CINXE.COM
Search results for: water reuse
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: water reuse</title> <meta name="description" content="Search results for: water reuse"> <meta name="keywords" content="water reuse"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="water reuse" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="water reuse"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8897</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: water reuse</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8897</span> The Energy Efficient Water Reuse by Combination of Nano-Filtration and Capacitive Deionization Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youngmin%20Kim">Youngmin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Hwan%20Ahn"> Jae-Hwan Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Seog-Ku%20Kim"> Seog-Ku Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hye-Cheol%20Oh"> Hye-Cheol Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Bokjin%20Lee"> Bokjin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee-Jun%20Kang"> Hee-Jun Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high energy consuming processes such as advanced oxidation and reverse osmosis are used as a reuse process. This study aims at developing an energy efficient reuse process by combination of nanofiltration (NF) and capacitive deionization processes (CDI) processes. Lab scale experiments were conducted by using effluents from a wastewater treatment plant located at Koyang city in Korea. Commercial NF membrane (NE4040-70, Toray Ltd.) and CDI module (E40, Siontech INC.) were tested in series. The pollutant removal efficiencies were evaluated on the basis of Korean water quality criteria for water reuse. In addition, the energy consumptions were also calculated. As a result, the hybrid process showed lower energy consumption than conventional reverse osmosis process even though its effluent did meet the Korean standard. Consequently, this study suggests that the hybrid process is feasible for the energy efficient water reuse. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacitive%20deionization" title="capacitive deionization">capacitive deionization</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficient%20process" title=" energy efficient process"> energy efficient process</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofiltration" title=" nanofiltration"> nanofiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20reuse" title=" water reuse"> water reuse</a> </p> <a href="https://publications.waset.org/abstracts/87033/the-energy-efficient-water-reuse-by-combination-of-nano-filtration-and-capacitive-deionization-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8896</span> Greywater Water Reuse in South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Onyeka%20Nkwonta">Onyeka Nkwonta</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Iheukwumere"> Christopher Iheukwumere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is a waste to irrigate with great quantities of drinking water when plants thrive on used water containing small bits of compost. Unlike a lot of ecological stopgap measures, greywater reuse is a part of the fundamental solution to many ecological problems and will probably remain essentially unchanged in the distant future. Water is abused and wasted by both the wealthy and the poor. Education about water conservation is also needed. This study gives an outline of the sources of grey water in our home and provides a process of creating awareness on the importance of re-using grey water in our home, in order to achieve the 7th aim of the millennium development goals by 2015, which is ensuring environmental sustainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tickling%20filter" title="tickling filter">tickling filter</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=grey%20water" title=" grey water"> grey water</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20sustainability" title=" environmental sustainability"> environmental sustainability</a> </p> <a href="https://publications.waset.org/abstracts/62636/greywater-water-reuse-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8895</span> Low Temperature Biological Treatment of Chemical Oxygen Demand for Agricultural Water Reuse Application Using Robust Biocatalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vedansh%20Gupta">Vedansh Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Allyson%20Lutz"> Allyson Lutz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameen%20Razavi"> Ameen Razavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Shirazi"> Fatemeh Shirazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The agriculture industry is especially vulnerable to forecasted water shortages. In the fresh and fresh-cut produce sector, conventional flume-based washing with recirculation exhibits high water demand. This leads to a large water footprint and possible cross-contamination of pathogens. These can be alleviated through advanced water reuse processes, such as membrane technologies including reverse osmosis (RO). Water reuse technologies effectively remove dissolved constituents but can easily foul without pre-treatment. Biological treatment is effective for the removal of organic compounds responsible for fouling, but not at the low temperatures encountered at most produce processing facilities. This study showed that the Microvi MicroNiche Engineering (MNE) technology effectively removes organic compounds (> 80%) at low temperatures (6-8 °C) from wash water. The MNE technology uses synthetic microorganism-material composites with negligible solids production, making it advantageously situated as an effective bio-pretreatment for RO. A preliminary technoeconomic analysis showed 60-80% savings in operation and maintenance costs (OPEX) when using the Microvi MNE technology for organics removal. This study and the accompanying economic analysis indicated that the proposed technology process will substantially reduce the cost barrier for adopting water reuse practices, thereby contributing to increased food safety and furthering sustainable water reuse processes across the agricultural industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20pre-treatment" title="biological pre-treatment">biological pre-treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=innovative%20technology" title=" innovative technology"> innovative technology</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20processing" title=" vegetable processing"> vegetable processing</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20reuse" title=" water reuse"> water reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20osmosis" title=" reverse osmosis"> reverse osmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=MNE%20biocatalysts" title=" MNE biocatalysts"> MNE biocatalysts</a> </p> <a href="https://publications.waset.org/abstracts/134239/low-temperature-biological-treatment-of-chemical-oxygen-demand-for-agricultural-water-reuse-application-using-robust-biocatalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8894</span> A Review on Stormwater Harvesting and Reuse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatema%20Akram">Fatema Akram</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20G.%20Rasul"> Mohammad G. Rasul</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Masud%20K.%20Khan"> M. Masud K. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sharif%20I.%20I.%20Amir"> M. Sharif I. I. Amir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Australia is a country of some 7,700 million square kilometres with a population of about 22.6 million. At present water security is a major challenge for Australia. In some areas the use of water resources is approaching and in some parts it is exceeding the limits of sustainability. A focal point of proposed national water conservation programs is the recycling of both urban storm-water and treated wastewater. But till now it is not widely practiced in Australia, and particularly storm-water is neglected. In Australia, only 4% of storm-water and rainwater is recycled, whereas less than 1% of reclaimed wastewater is reused within urban areas. Therefore, accurately monitoring, assessing and predicting the availability, quality and use of this precious resource are required for better management. As storm-water is usually of better quality than untreated sewage or industrial discharge, it has better public acceptance for recycling and reuse, particularly for non-potable use such as irrigation, watering lawns, gardens, etc. Existing storm-water recycling practice is far behind of research and no robust technologies developed for this purpose. Therefore, there is a clear need for using modern technologies for assessing feasibility of storm-water harvesting and reuse. Numerical modelling has, in recent times, become a popular tool for doing this job. It includes complex hydrological and hydraulic processes of the study area. The hydrologic model computes storm-water quantity to design the system components, and the hydraulic model helps to route the flow through storm-water infrastructures. Nowadays water quality module is incorporated with these models. Integration of Geographic Information System (GIS) with these models provides extra advantage of managing spatial information. However for the overall management of a storm-water harvesting project, Decision Support System (DSS) plays an important role incorporating database with model and GIS for the proper management of temporal information. Additionally DSS includes evaluation tools and Graphical user interface. This research aims to critically review and discuss all the aspects of storm-water harvesting and reuse such as available guidelines of storm-water harvesting and reuse, public acceptance of water reuse, the scopes and recommendation for future studies. In addition to these, this paper identifies, understand and address the importance of modern technologies capable of proper management of storm-water harvesting and reuse. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=storm-water%20management" title="storm-water management">storm-water management</a>, <a href="https://publications.waset.org/abstracts/search?q=storm-water%20harvesting%20and%20reuse" title=" storm-water harvesting and reuse"> storm-water harvesting and reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modelling" title=" numerical modelling"> numerical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20system" title=" geographic information system"> geographic information system</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20support%20system" title=" decision support system"> decision support system</a>, <a href="https://publications.waset.org/abstracts/search?q=database" title=" database"> database</a> </p> <a href="https://publications.waset.org/abstracts/2629/a-review-on-stormwater-harvesting-and-reuse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8893</span> Water Resources Crisis in Saudi Arabia, Challenges and Possible Management Options: An Analytic Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Ghanim">A. A. Ghanim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Kingdom of Saudi Arabia (KSA) is heading towards a severe and rapidly expanding water crisis, which can have negative impacts on the country’s environment and economy. Of the total water consumption in KSA, the agricultural sector accounts for nearly 87% of the total water use and, therefore, any attempt that overlooks this sector will not help in improving the sustainability of the country’s water resources. KSA Vision 2030 gives priority of water use in the agriculture sector for the regions that have natural renewable water resources. It means that there is little concern for making reuse of municipal wastewater for irrigation purposes in any region in general and in water-scarce regions in particular. The use of treated wastewater is very limited in Saudi Arabia, but it has very considerable potential for future expansion due its numerous beneficial uses. This study reviews the current situation of water resources in Saudi Arabia, providing more highlights on agriculture and wastewater reuse. The reviewed study is proposing some corrective measures for development and better management of water resources in the Kingdom. Suggestions also include consideration of treated water as an alternative source for irrigation in some regions of the country. The study concluded that a sustainable solution for the water crisis in KSA requires implementation of multiple measures in an integrated manner. The integrated solution plan should focus on two main directions: first, improving the current management practices of the existing water resources; second, developing new water supplies from both conventional and non-conventional sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saudia%20Arabia" title="Saudia Arabia">Saudia Arabia</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resources" title=" water resources"> water resources</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20crises" title=" water crises"> water crises</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20reuse" title=" wastewater reuse"> wastewater reuse</a> </p> <a href="https://publications.waset.org/abstracts/104315/water-resources-crisis-in-saudi-arabia-challenges-and-possible-management-options-an-analytic-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8892</span> Study Technical Possibilities of Agricultural Reuse of by-Products from Treatment Plant of Boumerdes, Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kadir%20Mokrane">Kadir Mokrane</a>, <a href="https://publications.waset.org/abstracts/search?q=Souag%20Doudja"> Souag Doudja </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Algeria, one of the Mediterranean countries, water resources are limited and unevenly distributed in space and in time. Boumerdes, coastal town of Algeria, known for its farming and fishing activities. The region is also known for its semi-arid climate and a large water deficit. In order to preserve the quality of water bodies and to reduce withdrawals in the natural environment, it is necessary to seek alternative supplies. The reuse of treated wastewater seems to be a good alternative, especially for irrigation. In the framework of sustainable development, it is imperative to rationalize the use of water resources conventional and unconventional. That is why the re-use agricultural of by-products of the treatment is an alternative expected to preserve the environment and promotion of the agricultural sector. The present work aims, to search for the possibility of reuse of treated wastewater, and sludge resulting from treatment plant of the city of Boumerdes in agriculture, through the analysis of physical, chemical and bacteriological on the samples, and the continuous monitoring of the evolution of several elements during the period of study extended over 12 months, and then, the comparison of these test results to standards and guidelines established in the framework of irrigation and land application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=treated%20water" title="treated water">treated water</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a> </p> <a href="https://publications.waset.org/abstracts/30099/study-technical-possibilities-of-agricultural-reuse-of-by-products-from-treatment-plant-of-boumerdes-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8891</span> Treated Wastewater Reuse in Algeria: Overview, Mobilization Potential and Challenges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dairi%20Sabri">Dairi Sabri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mrad%20Dounia"> Mrad Dounia</a>, <a href="https://publications.waset.org/abstracts/search?q=Djebbar%20Yassine"> Djebbar Yassine</a>, <a href="https://publications.waset.org/abstracts/search?q=Abida%20Habib"> Abida Habib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food security, which may be ensured by important agricultural production, needs huge amounts of water for irrigation. Recognizing this, the Algerian government made enormous efforts to mobilize water resources. Every drop of water collected, regardless of its origin, is needed to strengthen agricultural production. The present irrigated area in Algeria is about 1 million hectares while the potential agricultural area all over the country exceeds 9 million ha. This clearly shows the need for non-conventional water resources in Algeria, especially treated wastewater reuse. The use of treated wastewater in agricultural irrigation is still at the experimental stage in Algeria. While 20 million hectares worldwide are irrigated with treated wastewater, only 2300 hectares in Algeria are irrigated on an experimental basis in the regions of Setif, Constantine, Mila Telemcen, Tougourt and Boumerdès. The volume of wastewater discharged nationwide is estimated to be around 750 million cubic meters and is expected to exceed 1.5 billion m3 in 2020. An ambitious program of providing treatment facilities has been initiated in this direction to increase the treatment capacity to 2.5 million m3 per day in 2030. In order to optimize the use of this resource, specific research actions interested in defining treated wastewater reuse opportunities and standards are undertaken. The objective of this study is basically to examine the different components of treated wastewater reuse, including standards, treatment processes, agricultural opportunities and potentials as well as technical and economic aspects governing the feasibility of this technology in Algeria based on Geographic Information System (GIS). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater%20reuse" title="wastewater reuse">wastewater reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20management" title=" integrated management"> integrated management</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a> </p> <a href="https://publications.waset.org/abstracts/41591/treated-wastewater-reuse-in-algeria-overview-mobilization-potential-and-challenges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8890</span> Dehydration of Residues from WTP for Application in Building Materials and Reuse of Water from the Waste Treatment: A Feasible Solution to Complete Treatment Systems </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marco%20Correa">Marco Correa</a>, <a href="https://publications.waset.org/abstracts/search?q=Flavio%20Araujo"> Flavio Araujo</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Scalize"> Paulo Scalize</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Albuquerque"> Antonio Albuquerque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing reduction of the volumes of surface water sources which supply most municipalities, as well as the continued rise of demand for treated water, combined with the disposal of effluents from washing of decanters and filters of the water treatment plants, generates a continuous search for correct environmentally solutions to these problems. The effluents generated by the water treatment industry need to be suitably processed for return to the environment or re-use. This article shows an alternative for the dehydration of sludge from the water treatment plants (WTP) and eventual disposal of sludge drained. Using the simple design methodology, we present a case study for a drainage in tanks geotextile, full-scale, which involve five sludge drainage tanks from WTP of the Rio Verde City. Aiming to the reutilization the water drained from the sludge and enabling its reuse both at the beginning of the treatment process at the WTP and in less noble services as for watering the gardens of the local town hall. The sludge will be used to production of building materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=re-use" title="re-use">re-use</a>, <a href="https://publications.waset.org/abstracts/search?q=residue" title=" residue"> residue</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment%20plants" title=" water treatment plants"> water treatment plants</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge" title=" sludge"> sludge</a> </p> <a href="https://publications.waset.org/abstracts/22217/dehydration-of-residues-from-wtp-for-application-in-building-materials-and-reuse-of-water-from-the-waste-treatment-a-feasible-solution-to-complete-treatment-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8889</span> Assessment of Wastewater Reuse Potential for an Enamel Coating Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guclu%20Insel">Guclu Insel</a>, <a href="https://publications.waset.org/abstracts/search?q=Efe%20Gumuslu"> Efe Gumuslu</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulten%20Yuksek"> Gulten Yuksek</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilay%20Sayi%20Ucar"> Nilay Sayi Ucar</a>, <a href="https://publications.waset.org/abstracts/search?q=Emine%20Ubay%20Cokgor"> Emine Ubay Cokgor</a>, <a href="https://publications.waset.org/abstracts/search?q=Tugba%20Olmez%20Hanci"> Tugba Olmez Hanci</a>, <a href="https://publications.waset.org/abstracts/search?q=Didem%20Okutman%20Tas"> Didem Okutman Tas</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatos%20Germirli%20Babuna"> Fatos Germirli Babuna</a>, <a href="https://publications.waset.org/abstracts/search?q=Derya%20Firat%20Ertem"> Derya Firat Ertem</a>, <a href="https://publications.waset.org/abstracts/search?q=Okmen%20Yildirim"> Okmen Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozge%20Erturan"> Ozge Erturan</a>, <a href="https://publications.waset.org/abstracts/search?q=Betul%20Kirci"> Betul Kirci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to eliminate water scarcity problems, effective precautions must be taken. Growing competition for water is increasingly forcing facilities to tackle their own water scarcity problems. At this point, application of wastewater reclamation and reuse results in considerable economic advantageous. In this study, an enamel coating facility, which is one of the high water consumed facilities, is evaluated in terms of its wastewater reuse potential. Wastewater reclamation and reuse can be defined as one of the best available techniques for this sector. Hence, process and pollution profiles together with detailed characterization of segregated wastewater sources are appraised in a way to find out the recoverable effluent streams arising from enamel coating operations. Daily, 170 m<sup>3</sup> of process water is required and 160 m<sup>3</sup> of wastewater is generated. The segregated streams generated by two enamel coating processes are characterized in terms of conventional parameters. Relatively clean segregated wastewater streams (reusable wastewaters) are separately collected and experimental treatability studies are conducted on it. The results reflected that the reusable wastewater fraction has an approximate amount of 110 m<sup>3</sup>/day that accounts for 68% of the total wastewaters. The need for treatment applicable on reusable wastewaters is determined by considering water quality requirements of various operations and characterization of reusable wastewater streams. Ultra-filtration (UF), Nano-filtration (NF) and Reverse Osmosis (RO) membranes are subsequently applied on reusable effluent fraction. Adequate organic matter removal is not obtained with the mentioned treatment sequence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enamel%20coating" title="enamel coating">enamel coating</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=reuse" title=" reuse"> reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20reclamation" title=" wastewater reclamation"> wastewater reclamation</a> </p> <a href="https://publications.waset.org/abstracts/44839/assessment-of-wastewater-reuse-potential-for-an-enamel-coating-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8888</span> MBR-RO System Operation in Quantitative and Qualitative Promotion of Waste Water Cleaning: Case Study of Shokohieyh Qoms’ Waste Water Cleaning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Hassani">A. A. Hassani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nasri%20Nasrabadi"> M. Nasri Nasrabadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to population growth and increasing water needs of industrial and agricultural sections and lack of existing water sources, also increases of wastewater and new wastewater treatment plant construction’s high costs, it is inevitable to reuse wastewater with the approach of increasing wastewater treatment capacity and output sewage quality. In this regard, the first sewage reuse plan in industrial uses was designed with the approach of qualitative and quantitative improvement due to the increased organic load of the output sewage of Qom Shokohieh city’s’ in wastewater treatment plant. This research investigated qualitative factors COD, BOD, TSS, TDS, and input and output heavy metal of MBR-RO system and ability of increase wastewater acceptance capacity by existing in wastewater treatment plant. For this purpose, experimental results of seven-month navigation system have been used from 07/01/2013 to 02/01/2014. Existing data analysis showed that MBR system is able to remove 93.2% COD, 94.4% BOD, 13.8% TDS, 98% heavy metals and RO system is able to remove 98.9% TDS. This study showed that MBR-RO integration system is able to increase the capacity of refinery by 30%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial%20wastewater" title="industrial wastewater">industrial wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20reuse" title=" wastewater reuse"> wastewater reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=MBR" title=" MBR"> MBR</a>, <a href="https://publications.waset.org/abstracts/search?q=RO" title=" RO"> RO</a> </p> <a href="https://publications.waset.org/abstracts/16657/mbr-ro-system-operation-in-quantitative-and-qualitative-promotion-of-waste-water-cleaning-case-study-of-shokohieyh-qoms-waste-water-cleaning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8887</span> Approach for Evaluating Wastewater Reuse Options in Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manal%20Elgallal">Manal Elgallal</a>, <a href="https://publications.waset.org/abstracts/search?q=Louise%20Fletcher"> Louise Fletcher</a>, <a href="https://publications.waset.org/abstracts/search?q=Barbara%20Evans"> Barbara Evans </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water scarcity is a growing concern in many arid and semi-arid countries. The increase of water scarcity threatens economic development and sustainability of human livelihoods as well as environment especially in developing countries. Globally, agriculture is the largest water consumption sector, accounting for approximately 70% of all freshwater extraction. Growing competition between the agricultural and higher economic value in urban and industrial uses of high-quality freshwater supplies, especially in regions where water scarcity major problems, will increase the pressure on this precious resource. In this circumstance, wastewater may provide reliable source of water for agriculture and enable freshwater to be exchanged for more economically valuable purposes. Concern regarding the risks from microbial and toxic components to human health and environment quality is a serious obstacle for wastewater reuse particularly in agriculture. Although powerful approaches and tools for microbial risk assessment and management for safe use of wastewater are now available, few studies have attempted to provide any mechanism to quantitatively assess and manage the environmental risks resulting from reusing wastewater. In seeking pragmatic solutions to sustainable wastewater reuse, there remains a lack of research incorporating both health and environmental risk assessment and management with economic analysis in order to quantitatively combine cost, benefits and risks to rank alternative reuse options. This study seeks to enhance effective reuse of wastewater for irrigation in arid and semi-arid areas, the outcome of the study is an evaluation approach that can be used to assess different reuse strategies and to determine the suitable scale at which treatment alternatives and interventions are possible, feasible and cost effective in order to optimise the trade-offs between risks to protect public health and the environment and preserving the substantial benefits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20risks" title="environmental risks">environmental risks</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20costs" title=" life cycle costs"> life cycle costs</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water%20irrigation" title=" waste water irrigation"> waste water irrigation</a> </p> <a href="https://publications.waset.org/abstracts/44848/approach-for-evaluating-wastewater-reuse-options-in-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8886</span> Assessment of Water Reuse Potential in a Metal Finishing Factory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Efe%20Gumuslu">Efe Gumuslu</a>, <a href="https://publications.waset.org/abstracts/search?q=Guclu%20Insel"> Guclu Insel</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%BClten%20Yuksek"> Gülten Yuksek</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilay%20Sayi%20Ucar"> Nilay Sayi Ucar</a>, <a href="https://publications.waset.org/abstracts/search?q=Emine%20Ubay%20Cokgor"> Emine Ubay Cokgor</a>, <a href="https://publications.waset.org/abstracts/search?q=Tu%C4%9Fba%20Olmez%20Hanci"> Tuğba Olmez Hanci</a>, <a href="https://publications.waset.org/abstracts/search?q=Didem%20Okutman%20Tas"> Didem Okutman Tas</a>, <a href="https://publications.waset.org/abstracts/search?q=Fato%C5%9F%20Germirli%20Babuna"> Fatoş Germirli Babuna</a>, <a href="https://publications.waset.org/abstracts/search?q=Derya%20Firat%20Ertem"> Derya Firat Ertem</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96kmen%20Yildirim"> Ökmen Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zge%20Erturan"> Özge Erturan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bet%C3%BCl%20Kirci"> Betül Kirci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although water reclamation and reuse are inseparable parts of sustainable production concept all around the world, current levels of reuse constitute only a small fraction of the total volume of industrial effluents. Nowadays, within the perspective of serious climate change, wastewater reclamation and reuse practices should be considered as a requirement. Industrial sector is one of the largest users of water sources. The OECD Environmental Outlook to 2050 predicts that global water demand for manufacturing will increase by 400% from 2000 to 2050 which is much larger than any other sector. Metal finishing industry is one of the industries that requires high amount of water during the manufacturing. Therefore, actions regarding the improvement of wastewater treatment and reuse should be undertaken on both economic and environmental sustainability grounds. Process wastewater can be reused for more purposes if the appropriate treatment systems are installed to treat the wastewater to the required quality level. Recent studies showed that membrane separation techniques may help in solving the problem of attaining a suitable quality of water that allows being recycled back to the process. The metal finishing factory where this study is conducted is one of the biggest white-goods manufacturers in Turkey. The sheet metal parts used in the cookers production have to be exposed to surface pre-treatment processes composed of degreasing, rinsing, nanoceramics coating and deionization rinsing processes, consecutively. The wastewater generating processes in the factory are enamel coating, painting and styrofoam processes. In the factory, the main source of water is the well water. While some part of the well water is directly used in the processes after passing through resin treatment, some portion of it is directed to the reverse osmosis treatment to obtain required water quality for enamel coating and painting processes. In addition to these processes another important source of water that can be considered as a potential water source is rainwater (3660 tons/year). In this study, process profiles as well as pollution profiles were assessed by a detailed quantitative and qualitative characterization of the wastewater sources generated in the factory. Based on the preliminary results the main water sources that can be considered for reuse in the processes were determined as painting and styrofoam processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enamel%20coating" title="enamel coating">enamel coating</a>, <a href="https://publications.waset.org/abstracts/search?q=painting" title=" painting"> painting</a>, <a href="https://publications.waset.org/abstracts/search?q=reuse" title=" reuse"> reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/44838/assessment-of-water-reuse-potential-in-a-metal-finishing-factory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8885</span> Water Reclamation and Reuse in Asia’s Largest Sewage Treatment Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naveen%20Porika">Naveen Porika</a>, <a href="https://publications.waset.org/abstracts/search?q=Snigdho%20Majumdar"> Snigdho Majumdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Niraj%20Sethi"> Niraj Sethi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water, food and energy securities are emerging as increasingly important and vital issues for India and the world. Hyderabad urban agglomeration (HUA), the capital city of Andhra Pradesh State in India, is the sixth largest city has a population of about 8.2 million. The Musi River, which is a tributary of Krishna river flows from west to east right through the heart of Hyderabad, about 80% of the water used by people is released back as sewage, which flows back into Musi every day with detrimental effects on the environment and people downstream of the city. The average daily sewage generated in Hyderabad city is 950 MLD, however, treatment capacity exists only for 541 Million Liters per Day (MLD) but only 407 MLD of sewage is treated. As a result, 543 MLD of sewage daily flows into Musi river. Hyderabad’s current estimated water demand stands at 320 Million Gallons per Day (MGD). However, its installed capacity is merely 270 MGD; by 2020 estimated demand will grow to 400 MGD. There is huge gap between current supply and demand, and this is likely to widen by 2021. Developing new fresh water sources is a challenge for Hyderabad, as the fresh water sources are few and far from the City (about 150-200 km) and requires excessive pumping. The constraints presented above make the conventional alternatives for supply augmentation unsustainable and unattractive .One such dependable and captive source of easily available water is the treated sewage. With proper treatment, water of desired quality can be recovered from the waste water (sewage) for recycle and reuse. Hyderabad Amberpet sewage treatment of capacity 339 MLD is Asia’s largest sewage treatment plant. Tertiary sewage treatment Standard basic engineering modules of 30 MLD,60 MLD, 120MLD & 180 MLD for sewage treatment plants has been developed which are utilized for developing Sewage Reclamation & Reuse model in Asia’s largest sewage treatment plant. This paper will focus on Hyderabad Water Supply & Demand, Sewage Generation & Treatment, Technical aspects of Tertiary Sewage Treatment and Utilization of developed standard modules for reclamation & reuse of treated sewage to overcome the deficit of 130 MGD as projected by 2021. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20reclamation" title="water reclamation">water reclamation</a>, <a href="https://publications.waset.org/abstracts/search?q=reuse" title=" reuse"> reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=Andhra%20Pradesh" title=" Andhra Pradesh"> Andhra Pradesh</a>, <a href="https://publications.waset.org/abstracts/search?q=hyderabad" title=" hyderabad"> hyderabad</a>, <a href="https://publications.waset.org/abstracts/search?q=musi%20river" title=" musi river"> musi river</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage" title=" sewage"> sewage</a>, <a href="https://publications.waset.org/abstracts/search?q=demand%20and%20supply" title=" demand and supply"> demand and supply</a>, <a href="https://publications.waset.org/abstracts/search?q=recycle" title=" recycle"> recycle</a>, <a href="https://publications.waset.org/abstracts/search?q=Amberpet" title=" Amberpet"> Amberpet</a>, <a href="https://publications.waset.org/abstracts/search?q=339%20MLD" title=" 339 MLD"> 339 MLD</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20modules" title=" engineering modules"> engineering modules</a>, <a href="https://publications.waset.org/abstracts/search?q=tertiary%20treatment" title=" tertiary treatment "> tertiary treatment </a> </p> <a href="https://publications.waset.org/abstracts/27205/water-reclamation-and-reuse-in-asias-largest-sewage-treatment-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">617</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8884</span> Development and Implementation of a Business Technology Program Based on Techniques for Reusing Water in a Colombian Company</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miguel%20A.%20Jimenez%20Barros">Miguel A. Jimenez Barros</a>, <a href="https://publications.waset.org/abstracts/search?q=Elyn%20L.%20Solano%20Charris"> Elyn L. Solano Charris</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20E.%20Ramirez"> Luis E. Ramirez</a>, <a href="https://publications.waset.org/abstracts/search?q=Lauren%20Castro%20Bolano"> Lauren Castro Bolano</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Torres%20Barreto"> Carlos Torres Barreto</a>, <a href="https://publications.waset.org/abstracts/search?q=Juliana%20Morales%20Cubillo"> Juliana Morales Cubillo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This project sought to mitigate the high levels of water consumption in industrial processes in accordance with the water-rationing plan promoted at national and international level due to the water consumption projections published by the United Nations. Water consumption has three main uses, municipal (common use), agricultural and industrial where the latter consumes a minimum percentage (around 20% of the total consumption). Awareness on world water scarcity, a Colombian company responsible for generation of massive consumption products, decided to implement politics and techniques for water treatment, recycling, and reuse. The project consisted in a business technology program that permits a better use of wastewater caused by production operations. This approach reduces the potable water consumption, generates better conditions of water in the sewage dumps, generates a positive environmental impact for the region, and is a reference model in national and international levels. In order to achieve the objective, a process flow diagram was used in order to define the industrial processes that required potable water. This strategy allowed the industry to determine a water reuse plan at the operational level without affecting the requirements associated with the manufacturing process and even more, to support the activities developed in administrative buildings. Afterwards, the company made an evaluation and selection of the chemical and biological processes required for water reuse, in compliance with the Colombian Law. The implementation of the business technology program optimized the water use and recirculation rate up to 70%, accomplishing an important reduction of the regional environmental impact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-reactor" title="bio-reactor">bio-reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=potable%20water" title=" potable water"> potable water</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20osmosis" title=" reverse osmosis"> reverse osmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/69256/development-and-implementation-of-a-business-technology-program-based-on-techniques-for-reusing-water-in-a-colombian-company" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8883</span> Comparison of Presented Definitions and Aspects of Authenticity and Integrity in Adaptive Reuse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Golnaz%20Salehi%20Mourkani">Golnaz Salehi Mourkani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two conception of Integrity and authenticity, in texts have just applied respectively for adaptive reuse and conservation, which in comparison with word “Integrity” in texts related to adaptive reuse is much more seen than Authenticity, which is often applied with conservation. According to Stove, H. (2007) in some cases, this conception have used with this form “integrity/authenticity” in texts, that cause to infer one conception of both. In this article, with referring to definitions and comparison of aspects specialized to both concept of “Authenticity and Integrity” through literature review, it was attempted to examine common and distinctive aspects of each one, then with this method we can reach their differences in adaptive reuse. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20reuse" title="adaptive reuse">adaptive reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=integrity" title=" integrity"> integrity</a>, <a href="https://publications.waset.org/abstracts/search?q=authenticity" title=" authenticity"> authenticity</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a> </p> <a href="https://publications.waset.org/abstracts/18769/comparison-of-presented-definitions-and-aspects-of-authenticity-and-integrity-in-adaptive-reuse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8882</span> Household Low Temperature MS2 (ATCC15597-B1) Virus Inactivation Using a Hot Bubble Column Evaporator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Garrido%20Sanchis">Adrian Garrido Sanchis</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Pashley"> Richard Pashley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The MS2 (ATCC15597-B1) virus was used as a surrogate to estimate the inactivation rates for enteric viruses when using a hot air bubble column evaporator (HBCE) system in the treatment of household wastewater. In this study, we have combined MS2 virus surface charging properties with thermal inactivation rates, using an improved double layer plaque assay technique, in order to assess the efficiency of the HBCE process for virus removal in water. When bubbling a continuous flow of dry air, at 200°C, only heats the aqueous solution in the bubble column to about 50°C. Viruses are not inactivated by this solution temperature, as confirmed separately from water bath heating experiments. Hence, the efficiency of the HBCE process for virus removal in water appeared to be caused entirely by collisions between the hot air bubbles and the virus organisms. This new energy efficient treatment for water reuse applications can reduce the thermal energy required to only 25% (about 113.7 kJ/L) of that required for boiling (about 450 kJ/L). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MS2%20virus%20inactivation" title="MS2 virus inactivation">MS2 virus inactivation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20reuse" title=" water reuse"> water reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20bubble%20column%20evaporator" title=" hot bubble column evaporator"> hot bubble column evaporator</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/84622/household-low-temperature-ms2-atcc15597-b1-virus-inactivation-using-a-hot-bubble-column-evaporator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8881</span> Role of Organic Wastewater Constituents in Iron Redox Cycling for Ferric Sludge Reuse in the Fenton-Based Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Bolobajev">J. Bolobajev</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Trapido"> M. Trapido</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Goi"> A. Goi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The practical application of the Fenton-based treatment method for organic compounds-contaminated water purification is limited mainly because of the large amount of ferric sludge formed during the treatment, where ferrous iron (Fe(II)) is used as the activator of the hydrogen peroxide oxidation processes. Reuse of ferric sludge collected from clarifiers to substitute Fe(II) salts allows reducing the total cost of Fenton-type treatment technologies and minimizing the accumulation of hazardous ferric waste. Dissolution of ferric iron (Fe(III)) from the sludge to liquid phase at acidic pH and autocatalytic transformation of Fe(III) to Fe(II) by phenolic compounds (tannic acid, lignin, phenol, catechol, pyrogallol and hydroquinone) added or present as water/wastewater constituents were found to be essentially involved in the Fenton-based oxidation mechanism. Observed enhanced formation of highly reactive species, hydroxyl radicals, resulted in a substantial organic contaminant degradation increase. Sludge reuse at acidic pH and in the presence of ferric iron reductants is a novel strategy in the Fenton-based treatment application for organic compounds-contaminated water purification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferric%20sludge%20recycling" title="ferric sludge recycling">ferric sludge recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=ferric%20iron%20reductant" title=" ferric iron reductant"> ferric iron reductant</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20pollutant" title=" organic pollutant"> organic pollutant</a> </p> <a href="https://publications.waset.org/abstracts/39944/role-of-organic-wastewater-constituents-in-iron-redox-cycling-for-ferric-sludge-reuse-in-the-fenton-based-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8880</span> Intelligent Rainwater Reuse System for Irrigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20M.%20S.%20Pires">Maria M. S. Pires</a>, <a href="https://publications.waset.org/abstracts/search?q=Andre%20F.%20X.%20Gloria"> Andre F. X. Gloria</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20J.%20A.%20Sebastiao"> Pedro J. A. Sebastiao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The technological advances in the area of Internet of Things have been creating more and more solutions in the area of agriculture. These solutions are quite important for life, as they lead to the saving of the most precious resource, water, being this need to save water a concern worldwide. The paper proposes the creation of an Internet of Things system based on a network of sensors and interconnected actuators that automatically monitors the quality of the rainwater that is stored inside a tank in order to be used for irrigation. The main objective is to promote sustainability by reusing rainwater for irrigation systems instead of water that is usually available for other functions, such as other productions or even domestic tasks. A mobile application was developed for Android so that the user can control and monitor his system in real time. In the application, it is possible to visualize the data that translate the quality of the water inserted in the tank, as well as perform some actions on the implemented actuators, such as start/stop the irrigation system and pour the water in case of poor water quality. The implemented system translates a simple solution with a high level of efficiency and tests and results obtained within the possible environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things" title="internet of things">internet of things</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation%20system" title=" irrigation system"> irrigation system</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20and%20actuator%20network" title=" wireless sensor and actuator network"> wireless sensor and actuator network</a>, <a href="https://publications.waset.org/abstracts/search?q=ESP32" title=" ESP32"> ESP32</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20reuse" title=" water reuse"> water reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20efficiency" title=" water efficiency"> water efficiency</a> </p> <a href="https://publications.waset.org/abstracts/133312/intelligent-rainwater-reuse-system-for-irrigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8879</span> Minimizing Fresh and Wastewater Using Water Pinch Technique in Petrochemical Industries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wasif%20Mughees">Wasif Mughees</a>, <a href="https://publications.waset.org/abstracts/search?q=Malik%20Al-Ahmad"> Malik Al-Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Naeem"> Muhammad Naeem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research involves the design and analysis of pinch-based water/wastewater networks to minimize water utility in the petrochemical and petroleum industries. A study has been done on Tehran Oil Refinery to analyze feasibilities of regeneration, reuse and recycling of water network. COD is considered as a single key contaminant. Amount of freshwater was reduced about 149m3/h (43.8%) regarding COD. Re-design (or retrofitting) of water allocation in the networks was undertaken. The results were analyzed through graphical method and mathematical programming technique which clearly demonstrated that amount of required water would be determined by mass transfer of COD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=minimization" title="minimization">minimization</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pinch" title=" water pinch"> water pinch</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20management" title=" water management"> water management</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20prevention" title=" pollution prevention"> pollution prevention</a> </p> <a href="https://publications.waset.org/abstracts/1469/minimizing-fresh-and-wastewater-using-water-pinch-technique-in-petrochemical-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8878</span> A Concept of Rational Water Management at Local Utilities: The Use of RO for Water Supply and Wastewater Treatment/Reuse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Matveev">N. Matveev</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Pervov"> A. Pervov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Local utilities often face problems of local industrial wastes, storm water disposal due to existing strict regulations. For many local industries, the problem of wastewater treatment and discharge into surface reservoirs can’t be solved through the use of conventional biological treatment techniques. Current discharge standards require very strict removal of a number of impurities such as ammonia, nitrates, phosphate, etc. To reach this level of removal, expensive reagents and sorbents are used. The modern concept of rational water resources management requires the development of new efficient techniques that provide wastewater treatment and reuse. As RO membranes simultaneously reject all dissolved impurities such as BOD, TDS, ammonia, phosphates etc., they become very attractive for the direct treatment of wastewater without biological stage. To treat wastewater, specially designed membrane "open channel" modules are used that do not possess "dead areas" that cause fouling or require pretreatment. A solution to RO concentrate disposal problem is presented that consists of reducing of initial wastewater volume by 100 times. Concentrate is withdrawn from membrane unit as sludge moisture. The efficient use of membrane RO techniques is connected with a salt balance in water system. Thus, to provide high ecological efficiency of developed techniques, all components of water supply and wastewater discharge systems should be accounted for. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reverse%20osmosis" title="reverse osmosis">reverse osmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=stormwater%20treatment" title=" stormwater treatment"> stormwater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=open-channel%20module" title=" open-channel module"> open-channel module</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20reuse" title=" wastewater reuse"> wastewater reuse</a> </p> <a href="https://publications.waset.org/abstracts/10346/a-concept-of-rational-water-management-at-local-utilities-the-use-of-ro-for-water-supply-and-wastewater-treatmentreuse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8877</span> Membrane Bioreactor for Wastewater Treatment and Reuse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarra%20Kitanou">Sarra Kitanou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water recycling and reuse is an effective measure to solve the water stress problem. The sustainable use of water resource has become a national development strategy in Morocco. A key aspect of improving overall sustainability is the potential for direct wastewater effluent reuse. However, the hybrid technology membrane bioreactors (MBR) have been identified as an attractive option for producing high quality and nutrient-rich effluents for wastewater treatment. It is based on complex interactions between biological processes, filtration process and rheological properties of the liquid to be treated. Currently, with the evolution of wastewater treatment projects in Morocco, the MBR technology can be used as a technology treating different types of wastewaters and to produce effluent with suitable quality for reuse. However, the energetic consumption of this process is a great concern, which can limit the development and implementation of this technology. In this investigation, the electric energy consumption of an ultrafiltration membrane bioreactor process in domestic wastewater treatment is evaluated and compared to some MBR installations based on literature review. Energy requirements of the MBR are linked to operational parameters and reactor performance. The analysis of energy consumption shows that the biological aeration and membrane filtration are more energy consuming than the other components listed as feed and recirculation pumps. Biological aeration needs 53% of the overall energetic consumption and the specific energy consumption for membrane filtration is about 25%. However, aeration is a major energy consumer, often exceeding 50% share of total energy consumption. The optimal results obtained on the MBR process (pressure p = 1.15 bar), hydraulic retention time (15 h) showed removal efficiencies up to 90% in terms of organic compounds removal, 100% in terms of suspended solids presence and up to 80% reduction of total nitrogen and total phosphorus. The effluent from this MBR system could be considered as qualified for irrigation reuse, showing its potential application in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20process" title="hybrid process">hybrid process</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor" title=" membrane bioreactor"> membrane bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=reuse" title=" reuse"> reuse</a> </p> <a href="https://publications.waset.org/abstracts/168086/membrane-bioreactor-for-wastewater-treatment-and-reuse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8876</span> Approved Cyclic Treatment System of Grey Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanen%20Filali">Hanen Filali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hachicha"> Mohamed Hachicha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Treated grey water (TGW) reuse emerged as an alternative resource to meet the growing demand for water for agricultural irrigation and reduce the pressure on limited existing fresh water. However, this reuse needs adapted management in order to avoid environmental and health risks. In this work, the treatment of grey water (GW) was studied from a cyclic treatment system that we designed and implemented in the greenhouse of National Research Institute for Rural Engineering, Water and Forests (INRGREF). This system is composed of three levels for treatment (TGW 1, TGW 2, and TGW 3). Each level includes a sandy soil box. The use of grey water was moderated depending on the chemical and microbiological quality obtained. Different samples of soils and treated grey water were performed and analyzed for 14 irrigation cycles. TGW through cyclic treatment showed physicochemical parameters like pH, electrical conductivity (EC), chemical oxygen demand (COD), biological oxygen demand (BOD5) in the range of 7,35-7,91, 1,69-5,03 dS/m, 102,6-54,2 mgO2/l, and 31,33-15,74 mgO2/l, respectively. Results showed a reduction in the pollutant load with a significant effect on the three treatment levels; however, an increase in salinity was observed during all irrigation cycles. Microbiological results showed good grey water treatment with low health risk on irrigated soil. Treated water quality was below permissible Tunisian standards (NT106.03), and treated water is suitable for non-potable options. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=treated%20grey%20water" title="treated grey water">treated grey water</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20treatment" title=" cyclic treatment"> cyclic treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=soils" title=" soils"> soils</a>, <a href="https://publications.waset.org/abstracts/search?q=physico-chemical%20parameters" title=" physico-chemical parameters"> physico-chemical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiological%20parameters" title=" microbiological parameters"> microbiological parameters</a> </p> <a href="https://publications.waset.org/abstracts/155731/approved-cyclic-treatment-system-of-grey-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8875</span> Small Community’s Proactive Thinking to Move from Zero to 100 Percent Water Reuse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raj%20Chavan">Raj Chavan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The City of Jal serves a population of approximately 3,500 people, including 2,100 permanent inhabitants and 1,400 oil and gas sector workers and RV park occupants. Over the past three years, Jal's population has increased by about 70 percent, mostly due to the oil and gas industry. The City anticipates that the population will exceed 4,200 by 2020, necessitating the construction of a new wastewater treatment plant (WWTP) because the old plant (aerated lagoon system) cannot accommodate such rapid population expansion without major renovations or replacement. Adhering to discharge permit restrictions has been challenging due to aging infrastructure and equipment replacement needs, as well as increasing nutrient loading to the wastewater collecting system from the additional oil and gas residents' recreational vehicles. The WWTP has not been able to maintain permit discharge standards for total nitrogen of less than 20 mg N/L and other characteristics in recent years. Based on discussions with the state's environmental department, it is likely that the future permit renewal would impose stricter conditions. Given its location in the dry, western part of the country, the City must rely on its meager groundwater supplies and scant annual precipitation. The city's groundwater supplies will be depleted sooner than predicted due to rising demand from the growing population for drinking, leisure, and other industrial uses (fracking). The sole type of reuse the city was engaging in (recreational reuse for a golf course) had to be put on hold because of an effluent water compliance issue. As of right now, all treated effluent is evaporated. The city's long-term goal is to become a zero-waste community that sends all of its treated wastewater effluent either to the golf course, Jal Lake, or the oil and gas industry for reuse. Hydraulic fracturing uses a lot of water, but if the oil and gas industry can use recycled water, it can reduce its impact on freshwater supplies. The City's goal of 100% reuse has been delayed by the difficulties of meeting the constraints of the regular discharge permit due to the large rise in influent loads and the aging infrastructure. The City of Jal plans to build a new WWTP that can keep up with the city's rapid population increase due to the oil and gas industry. Several treatment methods were considered in light of the City's needs and its long-term goals, but MBR was ultimately chosen recommended since it meets all of the permit's requirements while also providing 100 percent beneficial reuse. This talk will lay out the plan for the city to reach its goal of 100 percent reuse, as well as the various avenues for funding the small community that have been considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor" title="membrane bioreactor">membrane bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogent" title=" nitrogent"> nitrogent</a>, <a href="https://publications.waset.org/abstracts/search?q=reuse" title=" reuse"> reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20community" title=" small community"> small community</a> </p> <a href="https://publications.waset.org/abstracts/152615/small-communitys-proactive-thinking-to-move-from-zero-to-100-percent-water-reuse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8874</span> Assessment of Escherichia coli along Nakibiso Stream in Mbale Municipality, Uganda</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Walusansa">Abdul Walusansa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to assess the level of microbial pollution along Nakibiso stream. The study was carried out in polluted waters of Nakibiso stream, originating from Mbale municipality and running through ADRA Estates to Namatala Wetlands in Eastern Uganda. Four sites along the stream were selected basing on the activities of their vicinity. A total of 120 samples were collected in sterile bottles from the four sampling locations of the stream during the wet and dry seasons of the year 2011. The samples were taken to the National water and Sewerage Cooperation Laboratory for Analysis. Membrane filter technique was used to test for Erischerichia coli. Nitrogen, Phosphorus, pH, dissolved oxygen, electrical conductivity, total suspended solids, turbidity and temperature were also measured. Results for Nitrogen and Phosphorus for sites; 1, 2, 3 and 4 were 1.8, 8.8, 7.7 and 13.8 NH4-N mg/L; and 1.8, 2.1, 1.8 and 2.3 PO4-P mg/L respectively. Basing on these results, it was estimated that farmers use 115 and 24 Kg/acre of Nitrogen and Phosphorus respectively per month. Taking results for Nitrogen, the same amount of Nutrients in artificial fertilizers would cost $ 88. This shows that reuse of wastewater has a potential in terms of nutrients. The results for E. coli for sites 1, 2, 3 and 4 were 1.1 X 107, 9.1 X 105, 7.4 X 105, and 3.4 X 105 respectively. E. coli hence decreased downstream with statistically significant variations between sites 1 and 4. Site 1 had the highest mean E.coli counts. The bacterial contamination was significantly higher during the dry season when more water was needed for irrigation. Although the water had the potential for reuse in farming, bacterial contamination during both seasons was higher than 103 FC/100ml recommended by WHO for unrestricted Agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title="E. coli">E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus" title=" phosphorus"> phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20reuse" title=" water reuse"> water reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a> </p> <a href="https://publications.waset.org/abstracts/68433/assessment-of-escherichia-coli-along-nakibiso-stream-in-mbale-municipality-uganda" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8873</span> Ultrafiltration Process Intensification for Municipal Wastewater Reuse: Water Quality, Optimization of Operating Conditions and Fouling Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Yang">J. Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Monnot"> M. Monnot</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Eljaddi"> T. Eljaddi</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Simonian"> L. Simonian</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Ercolei"> L. Ercolei</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Moulin"> P. Moulin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of membrane technology to wastewater treatment has expanded rapidly under increasing stringent legislation and environmental protection requirements. At the same time, the water resource is becoming precious, and water reuse has gained popularity. Particularly, ultrafiltration (UF) is a very promising technology for water reuse as it can retain organic matters, suspended solids, colloids, and microorganisms. Nevertheless, few studies dealing with operating optimization of UF as a tertiary treatment for water reuse on a semi-industrial scale appear in the literature. Therefore, this study aims to explore the permeate water quality and to optimize operating parameters (maximizing productivity and minimizing irreversible fouling) through the operation of a UF pilot plant under real conditions. The fully automatic semi-industrial UF pilot plant with periodic classic backwashes (CB) and air backwashes (AB) was set up to filtrate the secondary effluent of an urban wastewater treatment plant (WWTP) in France. In this plant, the secondary treatment consists of a conventional activated sludge process followed by a sedimentation tank. The UF process was thus defined as a tertiary treatment and was operated under constant flux. It is important to note that a combination of CB and chlorinated AB was used for better fouling management. The 200 kDa hollow fiber membrane was used in the UF module, with an initial permeability (for WWTP outlet water) of 600 L·m-2·h⁻¹·bar⁻¹ and a total filtration surface of 9 m². Fifteen filtration conditions with different fluxes, filtration times, and air backwash frequencies were operated for more than 40 hours of each to observe their hydraulic filtration performances. Through comparison, the best sustainable condition was flux at 60 L·h⁻¹·m⁻², filtration time at 60 min, and backwash frequency of 1 AB every 3 CBs. The optimized condition stands out from the others with > 92% water recovery rates, better irreversible fouling control, stable permeability variation, efficient backwash reversibility (80% for CB and 150% for AB), and no chemical washing occurrence in 40h’s filtration. For all tested conditions, the permeate water quality met the water reuse guidelines of the World Health Organization (WHO), French standards, and the regulation of the European Parliament adopted in May 2020, setting minimum requirements for water reuse in agriculture. In permeate: the total suspended solids, biochemical oxygen demand, and turbidity were decreased to < 2 mg·L-1, ≤ 10 mg·L⁻¹, < 0.5 NTU respectively; the Escherichia coli and Enterococci were > 5 log removal reduction, the other required microorganisms’ analysis were below the detection limits. Additionally, because of the COVID-19 pandemic, coronavirus SARS-CoV-2 was measured in raw wastewater of WWTP, UF feed, and UF permeate in November 2020. As a result, the raw wastewater was tested positive above the detection limit but below the quantification limit. Interestingly, the UF feed and UF permeate were tested negative to SARS-CoV-2 by these PCR assays. In summary, this work confirms the great interest in UF as intensified tertiary treatment for water reuse and gives operational indications for future industrial-scale production of reclaimed water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semi-industrial%20UF%20pilot%20plant" title="semi-industrial UF pilot plant">semi-industrial UF pilot plant</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20reuse" title=" water reuse"> water reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=fouling%20management" title=" fouling management"> fouling management</a>, <a href="https://publications.waset.org/abstracts/search?q=coronavirus" title=" coronavirus"> coronavirus</a> </p> <a href="https://publications.waset.org/abstracts/133661/ultrafiltration-process-intensification-for-municipal-wastewater-reuse-water-quality-optimization-of-operating-conditions-and-fouling-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8872</span> Reducing The Frequency of Flooding Accompanied by Low pH Wastewater In 100/200 Unit of Phosphate Fertilizer 1 Plant by Implementing The 3R Program (Reduce, Reuse and Recycle)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pradipta%20Risang%20Ratna%20Sambawa">Pradipta Risang Ratna Sambawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Driya%20Herseta"> Driya Herseta</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahendra%20Fajri%20Nugraha"> Mahendra Fajri Nugraha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2020, PT Petrokimia Gresik implemented a program to increase the ROP (Run Of Pile) production rate at the Phosphate Fertilizer 1 plant, causing an increase in scrubbing water consumption in the 100/200 area unit. This increase in water consumption causes a higher discharge of wastewater, which can further cause local flooding, especially during the rainy season. The 100/200 area of the Phosphate Fertilizer 1 plant is close to the warehouse and is often a passing area for trucks transporting raw materials. This causes the pH in the wastewater to become acidic (the worst point is up to pH 1). The problem of flooding and exposure to acidic wastewater in the 100/200 area of Phosphate Fertilizer Plant 1 was then resolved by PT Petrokimia Gresik through wastewater optimization steps called the 3R program (Reduce, Reuse, and Recycle). The 3R (Reduce, reuse, and recycle) program consists of an air consumption reduction program by considering the liquid/gas ratio in scrubbing unit of 100/200 Phosphate Fertilizer 1 plant, creating a wastewater interconnection line so that wastewater from unit 100/200 can be used as scrubbing water in the Phonska 1, Phonska 2, Phonska 3 and unit 300 Phosphate Fertilizer 1 plant and increasing scrubbing effectiveness through scrubbing effectiveness simulations. Through a series of wastewater optimization programs, PT Petrokimia Gresik has succeeded in reducing NaOH consumption for neutralization up to 2,880 kg/day or equivalent in saving up to 314,359.76 dollars/year and reducing process water consumption up to 600 m3/day or equivalent in saving up to 63,739.62 dollars/year. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fertilizer" title="fertilizer">fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphate%20fertilizer" title=" phosphate fertilizer"> phosphate fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20management" title=" water management"> water management</a> </p> <a href="https://publications.waset.org/abstracts/188842/reducing-the-frequency-of-flooding-accompanied-by-low-ph-wastewater-in-100200-unit-of-phosphate-fertilizer-1-plant-by-implementing-the-3r-program-reduce-reuse-and-recycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">26</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8871</span> Comparison of Presented Definitions to Authenticity and Integrity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Golnaz%20Salehi%20Mourkani">Golnaz Salehi Mourkani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two conception of Integrity and authenticity, in texts have just applied respectively for adaptive reuse and conservation, which in comparison with word “Integrity” in texts related to adaptive reuse is much more seen than Authenticity, which is often applied with conservation. According to Stove, H., (2007) in some cases, this conception have used with this form “integrity/authenticity” in texts, that cause to infer one conception of both. In this article, with referring to definitions and comparison of aspects specialized to both concept of “Authenticity and Integrity” through literature review, it was attempted to examine common and distinctive aspects of each one, then with this method we can reach their differences in adaptive reuse. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20reuse" title="adaptive reuse">adaptive reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=integrity" title=" integrity"> integrity</a>, <a href="https://publications.waset.org/abstracts/search?q=authenticity" title=" authenticity"> authenticity</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a> </p> <a href="https://publications.waset.org/abstracts/18744/comparison-of-presented-definitions-to-authenticity-and-integrity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8870</span> The Environmental Impacts of Textiles Reuse and Recycling: A Review on Life-Cycle-Assessment Publications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuele%20Abagnato">Samuele Abagnato</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucia%20Rigamonti"> Lucia Rigamonti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Life-Cycle-Assessment (LCA) is an effective tool to quantify the environmental impacts of reuse models and recycling technologies for textiles. In this work, publications in the last ten years about LCA on textile waste are classified according to location, goal and scope, functional unit, waste composition, impact assessment method, impact categories, and sensitivity analysis. Twenty papers have been selected: 50% are focused only on recycling, 30% only on reuse, the 15% on both, while only one paper considers only the final disposal of the waste. It is found that reuse is generally the best way to decrease the environmental impacts of textiles waste management because of the avoided impacts of manufacturing a new item. In the comparison between a product made with recycled yarns and a product from virgin materials, in general, the first option is less impact, especially for the categories of climate change, water depletion, and land occupation, while for other categories, such as eutrophication or ecotoxicity, under certain conditions the impacts of the recycled fibres can be higher. Cultivation seems to have quite high impacts when natural fibres are involved, especially in the land use and water depletion categories, while manufacturing requires a remarkable amount of electricity, with its associated impact on climate change. In the analysis of the reuse processes, relevant importance is covered by the laundry phase, with water consumption and impacts related to the use of detergents. About the sensitivity analysis, it can be stated that one of the main variables that influence the LCA results and that needs to be further investigated in the modeling of the LCA system about this topic is the substitution rate between recycled and virgin fibres, that is the amount of recycled material that can be used in place of virgin one. Related to this, also the yield of the recycling processes has a strong influence on the results of the impact. The substitution rate is also important in the modeling of the reuse processes because it represents the number of avoided new items bought in place of the reused ones. Another aspect that appears to have a large influence on the impacts is consumer behaviour during the use phase (for example, the number of uses between two laundry cycles). In conclusion, to have a deeper knowledge of the impacts of a life-cycle approach of textile waste, further data and research are needed in the modeling of the substitution rate and of the use phase habits of the consumers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20impacts" title="environmental impacts">environmental impacts</a>, <a href="https://publications.waset.org/abstracts/search?q=life-cycle-assessment" title=" life-cycle-assessment"> life-cycle-assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=textiles%20recycling" title=" textiles recycling"> textiles recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=textiles%20reuse" title=" textiles reuse"> textiles reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=textiles%20waste%20management" title=" textiles waste management"> textiles waste management</a> </p> <a href="https://publications.waset.org/abstracts/166402/the-environmental-impacts-of-textiles-reuse-and-recycling-a-review-on-life-cycle-assessment-publications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8869</span> Investigation of Correlation Between Radon Concentration and Metals in Produced Water from Oilfield Activities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nacer%20Hamza">Nacer Hamza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Naturally radiation exposure that present due to the cosmic ray or the naturel occurring radioactives materials(NORMs) that originated in the earth's crust and are present everywhere in the environment(1) , a significant concentration of NORMs reported in the produced water which comes out during the oil extraction process, so that the management of this produced water is a challenge for oil and gas companies which include either minimization of produced water which considered as the best way in the term of environment based in the fact that ,the lower water produced the lower cost in treating this water , recycling and reuse by reinjected produced water that fulfills some requirements to enhance oil recovery or disposal in the case that the produced water cannot be minimize or reuse. In the purpose of produced water management, the investigation of NORMs activity concentration present in it considered as the main step for more understanding of the radionuclide’s distribution. Many studies reported the present of NORMs in produced water and investigated the correlation between 〖Ra〗^226and the different metals present in produced water(2) including Cations and anions〖Na〗^+,〖Cl〗^-, 〖Fe〗^(2+), 〖Ca〗^(2+) . and lead, nickel, zinc, cadmium, and copper commonly exist as heavy metal in oil and gas field produced water(3). However, there are no real interesting to investigate the correlation between 〖Rn〗^222and the different metals exist in produced water. methods using, in first to measure the radon concentration activity in produced water samples is a RAD7 .RAD7 is a radiometer instrument based on the solid state detectors(4) which is a type of semi-conductor detector for alpha particles emitting from Rn and their progenies, in second the concentration of different metals presents in produced water measure using an atomic absorption spectrometry AAS. Then to investigate the correlation between the 〖Rn〗^222concentration activity and the metals concentration in produced water a statistical method is Pearson correlation analysis which based in the correlation coefficient obtained between the 〖Rn〗^222 and metals. Such investigation is important to more understanding how the radionuclides act in produced water based on this correlation with metals , in first due to the fact that 〖Rn〗^222decays through the sequence 〖Po〗^218, 〖Pb〗^214, 〖Bi〗^214, 〖Po〗^214, and〖Pb〗^210, those daughters are metals thus they will precipitate with metals present in produced water, secondly the short half-life of 〖Rn〗^222 (3.82 days) lead to faster precipitation of its progenies with metals in produced water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=norms" title="norms">norms</a>, <a href="https://publications.waset.org/abstracts/search?q=radon%20concentration" title=" radon concentration"> radon concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=produced%20water" title=" produced water"> produced water</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a> </p> <a href="https://publications.waset.org/abstracts/146935/investigation-of-correlation-between-radon-concentration-and-metals-in-produced-water-from-oilfield-activities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8868</span> Integrated Approach Towards Safe Wastewater Reuse in Moroccan Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zakia%20Hbellaq">Zakia Hbellaq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Mediterranean region is considered a hotbed for climate change. Morocco is a semi-arid Mediterranean country facing water shortages and poor water quality. Its limited water resources limit the activities of various economic sectors. Most of Morocco's territory is in arid and desert areas. The potential water resources are estimated at 22 billion m3, which is equivalent to about 700 m3/inhabitant/year, and Morocco is in a state of structural water stress. Strictly speaking, the Kingdom of Morocco is one of the “very riskiest” countries, according to the World Resources Institute (WRI), which oversees the calculation of water stress risk in 167 countries. The surprising results of the Institute (WRI) rank Morocco as one of the riskiest countries in terms of water scarcity, ranking 3.89 out of 5, thus occupying the 23rd place out of a total of 167 countries, which indicates that the demand for water exceeds the available resources. Agriculture with a score of 3.89 is most affected by water stress from irrigation and places a heavy burden on the water table. Irrigation is an unavoidable technical need and has undeniable economic and social benefits given the available resources and climatic conditions. Irrigation, and therefore the agricultural sector, currently uses 86% of its water resources, while industry uses 5.5%. Although its development has undeniable economic and social benefits, it also contributes to the overfishing of most groundwater resources and the surprising decline in levels and deterioration of water quality in some aquifers. In this context, REUSE is one of the proposed solutions to reduce the water footprint of the agricultural sector and alleviate the shortage of water resources. Indeed, wastewater reuse, also known as REUSE (reuse of treated wastewater), is a step forward not only for the circular economy but also for the future, especially in the context of climate change. In particular, water reuse provides an alternative to existing water supplies and can be used to improve water security, sustainability, and resilience. However, given the introduction of organic trace pollutants or, organic micro-pollutants, the absorption of emerging contaminants, and decreasing salinity, it is possible to tackle innovative capabilities to overcome these problems and ensure food and health safety. To this end, attention will be paid to the adoption of an integrated and attractive approach, based on the reinforcement and optimization of the treatments proposed for the elimination of the organic load with particular attention to the elimination of emerging pollutants, to achieve this goal. , membrane bioreactors (MBR) as stand-alone technologies are not able to meet the requirements of WHO guidelines. They will be combined with heterogeneous Fenton processes using persulfate or hydrogen peroxide oxidants. Similarly, adsorption and filtration are applied as tertiary treatment In addition, the evaluation of crop performance in terms of yield, productivity, quality, and safety, through the optimization of Trichoderma sp strains that will be used to increase crop resistance to abiotic stresses, as well as the use of modern omics tools such as transcriptomic analysis using RNA sequencing and methylation to identify adaptive traits and associated genetic diversity that is tolerant/resistant/resilient to biotic and abiotic stresses. Hence, ensuring this approach will undoubtedly alleviate water scarcity and, likewise, increase the negative and harmful impact of wastewater irrigation on the condition of crops and the health of their consumers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20scarcity" title="water scarcity">water scarcity</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20security" title=" food security"> food security</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20water%20footprint" title=" agricultural water footprint"> agricultural water footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=reuse" title=" reuse"> reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=emerging%20contaminants" title=" emerging contaminants"> emerging contaminants</a> </p> <a href="https://publications.waset.org/abstracts/149132/integrated-approach-towards-safe-wastewater-reuse-in-moroccan-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20reuse&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20reuse&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20reuse&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20reuse&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20reuse&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20reuse&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20reuse&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20reuse&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20reuse&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20reuse&page=296">296</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20reuse&page=297">297</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20reuse&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>