CINXE.COM

Probabilités (mathématiques élémentaires) — Wikipédia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="fr" dir="ltr"> <head> <meta charset="UTF-8"> <title>Probabilités (mathématiques élémentaires) — Wikipédia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )frwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","janvier","février","mars","avril","mai","juin","juillet","août","septembre","octobre","novembre","décembre"],"wgRequestId":"a27faca1-561d-4fda-9690-1490d8773936","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Probabilités_(mathématiques_élémentaires)","wgTitle":"Probabilités (mathématiques élémentaires)","wgCurRevisionId":219351750,"wgRevisionId":219351750,"wgArticleId":96058,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Portail:Probabilités et statistiques/Articles liés","Projet:Mathématiques/Articles","Portail:Sciences/Articles liés","Page qui utilise un format obsolète des balises mathématiques","Probabilités"],"wgPageViewLanguage":"fr","wgPageContentLanguage":"fr","wgPageContentModel":"wikitext","wgRelevantPageName":"Probabilités_(mathématiques_élémentaires)","wgRelevantArticleId":96058, "wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom":"Probabilités_élémentaires","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"fr","pageLanguageDir":"ltr","pageVariantFallbacks":"fr"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgInternalRedirectTargetUrl":"/wiki/Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)","wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q3406207","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList" ,"mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ArchiveLinks","ext.gadget.Wdsearch","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap", "ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=fr&amp;modules=ext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=fr&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=fr&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Probabilités (mathématiques élémentaires) — Wikipédia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//fr.m.wikipedia.org/wiki/Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)"> <link rel="alternate" type="application/x-wiki" title="Modifier" href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipédia (fr)"> <link rel="EditURI" type="application/rsd+xml" href="//fr.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://fr.wikipedia.org/wiki/Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.fr"> <link rel="alternate" type="application/atom+xml" title="Flux Atom de Wikipédia" href="/w/index.php?title=Sp%C3%A9cial:Modifications_r%C3%A9centes&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Probabilités_mathématiques_élémentaires rootpage-Probabilités_mathématiques_élémentaires skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Aller au contenu</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menu principal" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menu principal</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menu principal</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">masquer</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Accueil_principal" title="Accueil général [z]" accesskey="z"><span>Accueil</span></a></li><li id="n-thema" class="mw-list-item"><a href="/wiki/Portail:Accueil"><span>Portails thématiques</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Page_au_hasard" title="Affiche un article au hasard [x]" accesskey="x"><span>Article au hasard</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Contact"><span>Contact</span></a></li> </ul> </div> </div> <div id="p-Contribuer" class="vector-menu mw-portlet mw-portlet-Contribuer" > <div class="vector-menu-heading"> Contribuer </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-aboutwp" class="mw-list-item"><a href="/wiki/Aide:D%C3%A9buter"><span>Débuter sur Wikipédia</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Aide:Accueil" title="Accès à l’aide"><span>Aide</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Accueil_de_la_communaut%C3%A9" title="À propos du projet, ce que vous pouvez faire, où trouver les informations"><span>Communauté</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Modifications_r%C3%A9centes" title="Liste des modifications récentes sur le wiki [r]" accesskey="r"><span>Modifications récentes</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Wikip%C3%A9dia:Accueil_principal" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipédia" src="/static/images/mobile/copyright/wikipedia-wordmark-fr.svg" style="width: 7.4375em; height: 1.125em;"> <img class="mw-logo-tagline" alt="l&#039;encyclopédie libre" src="/static/images/mobile/copyright/wikipedia-tagline-fr.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Sp%C3%A9cial:Recherche" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Rechercher sur Wikipédia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Rechercher</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Rechercher sur Wikipédia" aria-label="Rechercher sur Wikipédia" autocapitalize="sentences" title="Rechercher sur Wikipédia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Spécial:Recherche"> </div> <button class="cdx-button cdx-search-input__end-button">Rechercher</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Outils personnels"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Apparence"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Modifier l&#039;apparence de la taille, de la largeur et de la couleur de la police de la page" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Apparence" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Apparence</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_fr.wikipedia.org&amp;uselang=fr" class=""><span>Faire un don</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Sp%C3%A9cial:Cr%C3%A9er_un_compte&amp;returnto=Probabilit%C3%A9s+%28math%C3%A9matiques+%C3%A9l%C3%A9mentaires%29" title="Nous vous encourageons à créer un compte utilisateur et vous connecter ; ce n’est cependant pas obligatoire." class=""><span>Créer un compte</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Sp%C3%A9cial:Connexion&amp;returnto=Probabilit%C3%A9s+%28math%C3%A9matiques+%C3%A9l%C3%A9mentaires%29" title="Nous vous encourageons à vous connecter ; ce n’est cependant pas obligatoire. [o]" accesskey="o" class=""><span>Se connecter</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Plus d’options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Outils personnels" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Outils personnels</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menu utilisateur" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_fr.wikipedia.org&amp;uselang=fr"><span>Faire un don</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Cr%C3%A9er_un_compte&amp;returnto=Probabilit%C3%A9s+%28math%C3%A9matiques+%C3%A9l%C3%A9mentaires%29" title="Nous vous encourageons à créer un compte utilisateur et vous connecter ; ce n’est cependant pas obligatoire."><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Créer un compte</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Connexion&amp;returnto=Probabilit%C3%A9s+%28math%C3%A9matiques+%C3%A9l%C3%A9mentaires%29" title="Nous vous encourageons à vous connecter ; ce n’est cependant pas obligatoire. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Se connecter</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages pour les contributeurs déconnectés <a href="/wiki/Aide:Premiers_pas" aria-label="En savoir plus sur la contribution"><span>en savoir plus</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Mes_contributions" title="Une liste des modifications effectuées depuis cette adresse IP [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Mes_discussions" title="La page de discussion pour les contributions depuis cette adresse IP [n]" accesskey="n"><span>Discussion</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Sommaire" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Sommaire</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">masquer</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Début</div> </a> </li> <li id="toc-Premières_explications" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Premières_explications"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Premières explications</span> </div> </a> <ul id="toc-Premières_explications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Concepts_de_base" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Concepts_de_base"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Concepts de base</span> </div> </a> <button aria-controls="toc-Concepts_de_base-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Afficher / masquer la sous-section Concepts de base</span> </button> <ul id="toc-Concepts_de_base-sublist" class="vector-toc-list"> <li id="toc-Univers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Univers"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Univers</span> </div> </a> <ul id="toc-Univers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Éventualité" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Éventualité"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Éventualité</span> </div> </a> <ul id="toc-Éventualité-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Événement" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Événement"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Événement</span> </div> </a> <ul id="toc-Événement-sublist" class="vector-toc-list"> <li id="toc-Événements_particuliers" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Événements_particuliers"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3.1</span> <span>Événements particuliers</span> </div> </a> <ul id="toc-Événements_particuliers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Opération_sur_les_événements" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Opération_sur_les_événements"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3.2</span> <span>Opération sur les événements</span> </div> </a> <ul id="toc-Opération_sur_les_événements-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Événements_incompatibles" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Événements_incompatibles"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3.3</span> <span>Événements incompatibles</span> </div> </a> <ul id="toc-Événements_incompatibles-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Probabilité_sur_un_ensemble_fini" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Probabilité_sur_un_ensemble_fini"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Probabilité sur un ensemble fini</span> </div> </a> <button aria-controls="toc-Probabilité_sur_un_ensemble_fini-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Afficher / masquer la sous-section Probabilité sur un ensemble fini</span> </button> <ul id="toc-Probabilité_sur_un_ensemble_fini-sublist" class="vector-toc-list"> <li id="toc-Construction_intuitive" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Construction_intuitive"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Construction intuitive</span> </div> </a> <ul id="toc-Construction_intuitive-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Définition_mathématique" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Définition_mathématique"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Définition mathématique</span> </div> </a> <ul id="toc-Définition_mathématique-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Équiprobabilité" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Équiprobabilité"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Équiprobabilité</span> </div> </a> <ul id="toc-Équiprobabilité-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Probabilité_sur_un_ensemble_infini" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Probabilité_sur_un_ensemble_infini"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Probabilité sur un ensemble infini</span> </div> </a> <ul id="toc-Probabilité_sur_un_ensemble_infini-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Voir_aussi" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Voir_aussi"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Voir aussi</span> </div> </a> <button aria-controls="toc-Voir_aussi-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Afficher / masquer la sous-section Voir aussi</span> </button> <ul id="toc-Voir_aussi-sublist" class="vector-toc-list"> <li id="toc-Articles_connexes" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Articles_connexes"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Articles connexes</span> </div> </a> <ul id="toc-Articles_connexes-sublist" class="vector-toc-list"> <li id="toc-Dans_le_cadre_des_mathématiques_élémentaires" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Dans_le_cadre_des_mathématiques_élémentaires"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1.1</span> <span>Dans le cadre des mathématiques élémentaires</span> </div> </a> <ul id="toc-Dans_le_cadre_des_mathématiques_élémentaires-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Pour_approfondir" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Pour_approfondir"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1.2</span> <span>Pour approfondir</span> </div> </a> <ul id="toc-Pour_approfondir-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Sommaire" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Basculer la table des matières" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Basculer la table des matières</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Probabilités (mathématiques élémentaires)</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Cet article n’existe que dans cette langue. Ajouter l’article pour d’autres langues." > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-0" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">Ajouter des langues</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> <div class="after-portlet after-portlet-lang"><span class="uls-after-portlet-link"></span><span class="wb-langlinks-add wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q3406207#sitelinks-wikipedia" title="Ajouter des liens interlangues" class="wbc-editpage">Ajouter des liens</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Espaces de noms"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)" title="Voir le contenu de la page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Discussion:Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)" rel="discussion" title="Discussion au sujet de cette page de contenu [t]" accesskey="t"><span>Discussion</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Modifier la variante de langue" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">français</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Affichages"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)"><span>Lire</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;veaction=edit" title="Modifier cette page [v]" accesskey="v"><span>Modifier</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;action=edit" title="Modifier le wikicode de cette page [e]" accesskey="e"><span>Modifier le code</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;action=history" title="Historique des versions de cette page [h]" accesskey="h"><span>Voir l’historique</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Outils de la page"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Outils" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Outils</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Outils</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">masquer</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Plus d’options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)"><span>Lire</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;veaction=edit" title="Modifier cette page [v]" accesskey="v"><span>Modifier</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;action=edit" title="Modifier le wikicode de cette page [e]" accesskey="e"><span>Modifier le code</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;action=history"><span>Voir l’historique</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Général </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Pages_li%C3%A9es/Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)" title="Liste des pages liées qui pointent sur celle-ci [j]" accesskey="j"><span>Pages liées</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Suivi_des_liens/Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)" rel="nofollow" title="Liste des modifications récentes des pages appelées par celle-ci [k]" accesskey="k"><span>Suivi des pages liées</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Aide:Importer_un_fichier" title="Téléverser des fichiers [u]" accesskey="u"><span>Téléverser un fichier</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Pages_sp%C3%A9ciales" title="Liste de toutes les pages spéciales [q]" accesskey="q"><span>Pages spéciales</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;oldid=219351750" title="Adresse permanente de cette version de cette page"><span>Lien permanent</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;action=info" title="Davantage d’informations sur cette page"><span>Informations sur la page</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Citer&amp;page=Probabilit%C3%A9s_%28math%C3%A9matiques_%C3%A9l%C3%A9mentaires%29&amp;id=219351750&amp;wpFormIdentifier=titleform" title="Informations sur la manière de citer cette page"><span>Citer cette page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:UrlShortener&amp;url=https%3A%2F%2Ffr.wikipedia.org%2Fwiki%2FProbabilit%25C3%25A9s_%28math%25C3%25A9matiques_%25C3%25A9l%25C3%25A9mentaires%29"><span>Obtenir l'URL raccourcie</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:QrCode&amp;url=https%3A%2F%2Ffr.wikipedia.org%2Fwiki%2FProbabilit%25C3%25A9s_%28math%25C3%25A9matiques_%25C3%25A9l%25C3%25A9mentaires%29"><span>Télécharger le code QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Imprimer / exporter </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Livre&amp;bookcmd=book_creator&amp;referer=Probabilit%C3%A9s+%28math%C3%A9matiques+%C3%A9l%C3%A9mentaires%29"><span>Créer un livre</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:DownloadAsPdf&amp;page=Probabilit%C3%A9s_%28math%C3%A9matiques_%C3%A9l%C3%A9mentaires%29&amp;action=show-download-screen"><span>Télécharger comme PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;printable=yes" title="Version imprimable de cette page [p]" accesskey="p"><span>Version imprimable</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Dans d’autres projets </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-wikiversity mw-list-item"><a href="https://fr.wikiversity.org/wiki/Probabilit%C3%A9s_sur_les_ensembles_finis" hreflang="fr"><span>Wikiversité</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q3406207" title="Lien vers l’élément dans le dépôt de données connecté [g]" accesskey="g"><span>Élément Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Outils de la page"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Apparence"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Apparence</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">masquer</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Un article de Wikipédia, l&#039;encyclopédie libre.</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirigé depuis <a href="/w/index.php?title=Probabilit%C3%A9s_%C3%A9l%C3%A9mentaires&amp;redirect=no" class="mw-redirect" title="Probabilités élémentaires">Probabilités élémentaires</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="fr" dir="ltr"><div class="bandeau-container metadata homonymie hatnote"><div class="bandeau-cell bandeau-icone" style="display:table-cell;padding-right:0.5em"><span class="noviewer" typeof="mw:File"><a href="/wiki/Aide:Homonymie" title="Aide:Homonymie"><img alt="Page d’aide sur l’homonymie" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Logo_disambig.svg/20px-Logo_disambig.svg.png" decoding="async" width="20" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Logo_disambig.svg/30px-Logo_disambig.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Logo_disambig.svg/40px-Logo_disambig.svg.png 2x" data-file-width="512" data-file-height="375" /></a></span></div><div class="bandeau-cell" style="display:table-cell;padding-right:0.5em"> <p>Pour les articles homonymes, voir <a href="/wiki/Probabilit%C3%A9_(homonymie)" class="mw-disambig" title="Probabilité (homonymie)">Probabilité (homonymie)</a>. </p> </div></div> <div class="bandeau-container metadata homonymie hatnote"><div class="bandeau-cell bandeau-icone" style="display:table-cell;padding-right:0.5em"><span class="noviewer" typeof="mw:File"><a href="/wiki/Aide:Homonymie" title="Aide:Homonymie"><img alt="Page d’aide sur l’homonymie" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Confusion_colour.svg/20px-Confusion_colour.svg.png" decoding="async" width="20" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Confusion_colour.svg/30px-Confusion_colour.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Confusion_colour.svg/40px-Confusion_colour.svg.png 2x" data-file-width="260" data-file-height="200" /></a></span></div><div class="bandeau-cell" style="display:table-cell;padding-right:0.5em"> <p>Cet article présente une approche élémentaire du calcul des probabilités&#160;; pour d'autres notions sur les probabilités voir <a href="/wiki/Probabilit%C3%A9" title="Probabilité">Probabilité</a>, pour une description rigoureuse de la théorie mathématique correspondante, voir <a href="/wiki/Th%C3%A9orie_des_probabilit%C3%A9s" title="Théorie des probabilités">Théorie des probabilités</a>, pour l'historique de ces notions, voir <a href="/wiki/Histoire_des_probabilit%C3%A9s" title="Histoire des probabilités">Histoire des probabilités</a>. </p> </div></div> <p>Les <b>probabilités</b> sont la branche des <a href="/wiki/Math%C3%A9matiques" title="Mathématiques">mathématiques</a> qui calcule la probabilité d'un événement, c'est-à-dire la fréquence d'un événement par rapport à l'ensemble des cas possibles. </p><p>Cette branche des mathématiques est née des jeux du hasard, plus précisément du désir de prévoir l'imprévisible ou de quantifier l'incertain. Il faut avant tout préciser ce qu'elle n'est pas&#160;: elle ne permet pas de prédire le résultat d'une unique expérience. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Premières_explications"><span id="Premi.C3.A8res_explications"></span>Premières explications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;veaction=edit&amp;section=1" title="Modifier la section : Premières explications" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;action=edit&amp;section=1" title="Modifier le code source de la section : Premières explications"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Les probabilités permettent de dire que dans un lancer de dé parfaitement équilibré, le fait d'obtenir <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39d81124420a058a7474dfeda48228fb6ee1e253" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 6}"></span> est un événement de probabilité <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/365dd517702686649e6644a66665efd1a32be3ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.487ex; height:2.843ex;" alt="{\displaystyle 1/6}"></span>, mais elles ne permettent pas de prédire quel sera le résultat du lancer suivant. Le fait que la probabilité soit de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/365dd517702686649e6644a66665efd1a32be3ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.487ex; height:2.843ex;" alt="{\displaystyle 1/6}"></span> n'assure pas qu'au bout de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39d81124420a058a7474dfeda48228fb6ee1e253" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 6}"></span> lancers, le n°<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39d81124420a058a7474dfeda48228fb6ee1e253" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 6}"></span> apparaisse une fois, ou le fait que durant les <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 100}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>100</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 100}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0572cd017c6d7936a12737c9d614a2f801f94a36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.487ex; height:2.176ex;" alt="{\displaystyle 100}"></span> lancers précédents, le n°<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39d81124420a058a7474dfeda48228fb6ee1e253" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 6}"></span> ne soit jamais apparu n'augmente même pas la chance que le n°<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39d81124420a058a7474dfeda48228fb6ee1e253" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 6}"></span> apparaisse au lancer suivant. On dit que le hasard n'a pas de mémoire. </p><p>Les probabilités n'ont de sens qu'avec l'observation de la <a href="/wiki/Loi_des_grands_nombres" title="Loi des grands nombres">loi des grands nombres</a>&#160;: si on renouvelle une expérience un grand nombre de fois, la fréquence d'apparition d'un événement devient alors proche de sa probabilité d'apparition. </p><p>Si on lance un dé <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 10\ 000}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>10</mn> <mtext>&#xA0;</mtext> <mn>000</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 10\ 000}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ff7ed6476129413c120790979ae29ed9a736822" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.393ex; height:2.176ex;" alt="{\displaystyle 10\ 000}"></span> fois, la fréquence d'apparition du n°<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39d81124420a058a7474dfeda48228fb6ee1e253" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 6}"></span> sera très voisine de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/365dd517702686649e6644a66665efd1a32be3ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.487ex; height:2.843ex;" alt="{\displaystyle 1/6}"></span>. </p><p>L'étude des probabilités s'est alors révélée un outil très puissant pour les organisateurs de jeux, depuis le chevalier de <a href="/wiki/Antoine_Gombaud,_chevalier_de_M%C3%A9r%C3%A9" class="mw-redirect" title="Antoine Gombaud, chevalier de Méré">Méré</a>, en passant par le philosophe <a href="/wiki/Blaise_Pascal" title="Blaise Pascal">Pascal</a> et pour finir chez les mathématiciens de la Française des jeux. Qu'importe pour eux que ce soit M. Dupont ou M. Dupuis qui gagne le gros lot, leur étude porte sur le grand nombre de joueurs, les sommes misées et les sommes gagnées. </p><p>Le calcul des probabilités s'est aussi révélé un outil indispensable dans l'étude et la couverture des <a href="/wiki/Risque" title="Risque">risques</a> et est à la base de tous les systèmes d'assurance. </p><p>Enfin, le siècle dernier a vu l'apparition d'une approche probabiliste dans le domaine de l'<a href="/wiki/Atome" title="Atome">atome</a>. </p><p>Les <b>premiers pas</b> dans le domaine des probabilités consistent à se familiariser avec le vocabulaire probabiliste élémentaire, découvrir les modes de calcul d'une probabilité, utiliser un <a href="/wiki/Arbre_de_probabilit%C3%A9" title="Arbre de probabilité">arbre de probabilité</a>, découvrir la notion d'<a href="/wiki/Ind%C3%A9pendance_en_probabilit%C3%A9_%C3%A9l%C3%A9mentaire" title="Indépendance en probabilité élémentaire">indépendance en probabilité élémentaire</a>, apprendre quelques règles de <a href="/wiki/Combinatoire" title="Combinatoire">combinatoire</a> et travailler sur quelques <a href="/wiki/Variables_al%C3%A9atoires_%C3%A9l%C3%A9mentaires" title="Variables aléatoires élémentaires">variables aléatoires élémentaires</a> </p> <div class="mw-heading mw-heading2"><h2 id="Concepts_de_base">Concepts de base</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;veaction=edit&amp;section=2" title="Modifier la section : Concepts de base" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;action=edit&amp;section=2" title="Modifier le code source de la section : Concepts de base"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Univers">Univers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;veaction=edit&amp;section=3" title="Modifier la section : Univers" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;action=edit&amp;section=3" title="Modifier le code source de la section : Univers"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Lors d'une <b>expérience aléatoire</b>, c'est-à-dire soumise au hasard (de <i>alea</i> (latin) le hasard, les dés), on commence par faire l'inventaire de tous les résultats possibles. L'ensemble de tous les résultats possibles sera appelé l'<a href="/wiki/Univers_(math%C3%A9matiques)" class="mw-redirect" title="Univers (mathématiques)">univers</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> des possibles. </p> <div class="mw-heading mw-heading3"><h3 id="Éventualité"><span id=".C3.89ventualit.C3.A9"></span>Éventualité</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;veaction=edit&amp;section=4" title="Modifier la section : Éventualité" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;action=edit&amp;section=4" title="Modifier le code source de la section : Éventualité"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Chaque résultat possible sera appelé une <b>éventualité</b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> ou une <b>issue</b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span>. </p><p><i>Exemple 1</i>&#160;: On lance une pièce. L'univers des possibles est <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega =\{P;F\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>P</mi> <mo>;</mo> <mi>F</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega =\{P;F\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8bd18f4283247ba38fc9c93c9df2a7c0e26c234b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.622ex; height:2.843ex;" alt="{\displaystyle \Omega =\{P;F\}}"></span>.(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> pour Pile, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> pour face). Le <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> est une éventualité de ce lancer. </p><p><i>Exemple 2</i>&#160;: On prend au hasard un réel strictement compris entre <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> non inclus. L'univers des possibles est <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega =]0;1[}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>=</mo> <mo stretchy="false">]</mo> <mn>0</mn> <mo>;</mo> <mn>1</mn> <mo stretchy="false">[</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega =]0;1[}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c26d14f2e8973b0a49a2c20fb36b7f4426cad4f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.784ex; height:2.843ex;" alt="{\displaystyle \Omega =]0;1[}"></span>. Le nombre <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\sqrt {2}}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mn>2</mn> </msqrt> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\sqrt {2}}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2fb9b5960bf5eae3065db9c23495e465f5fef61e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:3.934ex; height:5.843ex;" alt="{\displaystyle {\frac {\sqrt {2}}{2}}}"></span> est une des éventualités. </p><p><i>Exemple 3</i>&#160;: On lance <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/991e33c6e207b12546f15bdfee8b5726eafbbb2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 3}"></span> pièces successivement. L'univers des possibles est <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega =\{FFF;FFP;FPF;FPP;PFF;PFP;PPF;PPP\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>F</mi> <mi>F</mi> <mi>F</mi> <mo>;</mo> <mi>F</mi> <mi>F</mi> <mi>P</mi> <mo>;</mo> <mi>F</mi> <mi>P</mi> <mi>F</mi> <mo>;</mo> <mi>F</mi> <mi>P</mi> <mi>P</mi> <mo>;</mo> <mi>P</mi> <mi>F</mi> <mi>F</mi> <mo>;</mo> <mi>P</mi> <mi>F</mi> <mi>P</mi> <mo>;</mo> <mi>P</mi> <mi>P</mi> <mi>F</mi> <mo>;</mo> <mi>P</mi> <mi>P</mi> <mi>P</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega =\{FFF;FFP;FPF;FPP;PFF;PFP;PPF;PPP\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04433ba37f3188a547b3e870a17922bfb2e1dc84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:56.173ex; height:2.843ex;" alt="{\displaystyle \Omega =\{FFF;FFP;FPF;FPP;PFF;PFP;PPF;PPP\}}"></span>. La suite de caractères <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle PFP}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mi>F</mi> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle PFP}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40cdefd9e5d17c72de0ec5b743735ddf066e569d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.232ex; height:2.176ex;" alt="{\displaystyle PFP}"></span> est une éventualité de cette série de lancers. </p> <div class="mw-heading mw-heading3"><h3 id="Événement"><span id=".C3.89v.C3.A9nement"></span>Événement</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;veaction=edit&amp;section=5" title="Modifier la section : Événement" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;action=edit&amp;section=5" title="Modifier le code source de la section : Événement"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Un ensemble de résultats possibles définit un <a href="/wiki/%C3%89v%C3%A8nement_(math%C3%A9matiques)" class="mw-redirect" title="Évènement (mathématiques)">événement</a>. C'est un sous-ensemble de l'univers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span>. Il peut être décrit <i>en extension</i> (dans le cas d'un <a href="/wiki/Ensemble_fini" title="Ensemble fini">ensemble fini</a>), ou par une <i>description</i>. </p><p><i>Exemple 1</i>&#160;: On lance un dé. L'univers est <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega =\{1;2;3;4;5;6\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>;</mo> <mn>2</mn> <mo>;</mo> <mn>3</mn> <mo>;</mo> <mn>4</mn> <mo>;</mo> <mn>5</mn> <mo>;</mo> <mn>6</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega =\{1;2;3;4;5;6\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f2973e3b763a835ce1d79d526c9a595cfdb202b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.246ex; height:2.843ex;" alt="{\displaystyle \Omega =\{1;2;3;4;5;6\}}"></span>. La partie <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=\{1;2;3\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>;</mo> <mn>2</mn> <mo>;</mo> <mn>3</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=\{1;2;3\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b63391849c47405800d17903500b781a9f072a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.722ex; height:2.843ex;" alt="{\displaystyle A=\{1;2;3\}}"></span> est un événement décrit en extension. Cet événement se décrit par la phrase «&#160;on obtient au plus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/991e33c6e207b12546f15bdfee8b5726eafbbb2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 3}"></span> en lançant le dé&#160;». Tout lancer de dé donnant comme résultat <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/901fc910c19990d0dbaaefe4726ceb1a4e217a0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 2}"></span> ou <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/991e33c6e207b12546f15bdfee8b5726eafbbb2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 3}"></span> réalise l'événement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>. </p><p><i>Exemple 2 </i>: Dans le choix d'un nombre arbitraire entre <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span>, l'événement décrit par la phase «&#160;on obtient un <a href="/wiki/Nombre_rationnel" title="Nombre rationnel">nombre rationnel</a>&#160;» correspond à l'ensemble <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} \cap \left]0;1\right[}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mo>&#x2229;<!-- ∩ --></mo> <mrow> <mo>]</mo> <mrow> <mn>0</mn> <mo>;</mo> <mn>1</mn> </mrow> <mo>[</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} \cap \left]0;1\right[}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3950c1cc1f605129e9dbdd211c3b4db1bfdef52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.043ex; height:2.843ex;" alt="{\displaystyle \mathbb {Q} \cap \left]0;1\right[}"></span>. </p><p><i>Exemple 3</i>&#160;: On lance <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/991e33c6e207b12546f15bdfee8b5726eafbbb2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 3}"></span> pièces successivement. L'événement «&#160;on obtient plus de piles que de faces&#160;» correspond à l'ensemble <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{FPP;PFP;PPF;PPP\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>F</mi> <mi>P</mi> <mi>P</mi> <mo>;</mo> <mi>P</mi> <mi>F</mi> <mi>P</mi> <mo>;</mo> <mi>P</mi> <mi>P</mi> <mi>F</mi> <mo>;</mo> <mi>P</mi> <mi>P</mi> <mi>P</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{FPP;PFP;PPF;PPP\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67578989c96a090e9914637f94b9bf31bb3c3109" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.358ex; height:2.843ex;" alt="{\displaystyle \{FPP;PFP;PPF;PPP\}}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Événements_particuliers"><span id=".C3.89v.C3.A9nements_particuliers"></span>Événements particuliers</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;veaction=edit&amp;section=6" title="Modifier la section : Événements particuliers" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;action=edit&amp;section=6" title="Modifier le code source de la section : Événements particuliers"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>L'univers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> est appelé <b>événement certain</b>. Dans un lancer de dé, l'événement «&#160;obtenir un numéro compris entre <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39d81124420a058a7474dfeda48228fb6ee1e253" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 6}"></span>&#160;» correspond à l'événement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{1;2;3;4;5;6\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>;</mo> <mn>2</mn> <mo>;</mo> <mn>3</mn> <mo>;</mo> <mn>4</mn> <mo>;</mo> <mn>5</mn> <mo>;</mo> <mn>6</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{1;2;3;4;5;6\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8ecb3b0efc5835052cab6b5e3b4bd5401ec7561" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.469ex; height:2.843ex;" alt="{\displaystyle \{1;2;3;4;5;6\}}"></span>, c'est-à-dire à l'événement certain. </p><p>L'ensemble vide <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \emptyset }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2205;<!-- ∅ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \emptyset }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6af50205f42bb2ec3c666b7b847d2c7f96e464c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.162ex; height:2.509ex;" alt="{\displaystyle \emptyset }"></span> est appelé <b>événement impossible</b>. dans un lancer de dé, l'événement «&#160;obtenir plus de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 7}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>7</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 7}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee716ec61382a6b795092c0edd859d12e64cbba8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 7}"></span>&#160;» correspond à l'événement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{\}=\emptyset }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mi mathvariant="normal">&#x2205;<!-- ∅ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{\}=\emptyset }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3033c870ef3f2dd0dd66885e507f1c257af112e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.586ex; height:2.843ex;" alt="{\displaystyle \{\}=\emptyset }"></span>, c'est-à-dire l'événement impossible. </p><p>Un événement qui ne comporte qu'un seul élément ou éventualité est appelé <a href="/wiki/%C3%89v%C3%A9nement_%C3%A9l%C3%A9mentaire" title="Événement élémentaire">événement élémentaire</a>. </p> <div class="mw-heading mw-heading4"><h4 id="Opération_sur_les_événements"><span id="Op.C3.A9ration_sur_les_.C3.A9v.C3.A9nements"></span>Opération sur les événements</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;veaction=edit&amp;section=7" title="Modifier la section : Opération sur les événements" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;action=edit&amp;section=7" title="Modifier le code source de la section : Opération sur les événements"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><b>L'union </b>: l'événement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cup B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cup B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdb575990bcfbcdf616aa6fd76e8b30bf7fd2169" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\cup B}"></span> est réalisé dès que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> <i>ou</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> est réalisé. Dans un lancer de dé, si l'événement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> est «&#160;obtenir un nombre pair&#160;» et l'événement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> «&#160;obtenir un multiple de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/991e33c6e207b12546f15bdfee8b5726eafbbb2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 3}"></span>&#160;», l'événement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cup B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cup B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdb575990bcfbcdf616aa6fd76e8b30bf7fd2169" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\cup B}"></span> est l'événement «&#160;obtenir un nombre pair <b>OU</b> un multiple de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/991e33c6e207b12546f15bdfee8b5726eafbbb2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 3}"></span>&#160;», c'est-à-dire <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{2;3;4;6\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>2</mn> <mo>;</mo> <mn>3</mn> <mo>;</mo> <mn>4</mn> <mo>;</mo> <mn>6</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{2;3;4;6\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a703938edfc6ce57df097e75468dabdf29fa7da5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.077ex; height:2.843ex;" alt="{\displaystyle \{2;3;4;6\}}"></span>. </p><p><b>L'intersection</b>&#160;: l'événement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cap B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cap B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb27b38cf9eac6060e67b61f66cd9beec5067f81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\cap B}"></span> est réalisé dès que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> <i>et</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> sont réalisés dans la même expérience. Dans un lancer de dé, si l'événement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> est «&#160;obtenir un nombre pair&#160;» et l'événement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> «&#160;obtenir un multiple de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/991e33c6e207b12546f15bdfee8b5726eafbbb2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 3}"></span>&#160;», l'événement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cap B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cap B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb27b38cf9eac6060e67b61f66cd9beec5067f81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\cap B}"></span> est l'événement «&#160;obtenir un nombre pair <b>ET</b> multiple de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/991e33c6e207b12546f15bdfee8b5726eafbbb2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 3}"></span>&#160;», c'est-à-dire <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{6\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>6</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{6\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc84ad359e51ec16471952fc6113daab9da9a37a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.487ex; height:2.843ex;" alt="{\displaystyle \{6\}}"></span>. </p><p><b>Le contraire</b>&#160;: l'événement contraire de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>, noté <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92efef0e89bdc77f6a848764195ef5b9d9bfcc6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.858ex; height:3.009ex;" alt="{\displaystyle {\overline {A}}}"></span> ou A<sup>c</sup> contient tous les éléments de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> qui ne sont pas dans <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>. C'est l'événement qui est réalisé dès que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> n'est pas réalisé. Dans un lancer de dé, si l'événement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> est «&#160;obtenir un nombre pair&#160;», l'événement contraire de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92efef0e89bdc77f6a848764195ef5b9d9bfcc6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.858ex; height:3.009ex;" alt="{\displaystyle {\overline {A}}}"></span> est l'événement «&#160;obtenir un nombre impair&#160;». </p> <div class="mw-heading mw-heading4"><h4 id="Événements_incompatibles"><span id=".C3.89v.C3.A9nements_incompatibles"></span>Événements incompatibles</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;veaction=edit&amp;section=8" title="Modifier la section : Événements incompatibles" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;action=edit&amp;section=8" title="Modifier le code source de la section : Événements incompatibles"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Lorsque deux événements ont une intersection vide, c'est qu'ils ne peuvent pas être réalisés au cours d'une même expérience. On les appelle alors <b>événements incompatibles</b>. Dans un lancer de dé, si l'événement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> est «&#160;obtenir un multiple de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29483407999b8763f0ea335cf715a6a5e809f44b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 5}"></span>&#160;» et l'événement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> «&#160;obtenir un multiple de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/991e33c6e207b12546f15bdfee8b5726eafbbb2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 3}"></span>&#160;», les événements <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> sont incompatibles. </p><p>Il ne faut pas confondre les <a href="/wiki/%C3%89v%C3%A9nements_incompatibles" title="Événements incompatibles">événements incompatibles</a> (qui ne peuvent se produire lors d'une même expérience) et <a href="/wiki/Ind%C3%A9pendance_en_probabilit%C3%A9_%C3%A9l%C3%A9mentaire" title="Indépendance en probabilité élémentaire">événements indépendants</a> (qui se produisent indépendamment l'un de l'autre). </p><p>Maintenant que tout le vocabulaire est en place, il s'agit de quantifier la probabilité de réalisation de chaque événement. </p> <div class="mw-heading mw-heading2"><h2 id="Probabilité_sur_un_ensemble_fini"><span id="Probabilit.C3.A9_sur_un_ensemble_fini"></span>Probabilité sur un ensemble fini</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;veaction=edit&amp;section=9" title="Modifier la section : Probabilité sur un ensemble fini" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;action=edit&amp;section=9" title="Modifier le code source de la section : Probabilité sur un ensemble fini"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Construction_intuitive">Construction intuitive</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;veaction=edit&amp;section=10" title="Modifier la section : Construction intuitive" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;action=edit&amp;section=10" title="Modifier le code source de la section : Construction intuitive"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Lorsque l'univers lié à l'expérience aléatoire comporte un nombre fini d'éventualités, on affecte à chaque éventualité une probabilité d'apparition. Il s'agit d'un nombre compris entre <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span>. Ces probabilités doivent cependant vérifier une unique contrainte&#160;: leur somme doit être égale à <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span>. Le choix de ces nombres est laissé à la liberté de celui qui tente de modéliser le phénomène aléatoire. La probabilité d'un événement est alors définie comme la somme des probabilités des éventualités qui composent cet événement. </p><p>Lors d'un lancer de dé, par exemple, on peut estimer que l'apparition de chaque nombre est équiprobable, c'est-à-dire que la probabilité d'obtenir <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> est égale à celle d'obtenir <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/901fc910c19990d0dbaaefe4726ceb1a4e217a0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 2}"></span> ou celle d'obtenir <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/991e33c6e207b12546f15bdfee8b5726eafbbb2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 3}"></span> etc. La contrainte stipulant que la somme des probabilités doit donner <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> impose alors de prendre pour chaque éventualité une probabilité de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/365dd517702686649e6644a66665efd1a32be3ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.487ex; height:2.843ex;" alt="{\displaystyle 1/6}"></span>. Pour éviter de longs discours on écrira alors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(1)=p(2)=p(3)=p(4)=p(5)=p(6)=1/6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mn>5</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mn>6</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(1)=p(2)=p(3)=p(4)=p(5)=p(6)=1/6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de2dc444aad902c638f99476d4a75bb1a9fa610a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:47.015ex; height:2.843ex;" alt="{\displaystyle p(1)=p(2)=p(3)=p(4)=p(5)=p(6)=1/6}"></span>. Mais on pourrait tout autant supposer le dé pipé de telle sorte que la probabilité d'apparition d'une face soit proportionnelle à sa valeur. Ainsi on obtiendrait&#160;: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(1)=a,\ p(2)=2a,\ p(3)=3a,\ p(4)=4a,\ p(5)=5a,\ p(6)=6a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>p</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <mi>a</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>p</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>3</mn> <mi>a</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>p</mi> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>4</mn> <mi>a</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>p</mi> <mo stretchy="false">(</mo> <mn>5</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>5</mn> <mi>a</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>p</mi> <mo stretchy="false">(</mo> <mn>6</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>6</mn> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(1)=a,\ p(2)=2a,\ p(3)=3a,\ p(4)=4a,\ p(5)=5a,\ p(6)=6a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b176d296a787c8b1bb57b4a337d90504fc48c63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:64.791ex; height:2.843ex;" alt="{\displaystyle p(1)=a,\ p(2)=2a,\ p(3)=3a,\ p(4)=4a,\ p(5)=5a,\ p(6)=6a}"></span>. La contrainte sur la somme des probabilités, qui doit valoir toujours <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span>, donne comme seule valeur possible pour <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=1/21}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>21</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=1/21}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3360c6d7c9536518a09c0b4162189ec22b945a97" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.978ex; height:2.843ex;" alt="{\displaystyle a=1/21}"></span>. </p><p>Il est certain que choisir une loi de probabilité plutôt qu'une autre est arbitraire, la seule contrainte est que cette modélisation représente au mieux la réalité. Dans le cadre des mathématiques élémentaires, on essaie de se placer au maximum dans un univers équiprobable ou dans un univers dont la probabilité correspond au «&#160;bon sens&#160;». Pour un lancer de pièce équilibrée, on supposera que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(P)=p(F)=1/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(P)=p(F)=1/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1465f1bcce97f7792cbdfe7431513a9444ee9c91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:19.217ex; height:2.843ex;" alt="{\displaystyle p(P)=p(F)=1/2}"></span>, ou bien dans le cas d'une sélection au hasard d'une personne dans une foule comportant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 30}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>30</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 30}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bbb9554d69ffa16547379e6d7dc2f0d76fbf637" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle 30}"></span> filles et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 70}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>70</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 70}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5769c35091d646a29100b5f0c1df7fe3dd09c0ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle 70}"></span> garçons, on prendra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p({\text{fille}})=30\%}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>fille</mtext> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mn>30</mn> <mi mathvariant="normal">&#x0025;<!-- % --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p({\text{fille}})=30\%}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/011a1dbf4604250a651ca94a4865b6a668b198ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:14.112ex; height:2.843ex;" alt="{\displaystyle p({\text{fille}})=30\%}"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p({\text{gar&#xE7;on}})=70\%}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>gar&#xE7;on</mtext> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mn>70</mn> <mi mathvariant="normal">&#x0025;<!-- % --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p({\text{garçon}})=70\%}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f2d626c34bfb6c87886823c56a82a0ad59e9805" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; margin-left: -0.089ex; width:17.536ex; height:3.343ex;" alt="{\displaystyle p({\text{garçon}})=70\%}"></span>. La science des probabilités a développé par ailleurs des outils permettant, par des expériences répétées, de <a href="/wiki/Test_d%27hypoth%C3%A8se" class="mw-redirect" title="Test d&#39;hypothèse">valider</a> le modèle de probabilité choisi. </p> <div class="mw-heading mw-heading3"><h3 id="Définition_mathématique"><span id="D.C3.A9finition_math.C3.A9matique"></span>Définition mathématique</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;veaction=edit&amp;section=11" title="Modifier la section : Définition mathématique" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;action=edit&amp;section=11" title="Modifier le code source de la section : Définition mathématique"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>En terme mathématique, une première approche de la notion de probabilité consiste à dire qu'une probabilité sur un ensemble fini <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> est une application de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> dans <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0;1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>;</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0;1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc3bf59a5da5d8181083b228c8933efbda133483" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.653ex; height:2.843ex;" alt="{\displaystyle [0;1]}"></span> vérifiant l'égalité </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{\omega \in \Omega }p(\omega )=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </munder> <mi>p</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{\omega \in \Omega }p(\omega )=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6816792f58a6d6cea8c9eff27752cb733dad4445" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:12.428ex; height:5.676ex;" alt="{\displaystyle \sum _{\omega \in \Omega }p(\omega )=1}"></span>.</li></ul> <p>On arrive alors à une deuxième approche de la notion de probabilité&#160;: une probabilité sur un ensemble fini <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> est une application de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}(\Omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}(\Omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b95df45bc7d7faec1a5b88437d4b26b8a16ad108" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.191ex; height:2.843ex;" alt="{\displaystyle {\mathcal {P}}(\Omega )}"></span> dans <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0;1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>;</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0;1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc3bf59a5da5d8181083b228c8933efbda133483" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.653ex; height:2.843ex;" alt="{\displaystyle [0;1]}"></span>. </p><p>On identifie alors la probabilité d'une issue avec la probabilité de l'<a href="/wiki/%C3%89v%C3%A9nement_%C3%A9l%C3%A9mentaire" title="Événement élémentaire">événement élémentaire</a> correspondant, c'est-à-dire qu'on identifie <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(\omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(\omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca0185fe96495f4a6a53b266e719561756b81fbd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:4.514ex; height:2.843ex;" alt="{\displaystyle p(\omega )}"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(\{\omega \})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">{</mo> <mi>&#x03C9;<!-- ω --></mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(\{\omega \})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae7c9b197a505768ecb2019a6dd03664a918452a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:6.839ex; height:2.843ex;" alt="{\displaystyle p(\{\omega \})}"></span>. On définit alors la probabilité de l'événement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> comme </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(A)=\sum _{\omega \in A}p(\omega )=\sum _{\omega \in A}p(\{\omega \})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> </mrow> </munder> <mi>p</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> </mrow> </munder> <mi>p</mi> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">{</mo> <mi>&#x03C9;<!-- ω --></mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(A)=\sum _{\omega \in A}p(\omega )=\sum _{\omega \in A}p(\{\omega \})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8b013990e00b15d5c675d533fc16ec8db15bd3c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; margin-left: -0.089ex; width:29.666ex; height:5.676ex;" alt="{\displaystyle p(A)=\sum _{\omega \in A}p(\omega )=\sum _{\omega \in A}p(\{\omega \})}"></span></li></ul> <p>Les probabilités sur les événements vérifient alors les propriétés élémentaires suivantes&#160;: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(\Omega )=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(\Omega )=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3e9b8be14fe54f7aa6416f594da237d26d66feb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:9.007ex; height:2.843ex;" alt="{\displaystyle p(\Omega )=1}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(\emptyset )=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2205;<!-- ∅ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(\emptyset )=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1dc83e049ea4a7b74d6d1f963c023391e4898f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:8.492ex; height:2.843ex;" alt="{\displaystyle p(\emptyset )=0}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p({\overline {A}})=1-p(A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p({\overline {A}})=1-p(A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b5f1a15585810dd206ba2a99d244dfa586de40c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:16.749ex; height:3.509ex;" alt="{\displaystyle p({\overline {A}})=1-p(A)}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(A\cup B)=p(A)+p(B)-p(A\cap B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(A\cup B)=p(A)+p(B)-p(A\cap B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0a6c54e440b2e8a1eb5097eccc7b2418d998a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:36.47ex; height:2.843ex;" alt="{\displaystyle p(A\cup B)=p(A)+p(B)-p(A\cap B)}"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Équiprobabilité"><span id=".C3.89quiprobabilit.C3.A9"></span>Équiprobabilité</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;veaction=edit&amp;section=12" title="Modifier la section : Équiprobabilité" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;action=edit&amp;section=12" title="Modifier le code source de la section : Équiprobabilité"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Si on estime que toutes les éventualités sont équiprobables, et si on note <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Card} (\Omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Card</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Card} (\Omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/551c1bd5041486082975739dd5e4073c0ce8018f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.532ex; height:2.843ex;" alt="{\displaystyle \operatorname {Card} (\Omega )}"></span>, le <a href="/wiki/Cardinalit%C3%A9_(math%C3%A9matiques)" title="Cardinalité (mathématiques)">cardinal</a> de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span>, c'est-à-dire le nombre d'éléments dans <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span>, chaque éventualité a une probabilité d'apparition de </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(\omega )={\dfrac {1}{\operatorname {Card} (\Omega )}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mn>1</mn> <mrow> <mi>Card</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(\omega )={\dfrac {1}{\operatorname {Card} (\Omega )}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e082d1fd90932cba7e7e00b9c896e2b39c2c2cdd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-left: -0.089ex; width:16.981ex; height:6.009ex;" alt="{\displaystyle p(\omega )={\dfrac {1}{\operatorname {Card} (\Omega )}}}"></span>.</li></ul> <p>La probabilité de l'événement A est alors donnée par la formule </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(A)={\dfrac {\operatorname {Card} (A)}{\operatorname {Card} (\Omega )}}={\dfrac {\text{nombre de cas favorables}}{\text{nombre de cas possibles}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi>Card</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>Card</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mtext>nombre de cas favorables</mtext> <mtext>nombre de cas possibles</mtext> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(A)={\dfrac {\operatorname {Card} (A)}{\operatorname {Card} (\Omega )}}={\dfrac {\text{nombre de cas favorables}}{\text{nombre de cas possibles}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2e5378fb91dfbc6423780d18c497585ae413575" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-left: -0.089ex; width:46.309ex; height:6.509ex;" alt="{\displaystyle p(A)={\dfrac {\operatorname {Card} (A)}{\operatorname {Card} (\Omega )}}={\dfrac {\text{nombre de cas favorables}}{\text{nombre de cas possibles}}}}"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Probabilité_sur_un_ensemble_infini"><span id="Probabilit.C3.A9_sur_un_ensemble_infini"></span>Probabilité sur un ensemble infini</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;veaction=edit&amp;section=13" title="Modifier la section : Probabilité sur un ensemble infini" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;action=edit&amp;section=13" title="Modifier le code source de la section : Probabilité sur un ensemble infini"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="bandeau-container bandeau-section metadata bandeau-niveau-information"><div class="bandeau-cell bandeau-icone-css loupe">Article détaillé&#160;: <a href="/wiki/Th%C3%A9orie_des_probabilit%C3%A9s" title="Théorie des probabilités">Théorie des probabilités</a>.</div></div> <p>Si l'univers est infini mais dénombrable, on peut parfois continuer à affecter à chaque éventualité une probabilité, avec comme condition que la somme infinie des probabilités converge vers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span>. </p><p>Mais il arrive plus fréquemment que l'on évalue la probabilité de chaque éventualité à zéro, et que la seule chose que l'on puisse définir soit la probabilité de certains événements. Ainsi, quand on choisit un <a href="/wiki/Nombre_r%C3%A9el" title="Nombre réel">nombre réel</a> «&#160;au hasard&#160;» entre <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 10}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>10</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 10}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ec811eb07dcac7ea67b413c5665390a1671ecb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle 10}"></span>, la probabilité de tomber exactement sur <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4afc1e27d418021bf10898eb44a7f5f315735ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.098ex; height:3.009ex;" alt="{\displaystyle {\sqrt {2}}}"></span> est égale à <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span>. La seule chose que l'on puisse définir est la probabilité d'obtenir un nombre compris entre <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1,4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>,</mo> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1,4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a462bfd266f2e4b51a6450e9231441f855e39008" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.359ex; height:2.509ex;" alt="{\displaystyle 1,4}"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1,5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>,</mo> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1,5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68234df58719e1cdef2533375c9aa5590534a657" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.359ex; height:2.509ex;" alt="{\displaystyle 1,5}"></span>. Cette probabilité est prise égale à <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0,01}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>,</mo> <mn>01</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0,01}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9a56f66669a2f870560ff0b969c157c3bee4dae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.521ex; height:2.509ex;" alt="{\displaystyle 0,01}"></span>&#160;: on compare la taille de l'intervalle souhaité à la taille de l'intervalle des possibles, en supposant l'équiprobabilité, cette probabilité s'appelle la <a href="/wiki/Loi_uniforme_continue" title="Loi uniforme continue">loi uniforme continue</a>. Mais d'autres choix sont possibles&#160;: c'est la grande famille des <a href="/wiki/Loi_de_probabilit%C3%A9" title="Loi de probabilité">lois de probabilités continues</a>, dans laquelle on trouve la <a href="/wiki/Loi_exponentielle" title="Loi exponentielle">loi exponentielle</a>, la <a href="/wiki/Loi_normale" title="Loi normale">loi de Gauss</a>, etc. </p><p>Pour définir des probabilités dans ce cas de figure, il est parfois nécessaire de construire des <a href="/wiki/Espace_probabilisable" class="mw-redirect" title="Espace probabilisable">espaces probabilisables</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Voir_aussi">Voir aussi</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;veaction=edit&amp;section=14" title="Modifier la section : Voir aussi" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;action=edit&amp;section=14" title="Modifier le code source de la section : Voir aussi"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r194021218">.mw-parser-output .autres-projets>.titre{text-align:center;margin:0.2em 0}.mw-parser-output .autres-projets>ul{margin:0;padding:0}.mw-parser-output .autres-projets>ul>li{list-style:none;margin:0.2em 0;text-indent:0;padding-left:24px;min-height:20px;text-align:left;display:block}.mw-parser-output .autres-projets>ul>li>a{font-style:italic}@media(max-width:720px){.mw-parser-output .autres-projets{float:none}}</style><div class="autres-projets boite-grise boite-a-droite noprint js-interprojets"> <p class="titre">Sur les autres projets Wikimedia&#160;:</p> <ul class="noarchive plainlinks"> <li class="wikiversity"><a href="https://fr.wikiversity.org/wiki/Probabilit%C3%A9s_sur_les_ensembles_finis" class="extiw" title="v:Probabilités sur les ensembles finis">Probabilités sur les ensembles finis</a>, <span class="nowrap">sur <span class="project">Wikiversity</span></span></li> </ul> </div> <div class="mw-heading mw-heading3"><h3 id="Articles_connexes">Articles connexes</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;veaction=edit&amp;section=15" title="Modifier la section : Articles connexes" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;action=edit&amp;section=15" title="Modifier le code source de la section : Articles connexes"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Dans_le_cadre_des_mathématiques_élémentaires"><span id="Dans_le_cadre_des_math.C3.A9matiques_.C3.A9l.C3.A9mentaires"></span>Dans le cadre des mathématiques élémentaires</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;veaction=edit&amp;section=16" title="Modifier la section : Dans le cadre des mathématiques élémentaires" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;action=edit&amp;section=16" title="Modifier le code source de la section : Dans le cadre des mathématiques élémentaires"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Arbre_de_probabilit%C3%A9" title="Arbre de probabilité">Arbre de probabilité</a></li> <li><a href="/wiki/Variables_al%C3%A9atoires_%C3%A9l%C3%A9mentaires" title="Variables aléatoires élémentaires">Variables aléatoires élémentaires</a></li> <li><a href="/wiki/Ind%C3%A9pendance_en_probabilit%C3%A9_%C3%A9l%C3%A9mentaire" title="Indépendance en probabilité élémentaire">Indépendance en probabilité élémentaire</a></li> <li><a href="/wiki/Combinatoire" title="Combinatoire">Combinatoire</a></li></ul> <div class="mw-heading mw-heading4"><h4 id="Pour_approfondir">Pour approfondir</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;veaction=edit&amp;section=17" title="Modifier la section : Pour approfondir" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;action=edit&amp;section=17" title="Modifier le code source de la section : Pour approfondir"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Th%C3%A9orie_des_probabilit%C3%A9s" title="Théorie des probabilités">Théorie des probabilités</a></li> <li><a href="/wiki/Espace_probabilisable" class="mw-redirect" title="Espace probabilisable">Espace probabilisable</a></li> <li><a href="/wiki/Probabilit%C3%A9_conditionnelle" title="Probabilité conditionnelle">Probabilité conditionnelle</a></li> <li><a href="/wiki/Loi_de_probabilit%C3%A9" title="Loi de probabilité">Loi de probabilité</a></li> <li><a href="/wiki/Variable_al%C3%A9atoire_r%C3%A9elle" title="Variable aléatoire réelle">Variable aléatoire réelle</a></li> <li><a href="/wiki/Axiomes_des_probabilit%C3%A9s" title="Axiomes des probabilités">Axiomes des probabilités</a></li></ul> <div class="navbox-container" style="clear:both;"> <table class="navbox collapsible noprint autocollapse" style=""> <tbody><tr><th class="navbox-title" colspan="2" style=""><div style="float:left; width:6em; text-align:left"><div class="noprint plainlinks nowrap tnavbar" style="padding:0; font-size:xx-small; color:var(--color-emphasized, #000000);"><a href="/wiki/Mod%C3%A8le:Palette_Math%C3%A9matiques_%C3%A9l%C3%A9mentaires" title="Modèle:Palette Mathématiques élémentaires"><abbr class="abbr" title="Voir ce modèle.">v</abbr></a>&#160;· <a class="external text" href="https://fr.wikipedia.org/w/index.php?title=Mod%C3%A8le:Palette_Math%C3%A9matiques_%C3%A9l%C3%A9mentaires&amp;action=edit"><abbr class="abbr" title="Modifier ce modèle. Merci de prévisualiser avant de sauvegarder.">m</abbr></a></div></div><div style="font-size:110%"><a href="/wiki/Math%C3%A9matiques_%C3%A9l%C3%A9mentaires" title="Mathématiques élémentaires">Mathématiques élémentaires</a></div></th> </tr> <tr> <th class="navbox-group" style="">Domaines des <a href="/wiki/Math%C3%A9matiques" title="Mathématiques">mathématiques</a></th> <td class="navbox-list" style=""><div class="liste-horizontale"> <ul><li><a href="/wiki/Alg%C3%A8bre_classique" title="Algèbre classique">Algèbre classique</a></li> <li><a href="/wiki/Arithm%C3%A9tique_%C3%A9l%C3%A9mentaire" title="Arithmétique élémentaire">Arithmétique élémentaire</a></li> <li><a href="/wiki/Analyse_(math%C3%A9matiques)" title="Analyse (mathématiques)">Analyse</a></li> <li><a href="/wiki/Analyse_r%C3%A9elle" title="Analyse réelle">Analyse réelle</a></li> <li><a href="/wiki/Suite_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)" title="Suite (mathématiques élémentaires)">Suites numériques</a></li> <li><a href="/wiki/G%C3%A9om%C3%A9trie_classique" title="Géométrie classique">Géométrie classique</a></li> <li><a href="/wiki/Logique_et_raisonnement_math%C3%A9matique" title="Logique et raisonnement mathématique">Logique</a></li> <li><a class="mw-selflink selflink">Probabilités</a></li> <li><a href="/wiki/Statistiques_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)" title="Statistiques (mathématiques élémentaires)">Statistiques</a></li> <li><a href="/wiki/Table_de_symboles_math%C3%A9matiques" title="Table de symboles mathématiques">Symboles</a></li></ul> </div></td> </tr> <tr> <th class="navbox-group" style=""><a href="/wiki/Alg%C3%A8bre_classique" title="Algèbre classique">Algèbre classique</a></th> <td class="navbox-list navbox-even" style=""><div class="liste-horizontale"> <ul><li><a href="/wiki/Addition" title="Addition">Addition</a></li> <li><a href="/wiki/Multiplication" title="Multiplication">Multiplication</a></li> <li><a href="/wiki/Division" title="Division">Division</a></li> <li><a href="/wiki/Ordre_des_op%C3%A9rations" title="Ordre des opérations">Ordre des opérations</a></li> <li><a href="/wiki/Table_d%27addition" title="Table d&#39;addition">Table d'addition</a></li> <li><a href="/wiki/Table_de_multiplication" title="Table de multiplication">Table de multiplication</a></li> <li><a href="/wiki/Associativit%C3%A9" title="Associativité">Associativité</a></li> <li><a href="/wiki/Commutativit%C3%A9" class="mw-redirect" title="Commutativité">Commutativité</a></li> <li><a href="/wiki/Distributivit%C3%A9" title="Distributivité">Distributivité</a></li> <li><a href="/wiki/Relation_transitive" title="Relation transitive">Transitivité</a></li> <li><a href="/wiki/Proportionnalit%C3%A9" title="Proportionnalité">Proportionnalité</a></li> <li><a href="/wiki/Pourcentage" title="Pourcentage">Pourcentage</a></li> <li><a href="/wiki/R%C3%A8gle_de_trois" title="Règle de trois">Règle de trois</a></li> <li><a href="/wiki/Fraction_(math%C3%A9matiques)" title="Fraction (mathématiques)">Fraction</a></li> <li><a href="/wiki/%C3%89quation_du_premier_degr%C3%A9" title="Équation du premier degré">Équation du premier degré</a></li> <li><a href="/wiki/%C3%89quation_du_second_degr%C3%A9" title="Équation du second degré">Équation du second degré</a></li> <li><a href="/wiki/Syst%C3%A8me_d%27%C3%A9quations_lin%C3%A9aires" title="Système d&#39;équations linéaires">Système d'équations linéaires</a></li></ul> </div></td> </tr> <tr> <th class="navbox-group" style=""><a href="/wiki/G%C3%A9om%C3%A9trie_classique" title="Géométrie classique">Géométrie classique</a></th> <td class="navbox-list" style=""><div class="liste-horizontale"> <ul><li><a href="/wiki/Coordonn%C3%A9es_cart%C3%A9siennes" title="Coordonnées cartésiennes">Coordonnées cartésiennes</a></li> <li><a href="/wiki/Cat%C3%A9gorie:G%C3%A9om%C3%A9trie_du_triangle" title="Catégorie:Géométrie du triangle">Géométrie du triangle</a></li> <li><a href="/wiki/Homoth%C3%A9tie" title="Homothétie">Homothétie</a></li> <li><a href="/wiki/Quadrilat%C3%A8re" title="Quadrilatère">Quadrilatère</a></li> <li><a href="/wiki/Rep%C3%A8re_affine" title="Repère affine">Repère affine</a></li> <li><a href="/wiki/Rotation_plane" title="Rotation plane">Rotation plane</a></li> <li><a href="/wiki/Similitude_(g%C3%A9om%C3%A9trie)" title="Similitude (géométrie)">Similitude</a></li> <li><a href="/wiki/Th%C3%A9or%C3%A8me_de_Pythagore" title="Théorème de Pythagore">Théorème de Pythagore</a></li> <li><a href="/wiki/Th%C3%A9or%C3%A8me_de_Thal%C3%A8s" title="Théorème de Thalès">Théorème de Thalès</a></li> <li><a href="/wiki/Th%C3%A9or%C3%A8me_de_Thal%C3%A8s_(cercle)" class="mw-redirect" title="Théorème de Thalès (cercle)">Théorème de Thalès (cercle)</a></li> <li><a href="/wiki/Th%C3%A9or%C3%A8me_des_milieux" title="Théorème des milieux">Théorème des milieux</a></li> <li><a href="/wiki/Th%C3%A9or%C3%A8me_d%27Al-Kashi" class="mw-redirect" title="Théorème d&#39;Al-Kashi">Théorème d'Al-Kashi</a></li> <li><a href="/wiki/Translation" title="Translation">Translation</a></li></ul> </div></td> </tr> <tr> <th class="navbox-group" style=""><a href="/wiki/Arithm%C3%A9tique" title="Arithmétique">Arithmétique</a></th> <td class="navbox-list navbox-even" style=""><div class="liste-horizontale"> <ul><li><a href="/wiki/Multiple_(math%C3%A9matiques)" title="Multiple (mathématiques)">Multiple</a></li> <li><a href="/wiki/Diviseur" title="Diviseur">Diviseur</a></li> <li><a href="/wiki/Division_euclidienne" title="Division euclidienne">Division euclidienne</a></li> <li><a href="/wiki/Nombre_premier" title="Nombre premier">Nombre premier</a></li> <li><a href="/wiki/Congruence_sur_les_entiers" title="Congruence sur les entiers">Congruence sur les entiers</a></li> <li><a href="/wiki/Plus_grand_commun_diviseur_de_nombres_entiers" title="Plus grand commun diviseur de nombres entiers">PGCD de nombres entiers</a></li> <li><a href="/wiki/Plus_petit_commun_multiple" title="Plus petit commun multiple">Plus petit commun multiple</a></li> <li><a href="/wiki/Crit%C3%A8re_de_divisibilit%C3%A9" title="Critère de divisibilité">Critère de divisibilité</a></li> <li><a href="/wiki/Preuve_par_neuf" title="Preuve par neuf">Preuve par neuf</a></li></ul> </div></td> </tr> <tr> <th class="navbox-group" style=""><a href="/wiki/Suite_(math%C3%A9matiques)" title="Suite (mathématiques)">Suites</a> et <a href="/wiki/Fonction_(math%C3%A9matiques)" title="Fonction (mathématiques)">fonctions</a></th> <td class="navbox-list" style=""><div class="liste-horizontale"> <ul><li><a href="/wiki/Fonction_de_r%C3%A9f%C3%A9rence" title="Fonction de référence">Fonction de référence</a></li> <li><a href="/wiki/Fonction_affine" title="Fonction affine">Fonction affine</a></li> <li><a href="/wiki/Fonction_du_second_degr%C3%A9" title="Fonction du second degré">Fonction du second degré</a></li> <li><a href="/wiki/Fonction_puissance" title="Fonction puissance">Fonction puissance</a></li> <li><a href="/wiki/Fonction_trigonom%C3%A9trique" title="Fonction trigonométrique">Fonction trigonométrique</a></li> <li><a href="/wiki/Fonction_logarithme" class="mw-redirect" title="Fonction logarithme">Fonction logarithme</a></li> <li><a href="/wiki/Fonction_exponentielle" title="Fonction exponentielle">Fonction exponentielle</a></li> <li><a href="/wiki/Suite_arithm%C3%A9tique" title="Suite arithmétique">Suite arithmétique</a></li> <li><a href="/wiki/Suite_g%C3%A9om%C3%A9trique" title="Suite géométrique">Suite géométrique</a></li> <li><a href="/wiki/Limite_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)" title="Limite (mathématiques élémentaires)">Limite</a></li> <li><a href="/wiki/D%C3%A9riv%C3%A9e" title="Dérivée">Dérivation</a></li> <li><a href="/wiki/Op%C3%A9rations_sur_les_limites" title="Opérations sur les limites">Opérations sur les limites</a></li> <li><a href="/wiki/Table_de_d%C3%A9riv%C3%A9es_usuelles" title="Table de dérivées usuelles">Dérivées usuelles</a></li> <li><a href="/wiki/Op%C3%A9rations_sur_les_d%C3%A9riv%C3%A9es" title="Opérations sur les dérivées">Opérations sur les dérivées</a></li> <li><a href="/wiki/Liste_de_fonctions_num%C3%A9riques" title="Liste de fonctions numériques">Liste de fonctions numériques</a></li> <li><a href="/wiki/Fonction_%C3%A9l%C3%A9mentaire" title="Fonction élémentaire">Fonction élémentaire</a></li></ul> </div></td> </tr> <tr> <th class="navbox-group" style=""><a href="/wiki/Logique_et_raisonnement_math%C3%A9matique" title="Logique et raisonnement mathématique">Logique</a></th> <td class="navbox-list navbox-even" style=""><div class="liste-horizontale"> <ul><li><a href="/wiki/Axiome" title="Axiome">Axiome</a></li> <li><a href="/wiki/D%C3%A9monstration_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)" class="mw-redirect" title="Démonstration (mathématiques élémentaires)">Démonstration</a></li> <li><a href="/wiki/Contre-exemple" title="Contre-exemple">Contre-exemple</a></li> <li><a href="/wiki/Difficult%C3%A9s_en_math%C3%A9matiques" title="Difficultés en mathématiques">Difficulté mathématique</a></li></ul> </div></td> </tr> <tr> <th class="navbox-group" style=""><a href="/wiki/Statistiques_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)" title="Statistiques (mathématiques élémentaires)">Statistiques</a> et <a class="mw-selflink selflink">probabilités</a></th> <td class="navbox-list" style=""><div class="liste-horizontale"> <ul><li><a href="/wiki/Indicateur_de_position" title="Indicateur de position">Critères de position</a></li> <li><a href="/wiki/Indicateur_de_dispersion" title="Indicateur de dispersion">Critères de dispersion</a></li> <li><a href="/wiki/S%C3%A9rie_statistique_%C3%A0_deux_variables" title="Série statistique à deux variables">Série statistique à deux variables</a></li> <li><a href="/wiki/Arbre_de_probabilit%C3%A9" title="Arbre de probabilité">Arbre de probabilité</a></li> <li><a href="/wiki/Variables_al%C3%A9atoires_%C3%A9l%C3%A9mentaires" title="Variables aléatoires élémentaires">Variables aléatoires élémentaires</a></li></ul> </div></td> </tr> </tbody></table> <table class="navbox collapsible noprint autocollapse" style=""> <tbody><tr><th class="navbox-title" colspan="2" style=""><div style="float:left; width:6em; text-align:left"><div class="noprint plainlinks nowrap tnavbar" style="padding:0; font-size:xx-small; color:var(--color-emphasized, #000000);"><a href="/wiki/Mod%C3%A8le:Palette_Probabilit%C3%A9s_et_statistiques" title="Modèle:Palette Probabilités et statistiques"><abbr class="abbr" title="Voir ce modèle.">v</abbr></a>&#160;· <a class="external text" href="https://fr.wikipedia.org/w/index.php?title=Mod%C3%A8le:Palette_Probabilit%C3%A9s_et_statistiques&amp;action=edit"><abbr class="abbr" title="Modifier ce modèle. Merci de prévisualiser avant de sauvegarder.">m</abbr></a></div></div><div style="font-size:110%"><a href="/wiki/Projet:Probabilit%C3%A9s_et_statistiques" title="Projet:Probabilités et statistiques">Index du projet probabilités et statistiques</a></div></th> </tr> <tr> <td class="navbox-list" style="" colspan="2"><table class="navbox collapsible noprint autocollapse" style="font-size:100%; padding:0; border:0; margin:-3px 0;"> <tbody><tr><th class="navbox-title" colspan="2" style=""><span style="font-size:110%"><a href="/wiki/Th%C3%A9orie_des_probabilit%C3%A9s" title="Théorie des probabilités">Théorie des probabilités</a></span></th> </tr> <tr> <th class="navbox-group" style="">Bases théoriques</th> <td class="navbox-list" style=""><table class="navbox-subgroup" style=""> <tbody><tr> <th class="navbox-group" style="width:120px;">Principes généraux</th> <td class="navbox-list" style="text-align:left;;"><div class="liste-horizontale"> <ul><li><a href="/wiki/Axiomes_des_probabilit%C3%A9s" title="Axiomes des probabilités">Axiomes des probabilités</a></li> <li><a href="/wiki/Espace_mesurable" title="Espace mesurable">Espace mesurable</a></li> <li><a href="/wiki/Probabilit%C3%A9" title="Probabilité">Probabilité</a></li> <li><a href="/wiki/%C3%89v%C3%A9nement_(probabilit%C3%A9s)" title="Événement (probabilités)">Événement</a></li> <li><span typeof="mw:File"><span title="Bon article"><img alt="Bon article" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/11/Bon_article.svg/10px-Bon_article.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/11/Bon_article.svg/15px-Bon_article.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/11/Bon_article.svg/20px-Bon_article.svg.png 2x" data-file-width="20" data-file-height="20" /></span></span> <a href="/wiki/Tribu_(math%C3%A9matiques)" title="Tribu (mathématiques)">Tribu</a></li> <li><a href="/wiki/Ind%C3%A9pendance_(probabilit%C3%A9s)" title="Indépendance (probabilités)">Indépendance</a></li> <li><a href="/wiki/Variable_al%C3%A9atoire" title="Variable aléatoire">Variable aléatoire</a></li> <li><a href="/wiki/Esp%C3%A9rance_math%C3%A9matique" title="Espérance mathématique">Espérance</a></li> <li><span typeof="mw:File"><span title="Bon article"><img alt="Bon article" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/11/Bon_article.svg/10px-Bon_article.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/11/Bon_article.svg/15px-Bon_article.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/11/Bon_article.svg/20px-Bon_article.svg.png 2x" data-file-width="20" data-file-height="20" /></span></span> <a href="/wiki/Variables_ind%C3%A9pendantes_et_identiquement_distribu%C3%A9es" title="Variables indépendantes et identiquement distribuées">Variables iid</a></li></ul> </div></td> </tr> <tr> <th class="navbox-group" style="width:120px;"><a href="/wiki/Convergence_de_variables_al%C3%A9atoires" title="Convergence de variables aléatoires">Convergence de lois</a></th> <td class="navbox-list navbox-even" style="text-align:left;;"><div class="liste-horizontale"> <ul><li><a href="/wiki/Th%C3%A9or%C3%A8me_central_limite" title="Théorème central limite">Théorème central limite</a></li> <li><a href="/wiki/Loi_des_grands_nombres" title="Loi des grands nombres">Loi des grands nombres</a></li> <li><a href="/wiki/Th%C3%A9or%C3%A8me_de_Borel-Cantelli" title="Théorème de Borel-Cantelli">Théorème de Borel-Cantelli</a></li></ul> </div></td> </tr> <tr> <th class="navbox-group" style="width:120px;"><a href="/wiki/Calcul_stochastique" title="Calcul stochastique">Calcul stochastique</a></th> <td class="navbox-list" style="text-align:left;;"><div class="liste-horizontale"> <ul><li><a href="/wiki/Marche_al%C3%A9atoire" title="Marche aléatoire">Marche aléatoire</a></li> <li><a href="/wiki/Cha%C3%AEne_de_Markov" title="Chaîne de Markov">Chaîne de Markov</a></li> <li><a href="/wiki/Processus_stochastique" title="Processus stochastique">Processus stochastique</a></li> <li><a href="/wiki/Processus_de_Markov" title="Processus de Markov">Processus de Markov</a></li> <li><a href="/wiki/Martingale_(calcul_stochastique)" title="Martingale (calcul stochastique)">Martingale</a></li> <li><a href="/wiki/Mouvement_brownien" title="Mouvement brownien">Mouvement brownien</a></li> <li><a href="/wiki/%C3%89quation_diff%C3%A9rentielle_stochastique" title="Équation différentielle stochastique">Équation différentielle stochastique</a></li></ul> </div></td> </tr> </tbody></table></td> </tr> <tr> <th class="navbox-group" style=""><a href="/wiki/Loi_de_probabilit%C3%A9" title="Loi de probabilité">Lois de probabilité</a></th> <td class="navbox-list navbox-even" style=""><table class="navbox-subgroup" style=""> <tbody><tr> <th class="navbox-group" style="width:120px;">Lois continues</th> <td class="navbox-list" style="text-align:left;;"><div class="liste-horizontale"> <ul><li><a href="/wiki/Loi_exponentielle" title="Loi exponentielle">Loi exponentielle</a></li> <li><span typeof="mw:File"><span title="Bon article"><img alt="Bon article" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/11/Bon_article.svg/10px-Bon_article.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/11/Bon_article.svg/15px-Bon_article.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/11/Bon_article.svg/20px-Bon_article.svg.png 2x" data-file-width="20" data-file-height="20" /></span></span> <a href="/wiki/Loi_normale" title="Loi normale">Loi normale</a></li> <li><a href="/wiki/Loi_uniforme_continue" title="Loi uniforme continue">Loi uniforme</a></li> <li><a href="/wiki/Loi_de_Student" title="Loi de Student">Loi de Student</a></li> <li><a href="/wiki/Loi_de_Fisher" title="Loi de Fisher">Loi de Fisher</a></li> <li><a href="/wiki/Loi_du_%CF%87%C2%B2" title="Loi du χ²">Loi du χ²</a></li></ul> </div></td> </tr> <tr> <th class="navbox-group" style="width:120px;">Lois discrètes</th> <td class="navbox-list navbox-even" style="text-align:left;;"><div class="liste-horizontale"> <ul><li><a href="/wiki/Loi_de_Bernoulli" title="Loi de Bernoulli">Loi de Bernoulli</a></li> <li><span typeof="mw:File"><span title="Bon article"><img alt="Bon article" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/11/Bon_article.svg/10px-Bon_article.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/11/Bon_article.svg/15px-Bon_article.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/11/Bon_article.svg/20px-Bon_article.svg.png 2x" data-file-width="20" data-file-height="20" /></span></span> <a href="/wiki/Loi_binomiale" title="Loi binomiale">Loi binomiale</a></li> <li><a href="/wiki/Loi_de_Poisson" title="Loi de Poisson">Loi de Poisson</a></li> <li><a href="/wiki/Loi_g%C3%A9om%C3%A9trique" title="Loi géométrique">Loi géométrique</a></li> <li><a href="/wiki/Loi_hyperg%C3%A9om%C3%A9trique" title="Loi hypergéométrique">Loi hypergéométrique</a></li></ul> </div></td> </tr> </tbody></table></td> </tr> <tr> <th class="navbox-group" style="">Mélange entre statistiques et probabilités</th> <td class="navbox-list" style=""><table class="navbox-subgroup" style=""> <tbody><tr> <td class="navbox-list" style=";" colspan="2"><div class="liste-horizontale"> <ul><li><a href="/wiki/Intervalle_de_confiance" title="Intervalle de confiance">Intervalle de confiance</a></li></ul> </div></td> </tr> </tbody></table></td> </tr> <tr> <th class="navbox-group" style=""><a href="/wiki/Interpr%C3%A9tations_de_la_probabilit%C3%A9" title="Interprétations de la probabilité">Interprétations de la probabilité</a></th> <td class="navbox-list navbox-even" style=""><table class="navbox-subgroup" style=""> <tbody><tr> <td class="navbox-list" style=";" colspan="2"><div class="liste-horizontale"> <ul><li><a href="/wiki/Bay%C3%A9sianisme" title="Bayésianisme">Bayésianisme</a></li></ul> </div></td> </tr> </tbody></table></td> </tr> </tbody></table> <table class="navbox collapsible noprint autocollapse" style="font-size:100%; padding:0; border:0; margin:-3px 0;"> <tbody><tr><th class="navbox-title" colspan="2" style=""><span style="font-size:110%"><a href="/wiki/Statistique" title="Statistique">Théorie des statistiques</a></span></th> </tr> <tr> <th class="navbox-group" style=""><a href="/wiki/Statistique_descriptive" title="Statistique descriptive">Statistiques descriptives</a></th> <td class="navbox-list" style=""><table class="navbox-subgroup" style=""> <tbody><tr> <th class="navbox-group" style="width:120px;">Bases théoriques</th> <td class="navbox-list" style="text-align:left;;"><div class="liste-horizontale"> <ul><li><a href="/wiki/Statistique_(indicateur)" title="Statistique (indicateur)">Une statistique</a></li> <li><a href="/w/index.php?title=Caract%C3%A8re_(statistique)&amp;action=edit&amp;redlink=1" class="new" title="Caractère (statistique) (page inexistante)">Caractère</a></li> <li><a href="/wiki/%C3%89chantillon_(statistiques)" title="Échantillon (statistiques)">Échantillon</a></li> <li><a href="/wiki/Erreur_type" title="Erreur type">Erreur type</a></li> <li><a href="/wiki/Intervalle_de_confiance" title="Intervalle de confiance">Intervalle de confiance</a></li> <li><a href="/wiki/Fonction_de_r%C3%A9partition_empirique" title="Fonction de répartition empirique">Fonction de répartition empirique</a></li> <li><a href="/wiki/Th%C3%A9or%C3%A8me_de_Glivenko-Cantelli" title="Théorème de Glivenko-Cantelli">Théorème de Glivenko-Cantelli</a></li> <li><a href="/wiki/Inf%C3%A9rence_bay%C3%A9sienne" title="Inférence bayésienne">Inférence bayésienne</a></li> <li><a href="/wiki/R%C3%A9gression_lin%C3%A9aire" title="Régression linéaire">Régression linéaire</a></li> <li><a href="/wiki/M%C3%A9thode_des_moindres_carr%C3%A9s" title="Méthode des moindres carrés">Méthode des moindres carrés</a></li> <li><a href="/wiki/Analyse_des_donn%C3%A9es" title="Analyse des données">Analyse des données</a></li> <li><a href="/wiki/Corr%C3%A9lation_(statistiques)" title="Corrélation (statistiques)">Corrélation</a></li></ul> </div></td> </tr> <tr> <th class="navbox-group" style="width:120px;"><a href="/wiki/Tableau_(statistique)" title="Tableau (statistique)">Tableaux</a></th> <td class="navbox-list navbox-even" style="text-align:left;;"><div class="liste-horizontale"> <ul><li><a href="/wiki/Tableau_de_contingence" title="Tableau de contingence">Tableau de contingence</a></li> <li><a href="/wiki/Tableau_disjonctif_complet" title="Tableau disjonctif complet">Tableau disjonctif complet</a></li> <li><a href="/wiki/Table_de_Burt" title="Table de Burt">Table de Burt</a></li></ul> </div></td> </tr> <tr> <th class="navbox-group" style="width:120px;"><a href="/wiki/Visualisation_de_donn%C3%A9es" title="Visualisation de données">Visualisation de données</a></th> <td class="navbox-list" style="text-align:left;;"><div class="liste-horizontale"> <ul><li><a href="/wiki/Histogramme" title="Histogramme">Histogramme</a></li> <li><a href="/wiki/Diagramme_%C3%A0_barres" title="Diagramme à barres">Diagramme à barres</a></li> <li><a href="/wiki/Graphique_en_aires" title="Graphique en aires">Graphique en aires</a></li> <li><a href="/wiki/Diagramme_circulaire" title="Diagramme circulaire">Diagramme circulaire</a></li> <li><a href="/wiki/Treemap" title="Treemap">Treemap</a></li> <li><a href="/wiki/Bo%C3%AEte_%C3%A0_moustaches" title="Boîte à moustaches">Boîte à moustaches</a></li> <li><a href="/wiki/Nuage_de_points_(statistique)" title="Nuage de points (statistique)">Nuage de points</a></li> <li><a href="/wiki/Graphique_%C3%A0_bulles" title="Graphique à bulles">Graphique à bulles</a></li> <li><a href="/wiki/Diagramme_en_cascade" title="Diagramme en cascade">Diagramme en cascade</a></li> <li><a href="/wiki/Graphique_en_entonnoir" title="Graphique en entonnoir">Graphique en entonnoir</a></li> <li><a href="/wiki/Diagramme_de_Kiviat" title="Diagramme de Kiviat">Diagramme de Kiviat</a></li> <li><a href="/wiki/Corr%C3%A9logramme" title="Corrélogramme">Corrélogramme</a></li> <li><a href="/wiki/Graphique_en_for%C3%AAt" title="Graphique en forêt">Graphique en forêt</a></li> <li><a href="/wiki/Diagramme_branche-et-feuille" title="Diagramme branche-et-feuille">Diagramme branche-et-feuille</a></li> <li><a href="/wiki/Carte_thermique" title="Carte thermique">Heat map</a></li> <li><a href="/wiki/Sparkline" title="Sparkline">Sparkline</a></li></ul> </div></td> </tr> <tr> <th class="navbox-group" style="width:120px;"><a href="/wiki/Indicateur_de_position" title="Indicateur de position">Paramètres de position</a></th> <td class="navbox-list navbox-even" style="text-align:left;;"><div class="liste-horizontale"> <ul><li><a href="/wiki/Moyenne_arithm%C3%A9tique" title="Moyenne arithmétique">Moyenne arithmétique</a></li> <li><a href="/wiki/Mode_(statistiques)" title="Mode (statistiques)">Mode</a></li> <li><a href="/wiki/M%C3%A9diane_(statistiques)" title="Médiane (statistiques)">Médiane</a></li> <li><a href="/wiki/Quantile" title="Quantile">Quantile</a> <ul><li><a href="/wiki/Quartile" title="Quartile">Quartile</a></li> <li><a href="/wiki/D%C3%A9cile" title="Décile">Décile</a></li> <li><a href="/wiki/Centile" title="Centile">Centile</a></li></ul></li></ul> </div></td> </tr> <tr> <th class="navbox-group" style="width:120px;"><a href="/wiki/Indicateur_de_dispersion" title="Indicateur de dispersion">Paramètres de dispersion</a></th> <td class="navbox-list" style="text-align:left;;"><div class="liste-horizontale"> <ul><li><a href="/wiki/Indicateur_de_dispersion" title="Indicateur de dispersion">Étendue</a></li> <li><a href="/wiki/%C3%89cart_moyen" title="Écart moyen">Écart moyen</a></li> <li><a href="/wiki/Variance_(math%C3%A9matiques)" title="Variance (mathématiques)">Variance</a></li> <li><a href="/wiki/%C3%89cart_type" title="Écart type">Écart type</a></li> <li><a href="/wiki/Valeur_absolue_des_%C3%A9carts" title="Valeur absolue des écarts">Déviation absolue moyenne</a></li> <li><a href="/wiki/%C3%89cart_interquartile" title="Écart interquartile">Écart interquartile</a></li> <li><a href="/wiki/Coefficient_de_variation" title="Coefficient de variation">Coefficient de variation</a></li></ul> </div></td> </tr> <tr> <th class="navbox-group" style="width:120px;">Paramètres de forme</th> <td class="navbox-list navbox-even" style="text-align:left;;"><div class="liste-horizontale"> <ul><li><a href="/wiki/Asym%C3%A9trie_(statistiques)" title="Asymétrie (statistiques)">Coefficient d'asymétrie</a></li> <li><a href="/wiki/Kurtosis" title="Kurtosis">Coefficient d'aplatissement</a></li></ul> </div></td> </tr> </tbody></table></td> </tr> <tr> <th class="navbox-group" style=""><a href="/wiki/Test_statistique" title="Test statistique">Statistiques inductives</a></th> <td class="navbox-list navbox-even" style=""><table class="navbox-subgroup" style=""> <tbody><tr> <th class="navbox-group" style="width:120px;">Bases théoriques</th> <td class="navbox-list" style="text-align:left;;"><div class="liste-horizontale"> <ul><li><a href="/wiki/Hypoth%C3%A8se_nulle" title="Hypothèse nulle">Hypothèse nulle</a></li> <li><a href="/wiki/Estimateur_(statistique)" title="Estimateur (statistique)">Estimateur</a></li> <li><a href="/wiki/Signification_statistique" title="Signification statistique">Signification statistique</a></li> <li><a href="/wiki/Sensibilit%C3%A9_et_sp%C3%A9cificit%C3%A9" title="Sensibilité et spécificité">Sensibilité et spécificité</a></li> <li><a href="/wiki/Courbe_ROC" title="Courbe ROC">Courbe ROC</a></li> <li><a href="/wiki/Nombre_de_sujets_n%C3%A9cessaires" title="Nombre de sujets nécessaires">Nombre de sujets nécessaires</a></li> <li><a href="/wiki/Valeur_p" title="Valeur p">Valeur p</a></li> <li><a href="/wiki/Contraste_(statistiques)" title="Contraste (statistiques)">Contraste (statistiques)</a></li> <li><a href="/wiki/Statistique_de_test" title="Statistique de test">Statistique de test</a></li> <li><a href="/wiki/Taille_d%27effet" title="Taille d&#39;effet">Taille d'effet</a></li> <li><a href="/wiki/Puissance_statistique" title="Puissance statistique">Puissance statistique</a></li></ul> </div></td> </tr> <tr> <th class="navbox-group" style="width:120px;">Tests paramétriques</th> <td class="navbox-list navbox-even" style="text-align:left;;"><div class="liste-horizontale"> <ul><li><a href="/wiki/Test_statistique" title="Test statistique">Test d'hypothèse</a></li> <li><a href="/wiki/Test_de_Bartlett" title="Test de Bartlett">Test de Bartlett</a></li> <li><a href="/wiki/Test_de_normalit%C3%A9" title="Test de normalité">Test de normalité</a></li> <li><a href="/wiki/Test_de_Fisher_d%27%C3%A9galit%C3%A9_de_deux_variances" title="Test de Fisher d&#39;égalité de deux variances">Test de Fisher d'égalité de deux variances</a></li> <li><a href="/wiki/Test_d%27Hausman" title="Test d&#39;Hausman">Test d'Hausman</a></li> <li><a href="/wiki/Test_d%27Anderson-Darling" title="Test d&#39;Anderson-Darling">Test d'Anderson-Darling</a></li> <li><a href="/wiki/Test_de_Banerji_(statistiques)" title="Test de Banerji (statistiques)">Test de Banerji</a></li> <li><a href="/wiki/Test_de_Durbin-Watson" title="Test de Durbin-Watson">Test de Durbin-Watson</a></li> <li><a href="/wiki/Test_de_Goldfeld_et_Quandt" title="Test de Goldfeld et Quandt">Test de Goldfeld et Quandt</a></li> <li><a href="/wiki/Test_de_Jarque-Bera" title="Test de Jarque-Bera">Test de Jarque-Bera</a></li> <li><a href="/wiki/Test_de_Mood" title="Test de Mood">Test de Mood</a></li> <li><a href="/wiki/Test_de_Lilliefors" title="Test de Lilliefors">Test de Lilliefors</a></li> <li><a href="/wiki/Test_de_Wald" title="Test de Wald">Test de Wald</a></li> <li><a href="/wiki/Test_de_Student" title="Test de Student">Test T pour des échantillons indépendants</a></li> <li><a href="/wiki/Test_de_Student" title="Test de Student">Test T pour des échantillons appariés</a></li> <li><a href="/wiki/Corr%C3%A9lation_(statistiques)" title="Corrélation (statistiques)">Test de corrélation de Pearson</a></li></ul> </div></td> </tr> <tr> <th class="navbox-group" style="width:120px;">Tests non-paramétriques</th> <td class="navbox-list" style="text-align:left;;"><div class="liste-horizontale"> <ul><li><a href="/wiki/Test_de_Wilcoxon-Mann-Whitney" title="Test de Wilcoxon-Mann-Whitney">Test U de Mann-Whitney</a></li> <li><a href="/wiki/Test_de_Kruskal-Wallis" title="Test de Kruskal-Wallis">Test de Kruskal-Wallis</a></li> <li><a href="/wiki/Test_exact_de_Fisher" title="Test exact de Fisher">Test exact de Fisher</a></li> <li><a href="/wiki/Test_de_Kolmogorov-Smirnov" title="Test de Kolmogorov-Smirnov">Test de Kolmogorov-Smirnov</a></li> <li><a href="/wiki/Test_de_Shapiro-Wilk" title="Test de Shapiro-Wilk">Test de Shapiro-Wilk</a></li> <li><a href="/wiki/Test_de_Chow" title="Test de Chow">Test de Chow</a></li> <li><a href="/wiki/Test_de_McNemar" title="Test de McNemar">Test de McNemar</a></li> <li><a href="/wiki/Corr%C3%A9lation_de_Spearman" title="Corrélation de Spearman">Test de Spearman</a></li> <li><a href="/wiki/Tau_de_Kendall" title="Tau de Kendall">Tau de Kendall</a></li> <li><a href="/wiki/Test_Gamma" title="Test Gamma">Test Gamma</a></li> <li><a href="/wiki/Test_des_suites_de_Wald-Wolfowitz" title="Test des suites de Wald-Wolfowitz">Test des suites de Wald-Wolfowitz</a></li> <li><a href="/wiki/M%C3%A9thode_m%C3%A9diane-m%C3%A9diane" title="Méthode médiane-médiane">Test de la médiane</a></li> <li><a href="/wiki/Test_des_signes" title="Test des signes">Test des signes</a></li> <li><a href="/wiki/ANOVA_de_Friedman" title="ANOVA de Friedman">ANOVA de Friedman</a></li> <li><a href="/wiki/Concordance_de_Kendall" title="Concordance de Kendall">Concordance de Kendall</a></li> <li><a href="/wiki/Test_Q_de_Cochran" title="Test Q de Cochran">Test Q de Cochran</a></li> <li><a href="/wiki/Test_des_rangs_sign%C3%A9s_de_Wilcoxon" title="Test des rangs signés de Wilcoxon">Test des rangs signés de Wilcoxon</a></li> <li><a href="/wiki/Test_de_Sargan" title="Test de Sargan">Test de Sargan</a></li></ul> </div></td> </tr> </tbody></table></td> </tr> </tbody></table> <table class="navbox collapsible noprint autocollapse" style="font-size:100%; padding:0; border:0; margin:-3px 0;"> <tbody><tr><th class="navbox-title" colspan="2" style=""><span style="font-size:110%">Application</span></th> </tr> <tr> <td class="navbox-list" style="" colspan="2"><div class="liste-horizontale"> <ul><li><a href="/wiki/%C3%89conom%C3%A9trie" title="Économétrie">Économétrie</a></li> <li><a href="/wiki/Physique_statistique" title="Physique statistique">Mécanique statistique</a></li> <li><a href="/wiki/Jeu_de_hasard" title="Jeu de hasard">Jeu de hasard</a></li> <li><a href="/wiki/Biomath%C3%A9matique" title="Biomathématique">Biomathématique</a></li> <li><a href="/wiki/Biostatistique" title="Biostatistique">Biostatistique</a></li> <li><a href="/wiki/Math%C3%A9matiques_financi%C3%A8res" title="Mathématiques financières">Mathématiques financières</a></li></ul> </div></td> </tr> </tbody></table></td> </tr> </tbody></table> </div> <ul id="bandeau-portail" class="bandeau-portail"><li><span class="bandeau-portail-element"><span class="bandeau-portail-icone"><span class="noviewer" typeof="mw:File"><a href="/wiki/Portail:Probabilit%C3%A9s_et_statistiques" title="Portail des probabilités et de la statistique"><img alt="icône décorative" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f7/Logo_proba_4.svg/31px-Logo_proba_4.svg.png" decoding="async" width="31" height="24" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f7/Logo_proba_4.svg/47px-Logo_proba_4.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f7/Logo_proba_4.svg/62px-Logo_proba_4.svg.png 2x" data-file-width="150" data-file-height="116" /></a></span></span> <span class="bandeau-portail-texte"><a href="/wiki/Portail:Probabilit%C3%A9s_et_statistiques" title="Portail:Probabilités et statistiques">Portail des probabilités et de la statistique</a></span> </span></li> </ul> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐864bbfd546‐kccl6 Cached time: 20241130114617 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.246 seconds Real time usage: 0.482 seconds Preprocessor visited node count: 3099/1000000 Post‐expand include size: 147921/2097152 bytes Template argument size: 60697/2097152 bytes Highest expansion depth: 23/100 Expensive parser function count: 0/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 4942/5000000 bytes Lua time usage: 0.024/10.000 seconds Lua memory usage: 1346267/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 185.027 1 -total 30.56% 56.550 1 Modèle:Palette 24.49% 45.305 2 Modèle:Méta_palette_de_navigation 22.98% 42.512 1 Modèle:Portail 22.95% 42.457 1 Modèle:Autres_projets 20.17% 37.312 1 Modèle:Palette_Probabilités_et_statistiques 17.55% 32.479 3 Modèle:Méta_palette_de_navigation_sous-liste 17.12% 31.685 1 Modèle:Voir_homonymie 15.14% 28.009 1 Modèle:Méta_bandeau_de_note 14.66% 27.119 2 Modèle:Méta_bandeau --> <!-- Saved in parser cache with key frwiki:pcache:96058:|#|:idhash:canonical and timestamp 20241130114617 and revision id 219351750. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Ce document provient de «&#160;<a dir="ltr" href="https://fr.wikipedia.org/w/index.php?title=Probabilités_(mathématiques_élémentaires)&amp;oldid=219351750">https://fr.wikipedia.org/w/index.php?title=Probabilités_(mathématiques_élémentaires)&amp;oldid=219351750</a>&#160;».</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Cat%C3%A9gorie:Accueil" title="Catégorie:Accueil">Catégorie</a> : <ul><li><a href="/wiki/Cat%C3%A9gorie:Probabilit%C3%A9s" title="Catégorie:Probabilités">Probabilités</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Catégories cachées : <ul><li><a href="/wiki/Cat%C3%A9gorie:Portail:Probabilit%C3%A9s_et_statistiques/Articles_li%C3%A9s" title="Catégorie:Portail:Probabilités et statistiques/Articles liés">Portail:Probabilités et statistiques/Articles liés</a></li><li><a href="/wiki/Cat%C3%A9gorie:Projet:Math%C3%A9matiques/Articles" title="Catégorie:Projet:Mathématiques/Articles">Projet:Mathématiques/Articles</a></li><li><a href="/wiki/Cat%C3%A9gorie:Portail:Sciences/Articles_li%C3%A9s" title="Catégorie:Portail:Sciences/Articles liés">Portail:Sciences/Articles liés</a></li><li><a href="/wiki/Cat%C3%A9gorie:Page_qui_utilise_un_format_obsol%C3%A8te_des_balises_math%C3%A9matiques" title="Catégorie:Page qui utilise un format obsolète des balises mathématiques">Page qui utilise un format obsolète des balises mathématiques</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> La dernière modification de cette page a été faite le 10 octobre 2024 à 21:13.</li> <li id="footer-info-copyright"><span style="white-space: normal"><a href="/wiki/Wikip%C3%A9dia:Citation_et_r%C3%A9utilisation_du_contenu_de_Wikip%C3%A9dia" title="Wikipédia:Citation et réutilisation du contenu de Wikipédia">Droit d'auteur</a>&#160;: les textes sont disponibles sous <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.fr">licence Creative Commons attribution, partage dans les mêmes conditions</a>&#160;; d’autres conditions peuvent s’appliquer. Voyez les <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/fr">conditions d’utilisation</a> pour plus de détails, ainsi que les <a href="/wiki/Wikip%C3%A9dia:Cr%C3%A9dits_graphiques" title="Wikipédia:Crédits graphiques">crédits graphiques</a>. En cas de réutilisation des textes de cette page, voyez <a href="/wiki/Sp%C3%A9cial:Citer/Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)" title="Spécial:Citer/Probabilités (mathématiques élémentaires)">comment citer les auteurs et mentionner la licence</a>.<br /> Wikipedia® est une marque déposée de la <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, organisation de bienfaisance régie par le paragraphe <a href="/wiki/501c" title="501c">501(c)(3)</a> du code fiscal des États-Unis.</span><br /></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/fr">Politique de confidentialité</a></li> <li id="footer-places-about"><a href="/wiki/Wikip%C3%A9dia:%C3%80_propos_de_Wikip%C3%A9dia">À propos de Wikipédia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikip%C3%A9dia:Avertissements_g%C3%A9n%C3%A9raux">Avertissements</a></li> <li id="footer-places-contact"><a href="//fr.wikipedia.org/wiki/Wikipédia:Contact">Contact</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code de conduite</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Développeurs</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/fr.wikipedia.org">Statistiques</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Déclaration sur les témoins (cookies)</a></li> <li id="footer-places-mobileview"><a href="//fr.m.wikipedia.org/w/index.php?title=Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Version mobile</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-6dfcdd5ff5-f7mkk","wgBackendResponseTime":148,"wgPageParseReport":{"limitreport":{"cputime":"0.246","walltime":"0.482","ppvisitednodes":{"value":3099,"limit":1000000},"postexpandincludesize":{"value":147921,"limit":2097152},"templateargumentsize":{"value":60697,"limit":2097152},"expansiondepth":{"value":23,"limit":100},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":4942,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 185.027 1 -total"," 30.56% 56.550 1 Modèle:Palette"," 24.49% 45.305 2 Modèle:Méta_palette_de_navigation"," 22.98% 42.512 1 Modèle:Portail"," 22.95% 42.457 1 Modèle:Autres_projets"," 20.17% 37.312 1 Modèle:Palette_Probabilités_et_statistiques"," 17.55% 32.479 3 Modèle:Méta_palette_de_navigation_sous-liste"," 17.12% 31.685 1 Modèle:Voir_homonymie"," 15.14% 28.009 1 Modèle:Méta_bandeau_de_note"," 14.66% 27.119 2 Modèle:Méta_bandeau"]},"scribunto":{"limitreport-timeusage":{"value":"0.024","limit":"10.000"},"limitreport-memusage":{"value":1346267,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-864bbfd546-kccl6","timestamp":"20241130114617","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Probabilit\u00e9s (math\u00e9matiques \u00e9l\u00e9mentaires)","url":"https:\/\/fr.wikipedia.org\/wiki\/Probabilit%C3%A9s_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q3406207","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q3406207","author":{"@type":"Organization","name":"Contributeurs aux projets Wikimedia"},"publisher":{"@type":"Organization","name":"Fondation Wikimedia, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-07-13T12:43:26Z","dateModified":"2024-10-10T20:13:16Z","headline":"probabilit\u00e9 \u00e9l\u00e9mentaire"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10