CINXE.COM

Search results for: oxide layer

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: oxide layer</title> <meta name="description" content="Search results for: oxide layer"> <meta name="keywords" content="oxide layer"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="oxide layer" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="oxide layer"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3755</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: oxide layer</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3755</span> Inter-Filling of CaO and MgO Mixed Layer in Surface Behavior of Al-Mg Alloys Containing Al2Ca</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seong-Ho%20Ha">Seong-Ho Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Ok%20Yoon"> Young-Ok Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Shae%20K.%20Kim"> Shae K. Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oxide layer of normal Al-Mg alloy can be characterized by upper MgO and lower MgAl2O4 spinel. The formation of the MgO outmost layer occurs by the surface segregation of Mg in the initial oxidation. After then, the oxidation is proceeded with the formation of MgA12O4 spinel beneath the MgO. Growth of the oxide layer is accelerated by constant formation of MgA12O4 spinel. On the other hand, the oxidation resistance of Al-Mg alloys can be significantly improved simply by Mg+Al2Ca master alloy use as the Mg alloying element and such an improvement is attributed to the CaO/MgO mixed layer. Al-Mg alloy containing Al2Ca shows CaO as the upper layer and MgO as the lower one without MgA12O4 spinel. Such a dense oxide film acts as a protective layer. However, the CaO/MgO scale has the outmost MgO, partly, after a long time exposure to a harsh oxidation condition. The aim of this study is to investigate the inter-filling behaviour of CaO and MgO mixed layer in oxidation resistance mechanism of Al-Mg alloys containing Al2Ca. The process of outmost MgO layer formation will be clarified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Mg%20alloy" title="Al-Mg alloy">Al-Mg alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=Al2Ca" title=" Al2Ca"> Al2Ca</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=MgO" title=" MgO"> MgO</a> </p> <a href="https://publications.waset.org/abstracts/49097/inter-filling-of-cao-and-mgo-mixed-layer-in-surface-behavior-of-al-mg-alloys-containing-al2ca" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3754</span> Formation of Protective Aluminum-Oxide Layer on the Surface of Fe-Cr-Al Sintered-Metal-Fibers via Multi-Stage Thermal Oxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Loai%20Ben%20Naji">Loai Ben Naji</a>, <a href="https://publications.waset.org/abstracts/search?q=Osama%20M.%20Ibrahim"> Osama M. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20J.%20Al-Fadhalah"> Khaled J. Al-Fadhalah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to investigate the formation and adhesion of a protective aluminum-oxide (Al<sub>2</sub>O<sub>3</sub>, alumina) layer on the surface of Iron-Chromium-Aluminum Alloy (Fe-Cr-Al) sintered-metal-fibers. The oxide-scale layer was developed via multi-stage thermal oxidation at 930 <sup>o</sup>C for 1 hour, followed by 1 hour at 960 <sup>o</sup>C, and finally at 990 <sup>o</sup>C for 2 hours. Scanning Electron Microscope (SEM) images show that the multi-stage thermal oxidation resulted in the formation of predominantly Al<sub>2</sub>O<sub>3</sub> platelets-like and whiskers. SEM images also reveal non-uniform oxide-scale growth on the surface of the fibers. Furthermore, peeling/spalling of the alumina protective layer occurred after minimum handling, which indicates weak adhesion forces between the protective layer and the base metal alloy.&nbsp; Energy Dispersive Spectroscopy (EDS) analysis of the heat-treated Fe-Cr-Al sintered-metal-fibers confirmed the high aluminum content on the surface of the protective layer, and the low aluminum content on the exposed base metal alloy surface. In conclusion, the failure of the oxide-scale protective layer exposes the base metal alloy to further oxidation, and the fragile non-uniform oxide-scale is not suitable as a support for catalysts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-temperature%20oxidation" title="high-temperature oxidation">high-temperature oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=iron-chromium-aluminum%20alloy" title=" iron-chromium-aluminum alloy"> iron-chromium-aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=alumina%20protective%20layer" title=" alumina protective layer"> alumina protective layer</a>, <a href="https://publications.waset.org/abstracts/search?q=sintered-metal-fibers" title=" sintered-metal-fibers"> sintered-metal-fibers</a> </p> <a href="https://publications.waset.org/abstracts/97290/formation-of-protective-aluminum-oxide-layer-on-the-surface-of-fe-cr-al-sintered-metal-fibers-via-multi-stage-thermal-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3753</span> Characterization of Oxide Layer Developed during Tribo-Interaction of Zircaloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bharat%20Kumar">Bharat Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Kumar"> Deepak Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Chaudhry"> Vijay Chaudhry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zirconium alloys are used as core components of nuclear reactors due to their high wear resistance, good corrosion properties, and good mechanical stability at high temperatures. The present work simulates the contact between the calandria tube and the liquid injection shutdown system (LISS) nozzle. The Calandria tube is the outer covering of the pressure tube. Water flows inside the pressure tube through fuel claddings which produces vibration in the pressure tube along with vibration in the calandria tube. Fretting wear takes place at the point of contact between the calandria tube and the LISS nozzle. Fretting tests were performed under different conditions, such as; varying fretting duration (i.e., 1 to 4 hours), varying frequency (i.e., 5 to 6.5 Hz), and varying amplitude (100 to 400 µm). The formation of the oxide layer was observed during the fretting wear test; as a result, the worn product. The worn surfaces were analyzed with scanning electron microscopy (SEM) to analyze the wear mechanism involved in the fretting test, and Energy dispersive x-ray spectroscopy (EDS) and Raman spectroscopy were used to confirm the presence of an oxide layer on the worn surface. The oxide layer becomes more uniform with fretting duration in case of water submerged condition as compared to dry contact condition. The oxide layer is deeply removed at high amplitude due to the change of wear mechanism from adhesion to abrasion, as confirmed by the presence of micro ploughing and micro cutting. Low amplitude fretting favors the formation of the tribo-oxide layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tribo-oxide%20layer" title="tribo-oxide layer">tribo-oxide layer</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanically%20mixed%20layer" title=" mechanically mixed layer"> mechanically mixed layer</a>, <a href="https://publications.waset.org/abstracts/search?q=zircaloy" title=" zircaloy"> zircaloy</a> </p> <a href="https://publications.waset.org/abstracts/166537/characterization-of-oxide-layer-developed-during-tribo-interaction-of-zircaloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3752</span> Layer by Layer Coating of Zinc Oxide/Metal Organic Framework Nanocomposite on Ceramic Support for Solvent/Solvent Separation Using Pervaporation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20A.%20Nabeela%20Nasreen">S. A. A. Nabeela Nasreen</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sundarrajan"> S. Sundarrajan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Syed%20Nizar"> S. A. Syed Nizar</a>, <a href="https://publications.waset.org/abstracts/search?q=Seeram%20Ramakrishna"> Seeram Ramakrishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal-organic frameworks (MOFs) have attracted considerable interest due to its diverse pore size tunability, fascinating topologies and extensive uses in fields such as catalysis, membrane separation, chemical sensing, etc. Zeolitic imidazolate frameworks (ZIFs) are a class of MOF with porous crystals containing extended three-dimensional structures of tetrahedral metal ions (e.g., Zn) bridged by Imidazolate (Im). Selected ZIFs are used to separate solvent/solvent mixtures. A layer by layer formation of the nanocomposite of Zinc oxide (ZnO) and ZIF on a ceramic support using a solvothermal method was engaged and tested for target solvent/solvent separation. Metal oxide layer was characterized by XRD, SEM, and TEM to confirm the smooth and continuous coating for the separation process. The chemical composition of ZIF films was studied by using X-Ray absorption near-edge structure (XANES) spectroscopy. The obtained ceramic tube with metal oxide and ZIF layer coating were tested for its packing density, thickness, distribution of seed layers and variation of permeation rate of solvent mixture (isopropyl alcohol (IPA)/methyl isobutyl ketone (MIBK). Pervaporation technique was used for the separation to achieve a high permeation rate with separation ratio of > 99.5% of the solvent mixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20oxide" title="metal oxide">metal oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=pervaporation" title=" pervaporation"> pervaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=solvothermal" title=" solvothermal"> solvothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=ZIF" title=" ZIF"> ZIF</a> </p> <a href="https://publications.waset.org/abstracts/97314/layer-by-layer-coating-of-zinc-oxidemetal-organic-framework-nanocomposite-on-ceramic-support-for-solventsolvent-separation-using-pervaporation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3751</span> Dynamic Degradation Mechanism of SiC VDMOS under Proton Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junhong%20Feng">Junhong Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenyu%20Lu"> Wenyu Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinhong%20Cheng"> Xinhong Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Zheng"> Li Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuehui%20Yu"> Yuehui Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of proton irradiation on the properties of gate oxide were evaluated by monitoring the static parameters (such as threshold voltage and on-resistance) and dynamic parameters (Miller plateau time) of 1700V SiC VDMOS before and after proton irradiation. The incident proton energy was 3MeV, and the doses were 5 × 10¹² P / cm², 1 × 10¹³ P / cm², respectively. The results show that the threshold voltage of MOS exhibits negative drift under proton irradiation, and the near-interface traps in the gate oxide layer are occupied by holes generated by the ionization effect of irradiation, thus forming more positive charges. The basis for selecting TMiller is that the change time of Vgs is the time when Vds just shows an upward trend until it rises to a stable value. The degradation of the turn-off time of the Miller platform verifies that the capacitance Cgd becomes larger, reflecting that the gate oxide layer is introduced into the trap by the displacement effect caused by proton irradiation, and the interface state deteriorates. As a more sensitive area in the irradiation process, the gate oxide layer will be optimized for its parameters (such as thickness, type, etc.) in subsequent studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SiC%20VDMOS" title="SiC VDMOS">SiC VDMOS</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20radiation" title=" proton radiation"> proton radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=Miller%20time" title=" Miller time"> Miller time</a>, <a href="https://publications.waset.org/abstracts/search?q=gate%20oxide" title=" gate oxide"> gate oxide</a> </p> <a href="https://publications.waset.org/abstracts/168374/dynamic-degradation-mechanism-of-sic-vdmos-under-proton-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3750</span> Key Roles of the N-Type Oxide Layer in Hybrid Perovskite Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thierry%20Pauport%C3%A9">Thierry Pauporté</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wide bandgap n-type oxide layers (TiO2, SnO2, ZnO etc.) play key roles in perovskite solar cells. They act as electron transport layers, and they permit the charge separation. They are also the substrate for the preparation of perovskite in the direct architecture. Therefore, they have a strong influence on the perovskite loading, its crystallinity and they can induce a degradation phenomenon upon annealing. The interface between the oxide and the perovskite is important, and the quality of this heterointerface must be optimized to limit the recombination of charges phenomena and performance losses. One can also play on the oxide and use two oxide contact layers for improving the device stability and durability. These aspects will be developed and illustrated on the basis of recent results obtained at Chimie-ParisTech. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oxide" title="oxide">oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20perovskite" title=" hybrid perovskite"> hybrid perovskite</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cells" title=" solar cells"> solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance" title=" impedance"> impedance</a> </p> <a href="https://publications.waset.org/abstracts/65396/key-roles-of-the-n-type-oxide-layer-in-hybrid-perovskite-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3749</span> Effect of Microstructure of Graphene Oxide Fabricated through Different Self-Assembly Techniques on Alcohol Dehydration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei-Song%20Hung">Wei-Song Hung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We utilized pressure, vacuum, and evaporation-assisted self-assembly techniques through which graphene oxide (GO) was deposited on modified polyacrylonitrile (mPAN). The fabricated composite GO/mPAN membranes were applied to dehydrate 1-butanol mixtures by pervaporation. Varying driving forces in the self-assembly techniques induced different GO assembly layer microstructures. XRD results indicated that the GO layer d-spacing varied from 8.3 Å to 11.5 Å. The self-assembly technique with evaporation resulted in a heterogeneous GO layer with loop structures; this layer was shown to be hydrophobic, in contrast to the hydrophilic layer formed from the other two techniques. From the pressure-assisted technique, the composite membrane exhibited exceptional pervaporation performance at 30 C: concentration of water at the permeate side = 99.6 wt% and permeation flux = 2.54 kg m-2 h-1. Moreover, the membrane sustained its operating stability at a high temperature of 70 C: a high water concentration of 99.5 wt% was maintained, and a permeation flux as high as 4.34 kg m-2 h-1 was attained. This excellent separation performance stemmed from the dense, highly ordered laminate structure of GO. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title="graphene oxide">graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=self-assembly" title=" self-assembly"> self-assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=alcohol%20dehydration" title=" alcohol dehydration"> alcohol dehydration</a>, <a href="https://publications.waset.org/abstracts/search?q=polyacrylonitrile%20%28mPAN%29" title=" polyacrylonitrile (mPAN)"> polyacrylonitrile (mPAN)</a> </p> <a href="https://publications.waset.org/abstracts/20913/effect-of-microstructure-of-graphene-oxide-fabricated-through-different-self-assembly-techniques-on-alcohol-dehydration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3748</span> Fabrication and Analysis of Vertical Double-Diffused Metal Oxide Semiconductor (VDMOS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepika%20Sharma">Deepika Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Bal%20Krishan"> Bal Krishan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the structure of N-channel VDMOS was designed and analyzed using Silvaco TCAD tools by varying N+ source doping concentration, P-Body doping concentration, gate oxide thickness and the diffuse time. VDMOS is considered to be ideal power switches due to its high input impedance and fast switching speed. The performance of the device was analyzed from the Ids vs Vgs curve. The electrical characteristics such as threshold voltage, gate oxide thickness and breakdown voltage for the proposed device structures were extarcted. Effect of epitaxial layer on various parameters is also observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=on-resistance" title="on-resistance">on-resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20voltage" title=" threshold voltage"> threshold voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=epitaxial%20layer" title=" epitaxial layer"> epitaxial layer</a>, <a href="https://publications.waset.org/abstracts/search?q=breakdown%20voltage" title=" breakdown voltage"> breakdown voltage</a> </p> <a href="https://publications.waset.org/abstracts/53747/fabrication-and-analysis-of-vertical-double-diffused-metal-oxide-semiconductor-vdmos" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3747</span> Performance and Processing Evaluation of Solid Oxide Cells by Co-Sintering of GDC Buffer Layer and LSCF Air Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun-Jong%20Choi">Hyun-Jong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Minjun%20Kwak"> Minjun Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Doo-Won%20Seo"> Doo-Won Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Kuk%20Woo"> Sang-Kuk Woo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun-Dong%20Kim"> Sun-Dong Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid Oxide Cell(SOC) systems can contribute to the transition to the hydrogen society by utilized as a power and hydrogen generator by the electrochemical reaction with high efficiency at high operation temperature (>750 ℃). La1-xSrxCo1-yFeyO3, which is an air electrode, is occurred stability degradations due to reaction and delamination with yittria stabilized zirconia(YSZ) electrolyte in a water electrolysis mode. To complement this phenomenon SOCs need gadolinium doped ceria(GDC) buffer layer between electrolyte and air electrode. However, GDC buffer layer requires a high sintering temperature and it causes a reaction with YSZ electrolyte. This study carried out low temperature sintering of GDC layer by applying Cu-oxide as a sintering aid. The effect of a copper additive as a sintering aid to lower the sintering temperature for the construction of solid oxide fuel cells (SOFCs) was investigated. GDC buffer layer with 0.25-10 mol% CuO sintering aid was prepared by reacting GDC power and copper nitrate solution followed by heating at 600 ℃. The sintering of CuO-added GDC powder was optimized by investigating linear shrinkage, microstructure, grain size, ionic conductivity, and activation energy of CuO-GDC electrolytes at temperatures ranging from 1100 to 1400 ℃. The sintering temperature of the CuO-GDC electrolyte decreases from 1400 ℃ to 1100 ℃ by adding the CuO sintering aid. The ionic conductivity of the CuO-GDC electrolyte shows a maximum value at 0.5 mol% of CuO. However, the addition of CuO has no significant effects on the activation energy of GDC electrolyte. GDC-LSCF layers were co-sintering at 1050 and 1100 ℃ and button cell tests were carried out at 750 ℃. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Co-Sintering" title="Co-Sintering">Co-Sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=GDC-LSCF" title=" GDC-LSCF"> GDC-LSCF</a>, <a href="https://publications.waset.org/abstracts/search?q=Sintering%20Aid" title=" Sintering Aid"> Sintering Aid</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20Oxide%20Cells" title=" solid Oxide Cells"> solid Oxide Cells</a> </p> <a href="https://publications.waset.org/abstracts/66228/performance-and-processing-evaluation-of-solid-oxide-cells-by-co-sintering-of-gdc-buffer-layer-and-lscf-air-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3746</span> X-Ray Photoelectron Spectroscopy Characterization of the Surface Layer on Inconel 625 after Exposition in Molten Salt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marie%20Kudrnova">Marie Kudrnova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jana%20Petru"> Jana Petru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is part of the international research - Materials for Molten Salt Reactors (MSR) and addresses the part of the project dealing with the corrosion behavior of candidate construction materials. Inconel 625 was characterized by x-ray photoelectron spectroscopy (XPS) before and after high–temperature experiment in molten salt. The experiment was performed in a horizontal tube furnace molten salt reactor, at 450 °C in argon, at atmospheric pressure, for 150 hours. Industrially produced HITEC salt was used (NaNO3, KNO3, NaNO2). The XPS study was carried out using the ESCAProbe P apparatus (Omicron Nanotechnology Ltd.) equipped with a monochromatic Al Kα (1486.6 eV) X-ray source. The surface layer on alloy 625 after exposure contains only Na, C, O, and Ni (as NiOx) and Nb (as NbOx BE 206.8 eV). Ni was detected in the metallic state (Ni0 – Ni 2p BE-852.7 eV, NiOx - Ni 2p BE-854.7 eV) after a short Ar sputtering because the oxide layer on the surface was very thin. Nickel oxides can form a protective layer in the molten salt, but only future long-term exposures can determine the suitability of Inconel 625 for MSR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inconel%20625" title="Inconel 625">Inconel 625</a>, <a href="https://publications.waset.org/abstracts/search?q=molten%20salt" title=" molten salt"> molten salt</a>, <a href="https://publications.waset.org/abstracts/search?q=oxide%20layer" title=" oxide layer"> oxide layer</a>, <a href="https://publications.waset.org/abstracts/search?q=XPS" title=" XPS"> XPS</a> </p> <a href="https://publications.waset.org/abstracts/131354/x-ray-photoelectron-spectroscopy-characterization-of-the-surface-layer-on-inconel-625-after-exposition-in-molten-salt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3745</span> Development of Single Layer of WO3 on Large Spatial Resolution by Atomic Layer Deposition Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Zhuiykov">S. Zhuiykov</a>, <a href="https://publications.waset.org/abstracts/search?q=Zh.%20Hai"> Zh. Hai</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Xu"> H. Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Xue"> C. Xue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unique and distinctive properties could be obtained on such two-dimensional (2D) semiconductor as tungsten trioxide (WO<sub>3</sub>) when the reduction from multi-layer to one fundamental layer thickness takes place. This transition without damaging single-layer on a large spatial resolution remained elusive until the atomic layer deposition (ALD) technique was utilized. Here we report the ALD-enabled atomic-layer-precision development of a single layer WO<sub>3</sub> with thickness of 0.77&plusmn;0.07 nm on a large spatial resolution by using (<sup>t</sup>BuN)<sub>2</sub>W(NMe<sub>2</sub>)<sub>2</sub> as tungsten precursor and H<sub>2</sub>O as oxygen precursor, without affecting the underlying SiO<sub>2</sub>/Si substrate. Versatility of ALD is in tuning recipe in order to achieve the complete WO<sub>3</sub> with desired number of WO<sub>3</sub> layers including monolayer. Governed by self-limiting surface reactions, the ALD-enabled approach is versatile, scalable and applicable for a broader range of 2D semiconductors and various device applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atomic%20Layer%20Deposition%20%28ALD%29" title="Atomic Layer Deposition (ALD)">Atomic Layer Deposition (ALD)</a>, <a href="https://publications.waset.org/abstracts/search?q=tungsten%20oxide" title=" tungsten oxide"> tungsten oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=WO%E2%82%83" title=" WO₃"> WO₃</a>, <a href="https://publications.waset.org/abstracts/search?q=two-dimensional%20semiconductors" title=" two-dimensional semiconductors"> two-dimensional semiconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20fundamental%20layer" title=" single fundamental layer"> single fundamental layer</a> </p> <a href="https://publications.waset.org/abstracts/54206/development-of-single-layer-of-wo3-on-large-spatial-resolution-by-atomic-layer-deposition-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3744</span> Various Modification of Electrochemical Barrier Layer Thinning of Anodic Aluminum Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20J.%20St%C4%99pniowski">W. J. Stępniowski</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Florkiewicz"> W. Florkiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Norek"> M. Norek</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Michalska-Doma%C5%84ska"> M. Michalska-Domańska</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Ko%C5%9Bciuczyk"> E. Kościuczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Czujko"> T. Czujko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, two options of anodic alumina barrier layer thinning have been demonstrated. The approaches varied with the duration of the voltage step. It was found that too long step of the barrier layer thinning process leads to chemical etching of the nanopores on their top. At the bottoms pores are not fully opened what is disadvantageous for further applications in nanofabrication. On the other hand, while the duration of the voltage step is controlled by the current density (value of the current density cannot exceed 75% of the value recorded during previous voltage step) the pores are fully opened. However, pores at the bottom obtained with this procedure have smaller diameter, nevertheless this procedure provides electric contact between the bare aluminum (substrate) and electrolyte, what is suitable for template assisted electrodeposition, one of the most cost-efficient synthesis method in nanotechnology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anodic%20aluminum%20oxide" title="anodic aluminum oxide">anodic aluminum oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=anodization" title=" anodization"> anodization</a>, <a href="https://publications.waset.org/abstracts/search?q=barrier%20layer%20thinning" title=" barrier layer thinning"> barrier layer thinning</a>, <a href="https://publications.waset.org/abstracts/search?q=nanopores" title=" nanopores"> nanopores</a> </p> <a href="https://publications.waset.org/abstracts/17451/various-modification-of-electrochemical-barrier-layer-thinning-of-anodic-aluminum-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3743</span> Electrodeposition of NiO Films from Organic Solvent-Based Electrolytic Solutions for Solar Cell Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thierry%20Pauport%C3%A9">Thierry Pauporté</a>, <a href="https://publications.waset.org/abstracts/search?q=Sana%20Koussi"> Sana Koussi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabrice%20Odobel"> Fabrice Odobel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The preparation of semiconductor oxide layers and structures by soft techniques is an important field of research. Higher performances are expected from the optimizing of the oxide films and then use of new methods of preparation for a better control of their chemical, morphological, electrical and optical properties. We present the preparation of NiO by electrodeposition from pure polar aprotic medium and mixtures with water. The effect of the solvent, of the electrochemical deposition parameters and post-deposition annealing treatment on the structural, morphological and optical properties of the films is investigated. We remarkably show that the solvent is inserted in the deposited layer and act as a blowing agent, giving rise to mesoporous films after elimination by thermal annealing. These layers of p-type oxide have been successfully used, after sensitization by a dye, in p-type dye-sensitized solar cells. The effects of the solvent on the layer properties and the application of these layers in p-type dye-sensitized solar cells are described. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NiO" title="NiO">NiO</a>, <a href="https://publications.waset.org/abstracts/search?q=layer" title=" layer"> layer</a>, <a href="https://publications.waset.org/abstracts/search?q=p-type%20sensitized%20solar%20cells" title=" p-type sensitized solar cells"> p-type sensitized solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a> </p> <a href="https://publications.waset.org/abstracts/66597/electrodeposition-of-nio-films-from-organic-solvent-based-electrolytic-solutions-for-solar-cell-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3742</span> Synthesis and Characterization of the Carbon Spheres Built Up from Reduced Graphene Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takahiro%20Saida">Takahiro Saida</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahiro%20Kogiso"> Takahiro Kogiso</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahiro%20Maruyama"> Takahiro Maruyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ordered structural carbon (OSC) material is expected to apply to the electrode of secondary batteries, the catalyst supports, and the biomaterials because it shows the low substance-diffusion resistance by its uniform pore size. In general, the OSC material is synthesized using the template material. Changing size and shape of this template provides the pore size of OSC material according to the purpose. Depositing the oxide nanosheets on the polymer sphere template by the layer by layer (LbL) method was reported as one of the preparation methods of OSC material. The LbL method can provide the controlling thickness of structural wall without the surface modification. When the preparation of the uniform carbon sphere prepared by the LbL method which composed of the graphene oxide wall and the polymethyl-methacrylate (PMMA) core, the reduction treatment will be the important object. Since the graphene oxide has poor electron conductivity due to forming a lot of functional groups on the surface, it could be hard to apply to the electrode of secondary batteries and the catalyst support of fuel cells. In this study, the graphene oxide wall of carbon sphere was reduced by the thermal treatment under the vacuum conditions, and its crystalline structure and electronic state were characterized. Scanning electron microscope images of the carbon sphere after the heat treatment at 300ºC showed maintaining sphere shape, but its shape was collapsed with increasing the heating temperature. In this time, the dissolution rate of PMMA core and the reduction rate of graphene oxide were proportionate to heating temperature. In contrast, extending the heating time was conducive to the conservation of the sphere shape. From results of X-ray photoelectron spectroscopy analysis, its electronic state of the surface was indicated mainly sp² carbon. From the above results, we succeeded in the synthesis of the sphere structure composed by the reduction graphene oxide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20sphere" title="carbon sphere">carbon sphere</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=reduction" title=" reduction"> reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=layer%20by%20layer" title=" layer by layer"> layer by layer</a> </p> <a href="https://publications.waset.org/abstracts/90727/synthesis-and-characterization-of-the-carbon-spheres-built-up-from-reduced-graphene-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3741</span> Research on High Dielectric HfO₂ Stack Structure Applied to Field Effect Transistors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuan%20Yu%20Lin">Kuan Yu Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Shih%20Chih%20Chen"> Shih Chih Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on the Al/HfO₂/Si/Al structure to explore the electrical properties of the structure. This experiment uses a radio frequency magnetron sputtering system to deposit high dielectric materials on p-type silicon substrates of 1~10 Ω-cm (100). Consider the hafnium dioxide film as a dielectric layer. Post-deposition annealing at 750°C in nitrogen atmosphere. Electron beam evaporation of metallic aluminum is then used to complete the top/bottom electrodes. The metal is post-annealed at 450°C for 20 minutes in a nitrogen environment to complete the MOS component. Its dielectric constant, equivalent oxide layer thickness, oxide layer defects, and leakage current mechanism are discussed. At PDA 750°C-5s, the maximum k value was found to be 21.2, and the EOT was 3.68nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-k%20gate%20dielectrics" title="high-k gate dielectrics">high-k gate dielectrics</a>, <a href="https://publications.waset.org/abstracts/search?q=HfO%E2%82%82" title=" HfO₂"> HfO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20deposition%20annealing" title=" post deposition annealing"> post deposition annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=RF%20magnetic" title=" RF magnetic"> RF magnetic</a> </p> <a href="https://publications.waset.org/abstracts/183310/research-on-high-dielectric-hfo2-stack-structure-applied-to-field-effect-transistors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3740</span> A Study on Prediction Model for Thermally Grown Oxide Layer in Thermal Barrier Coating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yongseok%20Kim">Yongseok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong-Min%20Lee"> Jeong-Min Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunwoo%20Song"> Hyunwoo Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Junghan%20Yun"> Junghan Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungin%20Byun"> Jungin Byun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Mean%20Koo"> Jae-Mean Koo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Sung%20Seok"> Chang-Sung Seok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal barrier coating(TBC) is applied for gas turbine components to protect the components from extremely high temperature condition. Since metallic substrate cannot endure such severe condition of gas turbines, delamination of TBC can cause failure of the system. Thus, delamination life of TBC is one of the most important issues for designing the components operating at high temperature condition. Thermal stress caused by thermally grown oxide(TGO) layer is known as one of the major failure mechanisms of TBC. Thermal stress by TGO mainly occurs at the interface between TGO layer and ceramic top coat layer, and it is strongly influenced by the thickness and shape of TGO layer. In this study, Isothermal oxidation is conducted on coin-type TBC specimens prepared by APS(air plasma spray) method. After the isothermal oxidation at various temperature and time condition, the thickness and shape(rumpling shape) of the TGO is investigated, and the test data is processed by numerical analysis. Finally, the test data is arranged into a mathematical prediction model with two variables(temperature and exposure time) which can predict the thickness and rumpling shape of TGO. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating" title="thermal barrier coating">thermal barrier coating</a>, <a href="https://publications.waset.org/abstracts/search?q=thermally%20grown%20oxide" title=" thermally grown oxide"> thermally grown oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stress" title=" thermal stress"> thermal stress</a>, <a href="https://publications.waset.org/abstracts/search?q=isothermal%20oxidation" title=" isothermal oxidation"> isothermal oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a> </p> <a href="https://publications.waset.org/abstracts/15412/a-study-on-prediction-model-for-thermally-grown-oxide-layer-in-thermal-barrier-coating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3739</span> X-Ray Photoelectron Spectroscopy Analyses of Candidate Materials for Advanced Nuclear Reactors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marie%20Kudrnov%C3%A1">Marie Kudrnová</a>, <a href="https://publications.waset.org/abstracts/search?q=Jana%20Rejkov%C3%A1"> Jana Rejková</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The samples of supplied INCONEL 601, 617, 625, and HASTELLOY C-22 alloys and experimental nickel alloy MoNiCr were examined by XPS (X-ray photoelectron spectroscopy) before and after exposure. The experiment was performed in a mixture of LiCl-KCl salt (58.2-41.8 wt. %). The exposure conditions were 440°C, pressure 0.2 MPa, 500 hours in an inert argon atmosphere. The XPS analysis shows that a thin oxide layer composed of metal oxides such as NiO, Cr₂O₃, and Nb₂O₅ was formed. After sputtering the exposed surface with Ar ions, metals were also detected in the elemental state, indicating a very thin protective oxide layer with a thickness in units of up to tens of nanometers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=XPS" title="XPS">XPS</a>, <a href="https://publications.waset.org/abstracts/search?q=MSR" title=" MSR"> MSR</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel%20alloy" title=" nickel alloy"> nickel alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20oxides" title=" metal oxides"> metal oxides</a> </p> <a href="https://publications.waset.org/abstracts/143886/x-ray-photoelectron-spectroscopy-analyses-of-candidate-materials-for-advanced-nuclear-reactors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3738</span> Improving Biodegradation Behavior of Fabricated WE43 Magnesium Alloy by High-Temperature Oxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinge%20Liu">Jinge Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuyuan%20Min"> Shuyuan Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Bingchuan%20Liu"> Bingchuan Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bangzhao%20Yin"> Bangzhao Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Peng"> Bo Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng%20Wen"> Peng Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun%20Tian"> Yun Tian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> WE43 magnesium alloy can be additively manufactured via laser powder bed fusion (LPBF) for biodegradable applications, but the as-built WE43 exhibits an excessively rapid corrosion rate. High-temperature oxidation (HTO) was performed on the as-built WE43 to improve its biodegradation behavior. A sandwich structure including an oxide layer at the surface, a transition layer in the middle, and the matrix was generated influenced by the oxidation reaction and diffusion of RE atoms when heated at 525 ℃for 8 hours. The oxide layer consisted of Y₂O₃ and Nd₂O₃ oxides with a thickness of 2-3 μm. The transition layer is composed of α-Mg and Y₂O₃ with a thickness of 60-70 μm, while Mg24RE5 could be observed except α-Mg and Y₂O₃. The oxide layer and transition layer appeared to have an effective passivation effect. The as-built WE43 lost 40% weight after the in vitro immersion test for three days and finally broke into debris after seven days of immersion. The high-temperature oxidation samples kept the structural integrity and lost only 6.88 % weight after 28-day immersion. The corrosion rate of HTO samples was significantly controlled, which improved the biocompatibility of the as-built WE43 at the same time. The samples after HTO had better osteogenic capability according to ALP activity. Moreover, as built WE43 performed unqualified in cell adhesion and hemolytic test due to its excessively rapid corrosion rate. While as for HTO samples, cells adhered well, and the hemolysis ratio was only 1.59%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20powder%20bed%20fusion" title="laser powder bed fusion">laser powder bed fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20metal" title=" biodegradable metal"> biodegradable metal</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature%20oxidation" title=" high temperature oxidation"> high temperature oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation%20behavior" title=" biodegradation behavior"> biodegradation behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=WE43" title=" WE43"> WE43</a> </p> <a href="https://publications.waset.org/abstracts/156258/improving-biodegradation-behavior-of-fabricated-we43-magnesium-alloy-by-high-temperature-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3737</span> Polymer Solar Cells Synthesized with Copper Oxide Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nidal%20H.%20Abu-Zahra">Nidal H. Abu-Zahra</a>, <a href="https://publications.waset.org/abstracts/search?q=Aruna%20P.%20Wanninayake"> Aruna P. Wanninayake</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Copper Oxide (CuO) is a p-type semiconductor with a band gap energy of 1.5 eV, this is close to the ideal energy gap of 1.4 eV required for solar cells to allow good solar spectral absorption. The inherent electrical characteristics of CuO nano particles make them attractive candidates for improving the performance of polymer solar cells when incorporated into the active polymer layer. The UV-visible absorption spectra and external quantum efficiency of P3HT/PC70BM solar cells containing different weight percentages of CuO nano particles showed a clear enhancement in the photo absorption of the active layer, this increased the power conversion efficiency of the solar cells by 24% in comparison to the reference cell. The short circuit current of the reference cell was found to be 5.234 mA/cm2 and it seemed to increase to 6.484 mA/cm2 in cells containing 0.6 mg of CuO NPs; in addition the fill factor increased from 61.15% to 68.0%, showing an enhancement of 11.2%. These observations suggest that the optimum concentration of CuO nano particles was 0.6 mg in the active layer. These significant findings can be applied to design high-efficiency polymer solar cells containing inorganic nano particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide%20nanoparticle" title="copper oxide nanoparticle">copper oxide nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-visible%20spectroscopy" title=" UV-visible spectroscopy"> UV-visible spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20solar%20cells" title=" polymer solar cells"> polymer solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=P3HT%2FPCBM" title=" P3HT/PCBM"> P3HT/PCBM</a> </p> <a href="https://publications.waset.org/abstracts/24214/polymer-solar-cells-synthesized-with-copper-oxide-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3736</span> Studying the Effect of Silicon Substrate Intrinsic Carrier Concentration on Performance of ZnO/Si Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Sadique%20Anwer%20Askari">Syed Sadique Anwer Askari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukul%20Kumar%20Das"> Mukul Kumar Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc Oxide (ZnO) solar cells have drawn great attention due to the enhanced efficiency and low-cost fabrication process. In this study, ZnO thin film is used as the active layer, hole blocking layer, antireflection coating (ARC) as well as transparent conductive oxide. To improve the conductivity of ZnO, top layer of ZnO is doped with aluminum, for top contact. Intrinsic carrier concentration of silicon substrate plays an important role in enhancing the power conversion efficiency (PCE) of ZnO/Si solar cell. With the increase of intrinsic carrier concentration PCE decreased due to increase in dark current in solar cell. At 80nm ZnO and 160µm Silicon substrate thickness, power conversion efficiency of 26.45% and 21.64% is achieved with intrinsic carrier concentration of 1x109/cm3, 1.4x1010/cm3 respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hetero-junction%20solar%20cell" title="hetero-junction solar cell">hetero-junction solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=substrate%20intrinsic%20carrier%20concentration" title=" substrate intrinsic carrier concentration"> substrate intrinsic carrier concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%2FSi" title=" ZnO/Si"> ZnO/Si</a> </p> <a href="https://publications.waset.org/abstracts/61939/studying-the-effect-of-silicon-substrate-intrinsic-carrier-concentration-on-performance-of-znosi-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">601</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3735</span> Green Prossesing of PS/Nanoparticle Fibers and Studying Morphology and Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kheirandish">M. Kheirandish</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Borhani"> S. Borhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this experiment Polystyrene/Zinc-oxide (PS/ZnO) nanocomposite fibers were produced by electrospinning technique using limonene as a green solvent. First, the morphology of electrospun pure polystyrene (PS) and PS/ZnO nanocomposite fibers investigated by SEM. Results showed the PS fiber diameter decreased by increasing concentration of Zinc Oxide nanoparticles (ZnO NPs). Thermo Gravimetric Analysis (TGA) results showed thermal stability of nanocomposites increased by increasing ZnO NPs in PS electrospun fibers. Considering Differential Scanning Calorimeter (DSC) thermograms for electrospun PS fibers indicated that introduction of ZnO NPs into fibers affects the glass transition temperature (Tg) by reducing it. Also, UV protection properties of nanocomposite fibers were increased by increasing ZnO concentration. Evaluating the effect of metal oxide NPs amount on mechanical properties of electrospun layer showed that tensile strength and elasticity modulus of the electrospun layer of PS increased by addition of ZnO NPs. X-ray diffraction (XRD) pattern of nanopcomposite fibers confirmed the presence of NPs in the samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospininng" title="electrospininng">electrospininng</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title=" nanoparticle"> nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=polystyrene" title=" polystyrene"> polystyrene</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO" title=" ZnO"> ZnO</a> </p> <a href="https://publications.waset.org/abstracts/5889/green-prossesing-of-psnanoparticle-fibers-and-studying-morphology-and-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3734</span> Copper Doped P-Type Nickel Oxide Transparent Conducting Oxide Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai%20Huang">Kai Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Assamen%20Ayalew%20Ejigu"> Assamen Ayalew Ejigu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mu-Jie%20Lin"> Mu-Jie Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang-Chiun%20Chao"> Liang-Chiun Chao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nickel oxide and copper-nickel oxide thin films have been successfully deposited by reactive ion beam sputter deposition. Experimental results show that nickel oxide deposited at 300°C is single phase NiO while best crystalline quality is achieved with an O_pf of 0.5. XRD analysis of nickel-copper oxide deposited at 300°C shows a Ni2O3 like crystalline structure at low O_pf while changes to NiO like crystalline structure at high O_pf. EDS analysis shows that nickel-copper oxide deposited at low O_pf is CuxNi2-xO3 with x = 1, while nickel-copper oxide deposited at high O_pf is CuxNi1-xO with x = 0.5, which is supported by Raman analysis. The bandgap of NiO is ~ 3.5 eV regardless of O_pf while the band gap of nickel-copper oxide decreases from 3.2 to 2.3 eV as Opf reaches 1.0. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper" title="copper">copper</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20beam" title=" ion beam"> ion beam</a>, <a href="https://publications.waset.org/abstracts/search?q=NiO" title=" NiO"> NiO</a>, <a href="https://publications.waset.org/abstracts/search?q=oxide" title=" oxide"> oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=resistivity" title=" resistivity"> resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=transparent" title=" transparent"> transparent</a> </p> <a href="https://publications.waset.org/abstracts/58525/copper-doped-p-type-nickel-oxide-transparent-conducting-oxide-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3733</span> Synthesis, Spectral Characterization and Photocatalytic Applications of Graphene Oxide Nanocomposite with Copper Doped Zinc Oxide </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Humaira%20Khan">Humaira Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsin%20Javed"> Mohsin Javed</a>, <a href="https://publications.waset.org/abstracts/search?q=Sammia%20Shahid"> Sammia Shahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reinforced photocatalytic activity of graphene oxide (GO) along with composites of ZnO nanoparticles and copper-doped ZnO nanoparticles were studied by synthesizing ZnO and copper- doped ZnO nanoparticles by co-precipitation method. Zinc acetate and copper acetate were used as precursors, whereas graphene oxide was prepared from pre-oxidized graphite in the presence of H2O2.The supernatant was collected carefully and showed high-quality single-layer characterized by FTIR (Fourier Transform Infrared Spectroscopy), TEM (Transmission Electron Microscopy), SEM (Scanning Electron Microscopy), XRD (X-ray Diffraction Analysis), EDS (Energy Dispersive Spectrometry). The degradation of methylene blue as standard pollutant under UV-Visible irradiation gave results for photocatalytic activity of dopants. It could be concluded that shrinking of optical band caused by composites of Cu-dopped nanoparticles with GO enhances the photocatalytic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degradation" title="degradation">degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%20nanoparticles%20and%20copper-doped%20ZnO%20nanoparticles" title=" ZnO nanoparticles and copper-doped ZnO nanoparticles"> ZnO nanoparticles and copper-doped ZnO nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/81655/synthesis-spectral-characterization-and-photocatalytic-applications-of-graphene-oxide-nanocomposite-with-copper-doped-zinc-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3732</span> High Efficiency Achievement by a New Heterojunction N-Zno:Al/P-Si Solar Cell </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bouloufa">A. Bouloufa</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Khaled"> F. Khaled</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Djessas"> K. Djessas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a new structure of solar cell based on p-type microcrystalline silicon as an absorber and n-type aluminum doped zinc oxide (ZnO:Al) transparent conductive oxide as an optical window. The ZnO:Al layer deposited by rf-magnetron sputtering at room temperature yields a low resistivity about 7,64.10-2Ω.cm and more than 85% mean optical transmittance in the VIS–NIR range, with an optical band gap of 3.3 eV. These excellent optical properties of this layer in combination with an optimal contact at the front surface result in a superior light trapping yielding to efficiencies about 20%. In order to improve efficiency, we have used a p+-µc-Si thin layer highly doped as a back surface field which minimizes significantly the impact of rear surface recombination velocity on voltage and current leading to a high efficiency of 24%. Optoelectronic parameters were determined using the current density-voltage (J-V) curve by means of a numerical simulation with Analysis of Microelectronic and Photonic Structures (AMPS-1D) device simulator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20window" title="optical window">optical window</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a> </p> <a href="https://publications.waset.org/abstracts/14184/high-efficiency-achievement-by-a-new-heterojunction-n-znoalp-si-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3731</span> To Investigate the Effects of Potassium Ion Doping and Oxygen Vacancies in Thin-Film Transistors of Gallium Oxide-Indium Oxide on Their Electrical</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peihao%20Huang">Peihao Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun%20Zhao"> Chun Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thin-film transistors(TFTs) have the advantages of low power consumption, short reaction time, and have high research value in the field of semiconductors, based on this reason, people have focused on gallium oxide-indium oxide thin-film transistors, a relatively common thin-film transistor, elaborated and analyzed his production process, "aqueous solution method", explained the purpose of each step of operation, and finally explored the influence of potassium ions doped in the channel layer on the electrical properties of the device, as well as the effect of oxygen vacancies on its switching ratio and memory, and summarized the conclusions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aqueous%20solution" title="aqueous solution">aqueous solution</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20vacancies" title=" oxygen vacancies"> oxygen vacancies</a>, <a href="https://publications.waset.org/abstracts/search?q=switch%20ratio" title=" switch ratio"> switch ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-film%20transistor%28TFT%29" title=" thin-film transistor(TFT)"> thin-film transistor(TFT)</a> </p> <a href="https://publications.waset.org/abstracts/171155/to-investigate-the-effects-of-potassium-ion-doping-and-oxygen-vacancies-in-thin-film-transistors-of-gallium-oxide-indium-oxide-on-their-electrical" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3730</span> Layer-by-Layer Modified Ceramic Membranes for Micropollutant Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jenny%20Radeva">Jenny Radeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Anke-Gundula%20Roth"> Anke-Gundula Roth</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Goebbert"> Christian Goebbert</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Niestroj-Pahl"> Robert Niestroj-Pahl</a>, <a href="https://publications.waset.org/abstracts/search?q=Lars%20Daehne"> Lars Daehne</a>, <a href="https://publications.waset.org/abstracts/search?q=Axel%20Wolfram"> Axel Wolfram</a>, <a href="https://publications.waset.org/abstracts/search?q=Juergen%20Wiese"> Juergen Wiese</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ceramic membranes for water purification combine excellent stability with long-life characteristics and high chemical resistance. Layer-by-Layer coating is a well-known technique for customization and optimization of filtration properties of membranes but is mostly used on polymeric membranes. Ceramic membranes comprising a metal oxide filtration layer of Al2O3 or TiO2 are charged and therefore highly suitable for polyelectrolyte adsorption. The high stability of the membrane support allows efficient backwash and chemical cleaning of the membrane. The presented study reports metal oxide/organic composite membrane with an increased rejection of bivalent salts like MgSO4 and the organic micropollutant Diclofenac. A self-build apparatus was used for applying the polyelectrolyte multilayers on the ceramic membrane. The device controls the flow and timing of the polyelectrolytes and washing solutions. As support for the Layer-by-Layer coat, ceramic mono-channel membranes were used with an inner capillary of 8 mm diameter, which is connected to the coating device. The inner wall of the capillary is coated subsequently with polycat- and anions. The filtration experiments were performed with a feed solution of MgSO4 and Diclofenac. The salt content of the permeate was detected conductometrically and Diclofenac was measured with UV-Adsorption. The concluded results show retention values of magnesium sulfate of 70% and diclofenac retention of 60%. Further experimental research studied various parameters of the composite membrane-like Molecular Weight Cut Off and pore size, Zeta potential and its mechanical and chemical robustness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20purification" title="water purification">water purification</a>, <a href="https://publications.waset.org/abstracts/search?q=polyelectrolytes" title=" polyelectrolytes"> polyelectrolytes</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20modification" title=" membrane modification"> membrane modification</a>, <a href="https://publications.waset.org/abstracts/search?q=layer-by-layer%20coating" title=" layer-by-layer coating"> layer-by-layer coating</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membranes" title=" ceramic membranes"> ceramic membranes</a> </p> <a href="https://publications.waset.org/abstracts/138651/layer-by-layer-modified-ceramic-membranes-for-micropollutant-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3729</span> Preparation of Catalyst-Doped TiO2 Nanotubes by Single Step Anodization and Potential Shock </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyeonseok%20Yoo">Hyeonseok Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiseok%20Oh"> Kiseok Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinsub%20Choi"> Jinsub Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium oxide nanotubes have attracted great attention because of its photocatalytic activity and large surface area. For enhancing electrochemical properties, catalysts should be doped into the structure because titanium oxide nanotubes themselves have low electroconductivity and catalytic activity. It has been reported that Ru and Ir doped titanium oxide electrodes exhibit high efficiency and low overpotential in the oxygen evolution reaction (OER) for water splitting. In general, titanium oxide nanotubes with high aspect ratio cannot be easily doped by conventional complex methods. Herein, two types of facile routes, namely single step anodization and potential shock, for Ru doping into high aspect ratio titanium oxide nanotubes are introduced in detail. When single step anodization was carried out, stability of electrodes were increased. However, onset potential was shifted to anodic direction. On the other hand, when high potential shock voltage was applied, a large amount of ruthenium/ruthenium oxides were doped into titanium oxide nanotubes and thick barrier oxide layers were formed simultaneously. Regardless of doping routes, ruthenium/ ruthenium oxides were homogeneously doped into titanium oxide nanotubes. In spite of doping routes, doping in aqueous solution generally led to incorporate high amount of Ru in titanium oxide nanotubes, compared to that in non-aqueous solution. The amounts of doped catalyst were analyzed by X-ray photoelectron spectroscopy (XPS). The optimum condition for water splitting was investigated in terms of the amount of doped Ru and thickness of barrier oxide layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doping" title="doping">doping</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20shock" title=" potential shock"> potential shock</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20step%20anodization" title=" single step anodization"> single step anodization</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20oxide%20nanotubes" title=" titanium oxide nanotubes"> titanium oxide nanotubes</a> </p> <a href="https://publications.waset.org/abstracts/36644/preparation-of-catalyst-doped-tio2-nanotubes-by-single-step-anodization-and-potential-shock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3728</span> Composite Electrodes Containing Ni-Fe-Cr as an Activatable Oxygen Evolution Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olga%20A.%20Krysiak">Olga A. Krysiak</a>, <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Cichowicz"> Grzegorz Cichowicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Wojciech%20Hyk"> Wojciech Hyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20Cyranski"> Michal Cyranski</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Augustynski"> Jan Augustynski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal oxides are known electrocatalyst in water oxidation reaction. Due to the fact that it is desirable for efficient oxygen evolution catalyst to contain numerous redox-active metal ions to guard four electron water oxidation reaction, mixed metal oxides exhibit enhanced catalytic activity towards oxygen evolution reaction compared to single metal oxide systems. On the surface of fluorine doped tin oxide coated glass slide (FTO) deposited (doctor blade technique) mixed metal oxide layer composed of nickel, iron, and chromium. Oxide coating was acquired by heat treatment of the aqueous precursors' solutions of the corresponding salts. As-prepared electrodes were photosensitive and acted as an efficient oxygen evolution catalyst. Our results showed that obtained by this method electrodes can be activated which leads to achieving of higher current densities. The recorded current and photocurrent associated with oxygen evolution process were at least two orders of magnitude higher in the presence of oxide layer compared to bare FTO electrode. The overpotential of the process is low (ca. 0,2 V). We have also checked the activity of the catalyst at different known photoanodes used in sun-driven water splitting. Herein, we demonstrate that we were able to achieve efficient oxygen evolution catalysts using relatively cheap precursor consisting of earth abundant metals and simple method of preparation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromium" title="chromium">chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalysis" title=" electrocatalysis"> electrocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=iron" title=" iron"> iron</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20oxides" title=" metal oxides"> metal oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20evolution" title=" oxygen evolution"> oxygen evolution</a> </p> <a href="https://publications.waset.org/abstracts/77511/composite-electrodes-containing-ni-fe-cr-as-an-activatable-oxygen-evolution-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3727</span> Preparation and Study of Pluronic F127 Monolayers at Air-Water Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Kanodia">Neha Kanodia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kamil"> M. Kamil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Properties of mono layers of Pluronic F127 at air/water interface have been investigated by using Langmuir trough method. Pluronic F127 is a triblock copolymer of poly (ethyleneoxide) (PEO groups)– poly (propylene oxide) (PO groups)–poly(ethylene oxide) (PEO groups). Surface pressure versus mean molecular area isotherms is studied. The isotherm of the mono layer showed the characteristics of a pancake-to-brush transition upon compression of the mono layer. The effect of adding surfactant (SDS) to polymer and the effect of increasing loading on polymer was also studied. The effect of repeated compression and expansion cycle (or hysteresis curve) is investigated to know about stability of the film formed. Static elasticity of mono layer gives information about molecular arrangement, phase structure and phase transition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface-pressure" title="surface-pressure">surface-pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20molecular%20area%20isotherms" title=" mean molecular area isotherms"> mean molecular area isotherms</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteresis" title=" hysteresis"> hysteresis</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20elasticity" title=" static elasticity"> static elasticity</a> </p> <a href="https://publications.waset.org/abstracts/19248/preparation-and-study-of-pluronic-f127-monolayers-at-air-water-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3726</span> Depletion Layer Parameters of Al-MoO3-P-CdTe-Al MOS Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20C.%20Sarmah">A. C. Sarmah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Al-MoO3-P-CdTe-Al MOS sandwich structures were fabricated by vacuum deposition method on cleaned glass substrates. Capacitance versus voltage measurements were performed at different frequencies and sweep rates of applied voltages for oxide and semiconductor films of different thicknesses. In the negative voltage region of the C-V curve a high differential capacitance of the semiconductor was observed and at high frequencies (<10 kHz) the transition from accumulation to depletion and further to deep depletion was observed as the voltage was swept from negative to positive. A study have been undertaken to determine the value of acceptor density and some depletion layer parameters such as depletion layer capacitance, depletion width, impurity concentration, flat band voltage, Debye length, flat band capacitance, diffusion or built-in-potential, space charge per unit area etc. These were determined from C-V measurements for different oxide and semiconductor thicknesses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=debye%20length" title="debye length">debye length</a>, <a href="https://publications.waset.org/abstracts/search?q=depletion%20width" title=" depletion width"> depletion width</a>, <a href="https://publications.waset.org/abstracts/search?q=flat%20band%20capacitance" title=" flat band capacitance"> flat band capacitance</a>, <a href="https://publications.waset.org/abstracts/search?q=impurity%20concentration" title=" impurity concentration"> impurity concentration</a> </p> <a href="https://publications.waset.org/abstracts/17976/depletion-layer-parameters-of-al-moo3-p-cdte-al-mos-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxide%20layer&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxide%20layer&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxide%20layer&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxide%20layer&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxide%20layer&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxide%20layer&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxide%20layer&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxide%20layer&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxide%20layer&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxide%20layer&amp;page=125">125</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxide%20layer&amp;page=126">126</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxide%20layer&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10