CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;46 of 46 results for author: <span class="mathjax">Arai, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Arai%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Arai, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Arai%2C+Y&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Arai, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.08330">arXiv:2405.08330</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.08330">pdf</a>, <a href="https://arxiv.org/format/2405.08330">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2024.169429">10.1016/j.nima.2024.169429 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> X-ray imaging camera using INTPIX4NA SOIPIX detector with SiTCP-XG 10GbE based high-speed readout system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nishimura%2C+R">Ryutaro Nishimura</a>, <a href="/search/physics?searchtype=author&amp;query=Igarashi%2C+N">Noriyuki Igarashi</a>, <a href="/search/physics?searchtype=author&amp;query=Wakabayashi%2C+D">Daisuke Wakabayashi</a>, <a href="/search/physics?searchtype=author&amp;query=Shibazaki%2C+Y">Yuki Shibazaki</a>, <a href="/search/physics?searchtype=author&amp;query=Suzuki%2C+Y">Yoshio Suzuki</a>, <a href="/search/physics?searchtype=author&amp;query=Hirano%2C+K">Keiichi Hirano</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.08330v1-abstract-short" style="display: inline;"> The silicon-on-insulator pixel (SOIPIX) detector is a unique monolithic-structure imaging device currently being developed by the SOIPIX group led by the High Energy Accelerator Research Organization (KEK). The detector team at KEK Photon Factory (PF) is also developing an X-ray camera using INTPIX4NA with a 14.1 $\times$ 8.7 $\mathsf{mm^2}$ sensitive area and 425,984 (832 column $\times$ 512 row&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08330v1-abstract-full').style.display = 'inline'; document.getElementById('2405.08330v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.08330v1-abstract-full" style="display: none;"> The silicon-on-insulator pixel (SOIPIX) detector is a unique monolithic-structure imaging device currently being developed by the SOIPIX group led by the High Energy Accelerator Research Organization (KEK). The detector team at KEK Photon Factory (PF) is also developing an X-ray camera using INTPIX4NA with a 14.1 $\times$ 8.7 $\mathsf{mm^2}$ sensitive area and 425,984 (832 column $\times$ 512 row matrix) pixels, with a pixel size of 17 $\times$ 17 $\mathsf{渭m^2}$. The detector has high resolution and sensitivity for low-intensity X-rays, making it suitable for imaging in optical systems with lower X-ray intensities, such as an X-ray zooming microscope using two Fresnel zone plates (FZPs), which is also under development at PF. To enable imaging under such conditions, we developed a detector cooling system using a Peltier element to support longer exposure time (~0.5 seconds per frame). Additionally, we developed a new readout system using DAQ boards developed by PF, equipped with SiTCP-XG (network controller implemented on field-programmable gate array) that supports 10 Gbps Ethernet for high-frame-rate imaging at several hundred hertz. The new X-ray camera was tested at the PF BL-14A, BL-14B, and AR-NE1A experimental stations, and the resolution and sensitivity characteristics were confirmed. Given these confirmed characteristics, this X-ray camera is suitable for X-ray imaging using 5--20 keV X-rays under low-intensity, low-contrast conditions. These conditions are ideal for capturing soft tissues with poor contrast, objects with fine structures, and specimens vulnerable to radiation damage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08330v1-abstract-full').style.display = 'none'; document.getElementById('2405.08330v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Presented at 13th International &#34;Hiroshima&#34; Symposium on the Development and Application of Semiconductor Tracking Detectors (HSTD13), Vancouver, Canada</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.08321">arXiv:2405.08321</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.08321">pdf</a>, <a href="https://arxiv.org/format/2405.08321">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2020.164380">10.1016/j.nima.2020.164380 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fine residual stress distribution measurement of steel materials by SOI pixel detector with synchrotron X-rays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nishimura%2C+R">Ryutaro Nishimura</a>, <a href="/search/physics?searchtype=author&amp;query=Kishimoto%2C+S">Shunji Kishimoto</a>, <a href="/search/physics?searchtype=author&amp;query=Sasaki%2C+T">Toshihiko Sasaki</a>, <a href="/search/physics?searchtype=author&amp;query=Mitsui%2C+S">Shingo Mitsui</a>, <a href="/search/physics?searchtype=author&amp;query=Shinya%2C+M">Masayoshi Shinya</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Miyoshi%2C+T">Toshinobu Miyoshi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.08321v1-abstract-short" style="display: inline;"> Residual stress is an important factor governing evaluating and controlling the quality of metal materials in industrial products. X-ray measurements provide one of the most effective means of evaluating residual stress without destruction. In such measurements, the effects of residual stress on the crystal structure can be observed through the Debye ring deformation. In previous studies, we dev&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08321v1-abstract-full').style.display = 'inline'; document.getElementById('2405.08321v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.08321v1-abstract-full" style="display: none;"> Residual stress is an important factor governing evaluating and controlling the quality of metal materials in industrial products. X-ray measurements provide one of the most effective means of evaluating residual stress without destruction. In such measurements, the effects of residual stress on the crystal structure can be observed through the Debye ring deformation. In previous studies, we developed a residual stress measurement system based on the $cos 伪$ method, using a two-dimensional (2D) silicon-on-insulator pixel (SOIPIX) detector known as INTPIX4. In a typical laboratory setup, this system requires only 1 second to measure a specified point. This is drastically faster than the conventional system based on the $sin^{2} 蠄$ method, which requires more than 10 min, and the $cos 伪$-based system using an imaging plate, which requires 1 min. Compared to other systems, it can evaluate the 2D distribution of residual stress faster and provide more detailed information for evaluating materials. We first attempted to measure the 2D distribution in a laboratory setup with a Cr X-ray tube (Cr K$伪$ 5.4 keV) and obtained satisfactory results. We subsequently took measurements using synchrotron monochromatic X-rays to determine the fine accuracy and fine sampling pitch distribution. In this paper, we report the results of the initial synchrotron experiment, including the residual stress distribution of the standard specimen obtained by the first prototype setup. Furthermore, we compare the synchrotron measurements with those from the laboratory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08321v1-abstract-full').style.display = 'none'; document.getElementById('2405.08321v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Presented at 12th International &#34;Hiroshima&#34; Symposium on the Development and Application of Semiconductor Tracking Detectors (HSTD12), Hiroshima, Japan</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 978, 21 October 2020, 164380 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.12857">arXiv:2404.12857</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.12857">pdf</a>, <a href="https://arxiv.org/ps/2404.12857">ps</a>, <a href="https://arxiv.org/format/2404.12857">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2024.169390">10.1016/j.nima.2024.169390 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development of Two-Dimensional Neutron Imager with a Sandwich Configuration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kamiya%2C+Y">Y. Kamiya</a>, <a href="/search/physics?searchtype=author&amp;query=Nishimura%2C+R">R. Nishimura</a>, <a href="/search/physics?searchtype=author&amp;query=Mitsui%2C+S">S. Mitsui</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Z. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Morris%2C+C+L">C. L. Morris</a>, <a href="/search/physics?searchtype=author&amp;query=Makela%2C+M">M. Makela</a>, <a href="/search/physics?searchtype=author&amp;query=Clayton%2C+S+M">S. M. Clayton</a>, <a href="/search/physics?searchtype=author&amp;query=Baldwin%2C+J+K">J. K. Baldwin</a>, <a href="/search/physics?searchtype=author&amp;query=Ito%2C+T+M">T. M. Ito</a>, <a href="/search/physics?searchtype=author&amp;query=Akamatsu%2C+S">S. Akamatsu</a>, <a href="/search/physics?searchtype=author&amp;query=Iwase%2C+H">H. Iwase</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Y. Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Murata%2C+J">J. Murata</a>, <a href="/search/physics?searchtype=author&amp;query=Asai%2C+S">S. Asai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.12857v1-abstract-short" style="display: inline;"> We have developed a two-dimensional neutron imager based on a semiconductor pixelated sensor, especially designed for experiments measuring of a spatial and a temporal behavior of quantum bound states of ultra-cold neutrons. Through these measurements, we expect to measure the ratio between the inertial and gravitational masses of neutrons and to test the equivalence principle in the quantum regim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12857v1-abstract-full').style.display = 'inline'; document.getElementById('2404.12857v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.12857v1-abstract-full" style="display: none;"> We have developed a two-dimensional neutron imager based on a semiconductor pixelated sensor, especially designed for experiments measuring of a spatial and a temporal behavior of quantum bound states of ultra-cold neutrons. Through these measurements, we expect to measure the ratio between the inertial and gravitational masses of neutrons and to test the equivalence principle in the quantum regime. As one of the principal neutron imagers, we fabricated a sensor with a sandwich configuration, named 10B-INTPIX4-sw, and tested its response to ultra-cold neutrons at the Los Alamos Neutron Science Center (LANSCE). We observed simultaneous events on both sandwiching sensors without significant loss of detection efficiency. The efficiency was evaluated to be about 16%, relative to the 10B/ZnS reference detector. The coincidence condition reduces its efficiency by a factor of about 3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12857v1-abstract-full').style.display = 'none'; document.getElementById('2404.12857v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.05934">arXiv:2210.05934</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.05934">pdf</a>, <a href="https://arxiv.org/format/2210.05934">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Input optics systems of the KAGRA detector during O3GK </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/physics?searchtype=author&amp;query=Ando%2C+M">M. Ando</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+K">K. Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Y. Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Araki%2C+S">S. Araki</a>, <a href="/search/physics?searchtype=author&amp;query=Araya%2C+A">A. Araya</a>, <a href="/search/physics?searchtype=author&amp;query=Aritomi%2C+N">N. Aritomi</a>, <a href="/search/physics?searchtype=author&amp;query=Asada%2C+H">H. Asada</a>, <a href="/search/physics?searchtype=author&amp;query=Aso%2C+Y">Y. Aso</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%2C+S">S. Bae</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%2C+Y">Y. Bae</a>, <a href="/search/physics?searchtype=author&amp;query=Baiotti%2C+L">L. Baiotti</a>, <a href="/search/physics?searchtype=author&amp;query=Bajpai%2C+R">R. Bajpai</a>, <a href="/search/physics?searchtype=author&amp;query=Barton%2C+M+A">M. A. Barton</a>, <a href="/search/physics?searchtype=author&amp;query=Cannon%2C+K">K. Cannon</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Z">Z. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Capocasa%2C+E">E. Capocasa</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+M">M. Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C">C. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+K">K. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chiang%2C+C">C-I. Chiang</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+H">H. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+Y">Y-K. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Eguchi%2C+S">S. Eguchi</a> , et al. (228 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.05934v1-abstract-short" style="display: inline;"> KAGRA, the underground and cryogenic gravitational-wave detector, was operated for its solo observation from February 25th to March 10th, 2020, and its first joint observation with the GEO 600 detector from April 7th -- 21st, 2020 (O3GK). This study presents an overview of the input optics systems of the KAGRA detector, which consist of various optical systems, such as a laser source, its intensit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05934v1-abstract-full').style.display = 'inline'; document.getElementById('2210.05934v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.05934v1-abstract-full" style="display: none;"> KAGRA, the underground and cryogenic gravitational-wave detector, was operated for its solo observation from February 25th to March 10th, 2020, and its first joint observation with the GEO 600 detector from April 7th -- 21st, 2020 (O3GK). This study presents an overview of the input optics systems of the KAGRA detector, which consist of various optical systems, such as a laser source, its intensity and frequency stabilization systems, modulators, a Faraday isolator, mode-matching telescopes, and a high-power beam dump. These optics were successfully delivered to the KAGRA interferometer and operated stably during the observations. The laser frequency noise was observed to limit the detector sensitivity above a few kHz, whereas the laser intensity did not significantly limit the detector sensitivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05934v1-abstract-full').style.display = 'none'; document.getElementById('2210.05934v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.05049">arXiv:2210.05049</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.05049">pdf</a>, <a href="https://arxiv.org/format/2210.05049">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/1.JATIS.8.4.046001">10.1117/1.JATIS.8.4.046001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single Event Tolerance of X-ray SOI Pixel Sensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hagino%2C+K">Kouichi Hagino</a>, <a href="/search/physics?searchtype=author&amp;query=Hayashida%2C+M">Mitsuki Hayashida</a>, <a href="/search/physics?searchtype=author&amp;query=Kohmura%2C+T">Takayoshi Kohmura</a>, <a href="/search/physics?searchtype=author&amp;query=Doi%2C+T">Toshiki Doi</a>, <a href="/search/physics?searchtype=author&amp;query=Tsunomachi%2C+S">Shun Tsunomachi</a>, <a href="/search/physics?searchtype=author&amp;query=Kitajima%2C+M">Masatoshi Kitajima</a>, <a href="/search/physics?searchtype=author&amp;query=Tsuru%2C+T+G">Takeshi G. Tsuru</a>, <a href="/search/physics?searchtype=author&amp;query=Uchida%2C+H">Hiroyuki Uchida</a>, <a href="/search/physics?searchtype=author&amp;query=Kayama%2C+K">Kazuho Kayama</a>, <a href="/search/physics?searchtype=author&amp;query=Mori%2C+K">Koji Mori</a>, <a href="/search/physics?searchtype=author&amp;query=Takeda%2C+A">Ayaki Takeda</a>, <a href="/search/physics?searchtype=author&amp;query=Nishioka%2C+Y">Yusuke Nishioka</a>, <a href="/search/physics?searchtype=author&amp;query=Yukumoto%2C+M">Masataka Yukumoto</a>, <a href="/search/physics?searchtype=author&amp;query=Mieda%2C+K">Kira Mieda</a>, <a href="/search/physics?searchtype=author&amp;query=Yonemura%2C+S">Syuto Yonemura</a>, <a href="/search/physics?searchtype=author&amp;query=Ishida%2C+T">Tatsunori Ishida</a>, <a href="/search/physics?searchtype=author&amp;query=Tanaka%2C+T">Takaaki Tanaka</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Kurachi%2C+I">Ikuo Kurachi</a>, <a href="/search/physics?searchtype=author&amp;query=Kitamura%2C+H">Hisashi Kitamura</a>, <a href="/search/physics?searchtype=author&amp;query=Kawahito%2C+S">Shoji Kawahito</a>, <a href="/search/physics?searchtype=author&amp;query=Yasutomi%2C+K">Keita Yasutomi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.05049v1-abstract-short" style="display: inline;"> We evaluate the single event tolerance of the X-ray silicon-on-insulator (SOI) pixel sensor named XRPIX, developed for the future X-ray astronomical satellite FORCE. In this work, we measure the cross-section of single event upset (SEU) of the shift register on XRPIX by irradiating heavy ion beams with linear energy transfer (LET) ranging from 0.022 MeV/(mg/cm2) to 68 MeV/(mg/cm2). From the SEU cr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05049v1-abstract-full').style.display = 'inline'; document.getElementById('2210.05049v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.05049v1-abstract-full" style="display: none;"> We evaluate the single event tolerance of the X-ray silicon-on-insulator (SOI) pixel sensor named XRPIX, developed for the future X-ray astronomical satellite FORCE. In this work, we measure the cross-section of single event upset (SEU) of the shift register on XRPIX by irradiating heavy ion beams with linear energy transfer (LET) ranging from 0.022 MeV/(mg/cm2) to 68 MeV/(mg/cm2). From the SEU cross-section curve, the saturation cross-section and threshold LET are successfully obtained to be $3.4^{+2.9}_{-0.9}\times 10^{-10}~{\rm cm^2/bit}$ and $7.3^{+1.9}_{-3.5}~{\rm MeV/(mg/cm^2)}$, respectively. Using these values, the SEU rate in orbit is estimated to be $\lesssim$ 0.1 event/year primarily due to the secondary particles induced by cosmic-ray protons. This SEU rate of the shift register on XRPIX is negligible in the FORCE orbit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05049v1-abstract-full').style.display = 'none'; document.getElementById('2210.05049v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, accepted for publication in JATIS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.03636">arXiv:2209.03636</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.03636">pdf</a>, <a href="https://arxiv.org/format/2209.03636">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Proton radiation damage tolerance of wide dynamic range SOI pixel detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tsunomachi%2C+S">Shun Tsunomachi</a>, <a href="/search/physics?searchtype=author&amp;query=Kohmura%2C+T">Takayoshi Kohmura</a>, <a href="/search/physics?searchtype=author&amp;query=Hagino%2C+K">Kouichi Hagino</a>, <a href="/search/physics?searchtype=author&amp;query=Kitajima%2C+M">Masatoshi Kitajima</a>, <a href="/search/physics?searchtype=author&amp;query=Doi%2C+T">Toshiki Doi</a>, <a href="/search/physics?searchtype=author&amp;query=Aoki%2C+D">Daiki Aoki</a>, <a href="/search/physics?searchtype=author&amp;query=Ohira%2C+A">Asuka Ohira</a>, <a href="/search/physics?searchtype=author&amp;query=Shimizu%2C+Y">Yasuyuki Shimizu</a>, <a href="/search/physics?searchtype=author&amp;query=Fujisawa%2C+K">Kaito Fujisawa</a>, <a href="/search/physics?searchtype=author&amp;query=Yamazaki%2C+S">Shizusa Yamazaki</a>, <a href="/search/physics?searchtype=author&amp;query=Uchida%2C+Y">Yuusuke Uchida</a>, <a href="/search/physics?searchtype=author&amp;query=Shimizu%2C+M">Makoto Shimizu</a>, <a href="/search/physics?searchtype=author&amp;query=Itoh%2C+N">Naoki Itoh</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Miyoshi%2C+T">Toshinobu Miyoshi</a>, <a href="/search/physics?searchtype=author&amp;query=Nishimura%2C+R">Ryutaro Nishimura</a>, <a href="/search/physics?searchtype=author&amp;query=Tsuru%2C+T+G">Takeshi Go Tsuru</a>, <a href="/search/physics?searchtype=author&amp;query=Kurachi%2C+I">Ikuo Kurachi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.03636v1-abstract-short" style="display: inline;"> We have been developing the SOI pixel detector ``INTPIX&#39;&#39; for space use and general purpose applications such as the residual stress measurement of a rail and high energy physics experiments. INTPIX is a monolithic pixel detector composed of a high-resistivity Si sensor, a SiO2 insulator, and CMOS pixel circuits utilizing Silicon-On-Insulator (SOI) technology. We have considered the possibility of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.03636v1-abstract-full').style.display = 'inline'; document.getElementById('2209.03636v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.03636v1-abstract-full" style="display: none;"> We have been developing the SOI pixel detector ``INTPIX&#39;&#39; for space use and general purpose applications such as the residual stress measurement of a rail and high energy physics experiments. INTPIX is a monolithic pixel detector composed of a high-resistivity Si sensor, a SiO2 insulator, and CMOS pixel circuits utilizing Silicon-On-Insulator (SOI) technology. We have considered the possibility of using INTPIX to observe X-ray polarization in space. When the semiconductor detector is used in space, it is subject to radiation damage resulting from high-energy protons. Therefore, it is necessary to investigate whether INTPIX has high radiation tolerance for use in space. The INTPIX8 was irradiated with 6 MeV protons up to a total dose of 2 krad at HIMAC, National Institute of Quantum Science in Japan, and evaluated the degradation of the performance, such as energy resolution and non-uniformity of gain and readout noise between pixels. After 500 rad irradiation, which is the typical lifetime of an X-ray astronomy satellite, the degradation of energy resolution at 14.4 keV is less than 10%, and the non-uniformity of readout noise and gain between pixels is constant within 0.1%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.03636v1-abstract-full').style.display = 'none'; document.getElementById('2209.03636v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 8 figures, published in proceedings for SPIE Astronomical Telescopes + Instrumentation in 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.04283">arXiv:2207.04283</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.04283">pdf</a>, <a href="https://arxiv.org/format/2207.04283">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/2374/1/012093">10.1088/1742-6596/2374/1/012093 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development of a new high-speed data acquisition system prototype for SOI pixel detector using SiTCP-XG, a 10-gigabit Ethernet network processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nishimura%2C+R">Ryutaro Nishimura</a>, <a href="/search/physics?searchtype=author&amp;query=Kishimoto%2C+S">Shunji Kishimoto</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Miyoshi%2C+T">Toshinobu Miyoshi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.04283v1-abstract-short" style="display: inline;"> We are developing a new readout board with a newer generation field-programmable gate array (FPGA) and the 10-gigabit ethernet to improve the performance and usability of the current readout board based on the 1-gigabit Ethernet. In this new readout board, the SiTCP-XG network processor supporting 10-gigabit Ethernet was implemented. SiTCP is a network processor circuit running on FPGA, and SiTCP-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.04283v1-abstract-full').style.display = 'inline'; document.getElementById('2207.04283v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.04283v1-abstract-full" style="display: none;"> We are developing a new readout board with a newer generation field-programmable gate array (FPGA) and the 10-gigabit ethernet to improve the performance and usability of the current readout board based on the 1-gigabit Ethernet. In this new readout board, the SiTCP-XG network processor supporting 10-gigabit Ethernet was implemented. SiTCP is a network processor circuit running on FPGA, and SiTCP-XG is the newly developed version of the SiTCP that supports 10-gigabit Ethernet. Before developing the new board, we constructed a prototype system using the Xilinx FPGA evaluation board KC705 to evaluate the SiTCP-XG. This prototype system was tested with the SOI pixel detector, which has 425,984 (column 832 x row 512 matrix) pixels and a pixel size of 17 x 17 um at the synchrotron beamlines of the PhotonFactory (KEK). This was the first test of the X-ray imaging for this system. The results showed that this system worked stably with a transfer rate of 682 Mbps (equivalent to a frame rate of 100 fps, limited by detector operation parameters), and also worked stably with a transfer rate of 2.4 Gbps (equivalent to 350 fps, the maximum rate limited by the detector performance). These results suggest that the SiTCP-XG system has sufficient transfer performance to cover the SOIPIX detector performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.04283v1-abstract-full').style.display = 'none'; document.getElementById('2207.04283v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in the proceedings of the International Conference on Technology and Instrumentation in Particle Physics 2021 (TIPP2021, 24-28 May 2021), to be published in Journal of Physics: Conference Series</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2022 J. Phys.: Conf. Ser. 2374 012093 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.13244">arXiv:2205.13244</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.13244">pdf</a>, <a href="https://arxiv.org/format/2205.13244">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/1.JATIS.8.2.026007">10.1117/1.JATIS.8.2.026007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> X-ray Radiation Damage Effects on Double-SOI Pixel Detectors for the Future Astronomical Satellite &#34;FORCE&#34; </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kitajima%2C+M">Masatoshi Kitajima</a>, <a href="/search/physics?searchtype=author&amp;query=Hagino%2C+K">Kouichi Hagino</a>, <a href="/search/physics?searchtype=author&amp;query=Kohmura%2C+T">Takayoshi Kohmura</a>, <a href="/search/physics?searchtype=author&amp;query=Hayashida%2C+M">Mitsuki Hayashida</a>, <a href="/search/physics?searchtype=author&amp;query=Oono%2C+K">Kenji Oono</a>, <a href="/search/physics?searchtype=author&amp;query=Negishi%2C+K">Kousuke Negishi</a>, <a href="/search/physics?searchtype=author&amp;query=Yarita%2C+K">Keigo Yarita</a>, <a href="/search/physics?searchtype=author&amp;query=Doi%2C+T">Toshiki Doi</a>, <a href="/search/physics?searchtype=author&amp;query=Tsunomachi%2C+S">Shun Tsunomachi</a>, <a href="/search/physics?searchtype=author&amp;query=Tsuru%2C+T+G">Takeshi G. Tsuru</a>, <a href="/search/physics?searchtype=author&amp;query=Uchida%2C+H">Hiroyuki Uchida</a>, <a href="/search/physics?searchtype=author&amp;query=Kayama%2C+K">Kazuho Kayama</a>, <a href="/search/physics?searchtype=author&amp;query=Kodama%2C+R">Ryota Kodama</a>, <a href="/search/physics?searchtype=author&amp;query=Tanaka%2C+T">Takaaki Tanaka</a>, <a href="/search/physics?searchtype=author&amp;query=Mori%2C+K">Koji Mori</a>, <a href="/search/physics?searchtype=author&amp;query=Takeda%2C+A">Ayaki Takeda</a>, <a href="/search/physics?searchtype=author&amp;query=Nishioka%2C+Y">Yusuke Nishioka</a>, <a href="/search/physics?searchtype=author&amp;query=Yukumoto%2C+M">Masataka Yukumoto</a>, <a href="/search/physics?searchtype=author&amp;query=Mieda%2C+K">Kira Mieda</a>, <a href="/search/physics?searchtype=author&amp;query=Yonemura%2C+S">Syuto Yonemura</a>, <a href="/search/physics?searchtype=author&amp;query=Ishida%2C+T">Tatsunori Ishida</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Kurachi%2C+I">Ikuo Kurachi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.13244v1-abstract-short" style="display: inline;"> We have been developing the monolithic active pixel detector &#34;XRPIX&#34; onboard the future X-ray astronomical satellite &#34;FORCE&#34;. XRPIX is composed of CMOS pixel circuits, SiO2 insulator, and Si sensor by utilizing the silicon-on-insulator (SOI) technology. When the semiconductor detector is operated in orbit, it suffers from radiation damage due to X-rays emitted from the celestial objects as well as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.13244v1-abstract-full').style.display = 'inline'; document.getElementById('2205.13244v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.13244v1-abstract-full" style="display: none;"> We have been developing the monolithic active pixel detector &#34;XRPIX&#34; onboard the future X-ray astronomical satellite &#34;FORCE&#34;. XRPIX is composed of CMOS pixel circuits, SiO2 insulator, and Si sensor by utilizing the silicon-on-insulator (SOI) technology. When the semiconductor detector is operated in orbit, it suffers from radiation damage due to X-rays emitted from the celestial objects as well as cosmic rays. From previous studies, positive charges trapped in the SiO2 insulator are known to cause the degradation of the detector performance. To improve the radiation hardness, we developed XRPIX equipped with Double-SOI (D-SOI) structure, introducing an additional silicon layer in the SiO2 insulator. This structure is aimed at compensating for the effect of the trapped positive charges. Although the radiation hardness to cosmic rays of the D-SOI detectors has been evaluated, the radiation effect due to the X-ray irradiation has not been evaluated. Then, we conduct an X-ray irradiation experiment using an X-ray generator with a total dose of 10 krad at the SiO2 insulator, equivalent to 7 years in orbit. As a result of this experiment, the energy resolution in full-width half maximum for the 5.9 keV X-ray degrades by 17.8 $\pm$ 2.8% and the dark current increases by 89 $\pm$ 13%. We also investigate the physical mechanism of the increase in the dark current due to X-ray irradiation using TCAD simulation. It is found that the increase in the dark current can be explained by the increase in the interface state density at the Si/SiO2 interface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.13244v1-abstract-full').style.display = 'none'; document.getElementById('2205.13244v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 12 figures, accepted for publication in Journal of Astronomical Telescopes, Instruments, and Systems</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.05115">arXiv:2205.05115</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.05115">pdf</a>, <a href="https://arxiv.org/format/2205.05115">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1029/2023GL102958">10.1029/2023GL102958 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First High-speed Video Camera Observations of a Lightning Flash Associated with a Downward Terrestrial Gamma-ray Flash </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abbasi%2C+R+U">R. U. Abbasi</a>, <a href="/search/physics?searchtype=author&amp;query=Saba%2C+M+M+F">M. M. F. Saba</a>, <a href="/search/physics?searchtype=author&amp;query=Belz%2C+J+W">J. W. Belz</a>, <a href="/search/physics?searchtype=author&amp;query=Krehbiel%2C+P+R">P. R. Krehbiel</a>, <a href="/search/physics?searchtype=author&amp;query=Rison%2C+W">W. Rison</a>, <a href="/search/physics?searchtype=author&amp;query=Kieu%2C+N">N. Kieu</a>, <a href="/search/physics?searchtype=author&amp;query=da+Silva%2C+D+R">D. R. da Silva</a>, <a href="/search/physics?searchtype=author&amp;query=Rodeheffer%2C+D">Dan Rodeheffer</a>, <a href="/search/physics?searchtype=author&amp;query=Stanley%2C+M+A">M. A. Stanley</a>, <a href="/search/physics?searchtype=author&amp;query=Remington%2C+J">J. Remington</a>, <a href="/search/physics?searchtype=author&amp;query=Mazich%2C+J">J. Mazich</a>, <a href="/search/physics?searchtype=author&amp;query=LeVon%2C+R">R. LeVon</a>, <a href="/search/physics?searchtype=author&amp;query=Smout%2C+K">K. Smout</a>, <a href="/search/physics?searchtype=author&amp;query=Petrizze%2C+A">A. Petrizze</a>, <a href="/search/physics?searchtype=author&amp;query=Abu-Zayyad%2C+T">T. Abu-Zayyad</a>, <a href="/search/physics?searchtype=author&amp;query=Allen%2C+M">M. Allen</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Y. Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Arimura%2C+R">R. Arimura</a>, <a href="/search/physics?searchtype=author&amp;query=Barcikowski%2C+E">E. Barcikowski</a>, <a href="/search/physics?searchtype=author&amp;query=Bergman%2C+D+R">D. R. Bergman</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+S+A">S. A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Buckland%2C+I">I. Buckland</a>, <a href="/search/physics?searchtype=author&amp;query=Cheon%2C+B+G">B. G. Cheon</a>, <a href="/search/physics?searchtype=author&amp;query=Chikawa%2C+M">M. Chikawa</a>, <a href="/search/physics?searchtype=author&amp;query=Fujii%2C+T">T. Fujii</a> , et al. (127 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.05115v2-abstract-short" style="display: inline;"> In this paper, we present the first high-speed video observation of a cloud-to-ground lightning flash and its associated downward-directed Terrestrial Gamma-ray Flash (TGF). The optical emission of the event was observed by a high-speed video camera running at 40,000 frames per second in conjunction with the Telescope Array Surface Detector, Lightning Mapping Array, interferometer, electric-field&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.05115v2-abstract-full').style.display = 'inline'; document.getElementById('2205.05115v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.05115v2-abstract-full" style="display: none;"> In this paper, we present the first high-speed video observation of a cloud-to-ground lightning flash and its associated downward-directed Terrestrial Gamma-ray Flash (TGF). The optical emission of the event was observed by a high-speed video camera running at 40,000 frames per second in conjunction with the Telescope Array Surface Detector, Lightning Mapping Array, interferometer, electric-field fast antenna, and the National Lightning Detection Network. The cloud-to-ground flash associated with the observed TGF was formed by a fast downward leader followed by a very intense return stroke peak current of -154 kA. The TGF occurred while the downward leader was below cloud base, and even when it was halfway in its propagation to ground. The suite of gamma-ray and lightning instruments, timing resolution, and source proximity offer us detailed information and therefore a unique look at the TGF phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.05115v2-abstract-full').style.display = 'none'; document.getElementById('2205.05115v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Geophysical Research Letters, 50, e2023GL102958 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07622">arXiv:2203.07622</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.07622">pdf</a>, <a href="https://arxiv.org/format/2203.07622">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The International Linear Collider: Report to Snowmass 2021 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aryshev%2C+A">Alexander Aryshev</a>, <a href="/search/physics?searchtype=author&amp;query=Behnke%2C+T">Ties Behnke</a>, <a href="/search/physics?searchtype=author&amp;query=Berggren%2C+M">Mikael Berggren</a>, <a href="/search/physics?searchtype=author&amp;query=Brau%2C+J">James Brau</a>, <a href="/search/physics?searchtype=author&amp;query=Craig%2C+N">Nathaniel Craig</a>, <a href="/search/physics?searchtype=author&amp;query=Freitas%2C+A">Ayres Freitas</a>, <a href="/search/physics?searchtype=author&amp;query=Gaede%2C+F">Frank Gaede</a>, <a href="/search/physics?searchtype=author&amp;query=Gessner%2C+S">Spencer Gessner</a>, <a href="/search/physics?searchtype=author&amp;query=Gori%2C+S">Stefania Gori</a>, <a href="/search/physics?searchtype=author&amp;query=Grojean%2C+C">Christophe Grojean</a>, <a href="/search/physics?searchtype=author&amp;query=Heinemeyer%2C+S">Sven Heinemeyer</a>, <a href="/search/physics?searchtype=author&amp;query=Jeans%2C+D">Daniel Jeans</a>, <a href="/search/physics?searchtype=author&amp;query=Kruger%2C+K">Katja Kruger</a>, <a href="/search/physics?searchtype=author&amp;query=List%2C+B">Benno List</a>, <a href="/search/physics?searchtype=author&amp;query=List%2C+J">Jenny List</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhen Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Michizono%2C+S">Shinichiro Michizono</a>, <a href="/search/physics?searchtype=author&amp;query=Miller%2C+D+W">David W. Miller</a>, <a href="/search/physics?searchtype=author&amp;query=Moult%2C+I">Ian Moult</a>, <a href="/search/physics?searchtype=author&amp;query=Murayama%2C+H">Hitoshi Murayama</a>, <a href="/search/physics?searchtype=author&amp;query=Nakada%2C+T">Tatsuya Nakada</a>, <a href="/search/physics?searchtype=author&amp;query=Nanni%2C+E">Emilio Nanni</a>, <a href="/search/physics?searchtype=author&amp;query=Nojiri%2C+M">Mihoko Nojiri</a>, <a href="/search/physics?searchtype=author&amp;query=Padamsee%2C+H">Hasan Padamsee</a>, <a href="/search/physics?searchtype=author&amp;query=Perelstein%2C+M">Maxim Perelstein</a> , et al. (487 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07622v3-abstract-short" style="display: inline;"> The International Linear Collider (ILC) is on the table now as a new global energy-frontier accelerator laboratory taking data in the 2030s. The ILC addresses key questions for our current understanding of particle physics. It is based on a proven accelerator technology. Its experiments will challenge the Standard Model of particle physics and will provide a new window to look beyond it. This docu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07622v3-abstract-full').style.display = 'inline'; document.getElementById('2203.07622v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07622v3-abstract-full" style="display: none;"> The International Linear Collider (ILC) is on the table now as a new global energy-frontier accelerator laboratory taking data in the 2030s. The ILC addresses key questions for our current understanding of particle physics. It is based on a proven accelerator technology. Its experiments will challenge the Standard Model of particle physics and will provide a new window to look beyond it. This document brings the story of the ILC up to date, emphasizing its strong physics motivation, its readiness for construction, and the opportunity it presents to the US and the global particle physics community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07622v3-abstract-full').style.display = 'none'; document.getElementById('2203.07622v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">356 pages, Large pdf file (40 MB) submitted to Snowmass 2021; v2 references to Snowmass contributions added, additional authors; v3 references added, some updates, additional authors</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY-22-045, IFT--UAM/CSIC--22-028, KEK Preprint 2021-61, PNNL-SA-160884, SLAC-PUB-17662 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.09962">arXiv:2111.09962</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.09962">pdf</a>, <a href="https://arxiv.org/format/2111.09962">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.062002">10.1103/PhysRevD.105.062002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Variations in Cosmic Ray Single Count Rates During Thunderstorms and Implications for Large-Scale Electric Field Changes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abbasi%2C+R+U">R. U. Abbasi</a>, <a href="/search/physics?searchtype=author&amp;query=Abu-Zayyad%2C+T">T. Abu-Zayyad</a>, <a href="/search/physics?searchtype=author&amp;query=Allen%2C+M">M. Allen</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Y. Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Arimura%2C+R">R. Arimura</a>, <a href="/search/physics?searchtype=author&amp;query=Barcikowski%2C+E">E. Barcikowski</a>, <a href="/search/physics?searchtype=author&amp;query=Belz%2C+J+W">J. W. Belz</a>, <a href="/search/physics?searchtype=author&amp;query=Bergman%2C+D+R">D. R. Bergman</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+S+A">S. A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Buckland%2C+I">I. Buckland</a>, <a href="/search/physics?searchtype=author&amp;query=Cady%2C+R">R. Cady</a>, <a href="/search/physics?searchtype=author&amp;query=Cheon%2C+B+G">B. G. Cheon</a>, <a href="/search/physics?searchtype=author&amp;query=Chiba%2C+J">J. Chiba</a>, <a href="/search/physics?searchtype=author&amp;query=Chikawa%2C+M">M. Chikawa</a>, <a href="/search/physics?searchtype=author&amp;query=Fujii%2C+T">T. Fujii</a>, <a href="/search/physics?searchtype=author&amp;query=Fujisue%2C+K">K. Fujisue</a>, <a href="/search/physics?searchtype=author&amp;query=Fujita%2C+K">K. Fujita</a>, <a href="/search/physics?searchtype=author&amp;query=Fujiwara%2C+R">R. Fujiwara</a>, <a href="/search/physics?searchtype=author&amp;query=Fukushima%2C+M">M. Fukushima</a>, <a href="/search/physics?searchtype=author&amp;query=Fukushima%2C+R">R. Fukushima</a>, <a href="/search/physics?searchtype=author&amp;query=Furlich%2C+G">G. Furlich</a>, <a href="/search/physics?searchtype=author&amp;query=Globus%2C+N">N. Globus</a>, <a href="/search/physics?searchtype=author&amp;query=Gonzalez%2C+R">R. Gonzalez</a>, <a href="/search/physics?searchtype=author&amp;query=Hanlon%2C+W">W. Hanlon</a>, <a href="/search/physics?searchtype=author&amp;query=Hayashi%2C+M">M. Hayashi</a> , et al. (140 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.09962v1-abstract-short" style="display: inline;"> We present the first observation by the Telescope Array Surface Detector (TASD) of the effect of thunderstorms on the development of cosmic ray single count rate intensity over a 700 km$^{2}$ area. Observations of variations in the secondary low-energy cosmic ray counting rate, using the TASD, allow us to study the electric field inside thunderstorms, on a large scale, as it progresses on top of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09962v1-abstract-full').style.display = 'inline'; document.getElementById('2111.09962v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.09962v1-abstract-full" style="display: none;"> We present the first observation by the Telescope Array Surface Detector (TASD) of the effect of thunderstorms on the development of cosmic ray single count rate intensity over a 700 km$^{2}$ area. Observations of variations in the secondary low-energy cosmic ray counting rate, using the TASD, allow us to study the electric field inside thunderstorms, on a large scale, as it progresses on top of the 700 km$^{2}$ detector, without dealing with the limitation of narrow exposure in time and space using balloons and aircraft detectors. In this work, variations in the cosmic ray intensity (single count rate) using the TASD, were studied and found to be on average at the $\sim(0.5-1)\%$ and up to 2\% level. These observations were found to be both in excess and in deficit. They were also found to be correlated with lightning in addition to thunderstorms. These variations lasted for tens of minutes; their footprint on the ground ranged from 6 to 24 km in diameter and moved in the same direction as the thunderstorm. With the use of simple electric field models inside the cloud and between cloud to ground, the observed variations in the cosmic ray single count rate were recreated using CORSIKA simulations. Depending on the electric field model used and the direction of the electric field in that model, the electric field magnitude that reproduces the observed low-energy cosmic ray single count rate variations was found to be approximately between 0.2-0.4 GV. This in turn allows us to get a reasonable insight on the electric field and its effect on cosmic ray air showers inside thunderstorms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09962v1-abstract-full').style.display = 'none'; document.getElementById('2111.09962v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.05303">arXiv:2108.05303</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.05303">pdf</a>, <a href="https://arxiv.org/format/2108.05303">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/1.JATIS.7.3.036001">10.1117/1.JATIS.7.3.036001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proton radiation hardness of X-ray SOI pixel sensors with pinned depleted diode structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hayashida%2C+M">Mitsuki Hayashida</a>, <a href="/search/physics?searchtype=author&amp;query=Hagino%2C+K">Kouichi Hagino</a>, <a href="/search/physics?searchtype=author&amp;query=Kohmura%2C+T">Takayoshi Kohmura</a>, <a href="/search/physics?searchtype=author&amp;query=Kitajima%2C+M">Masatoshi Kitajima</a>, <a href="/search/physics?searchtype=author&amp;query=Yarita%2C+K">Keigo Yarita</a>, <a href="/search/physics?searchtype=author&amp;query=Oono%2C+K">Kenji Oono</a>, <a href="/search/physics?searchtype=author&amp;query=Negishi%2C+K">Kousuke Negishi</a>, <a href="/search/physics?searchtype=author&amp;query=Tsuru%2C+T+G">Takeshi G. Tsuru</a>, <a href="/search/physics?searchtype=author&amp;query=Tanaka%2C+T">Takaaki Tanaka</a>, <a href="/search/physics?searchtype=author&amp;query=Uchida%2C+H">Hiroyuki Uchida</a>, <a href="/search/physics?searchtype=author&amp;query=Kayama%2C+K">Kazuho Kayama</a>, <a href="/search/physics?searchtype=author&amp;query=Kodama%2C+R">Ryota Kodama</a>, <a href="/search/physics?searchtype=author&amp;query=Mori%2C+K">Koji Mori</a>, <a href="/search/physics?searchtype=author&amp;query=Takeda%2C+A">Ayaki Takeda</a>, <a href="/search/physics?searchtype=author&amp;query=Nishioka%2C+Y">Yusuke Nishioka</a>, <a href="/search/physics?searchtype=author&amp;query=Hida%2C+T">Takahiro Hida</a>, <a href="/search/physics?searchtype=author&amp;query=Yukumoto%2C+M">Masataka Yukumoto</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Kurachi%2C+I">Ikuo Kurachi</a>, <a href="/search/physics?searchtype=author&amp;query=Kitamura%2C+H">Hisashi Kitamura</a>, <a href="/search/physics?searchtype=author&amp;query=Kawahito%2C+S">Shoji Kawahito</a>, <a href="/search/physics?searchtype=author&amp;query=Yasutomi%2C+K">Keita Yasutomi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.05303v1-abstract-short" style="display: inline;"> X-ray SOI pixel sensors, &#34;XRPIX&#34;, are being developed for the next-generation X-ray astronomical satellite, &#34;FORCE&#34;. The XRPIX are fabricated with the SOI technology, which makes it possible to integrate a high-resistivity Si sensor and a low-resistivity Si CMOS circuit. The CMOS circuit in each pixel is equipped with a trigger function, allowing us to read out outputs only from the pixels with X-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.05303v1-abstract-full').style.display = 'inline'; document.getElementById('2108.05303v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.05303v1-abstract-full" style="display: none;"> X-ray SOI pixel sensors, &#34;XRPIX&#34;, are being developed for the next-generation X-ray astronomical satellite, &#34;FORCE&#34;. The XRPIX are fabricated with the SOI technology, which makes it possible to integrate a high-resistivity Si sensor and a low-resistivity Si CMOS circuit. The CMOS circuit in each pixel is equipped with a trigger function, allowing us to read out outputs only from the pixels with X-ray signals at the timing of X-ray detection. This function thus realizes high throughput and high time resolution, which enables to employ anti-coincidence technique for background rejection. A new series of XRPIX named XRPIX6E developed with a pinned depleted diode (PDD) structure improves spectral performance by suppressing the interference between the sensor and circuit layers. When semiconductor X-ray sensors are used in space, their spectral performance is generally degraded owing to the radiation damage caused by high-energy protons. Therefore, before using an XRPIX in space, it is necessary to evaluate the extent of degradation of its spectral performance by radiation damage. Thus, we performed a proton irradiation experiment for XRPIX6E for the first time at HIMAC in the NIRS. We irradiated XRPIX6E with high-energy protons with a total dose of up to 40 krad, equivalent to 400 years of irradiation in orbit. The 40-krad irradiation degraded the energy resolution of XRPIX6E by 25 $\pm$ 3%, yielding an energy resolution of 260.1 $\pm$ 5.6 eV at the full width half maximum for 5.9 keV X-rays. However, the value satisfies the requirement for FORCE, 300 eV at 6 keV, even after the irradiation. It was also found that the PDD XRPIX has enhanced radiation hardness compared to previous XRPIX devices. In addition, we investigated the degradation of the energy resolution; it was shown that the degradation would be due to increasing energy-independent components, e.g., readout noise. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.05303v1-abstract-full').style.display = 'none'; document.getElementById('2108.05303v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 16 figures, accepted for publication in JATIS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.12632">arXiv:2107.12632</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.12632">pdf</a>, <a href="https://arxiv.org/format/2107.12632">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/08/P08054">10.1088/1748-0221/16/08/P08054 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> INTPIX4NA -- new integration-type silicon-on-insulator pixel detector for imaging application </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nishimura%2C+R">R. Nishimura</a>, <a href="/search/physics?searchtype=author&amp;query=Kishimoto%2C+S">S. Kishimoto</a>, <a href="/search/physics?searchtype=author&amp;query=Sasaki%2C+T">T. Sasaki</a>, <a href="/search/physics?searchtype=author&amp;query=Mitsui%2C+S">S. Mitsui</a>, <a href="/search/physics?searchtype=author&amp;query=Shinya%2C+M">M. Shinya</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Y. Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Miyoshi%2C+T">T. Miyoshi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.12632v3-abstract-short" style="display: inline;"> INTPIX4NA is an integration-type silicon-on-insulator pixel detector. This detector has a 14.1 x 8.7 mm^2 sensitive area, 425,984 (832 column x 512 row matrix) pixels and the pixel size is 17 x 17 um^2. This detector was developed for residual stress measurement using X-rays (the cos alpha method). The performance of INTPIX4NA was tested with the synchrotron beamlines of the Photon Factory (KEK),&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12632v3-abstract-full').style.display = 'inline'; document.getElementById('2107.12632v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.12632v3-abstract-full" style="display: none;"> INTPIX4NA is an integration-type silicon-on-insulator pixel detector. This detector has a 14.1 x 8.7 mm^2 sensitive area, 425,984 (832 column x 512 row matrix) pixels and the pixel size is 17 x 17 um^2. This detector was developed for residual stress measurement using X-rays (the cos alpha method). The performance of INTPIX4NA was tested with the synchrotron beamlines of the Photon Factory (KEK), and the following results were obtained. The modulation transfer function, the index of the spatial resolution, was more than 50% at the Nyquist frequency (29.4 cycle/mm). The energy resolution analyzed from the collected charge counts is 35.3%--46.2% at 5.415 keV, 21.7%--35.6% at 8 keV, and 15.7%--19.4% at 12 keV. The X-ray signal can be separated from the noise even at a low energy of 5.415 keV at room temperature (approximately 25--27 degree Celsius). The maximum frame rate at which the signal quality can be maintained is 153 fps in the current measurement system. These results satisfy the required performance in the air and at room temperature (approximately 25--27 degree Celsius) condition that is assumed for the environment of the residual stress measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12632v3-abstract-full').style.display = 'none'; document.getElementById('2107.12632v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication at JINST (2022/01/14 Typo correction ver.)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2021 JINST 16 P08054 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.01086">arXiv:2103.01086</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.01086">pdf</a>, <a href="https://arxiv.org/ps/2103.01086">ps</a>, <a href="https://arxiv.org/format/2103.01086">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2021.165726">10.1016/j.nima.2021.165726 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Surface detectors of the TAx4 experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Telescope+Array+Collaboration"> Telescope Array Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abbasi%2C+R+U">R. U. Abbasi</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+M">M. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Abu-Zayyad%2C+T">T. Abu-Zayyad</a>, <a href="/search/physics?searchtype=author&amp;query=Allen%2C+M">M. Allen</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Y. Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Barcikowski%2C+E">E. Barcikowski</a>, <a href="/search/physics?searchtype=author&amp;query=Belz%2C+J+W">J. W. Belz</a>, <a href="/search/physics?searchtype=author&amp;query=Bergman%2C+D+R">D. R. Bergman</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+S+A">S. A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Cady%2C+R">R. Cady</a>, <a href="/search/physics?searchtype=author&amp;query=Cheon%2C+B+G">B. G. Cheon</a>, <a href="/search/physics?searchtype=author&amp;query=Chiba%2C+J">J. Chiba</a>, <a href="/search/physics?searchtype=author&amp;query=Chikawa%2C+M">M. Chikawa</a>, <a href="/search/physics?searchtype=author&amp;query=Fujii%2C+T">T. Fujii</a>, <a href="/search/physics?searchtype=author&amp;query=Fujisue%2C+K">K. Fujisue</a>, <a href="/search/physics?searchtype=author&amp;query=Fujita%2C+K">K. Fujita</a>, <a href="/search/physics?searchtype=author&amp;query=Fujiwara%2C+R">R. Fujiwara</a>, <a href="/search/physics?searchtype=author&amp;query=Fukushima%2C+M">M. Fukushima</a>, <a href="/search/physics?searchtype=author&amp;query=Fukushima%2C+R">R. Fukushima</a>, <a href="/search/physics?searchtype=author&amp;query=Furlich%2C+G">G. Furlich</a>, <a href="/search/physics?searchtype=author&amp;query=Hanlon%2C+W">W. Hanlon</a>, <a href="/search/physics?searchtype=author&amp;query=Hayashi%2C+M">M. Hayashi</a>, <a href="/search/physics?searchtype=author&amp;query=Hayashida%2C+N">N. Hayashida</a>, <a href="/search/physics?searchtype=author&amp;query=Hibino%2C+K">K. Hibino</a> , et al. (124 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.01086v1-abstract-short" style="display: inline;"> Telescope Array (TA) is the largest ultrahigh energy cosmic-ray (UHECR) observatory in the Northern Hemisphere. It explores the origin of UHECRs by measuring their energy spectrum, arrival-direction distribution, and mass composition using a surface detector (SD) array covering approximately 700 km$^2$ and fluorescence detector (FD) stations. TA has found evidence for a cluster of cosmic rays with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.01086v1-abstract-full').style.display = 'inline'; document.getElementById('2103.01086v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.01086v1-abstract-full" style="display: none;"> Telescope Array (TA) is the largest ultrahigh energy cosmic-ray (UHECR) observatory in the Northern Hemisphere. It explores the origin of UHECRs by measuring their energy spectrum, arrival-direction distribution, and mass composition using a surface detector (SD) array covering approximately 700 km$^2$ and fluorescence detector (FD) stations. TA has found evidence for a cluster of cosmic rays with energies greater than 57 EeV. In order to confirm this evidence with more data, it is necessary to increase the data collection rate.We have begun building an expansion of TA that we call TAx4. In this paper, we explain the motivation, design, technical features, and expected performance of the TAx4 SD. We also present TAx4&#39;s current status and examples of the data that have already been collected. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.01086v1-abstract-full').style.display = 'none'; document.getElementById('2103.01086v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 17 figures, submitted to Nuclear Inst. and Methods in Physics Research, A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.08718">arXiv:2007.08718</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.08718">pdf</a>, <a href="https://arxiv.org/format/2007.08718">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2020.164435">10.1016/j.nima.2020.164435 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radiation Damage Effects on Double-SOI Pixel Sensors for X-ray Astronomy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hagino%2C+K">Kouichi Hagino</a>, <a href="/search/physics?searchtype=author&amp;query=Yarita%2C+K">Keigo Yarita</a>, <a href="/search/physics?searchtype=author&amp;query=Negishi%2C+K">Kousuke Negishi</a>, <a href="/search/physics?searchtype=author&amp;query=Oono%2C+K">Kenji Oono</a>, <a href="/search/physics?searchtype=author&amp;query=Hayashida%2C+M">Mitsuki Hayashida</a>, <a href="/search/physics?searchtype=author&amp;query=Kitajima%2C+M">Masatoshi Kitajima</a>, <a href="/search/physics?searchtype=author&amp;query=Kohmura%2C+T">Takayoshi Kohmura</a>, <a href="/search/physics?searchtype=author&amp;query=Tsuru%2C+T+G">Takeshi G. Tsuru</a>, <a href="/search/physics?searchtype=author&amp;query=Tanaka%2C+T">Takaaki Tanaka</a>, <a href="/search/physics?searchtype=author&amp;query=Uchida%2C+H">Hiroyuki Uchida</a>, <a href="/search/physics?searchtype=author&amp;query=Kayama%2C+K">Kazuho Kayama</a>, <a href="/search/physics?searchtype=author&amp;query=Amano%2C+Y">Yuki Amano</a>, <a href="/search/physics?searchtype=author&amp;query=Kodama%2C+R">Ryota Kodama</a>, <a href="/search/physics?searchtype=author&amp;query=Takeda%2C+A">Ayaki Takeda</a>, <a href="/search/physics?searchtype=author&amp;query=Mori%2C+K">Koji Mori</a>, <a href="/search/physics?searchtype=author&amp;query=Nishioka%2C+Y">Yusuke Nishioka</a>, <a href="/search/physics?searchtype=author&amp;query=Yukumoto%2C+M">Masataka Yukumoto</a>, <a href="/search/physics?searchtype=author&amp;query=Hida%2C+T">Takahiro Hida</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Kurachi%2C+I">Ikuo Kurachi</a>, <a href="/search/physics?searchtype=author&amp;query=Hamano%2C+T">Tsuyoshi Hamano</a>, <a href="/search/physics?searchtype=author&amp;query=Kitamura%2C+H">Hisashi Kitamura</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.08718v1-abstract-short" style="display: inline;"> The X-ray SOI pixel sensor onboard the FORCE satellite will be placed in the low earth orbit and will consequently suffer from the radiation effects mainly caused by geomagnetically trapped cosmic-ray protons. Based on previous studies on the effects of radiation on SOI pixel sensors, the positive charges trapped in the oxide layer significantly affect the performance of the sensor. To improve the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.08718v1-abstract-full').style.display = 'inline'; document.getElementById('2007.08718v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.08718v1-abstract-full" style="display: none;"> The X-ray SOI pixel sensor onboard the FORCE satellite will be placed in the low earth orbit and will consequently suffer from the radiation effects mainly caused by geomagnetically trapped cosmic-ray protons. Based on previous studies on the effects of radiation on SOI pixel sensors, the positive charges trapped in the oxide layer significantly affect the performance of the sensor. To improve the radiation hardness of the SOI pixel sensors, we introduced a double-SOI (D-SOI) structure containing an additional middle Si layer in the oxide layer. The negative potential applied on the middle Si layer compensates for the radiation effects, due to the trapped positive charges. Although the radiation hardness of the D-SOI pixel sensors for applications in high-energy accelerators has been evaluated, radiation effects for astronomical application in the D-SOI sensors has not been evaluated thus far. To evaluate the radiation effects of the D-SOI sensor, we perform an irradiation experiment using a 6-MeV proton beam with a total dose of ~ 5 krad, corresponding to a few tens of years of in-orbit operation. This experiment indicates an improvement in the radiation hardness of the X- ray D-SOI devices. On using an irradiation of 5 krad on the D-SOI device, the energy resolution in the full-width half maximum for the 5.9-keV X-ray increases by 7 $\pm$ 2%, and the chip output gain decreases by 0.35 $\pm$ 0.09%. The physical mechanism of the gain degradation is also investigated; it is found that the gain degradation is caused by an increase in the parasitic capacitance due to the enlarged buried n-well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.08718v1-abstract-full').style.display = 'none'; document.getElementById('2007.08718v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures, accepted for publication in NIM A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.05658">arXiv:2006.05658</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.05658">pdf</a>, <a href="https://arxiv.org/format/2006.05658">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2020.164400">10.1016/j.nima.2020.164400 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development of a Neutron Imaging Sensor using INTPIX4-SOI Pixelated Silicon Devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kamiya%2C+Y">Y. Kamiya</a>, <a href="/search/physics?searchtype=author&amp;query=Miyoshi%2C+T">T. Miyoshi</a>, <a href="/search/physics?searchtype=author&amp;query=Iwase%2C+H">H. Iwase</a>, <a href="/search/physics?searchtype=author&amp;query=Inada%2C+T">T. Inada</a>, <a href="/search/physics?searchtype=author&amp;query=Mizushima%2C+A">A. Mizushima</a>, <a href="/search/physics?searchtype=author&amp;query=Mita%2C+Y">Y. Mita</a>, <a href="/search/physics?searchtype=author&amp;query=Shimazoe%2C+K">K. Shimazoe</a>, <a href="/search/physics?searchtype=author&amp;query=Tanaka%2C+H">H. Tanaka</a>, <a href="/search/physics?searchtype=author&amp;query=Kurachi%2C+I">I. Kurachi</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Y. Arai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.05658v1-abstract-short" style="display: inline;"> We have developed a neutron imaging sensor based on an INTPIX4-SOI pixelated silicon device. Neutron irradiation tests are performed at several neutron facilities to investigate sensor&#39;s responses for neutrons. Detection efficiency is measured to be around $1.5$\% for thermal neutrons. Upper bound of spatial resolution is evaluated to be $4.1 \pm 0.2 ~渭$m in terms of a standard deviation of the li&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.05658v1-abstract-full').style.display = 'inline'; document.getElementById('2006.05658v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.05658v1-abstract-full" style="display: none;"> We have developed a neutron imaging sensor based on an INTPIX4-SOI pixelated silicon device. Neutron irradiation tests are performed at several neutron facilities to investigate sensor&#39;s responses for neutrons. Detection efficiency is measured to be around $1.5$\% for thermal neutrons. Upper bound of spatial resolution is evaluated to be $4.1 \pm 0.2 ~渭$m in terms of a standard deviation of the line spread function. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.05658v1-abstract-full').style.display = 'none'; document.getElementById('2006.05658v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 7 figures, 12th International &#34;Hiroshima&#34; Symposium on the Development and Application of Semiconductor Tracking Detector - HSTD12</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Instrum. Methods A979, 164400 (2020)* </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.05574">arXiv:2005.05574</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.05574">pdf</a>, <a href="https://arxiv.org/ps/2005.05574">ps</a>, <a href="https://arxiv.org/format/2005.05574">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Overview of KAGRA: Detector design and construction history </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/physics?searchtype=author&amp;query=Ando%2C+M">M. Ando</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+K">K. Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Y. Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Araki%2C+S">S. Araki</a>, <a href="/search/physics?searchtype=author&amp;query=Araya%2C+A">A. Araya</a>, <a href="/search/physics?searchtype=author&amp;query=Aritomi%2C+N">N. Aritomi</a>, <a href="/search/physics?searchtype=author&amp;query=Aso%2C+Y">Y. Aso</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%2C+S+-">S. -W. Bae</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%2C+Y+-">Y. -B. Bae</a>, <a href="/search/physics?searchtype=author&amp;query=Baiotti%2C+L">L. Baiotti</a>, <a href="/search/physics?searchtype=author&amp;query=Bajpai%2C+R">R. Bajpai</a>, <a href="/search/physics?searchtype=author&amp;query=Barton%2C+M+A">M. A. Barton</a>, <a href="/search/physics?searchtype=author&amp;query=Cannon%2C+K">K. Cannon</a>, <a href="/search/physics?searchtype=author&amp;query=Capocasa%2C+E">E. Capocasa</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+M+-">M. -L. Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C+-">C. -S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+K+-">K. -H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+-">Y. -R. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+H+-">H. -Y. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+Y">Y-K. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Eguchi%2C+S">S. Eguchi</a>, <a href="/search/physics?searchtype=author&amp;query=Enomoto%2C+Y">Y. Enomoto</a>, <a href="/search/physics?searchtype=author&amp;query=Flaminio%2C+R">R. Flaminio</a>, <a href="/search/physics?searchtype=author&amp;query=Fujii%2C+Y">Y. Fujii</a> , et al. (175 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.05574v2-abstract-short" style="display: inline;"> KAGRA is a newly built gravitational-wave telescope, a laser interferometer comprising arms with a length of 3\,km, located in Kamioka, Gifu, Japan. KAGRA was constructed under the ground and it is operated using cryogenic mirrors that help in reducing the seismic and thermal noise. Both technologies are expected to provide directions for the future of gravitational-wave telescopes. In 2019, KAGRA&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.05574v2-abstract-full').style.display = 'inline'; document.getElementById('2005.05574v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.05574v2-abstract-full" style="display: none;"> KAGRA is a newly built gravitational-wave telescope, a laser interferometer comprising arms with a length of 3\,km, located in Kamioka, Gifu, Japan. KAGRA was constructed under the ground and it is operated using cryogenic mirrors that help in reducing the seismic and thermal noise. Both technologies are expected to provide directions for the future of gravitational-wave telescopes. In 2019, KAGRA finished all installations with the designed configuration, which we call the baseline KAGRA. In this occasion, we present an overview of the baseline KAGRA from various viewpoints in a series of of articles. In this article, we introduce the design configurations of KAGRA with its historical background. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.05574v2-abstract-full').style.display = 'none'; document.getElementById('2005.05574v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.00955">arXiv:1910.00955</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.00955">pdf</a>, <a href="https://arxiv.org/format/1910.00955">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6382/ab5c95">10.1088/1361-6382/ab5c95 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An arm length stabilization system for KAGRA and future gravitational-wave detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/physics?searchtype=author&amp;query=Ando%2C+M">M. Ando</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+K">K. Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+K">K. Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Y. Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Araki%2C+S">S. Araki</a>, <a href="/search/physics?searchtype=author&amp;query=Araya%2C+A">A. Araya</a>, <a href="/search/physics?searchtype=author&amp;query=Aritomi%2C+N">N. Aritomi</a>, <a href="/search/physics?searchtype=author&amp;query=Aso%2C+Y">Y. Aso</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%2C+S">S. Bae</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%2C+Y">Y. Bae</a>, <a href="/search/physics?searchtype=author&amp;query=Baiotti%2C+L">L. Baiotti</a>, <a href="/search/physics?searchtype=author&amp;query=Bajpai%2C+R">R. Bajpai</a>, <a href="/search/physics?searchtype=author&amp;query=Barton%2C+M+A">M. A. Barton</a>, <a href="/search/physics?searchtype=author&amp;query=Cannon%2C+K">K. Cannon</a>, <a href="/search/physics?searchtype=author&amp;query=Capocasa%2C+E">E. Capocasa</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+M">M. Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C">C. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+K">K. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+H">H. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+Y">Y-K. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Doi%2C+K">K. Doi</a>, <a href="/search/physics?searchtype=author&amp;query=Eguchi%2C+S">S. Eguchi</a>, <a href="/search/physics?searchtype=author&amp;query=Enomoto%2C+Y">Y. Enomoto</a> , et al. (181 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.00955v2-abstract-short" style="display: inline;"> Modern ground-based gravitational wave (GW) detectors require a complex interferometer configuration with multiple coupled optical cavities. Since achieving the resonances of the arm cavities is the most challenging among the lock acquisition processes, the scheme called arm length stabilization (ALS) had been employed for lock acquisition of the arm cavities. We designed a new type of the ALS, wh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.00955v2-abstract-full').style.display = 'inline'; document.getElementById('1910.00955v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.00955v2-abstract-full" style="display: none;"> Modern ground-based gravitational wave (GW) detectors require a complex interferometer configuration with multiple coupled optical cavities. Since achieving the resonances of the arm cavities is the most challenging among the lock acquisition processes, the scheme called arm length stabilization (ALS) had been employed for lock acquisition of the arm cavities. We designed a new type of the ALS, which is compatible with the interferometers having long arms like the next generation GW detectors. The features of the new ALS are that the control configuration is simpler than those of previous ones and that it is not necessary to lay optical fibers for the ALS along the kilometer-long arms of the detector. Along with simulations of its noise performance, an experimental test of the new ALS was performed utilizing a single arm cavity of KAGRA. This paper presents the first results of the test where we demonstrated that lock acquisition of the arm cavity was achieved using the new ALS and residual noise was measured to be $8.2\,\mathrm{Hz}$ in units of frequency, which is smaller than the linewidth of the arm cavity and thus low enough to lock the full interferometer of KAGRA in a repeatable and reliable manner. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.00955v2-abstract-full').style.display = 'none'; document.getElementById('1910.00955v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 8figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Class. Quantum Grav. 37 (2020) 035004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.12571">arXiv:1904.12571</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.12571">pdf</a>, <a href="https://arxiv.org/format/1904.12571">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2018.09.042">10.1016/j.nima.2018.09.042 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evaluation of Kyoto&#39;s Event-Driven X-ray Astronomical SOI Pixel Sensor with a Large Imaging Area </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hayashi%2C+H">Hideki Hayashi</a>, <a href="/search/physics?searchtype=author&amp;query=Tsuru%2C+T+G">Takeshi Go Tsuru</a>, <a href="/search/physics?searchtype=author&amp;query=Tanaka%2C+T">Takaaki Tanaka</a>, <a href="/search/physics?searchtype=author&amp;query=Uchida%2C+H">Hiroyuki Uchida</a>, <a href="/search/physics?searchtype=author&amp;query=Matsumura%2C+H">Hideaki Matsumura</a>, <a href="/search/physics?searchtype=author&amp;query=Tachibana%2C+K">Katsuhiro Tachibana</a>, <a href="/search/physics?searchtype=author&amp;query=Harada%2C+S">Sodai Harada</a>, <a href="/search/physics?searchtype=author&amp;query=Takeda%2C+A">Ayaki Takeda</a>, <a href="/search/physics?searchtype=author&amp;query=Mori%2C+K">Koji Mori</a>, <a href="/search/physics?searchtype=author&amp;query=Nishioka%2C+Y">Yusuke Nishioka</a>, <a href="/search/physics?searchtype=author&amp;query=Takebayashi%2C+N">Nobuaki Takebayashi</a>, <a href="/search/physics?searchtype=author&amp;query=Yokoyama%2C+S">Shoma Yokoyama</a>, <a href="/search/physics?searchtype=author&amp;query=Fukuda%2C+K">Kohei Fukuda</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Kurachi%2C+I">Ikuo Kurachi</a>, <a href="/search/physics?searchtype=author&amp;query=Kawahito%2C+S">Shoji Kawahito</a>, <a href="/search/physics?searchtype=author&amp;query=Kagawa%2C+K">Keiichiro Kagawa</a>, <a href="/search/physics?searchtype=author&amp;query=Yasutomi%2C+K">Keita Yasutomi</a>, <a href="/search/physics?searchtype=author&amp;query=Shrestha%2C+S">Sumeet Shrestha</a>, <a href="/search/physics?searchtype=author&amp;query=Nakanishi%2C+S">Syunta Nakanishi</a>, <a href="/search/physics?searchtype=author&amp;query=Kamehama%2C+H">Hiroki Kamehama</a>, <a href="/search/physics?searchtype=author&amp;query=Kohmura%2C+T">Takayoshi Kohmura</a>, <a href="/search/physics?searchtype=author&amp;query=Hagino%2C+K">Kouichi Hagino</a>, <a href="/search/physics?searchtype=author&amp;query=Negishi%2C+K">Kousuke Negishi</a>, <a href="/search/physics?searchtype=author&amp;query=Oono%2C+K">Kenji Oono</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.12571v1-abstract-short" style="display: inline;"> We have been developing monolithic active pixel sensors, named ``XRPIX&#39;&#39;, based on the silicon-on-insulator (SOI) pixel technology for future X-ray astronomy satellites. XRPIX has the function of event trigger and hit address outputs. This function allows us to read out analog signals only of hit pixels on trigger timing, which is referred to as the event-driven readout mode. Recently, we processe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.12571v1-abstract-full').style.display = 'inline'; document.getElementById('1904.12571v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.12571v1-abstract-full" style="display: none;"> We have been developing monolithic active pixel sensors, named ``XRPIX&#39;&#39;, based on the silicon-on-insulator (SOI) pixel technology for future X-ray astronomy satellites. XRPIX has the function of event trigger and hit address outputs. This function allows us to read out analog signals only of hit pixels on trigger timing, which is referred to as the event-driven readout mode. Recently, we processed ``XRPIX5b&#39;&#39; with the largest imaging area of 21.9~mm $\times$ 13.8~mm in the XRPIX series. X-ray spectra are successfully obtained from all the pixels, and the readout noise is 46~e$^-$~(rms) in the frame readout mode. The gain variation was measured to be 1.2\%~(FWHM) among the pixels. We successfully obtain the X-ray image in the event-driven readout mode. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.12571v1-abstract-full').style.display = 'none'; document.getElementById('1904.12571v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Inst. and Methods in Physics Research, A 924 (2019) 400-403 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.03569">arXiv:1901.03569</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.03569">pdf</a>, <a href="https://arxiv.org/ps/1901.03569">ps</a>, <a href="https://arxiv.org/format/1901.03569">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6382/ab28a9">10.1088/1361-6382/ab28a9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First cryogenic test operation of underground km-scale gravitational-wave observatory KAGRA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=KAGRA+Collaboration"> KAGRA Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/physics?searchtype=author&amp;query=Ando%2C+M">M. Ando</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+K">K. Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Y. Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Araki%2C+S">S. Araki</a>, <a href="/search/physics?searchtype=author&amp;query=Araya%2C+A">A. Araya</a>, <a href="/search/physics?searchtype=author&amp;query=Aritomi%2C+N">N. Aritomi</a>, <a href="/search/physics?searchtype=author&amp;query=Asada%2C+H">H. Asada</a>, <a href="/search/physics?searchtype=author&amp;query=Aso%2C+Y">Y. Aso</a>, <a href="/search/physics?searchtype=author&amp;query=Atsuta%2C+S">S. Atsuta</a>, <a href="/search/physics?searchtype=author&amp;query=Awai%2C+K">K. Awai</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%2C+S">S. Bae</a>, <a href="/search/physics?searchtype=author&amp;query=Baiotti%2C+L">L. Baiotti</a>, <a href="/search/physics?searchtype=author&amp;query=Barton%2C+M+A">M. A. Barton</a>, <a href="/search/physics?searchtype=author&amp;query=Cannon%2C+K">K. Cannon</a>, <a href="/search/physics?searchtype=author&amp;query=Capocasa%2C+E">E. Capocasa</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C">C-S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chiu%2C+T">T-W. Chiu</a>, <a href="/search/physics?searchtype=author&amp;query=Cho%2C+K">K. Cho</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+Y">Y-K. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Craig%2C+K">K. Craig</a>, <a href="/search/physics?searchtype=author&amp;query=Creus%2C+W">W. Creus</a>, <a href="/search/physics?searchtype=author&amp;query=Doi%2C+K">K. Doi</a>, <a href="/search/physics?searchtype=author&amp;query=Eda%2C+K">K. Eda</a> , et al. (179 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.03569v1-abstract-short" style="display: inline;"> KAGRA is a second-generation interferometric gravitational-wave detector with 3-km arms constructed at Kamioka, Gifu in Japan. It is now in its final installation phase, which we call bKAGRA (baseline KAGRA), with scientific observations expected to begin in late 2019. One of the advantages of KAGRA is its underground location of at least 200 m below the ground surface, which brings small seismic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.03569v1-abstract-full').style.display = 'inline'; document.getElementById('1901.03569v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.03569v1-abstract-full" style="display: none;"> KAGRA is a second-generation interferometric gravitational-wave detector with 3-km arms constructed at Kamioka, Gifu in Japan. It is now in its final installation phase, which we call bKAGRA (baseline KAGRA), with scientific observations expected to begin in late 2019. One of the advantages of KAGRA is its underground location of at least 200 m below the ground surface, which brings small seismic motion at low frequencies and high stability of the detector. Another advantage is that it cools down the sapphire test mass mirrors to cryogenic temperatures to reduce thermal noise. In April-May 2018, we have operated a 3-km Michelson interferometer with a cryogenic test mass for 10 days, which was the first time that km-scale interferometer was operated at cryogenic temperatures. In this article, we report the results of this &#34;bKAGRA Phase 1&#34; operation. We have demonstrated the feasibility of 3-km interferometer alignment and control with cryogenic mirrors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.03569v1-abstract-full').style.display = 'none'; document.getElementById('1901.03569v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JGW-P1809289 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Classical and Quantum Gravity 36, 165008 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.03053">arXiv:1901.03053</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.03053">pdf</a>, <a href="https://arxiv.org/format/1901.03053">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6382/ab0fcb">10.1088/1361-6382/ab0fcb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vibration isolation system with a compact damping system for power recycling mirrors of KAGRA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Akiyama%2C+Y">Y. Akiyama</a>, <a href="/search/physics?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/physics?searchtype=author&amp;query=Ando%2C+M">M. Ando</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+K">K. Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Y. Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Araki%2C+S">S. Araki</a>, <a href="/search/physics?searchtype=author&amp;query=Araya%2C+A">A. Araya</a>, <a href="/search/physics?searchtype=author&amp;query=Aritomi%2C+N">N. Aritomi</a>, <a href="/search/physics?searchtype=author&amp;query=Asada%2C+H">H. Asada</a>, <a href="/search/physics?searchtype=author&amp;query=Aso%2C+Y">Y. Aso</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%2C+S">S. Bae</a>, <a href="/search/physics?searchtype=author&amp;query=Baiotti%2C+L">L. Baiotti</a>, <a href="/search/physics?searchtype=author&amp;query=Barton%2C+M+A">M. A. Barton</a>, <a href="/search/physics?searchtype=author&amp;query=Cannon%2C+K">K. Cannon</a>, <a href="/search/physics?searchtype=author&amp;query=Capocasa%2C+E">E. Capocasa</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C">C-S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chiu%2C+T">T-W. Chiu</a>, <a href="/search/physics?searchtype=author&amp;query=Cho%2C+K">K. Cho</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+Y">Y-K. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Craig%2C+K">K. Craig</a>, <a href="/search/physics?searchtype=author&amp;query=Dattilo%2C+V">V. Dattilo</a>, <a href="/search/physics?searchtype=author&amp;query=Doi%2C+K">K. Doi</a>, <a href="/search/physics?searchtype=author&amp;query=Enomoto%2C+Y">Y. Enomoto</a>, <a href="/search/physics?searchtype=author&amp;query=Flaminio%2C+R">R. Flaminio</a>, <a href="/search/physics?searchtype=author&amp;query=Fujii%2C+Y">Y. Fujii</a> , et al. (149 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.03053v1-abstract-short" style="display: inline;"> A vibration isolation system called Type-Bp system used for power recycling mirrors has been developed for KAGRA, the interferometric gravitational-wave observatory in Japan. A suspension of the Type-Bp system passively isolates an optic from seismic vibration using three main pendulum stages equipped with two vertical vibration isolation systems. A compact reaction mass around each of the main st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.03053v1-abstract-full').style.display = 'inline'; document.getElementById('1901.03053v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.03053v1-abstract-full" style="display: none;"> A vibration isolation system called Type-Bp system used for power recycling mirrors has been developed for KAGRA, the interferometric gravitational-wave observatory in Japan. A suspension of the Type-Bp system passively isolates an optic from seismic vibration using three main pendulum stages equipped with two vertical vibration isolation systems. A compact reaction mass around each of the main stages allows for achieving sufficient damping performance with a simple feedback as well as vibration isolation ratio. Three Type-Bp systems were installed in KAGRA, and were proved to satisfy the requirements on the damping performance, and also on estimated residual displacement of the optics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.03053v1-abstract-full').style.display = 'none'; document.getElementById('1901.03053v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.05803">arXiv:1812.05803</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.05803">pdf</a>, <a href="https://arxiv.org/ps/1812.05803">ps</a>, <a href="https://arxiv.org/format/1812.05803">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Performance of SOI Pixel Sensors Developed for X-ray Astronomy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tanaka%2C+T">Takaaki Tanaka</a>, <a href="/search/physics?searchtype=author&amp;query=Tsuru%2C+T+G">Takeshi Go Tsuru</a>, <a href="/search/physics?searchtype=author&amp;query=Uchida%2C+H">Hiroyuki Uchida</a>, <a href="/search/physics?searchtype=author&amp;query=Harada%2C+S">Sodai Harada</a>, <a href="/search/physics?searchtype=author&amp;query=Okuno%2C+T">Tomoyuki Okuno</a>, <a href="/search/physics?searchtype=author&amp;query=Kayama%2C+K">Kazuho Kayama</a>, <a href="/search/physics?searchtype=author&amp;query=Amano%2C+Y">Yuki Amano</a>, <a href="/search/physics?searchtype=author&amp;query=Matsumura%2C+H">Hideaki Matsumura</a>, <a href="/search/physics?searchtype=author&amp;query=Takeda%2C+A">Ayaki Takeda</a>, <a href="/search/physics?searchtype=author&amp;query=Mori%2C+K">Koji Mori</a>, <a href="/search/physics?searchtype=author&amp;query=Nishioka%2C+Y">Yusuke Nishioka</a>, <a href="/search/physics?searchtype=author&amp;query=Fukuda%2C+K">Kohei Fukuda</a>, <a href="/search/physics?searchtype=author&amp;query=Hida%2C+T">Takahiro Hida</a>, <a href="/search/physics?searchtype=author&amp;query=Yukumoto%2C+M">Masataka Yukumoto</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Kurachi%2C+I">Ikuo Kurachi</a>, <a href="/search/physics?searchtype=author&amp;query=Kawahito%2C+S">Shoji Kawahito</a>, <a href="/search/physics?searchtype=author&amp;query=Kagawa%2C+K">Keiichiro Kagawa</a>, <a href="/search/physics?searchtype=author&amp;query=Yasutomi%2C+K">Keita Yasutomi</a>, <a href="/search/physics?searchtype=author&amp;query=Shrestha%2C+S">Sumeet Shrestha</a>, <a href="/search/physics?searchtype=author&amp;query=Nakanishi%2C+S">Syunta Nakanishi</a>, <a href="/search/physics?searchtype=author&amp;query=Kamehama%2C+H">Hiroki Kamehama</a>, <a href="/search/physics?searchtype=author&amp;query=Kohmura%2C+T">Takayoshi Kohmura</a>, <a href="/search/physics?searchtype=author&amp;query=Hagino%2C+K">Kouichi Hagino</a>, <a href="/search/physics?searchtype=author&amp;query=Negishi%2C+K">Kousuke Negishi</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.05803v1-abstract-short" style="display: inline;"> We have been developing monolithic active pixel sensors for X-rays based on the silicon-on-insulator technology. Our device consists of a low-resistivity Si layer for readout CMOS electronics, a high-resistivity Si sensor layer, and a SiO$_2$ layer between them. This configuration allows us both high-speed readout circuits and a thick (on the order of $100~渭{\rm m}$) depletion layer in a monolithi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.05803v1-abstract-full').style.display = 'inline'; document.getElementById('1812.05803v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.05803v1-abstract-full" style="display: none;"> We have been developing monolithic active pixel sensors for X-rays based on the silicon-on-insulator technology. Our device consists of a low-resistivity Si layer for readout CMOS electronics, a high-resistivity Si sensor layer, and a SiO$_2$ layer between them. This configuration allows us both high-speed readout circuits and a thick (on the order of $100~渭{\rm m}$) depletion layer in a monolithic device. Each pixel circuit contains a trigger output function, with which we can achieve a time resolution of $\lesssim 10~渭{\rm s}$. One of our key development items is improvement of the energy resolution. We recently fabricated a device named XRPIX6E, to which we introduced a pinned depleted diode (PDD) structure. The structure reduces the capacitance coupling between the sensing area in the sensor layer and the pixel circuit, which degrades the spectral performance. With XRPIX6E, we achieve an energy resolution of $\sim 150$~eV in full width at half maximum for 6.4-keV X-rays. In addition to the good energy resolution, a large imaging area is required for practical use. We developed and tested XRPIX5b, which has an imaging area size of $21.9~{\rm mm} \times 13.8~{\rm mm}$ and is the largest device that we ever fabricated. We successfully obtain X-ray data from almost all the $608 \times 384$ pixels with high uniformity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.05803v1-abstract-full').style.display = 'none'; document.getElementById('1812.05803v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 9 figures, submitted to Conference Record of IEEE NSS-MIC 2018</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.08079">arXiv:1811.08079</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.08079">pdf</a>, <a href="https://arxiv.org/ps/1811.08079">ps</a>, <a href="https://arxiv.org/format/1811.08079">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41550-018-0658-y">10.1038/s41550-018-0658-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> KAGRA: 2.5 Generation Interferometric Gravitational Wave Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/physics?searchtype=author&amp;query=Ando%2C+M">M. Ando</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+K">K. Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Y. Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Araki%2C+S">S. Araki</a>, <a href="/search/physics?searchtype=author&amp;query=Araya%2C+A">A. Araya</a>, <a href="/search/physics?searchtype=author&amp;query=Aritomi%2C+N">N. Aritomi</a>, <a href="/search/physics?searchtype=author&amp;query=Asada%2C+H">H. Asada</a>, <a href="/search/physics?searchtype=author&amp;query=Aso%2C+Y">Y. Aso</a>, <a href="/search/physics?searchtype=author&amp;query=Atsuta%2C+S">S. Atsuta</a>, <a href="/search/physics?searchtype=author&amp;query=Awai%2C+K">K. Awai</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%2C+S">S. Bae</a>, <a href="/search/physics?searchtype=author&amp;query=Baiotti%2C+L">L. Baiotti</a>, <a href="/search/physics?searchtype=author&amp;query=Barton%2C+M+A">M. A. Barton</a>, <a href="/search/physics?searchtype=author&amp;query=Cannon%2C+K">K. Cannon</a>, <a href="/search/physics?searchtype=author&amp;query=Capocasa%2C+E">E. Capocasa</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C">C-S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chiu%2C+T">T-W. Chiu</a>, <a href="/search/physics?searchtype=author&amp;query=Cho%2C+K">K. Cho</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+Y">Y-K. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Craig%2C+K">K. Craig</a>, <a href="/search/physics?searchtype=author&amp;query=Creus%2C+W">W. Creus</a>, <a href="/search/physics?searchtype=author&amp;query=Doi%2C+K">K. Doi</a>, <a href="/search/physics?searchtype=author&amp;query=Eda%2C+K">K. Eda</a>, <a href="/search/physics?searchtype=author&amp;query=Enomoto%2C+Y">Y. Enomoto</a> , et al. (169 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.08079v1-abstract-short" style="display: inline;"> The recent detections of gravitational waves (GWs) reported by LIGO/Virgo collaborations have made significant impact on physics and astronomy. A global network of GW detectors will play a key role to solve the unknown nature of the sources in coordinated observations with astronomical telescopes and detectors. Here we introduce KAGRA (former name LCGT; Large-scale Cryogenic Gravitational wave Tel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08079v1-abstract-full').style.display = 'inline'; document.getElementById('1811.08079v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.08079v1-abstract-full" style="display: none;"> The recent detections of gravitational waves (GWs) reported by LIGO/Virgo collaborations have made significant impact on physics and astronomy. A global network of GW detectors will play a key role to solve the unknown nature of the sources in coordinated observations with astronomical telescopes and detectors. Here we introduce KAGRA (former name LCGT; Large-scale Cryogenic Gravitational wave Telescope), a new GW detector with two 3-km baseline arms arranged in the shape of an &#34;L&#34;, located inside the Mt. Ikenoyama, Kamioka, Gifu, Japan. KAGRA&#39;s design is similar to those of the second generations such as Advanced LIGO/Virgo, but it will be operating at the cryogenic temperature with sapphire mirrors. This low temperature feature is advantageous for improving the sensitivity around 100 Hz and is considered as an important feature for the third generation GW detector concept (e.g. Einstein Telescope of Europe or Cosmic Explorer of USA). Hence, KAGRA is often called as a 2.5 generation GW detector based on laser interferometry. The installation and commissioning of KAGRA is underway and its cryogenic systems have been successfully tested in May, 2018. KAGRA&#39;s first observation run is scheduled in late 2019, aiming to join the third observation run (O3) of the advanced LIGO/Virgo network. In this work, we describe a brief history of KAGRA and highlights of main feature. We also discuss the prospects of GW observation with KAGRA in the era of O3. When operating along with the existing GW detectors, KAGRA will be helpful to locate a GW source more accurately and to determine the source parameters with higher precision, providing information for follow-up observations of a GW trigger candidate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08079v1-abstract-full').style.display = 'none'; document.getElementById('1811.08079v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures (quality of some figures has been reduced)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JGW-P1809243 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Astronomy 3, 35 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.10793">arXiv:1810.10793</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.10793">pdf</a>, <a href="https://arxiv.org/ps/1810.10793">ps</a>, <a href="https://arxiv.org/format/1810.10793">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2018.06.073">10.1016/j.nima.2018.06.073 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> X-ray response evaluation in subpixel level for X-ray SOI pixel detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Negishi%2C+K">Kousuke Negishi</a>, <a href="/search/physics?searchtype=author&amp;query=Kohmura%2C+T">Takayoshi Kohmura</a>, <a href="/search/physics?searchtype=author&amp;query=Hagino%2C+K">Kouichi Hagino</a>, <a href="/search/physics?searchtype=author&amp;query=Kogiso%2C+T">Taku Kogiso</a>, <a href="/search/physics?searchtype=author&amp;query=Oono%2C+K">Kenji Oono</a>, <a href="/search/physics?searchtype=author&amp;query=Yarita%2C+K">Keigo Yarita</a>, <a href="/search/physics?searchtype=author&amp;query=Sasaki%2C+A">Akinori Sasaki</a>, <a href="/search/physics?searchtype=author&amp;query=Tamasawa%2C+K">Koki Tamasawa</a>, <a href="/search/physics?searchtype=author&amp;query=Tsuru%2C+T+G">Takeshi G. Tsuru</a>, <a href="/search/physics?searchtype=author&amp;query=Tanaka%2C+T">Takaaki Tanaka</a>, <a href="/search/physics?searchtype=author&amp;query=Matsumura%2C+H">Hideaki Matsumura</a>, <a href="/search/physics?searchtype=author&amp;query=Tachibana%2C+K">Katsuhiro Tachibana</a>, <a href="/search/physics?searchtype=author&amp;query=Hayashi%2C+H">Hideki Hayashi</a>, <a href="/search/physics?searchtype=author&amp;query=Harada%2C+S">Sodai Harada</a>, <a href="/search/physics?searchtype=author&amp;query=Mori%2C+K">Koji Mori</a>, <a href="/search/physics?searchtype=author&amp;query=Takeda%2C+A">Ayaki Takeda</a>, <a href="/search/physics?searchtype=author&amp;query=Nishioka%2C+Y">Yusuke Nishioka</a>, <a href="/search/physics?searchtype=author&amp;query=Takebayashi%2C+N">Nobuaki Takebayashi</a>, <a href="/search/physics?searchtype=author&amp;query=Yokoyama%2C+S">Shoma Yokoyama</a>, <a href="/search/physics?searchtype=author&amp;query=Fukuda%2C+K">Kohei Fukuda</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Miyoshi%2C+T">Toshinobu Miyoshi</a>, <a href="/search/physics?searchtype=author&amp;query=Kishimoto%2C+S">Shunji Kishimoto</a>, <a href="/search/physics?searchtype=author&amp;query=Kurachi%2C+I">Ikuo Kurachi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.10793v1-abstract-short" style="display: inline;"> We have been developing event-driven SOI Pixel Detectors, named `XRPIX&#39; (X-Ray soiPIXel) based on the silicon-on-insulator (SOI) pixel technology, for the future X-ray astronomical satellite with wide band coverage from 0.5 keV to 40 keV. XRPIX has event trigger output function at each pixel to acquire a good time resolution of a few $渭\rm s$ and has Correlated Double Sampling function to reduce e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.10793v1-abstract-full').style.display = 'inline'; document.getElementById('1810.10793v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.10793v1-abstract-full" style="display: none;"> We have been developing event-driven SOI Pixel Detectors, named `XRPIX&#39; (X-Ray soiPIXel) based on the silicon-on-insulator (SOI) pixel technology, for the future X-ray astronomical satellite with wide band coverage from 0.5 keV to 40 keV. XRPIX has event trigger output function at each pixel to acquire a good time resolution of a few $渭\rm s$ and has Correlated Double Sampling function to reduce electric noises. The good time resolution enables the XRPIX to reduce Non X-ray Background in the high energy band above 10\,keV drastically by using anti-coincidence technique with active shield counters surrounding XRPIX. In order to increase the soft X-ray sensitivity, it is necessary to make the dead layer on the X-ray incident surface as thin as possible. Since XRPIX1b, which is a device at the initial stage of development, is a front-illuminated (FI) type of XRPIX, low energy X-ray photons are absorbed in the 8 $\rm 渭$m thick circuit layer, lowering the sensitivity in the soft X-ray band. Therefore, we developed a back-illuminated (BI) device XRPIX2b, and confirmed high detection efficiency down to 2.6 keV, below which the efficiency is affected by the readout noise. In order to further improve the detection efficiency in the soft X-ray band, we developed a back-illuminated device XRPIX3b with lower readout noise. In this work, we irradiated 2--5 keV X-ray beam collimated to 4 $\rm 渭m 蠁$ to the sensor layer side of the XRPIX3b at 6 $\rm 渭m$ pitch. In this paper, we reported the uniformity of the relative detection efficiency, gain and energy resolution in the subpixel level for the first time. We also confirmed that the variation in the relative detection efficiency at the subpixel level reported by Matsumura et al. has improved. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.10793v1-abstract-full').style.display = 'none'; document.getElementById('1810.10793v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 11 figures, 1 table, accepted for Nuclear Instruments and Methods in Physics Research Section A (NIMA)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.09193">arXiv:1810.09193</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.09193">pdf</a>, <a href="https://arxiv.org/ps/1810.09193">ps</a>, <a href="https://arxiv.org/format/1810.09193">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2018.09.057">10.1016/j.nima.2018.09.057 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proton Radiation Damage Experiment for X-Ray SOI Pixel Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yarita%2C+K">Keigo Yarita</a>, <a href="/search/physics?searchtype=author&amp;query=Kohmura%2C+T">Takayoshi Kohmura</a>, <a href="/search/physics?searchtype=author&amp;query=Hagino%2C+K">Kouichi Hagino</a>, <a href="/search/physics?searchtype=author&amp;query=Kogiso%2C+T">Taku Kogiso</a>, <a href="/search/physics?searchtype=author&amp;query=Oono%2C+K">Kenji Oono</a>, <a href="/search/physics?searchtype=author&amp;query=Negishi%2C+K">Kousuke Negishi</a>, <a href="/search/physics?searchtype=author&amp;query=Tamasawa%2C+K">Koki Tamasawa</a>, <a href="/search/physics?searchtype=author&amp;query=Sasaki%2C+A">Akinori Sasaki</a>, <a href="/search/physics?searchtype=author&amp;query=Yoshiki%2C+S">Satoshi Yoshiki</a>, <a href="/search/physics?searchtype=author&amp;query=Tsuru%2C+T+G">Takeshi Go Tsuru</a>, <a href="/search/physics?searchtype=author&amp;query=Tanaka%2C+T">Takaaki Tanaka</a>, <a href="/search/physics?searchtype=author&amp;query=Matsumura%2C+H">Hideaki Matsumura</a>, <a href="/search/physics?searchtype=author&amp;query=Tachibana%2C+K">Katsuhiro Tachibana</a>, <a href="/search/physics?searchtype=author&amp;query=Hayashi%2C+H">Hideki Hayashi</a>, <a href="/search/physics?searchtype=author&amp;query=Harada%2C+S">Sodai Harada</a>, <a href="/search/physics?searchtype=author&amp;query=Takeda%2C+A">Ayaki Takeda</a>, <a href="/search/physics?searchtype=author&amp;query=Mori%2C+K">Koji Mori</a>, <a href="/search/physics?searchtype=author&amp;query=Nishioka%2C+Y">Yusuke Nishioka</a>, <a href="/search/physics?searchtype=author&amp;query=Takebayashi%2C+N">Nobuaki Takebayashi</a>, <a href="/search/physics?searchtype=author&amp;query=Yokoyama%2C+S">Shoma Yokoyama</a>, <a href="/search/physics?searchtype=author&amp;query=Fukuda%2C+K">Kohei Fukuda</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Miyoshi%2C+T">Toshinobu Miyoshi</a>, <a href="/search/physics?searchtype=author&amp;query=Kurachi%2C+I">Ikuo Kurachi</a>, <a href="/search/physics?searchtype=author&amp;query=Hamano%2C+T">Tsuyoshi Hamano</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.09193v1-abstract-short" style="display: inline;"> In low earth orbit, there are many cosmic rays composed primarily of high energy protons. These cosmic rays cause surface and bulk radiation effects, resulting in degradation of detector performance. Quantitative evaluation of radiation hardness is essential in development of X-ray detectors for astronomical satellites. We performed proton irradiation experiments on newly developed X-ray detectors&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.09193v1-abstract-full').style.display = 'inline'; document.getElementById('1810.09193v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.09193v1-abstract-full" style="display: none;"> In low earth orbit, there are many cosmic rays composed primarily of high energy protons. These cosmic rays cause surface and bulk radiation effects, resulting in degradation of detector performance. Quantitative evaluation of radiation hardness is essential in development of X-ray detectors for astronomical satellites. We performed proton irradiation experiments on newly developed X-ray detectors called XRPIX based on silicon-on-insulator technology at HIMAC in National Institute of Radiological Sciences. We irradiated 6 MeV protons with a total dose of 0.5 krad, equivalent to 6 years irradiation in orbit. As a result, the gain increases by 0.2% and the energy resolution degrades by 0.5%. Finally we irradiated protons up to 20 krad and found that detector performance degraded significantly at 5 krad. With 5 krad irradiation corresponding to 60 years in orbit, the gain increases by 0.7% and the energy resolution worsens by 10%. By decomposing into noise components, we found that the increase of the circuit noise is dominant in the degradation of the energy resolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.09193v1-abstract-full').style.display = 'none'; document.getElementById('1810.09193v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 11figures, accepted for Nuclear Instruments and Methods in Physics Research Section A (NIMA)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.11005">arXiv:1807.11005</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.11005">pdf</a>, <a href="https://arxiv.org/ps/1807.11005">ps</a>, <a href="https://arxiv.org/format/1807.11005">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2312098">10.1117/12.2312098 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kyoto&#39;s Event-Driven X-ray Astronomy SOI pixel sensor for the FORCE mission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tsuru%2C+T+G">Takeshi G. Tsuru</a>, <a href="/search/physics?searchtype=author&amp;query=Hayashi%2C+H">Hideki Hayashi</a>, <a href="/search/physics?searchtype=author&amp;query=Tachibana%2C+K">Katsuhiro Tachibana</a>, <a href="/search/physics?searchtype=author&amp;query=Harada%2C+S">Sodai Harada</a>, <a href="/search/physics?searchtype=author&amp;query=Uchida%2C+H">Hiroyuki Uchida</a>, <a href="/search/physics?searchtype=author&amp;query=Tanaka%2C+T">Takaaki Tanaka</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Kurachi%2C+I">Ikuo Kurachi</a>, <a href="/search/physics?searchtype=author&amp;query=Mori%2C+K">Koji Mori</a>, <a href="/search/physics?searchtype=author&amp;query=Takeda%2C+A">Ayaki Takeda</a>, <a href="/search/physics?searchtype=author&amp;query=Nishioka%2C+Y">Yusuke Nishioka</a>, <a href="/search/physics?searchtype=author&amp;query=Takebayashi%2C+N">Nobuaki Takebayashi</a>, <a href="/search/physics?searchtype=author&amp;query=Yokoyama%2C+S">Shoma Yokoyama</a>, <a href="/search/physics?searchtype=author&amp;query=Fukuda%2C+K">Kohei Fukuda</a>, <a href="/search/physics?searchtype=author&amp;query=Kohmura%2C+T">Takayoshi Kohmura</a>, <a href="/search/physics?searchtype=author&amp;query=Hagino%2C+K">Kouichi Hagino</a>, <a href="/search/physics?searchtype=author&amp;query=Ohno%2C+K">Kenji Ohno</a>, <a href="/search/physics?searchtype=author&amp;query=Negishi%2C+K">Kohsuke Negishi</a>, <a href="/search/physics?searchtype=author&amp;query=Yarita%2C+K">Keigo Yarita</a>, <a href="/search/physics?searchtype=author&amp;query=Kawahito%2C+S">Shoji Kawahito</a>, <a href="/search/physics?searchtype=author&amp;query=Kagawa%2C+K">Keiichiro Kagawa</a>, <a href="/search/physics?searchtype=author&amp;query=Yasutomi%2C+K">Keita Yasutomi</a>, <a href="/search/physics?searchtype=author&amp;query=Shrestha%2C+S">Sumeet Shrestha</a>, <a href="/search/physics?searchtype=author&amp;query=Nakanishi%2C+S">Shunta Nakanishi</a>, <a href="/search/physics?searchtype=author&amp;query=Kamehama%2C+H">Hiroki Kamehama</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.11005v1-abstract-short" style="display: inline;"> We have been developing monolithic active pixel sensors, X-ray Astronomy SOI pixel sensors, XRPIXs, based on a Silicon-On-Insulator (SOI) CMOS technology as soft X-ray sensors for a future Japanese mission, FORCE (Focusing On Relativistic universe and Cosmic Evolution). The mission is characterized by broadband (1-80 keV) X-ray imaging spectroscopy with high angular resolution ($&lt;15$~arcsec), with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.11005v1-abstract-full').style.display = 'inline'; document.getElementById('1807.11005v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.11005v1-abstract-full" style="display: none;"> We have been developing monolithic active pixel sensors, X-ray Astronomy SOI pixel sensors, XRPIXs, based on a Silicon-On-Insulator (SOI) CMOS technology as soft X-ray sensors for a future Japanese mission, FORCE (Focusing On Relativistic universe and Cosmic Evolution). The mission is characterized by broadband (1-80 keV) X-ray imaging spectroscopy with high angular resolution ($&lt;15$~arcsec), with which we can achieve about ten times higher sensitivity in comparison to the previous missions above 10~keV. Immediate readout of only those pixels hit by an X-ray is available by an event trigger output function implemented in each pixel with the time resolution higher than $10~{\rm 渭sec}$ (Event-Driven readout mode). It allows us to do fast timing observation and also reduces non-X-ray background dominating at a high X-ray energy band above 5--10~keV by adopting an anti-coincidence technique. In this paper, we introduce our latest results from the developments of the XRPIXs. (1) We successfully developed a 3-side buttable back-side illumination device with an imaging area size of 21.9~mm$\times$13.8~mm and an pixel size of $36~{\rm 渭m} \times 36~{\rm 渭m}$. The X-ray throughput with the device reaches higher than 0.57~kHz in the Event-Driven readout mode. (2) We developed a device using the double SOI structure and found that the structure improves the spectral performance in the Event-Driven readout mode by suppressing the capacitive coupling interference between the sensor and circuit layers. (3) We also developed a new device equipped with the Pinned Depleted Diode structure and confirmed that the structure reduces the dark current generated at the interface region between the sensor and the SiO$_2$ insulator layers. The device shows an energy resolution of 216~eV in FWHM at 6.4~keV in the Event-Driven readout mode. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.11005v1-abstract-full').style.display = 'none'; document.getElementById('1807.11005v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 10 figures, Proceedings Volume 10709, High Energy, Optical, and Infrared Detectors for Astronomy VIII</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.03338">arXiv:1804.03338</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.03338">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2019.163106">10.1016/j.nima.2019.163106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development of Integration-Type Silicon-On-Insulator Monolithic Pixel Detectors by Using a Float Zone Silicon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mitsui%2C+S">S. Mitsui</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Y. Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Miyoshi%2C+T">T. Miyoshi</a>, <a href="/search/physics?searchtype=author&amp;query=Takeda%2C+A">A. Takeda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.03338v1-abstract-short" style="display: inline;"> In this paper, we describe the development of monolithic pixel detectors by using a Silicon-on-Insulator (SOI) technology for X-ray and charged particle applications. The detectors are based on a 0.2 渭m CMOS fully depleted SOI process (Lapis Semiconductor Co., Ltd). The SOI wafer consists of a thick high-resistivity substrate for sensing and a thin low resistivity Si layer for CMOS circuits. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.03338v1-abstract-full').style.display = 'inline'; document.getElementById('1804.03338v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.03338v1-abstract-full" style="display: none;"> In this paper, we describe the development of monolithic pixel detectors by using a Silicon-on-Insulator (SOI) technology for X-ray and charged particle applications. The detectors are based on a 0.2 渭m CMOS fully depleted SOI process (Lapis Semiconductor Co., Ltd). The SOI wafer consists of a thick high-resistivity substrate for sensing and a thin low resistivity Si layer for CMOS circuits. We developed the integration-type SOI pixel detector, INTPIX4 mainly for X-ray imaging; it is made of a Float Zone (FZ) or Czochralski (Cz) silicon wafer. Since 2005, Cz SOI detectors were used initially. After 2011, FZ SOI detectors were successfully fabricated. In this paper, we state recent progresses and test results of the SOI monolithic pixel detector using a FZ silicon and compare them with the results obtained using the Cz detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.03338v1-abstract-full').style.display = 'none'; document.getElementById('1804.03338v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.09414">arXiv:1803.09414</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.09414">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Development of high-speed X-ray imaging system for SOI pixel detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nishimura%2C+R">Ryutaro Nishimura</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Miyoshi%2C+T">Toshinobu Miyoshi</a>, <a href="/search/physics?searchtype=author&amp;query=Hirano%2C+K">Keiichi Hirano</a>, <a href="/search/physics?searchtype=author&amp;query=Kishimoto%2C+S">Shunji Kishimoto</a>, <a href="/search/physics?searchtype=author&amp;query=Hashimoto%2C+R">Ryo Hashimoto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.09414v1-abstract-short" style="display: inline;"> We are now developing new X-ray imaging system by using Silicon-On-Insulator (SOI) Pixel Detectors. The SOI detector is a monolithic radiation imaging detector based on a 0.2um FD-SOI CMOS process. Special additional process steps are also developed to create fully depleted sensing region of 50~500um thick. SOI detector has up to mega pixels, so development of high speed Data Acquisition (DAQ) sys&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.09414v1-abstract-full').style.display = 'inline'; document.getElementById('1803.09414v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.09414v1-abstract-full" style="display: none;"> We are now developing new X-ray imaging system by using Silicon-On-Insulator (SOI) Pixel Detectors. The SOI detector is a monolithic radiation imaging detector based on a 0.2um FD-SOI CMOS process. Special additional process steps are also developed to create fully depleted sensing region of 50~500um thick. SOI detector has up to mega pixels, so development of high speed Data Acquisition (DAQ) system is very important in conducting experiments. We have developed readout board named SEABAS2 (Soi EvAluation BoArd with Sitcp 2) for SOI detector. The SEABAS2 board has 16 channels of 65 MSPS ADCs, 4ch DAC, FPGAs and Gigabit Ethernet I/F. To achieve high throughput of the DAQ, we aggressively adopt parallel processing (data taking and storing) and implement FIFO buffers in software. DAQ throughput in previous DAQ system was 6 Hz (41 Mbps) for INTPIX4 detector which has 423 kpixels of 17 um square. With newly developed system, we could improve this rate to 90 Hz (613 Mbps). To take X-ray images for practical purpose such as 3D CT, user have to control the peripheral devices (moving stage, beam shutter, monitoring devices etc.) while taking images. To ease such data taking, we also implemented automatic control function of peripheral devices. Introduction of SOI detectors, the detail of the DAQ system and experimental results are presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.09414v1-abstract-full').style.display = 'none'; document.getElementById('1803.09414v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Presented at International Workshop on Advanced Image Technology 2017(IWAIT 2017)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.00538">arXiv:1509.00538</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1509.00538">pdf</a>, <a href="https://arxiv.org/format/1509.00538">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Improving Charge-Collection Efficiency of Kyoto&#39;s SOI Pixel Sensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Matsumura%2C+H">Hideaki Matsumura</a>, <a href="/search/physics?searchtype=author&amp;query=Tsuru%2C+T+G">Takeshi Go Tsuru</a>, <a href="/search/physics?searchtype=author&amp;query=Tanaka%2C+T">Takaaki Tanaka</a>, <a href="/search/physics?searchtype=author&amp;query=Takeda%2C+A">Ayaki Takeda</a>, <a href="/search/physics?searchtype=author&amp;query=Ito%2C+M">Makoto Ito</a>, <a href="/search/physics?searchtype=author&amp;query=Ohmura%2C+S">Syunichi Ohmura</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Mori%2C+K">Koji Mori</a>, <a href="/search/physics?searchtype=author&amp;query=Nishioka%2C+Y">Yusuke Nishioka</a>, <a href="/search/physics?searchtype=author&amp;query=Takenaka%2C+R">Ryota Takenaka</a>, <a href="/search/physics?searchtype=author&amp;query=Kohmura%2C+T">Takayoshi Kohmura</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.00538v1-abstract-short" style="display: inline;"> We have been developing X-ray SOIPIXs for next-generation satellites for X-ray astronomy. Their high time resolution ($\sim10~渭$s) and event-trigger-output function enable us to read out without pile-ups and to use anti-coincidence systems. Their performance in imaging spectroscopy is comparable to that in the CCDs. A problem in our previous model was degradation of charge-collection efficiency (C&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.00538v1-abstract-full').style.display = 'inline'; document.getElementById('1509.00538v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.00538v1-abstract-full" style="display: none;"> We have been developing X-ray SOIPIXs for next-generation satellites for X-ray astronomy. Their high time resolution ($\sim10~渭$s) and event-trigger-output function enable us to read out without pile-ups and to use anti-coincidence systems. Their performance in imaging spectroscopy is comparable to that in the CCDs. A problem in our previous model was degradation of charge-collection efficiency (CCE) at pixel borders. We measured the response in the sub-pixel scale, using finely collimated X-ray beams at $10~渭$m桅$ at SPring-8, and investigated the non-uniformity of the CCE within a pixel. We found that the X-ray detection efficiency and CCE degrade in the sensor region under the pixel circuitry placed outside the buried p-wells (BPW). A 2D simulation of the electric fields shows that the isolated pixel-circuitry outside the BPW creates local minimums in the electric potentials at the interface between the sensor and buried oxide layers. Thus, a part of signal charge is trapped there and is not collected to the BPW. Based on this result, we modified the placement of the in-pixel circuitry so that the electric fields would converge toward the BPW. We confirmed that the CCE at pixel borders is successfully improved with the updated model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.00538v1-abstract-full').style.display = 'none'; document.getElementById('1509.00538v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of International Workshop on SOI Pixel Detector (SOIPIX2015), Tohoku University, Sendai, Japan, 3-6, June, 2015. C15-06-03</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.05185">arXiv:1508.05185</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.05185">pdf</a>, <a href="https://arxiv.org/ps/1508.05185">ps</a>, <a href="https://arxiv.org/format/1508.05185">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Investigation of the Kyoto&#39;s X-ray Astronomical SOIPIXs with Double-SOI Wafer for Reduction of Cross-talks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ohmura%2C+S">Shunichi Ohmura</a>, <a href="/search/physics?searchtype=author&amp;query=Tsuru%2C+T+G">Takeshi Go Tsuru</a>, <a href="/search/physics?searchtype=author&amp;query=Tanaka%2C+T">Takaaki Tanaka</a>, <a href="/search/physics?searchtype=author&amp;query=Takeda%2C+A">Ayaki Takeda</a>, <a href="/search/physics?searchtype=author&amp;query=Matsumura%2C+H">Hideaki Matsumura</a>, <a href="/search/physics?searchtype=author&amp;query=Makoto%2C+I">Ito Makoto</a>, <a href="/search/physics?searchtype=author&amp;query=Nakashima%2C+S">Shinya Nakashima</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Mori%2C+K">Koji Mori</a>, <a href="/search/physics?searchtype=author&amp;query=Takenaka%2C+R">Ryota Takenaka</a>, <a href="/search/physics?searchtype=author&amp;query=Nishioka%2C+Y">Yusuke Nishioka</a>, <a href="/search/physics?searchtype=author&amp;query=Kohmura%2C+T">Takayoshi Kohmura</a>, <a href="/search/physics?searchtype=author&amp;query=Tamasawa%2C+K">Kouki Tamasawa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.05185v1-abstract-short" style="display: inline;"> We have been developing X-ray SOIPIXs, &#34;XRPIX&#34;, for future X-ray astronomy satellites. XRPIX is equipped with a function of &#34;event-driven readout&#34;, which allows us to readout signal hit pixels only and realizes a high time resolution ($\sim10渭{\rm s}$). The current version of XRPIX suffers a problem that the readout noise in the event-driven readout mode is higher than that in the the frame readou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.05185v1-abstract-full').style.display = 'inline'; document.getElementById('1508.05185v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.05185v1-abstract-full" style="display: none;"> We have been developing X-ray SOIPIXs, &#34;XRPIX&#34;, for future X-ray astronomy satellites. XRPIX is equipped with a function of &#34;event-driven readout&#34;, which allows us to readout signal hit pixels only and realizes a high time resolution ($\sim10渭{\rm s}$). The current version of XRPIX suffers a problem that the readout noise in the event-driven readout mode is higher than that in the the frame readout mode, in which all the pixels are read out serially. Previous studies have clarified that the problem is caused by the cross-talks between buried P-wells (BPW) in the sensor layer and in-pixel circuits in the circuit layer. Thus, we developed new XRPIX having a Double SOI wafer (DSOI), which has an additional silicon layer (middle silicon) working as an electrical shield between the BPW and the in-pixel circuits. After adjusting the voltage applied to the middle silicon, we confirmed the reduction of the cross-talk by observing the analog waveform of the pixel circuit. We also successfully detected $^{241}$Am X-rays with XRPIX. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.05185v1-abstract-full').style.display = 'none'; document.getElementById('1508.05185v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of International Workshop on SOI Pixel Detector (SOIPIX2015), Tohoku University, Sendai, Japan, 3-6, June, 2015. C15-06-03</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.07424">arXiv:1507.07424</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.07424">pdf</a>, <a href="https://arxiv.org/ps/1507.07424">ps</a>, <a href="https://arxiv.org/format/1507.07424">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Development FD-SOI MOSFET amplifiers for integrated read-out circuit of superconducting-tunnel-junction single-photon-detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kiuchi%2C+K">Kenji Kiuchi</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+S">Shinhong Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Takeuchi%2C+Y">Yuji Takeuchi</a>, <a href="/search/physics?searchtype=author&amp;query=Takemasa%2C+K">Kenichi Takemasa</a>, <a href="/search/physics?searchtype=author&amp;query=Nagata%2C+K">Kazuki Nagata</a>, <a href="/search/physics?searchtype=author&amp;query=Kasahara%2C+K">Kota Kasahara</a>, <a href="/search/physics?searchtype=author&amp;query=Moriuchi%2C+K">Koya Moriuchi</a>, <a href="/search/physics?searchtype=author&amp;query=Senzaki%2C+R">Ren Senzaki</a>, <a href="/search/physics?searchtype=author&amp;query=Yagi%2C+S">Shunsuke Yagi</a>, <a href="/search/physics?searchtype=author&amp;query=Ikeda%2C+H">Hirokazu Ikeda</a>, <a href="/search/physics?searchtype=author&amp;query=Matsuura%2C+S">Shuji Matsuura</a>, <a href="/search/physics?searchtype=author&amp;query=Wada%2C+T">Takehiko Wada</a>, <a href="/search/physics?searchtype=author&amp;query=Ishino%2C+H">Hirokazu Ishino</a>, <a href="/search/physics?searchtype=author&amp;query=Kibayashi%2C+A">Atsuko Kibayashi</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+H">Hiromi Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Mima%2C+S">Satoru Mima</a>, <a href="/search/physics?searchtype=author&amp;query=Yoshida%2C+T">Takuo Yoshida</a>, <a href="/search/physics?searchtype=author&amp;query=Hirose%2C+R">Ryuta Hirose</a>, <a href="/search/physics?searchtype=author&amp;query=Kato%2C+Y">Yukihiro Kato</a>, <a href="/search/physics?searchtype=author&amp;query=Hazumi%2C+M">Masasi Hazumi</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Kurachi%2C+I">Ikuo Kurachi</a>, <a href="/search/physics?searchtype=author&amp;query=Ramgerg%2C+E">Erik Ramgerg</a>, <a href="/search/physics?searchtype=author&amp;query=Kozlovsky%2C+M">Mark Kozlovsky</a>, <a href="/search/physics?searchtype=author&amp;query=Rubinov%2C+P">Paul Rubinov</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.07424v1-abstract-short" style="display: inline;"> We proposed a new high resolution single photon infrared spectrometer for search for radiative decay of cosmic neutrino background(C$谓$B). The superconducting-tunnel-junctions(STJs) are used as a single photoncounting device. Each STJ consists of Nb/Al/Al${}_{\mathrm{x}}$O${}_{\mathrm{y}}$/Al/Nb layers and their thicknesses are optimized for the operation temperature at 370 mK cooled by a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.07424v1-abstract-full').style.display = 'inline'; document.getElementById('1507.07424v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.07424v1-abstract-full" style="display: none;"> We proposed a new high resolution single photon infrared spectrometer for search for radiative decay of cosmic neutrino background(C$谓$B). The superconducting-tunnel-junctions(STJs) are used as a single photoncounting device. Each STJ consists of Nb/Al/Al${}_{\mathrm{x}}$O${}_{\mathrm{y}}$/Al/Nb layers and their thicknesses are optimized for the operation temperature at 370 mK cooled by a ${}^{3}$He sorption refrigerator. Our STJs achieved the leak current 250 pA and the measured data implies that a smaller area STJ fulfills our requirement. FD-SOI MOSFETs are employed to amplify the STJ signal current in order to increase signal-to-noise ratio(S/N). FD-SOI MOSFETs can be operated at cryogenic temperature of 370 mK, which reduces the noise of the signal amplification system. FD-SOI MOSFET characteristics are measured at cryogenic temperature. The Id-Vgs curve shows a sharper turn on with a higher threshold voltage and the Id-Vds curve shows a non linear shape in linear region at cryogenic temperature. Taking into account these effects, FD-SOI MOSFETs are available for read-out circuit of STJ detectors. The bias voltage for STJ detectors are 0.4 mV and it must be well stabilized to deliver high performance. We proposed an FD-SOI MOSFET based charge integrated amplifier design as a read-out circuit of STJ detectors. The requirements for an operational amplifier used in the amplifier is estimated using SPICE simulation. The op-amp required to have a fast response(GBW$\geq$100 MHz) and it must have low power dissipation as compared to the cooling power of refrigerator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.07424v1-abstract-full').style.display = 'none'; document.getElementById('1507.07424v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of International Workshop on SOI Pixel Detector (SOIPIX2015), Tohoku University, Sendai, Japan, 3-6, June, 2015. C15-06-03</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.07316">arXiv:1507.07316</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.07316">pdf</a>, <a href="https://arxiv.org/format/1507.07316">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> SOI pixel circuits with synchronized TMC for time-of-flight stigmatic imaging mass spectrometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Watanabe%2C+K">Kaori Watanabe</a>, <a href="/search/physics?searchtype=author&amp;query=Ikebe%2C+M">Masayuki Ikebe</a>, <a href="/search/physics?searchtype=author&amp;query=Fujita%2C+Y">Youichi Fujita</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Hazama%2C+H">Hisanao Hazama</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.07316v1-abstract-short" style="display: inline;"> We propose SOI pixel circuits with a synchronized time memory cell (TMC) for time-of-flight stigmatic imaging mass spectrometry. The circuits simultaneously detect the position and the fine/coarse flight time of an ion for the MALDI-ToF mass spectrometer. We discuss the circuit design and present the simulation results of a prototype detector comprised of a 32 x 32 pixel array in which each pixel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.07316v1-abstract-full').style.display = 'inline'; document.getElementById('1507.07316v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.07316v1-abstract-full" style="display: none;"> We propose SOI pixel circuits with a synchronized time memory cell (TMC) for time-of-flight stigmatic imaging mass spectrometry. The circuits simultaneously detect the position and the fine/coarse flight time of an ion for the MALDI-ToF mass spectrometer. We discuss the circuit design and present the simulation results of a prototype detector comprised of a 32 x 32 pixel array in which each pixel pitch is 40 um and the time resolution is a minimum of 1 ns. The results of transient analysis demonstrate the fully correct synchronous operation at a 100-MHz clock frequency and simultaneous 32-word SRAM writing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.07316v1-abstract-full').style.display = 'none'; document.getElementById('1507.07316v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of International Workshop on SOI Pixel Detector (SOIPIX2015), Tohoku University, Sendai, Japan, 3-6, June, 2015. C15-06-03</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.07035">arXiv:1507.07035</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.07035">pdf</a>, <a href="https://arxiv.org/format/1507.07035">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> TID-Effect Compensation and Sensor-Circuit Cross-Talk Suppression in Double-SOI Devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Honda%2C+S">Shunsuke Honda</a>, <a href="/search/physics?searchtype=author&amp;query=Hara%2C+K">Kazuhiko Hara</a>, <a href="/search/physics?searchtype=author&amp;query=Sekigawa%2C+D">Daisuke Sekigawa</a>, <a href="/search/physics?searchtype=author&amp;query=Subedi%2C+B">Bipin Subedi</a>, <a href="/search/physics?searchtype=author&amp;query=Asano%2C+M">Mari Asano</a>, <a href="/search/physics?searchtype=author&amp;query=Tobita%2C+N">Naoshi Tobita</a>, <a href="/search/physics?searchtype=author&amp;query=Aoyagi%2C+W">Wataru Aoyagi</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Ishikawa%2C+A">Akimasa Ishikawa</a>, <a href="/search/physics?searchtype=author&amp;query=Ono%2C+Y">Yoshimasa Ono</a>, <a href="/search/physics?searchtype=author&amp;query=Ushiki%2C+I">Itaru Ushiki</a>, <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+S">SOI Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.07035v1-abstract-short" style="display: inline;"> We are developing double silicon-on-insulator (DSOI) pixel sensors for various applications such as for high-energy experiments. The performance of DSOI devices has been evaluated including total ionization damage (TID) effect compensation in transistors using a test-element-group (TEG) up to 2 MGy and in integration-type sensors up to 100 kGy. In this article, successful TID compensation in a pix&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.07035v1-abstract-full').style.display = 'inline'; document.getElementById('1507.07035v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.07035v1-abstract-full" style="display: none;"> We are developing double silicon-on-insulator (DSOI) pixel sensors for various applications such as for high-energy experiments. The performance of DSOI devices has been evaluated including total ionization damage (TID) effect compensation in transistors using a test-element-group (TEG) up to 2 MGy and in integration-type sensors up to 100 kGy. In this article, successful TID compensation in a pixel-ASD-readout-circuit is shown up to 100 kGy for the application of DSOI to counting-type sensors. The cross-talk suppression in DSOI is being evaluated. These results encourage us that DSOI sensors are applicable to future high-energy experiments such as the BELLE-II experiment or the ILC experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.07035v1-abstract-full').style.display = 'none'; document.getElementById('1507.07035v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of International Workshop on SOI Pixel Detector (SOIPIX2015), Tohoku University, Sendai, Japan, 3-6, June, 2015. C15-06-03</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.06747">arXiv:1507.06747</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.06747">pdf</a>, <a href="https://arxiv.org/format/1507.06747">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> A SOI-Based Low Noise and Wide Dynamic Range Event-Driven Detector for X-Ray Imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shrestha%2C+S">Sumeet Shrestha</a>, <a href="/search/physics?searchtype=author&amp;query=Kamehama%2C+H">Hiroki Kamehama</a>, <a href="/search/physics?searchtype=author&amp;query=Kawahito%2C+S">Shoji Kawahito</a>, <a href="/search/physics?searchtype=author&amp;query=Yasutomi%2C+K">Keita Yasutomi</a>, <a href="/search/physics?searchtype=author&amp;query=Kagawa%2C+K">Keiichiro Kagawa</a>, <a href="/search/physics?searchtype=author&amp;query=Takeda%2C+A">Ayaki Takeda</a>, <a href="/search/physics?searchtype=author&amp;query=Tsuru%2C+T+G">Takeshi Go Tsuru</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.06747v1-abstract-short" style="display: inline;"> A low noise and wide dynamic range event driven detector for the detection of X-Ray energy is realized using 0.2 [um] Silicon on insulator (SOI) technology. Pixel circuits are divided into two parts; signal sensing circuit and event detection circuit. Event detection circuit is activated when X-Ray energy falls into the detector. In-pixel gain selection is implemented for the detection of a small&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.06747v1-abstract-full').style.display = 'inline'; document.getElementById('1507.06747v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.06747v1-abstract-full" style="display: none;"> A low noise and wide dynamic range event driven detector for the detection of X-Ray energy is realized using 0.2 [um] Silicon on insulator (SOI) technology. Pixel circuits are divided into two parts; signal sensing circuit and event detection circuit. Event detection circuit is activated when X-Ray energy falls into the detector. In-pixel gain selection is implemented for the detection of a small signal and wide band of energy particle. Adaptive gain and capability of correlated double sampling (CDS) technique for the kTC noise canceling of charge detector realizes the low noise and high dynamic range event driven detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.06747v1-abstract-full').style.display = 'none'; document.getElementById('1507.06747v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.06743">arXiv:1507.06743</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.06743">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> SOI Pixel Sensor for Gamma-Ray Imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shimazoe%2C+K">Kenji Shimazoe</a>, <a href="/search/physics?searchtype=author&amp;query=Atiqah%2C+F">Fairuz Atiqah</a>, <a href="/search/physics?searchtype=author&amp;query=Yoshihara%2C+Y">Yuri Yoshihara</a>, <a href="/search/physics?searchtype=author&amp;query=Koyama%2C+A">Akihiko Koyama</a>, <a href="/search/physics?searchtype=author&amp;query=Takahashi%2C+H">Hiroyuki Takahashi</a>, <a href="/search/physics?searchtype=author&amp;query=Orita%2C+T">Tadashi Orita</a>, <a href="/search/physics?searchtype=author&amp;query=Kamada%2C+K">Kei Kamada</a>, <a href="/search/physics?searchtype=author&amp;query=Takeda%2C+A">Ayaki Takeda</a>, <a href="/search/physics?searchtype=author&amp;query=Tsuru%2C+T">Takeshi Tsuru</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.06743v1-abstract-short" style="display: inline;"> SOI (Silicon-On-Insulator) pixel sensor is promising technology for developing the high position resolution detector by integrating the small pixels and circuits in the monolithic way. The event driven (trigger mode) SOI based pixel sensor has also been developed for the application of X-ray astronomy with the purpose of reducing the noise using anti-coincidence event. This trigger mode SOI pixel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.06743v1-abstract-full').style.display = 'inline'; document.getElementById('1507.06743v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.06743v1-abstract-full" style="display: none;"> SOI (Silicon-On-Insulator) pixel sensor is promising technology for developing the high position resolution detector by integrating the small pixels and circuits in the monolithic way. The event driven (trigger mode) SOI based pixel sensor has also been developed for the application of X-ray astronomy with the purpose of reducing the noise using anti-coincidence event. This trigger mode SOI pixel sensor working with in the rate of kilo Hz is also a promising scatter detector for advanced Compton imaging to track the Compton recoiled electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.06743v1-abstract-full').style.display = 'none'; document.getElementById('1507.06743v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">&#34;Proceedings of International Workshop on SOI Pixel Detector (SOIPIX2015), Tohoku University, Sendai, Japan, 3-6, June, 2015. C15-06-03.&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.06721">arXiv:1507.06721</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.06721">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Development of the Pixelated Photon Detector Using Silicon on Insulator Technology for TOF-PET </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Koyama%2C+A">Akihiro Koyama</a>, <a href="/search/physics?searchtype=author&amp;query=Shimazoe%2C+K">Kenji Shimazoe</a>, <a href="/search/physics?searchtype=author&amp;query=Takahashi%2C+H">Hiroyuki Takahashi</a>, <a href="/search/physics?searchtype=author&amp;query=Orita%2C+T">Tadashi Orita</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Kurachi%2C+I">Ikuo Kurachi</a>, <a href="/search/physics?searchtype=author&amp;query=Miyoshi%2C+T">Toshinobu Miyoshi</a>, <a href="/search/physics?searchtype=author&amp;query=Nio%2C+D">Daisuke Nio</a>, <a href="/search/physics?searchtype=author&amp;query=Hamasaki%2C+R">Ryutaro Hamasaki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.06721v1-abstract-short" style="display: inline;"> To measure light emission pattern in scintillator, higher sensitivity and faster response are required to photo detector. Such as single photon avalanche diode (SPAD), conventional pixelated photo detector is operated at Geiger avalanche multiplication. However higher gain of SPAD seems very attractive, photon detection efficiency per unit area is low. This weak point is mainly caused by Geiger av&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.06721v1-abstract-full').style.display = 'inline'; document.getElementById('1507.06721v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.06721v1-abstract-full" style="display: none;"> To measure light emission pattern in scintillator, higher sensitivity and faster response are required to photo detector. Such as single photon avalanche diode (SPAD), conventional pixelated photo detector is operated at Geiger avalanche multiplication. However higher gain of SPAD seems very attractive, photon detection efficiency per unit area is low. This weak point is mainly caused by Geiger avalanche mechanism. To overcome these difficulties, we designed Pixelated Linear Avalanche Integration Detector using Silicon on Insulator technology (SOI-Plaid). To avoid dark count noise and dead time comes from quench circuit, we are planning to use APD in linear multiplication mode. SOI technology enables laminating readout circuit and APD layer, and high-speed and low-noise signal reading regardless smaller gain of linear APD. This study shows design of linear APD by using SOI fabrication process. We designed test element group (TEG) of linear APD and inspected optimal structure of linear APD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.06721v1-abstract-full').style.display = 'none'; document.getElementById('1507.06721v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of International Workshop on SOI Pixel Detector (SOIPIX2015), Tohoku University, Sendai, Japan, 3-6, June, 2015. C15-06-03</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.05860">arXiv:1507.05860</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.05860">pdf</a>, <a href="https://arxiv.org/format/1507.05860">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Compensation for TID Damage in SOI Pixel Devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tobita%2C+N">Naoshi Tobita</a>, <a href="/search/physics?searchtype=author&amp;query=Honda%2C+S">Shunsuke Honda</a>, <a href="/search/physics?searchtype=author&amp;query=Hara%2C+K">Kazuhiko Hara</a>, <a href="/search/physics?searchtype=author&amp;query=Aoyagi%2C+W">Wataru Aoyagi</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Miyoshi%2C+T">Toshinobu Miyoshi</a>, <a href="/search/physics?searchtype=author&amp;query=Kurachi%2C+I">Ikuo Kurachi</a>, <a href="/search/physics?searchtype=author&amp;query=Hatsui%2C+T">Takaki Hatsui</a>, <a href="/search/physics?searchtype=author&amp;query=Kudo%2C+T">Togo Kudo</a>, <a href="/search/physics?searchtype=author&amp;query=Kobayashi%2C+K">Kazuo Kobayashi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.05860v1-abstract-short" style="display: inline;"> We are investigating adaption of SOI pixel devices for future high energy physic(HEP) experiments. The pixel sensors are required to be operational in very severe radiation environment. Most challenging issue in the adoption is the TID (total ionizing dose) damage where holes trapped in oxide layers affect the operation of nearby transistors. We have introduced a second SOI layer - SOI2 beneath th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.05860v1-abstract-full').style.display = 'inline'; document.getElementById('1507.05860v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.05860v1-abstract-full" style="display: none;"> We are investigating adaption of SOI pixel devices for future high energy physic(HEP) experiments. The pixel sensors are required to be operational in very severe radiation environment. Most challenging issue in the adoption is the TID (total ionizing dose) damage where holes trapped in oxide layers affect the operation of nearby transistors. We have introduced a second SOI layer - SOI2 beneath the BOX (Buried OXide) layer - in order to compensate for the TID effect by applying a negative voltage to this electrode to cancel the effect caused by accumulated positive holes. In this paper, the TID effects caused by Co gamma-ray irradiation are presented based on the transistor characteristics measurements. The irradiation was carried out in various biasing conditions to investigate hole accumulation dependence on the potential configurations. We also compare the data with samples irradiated with X-ray. Since we observed a fair agreement between the two irradiation datasets, the TID effects have been investigated in a wide dose range from 100~Gy to 2~MGy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.05860v1-abstract-full').style.display = 'none'; document.getElementById('1507.05860v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.05394">arXiv:1507.05394</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.05394">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> A study on the shielding mechanisms of SOI pixel detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Y">Yunpeng Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Z">Zhigang Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Ouyang%2C+Q">Qun Ouyang</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.05394v3-abstract-short" style="display: inline;"> In order to tackle the charge injection issue that had perplexed the counting type SOI pixel for years, two successive chips CPIXTEG3 and CPIXTEG3b were developed utilizing two shielding mechanisms, Nested-well and Double-SOI, in the LAPIS process. A TCAD simulation showed the shielding effectiveness influenced by the high sheet resistance of shielding layers. Test structures specially designed to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.05394v3-abstract-full').style.display = 'inline'; document.getElementById('1507.05394v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.05394v3-abstract-full" style="display: none;"> In order to tackle the charge injection issue that had perplexed the counting type SOI pixel for years, two successive chips CPIXTEG3 and CPIXTEG3b were developed utilizing two shielding mechanisms, Nested-well and Double-SOI, in the LAPIS process. A TCAD simulation showed the shielding effectiveness influenced by the high sheet resistance of shielding layers. Test structures specially designed to measure the crosstalk associated to charge injection were implemented in CPIXTEG3/3b. Measurement results proved that using shielding layer is indispensable for counting type pixel and Double-SOI is superior to Nested-well in terms of shielding effectiveness and design flexibility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.05394v3-abstract-full').style.display = 'none'; document.getElementById('1507.05394v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of International Workshop on SOI Pixel Detector (SOIPIX2015), Tohoku University, Sendai, Japan, 3-6, June, 2015. C15-06-03</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.05382">arXiv:1507.05382</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.05382">pdf</a>, <a href="https://arxiv.org/format/1507.05382">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2016.03.095">10.1016/j.nima.2016.03.095 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characteristics of Non-Irradiated and Irradiated Double SOI Integration Type Sensor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Asano%2C+M">Mari Asano</a>, <a href="/search/physics?searchtype=author&amp;query=Hara%2C+K">Kazuhiko Hara</a>, <a href="/search/physics?searchtype=author&amp;query=Sekigawa%2C+D">Daisuke Sekigawa</a>, <a href="/search/physics?searchtype=author&amp;query=Honda%2C+S">Shunsuke Honda</a>, <a href="/search/physics?searchtype=author&amp;query=Tobita%2C+N">Naoshi Tobita</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Miyoshi%2C+T">Toshinobu Miyoshi</a>, <a href="/search/physics?searchtype=author&amp;query=Kurachi%2C+I">Ikuo Kurachi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.05382v1-abstract-short" style="display: inline;"> We are developing monolithic pixel sensors based on a 0.2 $渭$m fully-depleted Silicon-on-Insulator (SOI) technology for HEP experiment applications. The total ionizing dose (TID) effect is the major issue in the applications for hard radiation environments in HEP experiments. To compensate for TID damage, we have introduced a Double SOI structure which has a Middle Silicon layer (SOI2 layer) in ad&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.05382v1-abstract-full').style.display = 'inline'; document.getElementById('1507.05382v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.05382v1-abstract-full" style="display: none;"> We are developing monolithic pixel sensors based on a 0.2 $渭$m fully-depleted Silicon-on-Insulator (SOI) technology for HEP experiment applications. The total ionizing dose (TID) effect is the major issue in the applications for hard radiation environments in HEP experiments. To compensate for TID damage, we have introduced a Double SOI structure which has a Middle Silicon layer (SOI2 layer) in addition. We studied the recovery from TID damage induced by $\mathrm{^{60}Co}~纬$&#39;s and other characteristics of an Integration-type Double SOI sensor. The Double SOI sensor irradiated to 100 kGy showed a response for IR laser similar to of a non-irradiated sensor when we applied a negative voltage to the SOI2 layer. We conclude that the Double SOI sensor is radiation hard enough to be used in HEP experiments in harsh radiation environments such as at Bell II or ILC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.05382v1-abstract-full').style.display = 'none'; document.getElementById('1507.05382v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of International Workshop on SOI Pixel Detector (SOIPIX2015), Tohoku University, Sendai, Japan, 3-6, June, 2015. C15-06-03</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.04946">arXiv:1507.04946</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.04946">pdf</a>, <a href="https://arxiv.org/format/1507.04946">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> DAQ Development for Silicon-On-Insulator Pixel detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nishimura%2C+R">Ryutaro Nishimura</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Miyoshi%2C+T">Toshinobu Miyoshi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.04946v1-abstract-short" style="display: inline;"> We are developing DAQ for Si-pixel detectors by using a Slicon-On-Insulator (SOI) technology. This DAQ consists of firmware works on SEABAS (Soi EvAluation BoArd with Sitcp) DAQ board and software works on PC. We have been working on the development of firmware/software. Now we accomplished to speed up the readout (~90Hz) and to add a function for frame rate control. This is the report of our deve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.04946v1-abstract-full').style.display = 'inline'; document.getElementById('1507.04946v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.04946v1-abstract-full" style="display: none;"> We are developing DAQ for Si-pixel detectors by using a Slicon-On-Insulator (SOI) technology. This DAQ consists of firmware works on SEABAS (Soi EvAluation BoArd with Sitcp) DAQ board and software works on PC. We have been working on the development of firmware/software. Now we accomplished to speed up the readout (~90Hz) and to add a function for frame rate control. This is the report of our development work for the High Speed DAQ system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.04946v1-abstract-full').style.display = 'none'; document.getElementById('1507.04946v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of International Workshop on SOI Pixel Detector (SOIPIX2015), Tohoku University, Sendai, Japan, 3-6, June, 2015. C15-06-03</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.02797">arXiv:1507.02797</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.02797">pdf</a>, <a href="https://arxiv.org/format/1507.02797">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2016.04.110">10.1016/j.nima.2016.04.110 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Compensation of radiation damages for SOI pixel detector via tunneling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yamada%2C+M">Miho Yamada</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Kurachi%2C+I">Ikuo Kurachi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.02797v2-abstract-short" style="display: inline;"> We are developing monolithic pixel detectors based on SOI technology for high energy physics, X-ray applications and so on.To employ SOI pixel detector on such radiation environments, we have to solve effects of total ionizing dose (TID) for transistors which are enclosed in oxide layer.The holes which are generated and trapped in the oxide layers after irradiation affect characteristics of near-b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.02797v2-abstract-full').style.display = 'inline'; document.getElementById('1507.02797v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.02797v2-abstract-full" style="display: none;"> We are developing monolithic pixel detectors based on SOI technology for high energy physics, X-ray applications and so on.To employ SOI pixel detector on such radiation environments, we have to solve effects of total ionizing dose (TID) for transistors which are enclosed in oxide layer.The holes which are generated and trapped in the oxide layers after irradiation affect characteristics of near-by transistors due to its positive electric field.Annealing and radiation of ultraviolet are not realistic to remove trapped holes for a fabricated detector due to thermal resistance of components and difficulty of handling. We studied compensation of TID effects by tunneling using a high-voltage. For decrease of trapped holes, applied high-voltage to buried p-well which is under oxide layer to inject the electrons into the oxide layer.In this report, recent progress of this study is shown. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.02797v2-abstract-full').style.display = 'none'; document.getElementById('1507.02797v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 14 figures, Proceedings of International Workshop on SOI Pixel Detector (SOIPIX2015), Tohoku University, Sendai, Japan, 3-6, June, 2015. C15-06-03</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.00866">arXiv:1507.00866</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.00866">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Exploring properties of the integrating pixels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kapusta%2C+P+J">Piotr Julian Kapusta</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Bugiel%2C+S">Szymon Bugiel</a>, <a href="/search/physics?searchtype=author&amp;query=Dasgupta%2C+R">Roma Dasgupta</a>, <a href="/search/physics?searchtype=author&amp;query=Glab%2C+S">Sebastian Glab</a>, <a href="/search/physics?searchtype=author&amp;query=Idzik%2C+M">Marek Idzik</a>, <a href="/search/physics?searchtype=author&amp;query=Kucewicz%2C+W">Wojciech Kucewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Miyoshi%2C+T">Toshinobu Miyoshi</a>, <a href="/search/physics?searchtype=author&amp;query=Turala%2C+M">Michal Turala</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.00866v1-abstract-short" style="display: inline;"> This paper presents some observations and ideas collected during the tests of the SOI sensors, based on the integration type pixels. First, it contains a rough analysis of the Correlated Double Sampling filtering properties with respect to different noise sources and long sampling intervals, which are typical for the pixels under consideration. Second, results of the pixel leakage current measurem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.00866v1-abstract-full').style.display = 'inline'; document.getElementById('1507.00866v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.00866v1-abstract-full" style="display: none;"> This paper presents some observations and ideas collected during the tests of the SOI sensors, based on the integration type pixels. First, it contains a rough analysis of the Correlated Double Sampling filtering properties with respect to different noise sources and long sampling intervals, which are typical for the pixels under consideration. Second, results of the pixel leakage current measurements in the pix_2012 and DIPIX pixel detector chips are presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.00866v1-abstract-full').style.display = 'none'; document.getElementById('1507.00866v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.08510">arXiv:1506.08510</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.08510">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> X-ray Radiation Hardness of Fully-Depleted SOI MOSFETs and Its Improvement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kurachi%2C+I">Ikuo Kurachi</a>, <a href="/search/physics?searchtype=author&amp;query=Kobayashi%2C+K">Kazuo Kobayashi</a>, <a href="/search/physics?searchtype=author&amp;query=Kasai%2C+H">Hiroki Kasai</a>, <a href="/search/physics?searchtype=author&amp;query=Mochizuki%2C+M">Marie Mochizuki</a>, <a href="/search/physics?searchtype=author&amp;query=Okihara%2C+M">Masao Okihara</a>, <a href="/search/physics?searchtype=author&amp;query=Hatsui%2C+T">Takaki Hatsui</a>, <a href="/search/physics?searchtype=author&amp;query=Hara%2C+K">Kazuhiko Hara</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.08510v1-abstract-short" style="display: inline;"> X-ray radiation hardness of FD-SOI n- and p-MOSFET has been investigated. After 1.4 kGy(Si) irradiation, 15% drain current increase for n-MOSFET and 20% drain current decrease for p-MOSFET are observed. From analysis of gmmax-Vsub, the major cause of n-MOSFET drain current change is the generated positive charge in BOX. On the other hand, the major cause of p-MOSFET drain current change is the rad&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.08510v1-abstract-full').style.display = 'inline'; document.getElementById('1506.08510v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.08510v1-abstract-full" style="display: none;"> X-ray radiation hardness of FD-SOI n- and p-MOSFET has been investigated. After 1.4 kGy(Si) irradiation, 15% drain current increase for n-MOSFET and 20% drain current decrease for p-MOSFET are observed. From analysis of gmmax-Vsub, the major cause of n-MOSFET drain current change is the generated positive charge in BOX. On the other hand, the major cause of p-MOSFET drain current change is the radiation induced gate channel modulation by the generated positive charge in sidewall spacer. It is confirmed that the p-MOSFET drain current change is improved by higher PLDD dose. Thinner BOX is also proposed for further radiation hardness improvement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.08510v1-abstract-full').style.display = 'none'; document.getElementById('1506.08510v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of International Workshop on SOI Pixel Detector (SOIPIX2015), Tohoku University, Sendai, Japan, 3-6, June, 2015. C15-06-03</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1408.4556">arXiv:1408.4556</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1408.4556">pdf</a>, <a href="https://arxiv.org/ps/1408.4556">ps</a>, <a href="https://arxiv.org/format/1408.4556">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2057158">10.1117/12.2057158 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development and Performance of Kyoto&#39;s X-ray Astronomical SOI pixel (SOIPIX) sensor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tsuru%2C+T+G">Takeshi G. Tsuru</a>, <a href="/search/physics?searchtype=author&amp;query=Matsumura%2C+H">Hideaki Matsumura</a>, <a href="/search/physics?searchtype=author&amp;query=Takeda%2C+A">Ayaki Takeda</a>, <a href="/search/physics?searchtype=author&amp;query=Tanaka%2C+T">Takaaki Tanaka</a>, <a href="/search/physics?searchtype=author&amp;query=Nakashima%2C+S">Shinya Nakashima</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Yasuo Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Mori%2C+K">Koji Mori</a>, <a href="/search/physics?searchtype=author&amp;query=Takenaka%2C+R">Ryota Takenaka</a>, <a href="/search/physics?searchtype=author&amp;query=Nishioka%2C+Y">Yusuke Nishioka</a>, <a href="/search/physics?searchtype=author&amp;query=Kohmura%2C+T">Takayoshi Kohmura</a>, <a href="/search/physics?searchtype=author&amp;query=Hatsui%2C+T">Takaki Hatsui</a>, <a href="/search/physics?searchtype=author&amp;query=Kameshima%2C+T">Takashi Kameshima</a>, <a href="/search/physics?searchtype=author&amp;query=Ozaki%2C+K">Kyosuke Ozaki</a>, <a href="/search/physics?searchtype=author&amp;query=Kohmura%2C+Y">Yoshiki Kohmura</a>, <a href="/search/physics?searchtype=author&amp;query=Wagai%2C+T">Tatsuya Wagai</a>, <a href="/search/physics?searchtype=author&amp;query=Takei%2C+D">Dai Takei</a>, <a href="/search/physics?searchtype=author&amp;query=Kawahito%2C+S">Shoji Kawahito</a>, <a href="/search/physics?searchtype=author&amp;query=Kagawa%2C+K">Keiichiro Kagawa</a>, <a href="/search/physics?searchtype=author&amp;query=Yasutomi%2C+K">Keita Yasutomi</a>, <a href="/search/physics?searchtype=author&amp;query=Kamehama%2C+H">Hiroki Kamehama</a>, <a href="/search/physics?searchtype=author&amp;query=Shrestha%2C+S">Sumeet Shrestha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1408.4556v1-abstract-short" style="display: inline;"> We have been developing monolithic active pixel sensors, known as Kyoto&#39;s X-ray SOIPIXs, based on the CMOS SOI (silicon-on-insulator) technology for next-generation X-ray astronomy satellites. The event trigger output function implemented in each pixel offers microsecond time resolution and enables reduction of the non-X-ray background that dominates the high X-ray energy band above 5--10 keV. A f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.4556v1-abstract-full').style.display = 'inline'; document.getElementById('1408.4556v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1408.4556v1-abstract-full" style="display: none;"> We have been developing monolithic active pixel sensors, known as Kyoto&#39;s X-ray SOIPIXs, based on the CMOS SOI (silicon-on-insulator) technology for next-generation X-ray astronomy satellites. The event trigger output function implemented in each pixel offers microsecond time resolution and enables reduction of the non-X-ray background that dominates the high X-ray energy band above 5--10 keV. A fully depleted SOI with a thick depletion layer and back illumination offers wide band coverage of 0.3--40 keV. Here, we report recent progress in the X-ray SOIPIX development. In this study, we achieved an energy resolution of 300~eV (FWHM) at 6~keV and a read-out noise of 33~e- (rms) in the frame readout mode, which allows us to clearly resolve Mn-K$伪$ and K$尾$. Moreover, we produced a fully depleted layer with a thickness of $500~{\rm 渭m}$. The event-driven readout mode has already been successfully demonstrated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.4556v1-abstract-full').style.display = 'none'; document.getElementById('1408.4556v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7pages, 12figures, SPIE Astronomical Telescopes and Instrumentation 2014, Montreal, Quebec, Canada. appears as Proc. SPIE 9147, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.0352">arXiv:1011.0352</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1011.0352">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Belle II Technical Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abe%2C+T">T. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Adachi%2C+I">I. Adachi</a>, <a href="/search/physics?searchtype=author&amp;query=Adamczyk%2C+K">K. Adamczyk</a>, <a href="/search/physics?searchtype=author&amp;query=Ahn%2C+S">S. Ahn</a>, <a href="/search/physics?searchtype=author&amp;query=Aihara%2C+H">H. Aihara</a>, <a href="/search/physics?searchtype=author&amp;query=Akai%2C+K">K. Akai</a>, <a href="/search/physics?searchtype=author&amp;query=Aloi%2C+M">M. Aloi</a>, <a href="/search/physics?searchtype=author&amp;query=Andricek%2C+L">L. Andricek</a>, <a href="/search/physics?searchtype=author&amp;query=Aoki%2C+K">K. Aoki</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Y. Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Arefiev%2C+A">A. Arefiev</a>, <a href="/search/physics?searchtype=author&amp;query=Arinstein%2C+K">K. Arinstein</a>, <a href="/search/physics?searchtype=author&amp;query=Arita%2C+Y">Y. Arita</a>, <a href="/search/physics?searchtype=author&amp;query=Asner%2C+D+M">D. M. Asner</a>, <a href="/search/physics?searchtype=author&amp;query=Aulchenko%2C+V">V. Aulchenko</a>, <a href="/search/physics?searchtype=author&amp;query=Aushev%2C+T">T. Aushev</a>, <a href="/search/physics?searchtype=author&amp;query=Aziz%2C+T">T. Aziz</a>, <a href="/search/physics?searchtype=author&amp;query=Bakich%2C+A+M">A. M. Bakich</a>, <a href="/search/physics?searchtype=author&amp;query=Balagura%2C+V">V. Balagura</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Barberio%2C+E">E. Barberio</a>, <a href="/search/physics?searchtype=author&amp;query=Barvich%2C+T">T. Barvich</a>, <a href="/search/physics?searchtype=author&amp;query=Belous%2C+K">K. Belous</a>, <a href="/search/physics?searchtype=author&amp;query=Bergauer%2C+T">T. Bergauer</a>, <a href="/search/physics?searchtype=author&amp;query=Bhardwaj%2C+V">V. Bhardwaj</a> , et al. (387 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.0352v1-abstract-short" style="display: inline;"> The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.0352v1-abstract-full').style.display = 'inline'; document.getElementById('1011.0352v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.0352v1-abstract-full" style="display: none;"> The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been proposed. A new international collaboration Belle-II, is being formed. The Technical Design Report presents physics motivation, basic methods of the accelerator upgrade, as well as key improvements of the detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.0352v1-abstract-full').style.display = 'none'; document.getElementById('1011.0352v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Edited by: Z. Dole啪al and S. Uno</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK Report 2010-1 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0911.0986">arXiv:0911.0986</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0911.0986">pdf</a>, <a href="https://arxiv.org/ps/0911.0986">ps</a>, <a href="https://arxiv.org/format/0911.0986">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2009.09.026">10.1016/j.nima.2009.09.026 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-speed charge-to-time converter ASIC for the Super-Kamiokande detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nishino%2C+H">H. Nishino</a>, <a href="/search/physics?searchtype=author&amp;query=Awai%2C+K">K. Awai</a>, <a href="/search/physics?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/physics?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/physics?searchtype=author&amp;query=Okumura%2C+K">K. Okumura</a>, <a href="/search/physics?searchtype=author&amp;query=Shiozawa%2C+M">M. Shiozawa</a>, <a href="/search/physics?searchtype=author&amp;query=Takeda%2C+A">A. Takeda</a>, <a href="/search/physics?searchtype=author&amp;query=Ishikawa%2C+K">K. Ishikawa</a>, <a href="/search/physics?searchtype=author&amp;query=Minegishi%2C+A">A. Minegishi</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+Y">Y. Arai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0911.0986v1-abstract-short" style="display: inline;"> A new application-specific integrated circuit (ASIC), the high-speed charge-to-time converter (QTC) IWATSU CLC101, provides three channels, each consisting of preamplifier, discriminator, low-pass filter, and charge integration circuitry, optimized for the waveform of a photomultiplier tube (PMT). This ASIC detects PMT signals using individual built-in discriminators and drives output timing sig&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0911.0986v1-abstract-full').style.display = 'inline'; document.getElementById('0911.0986v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0911.0986v1-abstract-full" style="display: none;"> A new application-specific integrated circuit (ASIC), the high-speed charge-to-time converter (QTC) IWATSU CLC101, provides three channels, each consisting of preamplifier, discriminator, low-pass filter, and charge integration circuitry, optimized for the waveform of a photomultiplier tube (PMT). This ASIC detects PMT signals using individual built-in discriminators and drives output timing signals whose width represents the integrated charge of the PMT signal. Combined with external input circuits composed of passive elements, the QTC provides full analog signal processing for the detector&#39;s PMTs, ready for further processing by time-to-digital converters (TDCs). High-rate (&gt;1MHz) signal processing is achieved by short-charge-conversion-time and baseline-restoration circuits. Wide-range charge measurements are enabled by offering three gain ranges while maintaining a short cycle time. QTC chip test results show good analog performance, with efficient detection for a single photoelectron signal, four orders of magnitude dynamic range (0:3mV ~ 3V; 0:2 ~ 2500 pC), 1% charge linearity, 0.2 pC charge resolution, and 0.1 ns timing resolution. Test results on ambient temperature dependence, channel isolation, and rate dependence also meet specifications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0911.0986v1-abstract-full').style.display = 'none'; document.getElementById('0911.0986v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 19 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Instrum.Meth.A610:710-717,2009 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10