CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 195 results for author: <span class="mathjax">Dou, Z</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&amp;query=Dou%2C+Z">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Dou, Z"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Dou%2C+Z&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Dou, Z"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Dou%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Dou%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Dou%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Dou%2C+Z&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Dou%2C+Z&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.08468">arXiv:2502.08468</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.08468">pdf</a>, <a href="https://arxiv.org/format/2502.08468">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> mmE5: Improving Multimodal Multilingual Embeddings via High-quality Synthetic Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chen%2C+H">Haonan Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+L">Liang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+N">Nan Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+Y">Yutao Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhao%2C+Z">Ziliang Zhao</a>, <a href="/search/cs?searchtype=author&amp;query=Wei%2C+F">Furu Wei</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.08468v1-abstract-short" style="display: inline;"> Multimodal embedding models have gained significant attention for their ability to map data from different modalities, such as text and images, into a unified representation space. However, the limited labeled multimodal data often hinders embedding performance. Recent approaches have leveraged data synthesis to address this problem, yet the quality of synthetic data remains a critical bottleneck.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08468v1-abstract-full').style.display = 'inline'; document.getElementById('2502.08468v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.08468v1-abstract-full" style="display: none;"> Multimodal embedding models have gained significant attention for their ability to map data from different modalities, such as text and images, into a unified representation space. However, the limited labeled multimodal data often hinders embedding performance. Recent approaches have leveraged data synthesis to address this problem, yet the quality of synthetic data remains a critical bottleneck. In this work, we identify three criteria for high-quality synthetic multimodal data. First, broad scope ensures that the generated data covers diverse tasks and modalities, making it applicable to various downstream scenarios. Second, robust cross-modal alignment makes different modalities semantically consistent. Third, high fidelity ensures that the synthetic data maintains realistic details to enhance its reliability. Guided by these principles, we synthesize datasets that: (1) cover a wide range of tasks, modality combinations, and languages, (2) are generated via a deep thinking process within a single pass of a multimodal large language model, and (3) incorporate real-world images with accurate and relevant texts, ensuring fidelity through self-evaluation and refinement. Leveraging these high-quality synthetic and labeled datasets, we train a multimodal multilingual E5 model mmE5. Extensive experiments demonstrate that mmE5 achieves state-of-the-art performance on the MMEB Benchmark and superior multilingual performance on the XTD benchmark. Our codes, datasets and models are released in https://github.com/haon-chen/mmE5. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08468v1-abstract-full').style.display = 'none'; document.getElementById('2502.08468v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07358">arXiv:2502.07358</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.07358">pdf</a>, <a href="https://arxiv.org/format/2502.07358">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> SymbioSim: Human-in-the-loop Simulation Platform for Bidirectional Continuing Learning in Human-Robot Interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chen%2C+H">Haoran Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+Y">Yiteng Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Ren%2C+Y">Yiming Ren</a>, <a href="/search/cs?searchtype=author&amp;query=Ye%2C+Y">Yaoqin Ye</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+X">Xinran Li</a>, <a href="/search/cs?searchtype=author&amp;query=Ding%2C+N">Ning Ding</a>, <a href="/search/cs?searchtype=author&amp;query=Cong%2C+P">Peishan Cong</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Z">Ziyi Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+B">Bushi Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Y">Yuhan Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhiyang Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Leng%2C+X">Xiaokun Leng</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+M">Manyi Li</a>, <a href="/search/cs?searchtype=author&amp;query=Ma%2C+Y">Yuexin Ma</a>, <a href="/search/cs?searchtype=author&amp;query=Tu%2C+C">Changhe Tu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07358v1-abstract-short" style="display: inline;"> The development of intelligent robots seeks to seamlessly integrate them into the human world, providing assistance and companionship in daily life and work, with the ultimate goal of achieving human-robot symbiosis. To realize this vision, robots must continuously learn and evolve through consistent interaction and collaboration with humans, while humans need to gradually develop an understanding&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07358v1-abstract-full').style.display = 'inline'; document.getElementById('2502.07358v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07358v1-abstract-full" style="display: none;"> The development of intelligent robots seeks to seamlessly integrate them into the human world, providing assistance and companionship in daily life and work, with the ultimate goal of achieving human-robot symbiosis. To realize this vision, robots must continuously learn and evolve through consistent interaction and collaboration with humans, while humans need to gradually develop an understanding of and trust in robots through shared experiences. However, training and testing algorithms directly on physical robots involve substantial costs and safety risks. Moreover, current robotic simulators fail to support real human participation, limiting their ability to provide authentic interaction experiences and gather valuable human feedback. In this paper, we introduce SymbioSim, a novel human-in-the-loop robotic simulation platform designed to enable the safe and efficient development, evaluation, and optimization of human-robot interactions. By leveraging a carefully designed system architecture and modules, SymbioSim delivers a natural and realistic interaction experience, facilitating bidirectional continuous learning and adaptation for both humans and robots. Extensive experiments and user studies demonstrate the platform&#39;s promising performance and highlight its potential to significantly advance research on human-robot symbiosis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07358v1-abstract-full').style.display = 'none'; document.getElementById('2502.07358v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.06812">arXiv:2502.06812</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.06812">pdf</a>, <a href="https://arxiv.org/format/2502.06812">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> </div> </div> <p class="title is-5 mathjax"> Harness Local Rewards for Global Benefits: Effective Text-to-Video Generation Alignment with Patch-level Reward Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wang%2C+S">Shuting Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Tang%2C+H">Haihong Tang</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Xiong%2C+C">Chenyan Xiong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.06812v1-abstract-short" style="display: inline;"> The emergence of diffusion models (DMs) has significantly improved the quality of text-to-video generation models (VGMs). However, current VGM optimization primarily emphasizes the global quality of videos, overlooking localized errors, which leads to suboptimal generation capabilities. To address this issue, we propose a post-training strategy for VGMs, HALO, which explicitly incorporates local f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06812v1-abstract-full').style.display = 'inline'; document.getElementById('2502.06812v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.06812v1-abstract-full" style="display: none;"> The emergence of diffusion models (DMs) has significantly improved the quality of text-to-video generation models (VGMs). However, current VGM optimization primarily emphasizes the global quality of videos, overlooking localized errors, which leads to suboptimal generation capabilities. To address this issue, we propose a post-training strategy for VGMs, HALO, which explicitly incorporates local feedback from a patch reward model, providing detailed and comprehensive training signals with the video reward model for advanced VGM optimization. To develop an effective patch reward model, we distill GPT-4o to continuously train our video reward model, which enhances training efficiency and ensures consistency between video and patch reward distributions. Furthermore, to harmoniously integrate patch rewards into VGM optimization, we introduce a granular DPO (Gran-DPO) algorithm for DMs, allowing collaborative use of both patch and video rewards during the optimization process. Experimental results indicate that our patch reward model aligns well with human annotations and HALO substantially outperforms the baselines across two evaluation methods. Further experiments quantitatively prove the existence of patch defects, and our proposed method could effectively alleviate this issue. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06812v1-abstract-full').style.display = 'none'; document.getElementById('2502.06812v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.01045">arXiv:2502.01045</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.01045">pdf</a>, <a href="https://arxiv.org/format/2502.01045">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> </div> </div> <p class="title is-5 mathjax"> WonderHuman: Hallucinating Unseen Parts in Dynamic 3D Human Reconstruction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Z">Zilong Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhiyang Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Y">Yuan Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Lin%2C+C">Cheng Lin</a>, <a href="/search/cs?searchtype=author&amp;query=Dong%2C+X">Xiao Dong</a>, <a href="/search/cs?searchtype=author&amp;query=Guo%2C+Y">Yunhui Guo</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+C">Chenxu Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+X">Xin Li</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W">Wenping Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Guo%2C+X">Xiaohu Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.01045v1-abstract-short" style="display: inline;"> In this paper, we present WonderHuman to reconstruct dynamic human avatars from a monocular video for high-fidelity novel view synthesis. Previous dynamic human avatar reconstruction methods typically require the input video to have full coverage of the observed human body. However, in daily practice, one typically has access to limited viewpoints, such as monocular front-view videos, making it a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01045v1-abstract-full').style.display = 'inline'; document.getElementById('2502.01045v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.01045v1-abstract-full" style="display: none;"> In this paper, we present WonderHuman to reconstruct dynamic human avatars from a monocular video for high-fidelity novel view synthesis. Previous dynamic human avatar reconstruction methods typically require the input video to have full coverage of the observed human body. However, in daily practice, one typically has access to limited viewpoints, such as monocular front-view videos, making it a cumbersome task for previous methods to reconstruct the unseen parts of the human avatar. To tackle the issue, we present WonderHuman, which leverages 2D generative diffusion model priors to achieve high-quality, photorealistic reconstructions of dynamic human avatars from monocular videos, including accurate rendering of unseen body parts. Our approach introduces a Dual-Space Optimization technique, applying Score Distillation Sampling (SDS) in both canonical and observation spaces to ensure visual consistency and enhance realism in dynamic human reconstruction. Additionally, we present a View Selection strategy and Pose Feature Injection to enforce the consistency between SDS predictions and observed data, ensuring pose-dependent effects and higher fidelity in the reconstructed avatar. In the experiments, our method achieves SOTA performance in producing photorealistic renderings from the given monocular video, particularly for those challenging unseen parts. The project page and source code can be found at https://wyiguanw.github.io/WonderHuman/. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01045v1-abstract-full').style.display = 'none'; document.getElementById('2502.01045v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.14342">arXiv:2501.14342</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.14342">pdf</a>, <a href="https://arxiv.org/format/2501.14342">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Chain-of-Retrieval Augmented Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wang%2C+L">Liang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+H">Haonan Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+N">Nan Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Huang%2C+X">Xiaolong Huang</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Wei%2C+F">Furu Wei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.14342v1-abstract-short" style="display: inline;"> This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer. Conventional RAG methods usually perform a single retrieval step before the generation process, which limits their effectiveness in addressing complex queries due to imperfect retrieval results. In contrast, our proposed method, CoRAG&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14342v1-abstract-full').style.display = 'inline'; document.getElementById('2501.14342v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.14342v1-abstract-full" style="display: none;"> This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer. Conventional RAG methods usually perform a single retrieval step before the generation process, which limits their effectiveness in addressing complex queries due to imperfect retrieval results. In contrast, our proposed method, CoRAG (Chain-of-Retrieval Augmented Generation), allows the model to dynamically reformulate the query based on the evolving state. To train CoRAG effectively, we utilize rejection sampling to automatically generate intermediate retrieval chains, thereby augmenting existing RAG datasets that only provide the correct final answer. At test time, we propose various decoding strategies to scale the model&#39;s test-time compute by controlling the length and number of sampled retrieval chains. Experimental results across multiple benchmarks validate the efficacy of CoRAG, particularly in multi-hop question answering tasks, where we observe more than 10 points improvement in EM score compared to strong baselines. On the KILT benchmark, CoRAG establishes a new state-of-the-art performance across a diverse range of knowledge-intensive tasks. Furthermore, we offer comprehensive analyses to understand the scaling behavior of CoRAG, laying the groundwork for future research aimed at developing factual and grounded foundation models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14342v1-abstract-full').style.display = 'none'; document.getElementById('2501.14342v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.07071">arXiv:2501.07071</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.07071">pdf</a>, <a href="https://arxiv.org/format/2501.07071">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Value Compass Leaderboard: A Platform for Fundamental and Validated Evaluation of LLMs Values </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yao%2C+J">Jing Yao</a>, <a href="/search/cs?searchtype=author&amp;query=Yi%2C+X">Xiaoyuan Yi</a>, <a href="/search/cs?searchtype=author&amp;query=Duan%2C+S">Shitong Duan</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+J">Jindong Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Bai%2C+Y">Yuzhuo Bai</a>, <a href="/search/cs?searchtype=author&amp;query=Huang%2C+M">Muhua Huang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+P">Peng Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Lu%2C+T">Tun Lu</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+M">Maosong Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Xie%2C+X">Xing Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.07071v1-abstract-short" style="display: inline;"> As Large Language Models (LLMs) achieve remarkable breakthroughs, aligning their values with humans has become imperative for their responsible development and customized applications. However, there still lack evaluations of LLMs values that fulfill three desirable goals. (1) Value Clarification: We expect to clarify the underlying values of LLMs precisely and comprehensively, while current evalu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07071v1-abstract-full').style.display = 'inline'; document.getElementById('2501.07071v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.07071v1-abstract-full" style="display: none;"> As Large Language Models (LLMs) achieve remarkable breakthroughs, aligning their values with humans has become imperative for their responsible development and customized applications. However, there still lack evaluations of LLMs values that fulfill three desirable goals. (1) Value Clarification: We expect to clarify the underlying values of LLMs precisely and comprehensively, while current evaluations focus narrowly on safety risks such as bias and toxicity. (2) Evaluation Validity: Existing static, open-source benchmarks are prone to data contamination and quickly become obsolete as LLMs evolve. Additionally, these discriminative evaluations uncover LLMs&#39; knowledge about values, rather than valid assessments of LLMs&#39; behavioral conformity to values. (3) Value Pluralism: The pluralistic nature of human values across individuals and cultures is largely ignored in measuring LLMs value alignment. To address these challenges, we presents the Value Compass Leaderboard, with three correspondingly designed modules. It (i) grounds the evaluation on motivationally distinct \textit{basic values to clarify LLMs&#39; underlying values from a holistic view; (ii) applies a \textit{generative evolving evaluation framework with adaptive test items for evolving LLMs and direct value recognition from behaviors in realistic scenarios; (iii) propose a metric that quantifies LLMs alignment with a specific value as a weighted sum over multiple dimensions, with weights determined by pluralistic values. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07071v1-abstract-full').style.display = 'none'; document.getElementById('2501.07071v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.05366">arXiv:2501.05366</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.05366">pdf</a>, <a href="https://arxiv.org/format/2501.05366">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> </div> </div> <p class="title is-5 mathjax"> Search-o1: Agentic Search-Enhanced Large Reasoning Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Li%2C+X">Xiaoxi Li</a>, <a href="/search/cs?searchtype=author&amp;query=Dong%2C+G">Guanting Dong</a>, <a href="/search/cs?searchtype=author&amp;query=Jin%2C+J">Jiajie Jin</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Y">Yuyao Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+Y">Yujia Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+Y">Yutao Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+P">Peitian Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.05366v1-abstract-short" style="display: inline;"> Large reasoning models (LRMs) like OpenAI-o1 have demonstrated impressive long stepwise reasoning capabilities through large-scale reinforcement learning. However, their extended reasoning processes often suffer from knowledge insufficiency, leading to frequent uncertainties and potential errors. To address this limitation, we introduce \textbf{Search-o1}, a framework that enhances LRMs with an ag&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05366v1-abstract-full').style.display = 'inline'; document.getElementById('2501.05366v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.05366v1-abstract-full" style="display: none;"> Large reasoning models (LRMs) like OpenAI-o1 have demonstrated impressive long stepwise reasoning capabilities through large-scale reinforcement learning. However, their extended reasoning processes often suffer from knowledge insufficiency, leading to frequent uncertainties and potential errors. To address this limitation, we introduce \textbf{Search-o1}, a framework that enhances LRMs with an agentic retrieval-augmented generation (RAG) mechanism and a Reason-in-Documents module for refining retrieved documents. Search-o1 integrates an agentic search workflow into the reasoning process, enabling dynamic retrieval of external knowledge when LRMs encounter uncertain knowledge points. Additionally, due to the verbose nature of retrieved documents, we design a separate Reason-in-Documents module to deeply analyze the retrieved information before injecting it into the reasoning chain, minimizing noise and preserving coherent reasoning flow. Extensive experiments on complex reasoning tasks in science, mathematics, and coding, as well as six open-domain QA benchmarks, demonstrate the strong performance of Search-o1. This approach enhances the trustworthiness and applicability of LRMs in complex reasoning tasks, paving the way for more reliable and versatile intelligent systems. The code is available at \url{https://github.com/sunnynexus/Search-o1}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05366v1-abstract-full').style.display = 'none'; document.getElementById('2501.05366v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04643">arXiv:2501.04643</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.04643">pdf</a>, <a href="https://arxiv.org/format/2501.04643">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Discrete Wavelet Transform-Based Capsule Network for Hyperspectral Image Classification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Gao%2C+Z">Zhiqiang Gao</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+J">Jiaqi Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Shen%2C+H">Hangchi Shen</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhihao Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+X">Xiangbo Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Huang%2C+K">Kaizhu Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04643v1-abstract-short" style="display: inline;"> Hyperspectral image (HSI) classification is a crucial technique for remote sensing to build large-scale earth monitoring systems. HSI contains much more information than traditional visual images for identifying the categories of land covers. One recent feasible solution for HSI is to leverage CapsNets for capturing spectral-spatial information. However, these methods require high computational re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04643v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04643v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04643v1-abstract-full" style="display: none;"> Hyperspectral image (HSI) classification is a crucial technique for remote sensing to build large-scale earth monitoring systems. HSI contains much more information than traditional visual images for identifying the categories of land covers. One recent feasible solution for HSI is to leverage CapsNets for capturing spectral-spatial information. However, these methods require high computational requirements due to the full connection architecture between stacked capsule layers. To solve this problem, a DWT-CapsNet is proposed to identify partial but important connections in CapsNet for a effective and efficient HSI classification. Specifically, we integrate a tailored attention mechanism into a Discrete Wavelet Transform (DWT)-based downsampling layer, alleviating the information loss problem of conventional downsampling operation in feature extractors. Moreover, we propose a novel multi-scale routing algorithm that prunes a large proportion of connections in CapsNet. A capsule pyramid fusion mechanism is designed to aggregate the spectral-spatial relationships in multiple levels of granularity, and then a self-attention mechanism is further conducted in a partially and locally connected architecture to emphasize the meaningful relationships. As shown in the experimental results, our method achieves state-of-the-art accuracy while keeping lower computational demand regarding running time, flops, and the number of parameters, rendering it an appealing choice for practical implementation in HSI classification. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04643v1-abstract-full').style.display = 'none'; document.getElementById('2501.04643v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 Pages; 9 Figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.03847">arXiv:2501.03847</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.03847">pdf</a>, <a href="https://arxiv.org/format/2501.03847">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> </div> </div> <p class="title is-5 mathjax"> Diffusion as Shader: 3D-aware Video Diffusion for Versatile Video Generation Control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Gu%2C+Z">Zekai Gu</a>, <a href="/search/cs?searchtype=author&amp;query=Yan%2C+R">Rui Yan</a>, <a href="/search/cs?searchtype=author&amp;query=Lu%2C+J">Jiahao Lu</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+P">Peng Li</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhiyang Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Si%2C+C">Chenyang Si</a>, <a href="/search/cs?searchtype=author&amp;query=Dong%2C+Z">Zhen Dong</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Q">Qifeng Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Lin%2C+C">Cheng Lin</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Z">Ziwei Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W">Wenping Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Y">Yuan Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.03847v2-abstract-short" style="display: inline;"> Diffusion models have demonstrated impressive performance in generating high-quality videos from text prompts or images. However, precise control over the video generation process, such as camera manipulation or content editing, remains a significant challenge. Existing methods for controlled video generation are typically limited to a single control type, lacking the flexibility to handle diverse&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03847v2-abstract-full').style.display = 'inline'; document.getElementById('2501.03847v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.03847v2-abstract-full" style="display: none;"> Diffusion models have demonstrated impressive performance in generating high-quality videos from text prompts or images. However, precise control over the video generation process, such as camera manipulation or content editing, remains a significant challenge. Existing methods for controlled video generation are typically limited to a single control type, lacking the flexibility to handle diverse control demands. In this paper, we introduce Diffusion as Shader (DaS), a novel approach that supports multiple video control tasks within a unified architecture. Our key insight is that achieving versatile video control necessitates leveraging 3D control signals, as videos are fundamentally 2D renderings of dynamic 3D content. Unlike prior methods limited to 2D control signals, DaS leverages 3D tracking videos as control inputs, making the video diffusion process inherently 3D-aware. This innovation allows DaS to achieve a wide range of video controls by simply manipulating the 3D tracking videos. A further advantage of using 3D tracking videos is their ability to effectively link frames, significantly enhancing the temporal consistency of the generated videos. With just 3 days of fine-tuning on 8 H800 GPUs using less than 10k videos, DaS demonstrates strong control capabilities across diverse tasks, including mesh-to-video generation, camera control, motion transfer, and object manipulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03847v2-abstract-full').style.display = 'none'; document.getElementById('2501.03847v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Project page: https://igl-hkust.github.io/das/ Codes: https://github.com/IGL-HKUST/DiffusionAsShader</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.03220">arXiv:2501.03220</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.03220">pdf</a>, <a href="https://arxiv.org/format/2501.03220">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> ProTracker: Probabilistic Integration for Robust and Accurate Point Tracking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+T">Tingyang Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+C">Chen Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhiyang Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Gao%2C+Q">Qingzhe Gao</a>, <a href="/search/cs?searchtype=author&amp;query=Lei%2C+J">Jiahui Lei</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+B">Baoquan Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+L">Lingjie Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.03220v1-abstract-short" style="display: inline;"> In this paper, we propose ProTracker, a novel framework for robust and accurate long-term dense tracking of arbitrary points in videos. The key idea of our method is incorporating probabilistic integration to refine multiple predictions from both optical flow and semantic features for robust short-term and long-term tracking. Specifically, we integrate optical flow estimations in a probabilistic m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03220v1-abstract-full').style.display = 'inline'; document.getElementById('2501.03220v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.03220v1-abstract-full" style="display: none;"> In this paper, we propose ProTracker, a novel framework for robust and accurate long-term dense tracking of arbitrary points in videos. The key idea of our method is incorporating probabilistic integration to refine multiple predictions from both optical flow and semantic features for robust short-term and long-term tracking. Specifically, we integrate optical flow estimations in a probabilistic manner, producing smooth and accurate trajectories by maximizing the likelihood of each prediction. To effectively re-localize challenging points that disappear and reappear due to occlusion, we further incorporate long-term feature correspondence into our flow predictions for continuous trajectory generation. Extensive experiments show that ProTracker achieves the state-of-the-art performance among unsupervised and self-supervised approaches, and even outperforms supervised methods on several benchmarks. Our code and model will be publicly available upon publication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03220v1-abstract-full').style.display = 'none'; document.getElementById('2501.03220v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Project page: https://michaelszj.github.io/protracker</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.03001">arXiv:2501.03001</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.03001">pdf</a>, <a href="https://arxiv.org/format/2501.03001">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> </div> <p class="title is-5 mathjax"> Approximating N-Player Nash Equilibrium through Gradient Descent </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wang%2C+D">Dongge Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Yan%2C+X">Xiang Yan</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zehao Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Huang%2C+W">Wenhan Huang</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+Y">Yaodong Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Deng%2C+X">Xiaotie Deng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.03001v1-abstract-short" style="display: inline;"> Decoding how rational agents should behave in shared systems remains a critical challenge within theoretical computer science, artificial intelligence and economics studies. Central to this challenge is the task of computing the solution concept of games, which is Nash equilibrium (NE). Although computing NE in even two-player cases are known to be PPAD-hard, approximation solutions are of intensi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03001v1-abstract-full').style.display = 'inline'; document.getElementById('2501.03001v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.03001v1-abstract-full" style="display: none;"> Decoding how rational agents should behave in shared systems remains a critical challenge within theoretical computer science, artificial intelligence and economics studies. Central to this challenge is the task of computing the solution concept of games, which is Nash equilibrium (NE). Although computing NE in even two-player cases are known to be PPAD-hard, approximation solutions are of intensive interest in the machine learning domain. In this paper, we present a gradient-based approach to obtain approximate NE in N-player general-sum games. Specifically, we define a distance measure to an NE based on pure strategy best response, thereby computing an NE can be effectively transformed into finding the global minimum of this distance function through gradient descent. We prove that the proposed procedure converges to NE with rate $O(1/T)$ ($T$ is the number of iterations) when the utility function is convex. Experimental results suggest our method outperforms Tsaknakis-Spirakis algorithm, fictitious play and regret matching on various types of N-player normal-form games in GAMUT. In addition, our method demonstrates robust performance with increasing number of players and number of actions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03001v1-abstract-full').style.display = 'none'; document.getElementById('2501.03001v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.02838">arXiv:2501.02838</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.02838">pdf</a>, <a href="https://arxiv.org/format/2501.02838">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> </div> </div> <p class="title is-5 mathjax"> Improving GenIR Systems Based on User Feedback </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ai%2C+Q">Qingyao Ai</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+M">Min Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.02838v1-abstract-short" style="display: inline;"> In this chapter, we discuss how to improve the GenIR systems based on user feedback. Before describing the approaches, it is necessary to be aware that the concept of &#34;user&#34; has been extended in the interactions with the GenIR systems. Different types of feedback information and strategies are also provided. Then the alignment techniques are highlighted in terms of objectives and methods. Followin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02838v1-abstract-full').style.display = 'inline'; document.getElementById('2501.02838v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.02838v1-abstract-full" style="display: none;"> In this chapter, we discuss how to improve the GenIR systems based on user feedback. Before describing the approaches, it is necessary to be aware that the concept of &#34;user&#34; has been extended in the interactions with the GenIR systems. Different types of feedback information and strategies are also provided. Then the alignment techniques are highlighted in terms of objectives and methods. Following this, various ways of learning from user feedback in GenIR are presented, including continual learning, learning and ranking in the conversational context, and prompt learning. Through this comprehensive exploration, it becomes evident that innovative techniques are being proposed beyond traditional methods of utilizing user feedback, and contribute significantly to the evolution of GenIR in the new era. We also summarize some challenging topics and future directions that require further investigation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02838v1-abstract-full').style.display = 'none'; document.getElementById('2501.02838v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Chapter 5 of the book on Information Access in the Era of Generative AI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.17483">arXiv:2412.17483</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.17483">pdf</a>, <a href="https://arxiv.org/format/2412.17483">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> A Silver Bullet or a Compromise for Full Attention? A Comprehensive Study of Gist Token-based Context Compression </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Deng%2C+C">Chenlong Deng</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Z">Zhisong Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Mao%2C+K">Kelong Mao</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+S">Shuaiyi Li</a>, <a href="/search/cs?searchtype=author&amp;query=Huang%2C+X">Xinting Huang</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+D">Dong Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.17483v1-abstract-short" style="display: inline;"> In this work, we provide a thorough investigation of gist-based context compression methods to improve long-context processing in large language models. We focus on two key questions: (1) How well can these methods replace full attention models? and (2) What potential failure patterns arise due to compression? Through extensive experiments, we show that while gist-based compression can achieve nea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17483v1-abstract-full').style.display = 'inline'; document.getElementById('2412.17483v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.17483v1-abstract-full" style="display: none;"> In this work, we provide a thorough investigation of gist-based context compression methods to improve long-context processing in large language models. We focus on two key questions: (1) How well can these methods replace full attention models? and (2) What potential failure patterns arise due to compression? Through extensive experiments, we show that while gist-based compression can achieve near-lossless performance on tasks like retrieval-augmented generation and long-document QA, it faces challenges in tasks like synthetic recall. Furthermore, we identify three key failure patterns: lost by the boundary, lost if surprise, and lost along the way. To mitigate these issues, we propose two effective strategies: fine-grained autoencoding, which enhances the reconstruction of original token information, and segment-wise token importance estimation, which adjusts optimization based on token dependencies. Our work provides valuable insights into the understanding of gist token-based context compression and offers practical strategies for improving compression capabilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17483v1-abstract-full').style.display = 'none'; document.getElementById('2412.17483v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.14835">arXiv:2412.14835</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.14835">pdf</a>, <a href="https://arxiv.org/format/2412.14835">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> </div> </div> <p class="title is-5 mathjax"> Progressive Multimodal Reasoning via Active Retrieval </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Dong%2C+G">Guanting Dong</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+C">Chenghao Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Deng%2C+M">Mengjie Deng</a>, <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+Y">Yutao Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Wen%2C+J">Ji-Rong Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.14835v1-abstract-short" style="display: inline;"> Multi-step multimodal reasoning tasks pose significant challenges for multimodal large language models (MLLMs), and finding effective ways to enhance their performance in such scenarios remains an unresolved issue. In this paper, we propose AR-MCTS, a universal framework designed to progressively improve the reasoning capabilities of MLLMs through Active Retrieval (AR) and Monte Carlo Tree Search&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14835v1-abstract-full').style.display = 'inline'; document.getElementById('2412.14835v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.14835v1-abstract-full" style="display: none;"> Multi-step multimodal reasoning tasks pose significant challenges for multimodal large language models (MLLMs), and finding effective ways to enhance their performance in such scenarios remains an unresolved issue. In this paper, we propose AR-MCTS, a universal framework designed to progressively improve the reasoning capabilities of MLLMs through Active Retrieval (AR) and Monte Carlo Tree Search (MCTS). Our approach begins with the development of a unified retrieval module that retrieves key supporting insights for solving complex reasoning problems from a hybrid-modal retrieval corpus. To bridge the gap in automated multimodal reasoning verification, we employ the MCTS algorithm combined with an active retrieval mechanism, which enables the automatic generation of step-wise annotations. This strategy dynamically retrieves key insights for each reasoning step, moving beyond traditional beam search sampling to improve the diversity and reliability of the reasoning space. Additionally, we introduce a process reward model that aligns progressively to support the automatic verification of multimodal reasoning tasks. Experimental results across three complex multimodal reasoning benchmarks confirm the effectiveness of the AR-MCTS framework in enhancing the performance of various multimodal models. Further analysis demonstrates that AR-MCTS can optimize sampling diversity and accuracy, yielding reliable multimodal reasoning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14835v1-abstract-full').style.display = 'none'; document.getElementById('2412.14835v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Working in progress</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.14574">arXiv:2412.14574</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.14574">pdf</a>, <a href="https://arxiv.org/format/2412.14574">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Sliding Windows Are Not the End: Exploring Full Ranking with Long-Context Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Liu%2C+W">Wenhan Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Ma%2C+X">Xinyu Ma</a>, <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+Y">Yutao Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhao%2C+Z">Ziliang Zhao</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+S">Shuaiqiang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Yin%2C+D">Dawei Yin</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.14574v1-abstract-short" style="display: inline;"> Large Language Models (LLMs) have shown exciting performance in listwise passage ranking. Due to the limited input length, existing methods often adopt the sliding window strategy. Such a strategy, though effective, is inefficient as it involves repetitive and serialized processing, which usually re-evaluates relevant passages multiple times. As a result, it incurs redundant API costs, which are p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14574v1-abstract-full').style.display = 'inline'; document.getElementById('2412.14574v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.14574v1-abstract-full" style="display: none;"> Large Language Models (LLMs) have shown exciting performance in listwise passage ranking. Due to the limited input length, existing methods often adopt the sliding window strategy. Such a strategy, though effective, is inefficient as it involves repetitive and serialized processing, which usually re-evaluates relevant passages multiple times. As a result, it incurs redundant API costs, which are proportional to the number of inference tokens. The development of long-context LLMs enables the full ranking of all passages within a single inference, avoiding redundant API costs. In this paper, we conduct a comprehensive study of long-context LLMs for ranking tasks in terms of efficiency and effectiveness. Surprisingly, our experiments reveal that full ranking with long-context LLMs can deliver superior performance in the supervised fine-tuning setting with a huge efficiency improvement. Furthermore, we identify two limitations of fine-tuning the full ranking model based on existing methods: (1) sliding window strategy fails to produce a full ranking list as a training label, and (2) the language modeling loss cannot emphasize top-ranked passage IDs in the label. To alleviate these issues, we propose a new complete listwise label construction approach and a novel importance-aware learning objective for full ranking. Experiments show the superior performance of our method over baselines. Our codes are available at \url{https://github.com/8421BCD/fullrank}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14574v1-abstract-full').style.display = 'none'; document.getElementById('2412.14574v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.14559">arXiv:2412.14559</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.14559">pdf</a>, <a href="https://arxiv.org/format/2412.14559">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> ScaMo: Exploring the Scaling Law in Autoregressive Motion Generation Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Lu%2C+S">Shunlin Lu</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+J">Jingbo Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Lu%2C+Z">Zeyu Lu</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+L">Ling-Hao Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Dai%2C+W">Wenxun Dai</a>, <a href="/search/cs?searchtype=author&amp;query=Dong%2C+J">Junting Dong</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhiyang Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Dai%2C+B">Bo Dai</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+R">Ruimao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.14559v1-abstract-short" style="display: inline;"> The scaling law has been validated in various domains, such as natural language processing (NLP) and massive computer vision tasks; however, its application to motion generation remains largely unexplored. In this paper, we introduce a scalable motion generation framework that includes the motion tokenizer Motion FSQ-VAE and a text-prefix autoregressive transformer. Through comprehensive experimen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14559v1-abstract-full').style.display = 'inline'; document.getElementById('2412.14559v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.14559v1-abstract-full" style="display: none;"> The scaling law has been validated in various domains, such as natural language processing (NLP) and massive computer vision tasks; however, its application to motion generation remains largely unexplored. In this paper, we introduce a scalable motion generation framework that includes the motion tokenizer Motion FSQ-VAE and a text-prefix autoregressive transformer. Through comprehensive experiments, we observe the scaling behavior of this system. For the first time, we confirm the existence of scaling laws within the context of motion generation. Specifically, our results demonstrate that the normalized test loss of our prefix autoregressive models adheres to a logarithmic law in relation to compute budgets. Furthermore, we also confirm the power law between Non-Vocabulary Parameters, Vocabulary Parameters, and Data Tokens with respect to compute budgets respectively. Leveraging the scaling law, we predict the optimal transformer size, vocabulary size, and data requirements for a compute budget of $1e18$. The test loss of the system, when trained with the optimal model size, vocabulary size, and required data, aligns precisely with the predicted test loss, thereby validating the scaling law. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14559v1-abstract-full').style.display = 'none'; document.getElementById('2412.14559v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.13018">arXiv:2412.13018</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.13018">pdf</a>, <a href="https://arxiv.org/format/2412.13018">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> OmniEval: An Omnidirectional and Automatic RAG Evaluation Benchmark in Financial Domain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wang%2C+S">Shuting Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Tan%2C+J">Jiejun Tan</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Wen%2C+J">Ji-Rong Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.13018v1-abstract-short" style="display: inline;"> As a typical and practical application of Large Language Models (LLMs), Retrieval-Augmented Generation (RAG) techniques have gained extensive attention, particularly in vertical domains where LLMs may lack domain-specific knowledge. In this paper, we introduce an omnidirectional and automatic RAG benchmark, OmniEval, in the financial domain. Our benchmark is characterized by its multi-dimensional&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13018v1-abstract-full').style.display = 'inline'; document.getElementById('2412.13018v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.13018v1-abstract-full" style="display: none;"> As a typical and practical application of Large Language Models (LLMs), Retrieval-Augmented Generation (RAG) techniques have gained extensive attention, particularly in vertical domains where LLMs may lack domain-specific knowledge. In this paper, we introduce an omnidirectional and automatic RAG benchmark, OmniEval, in the financial domain. Our benchmark is characterized by its multi-dimensional evaluation framework, including (1) a matrix-based RAG scenario evaluation system that categorizes queries into five task classes and 16 financial topics, leading to a structured assessment of diverse query scenarios; (2) a multi-dimensional evaluation data generation approach, which combines GPT-4-based automatic generation and human annotation, achieving an 87.47\% acceptance ratio in human evaluations on generated instances; (3) a multi-stage evaluation system that evaluates both retrieval and generation performance, result in a comprehensive evaluation on the RAG pipeline; and (4) robust evaluation metrics derived from rule-based and LLM-based ones, enhancing the reliability of assessments through manual annotations and supervised fine-tuning of an LLM evaluator. Our experiments demonstrate the comprehensiveness of OmniEval, which includes extensive test datasets and highlights the performance variations of RAG systems across diverse topics and tasks, revealing significant opportunities for RAG models to improve their capabilities in vertical domains. We open source the code of our benchmark in \href{https://github.com/RUC-NLPIR/OmniEval}{https://github.com/RUC-NLPIR/OmniEval}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13018v1-abstract-full').style.display = 'none'; document.getElementById('2412.13018v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12486">arXiv:2412.12486</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.12486">pdf</a>, <a href="https://arxiv.org/format/2412.12486">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> </div> </div> <p class="title is-5 mathjax"> Boosting Long-Context Management via Query-Guided Activation Refilling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Qian%2C+H">Hongjin Qian</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Z">Zheng Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+P">Peitian Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Lian%2C+D">Defu Lian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12486v2-abstract-short" style="display: inline;"> Processing long contexts poses a significant challenge for large language models (LLMs) due to their inherent context-window limitations and the computational burden of extensive key-value (KV) activations, which severely impact efficiency. For information-seeking tasks, full context perception is often unnecessary, as a query&#39;s information needs can dynamically range from localized details to a g&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12486v2-abstract-full').style.display = 'inline'; document.getElementById('2412.12486v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12486v2-abstract-full" style="display: none;"> Processing long contexts poses a significant challenge for large language models (LLMs) due to their inherent context-window limitations and the computational burden of extensive key-value (KV) activations, which severely impact efficiency. For information-seeking tasks, full context perception is often unnecessary, as a query&#39;s information needs can dynamically range from localized details to a global perspective, depending on its complexity. However, existing methods struggle to adapt effectively to these dynamic information needs. In the paper, we propose a method for processing long-context information-seeking tasks via query-guided Activation Refilling (ACRE). ACRE constructs a Bi-layer KV Cache for long contexts, where the layer-1 (L1) cache compactly captures global information, and the layer-2 (L2) cache provides detailed and localized information. ACRE establishes a proxying relationship between the two caches, allowing the input query to attend to the L1 cache and dynamically refill it with relevant entries from the L2 cache. This mechanism integrates global understanding with query-specific local details, thus improving answer decoding. Experiments on a variety of long-context information-seeking datasets demonstrate ACRE&#39;s effectiveness, achieving improvements in both performance and efficiency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12486v2-abstract-full').style.display = 'none'; document.getElementById('2412.12486v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.11919">arXiv:2412.11919</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.11919">pdf</a>, <a href="https://arxiv.org/format/2412.11919">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> </div> </div> <p class="title is-5 mathjax"> RetroLLM: Empowering Large Language Models to Retrieve Fine-grained Evidence within Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Li%2C+X">Xiaoxi Li</a>, <a href="/search/cs?searchtype=author&amp;query=Jin%2C+J">Jiajie Jin</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+Y">Yujia Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+Y">Yongkang Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+Z">Zhonghua Li</a>, <a href="/search/cs?searchtype=author&amp;query=Ye%2C+Q">Qi Ye</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.11919v1-abstract-short" style="display: inline;"> Large language models (LLMs) exhibit remarkable generative capabilities but often suffer from hallucinations. Retrieval-augmented generation (RAG) offers an effective solution by incorporating external knowledge, but existing methods still face several limitations: additional deployment costs of separate retrievers, redundant input tokens from retrieved text chunks, and the lack of joint optimizat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11919v1-abstract-full').style.display = 'inline'; document.getElementById('2412.11919v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.11919v1-abstract-full" style="display: none;"> Large language models (LLMs) exhibit remarkable generative capabilities but often suffer from hallucinations. Retrieval-augmented generation (RAG) offers an effective solution by incorporating external knowledge, but existing methods still face several limitations: additional deployment costs of separate retrievers, redundant input tokens from retrieved text chunks, and the lack of joint optimization of retrieval and generation. To address these issues, we propose \textbf{RetroLLM}, a unified framework that integrates retrieval and generation into a single, cohesive process, enabling LLMs to directly generate fine-grained evidence from the corpus with constrained decoding. Moreover, to mitigate false pruning in the process of constrained evidence generation, we introduce (1) hierarchical FM-Index constraints, which generate corpus-constrained clues to identify a subset of relevant documents before evidence generation, reducing irrelevant decoding space; and (2) a forward-looking constrained decoding strategy, which considers the relevance of future sequences to improve evidence accuracy. Extensive experiments on five open-domain QA datasets demonstrate RetroLLM&#39;s superior performance across both in-domain and out-of-domain tasks. The code is available at \url{https://github.com/sunnynexus/RetroLLM}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11919v1-abstract-full').style.display = 'none'; document.getElementById('2412.11919v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.08907">arXiv:2412.08907</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.08907">pdf</a>, <a href="https://arxiv.org/format/2412.08907">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> GaGA: Towards Interactive Global Geolocation Assistant </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhiyang Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Z">Zipeng Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Han%2C+X">Xumeng Han</a>, <a href="/search/cs?searchtype=author&amp;query=Qiang%2C+C">Chenhui Qiang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+K">Kuiran Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+G">Guorong Li</a>, <a href="/search/cs?searchtype=author&amp;query=Huang%2C+Z">Zhibei Huang</a>, <a href="/search/cs?searchtype=author&amp;query=Han%2C+Z">Zhenjun Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.08907v1-abstract-short" style="display: inline;"> Global geolocation, which seeks to predict the geographical location of images captured anywhere in the world, is one of the most challenging tasks in the field of computer vision. In this paper, we introduce an innovative interactive global geolocation assistant named GaGA, built upon the flourishing large vision-language models (LVLMs). GaGA uncovers geographical clues within images and combines&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08907v1-abstract-full').style.display = 'inline'; document.getElementById('2412.08907v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.08907v1-abstract-full" style="display: none;"> Global geolocation, which seeks to predict the geographical location of images captured anywhere in the world, is one of the most challenging tasks in the field of computer vision. In this paper, we introduce an innovative interactive global geolocation assistant named GaGA, built upon the flourishing large vision-language models (LVLMs). GaGA uncovers geographical clues within images and combines them with the extensive world knowledge embedded in LVLMs to determine the geolocations while also providing justifications and explanations for the prediction results. We further designed a novel interactive geolocation method that surpasses traditional static inference approaches. It allows users to intervene, correct, or provide clues for the predictions, making the model more flexible and practical. The development of GaGA relies on the newly proposed Multi-modal Global Geolocation (MG-Geo) dataset, a comprehensive collection of 5 million high-quality image-text pairs. GaGA achieves state-of-the-art performance on the GWS15k dataset, improving accuracy by 4.57% at the country level and 2.92% at the city level, setting a new benchmark. These advancements represent a significant leap forward in developing highly accurate, interactive geolocation systems with global applicability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08907v1-abstract-full').style.display = 'none'; document.getElementById('2412.08907v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03079">arXiv:2412.03079</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.03079">pdf</a>, <a href="https://arxiv.org/format/2412.03079">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Align3R: Aligned Monocular Depth Estimation for Dynamic Videos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Lu%2C+J">Jiahao Lu</a>, <a href="/search/cs?searchtype=author&amp;query=Huang%2C+T">Tianyu Huang</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+P">Peng Li</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhiyang Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Lin%2C+C">Cheng Lin</a>, <a href="/search/cs?searchtype=author&amp;query=Cui%2C+Z">Zhiming Cui</a>, <a href="/search/cs?searchtype=author&amp;query=Dong%2C+Z">Zhen Dong</a>, <a href="/search/cs?searchtype=author&amp;query=Yeung%2C+S">Sai-Kit Yeung</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W">Wenping Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Y">Yuan Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03079v2-abstract-short" style="display: inline;"> Recent developments in monocular depth estimation methods enable high-quality depth estimation of single-view images but fail to estimate consistent video depth across different frames. Recent works address this problem by applying a video diffusion model to generate video depth conditioned on the input video, which is training-expensive and can only produce scale-invariant depth values without ca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03079v2-abstract-full').style.display = 'inline'; document.getElementById('2412.03079v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03079v2-abstract-full" style="display: none;"> Recent developments in monocular depth estimation methods enable high-quality depth estimation of single-view images but fail to estimate consistent video depth across different frames. Recent works address this problem by applying a video diffusion model to generate video depth conditioned on the input video, which is training-expensive and can only produce scale-invariant depth values without camera poses. In this paper, we propose a novel video-depth estimation method called Align3R to estimate temporal consistent depth maps for a dynamic video. Our key idea is to utilize the recent DUSt3R model to align estimated monocular depth maps of different timesteps. First, we fine-tune the DUSt3R model with additional estimated monocular depth as inputs for the dynamic scenes. Then, we apply optimization to reconstruct both depth maps and camera poses. Extensive experiments demonstrate that Align3R estimates consistent video depth and camera poses for a monocular video with superior performance than baseline methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03079v2-abstract-full').style.display = 'none'; document.getElementById('2412.03079v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Project Page: https://igl-hkust.github.io/Align3R.github.io/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19921">arXiv:2411.19921</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.19921">pdf</a>, <a href="https://arxiv.org/format/2411.19921">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> </div> </div> <p class="title is-5 mathjax"> SIMS: Simulating Human-Scene Interactions with Real World Script Planning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W">Wenjia Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Pan%2C+L">Liang Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhiyang Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Liao%2C+Z">Zhouyingcheng Liao</a>, <a href="/search/cs?searchtype=author&amp;query=Lou%2C+Y">Yuke Lou</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+L">Lei Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+J">Jingbo Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Komura%2C+T">Taku Komura</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19921v1-abstract-short" style="display: inline;"> Simulating long-term human-scene interaction is a challenging yet fascinating task. Previous works have not effectively addressed the generation of long-term human scene interactions with detailed narratives for physics-based animation. This paper introduces a novel framework for the planning and controlling of long-horizon physical plausible human-scene interaction. On the one hand, films and sho&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19921v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19921v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19921v1-abstract-full" style="display: none;"> Simulating long-term human-scene interaction is a challenging yet fascinating task. Previous works have not effectively addressed the generation of long-term human scene interactions with detailed narratives for physics-based animation. This paper introduces a novel framework for the planning and controlling of long-horizon physical plausible human-scene interaction. On the one hand, films and shows with stylish human locomotions or interactions with scenes are abundantly available on the internet, providing a rich source of data for script planning. On the other hand, Large Language Models (LLMs) can understand and generate logical storylines. This motivates us to marry the two by using an LLM-based pipeline to extract scripts from videos, and then employ LLMs to imitate and create new scripts, capturing complex, time-series human behaviors and interactions with environments. By leveraging this, we utilize a dual-aware policy that achieves both language comprehension and scene understanding to guide character motions within contextual and spatial constraints. To facilitate training and evaluation, we contribute a comprehensive planning dataset containing diverse motion sequences extracted from real-world videos and expand them with large language models. We also collect and re-annotate motion clips from existing kinematic datasets to enable our policy learn diverse skills. Extensive experiments demonstrate the effectiveness of our framework in versatile task execution and its generalization ability to various scenarios, showing remarkably enhanced performance compared with existing methods. Our code and data will be publicly available soon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19921v1-abstract-full').style.display = 'none'; document.getElementById('2411.19921v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16964">arXiv:2411.16964</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.16964">pdf</a>, <a href="https://arxiv.org/format/2411.16964">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> MotionWavelet: Human Motion Prediction via Wavelet Manifold Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Feng%2C+Y">Yuming Feng</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhiyang Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+L">Ling-Hao Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Y">Yuan Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+T">Tianyu Li</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+J">Jingbo Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Cao%2C+Z">Zeyu Cao</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W">Wenping Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Komura%2C+T">Taku Komura</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+L">Lingjie Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16964v2-abstract-short" style="display: inline;"> Modeling temporal characteristics and the non-stationary dynamics of body movement plays a significant role in predicting human future motions. However, it is challenging to capture these features due to the subtle transitions involved in the complex human motions. This paper introduces MotionWavelet, a human motion prediction framework that utilizes Wavelet Transformation and studies human motion&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16964v2-abstract-full').style.display = 'inline'; document.getElementById('2411.16964v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16964v2-abstract-full" style="display: none;"> Modeling temporal characteristics and the non-stationary dynamics of body movement plays a significant role in predicting human future motions. However, it is challenging to capture these features due to the subtle transitions involved in the complex human motions. This paper introduces MotionWavelet, a human motion prediction framework that utilizes Wavelet Transformation and studies human motion patterns in the spatial-frequency domain. In MotionWavelet, a Wavelet Diffusion Model (WDM) learns a Wavelet Manifold by applying Wavelet Transformation on the motion data therefore encoding the intricate spatial and temporal motion patterns. Once the Wavelet Manifold is built, WDM trains a diffusion model to generate human motions from Wavelet latent vectors. In addition to the WDM, MotionWavelet also presents a Wavelet Space Shaping Guidance mechanism to refine the denoising process to improve conformity with the manifold structure. WDM also develops Temporal Attention-Based Guidance to enhance prediction accuracy. Extensive experiments validate the effectiveness of MotionWavelet, demonstrating improved prediction accuracy and enhanced generalization across various benchmarks. Our code and models will be released upon acceptance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16964v2-abstract-full').style.display = 'none'; document.getElementById('2411.16964v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Project Page: https://frank-zy-dou.github.io/projects/MotionWavelet/ Video: https://youtu.be/pyWq0OYJdI0?si=4YHfFNXmLnbPC39g</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06805">arXiv:2411.06805</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06805">pdf</a>, <a href="https://arxiv.org/format/2411.06805">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> </div> </div> <p class="title is-5 mathjax"> AssistRAG: Boosting the Potential of Large Language Models with an Intelligent Information Assistant </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+Y">Yujia Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Z">Zheng Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06805v1-abstract-short" style="display: inline;"> The emergence of Large Language Models (LLMs) has significantly advanced natural language processing, but these models often generate factually incorrect information, known as &#34;hallucination&#34;. Initial retrieval-augmented generation (RAG) methods like the &#34;Retrieve-Read&#34; framework was inadequate for complex reasoning tasks. Subsequent prompt-based RAG strategies and Supervised Fine-Tuning (SFT) met&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06805v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06805v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06805v1-abstract-full" style="display: none;"> The emergence of Large Language Models (LLMs) has significantly advanced natural language processing, but these models often generate factually incorrect information, known as &#34;hallucination&#34;. Initial retrieval-augmented generation (RAG) methods like the &#34;Retrieve-Read&#34; framework was inadequate for complex reasoning tasks. Subsequent prompt-based RAG strategies and Supervised Fine-Tuning (SFT) methods improved performance but required frequent retraining and risked altering foundational LLM capabilities. To cope with these challenges, we propose Assistant-based Retrieval-Augmented Generation (AssistRAG), integrating an intelligent information assistant within LLMs. This assistant manages memory and knowledge through tool usage, action execution, memory building, and plan specification. Using a two-phase training approach, Curriculum Assistant Learning and Reinforced Preference Optimization. AssistRAG enhances information retrieval and decision-making. Experiments show AssistRAG significantly outperforms benchmarks, especially benefiting less advanced LLMs, by providing superior reasoning capabilities and accurate responses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06805v1-abstract-full').style.display = 'none'; document.getElementById('2411.06805v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by NeurIPS 2024 (poster)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03817">arXiv:2411.03817</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.03817">pdf</a>, <a href="https://arxiv.org/format/2411.03817">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Deng%2C+Z">Zhirui Deng</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+Y">Yutao Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Wen%2C+J">Ji-Rong Wen</a>, <a href="/search/cs?searchtype=author&amp;query=Xiong%2C+R">Ruibin Xiong</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+M">Mang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+W">Weipeng Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03817v3-abstract-short" style="display: inline;"> The outstanding capabilities of large language models (LLMs) render them a crucial component in various autonomous agent systems. While traditional methods depend on the inherent knowledge of LLMs without fine-tuning, more recent approaches have shifted toward the reinforcement learning strategy to further enhance agents&#39; ability to solve complex interactive tasks with environments and tools. Howe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03817v3-abstract-full').style.display = 'inline'; document.getElementById('2411.03817v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03817v3-abstract-full" style="display: none;"> The outstanding capabilities of large language models (LLMs) render them a crucial component in various autonomous agent systems. While traditional methods depend on the inherent knowledge of LLMs without fine-tuning, more recent approaches have shifted toward the reinforcement learning strategy to further enhance agents&#39; ability to solve complex interactive tasks with environments and tools. However, previous approaches are constrained by the sparse reward issue, where existing datasets solely provide a final scalar reward for each multi-step reasoning chain, potentially leading to ineffectiveness and inefficiency in policy learning. In this paper, we introduce StepAgent, which utilizes step-wise reward to optimize the agent&#39;s reinforcement learning process. Inheriting the spirit of novice-to-expert theory, we first compare the actions of the expert and the agent to automatically generate intermediate rewards for fine-grained optimization. Additionally, we propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment. Further theoretical analysis demonstrates that the action distribution of the agent can converge toward the expert action distribution over multiple training cycles. Experimental results across various datasets indicate that StepAgent outperforms existing baseline methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03817v3-abstract-full').style.display = 'none'; document.getElementById('2411.03817v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02959">arXiv:2411.02959</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.02959">pdf</a>, <a href="https://arxiv.org/format/2411.02959">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3696410.3714546">10.1145/3696410.3714546 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> HtmlRAG: HTML is Better Than Plain Text for Modeling Retrieved Knowledge in RAG Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Tan%2C+J">Jiejun Tan</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W">Wen Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+M">Mang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+W">Weipeng Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Wen%2C+J">Ji-Rong Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02959v2-abstract-short" style="display: inline;"> Retrieval-Augmented Generation (RAG) has been shown to improve knowledge capabilities and alleviate the hallucination problem of LLMs. The Web is a major source of external knowledge used in RAG systems, and many commercial RAG systems have used Web search engines as their major retrieval systems. Typically, such RAG systems retrieve search results, download HTML sources of the results, and then e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02959v2-abstract-full').style.display = 'inline'; document.getElementById('2411.02959v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02959v2-abstract-full" style="display: none;"> Retrieval-Augmented Generation (RAG) has been shown to improve knowledge capabilities and alleviate the hallucination problem of LLMs. The Web is a major source of external knowledge used in RAG systems, and many commercial RAG systems have used Web search engines as their major retrieval systems. Typically, such RAG systems retrieve search results, download HTML sources of the results, and then extract plain texts from the HTML sources. Plain text documents or chunks are fed into the LLMs to augment the generation. However, much of the structural and semantic information inherent in HTML, such as headings and table structures, is lost during this plain-text-based RAG process. To alleviate this problem, we propose HtmlRAG, which uses HTML instead of plain text as the format of retrieved knowledge in RAG. We believe HTML is better than plain text in modeling knowledge in external documents, and most LLMs possess robust capacities to understand HTML. However, utilizing HTML presents new challenges. HTML contains additional content such as tags, JavaScript, and CSS specifications, which bring extra input tokens and noise to the RAG system. To address this issue, we propose HTML cleaning, compression, and a two-step block-tree-based pruning strategy, to shorten the HTML while minimizing the loss of information. Experiments on six QA datasets confirm the superiority of using HTML in RAG systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02959v2-abstract-full').style.display = 'none'; document.getElementById('2411.02959v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by WWW 2025 main conference. Repo: https://github.com/plageon/HtmlRAG</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23090">arXiv:2410.23090</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.23090">pdf</a>, <a href="https://arxiv.org/format/2410.23090">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> CORAL: Benchmarking Multi-turn Conversational Retrieval-Augmentation Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Cheng%2C+Y">Yiruo Cheng</a>, <a href="/search/cs?searchtype=author&amp;query=Mao%2C+K">Kelong Mao</a>, <a href="/search/cs?searchtype=author&amp;query=Zhao%2C+Z">Ziliang Zhao</a>, <a href="/search/cs?searchtype=author&amp;query=Dong%2C+G">Guanting Dong</a>, <a href="/search/cs?searchtype=author&amp;query=Qian%2C+H">Hongjin Qian</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+Y">Yongkang Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Sakai%2C+T">Tetsuya Sakai</a>, <a href="/search/cs?searchtype=author&amp;query=Wen%2C+J">Ji-Rong Wen</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23090v1-abstract-short" style="display: inline;"> Retrieval-Augmented Generation (RAG) has become a powerful paradigm for enhancing large language models (LLMs) through external knowledge retrieval. Despite its widespread attention, existing academic research predominantly focuses on single-turn RAG, leaving a significant gap in addressing the complexities of multi-turn conversations found in real-world applications. To bridge this gap, we introd&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23090v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23090v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23090v1-abstract-full" style="display: none;"> Retrieval-Augmented Generation (RAG) has become a powerful paradigm for enhancing large language models (LLMs) through external knowledge retrieval. Despite its widespread attention, existing academic research predominantly focuses on single-turn RAG, leaving a significant gap in addressing the complexities of multi-turn conversations found in real-world applications. To bridge this gap, we introduce CORAL, a large-scale benchmark designed to assess RAG systems in realistic multi-turn conversational settings. CORAL includes diverse information-seeking conversations automatically derived from Wikipedia and tackles key challenges such as open-domain coverage, knowledge intensity, free-form responses, and topic shifts. It supports three core tasks of conversational RAG: passage retrieval, response generation, and citation labeling. We propose a unified framework to standardize various conversational RAG methods and conduct a comprehensive evaluation of these methods on CORAL, demonstrating substantial opportunities for improving existing approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23090v1-abstract-full').style.display = 'none'; document.getElementById('2410.23090v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18977">arXiv:2410.18977</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18977">pdf</a>, <a href="https://arxiv.org/format/2410.18977">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Pay Attention and Move Better: Harnessing Attention for Interactive Motion Generation and Training-free Editing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chen%2C+L">Ling-Hao Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Lu%2C+S">Shunlin Lu</a>, <a href="/search/cs?searchtype=author&amp;query=Dai%2C+W">Wenxun Dai</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhiyang Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Ju%2C+X">Xuan Ju</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+J">Jingbo Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Komura%2C+T">Taku Komura</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+L">Lei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18977v2-abstract-short" style="display: inline;"> This research delves into the problem of interactive editing of human motion generation. Previous motion diffusion models lack explicit modeling of the word-level text-motion correspondence and good explainability, hence restricting their fine-grained editing ability. To address this issue, we propose an attention-based motion diffusion model, namely MotionCLR, with CLeaR modeling of attention mec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18977v2-abstract-full').style.display = 'inline'; document.getElementById('2410.18977v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18977v2-abstract-full" style="display: none;"> This research delves into the problem of interactive editing of human motion generation. Previous motion diffusion models lack explicit modeling of the word-level text-motion correspondence and good explainability, hence restricting their fine-grained editing ability. To address this issue, we propose an attention-based motion diffusion model, namely MotionCLR, with CLeaR modeling of attention mechanisms. Technically, MotionCLR models the in-modality and cross-modality interactions with self-attention and cross-attention, respectively. More specifically, the self-attention mechanism aims to measure the sequential similarity between frames and impacts the order of motion features. By contrast, the cross-attention mechanism works to find the fine-grained word-sequence correspondence and activate the corresponding timesteps in the motion sequence. Based on these key properties, we develop a versatile set of simple yet effective motion editing methods via manipulating attention maps, such as motion (de-)emphasizing, in-place motion replacement, and example-based motion generation, etc. For further verification of the explainability of the attention mechanism, we additionally explore the potential of action-counting and grounded motion generation ability via attention maps. Our experimental results show that our method enjoys good generation and editing ability with good explainability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18977v2-abstract-full').style.display = 'none'; document.getElementById('2410.18977v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated MotionCLR technical report</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18634">arXiv:2410.18634</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18634">pdf</a>, <a href="https://arxiv.org/format/2410.18634">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> </div> </div> <p class="title is-5 mathjax"> Little Giants: Synthesizing High-Quality Embedding Data at Scale </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chen%2C+H">Haonan Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+L">Liang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+N">Nan Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+Y">Yutao Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhao%2C+Z">Ziliang Zhao</a>, <a href="/search/cs?searchtype=author&amp;query=Wei%2C+F">Furu Wei</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18634v2-abstract-short" style="display: inline;"> Synthetic data generation has become an increasingly popular way of training models without the need for large, manually labeled datasets. For tasks like text embedding, synthetic data offers diverse and scalable training examples, significantly reducing the cost of human annotation. However, most current approaches rely heavily on proprietary models like GPT-4, which are expensive and inefficient&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18634v2-abstract-full').style.display = 'inline'; document.getElementById('2410.18634v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18634v2-abstract-full" style="display: none;"> Synthetic data generation has become an increasingly popular way of training models without the need for large, manually labeled datasets. For tasks like text embedding, synthetic data offers diverse and scalable training examples, significantly reducing the cost of human annotation. However, most current approaches rely heavily on proprietary models like GPT-4, which are expensive and inefficient for generating large-scale embedding data. In this paper, we introduce SPEED, a framework that aligns open-source small models (8B) to efficiently generate large-scale synthetic embedding data. Through supervised fine-tuning, preference optimization, and self-improvement, SPEED enables small open-source models to produce high-quality data. Remarkably, SPEED uses only less than 1/10 of the GPT API calls, outperforming the state-of-the-art embedding model E5_mistral when both are trained solely on their synthetic data. Using this efficient generator, we conduct a comprehensive study on how various factors within the alignment pipeline impact data quality and reveal the scaling law for synthetic embedding data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18634v2-abstract-full').style.display = 'none'; document.getElementById('2410.18634v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15732">arXiv:2410.15732</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.15732">pdf</a>, <a href="https://arxiv.org/format/2410.15732">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> ViMoE: An Empirical Study of Designing Vision Mixture-of-Experts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Han%2C+X">Xumeng Han</a>, <a href="/search/cs?searchtype=author&amp;query=Wei%2C+L">Longhui Wei</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhiyang Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Z">Zipeng Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Qiang%2C+C">Chenhui Qiang</a>, <a href="/search/cs?searchtype=author&amp;query=He%2C+X">Xin He</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Y">Yingfei Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Han%2C+Z">Zhenjun Han</a>, <a href="/search/cs?searchtype=author&amp;query=Tian%2C+Q">Qi Tian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15732v2-abstract-short" style="display: inline;"> Mixture-of-Experts (MoE) models embody the divide-and-conquer concept and are a promising approach for increasing model capacity, demonstrating excellent scalability across multiple domains. In this paper, we integrate the MoE structure into the classic Vision Transformer (ViT), naming it ViMoE, and explore the potential of applying MoE to vision through a comprehensive study on image classificati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15732v2-abstract-full').style.display = 'inline'; document.getElementById('2410.15732v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15732v2-abstract-full" style="display: none;"> Mixture-of-Experts (MoE) models embody the divide-and-conquer concept and are a promising approach for increasing model capacity, demonstrating excellent scalability across multiple domains. In this paper, we integrate the MoE structure into the classic Vision Transformer (ViT), naming it ViMoE, and explore the potential of applying MoE to vision through a comprehensive study on image classification and semantic segmentation. However, we observe that the performance is sensitive to the configuration of MoE layers, making it challenging to obtain optimal results without careful design. The underlying cause is that inappropriate MoE layers lead to unreliable routing and hinder experts from effectively acquiring helpful information. To address this, we introduce a shared expert to learn and capture common knowledge, serving as an effective way to construct stable ViMoE. Furthermore, we demonstrate how to analyze expert routing behavior, revealing which MoE layers are capable of specializing in handling specific information and which are not. This provides guidance for retaining the critical layers while removing redundancies, thereby advancing ViMoE to be more efficient without sacrificing accuracy. We aspire for this work to offer new insights into the design of vision MoE models and provide valuable empirical guidance for future research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15732v2-abstract-full').style.display = 'none'; document.getElementById('2410.15732v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15576">arXiv:2410.15576</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.15576">pdf</a>, <a href="https://arxiv.org/format/2410.15576">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> </div> </div> <p class="title is-5 mathjax"> A Survey of Conversational Search </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Mo%2C+F">Fengran Mo</a>, <a href="/search/cs?searchtype=author&amp;query=Mao%2C+K">Kelong Mao</a>, <a href="/search/cs?searchtype=author&amp;query=Zhao%2C+Z">Ziliang Zhao</a>, <a href="/search/cs?searchtype=author&amp;query=Qian%2C+H">Hongjin Qian</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+H">Haonan Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Cheng%2C+Y">Yiruo Cheng</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+X">Xiaoxi Li</a>, <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+Y">Yutao Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Nie%2C+J">Jian-Yun Nie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15576v1-abstract-short" style="display: inline;"> As a cornerstone of modern information access, search engines have become indispensable in everyday life. With the rapid advancements in AI and natural language processing (NLP) technologies, particularly large language models (LLMs), search engines have evolved to support more intuitive and intelligent interactions between users and systems. Conversational search, an emerging paradigm for next-ge&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15576v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15576v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15576v1-abstract-full" style="display: none;"> As a cornerstone of modern information access, search engines have become indispensable in everyday life. With the rapid advancements in AI and natural language processing (NLP) technologies, particularly large language models (LLMs), search engines have evolved to support more intuitive and intelligent interactions between users and systems. Conversational search, an emerging paradigm for next-generation search engines, leverages natural language dialogue to facilitate complex and precise information retrieval, thus attracting significant attention. Unlike traditional keyword-based search engines, conversational search systems enhance user experience by supporting intricate queries, maintaining context over multi-turn interactions, and providing robust information integration and processing capabilities. Key components such as query reformulation, search clarification, conversational retrieval, and response generation work in unison to enable these sophisticated interactions. In this survey, we explore the recent advancements and potential future directions in conversational search, examining the critical modules that constitute a conversational search system. We highlight the integration of LLMs in enhancing these systems and discuss the challenges and opportunities that lie ahead in this dynamic field. Additionally, we provide insights into real-world applications and robust evaluations of current conversational search systems, aiming to guide future research and development in conversational search. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15576v1-abstract-full').style.display = 'none'; document.getElementById('2410.15576v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 8 figures, continue to update</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09584">arXiv:2410.09584</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.09584">pdf</a>, <a href="https://arxiv.org/format/2410.09584">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Toward General Instruction-Following Alignment for Retrieval-Augmented Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Dong%2C+G">Guanting Dong</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+X">Xiaoshuai Song</a>, <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+Y">Yutao Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Qiao%2C+R">Runqi Qiao</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Wen%2C+J">Ji-Rong Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09584v1-abstract-short" style="display: inline;"> Following natural instructions is crucial for the effective application of Retrieval-Augmented Generation (RAG) systems. Despite recent advancements in Large Language Models (LLMs), research on assessing and improving instruction-following (IF) alignment within the RAG domain remains limited. To address this issue, we propose VIF-RAG, the first automated, scalable, and verifiable synthetic pipelin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09584v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09584v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09584v1-abstract-full" style="display: none;"> Following natural instructions is crucial for the effective application of Retrieval-Augmented Generation (RAG) systems. Despite recent advancements in Large Language Models (LLMs), research on assessing and improving instruction-following (IF) alignment within the RAG domain remains limited. To address this issue, we propose VIF-RAG, the first automated, scalable, and verifiable synthetic pipeline for instruction-following alignment in RAG systems. We start by manually crafting a minimal set of atomic instructions (&lt;100) and developing combination rules to synthesize and verify complex instructions for a seed set. We then use supervised models for instruction rewriting while simultaneously generating code to automate the verification of instruction quality via a Python executor. Finally, we integrate these instructions with extensive RAG and general data samples, scaling up to a high-quality VIF-RAG-QA dataset (&gt;100k) through automated processes. To further bridge the gap in instruction-following auto-evaluation for RAG systems, we introduce FollowRAG Benchmark, which includes approximately 3K test samples, covering 22 categories of general instruction constraints and four knowledge-intensive QA datasets. Due to its robust pipeline design, FollowRAG can seamlessly integrate with different RAG benchmarks. Using FollowRAG and eight widely-used IF and foundational abilities benchmarks for LLMs, we demonstrate that VIF-RAG markedly enhances LLM performance across a broad range of general instruction constraints while effectively leveraging its capabilities in RAG scenarios. Further analysis offers practical insights for achieving IF alignment in RAG systems. Our code and datasets are released at https://FollowRAG.github.io. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09584v1-abstract-full').style.display = 'none'; document.getElementById('2410.09584v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Working in progress</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.08182">arXiv:2410.08182</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.08182">pdf</a>, <a href="https://arxiv.org/format/2410.08182">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> MRAG-Bench: Vision-Centric Evaluation for Retrieval-Augmented Multimodal Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Hu%2C+W">Wenbo Hu</a>, <a href="/search/cs?searchtype=author&amp;query=Gu%2C+J">Jia-Chen Gu</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zi-Yi Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Fayyaz%2C+M">Mohsen Fayyaz</a>, <a href="/search/cs?searchtype=author&amp;query=Lu%2C+P">Pan Lu</a>, <a href="/search/cs?searchtype=author&amp;query=Chang%2C+K">Kai-Wei Chang</a>, <a href="/search/cs?searchtype=author&amp;query=Peng%2C+N">Nanyun Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.08182v1-abstract-short" style="display: inline;"> Existing multimodal retrieval benchmarks primarily focus on evaluating whether models can retrieve and utilize external textual knowledge for question answering. However, there are scenarios where retrieving visual information is either more beneficial or easier to access than textual data. In this paper, we introduce a multimodal retrieval-augmented generation benchmark, MRAG-Bench, in which we s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08182v1-abstract-full').style.display = 'inline'; document.getElementById('2410.08182v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.08182v1-abstract-full" style="display: none;"> Existing multimodal retrieval benchmarks primarily focus on evaluating whether models can retrieve and utilize external textual knowledge for question answering. However, there are scenarios where retrieving visual information is either more beneficial or easier to access than textual data. In this paper, we introduce a multimodal retrieval-augmented generation benchmark, MRAG-Bench, in which we systematically identify and categorize scenarios where visually augmented knowledge is better than textual knowledge, for instance, more images from varying viewpoints. MRAG-Bench consists of 16,130 images and 1,353 human-annotated multiple-choice questions across 9 distinct scenarios. With MRAG-Bench, we conduct an evaluation of 10 open-source and 4 proprietary large vision-language models (LVLMs). Our results show that all LVLMs exhibit greater improvements when augmented with images compared to textual knowledge, confirming that MRAG-Bench is vision-centric. Additionally, we conduct extensive analysis with MRAG-Bench, which offers valuable insights into retrieval-augmented LVLMs. Notably, the top-performing model, GPT-4o, faces challenges in effectively leveraging retrieved knowledge, achieving only a 5.82% improvement with ground-truth information, in contrast to a 33.16% improvement observed in human participants. These findings highlight the importance of MRAG-Bench in encouraging the community to enhance LVLMs&#39; ability to utilize retrieved visual knowledge more effectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08182v1-abstract-full').style.display = 'none'; document.getElementById('2410.08182v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">https://mragbench.github.io</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14692">arXiv:2409.14692</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14692">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> </div> </div> <p class="title is-5 mathjax"> Dynamic Realms: 4D Content Analysis, Recovery and Generation with Geometric, Topological and Physical Priors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhiyang Dou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14692v1-abstract-short" style="display: inline;"> My research focuses on the analysis, recovery, and generation of 4D content, where 4D includes three spatial dimensions (x, y, z) and a temporal dimension t, such as shape and motion. This focus goes beyond static objects to include dynamic changes over time, providing a comprehensive understanding of both spatial and temporal variations. These techniques are critical in applications like AR/VR, e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14692v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14692v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14692v1-abstract-full" style="display: none;"> My research focuses on the analysis, recovery, and generation of 4D content, where 4D includes three spatial dimensions (x, y, z) and a temporal dimension t, such as shape and motion. This focus goes beyond static objects to include dynamic changes over time, providing a comprehensive understanding of both spatial and temporal variations. These techniques are critical in applications like AR/VR, embodied AI, and robotics. My research aims to make 4D content generation more efficient, accessible, and higher in quality by incorporating geometric, topological, and physical priors. I also aim to develop effective methods for 4D content recovery and analysis using these priors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14692v1-abstract-full').style.display = 'none'; document.getElementById('2409.14692v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Research Summary - DC</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.11901">arXiv:2409.11901</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.11901">pdf</a>, <a href="https://arxiv.org/format/2409.11901">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> LLMs + Persona-Plug = Personalized LLMs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Liu%2C+J">Jiongnan Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+Y">Yutao Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+S">Shuting Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Wei%2C+X">Xiaochi Wei</a>, <a href="/search/cs?searchtype=author&amp;query=Min%2C+E">Erxue Min</a>, <a href="/search/cs?searchtype=author&amp;query=Lu%2C+Y">Yu Lu</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+S">Shuaiqiang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Yin%2C+D">Dawei Yin</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.11901v1-abstract-short" style="display: inline;"> Personalization plays a critical role in numerous language tasks and applications, since users with the same requirements may prefer diverse outputs based on their individual interests. This has led to the development of various personalized approaches aimed at adapting large language models (LLMs) to generate customized outputs aligned with user preferences. Some of them involve fine-tuning a uni&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11901v1-abstract-full').style.display = 'inline'; document.getElementById('2409.11901v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.11901v1-abstract-full" style="display: none;"> Personalization plays a critical role in numerous language tasks and applications, since users with the same requirements may prefer diverse outputs based on their individual interests. This has led to the development of various personalized approaches aimed at adapting large language models (LLMs) to generate customized outputs aligned with user preferences. Some of them involve fine-tuning a unique personalized LLM for each user, which is too expensive for widespread application. Alternative approaches introduce personalization information in a plug-and-play manner by retrieving the user&#39;s relevant historical texts as demonstrations. However, this retrieval-based strategy may break the continuity of the user history and fail to capture the user&#39;s overall styles and patterns, hence leading to sub-optimal performance. To address these challenges, we propose a novel personalized LLM model, \ours{}. It constructs a user-specific embedding for each individual by modeling all her historical contexts through a lightweight plug-in user embedder module. By attaching this embedding to the task input, LLMs can better understand and capture user habits and preferences, thereby producing more personalized outputs without tuning their own parameters. Extensive experiments on various tasks in the language model personalization (LaMP) benchmark demonstrate that the proposed model significantly outperforms existing personalized LLM approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11901v1-abstract-full').style.display = 'none'; document.getElementById('2409.11901v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.10102">arXiv:2409.10102</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.10102">pdf</a>, <a href="https://arxiv.org/format/2409.10102">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Trustworthiness in Retrieval-Augmented Generation Systems: A Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+Y">Yujia Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Y">Yan Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+X">Xiaoxi Li</a>, <a href="/search/cs?searchtype=author&amp;query=Jin%2C+J">Jiajie Jin</a>, <a href="/search/cs?searchtype=author&amp;query=Qian%2C+H">Hongjin Qian</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Z">Zheng Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+C">Chaozhuo Li</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Ho%2C+T">Tsung-Yi Ho</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+P+S">Philip S. Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.10102v1-abstract-short" style="display: inline;"> Retrieval-Augmented Generation (RAG) has quickly grown into a pivotal paradigm in the development of Large Language Models (LLMs). While much of the current research in this field focuses on performance optimization, particularly in terms of accuracy and efficiency, the trustworthiness of RAG systems remains an area still under exploration. From a positive perspective, RAG systems are promising to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10102v1-abstract-full').style.display = 'inline'; document.getElementById('2409.10102v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.10102v1-abstract-full" style="display: none;"> Retrieval-Augmented Generation (RAG) has quickly grown into a pivotal paradigm in the development of Large Language Models (LLMs). While much of the current research in this field focuses on performance optimization, particularly in terms of accuracy and efficiency, the trustworthiness of RAG systems remains an area still under exploration. From a positive perspective, RAG systems are promising to enhance LLMs by providing them with useful and up-to-date knowledge from vast external databases, thereby mitigating the long-standing problem of hallucination. While from a negative perspective, RAG systems are at the risk of generating undesirable contents if the retrieved information is either inappropriate or poorly utilized. To address these concerns, we propose a unified framework that assesses the trustworthiness of RAG systems across six key dimensions: factuality, robustness, fairness, transparency, accountability, and privacy. Within this framework, we thoroughly review the existing literature on each dimension. Additionally, we create the evaluation benchmark regarding the six dimensions and conduct comprehensive evaluations for a variety of proprietary and open-source models. Finally, we identify the potential challenges for future research based on our investigation results. Through this work, we aim to lay a structured foundation for future investigations and provide practical insights for enhancing the trustworthiness of RAG systems in real-world applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10102v1-abstract-full').style.display = 'none'; document.getElementById('2409.10102v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08551">arXiv:2409.08551</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.08551">pdf</a>, <a href="https://arxiv.org/format/2409.08551">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Think Twice Before You Act: Improving Inverse Problem Solving With MCMC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+Y">Yaxuan Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zehao Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+H">Haoxin Zheng</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Y">Yasi Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+Y+N">Ying Nian Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Gao%2C+R">Ruiqi Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08551v1-abstract-short" style="display: inline;"> Recent studies demonstrate that diffusion models can serve as a strong prior for solving inverse problems. A prominent example is Diffusion Posterior Sampling (DPS), which approximates the posterior distribution of data given the measure using Tweedie&#39;s formula. Despite the merits of being versatile in solving various inverse problems without re-training, the performance of DPS is hindered by the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08551v1-abstract-full').style.display = 'inline'; document.getElementById('2409.08551v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08551v1-abstract-full" style="display: none;"> Recent studies demonstrate that diffusion models can serve as a strong prior for solving inverse problems. A prominent example is Diffusion Posterior Sampling (DPS), which approximates the posterior distribution of data given the measure using Tweedie&#39;s formula. Despite the merits of being versatile in solving various inverse problems without re-training, the performance of DPS is hindered by the fact that this posterior approximation can be inaccurate especially for high noise levels. Therefore, we propose \textbf{D}iffusion \textbf{P}osterior \textbf{MC}MC (\textbf{DPMC}), a novel inference algorithm based on Annealed MCMC to solve inverse problems with pretrained diffusion models. We define a series of intermediate distributions inspired by the approximated conditional distributions used by DPS. Through annealed MCMC sampling, we encourage the samples to follow each intermediate distribution more closely before moving to the next distribution at a lower noise level, and therefore reduce the accumulated error along the path. We test our algorithm in various inverse problems, including super resolution, Gaussian deblurring, motion deblurring, inpainting, and phase retrieval. Our algorithm outperforms DPS with less number of evaluations across nearly all tasks, and is competitive among existing approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08551v1-abstract-full').style.display = 'none'; document.getElementById('2409.08551v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07032">arXiv:2409.07032</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.07032">pdf</a>, <a href="https://arxiv.org/ps/2409.07032">ps</a>, <a href="https://arxiv.org/format/2409.07032">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> From optimal score matching to optimal sampling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zehao Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Kotekal%2C+S">Subhodh Kotekal</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+Z">Zhehao Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+H+H">Harrison H. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07032v1-abstract-short" style="display: inline;"> The recent, impressive advances in algorithmic generation of high-fidelity image, audio, and video are largely due to great successes in score-based diffusion models. A key implementing step is score matching, that is, the estimation of the score function of the forward diffusion process from training data. As shown in earlier literature, the total variation distance between the law of a sample ge&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07032v1-abstract-full').style.display = 'inline'; document.getElementById('2409.07032v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07032v1-abstract-full" style="display: none;"> The recent, impressive advances in algorithmic generation of high-fidelity image, audio, and video are largely due to great successes in score-based diffusion models. A key implementing step is score matching, that is, the estimation of the score function of the forward diffusion process from training data. As shown in earlier literature, the total variation distance between the law of a sample generated from the trained diffusion model and the ground truth distribution can be controlled by the score matching risk. Despite the widespread use of score-based diffusion models, basic theoretical questions concerning exact optimal statistical rates for score estimation and its application to density estimation remain open. We establish the sharp minimax rate of score estimation for smooth, compactly supported densities. Formally, given \(n\) i.i.d. samples from an unknown \(伪\)-H枚lder density \(f\) supported on \([-1, 1]\), we prove the minimax rate of estimating the score function of the diffused distribution \(f * \mathcal{N}(0, t)\) with respect to the score matching loss is \(\frac{1}{nt^2} \wedge \frac{1}{nt^{3/2}} \wedge (t^{伪-1} + n^{-2(伪-1)/(2伪+1)})\) for all \(伪&gt; 0\) and \(t \ge 0\). As a consequence, it is shown the law \(\hat{f}\) of a sample generated from the diffusion model achieves the sharp minimax rate \(\bE(\dTV(\hat{f}, f)^2) \lesssim n^{-2伪/(2伪+1)}\) for all \(伪&gt; 0\) without any extraneous logarithmic terms which are prevalent in the literature, and without the need for early stopping which has been required for all existing procedures to the best of our knowledge. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07032v1-abstract-full').style.display = 'none'; document.getElementById('2409.07032v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">71 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06793">arXiv:2409.06793</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.06793">pdf</a>, <a href="https://arxiv.org/format/2409.06793">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Adversarial Attacks to Multi-Modal Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhihao Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Hu%2C+X">Xin Hu</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+H">Haibo Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Z">Zhuqing Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Fang%2C+M">Minghong Fang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06793v2-abstract-short" style="display: inline;"> Multi-modal models have gained significant attention due to their powerful capabilities. These models effectively align embeddings across diverse data modalities, showcasing superior performance in downstream tasks compared to their unimodal counterparts. Recent study showed that the attacker can manipulate an image or audio file by altering it in such a way that its embedding matches that of an a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06793v2-abstract-full').style.display = 'inline'; document.getElementById('2409.06793v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06793v2-abstract-full" style="display: none;"> Multi-modal models have gained significant attention due to their powerful capabilities. These models effectively align embeddings across diverse data modalities, showcasing superior performance in downstream tasks compared to their unimodal counterparts. Recent study showed that the attacker can manipulate an image or audio file by altering it in such a way that its embedding matches that of an attacker-chosen targeted input, thereby deceiving downstream models. However, this method often underperforms due to inherent disparities in data from different modalities. In this paper, we introduce CrossFire, an innovative approach to attack multi-modal models. CrossFire begins by transforming the targeted input chosen by the attacker into a format that matches the modality of the original image or audio file. We then formulate our attack as an optimization problem, aiming to minimize the angular deviation between the embeddings of the transformed input and the modified image or audio file. Solving this problem determines the perturbations to be added to the original media. Our extensive experiments on six real-world benchmark datasets reveal that CrossFire can significantly manipulate downstream tasks, surpassing existing attacks. Additionally, we evaluate six defensive strategies against CrossFire, finding that current defenses are insufficient to counteract our CrossFire. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06793v2-abstract-full').style.display = 'none'; document.getElementById('2409.06793v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in the ACM Workshop on Large AI Systems and Models with Privacy and Safety Analysis 2024 (LAMPS &#39;24)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.05591">arXiv:2409.05591</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.05591">pdf</a>, <a href="https://arxiv.org/format/2409.05591">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> MemoRAG: Moving towards Next-Gen RAG Via Memory-Inspired Knowledge Discovery </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Qian%2C+H">Hongjin Qian</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+P">Peitian Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Z">Zheng Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Mao%2C+K">Kelong Mao</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.05591v2-abstract-short" style="display: inline;"> Retrieval-Augmented Generation (RAG) leverages retrieval tools to access external databases, thereby enhancing the generation quality of large language models (LLMs) through optimized context. However, the existing retrieval methods are constrained inherently, as they can only perform relevance matching between explicitly stated queries and well-formed knowledge, but unable to handle tasks involvi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05591v2-abstract-full').style.display = 'inline'; document.getElementById('2409.05591v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.05591v2-abstract-full" style="display: none;"> Retrieval-Augmented Generation (RAG) leverages retrieval tools to access external databases, thereby enhancing the generation quality of large language models (LLMs) through optimized context. However, the existing retrieval methods are constrained inherently, as they can only perform relevance matching between explicitly stated queries and well-formed knowledge, but unable to handle tasks involving ambiguous information needs or unstructured knowledge. Consequently, existing RAG systems are primarily effective for straightforward question-answering tasks. In this work, we propose MemoRAG, a novel retrieval-augmented generation paradigm empowered by long-term memory. MemoRAG adopts a dual-system architecture. On the one hand, it employs a light but long-range LLM to form the global memory of database. Once a task is presented, it generates draft answers, cluing the retrieval tools to locate useful information within the database. On the other hand, it leverages an expensive but expressive LLM, which generates the ultimate answer based on the retrieved information. Building on this general framework, we further optimize MemoRAG&#39;s performance by enhancing its cluing mechanism and memorization capacity. In our experiment, MemoRAG achieves superior performance across a variety of evaluation tasks, including both complex ones where conventional RAG fails and straightforward ones where RAG is commonly applied. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05591v2-abstract-full').style.display = 'none'; document.getElementById('2409.05591v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Technical Report. Codes and models are in https://github.com/qhjqhj00/MemoRAG</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11308">arXiv:2408.11308</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11308">pdf</a>, <a href="https://arxiv.org/format/2408.11308">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> EEG-Defender: Defending against Jailbreak through Early Exit Generation of Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhao%2C+C">Chongwen Zhao</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhihao Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Huang%2C+K">Kaizhu Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11308v1-abstract-short" style="display: inline;"> Large Language Models (LLMs) are increasingly attracting attention in various applications. Nonetheless, there is a growing concern as some users attempt to exploit these models for malicious purposes, including the synthesis of controlled substances and the propagation of disinformation. In an effort to mitigate such risks, the concept of &#34;Alignment&#34; technology has been developed. However, recent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11308v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11308v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11308v1-abstract-full" style="display: none;"> Large Language Models (LLMs) are increasingly attracting attention in various applications. Nonetheless, there is a growing concern as some users attempt to exploit these models for malicious purposes, including the synthesis of controlled substances and the propagation of disinformation. In an effort to mitigate such risks, the concept of &#34;Alignment&#34; technology has been developed. However, recent studies indicate that this alignment can be undermined using sophisticated prompt engineering or adversarial suffixes, a technique known as &#34;Jailbreak.&#34; Our research takes cues from the human-like generate process of LLMs. We identify that while jailbreaking prompts may yield output logits similar to benign prompts, their initial embeddings within the model&#39;s latent space tend to be more analogous to those of malicious prompts. Leveraging this finding, we propose utilizing the early transformer outputs of LLMs as a means to detect malicious inputs, and terminate the generation immediately. Built upon this idea, we introduce a simple yet significant defense approach called EEG-Defender for LLMs. We conduct comprehensive experiments on ten jailbreak methods across three models. Our results demonstrate that EEG-Defender is capable of reducing the Attack Success Rate (ASR) by a significant margin, roughly 85\% in comparison with 50\% for the present SOTAs, with minimal impact on the utility and effectiveness of LLMs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11308v1-abstract-full').style.display = 'none'; document.getElementById('2408.11308v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03567">arXiv:2408.03567</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.03567">pdf</a>, <a href="https://arxiv.org/format/2408.03567">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Unlocking Exocentric Video-Language Data for Egocentric Video Representation Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zi-Yi Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+X">Xitong Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Nagarajan%2C+T">Tushar Nagarajan</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+H">Huiyu Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Huang%2C+J">Jing Huang</a>, <a href="/search/cs?searchtype=author&amp;query=Peng%2C+N">Nanyun Peng</a>, <a href="/search/cs?searchtype=author&amp;query=Kitani%2C+K">Kris Kitani</a>, <a href="/search/cs?searchtype=author&amp;query=Chu%2C+F">Fu-Jen Chu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03567v1-abstract-short" style="display: inline;"> We present EMBED (Egocentric Models Built with Exocentric Data), a method designed to transform exocentric video-language data for egocentric video representation learning. Large-scale exocentric data covers diverse activities with significant potential for egocentric learning, but inherent disparities between egocentric and exocentric data pose challenges in utilizing one view for the other seaml&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03567v1-abstract-full').style.display = 'inline'; document.getElementById('2408.03567v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03567v1-abstract-full" style="display: none;"> We present EMBED (Egocentric Models Built with Exocentric Data), a method designed to transform exocentric video-language data for egocentric video representation learning. Large-scale exocentric data covers diverse activities with significant potential for egocentric learning, but inherent disparities between egocentric and exocentric data pose challenges in utilizing one view for the other seamlessly. Egocentric videos predominantly feature close-up hand-object interactions, whereas exocentric videos offer a broader perspective on human activities. Additionally, narratives in egocentric datasets are typically more action-centric and closely linked with the visual content, in contrast to the narrative styles found in exocentric datasets. To address these challenges, we employ a data transformation framework to adapt exocentric data for egocentric training, focusing on identifying specific video clips that emphasize hand-object interactions and transforming narration styles to align with egocentric perspectives. By applying both vision and language style transfer, our framework creates a new egocentric dataset derived from exocentric video-language data. Through extensive evaluations, we demonstrate the effectiveness of EMBED, achieving state-of-the-art results across various egocentric downstream tasks, including an absolute improvement of 4.7% on the Epic-Kitchens-100 multi-instance retrieval and 6.2% on the EGTEA classification benchmarks in zero-shot settings. Furthermore, EMBED enables egocentric video-language models to perform competitively in exocentric tasks. Finally, we showcase EMBED&#39;s application across various exocentric datasets, exhibiting strong generalization capabilities when applied to different exocentric datasets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03567v1-abstract-full').style.display = 'none'; document.getElementById('2408.03567v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.18743">arXiv:2407.18743</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.18743">pdf</a>, <a href="https://arxiv.org/format/2407.18743">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Towards Effective and Efficient Continual Pre-training of Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chen%2C+J">Jie Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Z">Zhipeng Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+J">Jiapeng Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+K">Kun Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+Y">Yutao Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Jiang%2C+J">Jinhao Jiang</a>, <a href="/search/cs?searchtype=author&amp;query=Min%2C+Y">Yingqian Min</a>, <a href="/search/cs?searchtype=author&amp;query=Zhao%2C+W+X">Wayne Xin Zhao</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Mao%2C+J">Jiaxin Mao</a>, <a href="/search/cs?searchtype=author&amp;query=Lin%2C+Y">Yankai Lin</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+R">Ruihua Song</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+J">Jun Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+X">Xu Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Yan%2C+R">Rui Yan</a>, <a href="/search/cs?searchtype=author&amp;query=Wei%2C+Z">Zhewei Wei</a>, <a href="/search/cs?searchtype=author&amp;query=Hu%2C+D">Di Hu</a>, <a href="/search/cs?searchtype=author&amp;query=Huang%2C+W">Wenbing Huang</a>, <a href="/search/cs?searchtype=author&amp;query=Wen%2C+J">Ji-Rong Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.18743v1-abstract-short" style="display: inline;"> Continual pre-training (CPT) has been an important approach for adapting language models to specific domains or tasks. To make the CPT approach more traceable, this paper presents a technical report for continually pre-training Llama-3 (8B), which significantly enhances the Chinese language ability and scientific reasoning ability of the backbone model. To enhance the new abilities while retaining&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18743v1-abstract-full').style.display = 'inline'; document.getElementById('2407.18743v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.18743v1-abstract-full" style="display: none;"> Continual pre-training (CPT) has been an important approach for adapting language models to specific domains or tasks. To make the CPT approach more traceable, this paper presents a technical report for continually pre-training Llama-3 (8B), which significantly enhances the Chinese language ability and scientific reasoning ability of the backbone model. To enhance the new abilities while retaining the original abilities, we design specific data mixture and curriculum strategies by utilizing existing datasets and synthesizing high-quality datasets. Specifically, we synthesize multidisciplinary scientific question and answer (QA) pairs based on related web pages, and subsequently incorporate these synthetic data to improve the scientific reasoning ability of Llama-3. We refer to the model after CPT as Llama-3-SynE (Synthetic data Enhanced Llama-3). We also present the tuning experiments with a relatively small model -- TinyLlama, and employ the derived findings to train the backbone model. Extensive experiments on a number of evaluation benchmarks show that our approach can largely improve the performance of the backbone models, including both the general abilities (+8.81 on C-Eval and +6.31 on CMMLU) and the scientific reasoning abilities (+12.00 on MATH and +4.13 on SciEval), without hurting the original capacities. Our model, data, and codes are available at https://github.com/RUC-GSAI/Llama-3-SynE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18743v1-abstract-full').style.display = 'none'; document.getElementById('2407.18743v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures, 16 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 68T50 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.2.7 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16134">arXiv:2407.16134</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16134">pdf</a>, <a href="https://arxiv.org/format/2407.16134">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistics Theory">math.ST</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Diffusion Transformer Captures Spatial-Temporal Dependencies: A Theory for Gaussian Process Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Fu%2C+H">Hengyu Fu</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zehao Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Guo%2C+J">Jiawei Guo</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+M">Mengdi Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+M">Minshuo Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16134v2-abstract-short" style="display: inline;"> Diffusion Transformer, the backbone of Sora for video generation, successfully scales the capacity of diffusion models, pioneering new avenues for high-fidelity sequential data generation. Unlike static data such as images, sequential data consists of consecutive data frames indexed by time, exhibiting rich spatial and temporal dependencies. These dependencies represent the underlying dynamic mode&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16134v2-abstract-full').style.display = 'inline'; document.getElementById('2407.16134v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16134v2-abstract-full" style="display: none;"> Diffusion Transformer, the backbone of Sora for video generation, successfully scales the capacity of diffusion models, pioneering new avenues for high-fidelity sequential data generation. Unlike static data such as images, sequential data consists of consecutive data frames indexed by time, exhibiting rich spatial and temporal dependencies. These dependencies represent the underlying dynamic model and are critical to validate the generated data. In this paper, we make the first theoretical step towards bridging diffusion transformers for capturing spatial-temporal dependencies. Specifically, we establish score approximation and distribution estimation guarantees of diffusion transformers for learning Gaussian process data with covariance functions of various decay patterns. We highlight how the spatial-temporal dependencies are captured and affect learning efficiency. Our study proposes a novel transformer approximation theory, where the transformer acts to unroll an algorithm. We support our theoretical results by numerical experiments, providing strong evidence that spatial-temporal dependencies are captured within attention layers, aligning with our approximation theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16134v2-abstract-full').style.display = 'none'; document.getElementById('2407.16134v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">56 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03720">arXiv:2407.03720</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.03720">pdf</a>, <a href="https://arxiv.org/format/2407.03720">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Query-oriented Data Augmentation for Session Search </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chen%2C+H">Haonan Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+Y">Yutao Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Wen%2C+J">Ji-Rong Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03720v1-abstract-short" style="display: inline;"> Modeling contextual information in a search session has drawn more and more attention when understanding complex user intents. Recent methods are all data-driven, i.e., they train different models on large-scale search log data to identify the relevance between search contexts and candidate documents. The common training paradigm is to pair the search context with different candidate documents and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03720v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03720v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03720v1-abstract-full" style="display: none;"> Modeling contextual information in a search session has drawn more and more attention when understanding complex user intents. Recent methods are all data-driven, i.e., they train different models on large-scale search log data to identify the relevance between search contexts and candidate documents. The common training paradigm is to pair the search context with different candidate documents and train the model to rank the clicked documents higher than the unclicked ones. However, this paradigm neglects the symmetric nature of the relevance between the session context and document, i.e., the clicked documents can also be paired with different search contexts when training. In this work, we propose query-oriented data augmentation to enrich search logs and empower the modeling. We generate supplemental training pairs by altering the most important part of a search context, i.e., the current query, and train our model to rank the generated sequence along with the original sequence. This approach enables models to learn that the relevance of a document may vary as the session context changes, leading to a better understanding of users&#39; search patterns. We develop several strategies to alter the current query, resulting in new training data with varying degrees of difficulty. Through experimentation on two extensive public search logs, we have successfully demonstrated the effectiveness of our model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03720v1-abstract-full').style.display = 'none'; document.getElementById('2407.03720v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">TKDE 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01964">arXiv:2407.01964</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.01964">pdf</a>, <a href="https://arxiv.org/format/2407.01964">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Enabling Discriminative Reasoning in LLMs for Legal Judgment Prediction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Deng%2C+C">Chenlong Deng</a>, <a href="/search/cs?searchtype=author&amp;query=Mao%2C+K">Kelong Mao</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Y">Yuyao Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01964v4-abstract-short" style="display: inline;"> Legal judgment prediction is essential for enhancing judicial efficiency. In this work, we identify that existing large language models (LLMs) underperform in this domain due to challenges in understanding case complexities and distinguishing between similar charges. To adapt LLMs for effective legal judgment prediction, we introduce the Ask-Discriminate-Predict (ADAPT) reasoning framework inspire&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01964v4-abstract-full').style.display = 'inline'; document.getElementById('2407.01964v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01964v4-abstract-full" style="display: none;"> Legal judgment prediction is essential for enhancing judicial efficiency. In this work, we identify that existing large language models (LLMs) underperform in this domain due to challenges in understanding case complexities and distinguishing between similar charges. To adapt LLMs for effective legal judgment prediction, we introduce the Ask-Discriminate-Predict (ADAPT) reasoning framework inspired by human judicial reasoning. ADAPT involves decomposing case facts, discriminating among potential charges, and predicting the final judgment. We further enhance LLMs through fine-tuning with multi-task synthetic trajectories to improve legal judgment prediction accuracy and efficiency under our ADAPT framework. Extensive experiments conducted on two widely-used datasets demonstrate the superior performance of our framework in legal judgment prediction, particularly when dealing with complex and confusing charges. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01964v4-abstract-full').style.display = 'none'; document.getElementById('2407.01964v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">repo: https://github.com/ChenlongDeng/ADAPT</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19853">arXiv:2406.19853</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.19853">pdf</a>, <a href="https://arxiv.org/format/2406.19853">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> YuLan: An Open-source Large Language Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+Y">Yutao Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+K">Kun Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Mao%2C+K">Kelong Mao</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+W">Wentong Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Y">Yiding Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Z">Zhipeng Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Cao%2C+Q">Qian Cao</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+Y">Yihan Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Y">Yushuo Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+F">Feng Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+L">Lei Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+J">Junyi Li</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+X">Xiaolei Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+L">Lei Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+B">Beichen Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Dong%2C+Z">Zican Dong</a>, <a href="/search/cs?searchtype=author&amp;query=Cheng%2C+X">Xiaoxue Cheng</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Y">Yuhan Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Tang%2C+X">Xinyu Tang</a>, <a href="/search/cs?searchtype=author&amp;query=Hou%2C+Y">Yupeng Hou</a>, <a href="/search/cs?searchtype=author&amp;query=Ren%2C+Q">Qiangqiang Ren</a>, <a href="/search/cs?searchtype=author&amp;query=Pang%2C+X">Xincheng Pang</a>, <a href="/search/cs?searchtype=author&amp;query=Xie%2C+S">Shufang Xie</a>, <a href="/search/cs?searchtype=author&amp;query=Zhao%2C+W+X">Wayne Xin Zhao</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19853v1-abstract-short" style="display: inline;"> Large language models (LLMs) have become the foundation of many applications, leveraging their extensive capabilities in processing and understanding natural language. While many open-source LLMs have been released with technical reports, the lack of training details hinders further research and development. This paper presents the development of YuLan, a series of open-source LLMs with $12$ billi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19853v1-abstract-full').style.display = 'inline'; document.getElementById('2406.19853v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19853v1-abstract-full" style="display: none;"> Large language models (LLMs) have become the foundation of many applications, leveraging their extensive capabilities in processing and understanding natural language. While many open-source LLMs have been released with technical reports, the lack of training details hinders further research and development. This paper presents the development of YuLan, a series of open-source LLMs with $12$ billion parameters. The base model of YuLan is pre-trained on approximately $1.7$T tokens derived from a diverse corpus, including massive English, Chinese, and multilingual texts. We design a three-stage pre-training method to enhance YuLan&#39;s overall capabilities. Subsequent phases of training incorporate instruction-tuning and human alignment, employing a substantial volume of high-quality synthesized data. To facilitate the learning of complex and long-tail knowledge, we devise a curriculum-learning framework throughout across these stages, which helps LLMs learn knowledge in an easy-to-hard manner. YuLan&#39;s training is finished on Jan, 2024 and has achieved performance on par with state-of-the-art LLMs across various English and Chinese benchmarks. This paper outlines a comprehensive technical roadmap for developing LLMs from scratch. Our model and codes are available at https://github.com/RUC-GSAI/YuLan-Chat. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19853v1-abstract-full').style.display = 'none'; document.getElementById('2406.19853v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19760">arXiv:2406.19760</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.19760">pdf</a>, <a href="https://arxiv.org/format/2406.19760">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Learning Interpretable Legal Case Retrieval via Knowledge-Guided Case Reformulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Deng%2C+C">Chenlong Deng</a>, <a href="/search/cs?searchtype=author&amp;query=Mao%2C+K">Kelong Mao</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19760v1-abstract-short" style="display: inline;"> Legal case retrieval for sourcing similar cases is critical in upholding judicial fairness. Different from general web search, legal case retrieval involves processing lengthy, complex, and highly specialized legal documents. Existing methods in this domain often overlook the incorporation of legal expert knowledge, which is crucial for accurately understanding and modeling legal cases, leading to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19760v1-abstract-full').style.display = 'inline'; document.getElementById('2406.19760v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19760v1-abstract-full" style="display: none;"> Legal case retrieval for sourcing similar cases is critical in upholding judicial fairness. Different from general web search, legal case retrieval involves processing lengthy, complex, and highly specialized legal documents. Existing methods in this domain often overlook the incorporation of legal expert knowledge, which is crucial for accurately understanding and modeling legal cases, leading to unsatisfactory retrieval performance. This paper introduces KELLER, a legal knowledge-guided case reformulation approach based on large language models (LLMs) for effective and interpretable legal case retrieval. By incorporating professional legal knowledge about crimes and law articles, we enable large language models to accurately reformulate the original legal case into concise sub-facts of crimes, which contain the essential information of the case. Extensive experiments on two legal case retrieval benchmarks demonstrate superior retrieval performance and robustness on complex legal case queries of KELLER over existing methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19760v1-abstract-full').style.display = 'none'; document.getElementById('2406.19760v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18676">arXiv:2406.18676</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.18676">pdf</a>, <a href="https://arxiv.org/format/2406.18676">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Understand What LLM Needs: Dual Preference Alignment for Retrieval-Augmented Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Dong%2C+G">Guanting Dong</a>, <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+Y">Yutao Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+C">Chenghao Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Z">Zechen Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhicheng Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Wen%2C+J">Ji-Rong Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18676v2-abstract-short" style="display: inline;"> Retrieval-augmented generation (RAG) has demonstrated effectiveness in mitigating the hallucination problem of large language models (LLMs). However, the difficulty of aligning the retriever with the diverse LLMs&#39; knowledge preferences inevitably poses an inevitable challenge in developing a reliable RAG system. To address this issue, we propose DPA-RAG, a universal framework designed to align div&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18676v2-abstract-full').style.display = 'inline'; document.getElementById('2406.18676v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18676v2-abstract-full" style="display: none;"> Retrieval-augmented generation (RAG) has demonstrated effectiveness in mitigating the hallucination problem of large language models (LLMs). However, the difficulty of aligning the retriever with the diverse LLMs&#39; knowledge preferences inevitably poses an inevitable challenge in developing a reliable RAG system. To address this issue, we propose DPA-RAG, a universal framework designed to align diverse knowledge preferences within RAG systems. Specifically, we initially introduce a preference knowledge construction pipline and incorporate five novel query augmentation strategies to alleviate preference data scarcity. Based on preference data, DPA-RAG accomplishes both external and internal preference alignment: 1) It jointly integrate pair-wise, point-wise, and contrastive preference alignment abilities into the reranker, achieving external preference alignment among RAG components. 2) It further introduces a pre-aligned stage before vanilla Supervised Fine-tuning (SFT), enabling LLMs to implicitly capture knowledge aligned with their reasoning preferences, achieving LLMs&#39; internal alignment. Experimental results across four knowledge-intensive QA datasets demonstrate that DPA-RAG outperforms all baselines and seamlessly integrates both black-box and open-sourced LLM readers. Further qualitative analysis and discussions also provide empirical guidance for achieving reliable RAG systems. Our code is publicly available at https://github.com/dongguanting/DPA-RAG. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18676v2-abstract-full').style.display = 'none'; document.getElementById('2406.18676v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Work in progress</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17988">arXiv:2406.17988</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.17988">pdf</a>, <a href="https://arxiv.org/format/2406.17988">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> DICE: End-to-end Deformation Capture of Hand-Face Interactions from a Single Image </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wu%2C+Q">Qingxuan Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Dou%2C+Z">Zhiyang Dou</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+S">Sirui Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Shimada%2C+S">Soshi Shimada</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+C">Chen Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+Z">Zhengming Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Y">Yuan Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Lin%2C+C">Cheng Lin</a>, <a href="/search/cs?searchtype=author&amp;query=Cao%2C+Z">Zeyu Cao</a>, <a href="/search/cs?searchtype=author&amp;query=Komura%2C+T">Taku Komura</a>, <a href="/search/cs?searchtype=author&amp;query=Golyanik%2C+V">Vladislav Golyanik</a>, <a href="/search/cs?searchtype=author&amp;query=Theobalt%2C+C">Christian Theobalt</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W">Wenping Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+L">Lingjie Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17988v1-abstract-short" style="display: inline;"> Reconstructing 3D hand-face interactions with deformations from a single image is a challenging yet crucial task with broad applications in AR, VR, and gaming. The challenges stem from self-occlusions during single-view hand-face interactions, diverse spatial relationships between hands and face, complex deformations, and the ambiguity of the single-view setting. The first and only method for hand&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17988v1-abstract-full').style.display = 'inline'; document.getElementById('2406.17988v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17988v1-abstract-full" style="display: none;"> Reconstructing 3D hand-face interactions with deformations from a single image is a challenging yet crucial task with broad applications in AR, VR, and gaming. The challenges stem from self-occlusions during single-view hand-face interactions, diverse spatial relationships between hands and face, complex deformations, and the ambiguity of the single-view setting. The first and only method for hand-face interaction recovery, Decaf, introduces a global fitting optimization guided by contact and deformation estimation networks trained on studio-collected data with 3D annotations. However, Decaf suffers from a time-consuming optimization process and limited generalization capability due to its reliance on 3D annotations of hand-face interaction data. To address these issues, we present DICE, the first end-to-end method for Deformation-aware hand-face Interaction reCovEry from a single image. DICE estimates the poses of hands and faces, contacts, and deformations simultaneously using a Transformer-based architecture. It features disentangling the regression of local deformation fields and global mesh vertex locations into two network branches, enhancing deformation and contact estimation for precise and robust hand-face mesh recovery. To improve generalizability, we propose a weakly-supervised training approach that augments the training set using in-the-wild images without 3D ground-truth annotations, employing the depths of 2D keypoints estimated by off-the-shelf models and adversarial priors of poses for supervision. Our experiments demonstrate that DICE achieves state-of-the-art performance on a standard benchmark and in-the-wild data in terms of accuracy and physical plausibility. Additionally, our method operates at an interactive rate (20 fps) on an Nvidia 4090 GPU, whereas Decaf requires more than 15 seconds for a single image. Our code will be publicly available upon publication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17988v1-abstract-full').style.display = 'none'; document.getElementById('2406.17988v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 9 figures, 3 tables</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Dou%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Dou%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Dou%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Dou%2C+Z&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Dou%2C+Z&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10