CINXE.COM

Search results for: postharvest management

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: postharvest management</title> <meta name="description" content="Search results for: postharvest management"> <meta name="keywords" content="postharvest management"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="postharvest management" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="postharvest management"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9627</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: postharvest management</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9627</span> Postharvest Losses and Handling Improvement of Organic Pak-Choi and Choy Sum </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pichaya%20Poonlarp">Pichaya Poonlarp</a>, <a href="https://publications.waset.org/abstracts/search?q=Danai%20Boonyakiat"> Danai Boonyakiat</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Chuamuangphan"> C. Chuamuangphan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Chanta"> M. Chanta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current consumers’ behavior trends have changed towards more health awareness, the well-being of society and interest of nature and environment. The Royal Project Foundation is, therefore, well aware of organic agriculture. The project only focused on using natural products and utilizing its highland biological merits to increase resistance to diseases and insects for the produce grown. The project also brought in basic knowledge from a variety of available research information, including, but not limited to, improvement of soil fertility and a control of plant insects with biological methods in order to lay a foundation in developing and promoting farmers to grow quality produce with a high health safety. This will finally lead to sustainability for future highland agriculture and a decrease of chemical use on the highland area which is a source of natural watershed. However, there are still shortcomings of the postharvest management in term of quality and losses, such as bruising, rottenness, wilting and yellowish leaves. These losses negatively affect the maintenance and a shelf life of organic vegetables. Therefore, it is important that a research study of the appropriate and effective postharvest management is conducted for an individual organic vegetable to minimize product loss and find root causes of postharvest losses which would contribute to future postharvest management best practices. This can be achieved through surveys and data collection from postharvest processes in order to conduct analysis for causes of postharvest losses of organic pak-choi, baby pak-choi, and choy sum. Consequently, postharvest losses reduction strategies of organic vegetables can be achieved. In this study, postharvest losses of organic pak choi, baby pak-choi, and choy sum were determined at each stage of the supply chain starting from the field after harvesting, at the Development Center packinghouse, at Chiang Mai packinghouse, at Bangkok packing house and at the Royal Project retail shop in Chiang Mai. The results showed that postharvest losses of organic pak-choi, baby pak-choi, and choy sum were 86.05, 89.05 and 59.03 percent, respectively. The main factors contributing to losses of organic vegetables were due to mechanical damage and underutilized parts and/or short of minimum quality standard. Good practices had been developed after causes of losses were identified. Appropriate postharvest handling and management, for example, temperature control, hygienic cleaning, and reducing the duration of the supply chain, postharvest losses of all organic vegetables should be able to remarkably reduced postharvest losses in the supply chain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=postharvest%20losses" title="postharvest losses">postharvest losses</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20vegetables" title=" organic vegetables"> organic vegetables</a>, <a href="https://publications.waset.org/abstracts/search?q=handling%20improvement" title=" handling improvement"> handling improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf%20life" title=" shelf life"> shelf life</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a> </p> <a href="https://publications.waset.org/abstracts/92052/postharvest-losses-and-handling-improvement-of-organic-pak-choi-and-choy-sum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9626</span> Enhancing Postharvest Quality and Shelf-Life of Leaf Lettuce (Lactuca sativa L.) by Altering Growing Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung-Soo%20Lee">Jung-Soo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ujjal%20Kumar%20Nath"> Ujjal Kumar Nath</a>, <a href="https://publications.waset.org/abstracts/search?q=IllSup%20Nou"> IllSup Nou</a>, <a href="https://publications.waset.org/abstracts/search?q=Dulal%20Chandra"> Dulal Chandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leaf lettuce is one of the most important leafy vegetables that is used as raw for salad and part of everyday dishes in many parts of the world including Asian countries. Since it is used as fresh, its quality maintenance is crucial which depends on several pre- and postharvest factors. In order to investigate the effects of pre-fix factors on the postharvest quality, the interaction of pre-fix factors such as growing conditions and fixed factor like cultivars were evaluated. Four Korean leaf lettuce cultivars ‘Cheongchima’, ‘Cheongchuckmyeon’, ‘Geockchima’ and ‘Geockchuckmyeon’ were grown under natural condition (as control) and altered growing condition (green house) with excess soil water and 50% shading to monitor their postharvest qualities. Several growth parameters like plant height, number of leaves, leaf thickness, fresh biomass yield as well as postharvest qualities like fresh weight loss, respiration rate, changes in color and shelf-life were measured in lettuce during storage up to 36 days at 5°C. Plant height and the number of leaves were affected by both pre-fix growing conditions as well as the cultivars. However, fresh biomass yield was affected by only growing condition, whereas leaf thickness was affected by cultivars. Additionally, the degrees of fresh weight loss and respiration rate of leaf lettuce at postharvest stages were influenced by pre-fix growing conditions and cultivars. However, changes in color of leaves during storage were less remarkable in samples harvested from of ‘Cheongchima’ and ‘Cheongchuckmyeon’ cultivars grown in excess watering with 50% shade than that grown in control condition. Consequently, these two cultivars also showed longer shelf-life when they were grown in excess watering with 50% shade than other cultivars or samples were grown in control condition. Based on the measured parameters, it can be concluded that postharvest quality of leaf lettuce might be accelerated by growing lettuce under excess soil water with 50% shading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cultivar" title="cultivar">cultivar</a>, <a href="https://publications.waset.org/abstracts/search?q=growing%20condition" title=" growing condition"> growing condition</a>, <a href="https://publications.waset.org/abstracts/search?q=leaf%20lettuce" title=" leaf lettuce"> leaf lettuce</a>, <a href="https://publications.waset.org/abstracts/search?q=postharvest%20quality" title=" postharvest quality"> postharvest quality</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf-life" title=" shelf-life "> shelf-life </a> </p> <a href="https://publications.waset.org/abstracts/71335/enhancing-postharvest-quality-and-shelf-life-of-leaf-lettuce-lactuca-sativa-l-by-altering-growing-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9625</span> Effects of Grape Seed Oil on Postharvest Life and Quality of Some Grape Cultivars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeki%20Kara">Zeki Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevser%20Yazar"> Kevser Yazar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Table grapes (<em>Vitis vinifera</em> L.) are an important crop worldwide. Postharvest problems like berry shattering, decay and stem dehydration are some of the important factors that limit the marketing of table grapes. Edible coatings are an alternative for increasing shelf-life of fruits, protecting fruits from humidity and oxygen effects, thus retarding their deterioration. This study aimed to compare different grape seed oil applications (GSO, 0.5 g L<sup>-1</sup>, 1 g L<sup>-1</sup>, 2 g L<sup>-1</sup>) and SO<sub>2</sub> generating pads effects (SO<sub>2</sub>-1, SO<sub>2</sub>-2). Treated grapes with GSO and generating pads were packaged into polyethylene trays and stored at 0 &plusmn; 1&deg;C and 85-95% moisture. Effects of the applications were investigated by some quality and sensory evaluations with intervals of 15 days. SO<sub>2</sub> applications were determined the most effective treatments for minimizing weight loss and changes in TA, pH, color and appearance value. Grape seed oil applications were determined as a good alternative for grape preservation, improving weight losses and &deg;Brix, TA, the color values and sensory analysis. Commercially, &lsquo;Alphonse Lavall&eacute;e&rsquo; clusters were stored for 75 days and &lsquo;Antep Karası&rsquo; clusters for 60 days. The data obtained from GSO indicated that it had a similar quality result to SO<sub>2</sub> for up to 40 days storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=postharvest" title="postharvest">postharvest</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20analyses" title=" sensory analyses"> sensory analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitis%20vinifera%20L." title=" Vitis vinifera L."> Vitis vinifera L.</a> </p> <a href="https://publications.waset.org/abstracts/104422/effects-of-grape-seed-oil-on-postharvest-life-and-quality-of-some-grape-cultivars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9624</span> Prospects in Development of Ecofriendly Biopesticides in Management of Postharvest Fungal Deterioration of Cassava (Manihot esculenta Crantz)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anderson%20Chidi%20Amadioha">Anderson Chidi Amadioha</a>, <a href="https://publications.waset.org/abstracts/search?q=Promise%20Chidi%20Kenkwo"> Promise Chidi Kenkwo</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Markson"> A. A. Markson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cassava (Manihot esculenta Crantz) is an important food and cash crop that provide cheap source of carbohydrate for food, feed and raw material for industries hence a commodity for feature economic development of developing countries. Despite the importance, its production potentials is undermined by disease agents that greatly reduce yield and render it unfit for human consumption and industrial use. Pathogenicity tests on fungal isolates from infected cassava revealed Aspergillus flavus, Rhizopus stolonifer, Aspergillus niger, and Trichodderma viride as rot-causing organisms. Water and ethanol extracts of Piper guineense, Ocimum graticimum, Cassia alata, and Tagetes erecta at 50% concentration significantly inhibited the radial growth of the pathogens in vitro and their development and spread in vivo. Low cassava rot incidence and severity was recorded when the extracts were applied before than after spray inoculating with spore suspension (1x105 spores/ml of distilled water) of the pathogenic organisms. The plant materials are readily available, and their extracts are biodegradable and cost effective. The fungitoxic potentials of extracts of these plant materials could be exploited as potent biopesticides in the management of postharvest fungal deterioration of cassava especially in developing countries where synthetic fungicides are not only scarce but also expensive for resource poor farmers who produce over 95% of the food consumed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cassava" title="cassava">cassava</a>, <a href="https://publications.waset.org/abstracts/search?q=biopesticides" title=" biopesticides"> biopesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro" title=" in vitro"> in vitro</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vivo" title=" in vivo"> in vivo</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogens" title=" pathogens"> pathogens</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20extracts" title=" plant extracts"> plant extracts</a> </p> <a href="https://publications.waset.org/abstracts/86781/prospects-in-development-of-ecofriendly-biopesticides-in-management-of-postharvest-fungal-deterioration-of-cassava-manihot-esculenta-crantz" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9623</span> Potential for Biological Control of Postharvest Fungal Rot of White Yam (Dioscorea rotundata Poir) Tubers in Storage with Trichoderma harzianum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20Iorungwa%20Gwa">Victor Iorungwa Gwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebenezer%20Jonathan%20Ekefan"> Ebenezer Jonathan Ekefan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Potential of Trichoderma harzianum for biological control of postharvest fungal rot of white yam (Dioscorea rotundata Poir) tubers in storage was studied. Pathogenicity test revealed the susceptibility of healthy looking yam tubers to Aspergillus niger, Botryodiplodia theobromae, and Fusarium oxysporum f. sp. melonganae after fourteen days of inoculation. Treatments comprising A. niger, B. theobromae, and F. oxysporum each paired with T. harzianum and were arranged in completely randomized design and stored for five months. Experiments were conducted between December 2015 and April 2016 and December 2016 and April 2017. Results showed that tubers treated with the pathogenic fungi alone caused mean percentage rot of between 6.67 % (F. oxysporum) and 22.22 % (A. niger) while the paired treatments produced only between 2.22 % (T. harzianum by F. oxysporum) and 6.67 % (T. harzianum by A. niger). In the second year of storage, mean percentage rot was found to be between 13.33 % (F. oxysporum) and 28.89 % (A. niger) while in the paired treatment rot was only between 6.67 % (F. oxysporum) and 8.89% (A. niger). Tubers treated with antagonist alone produced 0.00 % and 2.22 % in the first and second year, respectively. Result revealed that there was a significant difference (P ≤ 0.05) in mean percentage rot between the first year and the second year except where B. theobromae was inoculated alone, A. niger and T. harzianum paired and B. theobromae and T. harzianum paired. The most antagonised fungus in paired treatment for both years was F. oxysporum f. sp. melonganae, while the least antagonised, was A. niger and B. theobromae. It is, therefore, concluded that T. harzianum has potentials to control rot causing pathogens of yam tubers in storage. This can compliment or provide better alternative ways of reducing rot in yam tubers than by the use of chemical fungicides which are not environmentally friendly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20control" title="biological control">biological control</a>, <a href="https://publications.waset.org/abstracts/search?q=fungal%20rot" title=" fungal rot"> fungal rot</a>, <a href="https://publications.waset.org/abstracts/search?q=postharvest" title=" postharvest"> postharvest</a>, <a href="https://publications.waset.org/abstracts/search?q=Trichoderma%20harzianum" title=" Trichoderma harzianum"> Trichoderma harzianum</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20yam" title=" white yam"> white yam</a> </p> <a href="https://publications.waset.org/abstracts/122946/potential-for-biological-control-of-postharvest-fungal-rot-of-white-yam-dioscorea-rotundata-poir-tubers-in-storage-with-trichoderma-harzianum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9622</span> Investigation of Active Modified Atmosphere and Nanoparticle Packaging on Quality of Tomatoes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ghasemi-Varnamkhasti">M. Ghasemi-Varnamkhasti</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Yoosefian"> S. H. Yoosefian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mohammad-Razdari"> A. Mohammad-Razdari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the effects of Ag nanoparticle polyethylene film and active modified atmosphere on the postharvest quality of tomatoes stored at 6 &ordm;C. The atmosphere composition used in the packaging was 7% O<sub>2</sub> + 7% CO<sub>2 </sub>+ 86% N<sub>2</sub>, and synthetic air (control). The variables measured were weight loss, firmness, color and respiration rate over 21 days. The results showed that the combination of Ag nanoparticle polyethylene film and modified atmosphere could extend the shelf life of tomatoes to 21 days and could influence the postharvest quality of tomatoes. Also, existence of Ag nanoparticles caused preventing from increasing weight loss, a*, b*, Chroma, Hue angle and reducing firmness and L*. As well as, tomatoes at Ag nanoparticle polyethylene films had lower respiration rate than Polyethylene and paper bags to 13.27% and 23.50%, respectively. The combination of Ag nanoparticle polyethylene film and active modified atmosphere was effective with regard to delaying maturity during the storage period, and preserving the quality of tomatoes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ag%20nanoparticles" title="ag nanoparticles">ag nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20atmosphere" title=" modified atmosphere"> modified atmosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene%20film" title=" polyethylene film"> polyethylene film</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato" title=" tomato"> tomato</a> </p> <a href="https://publications.waset.org/abstracts/54383/investigation-of-active-modified-atmosphere-and-nanoparticle-packaging-on-quality-of-tomatoes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9621</span> Production of Bacillus Lipopeptides for Biocontrol of Postharvest Crops</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vivek%20Rangarajan">Vivek Rangarajan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20G.%20Klarke"> Kim G. Klarke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With overpopulation threatening the world’s ability to feed itself, food production and protection has become a major issue, especially in developing countries. Almost one-third of the food produced for human consumption, around 1.3 billion tonnes, is either wasted or lost annually. Postharvest decay in particular constitutes a major cause of crop loss with about 20% of fruits and vegetables produced lost during postharvest storage, mainly due to fungal disease. Some of the major phytopathogenic fungi affecting postharvest fruit crops in South Africa include Aspergillus, Botrytis, Penicillium, Alternaria and Sclerotinia spp. To date control of fungal phytopathogens has primarily been dependent on synthetic chemical fungicides, but these chemicals pose a significant threat to the environment, mainly due to their xenobiotic properties and tendency to generate resistance in the phytopathogens. Here, an environmentally benign alternative approach to control postharvest fungal phytopathogens in perishable fruit crops has been presented, namely the application of a bio-fungicide in the form of lipopeptide molecules. Lipopeptides are biosurfactants produced by Bacillus spp. which have been established as green, nontoxic and biodegradable molecules with antimicrobial properties. However, since the Bacillus are capable of producing a large number of lipopeptide homologues with differing efficacies against distinct target organisms, the lipopeptide production conditions and strategy are critical to produce the maximum lipopeptide concentration with homologue ratios to specification for optimum bio-fungicide efficacy. Process conditions, and their impact on Bacillus lipopeptide production, were evaluated in fully instrumented laboratory scale bioreactors under well-regulated controlled and defined environments. Factors such as the oxygen availability and trace element and nitrate concentrations had profound influences on lipopeptide yield, productivity and selectivity. Lipopeptide yield and homologue selectivity were enhanced in cultures where the oxygen in the sparge gas was increased from 21 to 30 mole%. The addition of trace elements, particularly Fe2+, increased the total concentration of lipopeptides and a nitrate concentration equivalent to 8 g/L ammonium nitrate resulted in optimum lipopeptide yield and homologue selectivity. Efficacy studies of the culture supernatant containing the crude lipopeptide mixture were conducted using phytopathogens isolated from fruit in the field, identified using genetic sequencing. The supernatant exhibited antifungal activity against all the test-isolates, namely Lewia, Botrytis, Penicillium, Alternaria and Sclerotinia spp., even in this crude form. Thus the lipopeptide product efficacy has been confirmed to control the main diseases, even in the basic crude form. Future studies will be directed towards purification of the lipopeptide product and enhancement of efficacy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antifungal%20efficacy" title="antifungal efficacy">antifungal efficacy</a>, <a href="https://publications.waset.org/abstracts/search?q=biocontrol" title=" biocontrol"> biocontrol</a>, <a href="https://publications.waset.org/abstracts/search?q=lipopeptide%20production" title=" lipopeptide production"> lipopeptide production</a>, <a href="https://publications.waset.org/abstracts/search?q=perishable%20crops" title=" perishable crops"> perishable crops</a> </p> <a href="https://publications.waset.org/abstracts/59838/production-of-bacillus-lipopeptides-for-biocontrol-of-postharvest-crops" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9620</span> Post Harvest Losses and Food Security in Northeast Nigeria What Are the Key Challenges and Concrete Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adebola%20Adedugbe">Adebola Adedugbe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The challenge of post-harvest losses poses serious threats for food security in Nigeria and the north-eastern part with the country losing about $9billion annually due to postharvest losses in the sector. Post-harvest loss (PHL) is the quantitative and qualitative loss of food in various post-harvest operations. In Nigeria, post-harvest losses (PHL) have been a major challenge to food security and improved farmer’s income. In 2022, the Nigerian government had said over 30 percent of food produced by Nigerian farmers perish during post-harvest. For many in northeast Nigeria, agriculture is the predominant source of livelihood and income. The persistent communal conflicts, flood, decade-old attacks by boko haram and insurgency in this region have disrupted farming activities drastically, with farmlands becoming insecure and inaccessible as communities are forced to abandon ancestral homes, The impact of climate change is also affecting agricultural and fishing activities, leading to shortage of food supplies, acute hunger and loss of livelihood. This has continued to impact negatively on the region and country’s food production and availability making it loose billions of US dollars annually in income in this sector. The root cause of postharvest losses among others in crops, livestock and fisheries are lack of modern post-harvest equipment, chemical and lack of technologies used for combating losses. The 2019 Global Hunger Index showed Nigeria’s case was progressing from a ‘serious to alarming level’. As part of measures to address the problem of post-harvest losses experienced by farmers, the federal government of Nigeria concessioned 17 silos with 6000 metric tonne storage space to private sector to enable farmers to have access to storage facilities. This paper discusses the causes, effects and solutions in handling post-harvest losses and optimize returns on food security in northeast Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=farmers" title="farmers">farmers</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20security" title=" food security"> food security</a>, <a href="https://publications.waset.org/abstracts/search?q=northeast%20Nigeria" title=" northeast Nigeria"> northeast Nigeria</a>, <a href="https://publications.waset.org/abstracts/search?q=postharvest%20loss" title=" postharvest loss"> postharvest loss</a> </p> <a href="https://publications.waset.org/abstracts/168603/post-harvest-losses-and-food-security-in-northeast-nigeria-what-are-the-key-challenges-and-concrete-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9619</span> Preharvest and Postharvest Factors Influencing Resveratrol, Myricetin and Quercetin Content of Wine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Khomasuridze">Mariam Khomasuridze</a>, <a href="https://publications.waset.org/abstracts/search?q=Nino%20Chkhartishvili"> Nino Chkhartishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Irma%20Chanturia"> Irma Chanturia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of preharvest and postharvest factors on resveratrol, myricetin and quercetin content of wine was studied during the experiment. The content of cis and trans resveratrol, myricetin and quercetin were analyzed by HPLC. In frame of experiment, the various factors affecting on wine composition were researched: variety, climate, viticulture practices, grape maturity, harvesting methods and wine making techniques. The results have shown that varietal potential and amount of yield play the most important role in formation of antioxidant compounds. Based on achieved results, the usage of medium roast oak chips protects resveratrol, myricetin, and quercetin from coagulation and precipitation. Compared to the control samples, the wines, produced by addition of oak chips were approximately four times richer with these antioxidant compounds. The retention of resveratrol was lowered with 45 % in wines, producing in Qvevri by Georgian traditional technology without controlling temperature during fermentation. The opposite effects in case of myricetin, quercetin and total phenolics content were determined. Their concentrations were higher with 56-78%, then in the fermented tank at 22 -25 °C. As the result of the experiment, the optimal technology scheme of wine was worked out, reached by biologically active compounds: resveratrol, myricetin, and quercetin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resveratrol" title="resveratrol">resveratrol</a>, <a href="https://publications.waset.org/abstracts/search?q=miricetin" title=" miricetin"> miricetin</a>, <a href="https://publications.waset.org/abstracts/search?q=quercetin" title=" quercetin"> quercetin</a>, <a href="https://publications.waset.org/abstracts/search?q=wine" title=" wine"> wine</a> </p> <a href="https://publications.waset.org/abstracts/76391/preharvest-and-postharvest-factors-influencing-resveratrol-myricetin-and-quercetin-content-of-wine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9618</span> Biological Control of Blue Mold Disease of Grapes by Pichia anomala Supplemented by Chitosan and Its Possible Control Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esa%20Abiso%20Godana">Esa Abiso Godana</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiya%20%20Yang"> Qiya Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaili%20Wang"> Kaili Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Hongyin"> Zhang Hongyin</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoyun%20Zhang"> Xiaoyun Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20%20Zhao"> Lina Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Blue mold decay caused by Penicillium expansum is among the recent identified diseases of grapes (Vitis vinifera). The increasing concern about use of chemical substance and pesticide in postharvest fruit push the trends of research toward biocontrol strategies which are more sustainable and ecofriendly. In this study, we determined the biocontrol efficacy of Pichia anomala alone and supplemented with 1% chitosan in the grapefruit against blue mold disease caused by P. expansum. The result showed that 1% chitosan better enhances the biocontrol efficacy P. anomala. Chitosan (1% w/v) also improved the number of population of P. anomala in grape wounds, surface and on nutrient yeast dextrose broth (NYDB). P. anomala supplemented with 1% w/v chitosan significantly reduced the disease incidence, lesion diameter and natural decay of grapefruits without affecting the fruit quality as compared to the control. The scanned electron microscope (SEM) concisely illustrates how the high number of yeast cells on the wounds reduced the growth of P. expansum. P. anomala alone or P. anomala supplemented with 1% w/v chitosan are presented as a potential biocontrol alternative against the postharvest blue mold of grapefruit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocontrol" title="biocontrol">biocontrol</a>, <a href="https://publications.waset.org/abstracts/search?q=Pichia%20anomala" title=" Pichia anomala"> Pichia anomala</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=Penicillium%20expansum" title=" Penicillium expansum"> Penicillium expansum</a>, <a href="https://publications.waset.org/abstracts/search?q=grape" title=" grape"> grape</a> </p> <a href="https://publications.waset.org/abstracts/118815/biological-control-of-blue-mold-disease-of-grapes-by-pichia-anomala-supplemented-by-chitosan-and-its-possible-control-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9617</span> Effects of Multilayer Coating of Chitosan and Polystyrene Sulfonate on Quality of ‘Nam Dok Mai No.4’ Mango </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Hadthamard">N. Hadthamard</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Chaumpluk"> P. Chaumpluk</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Buanong"> M. Buanong</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Boonyaritthongchai"> P. Boonyaritthongchai</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Wongs-Aree"> C. Wongs-Aree</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ripe &lsquo;Nam Dok Mai&rsquo; mango (<em>Mangifera indica</em> L.) is an important exported fruit of Thailand, but rapidly declined in the quality attributes mainly by infection of anthracnose and stem end rot diseases. Multilayer coating is considered as a developed technique to maintain the postharvest quality of mangoes. The utilization of alternated coating by matching oppositely electrostatic charges between 0.1% chitosan and 0.1% polystyrene sulfonate (PSS) was studied. A number of the coating layers (layer by layer) were applied on mature green &lsquo;Nam Dok Mai No.4&rsquo; mangoes prior to storage at 25 <sup>o</sup>C, 65-70% relative humidity (RH). There were significant differences in some quality attributes of mangoes coated by 3&frac12; layers, 4&frac12; layers and 5&frac12; layers. In comparison to coated mangoes, uncoated fruits were higher in weight loss, total soluble solids, respiration rate, ethylene production and disease incidence except the titratable acidity. Coating fruit at 3&frac12; layers exhibited the ripening delay and reducing disease infection without off flavour. On the other hand, fruit coated with 5&frac12; layers comprised the lowest acceptable score, caused by exhibiting disorders from fermentation at the end of storage. As a result, multilayer coating between chitosan and PSS could effectively maintain the postharvest quality of mango, but number of coating layers should be thoroughly considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multilayer" title="multilayer">multilayer</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=polystyrene%20sulfonate" title=" polystyrene sulfonate"> polystyrene sulfonate</a>, <a href="https://publications.waset.org/abstracts/search?q=Nam%20Dok%20Mai%20No.4" title=" Nam Dok Mai No.4"> Nam Dok Mai No.4</a> </p> <a href="https://publications.waset.org/abstracts/96341/effects-of-multilayer-coating-of-chitosan-and-polystyrene-sulfonate-on-quality-of-nam-dok-mai-no4-mango" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9616</span> Melatonin Improved Vase Quality by Delaying Oxidation Reaction and Supplying More Energies in Cut Peony (Paeonia Lactiflora cv. Sarah)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tai%20Chen">Tai Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Caihuan%20Tian"> Caihuan Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiuxia%20Ren"> Xiuxia Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingqi%20Xue"> Jingqi Xue</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiuxin%20Zhang"> Xiuxin Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The herbaceous peony has become increasingly popular worldwide in recent years, especially as a cut flower with great economic value. However, peony has a very short vase life, only 3-5 d usually, which seriously affects its commodity value. In this study, we used the cut peony (Paeonia lactiflora cv. Sarah) as a material and found that melatonin treatment significantly improved its postharvest performance. In the control group, its vase life was 4.8 d, accompanied by petal dropping at last; melatonin treatment (40 μM) increased this time to 6.9 d without petal dropping at the end. Further study showed that melatonin treatment significantly increased the activity of antioxidant enzymes as well as reduced sugar content in petals, whereas the starch content in petals decreased. These results indicated that melatonin treatment may delay the oxidation reaction caused by aging, which also provides extra energy for maintaining flowering. Through full-length transcriptome sequencing, a total of 2819 differentially expressed genes (DEGs) between control and melatonin treatment groups were identified. KEGG enrichment analysis showed that these DEGs were mainly involved in three pathways, including melatonin synthesis, starch and sucrose conversion, and plant disease resistance. After the RT-qPCR verification, we identified three DEGs, named PlBAM3, PlWRKY22 and PlTIP1, and they should play major roles in melatonin-improved postharvest performance. One possible reason is that PlBAM3 caused maltose production (by starch degradation), maintained the proline biosynthesis, and then alleviated oxidative stress. Another reason is that both PlBAM3 and PlWRKY22 are key drought resistance regulators, which have the ability to alleviate osmotic stress and improve water absorption, which may also help to improve the postharvest quality of cut peony. In addition, PlTIP1 is involved in the sugar signal pathway, indicating sugar may also as a signal substance during this process. Our work may give new ideas for developing new ways to prolong the vase life of cut peony and improve its commodity value eventually. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cut%20peony" title="cut peony">cut peony</a>, <a href="https://publications.waset.org/abstracts/search?q=melatonin" title=" melatonin"> melatonin</a>, <a href="https://publications.waset.org/abstracts/search?q=vase%20life" title=" vase life"> vase life</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation%20reaction" title=" oxidation reaction"> oxidation reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20supply" title=" energy supply"> energy supply</a>, <a href="https://publications.waset.org/abstracts/search?q=differentially%20expressed%20genes" title=" differentially expressed genes"> differentially expressed genes</a> </p> <a href="https://publications.waset.org/abstracts/186344/melatonin-improved-vase-quality-by-delaying-oxidation-reaction-and-supplying-more-energies-in-cut-peony-paeonia-lactiflora-cv-sarah" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9615</span> Evaluation of Low Temperature as Treatment Tool for Eradication of Mediterranean Fruit Fly (Ceratitis capitata) in Artificial Diet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farhan%20J.%20M.%20Al-Behadili">Farhan J. M. Al-Behadili</a>, <a href="https://publications.waset.org/abstracts/search?q=Vineeta%20Bilgi"> Vineeta Bilgi</a>, <a href="https://publications.waset.org/abstracts/search?q=Miyuki%20Taniguchi"> Miyuki Taniguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Junxi%20Li"> Junxi Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Xu"> Wei Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mediterranean fruit fly (Ceratitis capitata) is one of the most destructive pests of fruits and vegetables. Medfly originated from Africa and spread in many countries, and is currently an endemic pest in Western Australia. Medfly has been recorded from over 300 plant species including fruits, vegetables, nuts and its main hosts include blueberries, citrus, stone fruit, pome fruits, peppers, tomatoes, and figs. Global trade of fruits and other farm fresh products are suffering from the damages of this pest, which prompted towards the need to develop more effective ways to control these pests. The available quarantine treatment technologies mainly include chemical treatment (e.g., fumigation) and non-chemical treatments (e.g., cold, heat and irradiation). In recent years, with the loss of several chemicals, it has become even more important to rely on non-chemical postharvest control technologies (i.e., heat, cold and irradiation) to control fruit flies. Cold treatment is one of the most potential trends of focus in postharvest treatment because it is free of chemical residues, mitigates or kills the pest population, increases the strength of the fruits, and prolongs storage time. It can also be applied to fruits after packing and ‘in transit’ during lengthy transport by sea during their exports. However, limited systematic study on cold treatment of Medfly stages in artificial diets was reported, which is critical to provide a scientific basis to compare with previous research in plant products and design an effective cold treatment suitable for exported plant products. The overall purpose of this study was to evaluate and understand Medfly responses to cold treatments. Medfly stages were tested. The long-term goal was to optimize current postharvest treatments and develop more environmentally-friendly, cost-effective, and efficient treatments for controlling Medfly. Cold treatment with different exposure times is studied to evaluate cold eradication treatment of Mediterranean fruit fly (Ceratitis capitata), that reared on carrot diet. Mortality is important aspect was studied in this study. On the other hand, study effects of exposure time on mortality means of medfly stages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20treatment" title="cold treatment">cold treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20fly" title=" fruit fly"> fruit fly</a>, <a href="https://publications.waset.org/abstracts/search?q=Ceratitis%20capitata" title=" Ceratitis capitata"> Ceratitis capitata</a>, <a href="https://publications.waset.org/abstracts/search?q=carrot%20diet" title=" carrot diet"> carrot diet</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20effects" title=" temperature effects"> temperature effects</a> </p> <a href="https://publications.waset.org/abstracts/74212/evaluation-of-low-temperature-as-treatment-tool-for-eradication-of-mediterranean-fruit-fly-ceratitis-capitata-in-artificial-diet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9614</span> Surface Sterilization Retain Postharvest Quality and Shelf Life of Strawberry and Cherry Tomato during Modified Atmosphere Packaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ju%20Young%20Kim">Ju Young Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Zahirul%20Islam"> Mohammad Zahirul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmuda%20Akter%20Mele"> Mahmuda Akter Mele</a>, <a href="https://publications.waset.org/abstracts/search?q=Su%20Jeong%20Han"> Su Jeong Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyuk%20Sung%20Yoon"> Hyuk Sung Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Lee%20Choi"> In-Lee Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ho-Min%20Kang"> Ho-Min Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Strawberry and tomato fruits were harvested at the red ripens maturity stage in the Republic of Korea. The fruits were dipped in fungi solution and afterwards were sterilized with sodium hypochlorite (NaOCl) and chlorine dioxide (ClO2) gas. Some fruits were dipped in 150μL/L NaOCl solution for 10 minutes, and others were treated with 5μL/L ClO2 gas for 12 hours and packed with 20,000 cc OTR (oxygen transmission rate) film, the rest were packed in 10,000 cc OTR film inserted with 5μL/L ClO2 gas. 5μL/L ClO2 gas insert treatment showed the lowest carbon dioxide and ethylene, and the highest oxygen concentration was on the final storage day (15th day) in both strawberry and tomato fruits. Tomato fruits showed the lowest fresh weight loss in 5μL/L ClO2 gas insert treatment. The visual quality as well as shelf life showed the highest in 5μL/L ClO2 gas insert treatment of both strawberry and tomato fruits. In addition, the fungal incidence of strawberry and tomato fruits were the most suppressed in 5μL/L ClO2 gas insert treatment. 5μL/L ClO2 gas insert treatment showed higher firmness and soluble solids in both strawberry and tomato fruits. So, 5μL/L ClO2 gas insert treatment may be useful to prevent the fungal incidence as well as retaining the postharvest quality, and increase the shelf life of strawberry and tomato fruits for long term storage. This study was supported by Export Promotion Technology Development Program (314027-03), IPET, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chlorine%20dioxide" title="chlorine dioxide">chlorine dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene" title=" ethylene"> ethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hypochlorite" title=" sodium hypochlorite"> sodium hypochlorite</a> </p> <a href="https://publications.waset.org/abstracts/67444/surface-sterilization-retain-postharvest-quality-and-shelf-life-of-strawberry-and-cherry-tomato-during-modified-atmosphere-packaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9613</span> Response of Post-harvest Treatments on Shelf Life, Biochemical and Microbial Quality of Banana Variety Red Banana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karishma%20Sebastian">Karishma Sebastian</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavethra%20A."> Pavethra A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Manjula%20B.%20S."> Manjula B. S.</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20N.%20Satheeshan"> K. N. Satheeshan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jenita%20Thinakaran"> Jenita Thinakaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Red Banana is a popular variety of banana with strong market demand. Its ripe fruits are less resistant to transportation, complicating logistics. Moreover, as it is a climacteric fruit, its post-harvest shelf life is limited. The current study aimed to increase the postharvest shelf life of Red Banana fruits by adopting different postharvest treatments. Fruit bunches of Red Banana were harvested at the mature green stage, separated into hands, precooled, subjected to 12 treatments, and stored in Corrugated Fibre Board boxes till the end of shelf life under ambient conditions. Fruits coated with 10% bee wax + 0.5% clove oil (T₄), fruits subjected to coating with 10% bee wax and packaging with potassium permanganate (T₉), and fruits dipped in hot water at 50°C for 10 minutes and packaging with potassium permanganate (T₁₁) registered the highest shelf life of 18.67 days. The highest TSS of 26.33°Brix was noticed in fruits stored with potassium permanganate (T₈) after 12.67 days of storage, and lowest titratable acidity of 0.19%, and the highest sugar-acid ratio of 79.76 was noticed in control (T₁₂) after 11.33 days of storage. Moreover, the highest vitamin C content (7.74 mg 100 g⁻¹), total sugar content (18.47%), reducing sugar content (15.49%), total carotenoid content (24.13 µg 100 g-¹) was noticed in treatments T₇ (hot water dipping at 50 °C for 10 minutes) after 17.67 days, T₁₀ (coating with 40% aloe vera extract and packaged with potassium permanganate) after 13.33 days, T₄ (coating with 10% bee wax + 0.5% clove oil) after 18.67 days and T₉ (coating with 10% bee wax + potassium permanganate) after 18.67 days of storage respectively. Furthermore, the lowest fungal and bacterial counts were observed in treatments T₂ (dipping in 30ppm sodium hypochlorite solution), T₇ (hot water dipping at 50 °C for 10 minutes), T₉ (coating with 10% bee wax + potassium permanganate), and T₁₀ (coating with 40% aloe vera extract + potassium permanganate). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bee%20wax" title="bee wax">bee wax</a>, <a href="https://publications.waset.org/abstracts/search?q=post-harvest%20treatments" title=" post-harvest treatments"> post-harvest treatments</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium%20permanganate" title=" potassium permanganate"> potassium permanganate</a>, <a href="https://publications.waset.org/abstracts/search?q=Red%20Banana" title=" Red Banana"> Red Banana</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf%20life" title=" shelf life"> shelf life</a> </p> <a href="https://publications.waset.org/abstracts/183227/response-of-post-harvest-treatments-on-shelf-life-biochemical-and-microbial-quality-of-banana-variety-red-banana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9612</span> Design and Construction of a Solar Dehydration System as a Technological Strategy for Food Sustainability in Difficult-to-Access Territories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erika%20T.%20Fajardo-Ariza">Erika T. Fajardo-Ariza</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20A.%20Castillo-Sanabria"> Luis A. Castillo-Sanabria</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Nieto-Veloza"> Andrea Nieto-Veloza</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20M.%20Zuluaga-Dom%C3%ADnguez"> Carlos M. Zuluaga-Domínguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing emphasis on sustainable food production and preservation has driven the development of innovative solutions to minimize postharvest losses and improve market access for small-scale farmers. This project focuses on designing, constructing, and selecting materials for solar dryers in certain regions of Colombia where inadequate infrastructure limits access to major commercial hubs. Postharvest losses pose a significant challenge, impacting food security and farmer income. Addressing these losses is crucial for enhancing the value of agricultural products and supporting local economies. A comprehensive survey of local farmers revealed substantial challenges, including limited market access, inefficient transportation, and significant postharvest losses. For crops such as coffee, bananas, and citrus fruits, losses range from 0% to 50%, driven by factors like labor shortages, adverse climatic conditions, and transportation difficulties. To address these issues, the project prioritized selecting effective materials for the solar dryer. Various materials, recovered acrylic, original acrylic, glass, and polystyrene, were tested for their performance. The tests showed that recovered acrylic and glass were most effective in increasing the temperature difference between the interior and the external environment. The solar dryer was designed using Fusion 360® software (Autodesk, USA) and adhered to architectural guidelines from Architectural Graphic Standards. It features up to sixteen aluminum trays, each with a maximum load capacity of 3.5 kg, arranged in two levels to optimize drying efficiency. The constructed dryer was then tested with two locally available plant materials: green plantains (Musa paradisiaca L.) and snack bananas (Musa AA Simonds). To monitor performance, Thermo hygrometers and an Arduino system recorded internal and external temperature and humidity at one-minute intervals. Despite challenges such as adverse weather conditions and delays in local government funding, the active involvement of local producers was a significant advantage, fostering ownership and understanding of the project. The solar dryer operated under conditions of 31°C dry bulb temperature (Tbs), 55% relative humidity, and 21°C wet bulb temperature (Tbh). The drying curves showed a consistent drying period with critical moisture content observed between 200 and 300 minutes, followed by a sharp decrease in moisture loss, reaching an equilibrium point after 3,400 minutes. Although the solar dryer requires more time and is highly dependent on atmospheric conditions, it can approach the efficiency of an electric dryer when properly optimized. The successful design and construction of solar dryer systems in difficult-to-access areas represent a significant advancement in agricultural sustainability and postharvest loss reduction. By choosing effective materials such as recovered acrylic and implementing a carefully planned design, the project provides a valuable tool for local farmers. The initiative not only improves the quality and marketability of agricultural products but also offers broader environmental benefits, such as reduced reliance on fossil fuels and decreased waste. Additionally, it supports economic growth by enhancing the value of crops and potentially increasing farmer income. The successful implementation and testing of the dryer, combined with the engagement of local stakeholders, highlight its potential for replication and positive impact in similar contexts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drying%20technology" title="drying technology">drying technology</a>, <a href="https://publications.waset.org/abstracts/search?q=postharvest%20loss%20reduction" title=" postharvest loss reduction"> postharvest loss reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20dryers" title=" solar dryers"> solar dryers</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20agriculture" title=" sustainable agriculture"> sustainable agriculture</a> </p> <a href="https://publications.waset.org/abstracts/190066/design-and-construction-of-a-solar-dehydration-system-as-a-technological-strategy-for-food-sustainability-in-difficult-to-access-territories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9611</span> Optimization of Mechanical Cacao Shelling Parameters Using Unroasted Cocoa Beans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeffrey%20A.%20Lavarias">Jeffrey A. Lavarias</a>, <a href="https://publications.waset.org/abstracts/search?q=Jessie%20C.%20Elauria"> Jessie C. Elauria</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnold%20R.%20Elepano"> Arnold R. Elepano</a>, <a href="https://publications.waset.org/abstracts/search?q=Engelbert%20K.%20Peralta"> Engelbert K. Peralta</a>, <a href="https://publications.waset.org/abstracts/search?q=Delfin%20C.%20Suministrado"> Delfin C. Suministrado</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shelling process is one of the primary processes and critical steps in the processing of chocolate or any product that is derived from cocoa beans. It affects the quality of the cocoa nibs in terms of flavor and purity. In the Philippines, small-scale food processor cannot really compete with large scale confectionery manufacturers because of lack of available postharvest facilities that are appropriate to their level of operation. The impact of this study is to provide the needed intervention that will pave the way for cacao farmers of engaging on the advantage of value-adding as way to maximize the economic potential of cacao. Thus, provision and availability of needed postharvest machines like mechanical cacao sheller will revolutionize the current state of cacao industry in the Philippines. A mechanical cacao sheller was developed, fabricated, and evaluated to establish optimum shelling conditions such as moisture content of cocoa beans, clearance where of cocoa beans passes through the breaker section and speed of the breaking mechanism on shelling recovery, shelling efficiency, shelling rate, energy utilization and large nib recovery; To establish the optimum level of shelling parameters of the mechanical sheller. These factors were statistically analyzed using design of experiment by Box and Behnken and Response Surface Methodology (RSM). By maximizing shelling recovery, shelling efficiency, shelling rate, large nib recovery and minimizing energy utilization, the optimum shelling conditions were established at moisture content, clearance and breaker speed of 6.5%, 3 millimeters and 1300 rpm, respectively. The optimum values for shelling recovery, shelling efficiency, shelling rate, large nib recovery and minimizing energy utilization were recorded at 86.51%, 99.19%, 21.85kg/hr, 89.75%, and 542.84W, respectively. Experimental values obtained using the optimum conditions were compared with predicted values using predictive models and were found in good agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cocoa%20beans" title="cocoa beans">cocoa beans</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=RSM" title=" RSM"> RSM</a>, <a href="https://publications.waset.org/abstracts/search?q=shelling%20parameters" title=" shelling parameters"> shelling parameters</a> </p> <a href="https://publications.waset.org/abstracts/29726/optimization-of-mechanical-cacao-shelling-parameters-using-unroasted-cocoa-beans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9610</span> Comparative Analysis of Mechanical Properties of Paddy Rice for Different Variety-Moisture Content Interactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johnson%20Opoku-Asante">Johnson Opoku-Asante</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Bobobee"> Emmanuel Bobobee</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Akowuah"> Joseph Akowuah</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Amoah%20Asante"> Eric Amoah Asante</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the issue of postharvest losses has become a serious concern in Sub-Saharan Africa. Postharvest technology development and adaptation need urgent attention, particularly for small and medium-scale rice farmers in Africa. However, to better develop any postharvest technology, knowledge of the mechanical properties of different varieties of paddy rice is vital. There is also the issue of the development of new rice cultivars. The objectives of this research are to (1) determine the mechanical properties of the selected paddy rice varieties at varying moisture content. (2) conduct a comparative analysis of the mechanical properties of selected rice paddy for different variety-moisture content interactions. (3) determine the significant statistical differences between the mean values of the various variety-moisture content interactions The mechanical properties of AGRA rice, CRI-Amankwatia, CRI-Enapa and CRI-Dartey, four local varieties developed by Crop Research Institute of Ghana are compared at 11.5%, 13.0% and 16.5% dry basis moisture content. The mechanical properties measured are Sphericity, Aspect ratio, Grain mass, 1000 Grain mass, Bulk Density, True Density, Porosity and Angle of Repose. Samples were collected from the Kwadaso Agric College of the CRI in Kumasi. The samples were threshed manually and winnowed before conducting the experiment. The moisture content was determined on a dry basis using the Moistex Screw-Type Digital Grain Moisture Meter. Other equipment used for data collection were venire calipers and Citizen electronic scale. A 4×3 factorial arrangement was used in a completely randomized design in three replications. Tukey's HSD comparisons test was conducted during data analysis to compare all possible pairwise combinations of the various varieties’ moisture content interaction. From the results, it was concluded that Sphericity recorded 0.391 mm³ to 0.377 mm³ for CRI-Dartey at 16.5% and CRI-Enapa at 13.5%, respectively, whereas Aspect Ratio recorded 0.298 mm³ to 0.269 mm³ for CRI-Dartey at 16.5% and CRI-Enapa at 13.5% respectively. For grain mass, AGRA rice at 13.0% also recorded 0.0312 g as the highest score and CRI-Enapa at 13.0% obtained 0.0237 as the lowest score. For the GM1000, it was observed that it ranges from 29.33 g for CRI-Amankwatia at 16.5% moisture content to 22.54 g for CRI-Enapa at 16.5% interactions. Bulk Density ranged from 654.0 kg/m³ to 422.9 kg/m³ for CRI-Amankwatia at 16.5% and CRI-Enapa at 11.5% as the highest and lowest recordings, respectively. It was also observed that the true Density ranges from 1685.8 kg/m3 for AGRA rice at 13.0% moisture content to 1352.5 kg/m³ for CRI-Enapa at 16.5% interactions. In the case of porosity, CRI-Enapa at 11.5% received the highest score of 70.83% and CRI-Amankwatia at 16.5 received the lowest score of 55.88%. Finally, in the case of Angle of Repose, CRI-Amankwatia at 16.5% recorded the highest score of 47.3o and CRI-Enapa at 11.5% recorded the least score of 34.27o. In all cases, the difference in mean value was less than the LSD. This indicates that there were no significant statistical differences between their mean values, indicating that technologies developed and adapted for one variety can equally be used for all the other varieties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=angle%20of%20repose" title="angle of repose">angle of repose</a>, <a href="https://publications.waset.org/abstracts/search?q=aspect%20ratio" title=" aspect ratio"> aspect ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20density" title=" bulk density"> bulk density</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity" title=" porosity"> porosity</a>, <a href="https://publications.waset.org/abstracts/search?q=sphericity" title=" sphericity"> sphericity</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/173547/comparative-analysis-of-mechanical-properties-of-paddy-rice-for-different-variety-moisture-content-interactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9609</span> Crop Losses, Produce Storage and Food Security, the Nexus: Attaining Sustainable Maize Production in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charles%20Iledun%20Oyewole">Charles Iledun Oyewole</a>, <a href="https://publications.waset.org/abstracts/search?q=Harira%20Shuaib"> Harira Shuaib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While fulfilling the food security of an increasing population like Nigeria remains a major global concern, more than one-third of crop harvested is lost or wasted during harvesting or in postharvest operations. Reducing the harvest and postharvest losses, especially in developing countries, could be a sustainable solution to increase food availability, eliminate hunger and improve farmers’ livelihoods. Nigeria is one of the countries in sub-Saharan Africa with insufficient food production and high food import bill, which has had debilitating effects on the country’s economy. One of the goals of Nigeria’s agricultural development policy is to ensure that, the nation produces enough food and be less dependent on importation so as to ensure adequate and affordable food for all. Maize could fill the food gap in Nigeria’s effort to beat hunger and food insecurity. Maize is the most important cereal after rice and its production contributes immensely to food availability on the tables of many Nigerians. Maize grains constitute primary source of food for large percentage of the Nigerian populace, thus a considerable waste of this valuable food pre and post-harvest constitutes such a major agricultural bottleneck; that the reduction of pre and post-harvest losses is now a common food security strategy. In surveys conducted, as much as 60% maize outputs can be lost on the field and during the storage stage due to technical inefficiency. Field losses due to rodent damage alone can account for between 10% - 60% grain losses depending on the location. While the use of scientific storage methods can reduce losses below 2% in storage, timely harvesting of crop can check losses on the fields resulting from rodent damage or pest infestation. A push for increased crop production must be complemented by available and affordable post-harvest technologies that will reduce losses on farmers’ fields as well as in storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=government%20policy" title="government policy">government policy</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20increase" title=" population increase"> population increase</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20food%20production" title=" sustainable food production"> sustainable food production</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20losses" title=" yield losses"> yield losses</a> </p> <a href="https://publications.waset.org/abstracts/132227/crop-losses-produce-storage-and-food-security-the-nexus-attaining-sustainable-maize-production-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9608</span> Comparison of Storage Facilities on Different Varieties of Orange Fleshed Sweet Potato Grown in Rwanda</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jean%20Paul%20Hategekimana">Jean Paul Hategekimana</a>, <a href="https://publications.waset.org/abstracts/search?q=Dukuzumuremyi%20Yvonne"> Dukuzumuremyi Yvonne</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukeshimana%20Marthe"> Mukeshimana Marthe</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandre%20Niyonshima"> Alexandre Niyonshima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sweet potato (Ipomoea batatas) is a very important staple food crop in Rwanda due to its high growth and consumption in all parts of the country. The effect of seven different storage conditions on the quality and nutritional composition of the three most grown and consumed varieties of orange-fleshed sweet potato (OFSP), namely Kabode, Terimbere, and Vita, were studied over a period of six weeks at Postharvest Service and Training Center of University Rwanda, Busogo Campus. The potato stored under the following conditions (zero energy cooling chamber, ground washed sweet potato, ground unwashed sweet potato, perforated washed sweet potato, perforated unwashed sweet potato, non-perforated washed sweet potato, and non-perforated unwashed sweet potato) were assessed in this study. These storage conditions are the modifications of existing methods currently used in Rwanda for suitable local climatic conditions. Hence, 30kgs of freshly harvested OFSP for each variety were bought from farmers of Gakenke and Rulindo districts and then transported to the postharvest training and service center UR-CAVM, Busogo Campus. 2.5kg of each potato sample was selected and stored under the above-mentioned storage conditions after pretreatment. Data were collected for six weeks on percent weight loss, shrinkability and the general appearance at interval of three days. The stored samples were also analyzed for moisture, crude ash, crude fiber, and reduced sugar levels during the entire storage period. Results showed the difference among the various storage conditions. It was shown that ZECC and non-perforated sacs (in the open air) storage techniques had good potential for storage of orange flesh sweet potato for up to six weeks without considerable change in physical and nutritional parameters compared to other considered conditions and, therefore, can be recommended as more useful for OSFP at farm level and during transport and market storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZECC" title="ZECC">ZECC</a>, <a href="https://publications.waset.org/abstracts/search?q=orange%20fleshed%20sweet%20potato" title=" orange fleshed sweet potato"> orange fleshed sweet potato</a>, <a href="https://publications.waset.org/abstracts/search?q=perforated%20sacs" title=" perforated sacs"> perforated sacs</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20conditions" title=" storage conditions"> storage conditions</a> </p> <a href="https://publications.waset.org/abstracts/182278/comparison-of-storage-facilities-on-different-varieties-of-orange-fleshed-sweet-potato-grown-in-rwanda" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9607</span> Postharvest Studies Beyond Fresh Market Eating Quality: Phytochemical Changes in Peach Fruit During Ripening and Advanced Senescence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mukesh%20Singh%20Mer">Mukesh Singh Mer</a>, <a href="https://publications.waset.org/abstracts/search?q=Brij%20Lal%20Attri"> Brij Lal Attri</a>, <a href="https://publications.waset.org/abstracts/search?q=Raj%20Narayan"> Raj Narayan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20Kumar"> Anil Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Postharvest studies were conducted under the concept that fruit do not qualify for the fresh market may be used as a source of bioactive compounds. One peach (Prunus persica cvs Red June) were evaluated for their photochemical content and antioxidant capacity during the ripening and over ripening periods (advanced senescence) for 12 and 15 d, respectively. Firmness decreased rapidly during this period from an initial pre –ripe stage of 5.85 lb/in2 for peach until the fruit reached the fully ripe stage of lb/in2. In this study we evaluate the varietal performance in respect of the quality beyond fresh market eating and nutrition levels. The varieties are (T-1 F-16-23), (T-2 Florda king), (T-3 Nectarine), (T-4 Red June). The result pertaining are there the highest fruit length (68.50 mm), fruit breadth (71.38 mm), fruit weight (186.11 g) found in T4 Red June and fruit firmness (8.74 lb/in 2) found in T3-Nectarine. The acidity (1.66 %), ascorbic acid (440 mg/100 g), reducing sugar (19.77 %) and total sugar (51.73 %) found in T4- Red June, T-2 Florda King, T-3 Nectarine at harvesting time but decrease in fruit length ( 60.81 mm), fruit breadth (51.84 mm), fruit weight (143.03 g) found in T4 Red June and fruit firmness (6.29 lb/in 2) found in T3-Nectarine. The acidity (0.80 %), ascorbic acid (329.50 mg/100 g), reducing sugar (34.03 %) and total sugar (26.97 %) found in T1- F-16-23, T-2 Florda King, T-1 F-16-23 and T-3 Nectarine after 15 days in freeze conditions when will have been since reached beyond market. The study reveals that the size and yield good in Red June and the nutritional value higher in Florda King and Nectarine peach. Fruit firmness remained unchanged afterwards. In addition, total soluble solids in peach were basically similar during the ripening and over ripening periods. Further research on secondary metabolism regulation during ripening and advanced senescence is needed to obtain fruit as enriched dietary sources of bioactive compounds or for its use in alternative high value health markets including dietary supplements, functional foods cosmetics and pharmaceuticals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metabolism" title="metabolism">metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=acidity" title=" acidity"> acidity</a>, <a href="https://publications.waset.org/abstracts/search?q=ascorbic%20acid" title=" ascorbic acid"> ascorbic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceuticals" title=" pharmaceuticals"> pharmaceuticals</a> </p> <a href="https://publications.waset.org/abstracts/23442/postharvest-studies-beyond-fresh-market-eating-quality-phytochemical-changes-in-peach-fruit-during-ripening-and-advanced-senescence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">561</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9606</span> Effects of Carbon Dioxide on the Organoleptic Properties of Hazelnut</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Sadeghi">Reza Sadeghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon dioxide treatment is one of the new methods for storage pest control. It can be used to replace chemical approaches for postharvest. Hazelnut has a considerable share in the annual exports of Iran. In the present study, hazelnut was studied after being exposed to different CO2 pressures (0.1-0.5bar) within 24 hours. Changes in organoleptic properties (colour, firmness, aroma, crispness, and overall acceptability) during fumigation were studied. The results showed that the sensory evaluation showed that carbon dioxide had no effect on the qualitative characteristics of hazelnut. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title="carbon dioxide">carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=hazelnut" title=" hazelnut"> hazelnut</a>, <a href="https://publications.waset.org/abstracts/search?q=qualitative%20characteristics" title=" qualitative characteristics"> qualitative characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=organoleptic" title=" organoleptic"> organoleptic</a> </p> <a href="https://publications.waset.org/abstracts/170494/effects-of-carbon-dioxide-on-the-organoleptic-properties-of-hazelnut" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9605</span> Occurence And Management Of Coliform Bacteria On Tomatoes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cho%20Achidi">Cho Achidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tomato is a crucial food crop significantly contributes to global food and nutrition security. However, postharvest losses severely limit its role. Therefore, it is necessary to develop sustainable strategies to minimize these losses and improve the shelf-life of tomato fruits. One of the major concerns is bacterial infections, particularly by faecal coliform bacteria, which can cause food poisoning and illnesses like diarrhoea and dysentery. This study seeks to identify the presence of coliform bacteria on tomato fruits in fields and markets in Muea, Buea Municipality. The study also evaluated different management strategies to reduce the bacterial incidence and load on tomato fruits. A total of 200 fruits were sampled for both the coliform survey and shelf-life analysis. Ten farmers and traders provided samples, including asymptomatic and symptomatic tomato fruits. The samples designated for shelf-life analysis were treated with Aquatab, warm water, lemon, and onion. The results indicated that out of the 80 symptomatic samples collected, 12.5% contained faecal and total coliform species. Among the ten farms sampled, 14% were infected with coliform bacteria, with the highest infestation rate of 60% recorded in field 4. Furthermore, 15% of the asymptomatic tomato fruits were found to be infected by coliform bacteria. Regarding the management strategies, Aquatabs exhibited the highest efficacy in reducing the incidence of coliform bacteria on tomato fruits, followed by onion and lemon extracts. Although hot water treatment effectively removed bacteria from the fruits, damaging the cell wall negatively affected their shelf-life. Overall, this study emphasizes the severity of coliform bacterial pathogens in the Muea area, particularly their occurrence on asymptomatic tomatoes, which poses a significant concern for plant quarantine services. It also demonstrates potential options for mitigating this bacterial challenge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tomato" title="tomato">tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf-life%20analysis" title=" shelf-life analysis"> shelf-life analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20and%20nutrition%20security" title=" food and nutrition security"> food and nutrition security</a>, <a href="https://publications.waset.org/abstracts/search?q=coliform%20bbacteria" title=" coliform bbacteria"> coliform bbacteria</a> </p> <a href="https://publications.waset.org/abstracts/168238/occurence-and-management-of-coliform-bacteria-on-tomatoes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9604</span> Application of UV-C Irradiation on Quality and Textural Properties of Button Mushrooms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ghasemi-Varnamkhasti">M. Ghasemi-Varnamkhasti</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Yoosefian.%20A.%20Mohammad-%20Razdari"> S. H. Yoosefian. A. Mohammad- Razdari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of 1.0 kJ/m<sup>2</sup> Ultraviolet-C (UV-C) light on pH, weight loss, color, and firmness of button mushroom (<em>Agaricus bisporus</em>) tissues during 21-days storage at 4 &ordm;C was studied. UV-C irradiation enhanced pH, weight, color parameters, and firmness of mushroom during storage compared to control treatment. However, application of 1.0 kJ/m<sup>2</sup> UV-C treatment could effectively induce the increase of weight loss, firmness, and pH to 14.53%, 49.82%, and 10.39%, respectively. These results suggest that the application of UV-C irradiation could be an effective method to maintain the postharvest quality of mushrooms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mushroom" title="mushroom">mushroom</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene%20film" title=" polyethylene film"> polyethylene film</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-c%20irradiation" title=" UV-c irradiation"> UV-c irradiation</a> </p> <a href="https://publications.waset.org/abstracts/54384/application-of-uv-c-irradiation-on-quality-and-textural-properties-of-button-mushrooms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9603</span> Tomato Quality Produced in Saline Soils Using Irrigation with Treated Electromagnetic Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angela%20Vacaro%20de%20Souza">Angela Vacaro de Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Ferrari%20Putti"> Fernando Ferrari Putti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the main plants cultivated in protected environment is tomato crop, which presents significant growth in its demand, because it is a tasty fruit, rich in nutrients and of high added value, however, poor management of fertilizers induces the process of soil salinization, causing several consequences, from reduced productivity to even soil infertility. These facts are derived from the increased concentration of salts, which hampers the process of water absorption by the plant, resulting in a biochemical and nutritional imbalance in the plant. Thus, this study aimed to investigate the effects of untreated and electromagnetically treated water in salinized soils on physical, physicochemical, and biochemical parameters in tomato fruits. The experiment was conducted at the Faculty of Science and Engineering, Tupã Campus (FCE/UNESP). A randomized complete block design with two types of treated water was adopted, with five different levels of initial salinity (0; 1.5; 2.5; 4; 5.5; 7 dS m⁻¹) by fertigation. Although the effects of salinity on fruit quality parameters are evident, no beneficial effects on increasing or maintaining postharvest quality of fruits whose plants were treated with electromagnetized water were evidenced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Solanum%20lycopersicum" title="Solanum lycopersicum">Solanum lycopersicum</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20salinization" title=" soil salinization"> soil salinization</a>, <a href="https://publications.waset.org/abstracts/search?q=protected%20environment" title=" protected environment"> protected environment</a>, <a href="https://publications.waset.org/abstracts/search?q=fertigation" title=" fertigation"> fertigation</a> </p> <a href="https://publications.waset.org/abstracts/112261/tomato-quality-produced-in-saline-soils-using-irrigation-with-treated-electromagnetic-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9602</span> Application of 1-MCP on ‘Centro’ Melon at Different Days after Harvest</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20P.%20L.%20Nguyen">L. P. L. Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Hitka"> G. Hitka</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Zsom"> T. Zsom</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20K%C3%B3kai"> Z. Kókai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is aimed to investigate the influence of postharvest delays of 1-Methylcyclopropene (1-MCP) treatment on prolonging the storage potential of melon. Melons were treated with 625-650 ppb 1-MCP at 10 &deg;C for 24 hours on the 1st, 3rd and 5th day after harvest. Decreased ethylene production and retarded softening of melon fruits after 7 days of storage at 10 &deg;C plus 3 days of shelflife were obtained by 1-MCP applications. 1-MCP strongly affected the chlorophyll fluorescence characteristics and hue angle values of melon. After shelf-life, the peel color of treated melon was slow in turning to yellow compared to the control. Additionally, firmness of melons treated on the first day after harvest was 38% higher than that of the control fruit. Results showed that fruits treated on the 1st and the 3rd day after harvest could maintain the quality of melon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1-MCP" title="1-MCP">1-MCP</a>, <a href="https://publications.waset.org/abstracts/search?q=muskmelon" title=" muskmelon"> muskmelon</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment." title=" treatment."> treatment.</a> </p> <a href="https://publications.waset.org/abstracts/48747/application-of-1-mcp-on-centro-melon-at-different-days-after-harvest" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9601</span> Jamun Juice Extraction Using Commercial Enzymes and Optimization of the Treatment with the Help of Physicochemical, Nutritional and Sensory Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Payel%20Ghosh">Payel Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rama%20Chandra%20Pradhan"> Rama Chandra Pradhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabyasachi%20Mishra"> Sabyasachi Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Jamun (<em>Syzygium cuminii </em>L.) is one of the important indigenous minor fruit with high medicinal value. The jamun cultivation is unorganized and there is huge loss of this fruit every year. The perishable nature of the fruit makes its postharvest management further difficult. Due to the strong cell wall structure of pectin-protein bonds and hard seeds, extraction of juice becomes difficult. Enzymatic treatment has been commercially used for improvement of juice quality with high yield. The objective of the study was to optimize the best treatment method for juice extraction. Enzymes (Pectinase and Tannase) from different stains had been used and for each enzyme, best result obtained by using response surface methodology. Optimization had been done on the basis of physicochemical property, nutritional property, sensory quality and cost estimation. According to quality aspect, cost analysis and sensory evaluation, the optimizing enzymatic treatment was obtained by Pectinase from <em>Aspergillus aculeatus</em> strain. The optimum condition for the treatment was 44 <sup>o</sup>C with 80 minute with a concentration of 0.05% (w/w). At these conditions, 75% of yield with turbidity of 32.21NTU, clarity of 74.39%T, polyphenol content of 115.31 mg GAE/g, protein content of 102.43 mg/g have been obtained with a significant difference in overall acceptability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20treatment" title="enzymatic treatment">enzymatic treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamun" title=" Jamun"> Jamun</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20property" title=" physicochemical property"> physicochemical property</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20analysis" title=" sensory analysis"> sensory analysis</a> </p> <a href="https://publications.waset.org/abstracts/59901/jamun-juice-extraction-using-commercial-enzymes-and-optimization-of-the-treatment-with-the-help-of-physicochemical-nutritional-and-sensory-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9600</span> Sudan’s Approach to Knowledge Management in Disaster Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abdalla%20Elamein%20Boshara">Mohamed Abdalla Elamein Boshara</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Charles%20Woods"> Peter Charles Woods</a>, <a href="https://publications.waset.org/abstracts/search?q=Nour%20Eldin%20Mohamed%20Elshaiekh"> Nour Eldin Mohamed Elshaiekh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Knowledge Management has become very important for Disaster Management response and planning. This paper proposes the implementation of a Knowledge Management System with a sustainable data collection mechanism for reliable and timely information management to support decision makers in making the right decisions in the timely manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=knowledge%20management" title="knowledge management">knowledge management</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20management" title=" disaster management"> disaster management</a>, <a href="https://publications.waset.org/abstracts/search?q=incident%20tracking" title=" incident tracking"> incident tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20application" title=" web application"> web application</a> </p> <a href="https://publications.waset.org/abstracts/18077/sudans-approach-to-knowledge-management-in-disaster-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">780</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9599</span> The Management of Urban Facilities in the City of Chlef</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belakhdar%20Salah%20Brahim">Belakhdar Salah Brahim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Urban management is a major element of social control of public space and thus the functioning of society. As such, it is a key element of a social conception of sustainable development. Also, it is a cross-cutting sector that relies on land management, infrastructure management, habitat management, management of social services, the management of economic development, etc. This study aims to study how urban management focusing on the study of problems related to urban waste management in developing countries. It appears from the study that the city management is to improve infrastructure and urban services in order to increase the city's development and improve living conditions in cities. It covers various aspects including management of urban space, economic management, administrative management, asset management or infrastructure and finally waste management. Environmental management is important because it solves the pollution problems of life and preserve resources for future generations. Changing perceptions of waste has led to the definition of new policies for integrated waste management requirements appropriate to the urban site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urbanization" title="urbanization">urbanization</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20management" title=" urban management"> urban management</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20management" title=" environmental management"> environmental management</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/27854/the-management-of-urban-facilities-in-the-city-of-chlef" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9598</span> A Framework for Customer Knowledge Management (CKM) as a Key Role in Relationship</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrnoosh%20Askarizadeh">Mehrnoosh Askarizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The customer’s value has become obvious for the leading companies in today’s competitive environment. Therefore they are constantly trying to improve their relationship with customers. Customer Knowledge has been recognized as a strategic resource and a key to the success of any company. Talking about the Customer Knowledge Management is closely associated with Knowledge Management and Customer Relationship Management (CRM). Recent studies conducted in the fields of Knowledge Management (KM) and Customer Relationship Management (CRM) has explained that the two approaches can have great synergies. In this paper, our aim is to provide an understanding of Customer Knowledge Management (CKM) as an integrated management approach and competence it requires. We describe CKM as an ongoing process of generating, disseminating and using customer knowledge within an organization and between an organization and its customers. In addition, we propose a comprehensive framework of CKM, the ability to integrate customer knowledge into customer relationship management processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=e-commerce" title="e-commerce">e-commerce</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20management%20%28KM%29" title=" knowledge management (KM)"> knowledge management (KM)</a>, <a href="https://publications.waset.org/abstracts/search?q=customer%20relationship%20management%20%28CRM%29" title=" customer relationship management (CRM)"> customer relationship management (CRM)</a>, <a href="https://publications.waset.org/abstracts/search?q=customer%20knowledge%20management%20%28CKM%29" title=" customer knowledge management (CKM)"> customer knowledge management (CKM)</a> </p> <a href="https://publications.waset.org/abstracts/32892/a-framework-for-customer-knowledge-management-ckm-as-a-key-role-in-relationship" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=postharvest%20management&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=postharvest%20management&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=postharvest%20management&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=postharvest%20management&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=postharvest%20management&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=postharvest%20management&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=postharvest%20management&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=postharvest%20management&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=postharvest%20management&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=postharvest%20management&amp;page=320">320</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=postharvest%20management&amp;page=321">321</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=postharvest%20management&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10