CINXE.COM
Search results for: grade III wound
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: grade III wound</title> <meta name="description" content="Search results for: grade III wound"> <meta name="keywords" content="grade III wound"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="grade III wound" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="grade III wound"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1538</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: grade III wound</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1538</span> Effects of EMS on Foot Drop Associated with Grade III Wound: A Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirza%20Obaid%20Baig">Mirza Obaid Baig</a>, <a href="https://publications.waset.org/abstracts/search?q=MaimoonaYaqub"> MaimoonaYaqub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 51 year old lady; known case of diabetes mellitus, post wound debridement i.e. 4 open wounds of grade III presented to us with foot drop, with prominent sensory deficit over right lower leg/foot i.e. 0 on Nottingham scale for impaired sensation, marked pedal edema and 5/10 – 6/10 pain on VAS during day and night respectively, Wounds were poorly granulated and foul smelling. Physiotherapy sessions were planned including twice a day electrical muscle stimulation sessions, strategies to decrease edema and improve muscle action which resulted in noticeable improvement in motor and sensory ability, pain levels, edema and psychological status of patient. Thus, this study gives evidence of the effect of Electrical muscle stimulation in grade III open wounds associated with motor/sensory weakness post-surgery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMS" title="EMS">EMS</a>, <a href="https://publications.waset.org/abstracts/search?q=foot%20drop" title=" foot drop"> foot drop</a>, <a href="https://publications.waset.org/abstracts/search?q=grade%20III%20wound" title=" grade III wound"> grade III wound</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes%20mellitus" title=" diabetes mellitus"> diabetes mellitus</a> </p> <a href="https://publications.waset.org/abstracts/40776/effects-of-ems-on-foot-drop-associated-with-grade-iii-wound-a-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1537</span> Hydrocolloid Dressings for Wound Healing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Berk%20Kili%C3%A7">Berk Kiliç</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the medical and surgical fields, wound care is a critical and expansive industry. Hydrocolloid wound dressings have been introduced and are widely used due to their effectiveness in promoting healing, managing wound fluids, and protecting against infection. Hydrocolloid wound dressings have been introduced as effective solutions, adherence to wound surfaces and infection prevention. it fabricated different hydrocolloid wound dressings with myrrh resin, garlic and sorrel inorder to enhance healing properties. The physical and mechanical properties were evaluated to confirm which one is most suitable as a hydrocolloid wound dressing. it observations show that mirderm solution showed superior wound healing and fluid control properties compared to other prepared solutions. This indicates that “mirderm” could be a viable alternative to standard gauze and some commercial hydrocolloid dressings that do not contain myrrh. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wound" title="wound">wound</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocolloid" title=" hydrocolloid"> hydrocolloid</a>, <a href="https://publications.waset.org/abstracts/search?q=myrrh" title=" myrrh"> myrrh</a>, <a href="https://publications.waset.org/abstracts/search?q=garlic" title=" garlic"> garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=sorrel" title=" sorrel"> sorrel</a> </p> <a href="https://publications.waset.org/abstracts/189282/hydrocolloid-dressings-for-wound-healing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">35</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1536</span> The Effect of Topically Aloe vera Gel on Cutaneous Wound Healing </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasrin%20Takzaree">Nasrin Takzaree</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Hadjiakhoondi"> Abbas Hadjiakhoondi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gholamreza%20Hassanzadeh"> Gholamreza Hassanzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Rouini"> Mohammadreza Rouini </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Wound healing and repair is a normal reaction to injury which results in restoration of tissue integrity. Rate of wound healing is affected by various factors, such as nutrition, vitamins, hormones. Method: The aim of this study was to evaluate the effect of Aloe vera mucilage on wound healing. Mucilage was extracted from leaves, then homogenize, filtered and concentrated. Some creams were prepared with different concentrations of mucilage 95%. In this study 63 male albino rats, weighing 250–300 gr were used. Incision wounds (10 mm) were made on the shaved and cleaned back of rat necks. Wounds of case groups (group I & group II) were treated with aloe vera mucilage which were administered one time daily another group two times daily. Results: In order to evaluate wound healing, various parameters such as wound diameter, percentage of healing, duration of healing. Were considered. Conclusion: The results of this study confirmed that aloe vera mucilage is a potent healing and can be used in wound healing process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aloe%20vera" title="Aloe vera">Aloe vera</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20healing" title=" wound healing"> wound healing</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20skin%20wound" title=" open skin wound"> open skin wound</a>, <a href="https://publications.waset.org/abstracts/search?q=healing%20process" title=" healing process"> healing process</a> </p> <a href="https://publications.waset.org/abstracts/15378/the-effect-of-topically-aloe-vera-gel-on-cutaneous-wound-healing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1535</span> Integrating Wound Location Data with Deep Learning for Improved Wound Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mouli%20Banga">Mouli Banga</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaya%20Ravindra"> Chaya Ravindra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wound classification is a crucial step in wound diagnosis. An effective classifier can aid wound specialists in identifying wound types with reduced financial and time investments, facilitating the determination of optimal treatment procedures. This study presents a deep neural network-based classifier that leverages wound images and their corresponding locations to categorize wounds into various classes, such as diabetic, pressure, surgical, and venous ulcers. By incorporating a developed body map, the process of tagging wound locations is significantly enhanced, providing healthcare specialists with a more efficient tool for wound analysis. We conducted a comparative analysis between two prominent convolutional neural network models, ResNet50 and MobileNetV2, utilizing a dataset of 730 images. Our findings reveal that the RestNet50 outperforms MovileNetV2, achieving an accuracy of approximately 90%, compared to MobileNetV2’s 83%. This disparity highlights the superior capability of ResNet50 in the context of this dataset. The results underscore the potential of integrating deep learning with spatial data to improve the precision and efficiency of wound diagnosis, ultimately contributing to better patient outcomes and reducing healthcare costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wound%20classification" title="wound classification">wound classification</a>, <a href="https://publications.waset.org/abstracts/search?q=MobileNetV2" title=" MobileNetV2"> MobileNetV2</a>, <a href="https://publications.waset.org/abstracts/search?q=ResNet50" title=" ResNet50"> ResNet50</a>, <a href="https://publications.waset.org/abstracts/search?q=multimodel" title=" multimodel"> multimodel</a> </p> <a href="https://publications.waset.org/abstracts/188971/integrating-wound-location-data-with-deep-learning-for-improved-wound-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1534</span> Photobiomodulation Activates WNT/β-catenin Signaling for Wound Healing in an in Vitro Diabetic Wound Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimakatso%20B.%20Gumede">Dimakatso B. Gumede</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolette%20N.%20Houreld"> Nicolette N. Houreld</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetic foot ulcers (DFUs) are a complication of diabetes mellitus (DM), a metabolic disease caused by insulin resistance or insufficiency, resulting in hyperglycaemia and low-grade chronic inflammation. Current therapies for treating DFUs include wound debridement, glycaemic control, and wound dressing. However, these therapies are moderately effective as there is a recurrence of these ulcers and an increased risk of lower limb amputations. Photobiomodulation (PBM), which is the application of non-invasive low-level light for wound healing at the spectrum of 660-1000 nm, has shown great promise in accelerating the healing of chronic wounds. However, its underlying mechanisms are not clearly defined. Studies have indicated that PBM induces wound healing via the activation of signaling pathways that are involved in tissue repair, such as the transforming growth factor-β (TGF-β). However, other signaling pathways, such as the WNT/β-catenin pathway, which is also critical for wound repair, have not been investigated. This study aimed to elucidate if PBM at 660 nm and a fluence of 5 J/cm² activates the WNT/β-catenin signaling pathway for wound healing in a diabetic cellular model. Human dermal fibroblasts (WS1) were continuously cultured high-glucose (26.5 mM D-glucose) environment to create a diabetic cellular model. A central scratch was created in the diabetic model to ‘wound’ the cells. The diabetic wounded (DW) cells were thereafter irradiated at 660 nm and a fluence of 5 J/cm². Cell migration, gene expression and protein assays were conducted at 24- and 48-h post-PBM. The results showed that PBM at 660 nm and a fluence of 5 J/cm² significantly increased cell migration in diabetic wounded cells at 24-h post-PBM. The expression of CTNNB1, ACTA2, COL1A1 and COL3A1 genes was also increased in DW cells post-PBM. Furthermore, there was increased cytoplasmic accumulation and nuclear localization of β-catenin at 24 h post-PBM. The findings in this study demonstrate that PBM activates the WNT/β-catenin signaling pathway by inducing the accumulation of β-catenin in diabetic wounded cells, leading to increased cell migration and expression of wound repair markers. These results thus indicate that PBM has the potential to improve wound healing in diabetic ulcers via activation of the WNT/β-catenin signaling pathway. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wound%20healing" title="wound healing">wound healing</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetic%20ulcers" title=" diabetic ulcers"> diabetic ulcers</a>, <a href="https://publications.waset.org/abstracts/search?q=photobiomodulation" title=" photobiomodulation"> photobiomodulation</a>, <a href="https://publications.waset.org/abstracts/search?q=WNT%2F%CE%B2-catenin" title=" WNT/β-catenin"> WNT/β-catenin</a>, <a href="https://publications.waset.org/abstracts/search?q=signalling%20pathway" title=" signalling pathway"> signalling pathway</a> </p> <a href="https://publications.waset.org/abstracts/188444/photobiomodulation-activates-wntv-catenin-signaling-for-wound-healing-in-an-in-vitro-diabetic-wound-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">47</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1533</span> Evaluation of the Effectiveness of the Argon Plasma Jet on Healing Process of the Wagner Grade 2 Diabetic Foot Ulcer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khaledi%20Pour">M. Khaledi Pour</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Akbartehrani"> P. Akbartehrani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Amini"> M. Amini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khani"> M. Khani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mohajeri%20Tehrani"> M. Mohajeri Tehrani</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Radi"> R. Radi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Shokri"> B. Shokri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetic Foot Ulcer (DFU) is one of the costly severe complications of diabetes. Neuropathy and Peripheral Arterial Disease (PAD) due to diabetes are significant causes of this complication. In 10 years the patients with DFUs are twice as likely to die as patients without DFUs. Cold Atmospheric Plasma (CAP) is a promising tool for medical purposes. CAP generate reactive species at room temperature and are effective in killing bacteria and fibroblast proliferation. These CAP-based tools produce NO, which has bactericidal and angiogenesis properties. It also showed promising effects in the DFUs surface reduction and the time to wound closure. In this paper, we evaluated the effect of the Argon Plasma Jet (APJ) on the healing process of the Wagner Grade 2 DFUs in a randomized clinical trial. The 20 kHz sinusoidal voltage frequency derives the APJ. Patients (n=20) were randomly double-blinded assigned into two groups. These groups receive the standard care (SC, n=10) and the standard care with APJ treatment (SC+APJ, n=10) for five sessions in four weeks. The results showed that the APJ treatment along standard care could reduce the wound surface by 20 percent more than the standard care. Also, It showed a more influential role in controlling wound infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=argon%20plasma%20jet" title="argon plasma jet">argon plasma jet</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20atmospheric%20plasma" title=" cold atmospheric plasma"> cold atmospheric plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetic%20foot%20ulcer" title=" diabetic foot ulcer"> diabetic foot ulcer</a> </p> <a href="https://publications.waset.org/abstracts/141056/evaluation-of-the-effectiveness-of-the-argon-plasma-jet-on-healing-process-of-the-wagner-grade-2-diabetic-foot-ulcer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1532</span> Efficacy of Umbilical Cord Lining Stem Cells For Wound Healing in Diabetic Murine Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fui%20Ping%20Lim">Fui Ping Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen%20Choong%20Chua"> Wen Choong Chua</a>, <a href="https://publications.waset.org/abstracts/search?q=Toan%20Thang%20Phan"> Toan Thang Phan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: This study investigates the roles of Cord Lining Stem Cells (CLSCs) as potential therapeutic agents for diabetic wounds. Method: 20 genetically diabetic db/db mice were randomly assigned to two arms; (i) control group received placebo treatment (sham media or cells delivery material), and (ii) active comparator received CLSCs. Two full-thickness wounds, each sized 10mm X 10mm were created, one on each side of the midline on the back of the mice. Digital pictures were taken on day 1, 3, 7, 10, 14, 17, 21, 24, 28. Wound areas were analyzed with ImageJ TM software and calculated as percentage of the original wound. Time to closure was defined as the day the wound bed was completely epithelized and filled with new tissues. Results: The CLSCs-treated wounds, showed a significant increase in the percentage of wound closure and achieved 100% closure of the wound sooner than the control group by an average of 3.7 days. The mice treated with CLSCs have a shorter wound closure time (mean closure day: 19.8 days) as compared to the control group (mean closure day: 23.5 days). Conclusion: Our preliminary findings inferred that CLSCs treated wound achieved higher percentage of wound closure within a shorter duration of time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cord%20lining%20stem%20cell" title="cord lining stem cell">cord lining stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetic%20wound" title=" diabetic wound"> diabetic wound</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell" title=" stem cell"> stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=wound" title=" wound"> wound</a> </p> <a href="https://publications.waset.org/abstracts/53878/efficacy-of-umbilical-cord-lining-stem-cells-for-wound-healing-in-diabetic-murine-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1531</span> The Use of a Rabbit Model to Evaluate the Influence of Age on Excision Wound Healing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Bilal">S. Bilal</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Bhat"> S. A. Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Hussain"> I. Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20D.%20Parrah"> J. D. Parrah</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Ahmad"> S. P. Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Mir"> M. R. Mir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The wound healing involves a highly coordinated cascade of cellular and immunological response over a period including coagulation, inflammation, granulation tissue formation, epithelialization, collagen synthesis and tissue remodeling. Wounds in aged heal more slowly than those in younger, mainly because of comorbidities that occur as one age. The present study is about the influence of age on wound healing. 1x1cm^2 (100 mm) wounds were created on the back of the animal. The animals were divided into two groups; one group had animals in the age group of 3-9 months while another group had animals in the age group of 15-21 months. Materials and Methods: 24 clinically healthy rabbits in the age group of 3-21 months were used as experimental animals and divided into two groups viz A and B. All experimental parameters, i.e., Excision wound model, Measurement of wound area, Protein extraction and estimation, Protein extraction and estimation and DNA extraction and estimation were done by standard methods. Results: The parameters studied were wound contraction, hydroxyproline, glucosamine, protein, and DNA. A significant increase (p<0.005) in the hydroxyproline, glucosamine, protein and DNA and a significant decrease in wound area (p<0.005) was observed in the age group of 3-9 months when compared to animals of an age group of 15-21 months. Wound contraction together with hydroxyproline, glucosamine, protein and DNA estimations suggest that advanced age results in retarded wound healing. Conclusion: The decrease wound contraction and accumulation of hydroxyproline, glucosamine, protein and DNA in group B animals may be associated with the reduction or delay in growth factors because of the advancing age. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=age" title="age">age</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20healing" title=" wound healing"> wound healing</a>, <a href="https://publications.waset.org/abstracts/search?q=excision%20wound" title=" excision wound"> excision wound</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyproline" title=" hydroxyproline"> hydroxyproline</a>, <a href="https://publications.waset.org/abstracts/search?q=glucosamine" title=" glucosamine"> glucosamine</a> </p> <a href="https://publications.waset.org/abstracts/22034/the-use-of-a-rabbit-model-to-evaluate-the-influence-of-age-on-excision-wound-healing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">664</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1530</span> Numerical Simulation on Bacteria-Carrying Particles Transport and Deposition in an Open Surgical Wound </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiuguo%20Zhao">Xiuguo Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=He%20Li"> He Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Yazdani"> Alireza Yazdani</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoning%20Zheng"> Xiaoning Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinxi%20Xu"> Xinxi Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wound infected poses a serious threat to the surgery on the patient during the process of surgery. Understanding the bacteria-carrying particles (BCPs) transportation and deposition in the open surgical wound model play essential role in protecting wound against being infected. Therefore BCPs transportation and deposition in the surgical wound model were investigated using force-coupling method (FCM) based computational fluid dynamics. The BCPs deposition in the wound was strongly associated with BCPs diameter and concentration. The results showed that the rise on the BCPs deposition was increasing not only with the increase of BCPs diameters but also with the increase of the BCPs concentration. BCPs deposition morphology was impacted by the combination of size distribution, airflow patterns and model geometry. The deposition morphology exhibited the characteristic with BCPs deposition on the sidewall in wound model and no BCPs deposition on the bottom of the wound model mainly because the airflow movement in one direction from up to down and then side created by laminar system constructing airflow patterns and then made BCPs hard deposit in the bottom of the wound model due to wound geometry limit. It was also observed that inertial impact becomes a main mechanism of the BCPs deposition. This work may contribute to next study in BCPs deposition limit, as well as wound infected estimation in surgical-site infections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BCPs%20deposition" title="BCPs deposition">BCPs deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=force-coupling%20method%20%28FCM%29" title=" force-coupling method (FCM)"> force-coupling method (FCM)</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20surgical%20wound%20model" title=" open surgical wound model"> open surgical wound model</a> </p> <a href="https://publications.waset.org/abstracts/62552/numerical-simulation-on-bacteria-carrying-particles-transport-and-deposition-in-an-open-surgical-wound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1529</span> The AI Method and System for Analyzing Wound Status in Wound Care Nursing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ho-Hsin%20Lee">Ho-Hsin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yue-Min%20Jiang"> Yue-Min Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Hui%20Tsai"> Shu-Hui Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian-Ren%20Chen"> Jian-Ren Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei-Yu%20XU"> Mei-Yu XU</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Tien%20Wu"> Wen-Tien Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This project presents an AI-based method and system for wound status analysis. The system uses a three-in-one sensor device to analyze wound status, including color, temperature, and a 3D sensor to provide wound information up to 2mm below the surface, such as redness, heat, and blood circulation information. The system has a 90% accuracy rate, requiring only one manual correction in 70% of cases, with a one-second delay. The system also provides an offline application that allows for manual correction of the wound bed range using color-based guidance to estimate wound bed size with 96% accuracy and a maximum of one manual correction in 96% of cases, with a one-second delay. Additionally, AI-assisted wound bed range selection achieves 100% of cases without manual intervention, with an accuracy rate of 76%, while AI-based wound tissue type classification achieves an 85.3% accuracy rate for five categories. The AI system also includes similar case search and expert recommendation capabilities. For AI-assisted wound range selection, the system uses WIFI6 technology, increasing data transmission speeds by 22 times. The project aims to save up to 64% of the time required for human wound record keeping and reduce the estimated time to assess wound status by 96%, with an 80% accuracy rate. Overall, the proposed AI method and system integrate multiple sensors to provide accurate wound information and offer offline and online AI-assisted wound bed size estimation and wound tissue type classification. The system decreases delay time to one second, reduces the number of manual corrections required, saves time on wound record keeping, and increases data transmission speed, all of which have the potential to significantly improve wound care and management efficiency and accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wound%20status%20analysis" title="wound status analysis">wound status analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=AI-based%20system" title=" AI-based system"> AI-based system</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-sensor%20integration" title=" multi-sensor integration"> multi-sensor integration</a>, <a href="https://publications.waset.org/abstracts/search?q=color-based%20guidance" title=" color-based guidance"> color-based guidance</a> </p> <a href="https://publications.waset.org/abstracts/166294/the-ai-method-and-system-for-analyzing-wound-status-in-wound-care-nursing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1528</span> Producing TPU/Propolis Nanofibrous Membrane as Wound Dressing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasin%20Akg%C3%BCl">Yasin Akgül</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Polat"> Yusuf Polat</a>, <a href="https://publications.waset.org/abstracts/search?q=Emine%20Canbay"> Emine Canbay</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20K%C4%B1l%C4%B1%C3%A7"> Ali Kılıç </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wound dressings have strategically and economic importance considering increase of chronic wounds in the world. In this study, TPU nanofibrous membranes containing propolis as wound dressing are produced by two different methods. Firstly, TPU solution and propolis extract were mixed and this solution was electrospun. The other method is that TPU/propolis blend was centrifugally spun. Properties of nanofibrous membranes obtained by these methods were compared. While realizing the experiments, both systems were optimized to produce nanofibers with nearly same average fiber diameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofiber" title="nanofiber">nanofiber</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20dressing" title=" wound dressing"> wound dressing</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20spinning" title=" centrifugal spinning"> centrifugal spinning</a> </p> <a href="https://publications.waset.org/abstracts/21297/producing-tpupropolis-nanofibrous-membrane-as-wound-dressing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1527</span> Animal Modes of Surgical or Other External Causes of Trauma Wound Infection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ojoniyi%20Oluwafeyekikunmi%20Okiki">Ojoniyi Oluwafeyekikunmi Okiki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Notwithstanding advances in disturbing wound care and control, infections remain a main motive of mortality, morbidity, and financial disruption in tens of millions of wound sufferers around the sector. Animal models have become popular gear for analyzing a big selection of outside worrying wound infections and trying out new antimicrobial techniques. This evaluation covers experimental infections in animal models of surgical wounds, pores and skin abrasions, burns, lacerations, excisional wounds, and open fractures. Animal modes of external stressful wound infections stated via extraordinary investigators vary in animal species used, microorganism traces, the quantity of microorganisms carried out, the dimensions of the wounds, and, for burn infections, the period of time the heated object or liquid is in contact with the skin. As antibiotic resistance continues to grow, new antimicrobial procedures are urgently needed. Those have to be examined using popular protocols for infections in external stressful wounds in animal models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surgical%20wounds" title="surgical wounds">surgical wounds</a>, <a href="https://publications.waset.org/abstracts/search?q=animals" title=" animals"> animals</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20infections" title=" wound infections"> wound infections</a>, <a href="https://publications.waset.org/abstracts/search?q=burns" title=" burns"> burns</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20models" title=" wound models"> wound models</a>, <a href="https://publications.waset.org/abstracts/search?q=colony-forming%20gadgets" title=" colony-forming gadgets"> colony-forming gadgets</a>, <a href="https://publications.waset.org/abstracts/search?q=lacerated%20wounds" title=" lacerated wounds"> lacerated wounds</a> </p> <a href="https://publications.waset.org/abstracts/193921/animal-modes-of-surgical-or-other-external-causes-of-trauma-wound-infection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1526</span> Comparative Wound Healing Potential of Mitracarpus villosus Ointment and Honey in Diabetic Albino Rats by Collagen Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bawa%20Inalegwu">Bawa Inalegwu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacob%20A.%20Jato"> Jacob A. Jato</a>, <a href="https://publications.waset.org/abstracts/search?q=Ovye%20Akyengo"> Ovye Akyengo</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Akighir"> John Akighir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> All humans will experience some type of wound in every lifetime. Most wounds heal quickly with little or no attention but, many people suffer from wounds that are complex and/or persistent therefore posing a burden. This study was designed to assess the efficacy of Mitrcarpus villous ointment against honey in diabetic rats. To achieve this, percentage wound closure and collagen assessments were used to express treatment efficacy. Results show that on day 21, rats treated with M. villosus ointment had the highest percentage closure (94.5%) while honey treated and non-treated recorded 90.0% and 83.3% respectively. Similarly, a significant difference (p < 0.05) was observed on day 21 in the total collagen deposited in wounds of diabetic rats (10.57 ± 0.7) and M. villous ointment treated wounds (11.77 ± 0.4) as compared with the non-treated diabetic rats. M. villosus ointment was efficacious in healing wounds in diabetic rats and heals wound faster than honey and may hold potential for wound healing in diabetes mellitus sufferers. However, the wound healing mechanism of this ointment <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collagen" title="collagen">collagen</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetic%20rats" title=" diabetic rats"> diabetic rats</a>, <a href="https://publications.waset.org/abstracts/search?q=honey" title=" honey"> honey</a>, <a href="https://publications.waset.org/abstracts/search?q=Mitracarpus%20villosus" title=" Mitracarpus villosus"> Mitracarpus villosus</a>, <a href="https://publications.waset.org/abstracts/search?q=ointment" title=" ointment"> ointment</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20healing" title=" wound healing"> wound healing</a> </p> <a href="https://publications.waset.org/abstracts/139065/comparative-wound-healing-potential-of-mitracarpus-villosus-ointment-and-honey-in-diabetic-albino-rats-by-collagen-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1525</span> Preparation and Analysis of Chitosan-Honey Films for Wound Dressing Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Sasikala">L. Sasikala</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhaarathi%20Dhurai"> Bhaarathi Dhurai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increase in antibiotic resistance bacteria leads to the development of active wound dressings, which absorb any bodily fluid, evaporation of moisture at a certain rate and can be easily removed after healing. Natural materials like chitosan, herbs, and honey have number of active materials present in them to accelerate wound healing and to arrest wound in infections. Hence with the advantages of biomaterials, a film was prepared using chitosan and honey. There are a lot of practical considerations with respect to honey. Honey exerts many beneficial actions on the wound surface only when it remains. The attempts to hold honey on the surface of the wound remain a question because honey becomes a very runny liquid when it comes to body temperature. Hence, this research was focused on development of a new form of wound dressing, by holding honey on the wound surface in different form and also which has a combined effect of manuka (Leptospermum scoparium) honey and chitosan. Chitosan-honey film was prepared using casting technique. Films were prepared in different variations; with acetic acid and with lactic acid; with and without honey. In summary, the film produced from 2% chitosan- 1% lactic acid as a solvent, with 10% honey shows optimum inclined values in all the tests, like thickness, folding endurance, weight, water vapor transmission, tensile strength, swelling ratio and antimicrobial activity, with specific reference to wound dressings. The film has water vapor transmission of 1680 g/m²/day, water absorption of 225%, tensile strength of 39.1N/mm² and elongation of 50.3%. There is a notable inhibition zone of 29 mm against S. aureus and 24 mm against E. coli in the case of chitosan-lactic acid-honey film. The film also arrests, microbes transmitting from the outside environment to wound bed, which can be used as an effective wound dressing material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=casting%20technique" title="casting technique">casting technique</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=honey" title=" honey"> honey</a>, <a href="https://publications.waset.org/abstracts/search?q=film" title=" film"> film</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20dressings" title=" wound dressings"> wound dressings</a> </p> <a href="https://publications.waset.org/abstracts/75464/preparation-and-analysis-of-chitosan-honey-films-for-wound-dressing-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1524</span> Evaluation of Excision Wound Healing Activity of Ethanolic Extract of Michelia Champaca ın Diabetic Wistar Rats </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Smita%20Shenoy">Smita Shenoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Amoolya%20Gowda"> Amoolya Gowda</a>, <a href="https://publications.waset.org/abstracts/search?q=Tara%20Shanbhag"> Tara Shanbhag</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishnananda%20Prabhu"> Krishnananda Prabhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Venumadhav%20Nelluri"> Venumadhav Nelluri </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was undertaken to assess the effect of ethanolic extract of Michelia champaca on excision wound healing in diabetic wistar rats. Excision wound was made in five groups of rats after inducing diabetes with streptozotocin in four groups. Paraffin was applied to wounds in nondiabetic and diabetic control and 2.5%, 5%, 10% ointment of extract to wounds in three diabetic test groups. Monitoring of wound contraction rate, the period of epithelization and histopathological examination of granulation tissue was done. There was a significant (p < 0.05) decrease in the period of epithelization and a significant increase in the wound contraction rate on day 12 and 16 in rats treated with 5% and 10% ointment as compared to diabetic rats. There was a better organization of collagen fibers in the granulation tissue of wounds treated with 10% ointment. The higher dose of ethanolic extract of Michelia champaca promoted wound healing in diabetic Wistar rats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michelia%20champaca" title="Michelia champaca">Michelia champaca</a>, <a href="https://publications.waset.org/abstracts/search?q=excision%20wound" title=" excision wound"> excision wound</a>, <a href="https://publications.waset.org/abstracts/search?q=contraction" title=" contraction"> contraction</a>, <a href="https://publications.waset.org/abstracts/search?q=epithelization" title=" epithelization"> epithelization</a> </p> <a href="https://publications.waset.org/abstracts/1352/evaluation-of-excision-wound-healing-activity-of-ethanolic-extract-of-michelia-champaca-in-diabetic-wistar-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1523</span> Sea Cucumber (Stichopus chloronotus) to Expedite Healing of Minor Wounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isa%20Naina%20Mohamed">Isa Naina Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazliadiyana%20Mazlan"> Mazliadiyana Mazlan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Nazrun%20Shuid"> Ahmad Nazrun Shuid </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stichopus chloronotus (Black Knobby or green fish) is a sea cucumber species commonly found along Malaysia’s coastline. In Malaysia, it is believed that sea cucumber can expedite healing of wounds, provide extra energy and used as an ointment to relieve pain. The aim of this study is to determine the best concentration of Stichopus chlronotus extract to promote wound healing. 12 male Sprague-Dawley rats with wounds created using 6mm disposable punch biopsy were divided into 6 treatment groups. The normal control group (untreated), positive control group (flavin treated only), negative control group (emulsifying ointment only), and group 0.1, group 0.5, group 1 were each treated with 0.1%, 0.5% and 1% of Stichopus chlronotus water extract mixed in emulsifying ointment, respectively. Treatments were administered topically for 10 days. Changes in wound area were measured using caliper and photographs were taken on day 2, 4, 6, 8, and 10 after index wound. Results showed that wound reduction of group 0.5 on day 4, 6, and 8 was significantly higher compared to normal control group and positive control group. Group 0.5 also had higher wound reduction from day 6 until day 10 compared to all other groups. In conclusion, Sea Cucumber (Stichopus chloronotus) extract demonstrated the best minor wound healing properties at concentration 0.5%. The potential of Stichopus chlronotus extract ointment for wound healing shall be investigated further. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=minor%20wound%20healing" title="minor wound healing">minor wound healing</a>, <a href="https://publications.waset.org/abstracts/search?q=expedite%20wound%20healing" title=" expedite wound healing"> expedite wound healing</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20cucumber" title=" sea cucumber"> sea cucumber</a>, <a href="https://publications.waset.org/abstracts/search?q=Stichopus%20chloronotus" title=" Stichopus chloronotus "> Stichopus chloronotus </a> </p> <a href="https://publications.waset.org/abstracts/34241/sea-cucumber-stichopus-chloronotus-to-expedite-healing-of-minor-wounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1522</span> Rotor Side Speed Control Methods Using MATLAB/Simulink for Wound Induction Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar">Rajesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Roopali%20Dogra"> Roopali Dogra</a>, <a href="https://publications.waset.org/abstracts/search?q=Puneet%20Aggarwal"> Puneet Aggarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent advancements in electric machine and drives, wound rotor motor is extensively used. The merit of using wound rotor induction motor is to control speed/torque characteristics by inserting external resistance. Wound rotor induction motor can be used in the cases such as (a) low inrush current, (b) load requiring high starting torque, (c) lower starting current is required, (d) loads having high inertia, and (e) gradual built up of torque. Examples include conveyers, cranes, pumps, elevators, and compressors. This paper includes speed control of wound induction motor using MATLAB/Simulink for rotor resistance and slip power recovery method. The characteristics of these speed control methods are hence analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MATLAB%2FSimulink" title="MATLAB/Simulink">MATLAB/Simulink</a>, <a href="https://publications.waset.org/abstracts/search?q=rotor%20resistance%20method" title=" rotor resistance method"> rotor resistance method</a>, <a href="https://publications.waset.org/abstracts/search?q=slip%20power%20recovery%20method" title=" slip power recovery method"> slip power recovery method</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20rotor%20induction%20motor" title=" wound rotor induction motor"> wound rotor induction motor</a> </p> <a href="https://publications.waset.org/abstracts/73488/rotor-side-speed-control-methods-using-matlabsimulink-for-wound-induction-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1521</span> Antibacterial Hydrogels for Wound Care</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saba%20Atefyekta">Saba Atefyekta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: Control of bacterial bioburden in wounds is an important step for minimizing the risk of wound infection. An antimicrobial hydrogel wound dressing is developed out of soft polymeric hydrogels that contain antimicrobial peptides (AMPs). Such wound dressings can bind and kill all types of bacteria, even the resistance types at the wound site. Methods: AMPs are permanently bonded onto a soft nanostructured polymer via covalent attachment and physical entanglement. This improves stability, rapid antibacterial activity, and, most importantly, prevents the leaching of AMPs. Major Findings: Antimicrobial analysis of antimicrobial hydrogels using in-vitro wound models confirmed >99% killing efficiency against multiple bacterial trains, including MRSA, MDR, E. Coli. Furthermore, the hydrogel retained its antibacterial activity for up to 4 days when exposed to human serum. Tests confirmed no release of AMPs, and it was proven non-toxic to mammalian cells. An in-vivo study on human intact skin showed a significant reduction of bacteria for part of the subject’s skin treated with antibacterial hydrogels. A similar result was detected through a qualitative study in veterinary trials on different types of surgery wounds in cats, dogs, and horses. Conclusions: Antimicrobial hydrogels wound dressings developed by permanent attachment of AMPs can effectively and rapidly kill bacteria in contact. Such antibacterial hydrogel wound dressings are non-toxic and do not release any substances into the wound. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20wound%20dressing" title="antibacterial wound dressing">antibacterial wound dressing</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20peptides" title=" antimicrobial peptides"> antimicrobial peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=post-surgical%20wounds" title=" post-surgical wounds"> post-surgical wounds</a>, <a href="https://publications.waset.org/abstracts/search?q=infection" title=" infection"> infection</a> </p> <a href="https://publications.waset.org/abstracts/162114/antibacterial-hydrogels-for-wound-care" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1520</span> Quantitative Evaluation of Diabetic Foot Wound Healing Using Hydrogel Nanosilver Based Dressing vs. Traditional Dressing: A Prospective Randomized Control Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20A.%20Yahia">Ehsan A. Yahia</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayman%20E.%20El-Sharkawey"> Ayman E. El-Sharkawey</a>, <a href="https://publications.waset.org/abstracts/search?q=Magda%20M.%20Bayoumi"> Magda M. Bayoumi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Wound dressings perform a crucial role in cutaneous wound management due to their ability to protect wounds and promote dermal and epidermal tissue regeneration. Aim: To evaluate the effectiveness of using hydrogel/nano silver-based dressing vs. traditional dressing on diabetic foot wound healing. Methods: Sixty patients with type-2 diabetes hospitalized for diabetic foot wound treatment were recruited from selected Surgical departments. A prospective randomized control study was carried. Results: The results showed that the percentage of a reduction rate of the ulcer by the third week of the treatment in the hydrogel/nano silver-based dressing group was higher (15.11%) than in the traditional wound dressing group (33.44%). Moreover, the mean ulcer size "sq mm" in the hydrogel/nano silver-based dressing group recognized a faster healing rate (15.11±7.89) and considerably lesser in comparison to the traditional in the third week (21.65±8.4). Conclusion: The hydrogel/nanosilver-based dressing showed better results than traditional dressing in managing diabetic ulcer foot. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes" title="diabetes">diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20care" title=" wound care"> wound care</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetic%20foot" title=" diabetic foot"> diabetic foot</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20dressing" title=" wound dressing"> wound dressing</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel%20nanosilver" title=" hydrogel nanosilver"> hydrogel nanosilver</a> </p> <a href="https://publications.waset.org/abstracts/152560/quantitative-evaluation-of-diabetic-foot-wound-healing-using-hydrogel-nanosilver-based-dressing-vs-traditional-dressing-a-prospective-randomized-control-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1519</span> Wound Healing Dressing and Some Composites Such as Zeolite, TiO2, Chitosan and PLGA as New Alternative for Melanoma Therapy: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20B.%20Naves">L. B. Naves</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Almeida"> L. Almeida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of Drugs Delivery System (DDS), has been wildly investigated in the last decades. In this paper, first a general overview of traditional and modern wound dressing is presented. This is followed by a review of what scientist have done in the medical environment, focusing the possibility to develop a new alternative for DDS through transdermal pathway, aiming to treat melanoma skin cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20therapy" title="cancer therapy">cancer therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=dressing%20polymers" title=" dressing polymers"> dressing polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=melanoma" title=" melanoma"> melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20healing" title=" wound healing"> wound healing</a> </p> <a href="https://publications.waset.org/abstracts/23920/wound-healing-dressing-and-some-composites-such-as-zeolite-tio2-chitosan-and-plga-as-new-alternative-for-melanoma-therapy-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1518</span> The Effects of Spark Plasma on Infectious Wound Healing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erfan%20Ghasemi">Erfan Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Khani"> Mohammadreza Khani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Mahmoudi"> Hamidreza Mahmoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ali%20Nilforoushzadeh"> Mohammad Ali Nilforoushzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Shokri"> Babak Shokri</a>, <a href="https://publications.waset.org/abstracts/search?q=Pouria%20Akbartehrani"> Pouria Akbartehrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given the global significance of treating infectious wounds, the goal of this study is to use spark plasma as a new treatment for infectious wounds. To generate spark plasma, a high-voltage (7 kV) and high-frequency (75 kHz) source was used. Infectious wounds in the peritoneum of mice were divided into control and plasma-treated groups at random. The plasma-treated animals received plasma radiation every 4 days for 12 days, for 60 seconds each time. On the 15th day after the first session, the wound in the plasma-treated group had completely healed. The spectra of spark plasma emission and tissue properties were studied. The mechanical resistance of the wound healed in the plasma treatment group was considerably higher than in the control group (p<0.05), according to the findings. Furthermore, histological evidence suggests that wound re-epithelialization is faster in comparison to controls. Angiogenesis and fibrosis (collagen production) were also dramatically boosted in the plasma-treated group, whereas the stage of wound healing inflammation was significantly reduced. Plasma therapy accelerated wound healing by causing considerable wound constriction. The results of this investigation show that spark plasma has an influence on the treatment of infectious wounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infectious%20wounds" title="infectious wounds">infectious wounds</a>, <a href="https://publications.waset.org/abstracts/search?q=mice" title=" mice"> mice</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20plasma" title=" spark plasma"> spark plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/140938/the-effects-of-spark-plasma-on-infectious-wound-healing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1517</span> Effectiveness of Balloon Angioplasty and Stent Angioplasty: Wound Healing in Critically Limb Ischemic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Wisnu%20Pamungkas">M. Wisnu Pamungkas</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrianef%20Darwis"> Patrianef Darwis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Critical limb ischemia (CLI) is a vascular disease that has a significant amputation and mortality risk with diabetes mellitus, the most significant risk factor in CLI, is very common among Indonesian. Endovascular intervention (EVI) is preferred in treating CLI because it is noninvasive and effective. Balloon angioplasty and stent angioplasty are the most common method of EVI in Indonesia. This study aims to compare the effectiveness of balloon angioplasty and stent angioplasty on wound healing in CLI. Method: A cross-sectional study enrolled 90 subjects of CLI who underwent endovascular intervention using balloon angioplasty and stent angioplasty from January 2013 to July 2017 in dr. Cipto Mangunkusumo General Hospital, Jakarta. The wound healing period between balloon angioplasty dan stent angioplasty was analyzed using unpaired T-test with p<0,05 considered as statistically significant. Data of intervention method wound healing period, and subjects characteristic data (age, amputation, BMI, smoking habit, DM, occlusion site, and blood profile) were obtained. Result: The wound healing period in balloon angioplasty and stent angioplasty distributed normally. Mean value of wound healing period in balloon angioplasty and stent angioplasty are 84,8+/-2,423 and 59,93 +/- 2,423 days with a mean difference of 25 days. The difference in wound healing period in both groups is statically significant (p<0,05). The amputation event in balloon angioplasty and stent angioplasty is 22 and 16 event with no difference statistically. Conclusion: Stent angioplasty is a better method than balloon angioplasty for wound healing in patients with CLI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=critical%20limb%20ischemia" title="critical limb ischemia">critical limb ischemia</a>, <a href="https://publications.waset.org/abstracts/search?q=endovascular%20intervention" title=" endovascular intervention"> endovascular intervention</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20healing" title=" wound healing"> wound healing</a>, <a href="https://publications.waset.org/abstracts/search?q=angioplasty" title=" angioplasty"> angioplasty</a> </p> <a href="https://publications.waset.org/abstracts/110908/effectiveness-of-balloon-angioplasty-and-stent-angioplasty-wound-healing-in-critically-limb-ischemic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1516</span> Evaluation of Wound Healing Activity of Curcuma purpurascens BI. Rhizomes in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20Rouhollahi">Elham Rouhollahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Soheil%20Zorofchian%20Moghadamtousi"> Soheil Zorofchian Moghadamtousi</a>, <a href="https://publications.waset.org/abstracts/search?q=Salma%20Baig"> Salma Baig</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20Ameen%20Abdulla"> Mahmood Ameen Abdulla</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahurin%20Mohamed"> Zahurin Mohamed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was designed to assess cutaneous wound healing potential of hexane extract of Curcuma purpurascens rhizomes (HECP). Twenty-four rats were divided into 4 groups: 1. Negative, 2. Low dose, 3. High dose and 4. Treatment, with 6 rats in each group. Full-thickness incisions with a diameter of 2 cm were made on the back of each rat. Rats were topically treated two times a day for 15 days. Group 1-4 were treated with sterile distilled water, 5% and 10% of extract and intrasite gel, respectively. Masson's trichrome and hematoxylin staining techniques are employed for histological analysis revealed strong wound healing potential closer to that of conventional drug intrasite gel. HECP significantly decreased wound area and an increase in hydroxyproline, cellular proliferation, the number of blood vessels and the level of collagen synthesis was observed. Thus, it could be concluded that HECP possesses strong wound healing potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Curcuma%20purpurascens" title="Curcuma purpurascens">Curcuma purpurascens</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20healing" title=" wound healing"> wound healing</a>, <a href="https://publications.waset.org/abstracts/search?q=histopathology" title=" histopathology"> histopathology</a>, <a href="https://publications.waset.org/abstracts/search?q=hematoxylin%20staining" title=" hematoxylin staining"> hematoxylin staining</a> </p> <a href="https://publications.waset.org/abstracts/12719/evaluation-of-wound-healing-activity-of-curcuma-purpurascens-bi-rhizomes-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1515</span> Wound Healing and Antioxidant Properties of 80% Methanol Leaf Extract of Verbascum sinaiticum (Scrophulariaceae), an Ethiopian Medicinal Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Solomon%20Assefa%20Huluka">Solomon Assefa Huluka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wounds account for severe morbidity, socioeconomic distress, and mortality around the globe.For several years, various herbal products are used to expediteand augment the innate wound healing process. In Ethiopian folkloricmedicine, Verbascum sinaiticum L. (V. sinaiticum) is commonlyapplied as a wound-healing agent. The present study investigated the potential wound healing and antioxidant properties of hydroalcoholic leaf extract of V. sinaiticum. The 80% methanol extract, formulated as 5% (w/w) and 10% (w/w) ointments, was evaluated in excision and incision wound models using nitrofurazone and simple ointment as positive and negative controls, respectively. Parameters such as wound contraction, period of epithelialization, and tensile strength were determined. Moreover, its in vitro antioxidant property was evaluated using a DPPH assay. In the excision model, both doses (5% and 10% w/w) of the extract showed a significant (p<0.001) wound healing efficacy compared to the negative control, as evidenced by enhanced wound contraction rate and shorter epithelialization time records. In the incision model, the lower dose (5% w/w) ointment formulation of the extract exhibited the maximum increment in tensile strength (85.6%) that was significant (p<0.001)compared to negative and untreated controls. Animals treated with 5% w/wointment, furthermore, showed a significantly (p < 0.05) higher percentage of tensile strength than nitrofurazone treated ones. Moreover, the hydroalcoholic extract of the plant showed a noticeable free radical scavenging property. The result of the present study upholds the folkloric use of V. sinaiticum in the treatment of wounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wound%20healing" title="wound healing">wound healing</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=excision%20wound%20model" title=" excision wound model"> excision wound model</a>, <a href="https://publications.waset.org/abstracts/search?q=incision%20wound%20model" title=" incision wound model"> incision wound model</a>, <a href="https://publications.waset.org/abstracts/search?q=verbascum%20sinaiticum" title=" verbascum sinaiticum"> verbascum sinaiticum</a> </p> <a href="https://publications.waset.org/abstracts/154687/wound-healing-and-antioxidant-properties-of-80-methanol-leaf-extract-of-verbascum-sinaiticum-scrophulariaceae-an-ethiopian-medicinal-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1514</span> Cell-Free, Conditioned Media from Mouse Bone Marrow Macrophages Improve the Healing of Dermal Injuries in Mouse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yixuan%20Zhou">Yixuan Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Zhang"> Ming Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Qin"> Liang Qin</a>, <a href="https://publications.waset.org/abstracts/search?q=Fanglin%20Lu"> Fanglin Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wound healing is a vital physiological process that supports the body’s ability to repair itself. Impaired healing can lead to complications such as infections, chronic ulcers, or tissue damage. Understanding the pathogenesis of wound healing is essential for developing targeted interventions to promote optimal healing outcomes and prevent complications associated with impaired wound healing. However, the underlying mechanism remains elusive. Macrophages play a crucial role in wound healing, and their function varies with the healing stage. Two main phenotypes of macrophages, known as M1 and M2, have been identified, each with distinct functions. The transition from M1 to M2 macrophages is a process that occurs during the healing of an injury. Dysregulation of macrophage polarization can impair wound healing and lead to chronic wounds. Therefore, understanding the roles of M1 and M2 macrophages and their regulation in the wound microenvironment is important for developing therapeutic strategies to promote optimal wound healing. We evaluated the efficacy of conditioned cell-free media from mouse bone marrow macrophages (BMMs) to improve wound healing in mouse models. M1 or M2 polarizations of BMMs are assessed in vitro post-stimulations using published protocols. In vivo, efficacies are assessed in a mouse model of wound healing. Macroscopy and histological data show a consistent effect of daily treatments with cell-free media from M2 BMMs on the healing of wounds in mice. These results are illustrated by a smaller wound area size, fewer inflammatory infiltrations, and enhanced angiogenesis in the healing stage. This multi-modal investigation suggests the potential of M2 macrophages for the healing of dermal injuries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wound%20healing" title="wound healing">wound healing</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20marrow%20macrophages" title=" bone marrow macrophages"> bone marrow macrophages</a>, <a href="https://publications.waset.org/abstracts/search?q=mouse%20model" title=" mouse model"> mouse model</a>, <a href="https://publications.waset.org/abstracts/search?q=polarization" title=" polarization"> polarization</a> </p> <a href="https://publications.waset.org/abstracts/196930/cell-free-conditioned-media-from-mouse-bone-marrow-macrophages-improve-the-healing-of-dermal-injuries-in-mouse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/196930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1513</span> Fluorescent Ph-Sensing Bandage for Point-of-Care Wound Diagnostics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cherifi%20Katia">Cherifi Katia</a>, <a href="https://publications.waset.org/abstracts/search?q=Al-Hawat%20Marie-Lynn"> Al-Hawat Marie-Lynn</a>, <a href="https://publications.waset.org/abstracts/search?q=Tricou%20Leo-Paul"> Tricou Leo-Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamontagne%20Stephanie"> Lamontagne Stephanie</a>, <a href="https://publications.waset.org/abstracts/search?q=Tran%20Minh"> Tran Minh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ngu%20Amy%20Ching%20Yie"> Ngu Amy Ching Yie</a>, <a href="https://publications.waset.org/abstracts/search?q=Manrique%20Gabriela"> Manrique Gabriela</a>, <a href="https://publications.waset.org/abstracts/search?q=Guirguis%20Natalie"> Guirguis Natalie</a>, <a href="https://publications.waset.org/abstracts/search?q=Machuca%20Parra%20Arturo%20Israel"> Machuca Parra Arturo Israel</a>, <a href="https://publications.waset.org/abstracts/search?q=Matoori%20Simon"> Matoori Simon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetic foot ulcers (DFUs) are a serious and prevalent complication of diabetes. Current diagnostic options are limited to macroscopic wound analysis such as wound size, depth, and infection. Molecular diagnostics promise to improve DFU diagnosis, staging, and assessment of treatment response. Here, we developed a rapid and easy-to-use fluorescent pH-sensing bandage for wound diagnostics. In a fluorescent dye screen, we identified pyranine as the lead compound due to its suitable pH-sensing properties in the clinically relevant pH range of 6 to 9. To minimize the release of this dye into the wound bed, we screened a library of ionic microparticles and found a strong adhesion of the anionic dye to a cationic polymeric microparticle. These dye-loaded microparticles showed a strong fluorescence response in the clinically relevant pH range of 6 to 9 and a dye release below 1% after one day in biological media. The dye-loaded microparticles were subsequently encapsulated in a calcium alginate hydrogel to minimize the interaction of the microparticles with the wound tissue. This pH-sensing diagnostic wound dressing was tested on full-thickness dorsal wounds of mice, and a linear fluorescence response (R2 = 0.9909) to clinically relevant pH values was observed. These findings encourage further development of this pH-sensing system for molecular diagnostics in DFUs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wound%20ph" title="wound ph">wound ph</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostics" title=" diagnostics"> diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetic%20foot%20ulcer" title=" diabetic foot ulcer"> diabetic foot ulcer</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20healing" title=" wound healing"> wound healing</a>, <a href="https://publications.waset.org/abstracts/search?q=chronic%20wounds" title=" chronic wounds"> chronic wounds</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a> </p> <a href="https://publications.waset.org/abstracts/177542/fluorescent-ph-sensing-bandage-for-point-of-care-wound-diagnostics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1512</span> Hydrodynamics of Wound Ballistics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harpreet%20Kaur">Harpreet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Er.%20Arjun"> Er. Arjun</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirandeep%20Kaur"> Kirandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20Mittal"> P. K. Mittal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simulation of a human body from 20% gelatin & 80% water mixture is examined from wound ballistics point of view. Parameters such as incapacitation energy & temporary to permanent cavity size & tools of hydrodynamics have been employed to arrive at a model of human body similar to the one adopted by NATO. Calculations using equations of motion yield a value of 339 µs in which a temporary cavity with maximum size settles down to permanent cavity. This occurs for a 10mm size bullets & settle down to permanent cavity in case of 4 different bullets i.e. 5.45, 5.56, 7.62,10 mm sizes The obtained results are in excellent agreement with the body as right circular cylinder of 15 cm height & 10 cm diameter. An effort is made here in this work to present a sound theoretical base to parameters commonly used in wound ballistics from field experience discussed by Col Coats & Major Beyer. Keywords. Gelatin, gunshot, hydrodynamic model, oscillation time, temporary cavity and permanent cavity, Wound Ballistic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gelatin" title="gelatin">gelatin</a>, <a href="https://publications.waset.org/abstracts/search?q=gunshot" title=" gunshot"> gunshot</a>, <a href="https://publications.waset.org/abstracts/search?q=wound" title=" wound"> wound</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity" title=" cavity"> cavity</a> </p> <a href="https://publications.waset.org/abstracts/175051/hydrodynamics-of-wound-ballistics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1511</span> Outcomes of Educating Care Giver in Tracheostomy Wound Care for Discharge Planning of Tracheostomy Patients at the Ear, Nose, Throat, and Eye Ward of Songkhla Hospital Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kingkan%20Chumjamras">Kingkan Chumjamras </a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are permanent and temporary tracheostomies, and in a permanent tracheostomy, care giver are important persons to know and be able to care for the tracheostomy patient. The objective of this quasi-experimental study was to evaluate outcomes of educating care giver in tracheostomy wound care for discharge planning of tracheostomy patients. The subjects of the study were relatives who directly cared for tracheostomy patients. Thirty subjects were selected according to specified criteria. The research instruments consisted of practice guidelines, manual for relatives in caring for the tracheostomy wound, an assisted model with a tracheostomy wound, a test, an observation form, and a patient’s relative satisfaction questionnaire. The instrument validity was tested by three experts, and the questionnaire reliability was tested with Cronbach’s alpha, and the reliability coefficient was 0.83; the data were analyzed using descriptive statistics, and paired t-test. The results of the study on educating relatives in tracheostomy wound care for discharge planning of tracheostomy patients revealed that the score for knowledge and ability in caring for the tracheostomy wound before receiving the education was at a low level (M= 19.23, SD= 1.57) compared with the very high score (M= 36.40, SD= 19.23) after receiving the education. The difference was statistically significant (p < .05), and relatives’ satisfaction was at a high level (80 percent). Knowledge and ability in caring for tracheostomy patients among patients’ relatives could cause tracheostomy wound complications for tracheostomy patients. One way to control such complications and returns to hospital from infection, in addition to care by the health care team, is educating relatives in tracheostomy wound care for discharge planning of tracheostomy patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=outcomes" title="outcomes">outcomes</a>, <a href="https://publications.waset.org/abstracts/search?q=educating" title=" educating"> educating</a>, <a href="https://publications.waset.org/abstracts/search?q=care%20giver" title=" care giver"> care giver</a>, <a href="https://publications.waset.org/abstracts/search?q=Tracheostomy%20Wound%20Care" title=" Tracheostomy Wound Care"> Tracheostomy Wound Care</a>, <a href="https://publications.waset.org/abstracts/search?q=discharge%20planning" title=" discharge planning "> discharge planning </a> </p> <a href="https://publications.waset.org/abstracts/23517/outcomes-of-educating-care-giver-in-tracheostomy-wound-care-for-discharge-planning-of-tracheostomy-patients-at-the-ear-nose-throat-and-eye-ward-of-songkhla-hospital-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1510</span> Paper-Like and Battery Free Sensor Patches for Wound Monitoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaodi%20Su">Xiaodi Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Ting%20Zheng"> Xin Ting Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Sutarlie"> Laura Sutarlie</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Asinah%20binte%20Mohamed%20Salleh"> Nur Asinah binte Mohamed Salleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Yu"> Yong Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wound healing is a dynamic process with multiple phases. Rapid profiling and quantitative characterization of inflammation and infection remain challenging. We have developed paper-like battery-free multiplexed sensors for holistic wound assessment via quantitative detection of multiple inflammation and infection markers. In one of the designs, the sensor patch consists of a wax-printed paper panel with five colorimetric sensor channels arranged in a pattern resembling a five-petaled flower (denoted as a ‘Petal’ sensor). The five sensors are for temperature, pH, trimethylamine, uric acid, and moisture. The sensor patch is sandwiched between a top transparent silicone layer and a bottom adhesive wound contact layer. In the second design, a palm-like-shaped paper strip is fabricated by a paper-cutter printer (denoted as ‘Palm’ sensor). This sensor strip carries five sensor regions connected by a stem sampling entrance that enables rapid colorimetric detection of multiple bacteria metabolites (aldehyde, lactate, moisture, trimethylamine, tryptophan) from wound exudate. For both the “\’ Petal’ and ‘Palm’ sensors, color images can be captured by a mobile phone. According to the color changes, one can quantify the concentration of the biomarkers and then determine wound healing status and identify/quantify bacterial species in infected wounds. The ‘Petal’ and ‘Palm’ sensors are validated with in-situ animal and ex-situ skin wound models, respectively. These sensors have the potential for integration with wound dressing to allow early warning of adverse events without frequent removal of the plasters. Such in-situ and early detection of non-healing condition can trigger immediate clinical intervention to facilitate wound care management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wound%20infection" title="wound infection">wound infection</a>, <a href="https://publications.waset.org/abstracts/search?q=colorimetric%20sensor" title=" colorimetric sensor"> colorimetric sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=paper%20fluidic%20sensor" title=" paper fluidic sensor"> paper fluidic sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20care" title=" wound care"> wound care</a> </p> <a href="https://publications.waset.org/abstracts/168894/paper-like-and-battery-free-sensor-patches-for-wound-monitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1509</span> The Injection of a Freshly Manufactured Hyaluronan Fragment Promotes Healing of Chronic Wounds: A Clinical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dylan%20Treger">Dylan Treger</a>, <a href="https://publications.waset.org/abstracts/search?q=Lujia%20Zhang"> Lujia Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoxiao%20Jia"> Xiaoxiao Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=Jessica%20H.%20Hui"> Jessica H. Hui</a>, <a href="https://publications.waset.org/abstracts/search?q=Munkh-Amgalan%20Gantumur"> Munkh-Amgalan Gantumur</a>, <a href="https://publications.waset.org/abstracts/search?q=Mizhou%20Hui"> Mizhou Hui</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Liu"> Li Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hyaluronic acid (HA) is involved in wound healing via inflammation, granulation, and re-epithelialization mechanisms. The poor physical properties of natural high-molecular-weight polymers limit their direct use in the medical field. In this clinical study, we investigated whether the local injection of a tissue-permeable 35 kDa HA fragment (HA35) could favor the healing process in patients with chronic wounds accompanied by neuropathic pain. The HA35 fragments were freshly manufactured by degradation of high-molecular-weight HA with bovine testis-derived hyaluronidase PH20. Twenty patients in this study had nonhealing wounds and wound-related pain for more than 3 months. Freshly produced HA35 was locally injected into healthy skin immediately surrounding chronic wounds once a day for 10 days. Wound-associated pain and the degree of wound healing were evaluated. The injection of HA35 relieved the pain associated with chronic wounds in 24 hours. HA35 treatment significantly promoted the healing of chronic wounds, including expanded fresh granulation tissue on the wounds; reduced darkness or redness, dryness, and damaged areas on the surface of the skin surrounding the wounds; and decreased the size of the wound area. It can be concluded that the topical injection of tissue-permeable HA35 around chronic wounds has great potential to promote wound healing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=35%20kDa%20hyaluronan%20fragment%20HA35" title="35 kDa hyaluronan fragment HA35">35 kDa hyaluronan fragment HA35</a>, <a href="https://publications.waset.org/abstracts/search?q=chronic%20wound" title=" chronic wound"> chronic wound</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20healing" title=" wound healing"> wound healing</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20permeability" title=" tissue permeability"> tissue permeability</a> </p> <a href="https://publications.waset.org/abstracts/175416/the-injection-of-a-freshly-manufactured-hyaluronan-fragment-promotes-healing-of-chronic-wounds-a-clinical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grade%20III%20wound&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grade%20III%20wound&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grade%20III%20wound&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grade%20III%20wound&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grade%20III%20wound&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grade%20III%20wound&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grade%20III%20wound&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grade%20III%20wound&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grade%20III%20wound&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grade%20III%20wound&page=51">51</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grade%20III%20wound&page=52">52</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grade%20III%20wound&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>