresis" class="work-thumbnail" src="https://attachments.academia-assets.com/119984090/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046789/Making_Shock_Waves_in_Microfluidics_The_Physics_and_Applications_of_Isotachophoresis">Making Shock Waves in Microfluidics: The Physics and Applications of Isotachophoresis</a></div><div class="wp-workCard_item"><span>Bulletin of the American Physical Society</span><span>, Nov 20, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Microfluidics lies at the interfaces between engineering, chemistry, and biology, and aims to dev...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Microfluidics lies at the interfaces between engineering, chemistry, and biology, and aims to develop chemical laboratories on a chip. An important technique is on-chip capillary electrophoresis which has been applied to a wide range of chemical and biochemical assay applications over the last decade. Perhaps the best way of improving the sensitivity of on-chip electrophoresis is to integrate an online sample preconcentration method. At Stanford, we are developing methods to concentrate ions into small volumes using a method called isotachophoresis (ITP). In ITP, sample ions are injected between the high mobility co-ions of a leading electrolyte (LE) and the low mobility co-ions of a trailing electrolyte (TE). Upon application of an electric field, the disparate ion mobilities of the LE and TE cause sample species to segregate and focus into a series of narrow self-sharpening zones which migrate at equal velocity (hence "isotacho"). ITP-type processes have been studied and used for more than 60 years, and yet there remain significant challenges in the robust modeling of these transport processes and the creation of widely applicable assays. We use ITP to create sample ion concentration "shock waves" in microchannels. These concentration waves can be integrated with on-chip electrophoresis for high sensitivity assays, and novel modes of operation. The talk will summarize the basic physics of ITP, experimental studies of ITP, models of ITP, and the development of novel ITP-assays with unprecedented sensitivity and new functionality. For example, using leadingto-sample ion concentration ratios of 10 15 and local electric fields of ∼4 kV/cm, we can achieve order one micron wide ITP zones. We can achieve million fold preconcentration in 120 s and can detect 100 attomolar sample concentrations (to our knowledge the highest demonstrated sensitivity for an electrophoresis-related assay). We have also developed a method that uses ITP to separate, indirectly detect, and identify the electrophoretic mobilities of unlabeled (non-fluorescent) analytes using surrogate fluorescent molecules. Our goal is the development of novel on-chip ITP assays which expand the design space of microfluidic devices.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="34acac5962851a22fbc84532aa2c313d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984090,"asset_id":126046789,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984090/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046789"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046789"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046789; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046789]").text(description); $(".js-view-count[data-work-id=126046789]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046789; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046789']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046789, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "34acac5962851a22fbc84532aa2c313d" } } $('.js-work-strip[data-work-id=126046789]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046789,"title":"Making Shock Waves in Microfluidics: The Physics and Applications of Isotachophoresis","translated_title":"","metadata":{"publisher":"Cambridge University Press","grobid_abstract":"Microfluidics lies at the interfaces between engineering, chemistry, and biology, and aims to develop chemical laboratories on a chip. An important technique is on-chip capillary electrophoresis which has been applied to a wide range of chemical and biochemical assay applications over the last decade. Perhaps the best way of improving the sensitivity of on-chip electrophoresis is to integrate an online sample preconcentration method. At Stanford, we are developing methods to concentrate ions into small volumes using a method called isotachophoresis (ITP). In ITP, sample ions are injected between the high mobility co-ions of a leading electrolyte (LE) and the low mobility co-ions of a trailing electrolyte (TE). Upon application of an electric field, the disparate ion mobilities of the LE and TE cause sample species to segregate and focus into a series of narrow self-sharpening zones which migrate at equal velocity (hence \"isotacho\"). ITP-type processes have been studied and used for more than 60 years, and yet there remain significant challenges in the robust modeling of these transport processes and the creation of widely applicable assays. We use ITP to create sample ion concentration \"shock waves\" in microchannels. These concentration waves can be integrated with on-chip electrophoresis for high sensitivity assays, and novel modes of operation. The talk will summarize the basic physics of ITP, experimental studies of ITP, models of ITP, and the development of novel ITP-assays with unprecedented sensitivity and new functionality. For example, using leadingto-sample ion concentration ratios of 10 15 and local electric fields of ∼4 kV/cm, we can achieve order one micron wide ITP zones. We can achieve million fold preconcentration in 120 s and can detect 100 attomolar sample concentrations (to our knowledge the highest demonstrated sensitivity for an electrophoresis-related assay). We have also developed a method that uses ITP to separate, indirectly detect, and identify the electrophoretic mobilities of unlabeled (non-fluorescent) analytes using surrogate fluorescent molecules. Our goal is the development of novel on-chip ITP assays which expand the design space of microfluidic devices.","publication_date":{"day":20,"month":11,"year":2007,"errors":{}},"publication_name":"Bulletin of the American Physical Society","grobid_abstract_attachment_id":119984090},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046789/Making_Shock_Waves_in_Microfluidics_The_Physics_and_Applications_of_Isotachophoresis","translated_internal_url":"","created_at":"2024-12-03T11:14:20.084-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984090,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984090/thumbnails/1.jpg","file_name":"MWS_DFD07-2007-001562.pdf","download_url":"https://www.academia.edu/attachments/119984090/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Making_Shock_Waves_in_Microfluidics_The.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984090/MWS_DFD07-2007-001562-libre.pdf?1733255836=\u0026response-content-disposition=attachment%3B+filename%3DMaking_Shock_Waves_in_Microfluidics_The.pdf\u0026Expires=1733909822\u0026Signature=VRUHIFSXV1jXG8Mt2i0zRJcfcLPihqTFc5tVtZmSZlM5vC5XavGjk0SdadQKu~5HbbfCvk6fYyn1ayyKqjvIureFnbQVWxbnj1cyxx7JE0vHV9bikGHBhLcRoutWeBbmh-buV-hoOKO9NA-mDGULJBAjQYaslyxcoq3rOuO39YufcN6WaqqUQqZFcBycveCGE3sZZq~8zO4I5c~1v4ffvoZjzVhNOOIagl1ZEXnyKMmyiY2OnWabXyN4WRo6aPd9BxKNMvBQDKJYOZihLX1muYvOWiLik35CUJuwVIAt1Q1x8~dOQmr4YEzz2kBuXuYhbtlUvKnRD1tWfscFBtviQg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Making_Shock_Waves_in_Microfluidics_The_Physics_and_Applications_of_Isotachophoresis","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":"Microfluidics lies at the interfaces between engineering, chemistry, and biology, and aims to develop chemical laboratories on a chip. An important technique is on-chip capillary electrophoresis which has been applied to a wide range of chemical and biochemical assay applications over the last decade. Perhaps the best way of improving the sensitivity of on-chip electrophoresis is to integrate an online sample preconcentration method. At Stanford, we are developing methods to concentrate ions into small volumes using a method called isotachophoresis (ITP). In ITP, sample ions are injected between the high mobility co-ions of a leading electrolyte (LE) and the low mobility co-ions of a trailing electrolyte (TE). Upon application of an electric field, the disparate ion mobilities of the LE and TE cause sample species to segregate and focus into a series of narrow self-sharpening zones which migrate at equal velocity (hence \"isotacho\"). ITP-type processes have been studied and used for more than 60 years, and yet there remain significant challenges in the robust modeling of these transport processes and the creation of widely applicable assays. We use ITP to create sample ion concentration \"shock waves\" in microchannels. These concentration waves can be integrated with on-chip electrophoresis for high sensitivity assays, and novel modes of operation. The talk will summarize the basic physics of ITP, experimental studies of ITP, models of ITP, and the development of novel ITP-assays with unprecedented sensitivity and new functionality. For example, using leadingto-sample ion concentration ratios of 10 15 and local electric fields of ∼4 kV/cm, we can achieve order one micron wide ITP zones. We can achieve million fold preconcentration in 120 s and can detect 100 attomolar sample concentrations (to our knowledge the highest demonstrated sensitivity for an electrophoresis-related assay). We have also developed a method that uses ITP to separate, indirectly detect, and identify the electrophoretic mobilities of unlabeled (non-fluorescent) analytes using surrogate fluorescent molecules. Our goal is the development of novel on-chip ITP assays which expand the design space of microfluidic devices.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984090,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984090/thumbnails/1.jpg","file_name":"MWS_DFD07-2007-001562.pdf","download_url":"https://www.academia.edu/attachments/119984090/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Making_Shock_Waves_in_Microfluidics_The.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984090/MWS_DFD07-2007-001562-libre.pdf?1733255836=\u0026response-content-disposition=attachment%3B+filename%3DMaking_Shock_Waves_in_Microfluidics_The.pdf\u0026Expires=1733909822\u0026Signature=VRUHIFSXV1jXG8Mt2i0zRJcfcLPihqTFc5tVtZmSZlM5vC5XavGjk0SdadQKu~5HbbfCvk6fYyn1ayyKqjvIureFnbQVWxbnj1cyxx7JE0vHV9bikGHBhLcRoutWeBbmh-buV-hoOKO9NA-mDGULJBAjQYaslyxcoq3rOuO39YufcN6WaqqUQqZFcBycveCGE3sZZq~8zO4I5c~1v4ffvoZjzVhNOOIagl1ZEXnyKMmyiY2OnWabXyN4WRo6aPd9BxKNMvBQDKJYOZihLX1muYvOWiLik35CUJuwVIAt1Q1x8~dOQmr4YEzz2kBuXuYhbtlUvKnRD1tWfscFBtviQg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984092,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"MWS_DFD07-2007-001562.pdf","download_url":"https://www.academia.edu/attachments/119984092/download_file","bulk_download_file_name":"Making_Shock_Waves_in_Microfluidics_The.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984092/MWS_DFD07-2007-001562-libre.pdf?1733255836=\u0026response-content-disposition=attachment%3B+filename%3DMaking_Shock_Waves_in_Microfluidics_The.pdf\u0026Expires=1733909822\u0026Signature=X3LGINeKPV0KkaREI8iFih37y~B35whvdQ~yWaEX7laqAnFi-OLnlc1Rp~3KUSUHSEvuxeUo1qexm1Hcudxf5IOhSZyfkBYvGWRhS1nz-gBObBxRqC3JO40zxDEqPbYzD1QXaLT02JaXNX~CShgD1iult1H2u~vTrMHqmbmM8SjYMr5Hr8n3cwcDUa6ksVyrcN5WKoUuPoo1moFv9F39xWDEB~THcn3pFAaLn53QDTWC0OIH5aoYRIPNQ7TvBZsiSTR81AoOZw~x5VbInxOjVliAq7axD8pzFZzkpXew3Uy5BlLBGXIlebYwHf5JeP-jZ9yLdmwMbuNcL~K-a0Qk~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":15375,"name":"Capillary electrophoresis","url":"https://www.academia.edu/Documents/in/Capillary_electrophoresis"},{"id":205770,"name":"Isotachophoresis","url":"https://www.academia.edu/Documents/in/Isotachophoresis"},{"id":322954,"name":"Chip","url":"https://www.academia.edu/Documents/in/Chip"},{"id":837148,"name":"Shock Wave","url":"https://www.academia.edu/Documents/in/Shock_Wave"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"},{"id":1959878,"name":"Electrophoretic Mobility","url":"https://www.academia.edu/Documents/in/Electrophoretic_Mobility"}],"urls":[{"id":45906055,"url":"http://absimage.aps.org/image/DFD07/MWS_DFD07-2007-001562.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046788"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046788/Dispersion_in_isotachophoresis"><img alt="Research paper thumbnail of Dispersion in isotachophoresis" class="work-thumbnail" src="https://attachments.academia-assets.com/119984089/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046788/Dispersion_in_isotachophoresis">Dispersion in isotachophoresis</a></div><div class="wp-workCard_item"><span>Bulletin of the American Physical Society</span><span>, Nov 24, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Submitted for the DFD08 Meeting of The American Physical Society Dispersion in isotachophoresis M...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Submitted for the DFD08 Meeting of The American Physical Society Dispersion in isotachophoresis MORAN BERCOVICI, JUAN G. SAN-TIAGO, Stanford University-Isotachophoresis (ITP) is a widely used separation and preconcentration technique, which has been utilized in numerous applications including drug discovery, toxin detection, and food analysis. In ITP, analytes are segregated and focused between relatively high mobility leading ions and relatively low mobility trailing ions. These electromigration dynamics couple with advective processes associated with non-uniform electroosmotic flow (EOF). The latter generates internal pressure gradients leading to strong dispersive fluxes. This dispersion is nearly ubiquitous and currently limits the sensitivity and resolution of typical ITP assays. Despite this, there has been little work studying these coupled mechanisms. We performed an analytical and experimental study of dispersion dynamics in ITP. To achieve controlled pressure gradients, we suppressed EOF and applied an external pressure head to balance electromigration. Under these conditions, we show that radial electromigration (as opposed to radial diffusion as in Taylor dispersion) balances axial electromigration. To validate the analysis, we monitored the shape of a focusing fluorescent zone as a function of applied electric field. These experiments show that ITP dispersion may result in analyte widths an order of magnitude larger than predicted by the typical non-dispersive theory. Our goal is to develop a simplified dispersion model to capture this phenomenon, and to implement it in a numerical solver for general ITP problems.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a06d9f2c15c32a39c5e7097bdf35037e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984089,"asset_id":126046788,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984089/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046788"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046788"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046788; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046788]").text(description); $(".js-view-count[data-work-id=126046788]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046788; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046788']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046788, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a06d9f2c15c32a39c5e7097bdf35037e" } } $('.js-work-strip[data-work-id=126046788]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046788,"title":"Dispersion in isotachophoresis","translated_title":"","metadata":{"publisher":"Cambridge University Press","grobid_abstract":"Submitted for the DFD08 Meeting of The American Physical Society Dispersion in isotachophoresis MORAN BERCOVICI, JUAN G. SAN-TIAGO, Stanford University-Isotachophoresis (ITP) is a widely used separation and preconcentration technique, which has been utilized in numerous applications including drug discovery, toxin detection, and food analysis. In ITP, analytes are segregated and focused between relatively high mobility leading ions and relatively low mobility trailing ions. These electromigration dynamics couple with advective processes associated with non-uniform electroosmotic flow (EOF). The latter generates internal pressure gradients leading to strong dispersive fluxes. This dispersion is nearly ubiquitous and currently limits the sensitivity and resolution of typical ITP assays. Despite this, there has been little work studying these coupled mechanisms. We performed an analytical and experimental study of dispersion dynamics in ITP. To achieve controlled pressure gradients, we suppressed EOF and applied an external pressure head to balance electromigration. Under these conditions, we show that radial electromigration (as opposed to radial diffusion as in Taylor dispersion) balances axial electromigration. To validate the analysis, we monitored the shape of a focusing fluorescent zone as a function of applied electric field. These experiments show that ITP dispersion may result in analyte widths an order of magnitude larger than predicted by the typical non-dispersive theory. Our goal is to develop a simplified dispersion model to capture this phenomenon, and to implement it in a numerical solver for general ITP problems.","publication_date":{"day":24,"month":11,"year":2008,"errors":{}},"publication_name":"Bulletin of the American Physical Society","grobid_abstract_attachment_id":119984089},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046788/Dispersion_in_isotachophoresis","translated_internal_url":"","created_at":"2024-12-03T11:14:19.784-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984089,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984089/thumbnails/1.jpg","file_name":"MWS_DFD08-2008-001276.pdf","download_url":"https://www.academia.edu/attachments/119984089/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dispersion_in_isotachophoresis.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984089/MWS_DFD08-2008-001276-libre.pdf?1733255836=\u0026response-content-disposition=attachment%3B+filename%3DDispersion_in_isotachophoresis.pdf\u0026Expires=1734027722\u0026Signature=F-8bvEbaKCfuPtEMEKHOw03nll4Gsar5jwQBUDC-DVEvKFF8h~H-UJjM3knhiRzGRGOqq5x2bCbBLTrMxk1M0Maog4H6v6Y~GaqacV-eaqCtQRxMDJ3RHqNjbCHNsNw5A7CBoVLjvPCbKcPrpTiXH2K3uwrOtOmwjzLQ9fRrx~buT0n2rx7X-OVz6DGPDZ47qeH-mgpNyYS3fkeysdAqBRamcwCiC1TzB17VR4NOfHxXCK6zfZ~Q1MDPLBMmMhn1uQhl4s4SeUj4gsnQF7Ocn10Pps7Xc41hH112apDFPkulpHlQjSQKzsOqLTkvLciwIHtz6NqykXBj0aqCNiAyzQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Dispersion_in_isotachophoresis","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":"Submitted for the DFD08 Meeting of The American Physical Society Dispersion in isotachophoresis MORAN BERCOVICI, JUAN G. SAN-TIAGO, Stanford University-Isotachophoresis (ITP) is a widely used separation and preconcentration technique, which has been utilized in numerous applications including drug discovery, toxin detection, and food analysis. In ITP, analytes are segregated and focused between relatively high mobility leading ions and relatively low mobility trailing ions. These electromigration dynamics couple with advective processes associated with non-uniform electroosmotic flow (EOF). The latter generates internal pressure gradients leading to strong dispersive fluxes. This dispersion is nearly ubiquitous and currently limits the sensitivity and resolution of typical ITP assays. Despite this, there has been little work studying these coupled mechanisms. We performed an analytical and experimental study of dispersion dynamics in ITP. To achieve controlled pressure gradients, we suppressed EOF and applied an external pressure head to balance electromigration. Under these conditions, we show that radial electromigration (as opposed to radial diffusion as in Taylor dispersion) balances axial electromigration. To validate the analysis, we monitored the shape of a focusing fluorescent zone as a function of applied electric field. These experiments show that ITP dispersion may result in analyte widths an order of magnitude larger than predicted by the typical non-dispersive theory. Our goal is to develop a simplified dispersion model to capture this phenomenon, and to implement it in a numerical solver for general ITP problems.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984089,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984089/thumbnails/1.jpg","file_name":"MWS_DFD08-2008-001276.pdf","download_url":"https://www.academia.edu/attachments/119984089/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dispersion_in_isotachophoresis.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984089/MWS_DFD08-2008-001276-libre.pdf?1733255836=\u0026response-content-disposition=attachment%3B+filename%3DDispersion_in_isotachophoresis.pdf\u0026Expires=1734027722\u0026Signature=F-8bvEbaKCfuPtEMEKHOw03nll4Gsar5jwQBUDC-DVEvKFF8h~H-UJjM3knhiRzGRGOqq5x2bCbBLTrMxk1M0Maog4H6v6Y~GaqacV-eaqCtQRxMDJ3RHqNjbCHNsNw5A7CBoVLjvPCbKcPrpTiXH2K3uwrOtOmwjzLQ9fRrx~buT0n2rx7X-OVz6DGPDZ47qeH-mgpNyYS3fkeysdAqBRamcwCiC1TzB17VR4NOfHxXCK6zfZ~Q1MDPLBMmMhn1uQhl4s4SeUj4gsnQF7Ocn10Pps7Xc41hH112apDFPkulpHlQjSQKzsOqLTkvLciwIHtz6NqykXBj0aqCNiAyzQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984088,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984088/thumbnails/1.jpg","file_name":"MWS_DFD08-2008-001276.pdf","download_url":"https://www.academia.edu/attachments/119984088/download_file","bulk_download_file_name":"Dispersion_in_isotachophoresis.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984088/MWS_DFD08-2008-001276-libre.pdf?1733255836=\u0026response-content-disposition=attachment%3B+filename%3DDispersion_in_isotachophoresis.pdf\u0026Expires=1734027722\u0026Signature=CDKfgH8PWOq58bNjbSrYqkYOdpk3Svc7zorfLNNq8z9A-tAfQiAkOEgxzNIvB5C6LAmKcWI7FyDP4s3ZlNsWtHloNavS2Dn0R-jnj1v9H~oiK1NilNAet4HuDGmtANtJgUp14Bvywu~Q4hug4K3H-yXVj9izZcJeskZiKGSEPzusLxgFLUOy1kKRPboqn14du2asU8~TqVn6MOD0x5goPr~HjcnkxGHAmJXN581493~moETi2EdjkTOb4UsrceTjkKdPAmBKrH9DgEyQWeHms9zJhU4AzXe0j0V-30-uSxc8MPGTaKL9K8gn2XClLo-s1OaMzGIPAjUgrUkdwXuo1g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":205770,"name":"Isotachophoresis","url":"https://www.academia.edu/Documents/in/Isotachophoresis"}],"urls":[{"id":45906054,"url":"http://absimage.aps.org/image/DFD08/MWS_DFD08-2008-001276.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046787"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046787/Generalized_Electrokinetic_Transport_of_Ions_in_Nanochannels"><img alt="Research paper thumbnail of Generalized Electrokinetic Transport of Ions in Nanochannels" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046787/Generalized_Electrokinetic_Transport_of_Ions_in_Nanochannels">Generalized Electrokinetic Transport of Ions in Nanochannels</a></div><div class="wp-workCard_item"><span>Bulletin of the American Physical Society</span><span>, Nov 18, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Submitted for the DFD07 Meeting of The American Physical Society Generalized Electrokinetic Trans...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Submitted for the DFD07 Meeting of The American Physical Society Generalized Electrokinetic Transport of Ions in Nanochannels 1 FABIO BALDESSARI, JUAN G. SANTIAGO, Stanford University-We present a generalized model for calculating transport of dilute analytes in long, thin nanochannels with overlapped electric double layers, and in the presence of an axial electric field. Differently than published models, we adopt equilibrium between the ionic solutions in the wells and inside the nanochannel to self-consistently predict background electrolyte ion densities and the electric potential field. Furthermore, our model includes the (strong) dependence of ion mobility on local ionic strength of the electrolyte. We present predictions solving simple one-dimensional integrals. We validate our predictions by comparing simulations with measurements of effective mobility of two charged fluorescent analytes in fused silica nanochannels (Bodipy with valence-1, and Fluorescein with valence-2). We present results of separation performance, and we compare electrokinetically-driven field flow fractionation to other established separation methods of the same family</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ec438b4016d31e258e539da8587f9804" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984086,"asset_id":126046787,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984086/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046787"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046787"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046787; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046787]").text(description); $(".js-view-count[data-work-id=126046787]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046787; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046787']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046787, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ec438b4016d31e258e539da8587f9804" } } $('.js-work-strip[data-work-id=126046787]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046787,"title":"Generalized Electrokinetic Transport of Ions in Nanochannels","translated_title":"","metadata":{"publisher":"Cambridge University Press","grobid_abstract":"Submitted for the DFD07 Meeting of The American Physical Society Generalized Electrokinetic Transport of Ions in Nanochannels 1 FABIO BALDESSARI, JUAN G. SANTIAGO, Stanford University-We present a generalized model for calculating transport of dilute analytes in long, thin nanochannels with overlapped electric double layers, and in the presence of an axial electric field. Differently than published models, we adopt equilibrium between the ionic solutions in the wells and inside the nanochannel to self-consistently predict background electrolyte ion densities and the electric potential field. Furthermore, our model includes the (strong) dependence of ion mobility on local ionic strength of the electrolyte. We present predictions solving simple one-dimensional integrals. We validate our predictions by comparing simulations with measurements of effective mobility of two charged fluorescent analytes in fused silica nanochannels (Bodipy with valence-1, and Fluorescein with valence-2). We present results of separation performance, and we compare electrokinetically-driven field flow fractionation to other established separation methods of the same family","publication_date":{"day":18,"month":11,"year":2007,"errors":{}},"publication_name":"Bulletin of the American Physical Society","grobid_abstract_attachment_id":119984086},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046787/Generalized_Electrokinetic_Transport_of_Ions_in_Nanochannels","translated_internal_url":"","created_at":"2024-12-03T11:14:19.513-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984086,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"MWS_DFD07-2007-000417.pdf","download_url":"https://www.academia.edu/attachments/119984086/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Generalized_Electrokinetic_Transport_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984086/MWS_DFD07-2007-000417-libre.pdf?1733255836=\u0026response-content-disposition=attachment%3B+filename%3DGeneralized_Electrokinetic_Transport_of.pdf\u0026Expires=1734027722\u0026Signature=WfuU91d2718YdqPtodG7KGFTbePGU0JcYy3Zu72GsYMHJTk7FVC5eRu5Ht5n8KQmMxg12DYriOta67x5MjUatm1-rCaS3BOmsJAaORih7Qw~xvnvS4M6eQPzdwyB~j7KZWfINu2tjfxxmSSlJiv3DTEBj3d5j7fjoqY-8UnI~G3Y9u4w5TUhcb99XEvxuzByKHoBpJc2rOCcvvj3K4irMF3bABhqEruOEc5LVgsoulVrpZmCfX-JTj03OnaZfaCNGPbEqExirQGaam5otBzTq5~ayWXQBumKwDXxMcNeWv7x19pQaykZDB27a9jUAi1Iuk9vTmAIbGFXVu6zgBPAAg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Generalized_Electrokinetic_Transport_of_Ions_in_Nanochannels","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Submitted for the DFD07 Meeting of The American Physical Society Generalized Electrokinetic Transport of Ions in Nanochannels 1 FABIO BALDESSARI, JUAN G. SANTIAGO, Stanford University-We present a generalized model for calculating transport of dilute analytes in long, thin nanochannels with overlapped electric double layers, and in the presence of an axial electric field. Differently than published models, we adopt equilibrium between the ionic solutions in the wells and inside the nanochannel to self-consistently predict background electrolyte ion densities and the electric potential field. Furthermore, our model includes the (strong) dependence of ion mobility on local ionic strength of the electrolyte. We present predictions solving simple one-dimensional integrals. We validate our predictions by comparing simulations with measurements of effective mobility of two charged fluorescent analytes in fused silica nanochannels (Bodipy with valence-1, and Fluorescein with valence-2). We present results of separation performance, and we compare electrokinetically-driven field flow fractionation to other established separation methods of the same family","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984086,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"MWS_DFD07-2007-000417.pdf","download_url":"https://www.academia.edu/attachments/119984086/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Generalized_Electrokinetic_Transport_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984086/MWS_DFD07-2007-000417-libre.pdf?1733255836=\u0026response-content-disposition=attachment%3B+filename%3DGeneralized_Electrokinetic_Transport_of.pdf\u0026Expires=1734027722\u0026Signature=WfuU91d2718YdqPtodG7KGFTbePGU0JcYy3Zu72GsYMHJTk7FVC5eRu5Ht5n8KQmMxg12DYriOta67x5MjUatm1-rCaS3BOmsJAaORih7Qw~xvnvS4M6eQPzdwyB~j7KZWfINu2tjfxxmSSlJiv3DTEBj3d5j7fjoqY-8UnI~G3Y9u4w5TUhcb99XEvxuzByKHoBpJc2rOCcvvj3K4irMF3bABhqEruOEc5LVgsoulVrpZmCfX-JTj03OnaZfaCNGPbEqExirQGaam5otBzTq5~ayWXQBumKwDXxMcNeWv7x19pQaykZDB27a9jUAi1Iuk9vTmAIbGFXVu6zgBPAAg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984087,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"MWS_DFD07-2007-000417.pdf","download_url":"https://www.academia.edu/attachments/119984087/download_file","bulk_download_file_name":"Generalized_Electrokinetic_Transport_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984087/MWS_DFD07-2007-000417-libre.pdf?1733255836=\u0026response-content-disposition=attachment%3B+filename%3DGeneralized_Electrokinetic_Transport_of.pdf\u0026Expires=1734027722\u0026Signature=P1eeGW2TQn2H~~y-SgA3okitBDg1ShTla9bXPvXd7p9MLxnSONn2Pg0jd8YRCgBkjWBERxOsnDs~1YuAf~4IwFjQyuhWOngWiokiRwMFwK-WGk0XXyDf88O1WS19J0OQzK3fJIl3qK6i2A2VvZO95ve6XBzTuRm6CnkrFsQPZ1W9CdvXjoWB9MN~XPg-jDQWNPExu0YSRzt0EI-5YTlRUfOu8aB3yQdWJUjvFaQjSsyCkkTuG8ESulmNGAYqIeDtYTNKx6mOU6BTTG8ZpczjcoDSkqyxl0X1dftUb-6zdebvCxJqpjbc7TJuu5OzJmN8eGBjfFBqRhVxbQSDUKt-0Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":16059,"name":"Flow Field Flow Fractionation","url":"https://www.academia.edu/Documents/in/Flow_Field_Flow_Fractionation"},{"id":205768,"name":"Electrokinetic Phenomena","url":"https://www.academia.edu/Documents/in/Electrokinetic_Phenomena"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":500014,"name":"Measures of Effectiveness","url":"https://www.academia.edu/Documents/in/Measures_of_Effectiveness"},{"id":651435,"name":"Potential Field","url":"https://www.academia.edu/Documents/in/Potential_Field"},{"id":970774,"name":"Ionic Strength","url":"https://www.academia.edu/Documents/in/Ionic_Strength"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"},{"id":1373617,"name":"Electric Double Layer","url":"https://www.academia.edu/Documents/in/Electric_Double_Layer"},{"id":2413807,"name":"Generic model","url":"https://www.academia.edu/Documents/in/Generic_model"},{"id":3536203,"name":"fused silica","url":"https://www.academia.edu/Documents/in/fused_silica"}],"urls":[{"id":45906053,"url":"http://absimage.aps.org/image/DFD07/MWS_DFD07-2007-000417.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046786"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046786/A_depth_averaged_electrokinetic_flow_model_for_shallow_microchannels"><img alt="Research paper thumbnail of A depth-averaged electrokinetic flow model for shallow microchannels" class="work-thumbnail" src="https://attachments.academia-assets.com/119984084/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046786/A_depth_averaged_electrokinetic_flow_model_for_shallow_microchannels">A depth-averaged electrokinetic flow model for shallow microchannels</a></div><div class="wp-workCard_item"><span>Journal of Fluid Mechanics</span><span>, Jul 11, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Electrokinetic flows with heterogeneous conductivity configuration occur widely in microfluidic a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Electrokinetic flows with heterogeneous conductivity configuration occur widely in microfluidic applications such as sample stacking and multidimensional assays. Electromechanical coupling in these flows may lead to complex flow phenomena, such as sample dispersion due to electro-osmotic velocity mismatch, and electrokinetic instability (EKI). In this work we develop a generalized electrokinetic model suitable for the study of microchannel flows with conductivity gradients and shallow-channel geometry. An asymptotic analysis is performed with the channel depth-to-width ratio as a smallness parameter, and the three-dimensional equations are reduced to a set of depth-averaged equations governing in-plane flow dynamics. The momentum equation uses a Darcy-Brinkman-Forchheimer-type formulation, and the convectivediffusive transport of the conductivity field in the depth direction manifests itself as a dispersion effect on the in-plane conductivity field. The validity of the model is assessed by comparing the numerical results with full three-dimensional direct numerical simulations, and experimental data. The depth-averaged equations provide the accuracy of three-dimensional modelling with a convenient two-dimensional equation set applicable to a wide class of microfluidic devices.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="be8a684542b00fc0a849e73ecc0f9e0d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984084,"asset_id":126046786,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984084/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046786"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046786"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046786; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046786]").text(description); $(".js-view-count[data-work-id=126046786]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046786; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046786']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046786, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "be8a684542b00fc0a849e73ecc0f9e0d" } } $('.js-work-strip[data-work-id=126046786]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046786,"title":"A depth-averaged electrokinetic flow model for shallow microchannels","translated_title":"","metadata":{"publisher":"Cambridge University Press","grobid_abstract":"Electrokinetic flows with heterogeneous conductivity configuration occur widely in microfluidic applications such as sample stacking and multidimensional assays. Electromechanical coupling in these flows may lead to complex flow phenomena, such as sample dispersion due to electro-osmotic velocity mismatch, and electrokinetic instability (EKI). In this work we develop a generalized electrokinetic model suitable for the study of microchannel flows with conductivity gradients and shallow-channel geometry. An asymptotic analysis is performed with the channel depth-to-width ratio as a smallness parameter, and the three-dimensional equations are reduced to a set of depth-averaged equations governing in-plane flow dynamics. The momentum equation uses a Darcy-Brinkman-Forchheimer-type formulation, and the convectivediffusive transport of the conductivity field in the depth direction manifests itself as a dispersion effect on the in-plane conductivity field. The validity of the model is assessed by comparing the numerical results with full three-dimensional direct numerical simulations, and experimental data. The depth-averaged equations provide the accuracy of three-dimensional modelling with a convenient two-dimensional equation set applicable to a wide class of microfluidic devices.","publication_date":{"day":11,"month":7,"year":2008,"errors":{}},"publication_name":"Journal of Fluid Mechanics","grobid_abstract_attachment_id":119984084},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046786/A_depth_averaged_electrokinetic_flow_model_for_shallow_microchannels","translated_internal_url":"","created_at":"2024-12-03T11:14:19.237-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984084,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984084/thumbnails/1.jpg","file_name":"lin_20et_20al_20depth_20averaged_20ek_20flow_20in_20shallow_20microchannels_20JFM_202008.pdf","download_url":"https://www.academia.edu/attachments/119984084/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_depth_averaged_electrokinetic_flow_mod.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984084/lin_20et_20al_20depth_20averaged_20ek_20flow_20in_20shallow_20microchannels_20JFM_202008-libre.pdf?1733255847=\u0026response-content-disposition=attachment%3B+filename%3DA_depth_averaged_electrokinetic_flow_mod.pdf\u0026Expires=1733909822\u0026Signature=hORzHIcvUNcEz7djfZ8LnmeUQEkd98fTTr9l3aekcPiNVni0heKmqTpCQXcsQM2dswjehbI6Mr3fpAzNsOGeRJUtdtlb49zvmA4EDZ9oXaGeAMg~NwVfFD3vIYivbVCv~9gS9p3eG~m-8gmptNYwplsxD3puc-yC1ddDrzcetf1myhpF~dzI4YPT5zttwoH~smfSM5uE0HAa~PIu3x5Jag8UJjFZymVFM8e7YJby19BLIgZPc04AJkltAzifkLHy04Cwyafg~7jqBZsRFhSblYWEQ~pcKUIhZ~YVLzVU7ZWDlkqk1z~GZhVkKs5oE6xSgZLjDLxcmKgs6vYXetQfKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_depth_averaged_electrokinetic_flow_model_for_shallow_microchannels","translated_slug":"","page_count":28,"language":"en","content_type":"Work","summary":"Electrokinetic flows with heterogeneous conductivity configuration occur widely in microfluidic applications such as sample stacking and multidimensional assays. Electromechanical coupling in these flows may lead to complex flow phenomena, such as sample dispersion due to electro-osmotic velocity mismatch, and electrokinetic instability (EKI). In this work we develop a generalized electrokinetic model suitable for the study of microchannel flows with conductivity gradients and shallow-channel geometry. An asymptotic analysis is performed with the channel depth-to-width ratio as a smallness parameter, and the three-dimensional equations are reduced to a set of depth-averaged equations governing in-plane flow dynamics. The momentum equation uses a Darcy-Brinkman-Forchheimer-type formulation, and the convectivediffusive transport of the conductivity field in the depth direction manifests itself as a dispersion effect on the in-plane conductivity field. The validity of the model is assessed by comparing the numerical results with full three-dimensional direct numerical simulations, and experimental data. The depth-averaged equations provide the accuracy of three-dimensional modelling with a convenient two-dimensional equation set applicable to a wide class of microfluidic devices.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984084,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984084/thumbnails/1.jpg","file_name":"lin_20et_20al_20depth_20averaged_20ek_20flow_20in_20shallow_20microchannels_20JFM_202008.pdf","download_url":"https://www.academia.edu/attachments/119984084/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_depth_averaged_electrokinetic_flow_mod.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984084/lin_20et_20al_20depth_20averaged_20ek_20flow_20in_20shallow_20microchannels_20JFM_202008-libre.pdf?1733255847=\u0026response-content-disposition=attachment%3B+filename%3DA_depth_averaged_electrokinetic_flow_mod.pdf\u0026Expires=1733909823\u0026Signature=JF6DPSVgT2n2h8EaWK96~MbsF65db34~cm-Hnz8qNdvfllR-cuGmAiJkXA2Dy9MvL5Q6vdOQI3aua~WouGO3P4GC5bCVn3bbK8KyznW0qr20A6WKhuTkRapvHELQV4F9Tn9vGtqPM8mz~XVleA0nfp~K3V3dMR84cinTHfkqpKwGJ2MU5oZgPZ-VE9ZL~B6gt7F2d1SzE6BfFVHXle1HoepQLReoVeNfDuOY1ttQwcod-HMusCcD3LdLcARc6U~mH-XEffriAOTc2SCSNMrDKF3CzgP0-ckjymr-FrLly06hxhLDIgV0MRUM6XyDHwS7dCd2pl5oBDkEkiS7xh7iLQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984085,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984085/thumbnails/1.jpg","file_name":"lin_20et_20al_20depth_20averaged_20ek_20flow_20in_20shallow_20microchannels_20JFM_202008.pdf","download_url":"https://www.academia.edu/attachments/119984085/download_file","bulk_download_file_name":"A_depth_averaged_electrokinetic_flow_mod.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984085/lin_20et_20al_20depth_20averaged_20ek_20flow_20in_20shallow_20microchannels_20JFM_202008-libre.pdf?1733255858=\u0026response-content-disposition=attachment%3B+filename%3DA_depth_averaged_electrokinetic_flow_mod.pdf\u0026Expires=1733909823\u0026Signature=Qqps2V41VHGBGIN0xqP~SKisU-qu~i5MaEqAJuy90WcUTqz6aaIksTRBctPuUtdqNIkWDzf3b3JGeEkLwzsZ4mqZsVZfSctQh2Z19WPZumkJ0VG7PUCxpDQGr-yz5Ne5Tw7PnBLTvn9GWmHatdDsce1GG3siU-pi07tqQFcLB8MRUpixyWKW3YjI3ra5eVYXoQgXiDDv1vKO4rVTIVhARsYt5lm~JAat1AeMx5KX2tGs0PcVoEC0vzgigr2mdRn-dUBKsjuS~tFHa0Pq5SHI8KJO~st37AzsIAdVFyA7kSisEBo7ckLx2Mxv1vzNzejYzSTA68IQP0~LAtrB5XrZ0w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":2435,"name":"Fluid Mechanics","url":"https://www.academia.edu/Documents/in/Fluid_Mechanics"},{"id":10719,"name":"Direct Numerical Simulation","url":"https://www.academia.edu/Documents/in/Direct_Numerical_Simulation"},{"id":16496,"name":"Fluid Dynamics","url":"https://www.academia.edu/Documents/in/Fluid_Dynamics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":205768,"name":"Electrokinetic Phenomena","url":"https://www.academia.edu/Documents/in/Electrokinetic_Phenomena"},{"id":277944,"name":"asymptotic Analysis","url":"https://www.academia.edu/Documents/in/asymptotic_Analysis"},{"id":283531,"name":"Microchannel","url":"https://www.academia.edu/Documents/in/Microchannel"},{"id":504035,"name":"Three Dimensional","url":"https://www.academia.edu/Documents/in/Three_Dimensional"},{"id":1120502,"name":"Experimental Data","url":"https://www.academia.edu/Documents/in/Experimental_Data"}],"urls":[{"id":45906052,"url":"http://www.stanford.edu/group/microfluidics/Publications/ElectrokineticFlows/lin%20et%20al%20depth%20averaged%20ek%20flow%20in%20shallow%20microchannels%20JFM%202008.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046785"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046785/Taylor_dispersion_in_arbitrarily_shaped_axisymmetric_channels"><img alt="Research paper thumbnail of Taylor dispersion in arbitrarily shaped axisymmetric channels" class="work-thumbnail" src="https://attachments.academia-assets.com/119984103/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046785/Taylor_dispersion_in_arbitrarily_shaped_axisymmetric_channels">Taylor dispersion in arbitrarily shaped axisymmetric channels</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Nov 16, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Advective dispersion of solutes in long thin axisymmetric channels is important to the analysis a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Advective dispersion of solutes in long thin axisymmetric channels is important to the analysis and design of a wide range of devices, including chemical separation systems and microfluidic chips. Despite extensive analysis of Taylor dispersion in various scenarios, most studies focused on long-term dispersion behavior and cannot capture the transient evolution of solute zone across the spatial variations in the channel. In the current study, we analyze the Taylor-Aris dispersion for arbitrarily shaped axisymmetric channels. We derive an expression for solute dynamics in terms of two coupled ordinary differential equations (ODEs). These two ODEs allow prediction of the time evolution of the mean location and axial (standard deviation) width of the solute zone as a function of the channel geometry. We compare and benchmark our predictions with Brownian dynamics simulations for a variety of cases including linearly expanding/converging channels and periodic channels. We also present an analytical description of the physical regimes of transient positive versus negative axial growth of solute width. Finally, to further demonstrate the utility of the analysis, we demonstrate a method to engineer channel geometries to achieve desired solute width distributions over space and time. We apply the latter analysis to generate a geometry that results in a constant axial width and a second geometry that results in a sinusoidal axial variance in space.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d4addd375b0bc581e14fe09d2f92b265" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984103,"asset_id":126046785,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984103/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046785"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046785"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046785; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046785]").text(description); $(".js-view-count[data-work-id=126046785]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046785; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046785']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046785, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d4addd375b0bc581e14fe09d2f92b265" } } $('.js-work-strip[data-work-id=126046785]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046785,"title":"Taylor dispersion in arbitrarily shaped axisymmetric channels","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"Advective dispersion of solutes in long thin axisymmetric channels is important to the analysis and design of a wide range of devices, including chemical separation systems and microfluidic chips. Despite extensive analysis of Taylor dispersion in various scenarios, most studies focused on long-term dispersion behavior and cannot capture the transient evolution of solute zone across the spatial variations in the channel. In the current study, we analyze the Taylor-Aris dispersion for arbitrarily shaped axisymmetric channels. We derive an expression for solute dynamics in terms of two coupled ordinary differential equations (ODEs). These two ODEs allow prediction of the time evolution of the mean location and axial (standard deviation) width of the solute zone as a function of the channel geometry. We compare and benchmark our predictions with Brownian dynamics simulations for a variety of cases including linearly expanding/converging channels and periodic channels. We also present an analytical description of the physical regimes of transient positive versus negative axial growth of solute width. Finally, to further demonstrate the utility of the analysis, we demonstrate a method to engineer channel geometries to achieve desired solute width distributions over space and time. We apply the latter analysis to generate a geometry that results in a constant axial width and a second geometry that results in a sinusoidal axial variance in space.","publication_date":{"day":16,"month":11,"year":2022,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":119984103},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046785/Taylor_dispersion_in_arbitrarily_shaped_axisymmetric_channels","translated_internal_url":"","created_at":"2024-12-03T11:14:18.916-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984103,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984103/thumbnails/1.jpg","file_name":"2211.09255.pdf","download_url":"https://www.academia.edu/attachments/119984103/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Taylor_dispersion_in_arbitrarily_shaped.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984103/2211.09255-libre.pdf?1733256547=\u0026response-content-disposition=attachment%3B+filename%3DTaylor_dispersion_in_arbitrarily_shaped.pdf\u0026Expires=1734027722\u0026Signature=aMSke0JS4f~-1dQ-6rcd53ujkAwt1Xwto1tjUhy3YOzxRCgwdkU10Py91Yitkg7KSwtGV2cTRJlv8TYCFI87GrNhp8r~HlcBztDXksEsTYb~psAlnqbsvJFd234MR9lHBOKoQfSAHWGvkBQ~Owplxykicx9A2EaoSUvnuBK317YDOjYCUwS7rVrgIPW1gewxr9VnR4DmNRjN-ajhfCIFVR~TZ0H59YiIKPpbXnyDQtI~rfJplR0Y3RHbbfVn61wKZp4P8C18-XTddhWxrgwkhp~kwfelOhZ732Tjn7zhxEP3fJ1IfrdK8S5X~mYj0ODt-~ddvyU4jlt~tGYBNDAmWg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Taylor_dispersion_in_arbitrarily_shaped_axisymmetric_channels","translated_slug":"","page_count":32,"language":"en","content_type":"Work","summary":"Advective dispersion of solutes in long thin axisymmetric channels is important to the analysis and design of a wide range of devices, including chemical separation systems and microfluidic chips. Despite extensive analysis of Taylor dispersion in various scenarios, most studies focused on long-term dispersion behavior and cannot capture the transient evolution of solute zone across the spatial variations in the channel. In the current study, we analyze the Taylor-Aris dispersion for arbitrarily shaped axisymmetric channels. We derive an expression for solute dynamics in terms of two coupled ordinary differential equations (ODEs). These two ODEs allow prediction of the time evolution of the mean location and axial (standard deviation) width of the solute zone as a function of the channel geometry. We compare and benchmark our predictions with Brownian dynamics simulations for a variety of cases including linearly expanding/converging channels and periodic channels. We also present an analytical description of the physical regimes of transient positive versus negative axial growth of solute width. Finally, to further demonstrate the utility of the analysis, we demonstrate a method to engineer channel geometries to achieve desired solute width distributions over space and time. We apply the latter analysis to generate a geometry that results in a constant axial width and a second geometry that results in a sinusoidal axial variance in space.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984103,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984103/thumbnails/1.jpg","file_name":"2211.09255.pdf","download_url":"https://www.academia.edu/attachments/119984103/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Taylor_dispersion_in_arbitrarily_shaped.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984103/2211.09255-libre.pdf?1733256547=\u0026response-content-disposition=attachment%3B+filename%3DTaylor_dispersion_in_arbitrarily_shaped.pdf\u0026Expires=1734027722\u0026Signature=aMSke0JS4f~-1dQ-6rcd53ujkAwt1Xwto1tjUhy3YOzxRCgwdkU10Py91Yitkg7KSwtGV2cTRJlv8TYCFI87GrNhp8r~HlcBztDXksEsTYb~psAlnqbsvJFd234MR9lHBOKoQfSAHWGvkBQ~Owplxykicx9A2EaoSUvnuBK317YDOjYCUwS7rVrgIPW1gewxr9VnR4DmNRjN-ajhfCIFVR~TZ0H59YiIKPpbXnyDQtI~rfJplR0Y3RHbbfVn61wKZp4P8C18-XTddhWxrgwkhp~kwfelOhZ732Tjn7zhxEP3fJ1IfrdK8S5X~mYj0ODt-~ddvyU4jlt~tGYBNDAmWg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984107,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984107/thumbnails/1.jpg","file_name":"2211.09255.pdf","download_url":"https://www.academia.edu/attachments/119984107/download_file","bulk_download_file_name":"Taylor_dispersion_in_arbitrarily_shaped.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984107/2211.09255-libre.pdf?1733256915=\u0026response-content-disposition=attachment%3B+filename%3DTaylor_dispersion_in_arbitrarily_shaped.pdf\u0026Expires=1734027722\u0026Signature=SicPxkOafshi4nSlfR7wBm-fMUm2CakGwKsS9uktnFkVnMtZcpNt6voBb--~mHXK-BBbljAgixWa33qBQt0QyMkaqaKPZ4Oev2REUcPH1SOs3WKkSLqgnGf4Jn-p4hnhHiRy0eyW0sCaXxoOCzPV0kMq8n~7vbz0H0HpiTttaxcu2PTuaz8tt~mER~rtLyZNfw8svWr2j6psvlpdWsXwO9dh28xiMuLgl4purFf~tzsnfiBTDfKS~Wu1i59VK1hY3Xkv0LIVLHOaqJxtasOr2SWDrLpRQpCRmmxtguIVhWFXoIFa6N9NRYE-1lkzsjzpG1jZPWBVzwxJ1BREsdYHfw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":394451,"name":"Taylor Series","url":"https://www.academia.edu/Documents/in/Taylor_Series"},{"id":673616,"name":"Rotational Symmetry","url":"https://www.academia.edu/Documents/in/Rotational_Symmetry"},{"id":1025435,"name":"Taylor Dispersion","url":"https://www.academia.edu/Documents/in/Taylor_Dispersion"},{"id":1770555,"name":"Ordinary Differential Equation","url":"https://www.academia.edu/Documents/in/Ordinary_Differential_Equation"}],"urls":[{"id":45906051,"url":"http://arxiv.org/pdf/2211.09255"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046784"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046784/Electrokinetic_Instabilities_and_Sample_Stacking"><img alt="Research paper thumbnail of Electrokinetic Instabilities and Sample Stacking" class="work-thumbnail" src="https://attachments.academia-assets.com/119984083/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046784/Electrokinetic_Instabilities_and_Sample_Stacking">Electrokinetic Instabilities and Sample Stacking</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Electrokinetic instabilities occur in electrokinetic microchannel flows with heterogeneous electr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Electrokinetic instabilities occur in electrokinetic microchannel flows with heterogeneous electrolytes. These instabilities can be leveraged in providing rapid mixing, but are often unwanted in microfluidic applications which use heterogeneous electrolytes to achieve high resolution and new functionality. One important application of heterogeneous electrolytes is field-amplified sample stacking methods which use conductivity gradients to achieve sample preconcentration prior to electrophoretic separation. In this work, we analyze the flow physics of electrokinetic flows with conductivity gradients using theoretical analyses, numerical computations, and experimental observations. Various models including twodimensional and depth-averaged formulations have been developed, and modeling results compare well with experimental observations. Based on this understanding, we have developed novel sample stacking methods with sample preconcentrations exceeding 1,000 fold. The work also provides guidelines for the design and optimization of on-chip chemical and bio-analytical assays.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fea35da1620e2b85c6a0066f18975abf" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984083,"asset_id":126046784,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984083/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046784"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046784"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046784; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046784]").text(description); $(".js-view-count[data-work-id=126046784]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046784; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046784']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046784, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fea35da1620e2b85c6a0066f18975abf" } } $('.js-work-strip[data-work-id=126046784]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046784,"title":"Electrokinetic Instabilities and Sample Stacking","translated_title":"","metadata":{"grobid_abstract":"Electrokinetic instabilities occur in electrokinetic microchannel flows with heterogeneous electrolytes. These instabilities can be leveraged in providing rapid mixing, but are often unwanted in microfluidic applications which use heterogeneous electrolytes to achieve high resolution and new functionality. One important application of heterogeneous electrolytes is field-amplified sample stacking methods which use conductivity gradients to achieve sample preconcentration prior to electrophoretic separation. In this work, we analyze the flow physics of electrokinetic flows with conductivity gradients using theoretical analyses, numerical computations, and experimental observations. Various models including twodimensional and depth-averaged formulations have been developed, and modeling results compare well with experimental observations. Based on this understanding, we have developed novel sample stacking methods with sample preconcentrations exceeding 1,000 fold. The work also provides guidelines for the design and optimization of on-chip chemical and bio-analytical assays.","publication_date":{"day":1,"month":12,"year":2005,"errors":{}},"grobid_abstract_attachment_id":119984083},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046784/Electrokinetic_Instabilities_and_Sample_Stacking","translated_internal_url":"","created_at":"2024-12-03T11:14:18.299-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984083,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984083/thumbnails/1.jpg","file_name":"1034.pdf","download_url":"https://www.academia.edu/attachments/119984083/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Electrokinetic_Instabilities_and_Sample.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984083/1034-libre.pdf?1733255843=\u0026response-content-disposition=attachment%3B+filename%3DElectrokinetic_Instabilities_and_Sample.pdf\u0026Expires=1734027722\u0026Signature=dC5Tql9RTvhInWXp9oQhXhLa4Gvl4AzAAR37TWwDWxCRj5y3Tdt9VCYgrSkaQFS~CQnXl-gQBu0faV4WMIc3qCeHu81PZBYruDbnMELbe7AWO~amGztBmNLS~zHln75X0gcom3VtfUrSQn-vyFLvwAWehz3~xfKseptbqNDEf7Fjwr5wBnBfTfWogKYi98VzXRZ55vrB0~ve5~Ge0Px0W~i5~LX~SQqtnGH0FLn6R3qGztkWkfz08vYEqA3CnSobxUpEtIVXiysM4dS4fbg72VjLTrQAIDkwFY~o5aW7SQbspKTDy91XQuSW97-dMfvo8WM5Cp07O2s1K5k5fadzUg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Electrokinetic_Instabilities_and_Sample_Stacking","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"Electrokinetic instabilities occur in electrokinetic microchannel flows with heterogeneous electrolytes. These instabilities can be leveraged in providing rapid mixing, but are often unwanted in microfluidic applications which use heterogeneous electrolytes to achieve high resolution and new functionality. One important application of heterogeneous electrolytes is field-amplified sample stacking methods which use conductivity gradients to achieve sample preconcentration prior to electrophoretic separation. In this work, we analyze the flow physics of electrokinetic flows with conductivity gradients using theoretical analyses, numerical computations, and experimental observations. Various models including twodimensional and depth-averaged formulations have been developed, and modeling results compare well with experimental observations. Based on this understanding, we have developed novel sample stacking methods with sample preconcentrations exceeding 1,000 fold. The work also provides guidelines for the design and optimization of on-chip chemical and bio-analytical assays.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984083,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984083/thumbnails/1.jpg","file_name":"1034.pdf","download_url":"https://www.academia.edu/attachments/119984083/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Electrokinetic_Instabilities_and_Sample.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984083/1034-libre.pdf?1733255843=\u0026response-content-disposition=attachment%3B+filename%3DElectrokinetic_Instabilities_and_Sample.pdf\u0026Expires=1734027722\u0026Signature=dC5Tql9RTvhInWXp9oQhXhLa4Gvl4AzAAR37TWwDWxCRj5y3Tdt9VCYgrSkaQFS~CQnXl-gQBu0faV4WMIc3qCeHu81PZBYruDbnMELbe7AWO~amGztBmNLS~zHln75X0gcom3VtfUrSQn-vyFLvwAWehz3~xfKseptbqNDEf7Fjwr5wBnBfTfWogKYi98VzXRZ55vrB0~ve5~Ge0Px0W~i5~LX~SQqtnGH0FLn6R3qGztkWkfz08vYEqA3CnSobxUpEtIVXiysM4dS4fbg72VjLTrQAIDkwFY~o5aW7SQbspKTDy91XQuSW97-dMfvo8WM5Cp07O2s1K5k5fadzUg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984082,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984082/thumbnails/1.jpg","file_name":"1034.pdf","download_url":"https://www.academia.edu/attachments/119984082/download_file","bulk_download_file_name":"Electrokinetic_Instabilities_and_Sample.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984082/1034-libre.pdf?1733255843=\u0026response-content-disposition=attachment%3B+filename%3DElectrokinetic_Instabilities_and_Sample.pdf\u0026Expires=1734027722\u0026Signature=Fr5qgQWGDJEHyWa7b8SlJH-ZveUgeZMlWIpObdtvvcUHAO0WTE1FUGfQmO~lVb5L4CZBVqfrV0t1H5UWlYc6gB6Vh96k4kUL7Mt2Ov3KPiTlFu0SmpOaiWokwr1FM~06scwaVN2axV84otVg-Ffzp~0161hba-7fpYUC~mbFTJes9MdC8fGtyFiza9oCuDv~DLjNbVgZqn8D0G5WrBjmPPXWFqIAXTDzP7C9V9659mlT8DLpmUMyp3aWOfkiVKFxVZvcaeRt-MpYVoHK4hPzsGutHhDMnXFqzbzD72fBd2-U3mrwVzeOABi93Nij1SKxc0EmvB60aYUAXNkPGZlfsw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":205768,"name":"Electrokinetic Phenomena","url":"https://www.academia.edu/Documents/in/Electrokinetic_Phenomena"},{"id":223513,"name":"Conductivity","url":"https://www.academia.edu/Documents/in/Conductivity"},{"id":283531,"name":"Microchannel","url":"https://www.academia.edu/Documents/in/Microchannel"},{"id":1276642,"name":"Electrolyte","url":"https://www.academia.edu/Documents/in/Electrolyte"},{"id":1957004,"name":"Stacking","url":"https://www.academia.edu/Documents/in/Stacking"}],"urls":[{"id":45906050,"url":"https://briefs.techconnect.org/wp-content/volumes/Nanotech2005v1/pdf/1034.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046783"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046783/Rotational_Electrophoresis_of_Striped_Metallic_Microrods"><img alt="Research paper thumbnail of Rotational Electrophoresis of Striped Metallic Microrods" class="work-thumbnail" src="https://attachments.academia-assets.com/119984081/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046783/Rotational_Electrophoresis_of_Striped_Metallic_Microrods">Rotational Electrophoresis of Striped Metallic Microrods</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Analytical models are developed for the translation and rotation of metallic rods in a uniform el...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Analytical models are developed for the translation and rotation of metallic rods in a uniform electric field. The limits of thin and thick electric double layers are considered. These models include the effect of stripes of different metals along the length of the particle. Modeling results are compared to experimental measurements for metallic rods. Experiments demonstrate the increased alignment of particles with increasing field strength and the increase in degree of alignment of thin versus thick electric double layers. The metal rods polarize in the applied field and align parallel to its direction due to torques on the polarized charge. The torque due to polarization has a second order dependence on the electric field strength. The particles are also shown to have an additional alignment torque component due to non-uniform densities along their length. The orientation distributions of dilute suspensions of particles are also shown to agree well with results predicted by a rotational convective-diffusion equation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="58e41a49d030b6b7d75291d8a8b01d2d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984081,"asset_id":126046783,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984081/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046783"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046783"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046783; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046783]").text(description); $(".js-view-count[data-work-id=126046783]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046783; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046783']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046783, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "58e41a49d030b6b7d75291d8a8b01d2d" } } $('.js-work-strip[data-work-id=126046783]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046783,"title":"Rotational Electrophoresis of Striped Metallic Microrods","translated_title":"","metadata":{"grobid_abstract":"Analytical models are developed for the translation and rotation of metallic rods in a uniform electric field. The limits of thin and thick electric double layers are considered. These models include the effect of stripes of different metals along the length of the particle. Modeling results are compared to experimental measurements for metallic rods. Experiments demonstrate the increased alignment of particles with increasing field strength and the increase in degree of alignment of thin versus thick electric double layers. The metal rods polarize in the applied field and align parallel to its direction due to torques on the polarized charge. The torque due to polarization has a second order dependence on the electric field strength. The particles are also shown to have an additional alignment torque component due to non-uniform densities along their length. The orientation distributions of dilute suspensions of particles are also shown to agree well with results predicted by a rotational convective-diffusion equation.","publication_date":{"day":28,"month":11,"year":2005,"errors":{}},"grobid_abstract_attachment_id":119984081},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046783/Rotational_Electrophoresis_of_Striped_Metallic_Microrods","translated_internal_url":"","created_at":"2024-12-03T11:14:18.061-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984081,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984081/thumbnails/1.jpg","file_name":"900443.pdf","download_url":"https://www.academia.edu/attachments/119984081/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Rotational_Electrophoresis_of_Striped_Me.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984081/900443-libre.pdf?1733255852=\u0026response-content-disposition=attachment%3B+filename%3DRotational_Electrophoresis_of_Striped_Me.pdf\u0026Expires=1734027722\u0026Signature=Ia4-wwZRx06zhAI9i1qMRBvdrqufKM495yyd7NrjtH5iPHd2f0fPJPqNog9HWahswYdNQtz13o97PTx~cj2YelaQf700eO3Wqnt3E5ol5WGXz6USeZPrync9ZRlwkiESk~eCbvArh90L4gmIxjVfn5rwDHGKmq4ZEgA~KgbcuIk7As-eowAnTJN8aUtn6bHkC3Af7UOWuZkngFwoC7VtglAc6nEjyidkx6X1NKLWMBjc-C47ooaruDszGu2oYQghmpqBPnbgfzbmdH6VEDNKHt14k7P3AvfGrFBS1zlMnslgLORuO9zNheSUBIQ8uab6vY2qNJK8-FWUZRrZd9SJLw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Rotational_Electrophoresis_of_Striped_Metallic_Microrods","translated_slug":"","page_count":32,"language":"en","content_type":"Work","summary":"Analytical models are developed for the translation and rotation of metallic rods in a uniform electric field. The limits of thin and thick electric double layers are considered. These models include the effect of stripes of different metals along the length of the particle. Modeling results are compared to experimental measurements for metallic rods. Experiments demonstrate the increased alignment of particles with increasing field strength and the increase in degree of alignment of thin versus thick electric double layers. The metal rods polarize in the applied field and align parallel to its direction due to torques on the polarized charge. The torque due to polarization has a second order dependence on the electric field strength. The particles are also shown to have an additional alignment torque component due to non-uniform densities along their length. The orientation distributions of dilute suspensions of particles are also shown to agree well with results predicted by a rotational convective-diffusion equation.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984081,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984081/thumbnails/1.jpg","file_name":"900443.pdf","download_url":"https://www.academia.edu/attachments/119984081/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Rotational_Electrophoresis_of_Striped_Me.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984081/900443-libre.pdf?1733255852=\u0026response-content-disposition=attachment%3B+filename%3DRotational_Electrophoresis_of_Striped_Me.pdf\u0026Expires=1734027722\u0026Signature=Ia4-wwZRx06zhAI9i1qMRBvdrqufKM495yyd7NrjtH5iPHd2f0fPJPqNog9HWahswYdNQtz13o97PTx~cj2YelaQf700eO3Wqnt3E5ol5WGXz6USeZPrync9ZRlwkiESk~eCbvArh90L4gmIxjVfn5rwDHGKmq4ZEgA~KgbcuIk7As-eowAnTJN8aUtn6bHkC3Af7UOWuZkngFwoC7VtglAc6nEjyidkx6X1NKLWMBjc-C47ooaruDszGu2oYQghmpqBPnbgfzbmdH6VEDNKHt14k7P3AvfGrFBS1zlMnslgLORuO9zNheSUBIQ8uab6vY2qNJK8-FWUZRrZd9SJLw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984080,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984080/thumbnails/1.jpg","file_name":"900443.pdf","download_url":"https://www.academia.edu/attachments/119984080/download_file","bulk_download_file_name":"Rotational_Electrophoresis_of_Striped_Me.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984080/900443-libre.pdf?1733255851=\u0026response-content-disposition=attachment%3B+filename%3DRotational_Electrophoresis_of_Striped_Me.pdf\u0026Expires=1734027722\u0026Signature=VNsLrO-RDIKCv0qmBFA3bZVzfX9JYB4xKgvGZbRyYcuhzYXRdKwv4TVSwJWUFW5DKSHjgXze0B7Qj7dcutmSUc3Z18KpbqwTUIH3n2HAj4~LcF3ckUAdMv5rgWK3lddsBmMquXtWaAeEnbIvhYnrR-xxOsQDOgoPGarEp8DQm3XXqzcfo~l6I7QlS8OwrTakNipE-jtb689qogAY477Pd3E6WoOqWQCGtb~T8xCDIXsmOli~EWPWmvEZk~~j7DiIvg5wCt2S8wRfRYuA1bhtv1nRtke39awMRkK7y0SjZXvrpXRkwTbCLehu2UhnSVwq2Ep5oEFE98rfwxAl8CIQgg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":48636,"name":"Simulation","url":"https://www.academia.edu/Documents/in/Simulation"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":93037,"name":"Orientation","url":"https://www.academia.edu/Documents/in/Orientation"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":191543,"name":"Polarization","url":"https://www.academia.edu/Documents/in/Polarization"},{"id":212475,"name":"Electric Fields","url":"https://www.academia.edu/Documents/in/Electric_Fields"},{"id":371425,"name":"Electrophoresis","url":"https://www.academia.edu/Documents/in/Electrophoresis"},{"id":736620,"name":"Torque","url":"https://www.academia.edu/Documents/in/Torque"},{"id":808264,"name":"Rotational diffusion","url":"https://www.academia.edu/Documents/in/Rotational_diffusion"},{"id":818658,"name":"Rotation","url":"https://www.academia.edu/Documents/in/Rotation"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"},{"id":1551309,"name":"ROD","url":"https://www.academia.edu/Documents/in/ROD"}],"urls":[{"id":45906049,"url":"https://digital.library.unt.edu/ark:/67531/metadc882585/m2/1/high_res_d/900443.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046782"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046782/The_Effects_of_Concentration_Polarization_on_Molecule_Translocation_in_a_Nanopore_Device"><img alt="Research paper thumbnail of The Effects of Concentration Polarization on Molecule Translocation in a Nanopore Device" class="work-thumbnail" src="https://attachments.academia-assets.com/119984078/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046782/The_Effects_of_Concentration_Polarization_on_Molecule_Translocation_in_a_Nanopore_Device">The Effects of Concentration Polarization on Molecule Translocation in a Nanopore Device</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Nanopores offer the potential for label-free detection of individual proteins [1] and have been i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Nanopores offer the potential for label-free detection of individual proteins [1] and have been identified as a key potential technology for low cost DNA sequencing.[2] To date, most studies of nanopore electrokinetic transport [1,3,4] have neglected the effects of concentration polarization (CP) especially in systems with nonoverlapped electric double layers (EDLs). We present a combined computational and experimental study of conical nanopores with tip diameters of 40-100 nm. Our modeling and experimental work shows that for typical (mM) buffer concentrations, even non-overlapped EDLs fundamentally affect key transport characteristics such as the rate of molecular translocations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ab49df3afc2a95fd0f0b8bf3831af621" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984078,"asset_id":126046782,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984078/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046782"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046782"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046782; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046782]").text(description); $(".js-view-count[data-work-id=126046782]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046782; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046782']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046782, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ab49df3afc2a95fd0f0b8bf3831af621" } } $('.js-work-strip[data-work-id=126046782]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046782,"title":"The Effects of Concentration Polarization on Molecule Translocation in a Nanopore Device","translated_title":"","metadata":{"grobid_abstract":"Nanopores offer the potential for label-free detection of individual proteins [1] and have been identified as a key potential technology for low cost DNA sequencing.[2] To date, most studies of nanopore electrokinetic transport [1,3,4] have neglected the effects of concentration polarization (CP) especially in systems with nonoverlapped electric double layers (EDLs). We present a combined computational and experimental study of conical nanopores with tip diameters of 40-100 nm. Our modeling and experimental work shows that for typical (mM) buffer concentrations, even non-overlapped EDLs fundamentally affect key transport characteristics such as the rate of molecular translocations.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"grobid_abstract_attachment_id":119984078},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046782/The_Effects_of_Concentration_Polarization_on_Molecule_Translocation_in_a_Nanopore_Device","translated_internal_url":"","created_at":"2024-12-03T11:14:17.839-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984078,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984078/thumbnails/1.jpg","file_name":"072_0689.pdf","download_url":"https://www.academia.edu/attachments/119984078/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Effects_of_Concentration_Polarizatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984078/072_0689-libre.pdf?1733255841=\u0026response-content-disposition=attachment%3B+filename%3DThe_Effects_of_Concentration_Polarizatio.pdf\u0026Expires=1734027723\u0026Signature=CrMoZg-hmlAoHBCP1gHj9ZCFqmBUSrL20M4~rsiUg5lxw9bxs39dlhCsXDdBpRFQ6JyFycW44hAYjL0gXPKaLiTY3J8~eaXYRgr2j~8M3DxE9EJaQ5B5YPRMNaTNfmc0zFp2vjEMDLFjVQgEgHNYxRV222xyFyoi1t83nDC2DYURw7cLG1dZINzH5hQxkLyEYPHq2N7IYUToAyv7GJS~tBNuEVjcRi4E0WMJD~emFfsIQ9oY4Xl~w5pZKuVDQZvmuGGs4At8Pw91esEIcqDj7RwCxRNF2Gflgg302n-EBFsLtcyiLvlBVb6aGN2Pkiyx7txfN9BgbtvG4NlRGQYuVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Effects_of_Concentration_Polarization_on_Molecule_Translocation_in_a_Nanopore_Device","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":"Nanopores offer the potential for label-free detection of individual proteins [1] and have been identified as a key potential technology for low cost DNA sequencing.[2] To date, most studies of nanopore electrokinetic transport [1,3,4] have neglected the effects of concentration polarization (CP) especially in systems with nonoverlapped electric double layers (EDLs). We present a combined computational and experimental study of conical nanopores with tip diameters of 40-100 nm. Our modeling and experimental work shows that for typical (mM) buffer concentrations, even non-overlapped EDLs fundamentally affect key transport characteristics such as the rate of molecular translocations.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984078,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984078/thumbnails/1.jpg","file_name":"072_0689.pdf","download_url":"https://www.academia.edu/attachments/119984078/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Effects_of_Concentration_Polarizatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984078/072_0689-libre.pdf?1733255841=\u0026response-content-disposition=attachment%3B+filename%3DThe_Effects_of_Concentration_Polarizatio.pdf\u0026Expires=1734027723\u0026Signature=CrMoZg-hmlAoHBCP1gHj9ZCFqmBUSrL20M4~rsiUg5lxw9bxs39dlhCsXDdBpRFQ6JyFycW44hAYjL0gXPKaLiTY3J8~eaXYRgr2j~8M3DxE9EJaQ5B5YPRMNaTNfmc0zFp2vjEMDLFjVQgEgHNYxRV222xyFyoi1t83nDC2DYURw7cLG1dZINzH5hQxkLyEYPHq2N7IYUToAyv7GJS~tBNuEVjcRi4E0WMJD~emFfsIQ9oY4Xl~w5pZKuVDQZvmuGGs4At8Pw91esEIcqDj7RwCxRNF2Gflgg302n-EBFsLtcyiLvlBVb6aGN2Pkiyx7txfN9BgbtvG4NlRGQYuVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984079,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"072_0689.pdf","download_url":"https://www.academia.edu/attachments/119984079/download_file","bulk_download_file_name":"The_Effects_of_Concentration_Polarizatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984079/072_0689-libre.pdf?1733255842=\u0026response-content-disposition=attachment%3B+filename%3DThe_Effects_of_Concentration_Polarizatio.pdf\u0026Expires=1734027723\u0026Signature=XrVjrPkv8MM3nCk9xdO-YUdTig8Nmg2oTwRxNTnGjaOoFIIHcHtpKu~j-z-RHgGn4uSbAbmwX7bqaaGy5YU4dy-3HbtyvkqkzlppI2msb1EtyE3vtmgeG8PMSAqhrRiwoslqgoofmNU~KKTb-90Vd-bhGfKFyFc-oqSCT6qby1b6nk4AB8iEBd77HBAawGOnt24antjvDy2B8By4PZpR-IkC6I-Hl4LMAIBrVLKNLQ6Que3s7geAS~r-0o3XpUC6WXTlfBEi~btHTy5KxzHnuTrrPwHOONgCvmb-bFa6k5mQfqUbFgfRyoNKyf2o11aX9xZ89Slo0X55worUfAWopg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":75568,"name":"Nanopore DNA sequencing","url":"https://www.academia.edu/Documents/in/Nanopore_DNA_sequencing"},{"id":205768,"name":"Electrokinetic Phenomena","url":"https://www.academia.edu/Documents/in/Electrokinetic_Phenomena"},{"id":3478741,"name":"Nanopore","url":"https://www.academia.edu/Documents/in/Nanopore"}],"urls":[{"id":45906048,"url":"https://www.rsc.org/binaries/LOC/2008/PDFs/Papers/072_0689.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046781"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046781/Rapid_Dna_Hybridization_Reactions_Using_Isotachophoresis"><img alt="Research paper thumbnail of Rapid Dna Hybridization Reactions Using Isotachophoresis" class="work-thumbnail" src="https://attachments.academia-assets.com/119984076/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046781/Rapid_Dna_Hybridization_Reactions_Using_Isotachophoresis">Rapid Dna Hybridization Reactions Using Isotachophoresis</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We use ITP to control and increase the rate of homogenous DNA hybridization reactions. We present...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We use ITP to control and increase the rate of homogenous DNA hybridization reactions. We present a novel physical model, new validation experiments, and new demonstrations of this assay. We studied the coupled physics and chemistry of the dynamics of preconcentration, mixing, and chemical reaction kinetics under ITP. Our experimentally-validated model enables closed form solution for two-species hybridization reaction under ITP, and predicts 10,000 fold speed-up of chemical reaction rate at concentrations of order 10 pM, with greater enhancement of reaction rate at lower concentrations. We experimentally demonstrate 800 fold speed-up using ITP compared to the standard case of reaction in a simple, well mixed reaction chamber.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a99e15171633f8648f7787d2ca945994" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984076,"asset_id":126046781,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984076/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046781"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046781"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046781; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046781]").text(description); $(".js-view-count[data-work-id=126046781]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046781; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046781']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046781, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a99e15171633f8648f7787d2ca945994" } } $('.js-work-strip[data-work-id=126046781]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046781,"title":"Rapid Dna Hybridization Reactions Using Isotachophoresis","translated_title":"","metadata":{"grobid_abstract":"We use ITP to control and increase the rate of homogenous DNA hybridization reactions. We present a novel physical model, new validation experiments, and new demonstrations of this assay. We studied the coupled physics and chemistry of the dynamics of preconcentration, mixing, and chemical reaction kinetics under ITP. Our experimentally-validated model enables closed form solution for two-species hybridization reaction under ITP, and predicts 10,000 fold speed-up of chemical reaction rate at concentrations of order 10 pM, with greater enhancement of reaction rate at lower concentrations. We experimentally demonstrate 800 fold speed-up using ITP compared to the standard case of reaction in a simple, well mixed reaction chamber.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"grobid_abstract_attachment_id":119984076},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046781/Rapid_Dna_Hybridization_Reactions_Using_Isotachophoresis","translated_internal_url":"","created_at":"2024-12-03T11:14:17.593-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984076,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984076/thumbnails/1.jpg","file_name":"241_1285.pdf","download_url":"https://www.academia.edu/attachments/119984076/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Rapid_Dna_Hybridization_Reactions_Using.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984076/241_1285-libre.pdf?1733255841=\u0026response-content-disposition=attachment%3B+filename%3DRapid_Dna_Hybridization_Reactions_Using.pdf\u0026Expires=1734027723\u0026Signature=AiajaDTL5Uz4EdjKr9p-Sw2NU7THbT6t9heFLfP3FhyTr6pj2VG7NT7-l9k5HpY8FrLNLxhSeGNNrVgm4r1C9a7PUIlXoeXCVrsaTbQDOcBdEqaORrWb5-yOoSsh0T-THd-UXBk1vNgQxIUHu9A~Smn4lCjZiWK25ktYu~~SnD1YY8l7eaMgtSs~GvmVwem5OCcAZr7BVEPr~cst2JMZJgH0F6ce-oV77UPX44Rwp~P5h2fVBDR8aiorlmCwYvdLa0dotgutg9cRWJyJ2nAILO3nQiswvM2iEeZEqSYc2CBe3r~ooepb1e3HmC-VyIPqeEPsgJicim68ZNmsUJMd2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Rapid_Dna_Hybridization_Reactions_Using_Isotachophoresis","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":"We use ITP to control and increase the rate of homogenous DNA hybridization reactions. We present a novel physical model, new validation experiments, and new demonstrations of this assay. We studied the coupled physics and chemistry of the dynamics of preconcentration, mixing, and chemical reaction kinetics under ITP. Our experimentally-validated model enables closed form solution for two-species hybridization reaction under ITP, and predicts 10,000 fold speed-up of chemical reaction rate at concentrations of order 10 pM, with greater enhancement of reaction rate at lower concentrations. We experimentally demonstrate 800 fold speed-up using ITP compared to the standard case of reaction in a simple, well mixed reaction chamber.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984076,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984076/thumbnails/1.jpg","file_name":"241_1285.pdf","download_url":"https://www.academia.edu/attachments/119984076/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Rapid_Dna_Hybridization_Reactions_Using.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984076/241_1285-libre.pdf?1733255841=\u0026response-content-disposition=attachment%3B+filename%3DRapid_Dna_Hybridization_Reactions_Using.pdf\u0026Expires=1734027723\u0026Signature=AiajaDTL5Uz4EdjKr9p-Sw2NU7THbT6t9heFLfP3FhyTr6pj2VG7NT7-l9k5HpY8FrLNLxhSeGNNrVgm4r1C9a7PUIlXoeXCVrsaTbQDOcBdEqaORrWb5-yOoSsh0T-THd-UXBk1vNgQxIUHu9A~Smn4lCjZiWK25ktYu~~SnD1YY8l7eaMgtSs~GvmVwem5OCcAZr7BVEPr~cst2JMZJgH0F6ce-oV77UPX44Rwp~P5h2fVBDR8aiorlmCwYvdLa0dotgutg9cRWJyJ2nAILO3nQiswvM2iEeZEqSYc2CBe3r~ooepb1e3HmC-VyIPqeEPsgJicim68ZNmsUJMd2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984077,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984077/thumbnails/1.jpg","file_name":"241_1285.pdf","download_url":"https://www.academia.edu/attachments/119984077/download_file","bulk_download_file_name":"Rapid_Dna_Hybridization_Reactions_Using.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984077/241_1285-libre.pdf?1733255843=\u0026response-content-disposition=attachment%3B+filename%3DRapid_Dna_Hybridization_Reactions_Using.pdf\u0026Expires=1734027723\u0026Signature=Gpe57kXrxzixej9WrKQWE5CTYLZG65lKcy~Df6ryn-EEgg2ZjnNzIBU8yMPik3Js84o6aKLvXyLWwoaB-kJ4nPLn5YvLsOK6TXQPVcxDPhK0YGSJ-BfyIST5VWrnSHsz1TmE3WKphaLEKuqArYuBt9QNUHOFcnUi3KTyhtze3X2CcGvU~44Qw-y8I8MRFOwTzinQn2UBRIDubeM2KyadHBKln3zkHv1VByR44eFK2CvDnp~EyPd6D53hmzk1wYbb0M41puinPizLbNLICHWBkXmepWVzc5lsTCop-qzk2uatz~EKxiGYUDNiDdyygAAfzD3fK5CahRQqSxbLZCME8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":43189,"name":"Chemical Kinetics","url":"https://www.academia.edu/Documents/in/Chemical_Kinetics"},{"id":48057,"name":"DNA","url":"https://www.academia.edu/Documents/in/DNA"},{"id":205770,"name":"Isotachophoresis","url":"https://www.academia.edu/Documents/in/Isotachophoresis"},{"id":539878,"name":"Chemical Reaction","url":"https://www.academia.edu/Documents/in/Chemical_Reaction"},{"id":778709,"name":"Reaction Rate","url":"https://www.academia.edu/Documents/in/Reaction_Rate"}],"urls":[{"id":45906047,"url":"https://www.rsc.org/images/LOC/2011/PDFs/Papers/241_1285.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046780"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046780/Tailored_porous_electrode_resistance_for_controlling_electrolyte_depletion_and_improving_charging_response_in_electrochemical_systems"><img alt="Research paper thumbnail of Tailored porous electrode resistance for controlling electrolyte depletion and improving charging response in electrochemical systems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046780/Tailored_porous_electrode_resistance_for_controlling_electrolyte_depletion_and_improving_charging_response_in_electrochemical_systems">Tailored porous electrode resistance for controlling electrolyte depletion and improving charging response in electrochemical systems</a></div><div class="wp-workCard_item"><span>Journal of Power Sources</span><span>, Sep 1, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The rapid charging and/or discharging of electrochemical cells can lead to localized depletion of...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The rapid charging and/or discharging of electrochemical cells can lead to localized depletion of electrolyte concentration. This depletion can significantly impact the system's time dependent resistance. For systems with porous electrodes, electrolyte depletion can limit the rate of charging and increase energy dissipation. Here we propose a theory to control and avoid electrolyte depletion by tailoring the value and spatial distribution of resistance in a porous electrode. We explore the somewhat counterintuitive idea that increasing local spatial resistances of the solid electrode itself leads to improved charging rate and minimal change in energy loss. We analytically derive a simple expression for an electrode resistance profile that leads to highly uniform electrolyte depletion. We use numerical simulations to explore this theory and simulate spatiotemporal dynamics of electrolyte concentration in the case of a supercapacitor with various tailored electrode resistance profiles which avoid localized depletion. This increases charging rate up to around 2-fold with minimal effect on overall dissipated energy in the system. Broader context Electrochemical systems, including batteries and supercapacitors, are essential in energy storage. The distribution and transport of ions in electrolytes permeating porous electrodes often controls the performance of these devices. In particular, the local depletion of charge carrying ions can dramatically increase the resistance of the system, due to rapid ion removal from solution by the electrode, or due to ionic migration limitations under electric fields in the solution. This increase in local resistance can slow charging and discharging response of the system and leads to high electric fields in the device, with consequences for failure modes such as dendrite growth. Here, we consider the interplay between electronic conduction in the electrode matrix and ionic conduction in the pore space. By tailoring the spatial distribution of resistance in the electrode matrix, we show the potential to control ionic concentration evolution in the pore space, and specifically to eliminate localized electrolyte depletion. This approach holds potential for improving time response of charging (as shown here) and discharging. We here propose to accomplish this by the highly counterintuitive tactic of increasing electrode resistance (in a carefully tailored manner) while minimally affecting overall device efficiency.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b90d98f7a558d5ccae6a659afe677ec9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984075,"asset_id":126046780,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984075/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046780"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046780"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046780; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046780]").text(description); $(".js-view-count[data-work-id=126046780]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046780; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046780']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046780, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b90d98f7a558d5ccae6a659afe677ec9" } } $('.js-work-strip[data-work-id=126046780]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046780,"title":"Tailored porous electrode resistance for controlling electrolyte depletion and improving charging response in electrochemical systems","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"The rapid charging and/or discharging of electrochemical cells can lead to localized depletion of electrolyte concentration. This depletion can significantly impact the system's time dependent resistance. For systems with porous electrodes, electrolyte depletion can limit the rate of charging and increase energy dissipation. Here we propose a theory to control and avoid electrolyte depletion by tailoring the value and spatial distribution of resistance in a porous electrode. We explore the somewhat counterintuitive idea that increasing local spatial resistances of the solid electrode itself leads to improved charging rate and minimal change in energy loss. We analytically derive a simple expression for an electrode resistance profile that leads to highly uniform electrolyte depletion. We use numerical simulations to explore this theory and simulate spatiotemporal dynamics of electrolyte concentration in the case of a supercapacitor with various tailored electrode resistance profiles which avoid localized depletion. This increases charging rate up to around 2-fold with minimal effect on overall dissipated energy in the system. Broader context Electrochemical systems, including batteries and supercapacitors, are essential in energy storage. The distribution and transport of ions in electrolytes permeating porous electrodes often controls the performance of these devices. In particular, the local depletion of charge carrying ions can dramatically increase the resistance of the system, due to rapid ion removal from solution by the electrode, or due to ionic migration limitations under electric fields in the solution. This increase in local resistance can slow charging and discharging response of the system and leads to high electric fields in the device, with consequences for failure modes such as dendrite growth. Here, we consider the interplay between electronic conduction in the electrode matrix and ionic conduction in the pore space. By tailoring the spatial distribution of resistance in the electrode matrix, we show the potential to control ionic concentration evolution in the pore space, and specifically to eliminate localized electrolyte depletion. This approach holds potential for improving time response of charging (as shown here) and discharging. We here propose to accomplish this by the highly counterintuitive tactic of increasing electrode resistance (in a carefully tailored manner) while minimally affecting overall device efficiency.","publication_date":{"day":1,"month":9,"year":2018,"errors":{}},"publication_name":"Journal of Power Sources","grobid_abstract_attachment_id":119984075},"translated_abstract":null,"internal_url":"https://www.academia.edu/126046780/Tailored_porous_electrode_resistance_for_controlling_electrolyte_depletion_and_improving_charging_response_in_electrochemical_systems","translated_internal_url":"","created_at":"2024-12-03T11:14:17.339-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984075,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"1712.pdf","download_url":"https://www.academia.edu/attachments/119984075/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Tailored_porous_electrode_resistance_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984075/1712-libre.pdf?1733256122=\u0026response-content-disposition=attachment%3B+filename%3DTailored_porous_electrode_resistance_for.pdf\u0026Expires=1734027723\u0026Signature=REJffKRtwxiuJW-fZ2wRi9w3mG3MuaVpmAc~0wFa7pQUWu~Ju7ARgECQPKHZuzyPq8oSv26L9WUV6nt4ogbhieUtkRThDq4Vb-7gdjBa7pzClxDal~X2wJy2zPODF9yuvdjB~2BHjbZ-YDbzDrfUgV~SCiZHUK4JDYvUjrkLYwgSe3HpEgenkZ-e-CdhWHQKiEr-S5vIiwH7ci~4hPVp2Wmyw8iAC9tuC-DNXc7D8o6CwOfMh7-8FwE~~g~E~0eWBcP8iuhndq3Ont0phZy4qCTDfR72R-z9qcKGojM9PU2Tj5I3tREHqV79nni8QypVQ273Yb~I3kRgsLIVFJrsBw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Tailored_porous_electrode_resistance_for_controlling_electrolyte_depletion_and_improving_charging_response_in_electrochemical_systems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The rapid charging and/or discharging of electrochemical cells can lead to localized depletion of electrolyte concentration. This depletion can significantly impact the system's time dependent resistance. For systems with porous electrodes, electrolyte depletion can limit the rate of charging and increase energy dissipation. Here we propose a theory to control and avoid electrolyte depletion by tailoring the value and spatial distribution of resistance in a porous electrode. We explore the somewhat counterintuitive idea that increasing local spatial resistances of the solid electrode itself leads to improved charging rate and minimal change in energy loss. We analytically derive a simple expression for an electrode resistance profile that leads to highly uniform electrolyte depletion. We use numerical simulations to explore this theory and simulate spatiotemporal dynamics of electrolyte concentration in the case of a supercapacitor with various tailored electrode resistance profiles which avoid localized depletion. This increases charging rate up to around 2-fold with minimal effect on overall dissipated energy in the system. Broader context Electrochemical systems, including batteries and supercapacitors, are essential in energy storage. The distribution and transport of ions in electrolytes permeating porous electrodes often controls the performance of these devices. In particular, the local depletion of charge carrying ions can dramatically increase the resistance of the system, due to rapid ion removal from solution by the electrode, or due to ionic migration limitations under electric fields in the solution. This increase in local resistance can slow charging and discharging response of the system and leads to high electric fields in the device, with consequences for failure modes such as dendrite growth. Here, we consider the interplay between electronic conduction in the electrode matrix and ionic conduction in the pore space. By tailoring the spatial distribution of resistance in the electrode matrix, we show the potential to control ionic concentration evolution in the pore space, and specifically to eliminate localized electrolyte depletion. This approach holds potential for improving time response of charging (as shown here) and discharging. We here propose to accomplish this by the highly counterintuitive tactic of increasing electrode resistance (in a carefully tailored manner) while minimally affecting overall device efficiency.","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984075,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"1712.pdf","download_url":"https://www.academia.edu/attachments/119984075/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Tailored_porous_electrode_resistance_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984075/1712-libre.pdf?1733256122=\u0026response-content-disposition=attachment%3B+filename%3DTailored_porous_electrode_resistance_for.pdf\u0026Expires=1734027723\u0026Signature=REJffKRtwxiuJW-fZ2wRi9w3mG3MuaVpmAc~0wFa7pQUWu~Ju7ARgECQPKHZuzyPq8oSv26L9WUV6nt4ogbhieUtkRThDq4Vb-7gdjBa7pzClxDal~X2wJy2zPODF9yuvdjB~2BHjbZ-YDbzDrfUgV~SCiZHUK4JDYvUjrkLYwgSe3HpEgenkZ-e-CdhWHQKiEr-S5vIiwH7ci~4hPVp2Wmyw8iAC9tuC-DNXc7D8o6CwOfMh7-8FwE~~g~E~0eWBcP8iuhndq3Ont0phZy4qCTDfR72R-z9qcKGojM9PU2Tj5I3tREHqV79nni8QypVQ273Yb~I3kRgsLIVFJrsBw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":540401,"name":"Supercapacitor","url":"https://www.academia.edu/Documents/in/Supercapacitor"},{"id":909150,"name":"Electrode","url":"https://www.academia.edu/Documents/in/Electrode"},{"id":1276642,"name":"Electrolyte","url":"https://www.academia.edu/Documents/in/Electrolyte"},{"id":1852738,"name":"Power Sources","url":"https://www.academia.edu/Documents/in/Power_Sources"}],"urls":[{"id":45906046,"url":"http://arxiv.org/pdf/1712.08826"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="126046779"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126046779/Millisecond_timescale_reactions_observed_via_X_ray_spectroscopy_in_a_3D_microfabricated_fused_silica_mixer"><img alt="Research paper thumbnail of Millisecond timescale reactions observed via X-ray spectroscopy in a 3D microfabricated fused silica mixer" class="work-thumbnail" src="https://attachments.academia-assets.com/119984074/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126046779/Millisecond_timescale_reactions_observed_via_X_ray_spectroscopy_in_a_3D_microfabricated_fused_silica_mixer">Millisecond timescale reactions observed via X-ray spectroscopy in a 3D microfabricated fused silica mixer</a></div><div class="wp-workCard_item"><span>Journal of Synchrotron Radiation</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Determination of electronic structures during chemical reactions remains challenging in studies w...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Determination of electronic structures during chemical reactions remains challenging in studies which involve reactions in the millisecond timescale, toxic chemicals, and/or anaerobic conditions. In this study, a three-dimensionally (3D) microfabricated microfluidic mixer platform that is compatible with time-resolved X-ray absorption and emission spectroscopy (XAS and XES, respectively) is presented. This platform, to initiate reactions and study their progression, mixes a high flow rate (0.50–1.5 ml min−1) sheath stream with a low-flow-rate (5–90 µl min−1) sample stream within a monolithic fused silica chip. The chip geometry enables hydrodynamic focusing of the sample stream in 3D and sample widths as small as 5 µm. The chip is also connected to a polyimide capillary downstream to enable sample stream deceleration, expansion, and X-ray detection. In this capillary, sample widths of 50 µm are demonstrated. Further, convection–diffusion-reaction models of the mixer are presented. T...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f41d4de090971d7d69990dbd8bc40af5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119984074,"asset_id":126046779,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119984074/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126046779"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126046779"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126046779; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126046779]").text(description); $(".js-view-count[data-work-id=126046779]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126046779; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126046779']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 126046779, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f41d4de090971d7d69990dbd8bc40af5" } } $('.js-work-strip[data-work-id=126046779]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126046779,"title":"Millisecond timescale reactions observed via X-ray spectroscopy in a 3D microfabricated fused silica mixer","translated_title":"","metadata":{"abstract":"Determination of electronic structures during chemical reactions remains challenging in studies which involve reactions in the millisecond timescale, toxic chemicals, and/or anaerobic conditions. In this study, a three-dimensionally (3D) microfabricated microfluidic mixer platform that is compatible with time-resolved X-ray absorption and emission spectroscopy (XAS and XES, respectively) is presented. This platform, to initiate reactions and study their progression, mixes a high flow rate (0.50–1.5 ml min−1) sheath stream with a low-flow-rate (5–90 µl min−1) sample stream within a monolithic fused silica chip. The chip geometry enables hydrodynamic focusing of the sample stream in 3D and sample widths as small as 5 µm. The chip is also connected to a polyimide capillary downstream to enable sample stream deceleration, expansion, and X-ray detection. In this capillary, sample widths of 50 µm are demonstrated. Further, convection–diffusion-reaction models of the mixer are presented. T...","publisher":"International Union of Crystallography (IUCr)","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Journal of Synchrotron Radiation"},"translated_abstract":"Determination of electronic structures during chemical reactions remains challenging in studies which involve reactions in the millisecond timescale, toxic chemicals, and/or anaerobic conditions. In this study, a three-dimensionally (3D) microfabricated microfluidic mixer platform that is compatible with time-resolved X-ray absorption and emission spectroscopy (XAS and XES, respectively) is presented. This platform, to initiate reactions and study their progression, mixes a high flow rate (0.50–1.5 ml min−1) sheath stream with a low-flow-rate (5–90 µl min−1) sample stream within a monolithic fused silica chip. The chip geometry enables hydrodynamic focusing of the sample stream in 3D and sample widths as small as 5 µm. The chip is also connected to a polyimide capillary downstream to enable sample stream deceleration, expansion, and X-ray detection. In this capillary, sample widths of 50 µm are demonstrated. Further, convection–diffusion-reaction models of the mixer are presented. T...","internal_url":"https://www.academia.edu/126046779/Millisecond_timescale_reactions_observed_via_X_ray_spectroscopy_in_a_3D_microfabricated_fused_silica_mixer","translated_internal_url":"","created_at":"2024-12-03T11:14:17.090-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33619649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119984074,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984074/thumbnails/1.jpg","file_name":"ig5094.pdf","download_url":"https://www.academia.edu/attachments/119984074/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Millisecond_timescale_reactions_observed.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984074/ig5094-libre.pdf?1733255847=\u0026response-content-disposition=attachment%3B+filename%3DMillisecond_timescale_reactions_observed.pdf\u0026Expires=1734027723\u0026Signature=az71OZp6pQL8SU4tYILwjrRS87AMtcDxw~Q8h41HrWSlPT7C0e6i7c1pq6PtNXLjnMa90sScaRUIMGJ1lsO8tdm~yZydUAy1JjpnKBksz5REYqlcpcFALWIt0Wv3srJSYDvU-kq3F1jJeuNUJCd11B0CszfuQ4bu3UZ0HgMGhxsx1uiFZNTJJoDOOZo5Mue8AOpmtRT8Kjr58DLE4SBW5OeswLZNps7hIZ1MvIqXOMiNTZb3yIXxYzsEFn0~Uohz-cVxo9Ua30G8TuZhRmWsinO~anvTUPKRPxW7p2sOzWKtsG1Ya9R7~nki5ccI-KZSi0MDAGy-VajYGtnL4PnxfA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Millisecond_timescale_reactions_observed_via_X_ray_spectroscopy_in_a_3D_microfabricated_fused_silica_mixer","translated_slug":"","page_count":15,"language":"en","content_type":"Work","summary":"Determination of electronic structures during chemical reactions remains challenging in studies which involve reactions in the millisecond timescale, toxic chemicals, and/or anaerobic conditions. In this study, a three-dimensionally (3D) microfabricated microfluidic mixer platform that is compatible with time-resolved X-ray absorption and emission spectroscopy (XAS and XES, respectively) is presented. This platform, to initiate reactions and study their progression, mixes a high flow rate (0.50–1.5 ml min−1) sheath stream with a low-flow-rate (5–90 µl min−1) sample stream within a monolithic fused silica chip. The chip geometry enables hydrodynamic focusing of the sample stream in 3D and sample widths as small as 5 µm. The chip is also connected to a polyimide capillary downstream to enable sample stream deceleration, expansion, and X-ray detection. In this capillary, sample widths of 50 µm are demonstrated. Further, convection–diffusion-reaction models of the mixer are presented. T...","owner":{"id":33619649,"first_name":"Juan","middle_initials":null,"last_name":"Santiago","page_name":"JuanSantiago","domain_name":"stanford","created_at":"2015-08-04T18:50:41.744-07:00","display_name":"Juan Santiago","url":"https://stanford.academia.edu/JuanSantiago"},"attachments":[{"id":119984074,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119984074/thumbnails/1.jpg","file_name":"ig5094.pdf","download_url":"https://www.academia.edu/attachments/119984074/download_file?st=MTczNDAzNzc4MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Millisecond_timescale_reactions_observed.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984074/ig5094-libre.pdf?1733255847=\u0026response-content-disposition=attachment%3B+filename%3DMillisecond_timescale_reactions_observed.pdf\u0026Expires=1734027723\u0026Signature=az71OZp6pQL8SU4tYILwjrRS87AMtcDxw~Q8h41HrWSlPT7C0e6i7c1pq6PtNXLjnMa90sScaRUIMGJ1lsO8tdm~yZydUAy1JjpnKBksz5REYqlcpcFALWIt0Wv3srJSYDvU-kq3F1jJeuNUJCd11B0CszfuQ4bu3UZ0HgMGhxsx1uiFZNTJJoDOOZo5Mue8AOpmtRT8Kjr58DLE4SBW5OeswLZNps7hIZ1MvIqXOMiNTZb3yIXxYzsEFn0~Uohz-cVxo9Ua30G8TuZhRmWsinO~anvTUPKRPxW7p2sOzWKtsG1Ya9R7~nki5ccI-KZSi0MDAGy-VajYGtnL4PnxfA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119984073,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"ig5094.pdf","download_url":"https://www.academia.edu/attachments/119984073/download_file","bulk_download_file_name":"Millisecond_timescale_reactions_observed.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119984073/ig5094-libre.pdf?1733255848=\u0026response-content-disposition=attachment%3B+filename%3DMillisecond_timescale_reactions_observed.pdf\u0026Expires=1734027723\u0026Signature=CKEmu9-YG8DyG-z~fme-uwmDAn~VqCBtTf7o70hhHYp3si9AbnLb8MKOp~TYmIDnJIwF-64e1NR1nYnR71LhBBL4y5CFvvb-0ROMslkA9uDAaYRFciUKTQqbHdaArzpSSgKEte8MdgrYpEYCNd2cXZw55W0cc3tMYeL3hMx4uGRg6EOG9yuxgIe0DN4QBhOaJ2I6t1Jdsu~1JHbjkdJ~1mo1IKY62IlgNxbU1UAhS9wj5mU36xbYIE2Jyzf~LFTkXV95cJuB61okbefxgRmS5qE5GPHf9h3esGwlgOAnFZieaBk1JhOj2MM0JTxzbq4FNgDjlGaz0aeOH1LICxz1cw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":12843,"name":"X ray absorption spectroscopy","url":"https://www.academia.edu/Documents/in/X_ray_absorption_spectroscopy"},{"id":23861,"name":"Microscale Chemistry","url":"https://www.academia.edu/Documents/in/Microscale_Chemistry"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":29617,"name":"Synchrotron Radiation","url":"https://www.academia.edu/Documents/in/Synchrotron_Radiation"},{"id":263152,"name":"Optical physics","url":"https://www.academia.edu/Documents/in/Optical_physics"}],"urls":[{"id":45906045,"url":"http://journals.iucr.org/s/issues/2021/04/00/ig5094/ig5094.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "549636c8d9a8fe92be575b26071ca391cc7ffa47191ddb90559f659f91fc593d", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="OXYGO5Qds3DwuZhjrOfGZGxebh8ifr7cwPYKPMI+RrbOZ4IyAVG3UIQLldX6jcqkjtEQuA1xIZHVO+nGdPjeQw==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://stanford.academia.edu/JuanSantiago" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="BCEAze52k9AREYSH4ELgotfjKL97zk0DmnP3MywZ+4nzMITEezqX8GWjiTG2KOxiNWxWGFTB0k6PvhTJmt9jfA==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>