CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;13 of 13 results for author: <span class="mathjax">Schulz, T</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Schulz%2C+T">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Schulz, T"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Schulz%2C+T&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Schulz, T"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.18328">arXiv:2310.18328</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.18328">pdf</a>, <a href="https://arxiv.org/format/2310.18328">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.14.031025">10.1103/PhysRevX.14.031025 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exciton-exciton interactions in van der Waals heterobilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Steinhoff%2C+A">Alexander Steinhoff</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wietek%2C+E">Edith Wietek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Florian%2C+M">Matthias Florian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schulz%2C+T">Tommy Schulz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+S">Shen Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%B6gele%2C+A">Alexander H枚gele</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jahnke%2C+F">Frank Jahnke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chernikov%2C+A">Alexey Chernikov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.18328v1-abstract-short" style="display: inline;"> Exciton-exciton interactions are key to understanding non-linear optical and transport phenomena in van der Waals heterobilayers, which emerged as versatile platforms to study correlated electronic states. We present a combined theory-experiment study of excitonic many-body effects based on first-principle band structures and Coulomb interaction matrix elements. Key to our approach is the explicit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18328v1-abstract-full').style.display = 'inline'; document.getElementById('2310.18328v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.18328v1-abstract-full" style="display: none;"> Exciton-exciton interactions are key to understanding non-linear optical and transport phenomena in van der Waals heterobilayers, which emerged as versatile platforms to study correlated electronic states. We present a combined theory-experiment study of excitonic many-body effects based on first-principle band structures and Coulomb interaction matrix elements. Key to our approach is the explicit treatment of the fermionic substructure of excitons and dynamical screening effects for density-induced energy renormalization and dissipation. We demonstrate that dipolar blue shifts are almost perfectly compensated by many-body effects, mainly by screening-induced self-energy corrections. Moreover, we identify a crossover between attractive and repulsive behavior at elevated exciton densities. Theoretical findings are supported by experimental studies of spectrally-narrow interlayer excitons in atomically-reconstructed, hBN-encapsulated MoSe$_2$/WSe$_2$ heterobilayers. Both theory and experiment show energy renormalization on a scale of a few meV even for high injection densities in the vicinity of the Mott transition. Our results revise the established picture of dipolar repulsion dominating exciton-exciton interactions in van der Waals heterostructures and open up opportunities for their external design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18328v1-abstract-full').style.display = 'none'; document.getElementById('2310.18328v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 14, 031025 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.00940">arXiv:2111.00940</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.00940">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1111/jace.17403">10.1111/jace.17403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hexavalent (Me-W/Mo)-modified (Ba,Ca)TiO$_3$-Bi(Mg,Me)O$_3$ perovskites for high-temperature dielectrics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schulz%2C+T">Thomas Schulz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veerapandiyan%2C+V+K">Vignaswaran K. Veerapandiyan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gindel%2C+T">Theresa Gindel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deluca%2C+M">Marco Deluca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=T%C3%B6pfer%2C+J">J枚rg T枚pfer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.00940v1-abstract-short" style="display: inline;"> We report on the synthesis of complex lead-free perovskite-type (1-x)(Ba$_{0.8}$Ca$_{0.2}$)TiO$_3$-xBi(Mg$_{0.75}$W$_{0.25}$)O$_3$ (BCT-xBMW) and (1-x)(Ba$_{0.8}$Ca$_{0.2}$)TiO$_3$-xBi(Mg$_{0.75}$Mo$_{0.25}$)O$_3$ (BCT-xBMM) solid solutions via conventional solid-state reaction route. The sintering temperature was adjusted as a function of composition x to obtain dense samples (relative densities&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00940v1-abstract-full').style.display = 'inline'; document.getElementById('2111.00940v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.00940v1-abstract-full" style="display: none;"> We report on the synthesis of complex lead-free perovskite-type (1-x)(Ba$_{0.8}$Ca$_{0.2}$)TiO$_3$-xBi(Mg$_{0.75}$W$_{0.25}$)O$_3$ (BCT-xBMW) and (1-x)(Ba$_{0.8}$Ca$_{0.2}$)TiO$_3$-xBi(Mg$_{0.75}$Mo$_{0.25}$)O$_3$ (BCT-xBMM) solid solutions via conventional solid-state reaction route. The sintering temperature was adjusted as a function of composition x to obtain dense samples (relative densities over 95%) at the same time minimizing bismuth evaporation. X-ray diffraction analysis shows formation of single-phase perovskites for $0 \le x \le 0.10$ in the BCT-xBMW series and increasing concentrations of impurity phases for $x \ge 0.15$ and for $x \ge 0.05$ in BCT-xBMM. A transition from a tetragonal to pseudo-cubic perovskite structure is observed in BCT-xBMW and BCT-xBMM at $x = 0.05$. The dielectric response has been characterized between -60 $^\circ$C and 300 $^\circ$C for BCT-xBMW, and between 30 $^\circ$C and 300 $^\circ$C for BCT-xBMM using impedance spectroscopy, showing a transition from ferroelectric to relaxor-like behavior at $x \ge 0.05$. Additional polarization and Raman spectroscopy measurements reveal the occurrence of highly disordered systems. Analysis of the Raman spectra indicates structural phase changes and lattice modifications caused by chemical substitution. For the composition 0.8Ba$_{0.8}$Ca$_{0.2}$TiO$_3$-0.2Bi(Mg$_{0.75}$W$_{0.25}$)O$_3$ a temperature-stable permittivity of about 600 ($\pm 15$% between 60 $^\circ$C and 300 $^\circ$C) and small losses of $\tan未&lt; 0.02$ for $T \le 230$ $^\circ$C at 1 kHz are observed, making it a suitable dielectric material for high temperature capacitors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00940v1-abstract-full').style.display = 'none'; document.getElementById('2111.00940v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of the American Ceramic Society, 103(12) 6881-6892, 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.04665">arXiv:1902.04665</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.04665">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.224409">10.1103/PhysRevB.95.224409 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effective field analysis using the full angular spin-orbit torque magnetometry dependence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schulz%2C+T">Tomek Schulz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyujoon Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kr%C3%BCger%2C+B">Benjamin Kr眉ger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conte%2C+R+L">Roberto Lo Conte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karnad%2C+G+V">Gurucharan V. Karnad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia%2C+K">Karin Garcia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vila%2C+L">Laurent Vila</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ocker%2C+B">Berthold Ocker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ravelosona%2C+D">Dafin茅 Ravelosona</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kl%C3%A4ui%2C+M">Mathias Kl盲ui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.04665v2-abstract-short" style="display: inline;"> Spin-orbit torques promise ultra-efficient magnetization switching used for advanced devices based on emergent quasi-particles such as domain walls and skyrmions. Recently, the spin structure dynamics, materials and systems with tailored spin-orbit torques are being developed. A method, which allows one to detect the acting torques in a given system as a function of the magnetization direction is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.04665v2-abstract-full').style.display = 'inline'; document.getElementById('1902.04665v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.04665v2-abstract-full" style="display: none;"> Spin-orbit torques promise ultra-efficient magnetization switching used for advanced devices based on emergent quasi-particles such as domain walls and skyrmions. Recently, the spin structure dynamics, materials and systems with tailored spin-orbit torques are being developed. A method, which allows one to detect the acting torques in a given system as a function of the magnetization direction is the torque-magnetometry method based on a higher harmonics analysis of the anomalous Hall-effect. Here we show that the effective fields acting on magnetic domain walls that govern the efficiency of their dynamics require a sophisticated analysis taking into account the full angular dependence of the torques. Using a 1-D model we compared the spin orbit torque efficiencies by depinning measurements and spin torque magnetometry. We show that the effective fields can be accurately determined and we find good agreement. Thus our method allows us now to rapidly screen materials and predict the resulting quasi-particle dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.04665v2-abstract-full').style.display = 'none'; document.getElementById('1902.04665v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 page, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 95, 224409 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.02439">arXiv:1806.02439</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.02439">pdf</a>, <a href="https://arxiv.org/format/1806.02439">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.147203">10.1103/PhysRevLett.121.147203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Modification of Dzyaloshinskii-Moriya interaction stabilized domain wall chirality by driving currents </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Karnad%2C+G+V">G. V. Karnad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Freimuth%2C+F">F. Freimuth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martinez%2C+E">E. Martinez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conte%2C+R+L">R. Lo Conte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gubbiotti%2C+G">G. Gubbiotti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schulz%2C+T">T. Schulz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Senz%2C+S">S. Senz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ocker%2C+B">B. Ocker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mokrousov%2C+Y">Y. Mokrousov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kl%C3%A4ui%2C+M">M. Kl盲ui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.02439v1-abstract-short" style="display: inline;"> We measure and analyze the chirality of the Dzyaloshinskii-Moriya interaction (DMI) stabilized spin textures in multilayers of Ta/Co$_{20}$Fe$_{60}$B$_{20}$/MgO. The effective DMI is measured experimentally using domain wall motion measurements, both in the presence (using spin orbit torques) and absence of driving currents (using magnetic fields). We observe that the current-induced domain wall m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.02439v1-abstract-full').style.display = 'inline'; document.getElementById('1806.02439v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.02439v1-abstract-full" style="display: none;"> We measure and analyze the chirality of the Dzyaloshinskii-Moriya interaction (DMI) stabilized spin textures in multilayers of Ta/Co$_{20}$Fe$_{60}$B$_{20}$/MgO. The effective DMI is measured experimentally using domain wall motion measurements, both in the presence (using spin orbit torques) and absence of driving currents (using magnetic fields). We observe that the current-induced domain wall motion yields a change in effective DMI magnitude and opposite domain wall chirality when compared to field-induced domain wall motion (without current). We explore this effect, which we refer to as current-induced DMI, by providing possible explanations for its emergence, and explore the possibilty of its manifestation in the framework of recent theoretical predictions of DMI modifications due to spin currents. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.02439v1-abstract-full').style.display = 'none'; document.getElementById('1806.02439v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 147203 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.00294">arXiv:1806.00294</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.00294">pdf</a>, <a href="https://arxiv.org/format/1806.00294">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Study of energetics of 360掳 domain walls through annihilation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Karnad%2C+G+V">G. V. Karnad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martinez%2C+E">E. Martinez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voto%2C+M">M. Voto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schulz%2C+T">T. Schulz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ocker%2C+B">B. Ocker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ravelosona%2C+D">D. Ravelosona</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kl%C3%A4ui%2C+M">M. Kl盲ui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.00294v1-abstract-short" style="display: inline;"> The Dzyaloshinskii-Moriya interaction (DMI) causes domain walls in perpendicular magnetized systems to adopt a homochiral configuration by winding in the same direction for both Up-Down and Down-Up walls. The topology of these domain walls is then distinct from the uniformly magnetized state. When two domain walls approach each other and are in close proximity they form winding pairs, stabilized b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.00294v1-abstract-full').style.display = 'inline'; document.getElementById('1806.00294v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.00294v1-abstract-full" style="display: none;"> The Dzyaloshinskii-Moriya interaction (DMI) causes domain walls in perpendicular magnetized systems to adopt a homochiral configuration by winding in the same direction for both Up-Down and Down-Up walls. The topology of these domain walls is then distinct from the uniformly magnetized state. When two domain walls approach each other and are in close proximity they form winding pairs, stabilized by a dipolar repulsion. This can result in the formation of 360 掳 stable domain walls, whose stability is directly related to the magnitude of the additional dipolar interaction resulting from the spin structure governed by the DMI. Application of an external magnetic field can overcome the dipolar repulsion of the winding pairs and result in the annihilation of the domain walls, which is studied here in a combined theoretical and experimental effort. We present an extended analytical model that studies the interaction and modification of the dipolar interaction of the domain wall pairs under the application of in-plane and out-of-plane magnetic fields. We realize the experiment in a system of Ta/Co$_{20}$Fe$_{60}$B$_{20}$/MgO and observe that the results are in agreement with the behavior predicted by the analytical model. To compare and understand these results, we perform micromagnetic calculations to gauge the validity of the analytics and also include the full dipolar interactions which are present due to the device geometry. We find that our numerical and experimental studies are in agreement and that the DMI indeed provides an additional stability mechanism against annihilation of DWs, which is potentially useful in dense memory storage applications. Beyond implications for domain walls, understanding the interaction is an important step to understand and control the interaction of many spin structures that contain domain walls, such as skyrmions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.00294v1-abstract-full').style.display = 'none'; document.getElementById('1806.00294v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.09438">arXiv:1802.09438</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.09438">pdf</a>, <a href="https://arxiv.org/format/1802.09438">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.100405">10.1103/PhysRevB.97.100405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Role of phonon skew scattering in the spin Hall effect of platinum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Karnad%2C+G+V">G. V. Karnad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gorini%2C+C">C. Gorini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">K. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schulz%2C+T">T. Schulz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conte%2C+R+L">R. Lo Conte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wells%2C+A+W+J">A. W. J. Wells</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+D+-">D. -S. Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shahbazi%2C+K">K. Shahbazi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J+-">J. -S. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+T+A">T. A. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Swagten%2C+H+J+M">H. J. M. Swagten</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eckern%2C+U">U. Eckern</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raimondi%2C+R">R. Raimondi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kl%C3%A4ui%2C+M">M. Kl盲ui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.09438v1-abstract-short" style="display: inline;"> We measure and analyze the effective spin Hall angle of platinum in the low residual resistivity regime by second harmonic measurements of the spin-orbit torques for a multilayer of Pt/Co/AlO$_x$. An angular dependent study of the torques allows us to extract the effective spin Hall angle responsible for the damping-like torque in the system. We observe a strikingly non-monotonic and reproducible&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.09438v1-abstract-full').style.display = 'inline'; document.getElementById('1802.09438v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.09438v1-abstract-full" style="display: none;"> We measure and analyze the effective spin Hall angle of platinum in the low residual resistivity regime by second harmonic measurements of the spin-orbit torques for a multilayer of Pt/Co/AlO$_x$. An angular dependent study of the torques allows us to extract the effective spin Hall angle responsible for the damping-like torque in the system. We observe a strikingly non-monotonic and reproducible temperature dependence of the torques. This behavior is compatible with recent theoretical predictions which include both intrinsic and extrinsic (impurities and phonons) contributions to the spin Hall effect at finite temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.09438v1-abstract-full').style.display = 'none'; document.getElementById('1802.09438v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 100405 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.04680">arXiv:1701.04680</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.04680">pdf</a>, <a href="https://arxiv.org/format/1701.04680">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4976198">10.1063/1.4976198 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> In/GaN(0001)-$\boldsymbol{{\mathsf{\left(\!\sqrt{3}\times\!\sqrt{3}\right)\!R30^{\circ}}}}$ adsorbate structure as a template for embedded (In,Ga)N/GaN monolayers and short-period superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ch%C3%A8ze%2C+C">C. Ch猫ze</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feix%2C+F">F. Feix</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Anikeeva%2C+M">M. Anikeeva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schulz%2C+T">T. Schulz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riechert%2C+H">H. Riechert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brandt%2C+O">O. Brandt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calarco%2C+R">R. Calarco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.04680v1-abstract-short" style="display: inline;"> We explore an alternative way to fabricate (In,Ga)N/GaN short-period superlattices on GaN(0001) by plasma-assisted molecular beam epitaxy. We exploit the existence of an In adsorbate structure manifesting itself by a $(\sqrt{3}\times\!\sqrt{3})\text{R}30^{\circ}$ surface reconstruction observed in-situ by reflection high-energy electron diffraction. This In adlayer accommodates a maximum of 1/3 mo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.04680v1-abstract-full').style.display = 'inline'; document.getElementById('1701.04680v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.04680v1-abstract-full" style="display: none;"> We explore an alternative way to fabricate (In,Ga)N/GaN short-period superlattices on GaN(0001) by plasma-assisted molecular beam epitaxy. We exploit the existence of an In adsorbate structure manifesting itself by a $(\sqrt{3}\times\!\sqrt{3})\text{R}30^{\circ}$ surface reconstruction observed in-situ by reflection high-energy electron diffraction. This In adlayer accommodates a maximum of 1/3 monolayer of In on the GaN surface and, under suitable conditions, can be embedded into GaN to form an In$_{0.33}$Ga$_{0.67}$N quantum sheet whose width is naturally limited to a single monolayer. Periodically inserting these quantum sheets, we synthesize (In,Ga)N/GaN short-period superlattices with abrupt interfaces and high periodicity as demonstrated by x-ray diffractometry and scanning transmission electron microscopy. The embedded quantum sheets are found to consist of single monolayers with an In content of 0.25-0.29. For a barrier thickness of 6 monolayers, the superlattice gives rise to a photoluminescence band at 3.16 eV, close to the theoretically predicted values for these structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.04680v1-abstract-full').style.display = 'none'; document.getElementById('1701.04680v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figures Submitted to Appl. Phys. Lett</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 110 (2017) 072104 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.02078">arXiv:1609.02078</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.02078">pdf</a>, <a href="https://arxiv.org/format/1609.02078">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Ferromagnetic layer thickness dependence of the Dzyaloshinskii-Moriya interaction and spin-orbit torques in Pt\Co\AlOx </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Conte%2C+R+L">Roberto Lo Conte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karnad%2C+G+V">Gurucharan V. Karnad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martinez%2C+E">Eduardo Martinez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyujoon Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+N">Nam-Hui Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+D">Dong-Soo Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">June-Seo Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prenzel%2C+S">Sebastian Prenzel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schulz%2C+T">Tomek Schulz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=You%2C+C">Chun-Yeol You</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Swagten%2C+H+J+M">Henk J. M. Swagten</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klaeui%2C+M">Mathias Klaeui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.02078v1-abstract-short" style="display: inline;"> We report the thickness dependence of Dzyaloshinskii-Moriya interaction (DMI) and spin-orbit torques (SOTs) in Pt\Co(t)\AlOx, studied by current-induced domain wall (DW) motion and second-harmonic experiments. From the DW motion study, a monotonous decay of the effective DMI strength with an increasing Co thickness is observed, in agreement with a DMI originating at the Pt\Co interface. The study&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.02078v1-abstract-full').style.display = 'inline'; document.getElementById('1609.02078v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.02078v1-abstract-full" style="display: none;"> We report the thickness dependence of Dzyaloshinskii-Moriya interaction (DMI) and spin-orbit torques (SOTs) in Pt\Co(t)\AlOx, studied by current-induced domain wall (DW) motion and second-harmonic experiments. From the DW motion study, a monotonous decay of the effective DMI strength with an increasing Co thickness is observed, in agreement with a DMI originating at the Pt\Co interface. The study of the ferromagnetic thickness dependence of spin-orbit torques reveals a more complex behavior. The effective SOT-field driving the DW motion is found to initially increase and then saturate with an increasing ferromagnetic thickness, while the effective SOT-fields acting on a saturated magnetic state exhibit a non-monotonic behavior with increasing Co-thickness. The observed thickness dependence suggests the spin-Hall effect in Pt as the main origin of the SOTs, with the measured SOT amplitudes resulting from the interplay between the varying thickness and the transverse spin diffusion length of the Co layer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.02078v1-abstract-full').style.display = 'none'; document.getElementById('1609.02078v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.02435">arXiv:1507.02435</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.02435">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4931429">10.1063/1.4931429 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-orbit torques for current parallel and perpendicular to a domain wall </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schulz%2C+T">Tomek Schulz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alejos%2C+O">Oscar Alejos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martinez%2C+E">Eduardo Martinez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hals%2C+K+M+D">Kjetil M. D. Hals</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia%2C+K">Karin Garcia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyujoon Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conte%2C+R+L">Roberto Lo Conte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karnad%2C+G+V">Gurucharan V. Karnad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moretti%2C+S">Simone Moretti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ocker%2C+B">Berthold Ocker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ravelosona%2C+D">Dafin茅 Ravelosona</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brataas%2C+A">Arne Brataas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kl%C3%A4ui%2C+M">Mathias Kl盲ui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.02435v1-abstract-short" style="display: inline;"> We report field- and current-induced domain wall (DW) depinning experiments in Ta/Co20Fe60B20/MgO nanowires through a Hall cross geometry. While purely field-induced depinning shows no angular dependence on in-plane fields, the effect of the current depends crucially on the internal DW structure, which we manipulate by an external magnetic in-plane field. We show for the first time depinning measu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.02435v1-abstract-full').style.display = 'inline'; document.getElementById('1507.02435v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.02435v1-abstract-full" style="display: none;"> We report field- and current-induced domain wall (DW) depinning experiments in Ta/Co20Fe60B20/MgO nanowires through a Hall cross geometry. While purely field-induced depinning shows no angular dependence on in-plane fields, the effect of the current depends crucially on the internal DW structure, which we manipulate by an external magnetic in-plane field. We show for the first time depinning measurements for a current sent parallel to the DW and compare its depinning efficiency with the conventional case of current flowing perpendicularly to the DW. We find that the maximum efficiency is similar for both current directions within the error bars, which is in line with a dominating damping-like spin-orbit torque (SOT) and indicates that no large additional torques arise for currents parallel to the DW. Finally, we find a varying dependence of the maximum depinning efficiency angle for different DWs and pinning levels. This emphasizes the importance of our full angular scans compared to previously used measurements for just two field directions (parallel and perpendicular to the DW) and shows the sensitivity of the spin-orbit torque to the precise DW structure and pinning sites. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.02435v1-abstract-full').style.display = 'none'; document.getElementById('1507.02435v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NBI QDEV CMT 2015 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.3753">arXiv:1409.3753</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1409.3753">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.014433">10.1103/PhysRevB.91.014433 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interfacial Dzyaloshinskii-Moriya interaction in Ta\Co20Fe60B20\MgO nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Conte%2C+R+L">R. Lo Conte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martinez%2C+E">E. Martinez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hrabec%2C+A">A. Hrabec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lamperti%2C+A">A. Lamperti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schulz%2C+T">T. Schulz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nasi%2C+L">L. Nasi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lazzarini%2C+L">L. Lazzarini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">F. Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">S. S. Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ocker%2C+B">B. Ocker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marrows%2C+C+H">C. H. Marrows</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+T+A">T. A. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klaeui%2C+M">M. Klaeui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.3753v1-abstract-short" style="display: inline;"> We report current-induced domain wall motion (CIDWM) in Ta\Co20Fe60B20\MgO nanowires. Domain walls are observed to move against the electron flow when no magnetic field is applied, while a field along the nanowires strongly affects the domain wall motion direction and velocity. A symmetric effect is observed for up-down and down-up domain walls. This indicates the presence of right-handed domain w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.3753v1-abstract-full').style.display = 'inline'; document.getElementById('1409.3753v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.3753v1-abstract-full" style="display: none;"> We report current-induced domain wall motion (CIDWM) in Ta\Co20Fe60B20\MgO nanowires. Domain walls are observed to move against the electron flow when no magnetic field is applied, while a field along the nanowires strongly affects the domain wall motion direction and velocity. A symmetric effect is observed for up-down and down-up domain walls. This indicates the presence of right-handed domain walls, due to a Dzyaloshinskii-Moriya interaction (DMI) with a DMI coefficient D=+0.06 mJ/m2. The positive DMI coefficient is interpreted to be a consequence of boron diffusion into the tantalum buffer layer during annealing. In a Pt\Co68Fe22B10\MgO nanowire CIDWM along the electron flow was observed, corroborating this interpretation. The experimental results are compared to 1D-model simulations including the effects of pinning. This advanced modelling allows us to reproduce the experiment outcomes and reliably extract a spin-Hall angle 胃SH=-0.11 for Ta in the nanowires, showing the importance of an analysis that goes beyond the currently used model for perfect nanowires. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.3753v1-abstract-full').style.display = 'none'; document.getElementById('1409.3753v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.4971">arXiv:1405.4971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1405.4971">pdf</a>, <a href="https://arxiv.org/format/1405.4971">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Origin of the spin Seebeck effect probed by temperature dependent measurements in Gd$_{3}$Fe$_{5}$O$_{12}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gepr%C3%A4gs%2C+S">Stephan Gepr盲gs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kehlberger%2C+A">Andreas Kehlberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schulz%2C+T">Tomek Schulz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mix%2C+C">Christian Mix</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Della+Coletta%2C+F">Francesco Della Coletta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meyer%2C+S">Sibylle Meyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kamra%2C+A">Akashdeep Kamra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Althammer%2C+M">Matthias Althammer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jakob%2C+G">Gerhard Jakob</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huebl%2C+H">Hans Huebl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gross%2C+R">Rudolf Gross</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goennenwein%2C+S+T+B">Sebastian T. B. Goennenwein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kl%C3%A4ui%2C+M">Mathias Kl盲ui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.4971v1-abstract-short" style="display: inline;"> We probe the spin Seebeck effect in Gd$_{3}$Fe$_{5}$O$_{12}$/Pt hybrid structures as a function of temperature and observe two sign changes of the spin Seebeck signal with decreasing temperature. A first sign change occurs at a temperature close to the Gd$_{3}$Fe$_{5}$O$_{12}$ magnetic compensation point at around 280 K. There the spin Seebeck signal changes sign abruptly with unaltered amplitude,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.4971v1-abstract-full').style.display = 'inline'; document.getElementById('1405.4971v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.4971v1-abstract-full" style="display: none;"> We probe the spin Seebeck effect in Gd$_{3}$Fe$_{5}$O$_{12}$/Pt hybrid structures as a function of temperature and observe two sign changes of the spin Seebeck signal with decreasing temperature. A first sign change occurs at a temperature close to the Gd$_{3}$Fe$_{5}$O$_{12}$ magnetic compensation point at around 280 K. There the spin Seebeck signal changes sign abruptly with unaltered amplitude, indicating that the spin current is mainly caused by the magnetic Fe sub-lattices, which reorient their directions at this temperature. A second, more gradual sign change takes place around the ordering temperature of the Gd sub-lattice in the range of 65-85 K, showing that the Gd magnetic sub-lattice dominates the thermally driven spin current at lower temperatures. These sign changes together with the non-monotonous dependence of the spin Seebeck signal on the temperature demonstrate that the magnonic spin current is not simply replicating the effective magnetization of Gd$_{3}$Fe$_{5}$O$_{12}$. Rather, the thermally generated net spin current results from a complex interplay of the three magnetic sub-lattices involved. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.4971v1-abstract-full').style.display = 'none'; document.getElementById('1405.4971v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.0452">arXiv:1405.0452</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1405.0452">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4896225">10.1063/1.4896225 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-orbit torque-driven magnetization switching and thermal effects studied in Ta\CoFeB\MgO nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Conte%2C+R+L">R. Lo Conte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hrabec%2C+A">A. Hrabec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mihai%2C+A+P">A. P. Mihai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schulz%2C+T">T. Schulz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noh%2C+S+-">S. -J. Noh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marrows%2C+C+H">C. H. Marrows</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+T+A">T. A. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kl%C3%A4ui%2C+M">M. Kl盲ui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.0452v1-abstract-short" style="display: inline;"> We demonstrate magnetization switching in out-of-plane magnetized Ta\CoFeB\MgO nanowires by current pulse injection along the nanowires, both with and without a constant and uniform magnetic field collinear to the current direction. We deduce that an effective torque arising from spin-orbit effects in the multilayer drives the switching mechanism. While the generation of a component of the magneti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.0452v1-abstract-full').style.display = 'inline'; document.getElementById('1405.0452v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.0452v1-abstract-full" style="display: none;"> We demonstrate magnetization switching in out-of-plane magnetized Ta\CoFeB\MgO nanowires by current pulse injection along the nanowires, both with and without a constant and uniform magnetic field collinear to the current direction. We deduce that an effective torque arising from spin-orbit effects in the multilayer drives the switching mechanism. While the generation of a component of the magnetization along the current direction is crucial for the switching to occur, we observe that even without a longitudinal field thermally generated magnetization fluctuations can lead to switching. Analysis using a generalized N茅el-Brown model enables key parameters of the thermally induced spin-orbit torques switching process to be estimated, such as the attempt frequency and the effective energy barrier. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.0452v1-abstract-full').style.display = 'none'; document.getElementById('1405.0452v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1202.1176">arXiv:1202.1176</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1202.1176">pdf</a>, <a href="https://arxiv.org/format/1202.1176">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphys2231">10.1038/nphys2231 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergent electrodynamics of skyrmions in a chiral magnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schulz%2C+T">T. Schulz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ritz%2C+R">R. Ritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bauer%2C+A">A. Bauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Halder%2C+M">M. Halder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+M">M. Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franz%2C+C">C. Franz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pfleiderer%2C+C">C. Pfleiderer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Everschor%2C+K">K. Everschor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garst%2C+M">M. Garst</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosch%2C+A">A. Rosch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1202.1176v1-abstract-short" style="display: inline;"> When an electron moves in a smoothly varying non-collinear magnetic structure, its spin-orientation adapts constantly, thereby inducing forces that act on both the magnetic structure and the electron. These forces may be described by electric and magnetic fields of an emergent electrodynamics. The topologically quantized winding number of so-called skyrmions, i.e., certain magnetic whirls, discove&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.1176v1-abstract-full').style.display = 'inline'; document.getElementById('1202.1176v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1202.1176v1-abstract-full" style="display: none;"> When an electron moves in a smoothly varying non-collinear magnetic structure, its spin-orientation adapts constantly, thereby inducing forces that act on both the magnetic structure and the electron. These forces may be described by electric and magnetic fields of an emergent electrodynamics. The topologically quantized winding number of so-called skyrmions, i.e., certain magnetic whirls, discovered recently in chiral magnets are theoretically predicted to induce exactly one quantum of emergent magnetic flux per skyrmion. A moving skyrmion is therefore expected to induce an emergent electric field following Faraday&#39;s law of induction, which inherits this topological quantization. Here we report Hall effect measurements, which establish quantitatively the predicted emergent electrodynamics. This allows to obtain quantitative evidence of the depinning of skyrmions from impurities at ultra-low current densities of only 10^6 A/m^2 and their subsequent motion. The combination of exceptionally small current densities and simple transport measurements offers fundamental insights into the connection between emergent and real electrodynamics of skyrmions in chiral magnets, and promises to be important for applications in the long-term. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.1176v1-abstract-full').style.display = 'none'; document.getElementById('1202.1176v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, supplementary information file included</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10