CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–24 of 24 results for author: <span class="mathjax">Schwalbe, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Schwalbe%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Schwalbe, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Schwalbe%2C+S&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Schwalbe, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.04921">arXiv:2502.04921</a> <span> [<a href="https://arxiv.org/pdf/2502.04921">pdf</a>, <a href="https://arxiv.org/format/2502.04921">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Applying the Liouville-Lanczos Method of Time-Dependent Density-Functional Theory to Warm Dense Matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Moldabekov%2C+Z+A">Zhandos A. Moldabekov</a>, <a href="/search/physics?searchtype=author&query=Schwalbe%2C+S">Sebastian Schwalbe</a>, <a href="/search/physics?searchtype=author&query=Gawne%2C+T">Thomas Gawne</a>, <a href="/search/physics?searchtype=author&query=Preston%2C+T+R">Thomas R. Preston</a>, <a href="/search/physics?searchtype=author&query=Vorberger%2C+J">Jan Vorberger</a>, <a href="/search/physics?searchtype=author&query=Dornheim%2C+T">Tobias Dornheim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.04921v1-abstract-short" style="display: inline;"> Ab initio modeling of dynamic structure factors (DSF) and related density response properties in the warm dense matter (WDM) regime is a challenging computational task. The DSF, convolved with a probing X-ray beam and instrument function, is measured in X-ray Thomson scattering (XRTS) experiments, which allows for the study of electronic structure properties at the microscopic level. Among the var… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04921v1-abstract-full').style.display = 'inline'; document.getElementById('2502.04921v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.04921v1-abstract-full" style="display: none;"> Ab initio modeling of dynamic structure factors (DSF) and related density response properties in the warm dense matter (WDM) regime is a challenging computational task. The DSF, convolved with a probing X-ray beam and instrument function, is measured in X-ray Thomson scattering (XRTS) experiments, which allows for the study of electronic structure properties at the microscopic level. Among the various ab initio methods, linear response time-dependent density functional theory (LR-TDDFT) is a key framework for simulating the DSF. The standard approach in LR-TDDFT for computing the DSF relies on the orbital representation. A significant drawback of this method is the unfavorable scaling of the number of required empty bands as the wavenumber increases, making LR-TDDFT impractical for modeling XRTS measurements over large energy scales, such as in backward scattering geometry. We consider and test an alternative approach that employs the Liouville-Lanczos (LL) method for simulating the DSF. This approach does not require empty states and allows the DSF at large momentum transfer values and over a broad frequency range to be accessed. We compare the results obtained from the LL method with those from the standard LR-TDDFT within the projector augmented-wave formalism for isochorically heated aluminum and warm dense hydrogen. Additionally, we utilize exact path integral Monte Carlo (PIMC) results for the imaginary-time density-density correlation function (ITCF) of warm dense hydrogen to rigorously benchmark the LL approach. We discuss the application of the LL method for calculating DSFs and ITCFs at different wavenumbers, the effects of pseudopotentials, and the role of Lorentzian smearing. The successful validation of the LL method under WDM conditions makes it a valuable addition to the ab initio simulation landscape, supporting experimental efforts and advancing WDM theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04921v1-abstract-full').style.display = 'none'; document.getElementById('2502.04921v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.19276">arXiv:2501.19276</a> <span> [<a href="https://arxiv.org/pdf/2501.19276">pdf</a>, <a href="https://arxiv.org/format/2501.19276">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Strong geometry dependence of the X-ray Thomson Scattering Spectrum in single crystal silicon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gawne%2C+T">Thomas Gawne</a>, <a href="/search/physics?searchtype=author&query=Moldabekov%2C+Z+A">Zhandos A. Moldabekov</a>, <a href="/search/physics?searchtype=author&query=Humphries%2C+O+S">Oliver S. Humphries</a>, <a href="/search/physics?searchtype=author&query=Appel%2C+K">Karen Appel</a>, <a href="/search/physics?searchtype=author&query=Baehtz%2C+C">Carsten Baehtz</a>, <a href="/search/physics?searchtype=author&query=Bouffetier%2C+V">Victorien Bouffetier</a>, <a href="/search/physics?searchtype=author&query=Brambrink%2C+E">Erik Brambrink</a>, <a href="/search/physics?searchtype=author&query=Cangi%2C+A">Attila Cangi</a>, <a href="/search/physics?searchtype=author&query=Cr%C3%A9pisson%2C+C">Celine Cr茅pisson</a>, <a href="/search/physics?searchtype=author&query=G%C3%B6de%2C+S">Sebastian G枚de</a>, <a href="/search/physics?searchtype=author&query=Kon%C3%B4pkov%C3%A1%2C+Z">Zuzana Kon么pkov谩</a>, <a href="/search/physics?searchtype=author&query=Makita%2C+M">Mikako Makita</a>, <a href="/search/physics?searchtype=author&query=Mishchenko%2C+M">Mikhail Mishchenko</a>, <a href="/search/physics?searchtype=author&query=Nakatsutsumi%2C+M">Motoaki Nakatsutsumi</a>, <a href="/search/physics?searchtype=author&query=Randolph%2C+L">Lisa Randolph</a>, <a href="/search/physics?searchtype=author&query=Schwalbe%2C+S">Sebastian Schwalbe</a>, <a href="/search/physics?searchtype=author&query=Vorberger%2C+J">Jan Vorberger</a>, <a href="/search/physics?searchtype=author&query=Zastrau%2C+U">Ulf Zastrau</a>, <a href="/search/physics?searchtype=author&query=Dornheim%2C+T">Tobias Dornheim</a>, <a href="/search/physics?searchtype=author&query=Preston%2C+T+R">Thomas R. Preston</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.19276v1-abstract-short" style="display: inline;"> We report on results from an experiment at the European XFEL where we measured the x-ray Thomson scattering (XRTS) spectrum of single crystal silicon with ultrahigh resolution. Compared to similar previous experiments, we consider a more complex scattering setup, in which the scattering vector changes orientation through the crystal lattice. In doing so, we are able to observe strong geometric dep… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.19276v1-abstract-full').style.display = 'inline'; document.getElementById('2501.19276v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.19276v1-abstract-full" style="display: none;"> We report on results from an experiment at the European XFEL where we measured the x-ray Thomson scattering (XRTS) spectrum of single crystal silicon with ultrahigh resolution. Compared to similar previous experiments, we consider a more complex scattering setup, in which the scattering vector changes orientation through the crystal lattice. In doing so, we are able to observe strong geometric dependencies in the inelastic scattering spectrum of silicon at low scattering angles. Furthermore, the high quality of the experimental data allows us to benchmark state-of-the-art TDDFT calculations, and demonstrate TDDFT's ability to accurately predict these geometric dependencies. Finally, we note that this experimental data was collected at a much faster rate than another recently reported dataset using the same setup, demonstrating that ultrahigh resolution XRTS data can be collected in more general experimental scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.19276v1-abstract-full').style.display = 'none'; document.getElementById('2501.19276v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.15777">arXiv:2412.15777</a> <span> [<a href="https://arxiv.org/pdf/2412.15777">pdf</a>, <a href="https://arxiv.org/format/2412.15777">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Chemical potential of the warm dense electron gas from ab initio path integral Monte Carlo simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dornheim%2C+T">Tobias Dornheim</a>, <a href="/search/physics?searchtype=author&query=Bonitz%2C+M">Michael Bonitz</a>, <a href="/search/physics?searchtype=author&query=Moldabekov%2C+Z">Zhandos Moldabekov</a>, <a href="/search/physics?searchtype=author&query=Schwalbe%2C+S">Sebastian Schwalbe</a>, <a href="/search/physics?searchtype=author&query=Tolias%2C+P">Panagiotis Tolias</a>, <a href="/search/physics?searchtype=author&query=Vorberger%2C+J">Jan Vorberger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.15777v1-abstract-short" style="display: inline;"> We present extensive new \emph{ab initio} path integral Monte Carlo (PIMC) simulation results for the chemical potential of the warm dense uniform electron gas (UEG), spanning a broad range of densities and temperatures. This is achieved by following two independent routes, i) based on the direct estimation of the free energy [Dornheim \emph{et al.}, arXiv:2407.01044] and ii) using a histogram est… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15777v1-abstract-full').style.display = 'inline'; document.getElementById('2412.15777v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.15777v1-abstract-full" style="display: none;"> We present extensive new \emph{ab initio} path integral Monte Carlo (PIMC) simulation results for the chemical potential of the warm dense uniform electron gas (UEG), spanning a broad range of densities and temperatures. This is achieved by following two independent routes, i) based on the direct estimation of the free energy [Dornheim \emph{et al.}, arXiv:2407.01044] and ii) using a histogram estimator in PIMC simulations with a varying number of particles. We empirically confirm the expected inverse linear dependence of the exchange--correlation (XC) part of the chemical potential on the simulated number of electrons, which allows for a reliable extrapolation to the thermodynamic limit without the necessity for an additional finite-size correction. We find very good agreement (within $螖渭_\textnormal{xc}\lesssim0.5\%$) with the previous parametrization of the XC-free energy by Groth \emph{et al.}~[\emph{Phys.~Rev.~Lett.}~\textbf{119}, 135001 (2017)], which constitutes an important cross validation of current state-of-the-art UEG equations of state. In addition to being interesting in its own right, our study constitutes the basis for the future PIMC based investigation of the chemical potential of real warm dense matter systems starting with hydrogen. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15777v1-abstract-full').style.display = 'none'; document.getElementById('2412.15777v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19438">arXiv:2410.19438</a> <span> [<a href="https://arxiv.org/pdf/2410.19438">pdf</a>, <a href="https://arxiv.org/format/2410.19438">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.softx.2025.102035">10.1016/j.softx.2025.102035 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> eminus -- Pythonic electronic structure theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Schulze%2C+W+T">Wanja Timm Schulze</a>, <a href="/search/physics?searchtype=author&query=Schwalbe%2C+S">Sebastian Schwalbe</a>, <a href="/search/physics?searchtype=author&query=Trepte%2C+K">Kai Trepte</a>, <a href="/search/physics?searchtype=author&query=Gr%C3%A4fe%2C+S">Stefanie Gr盲fe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19438v3-abstract-short" style="display: inline;"> In current electronic structure research endeavors such as warm dense matter or machine learning applications, efficient development necessitates non-monolithic software, providing an extendable and flexible interface. The open-source idea offers the advantage of having a source code base that can be reviewed and modified by the community. However, practical implementations can often diverge signi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19438v3-abstract-full').style.display = 'inline'; document.getElementById('2410.19438v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19438v3-abstract-full" style="display: none;"> In current electronic structure research endeavors such as warm dense matter or machine learning applications, efficient development necessitates non-monolithic software, providing an extendable and flexible interface. The open-source idea offers the advantage of having a source code base that can be reviewed and modified by the community. However, practical implementations can often diverge significantly from their theoretical counterpart. Leveraging the efforts of recent theoretical formulations and the features of Python, we try to mitigate these problems. We present eminus, an education- and development-friendly electronic structure package designed for convenient and customizable workflows, yet built with intelligible and modular implementations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19438v3-abstract-full').style.display = 'none'; document.getElementById('2410.19438v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SoftwareX 29, 102035 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08591">arXiv:2409.08591</a> <span> [<a href="https://arxiv.org/pdf/2409.08591">pdf</a>, <a href="https://arxiv.org/format/2409.08591">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Model-free Rayleigh weight from x-ray Thomson scattering measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dornheim%2C+T">Tobias Dornheim</a>, <a href="/search/physics?searchtype=author&query=Bellenbaum%2C+H+M">Hannah M. Bellenbaum</a>, <a href="/search/physics?searchtype=author&query=Bethkenhagen%2C+M">Mandy Bethkenhagen</a>, <a href="/search/physics?searchtype=author&query=Hansen%2C+S+B">Stephanie B. Hansen</a>, <a href="/search/physics?searchtype=author&query=B%C3%B6hme%2C+M+P">Maximilian P. B枚hme</a>, <a href="/search/physics?searchtype=author&query=D%C3%B6ppner%2C+T">Tilo D枚ppner</a>, <a href="/search/physics?searchtype=author&query=Fletcher%2C+L+B">Luke B. Fletcher</a>, <a href="/search/physics?searchtype=author&query=Gawne%2C+T">Thomas Gawne</a>, <a href="/search/physics?searchtype=author&query=Gericke%2C+D+O">Dirk O. Gericke</a>, <a href="/search/physics?searchtype=author&query=Hamel%2C+S">Sebastien Hamel</a>, <a href="/search/physics?searchtype=author&query=Kraus%2C+D">Dominik Kraus</a>, <a href="/search/physics?searchtype=author&query=MacDonald%2C+M+J">Michael J. MacDonald</a>, <a href="/search/physics?searchtype=author&query=Moldabekov%2C+Z+A">Zhandos A. Moldabekov</a>, <a href="/search/physics?searchtype=author&query=Preston%2C+T+R">Thomas R. Preston</a>, <a href="/search/physics?searchtype=author&query=Redmer%2C+R">Ronald Redmer</a>, <a href="/search/physics?searchtype=author&query=Sch%C3%B6rner%2C+M">Maximilian Sch枚rner</a>, <a href="/search/physics?searchtype=author&query=Schwalbe%2C+S">Sebastian Schwalbe</a>, <a href="/search/physics?searchtype=author&query=Tolias%2C+P">Panagiotis Tolias</a>, <a href="/search/physics?searchtype=author&query=Vorberger%2C+J">Jan Vorberger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08591v1-abstract-short" style="display: inline;"> X-ray Thomson scattering (XRTS) has emerged as a powerful tool for the diagnostics of matter under extreme conditions. In principle, it gives one access to important system parameters such as the temperature, density, and ionization state, but the interpretation of the measured XRTS intensity usually relies on theoretical models and approximations. In this work, we show that it is possible to extr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08591v1-abstract-full').style.display = 'inline'; document.getElementById('2409.08591v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08591v1-abstract-full" style="display: none;"> X-ray Thomson scattering (XRTS) has emerged as a powerful tool for the diagnostics of matter under extreme conditions. In principle, it gives one access to important system parameters such as the temperature, density, and ionization state, but the interpretation of the measured XRTS intensity usually relies on theoretical models and approximations. In this work, we show that it is possible to extract the Rayleigh weight -- a key property that describes the electronic localization around the ions -- directly from the experimental data without the need for any model calculations or simulations. As a practical application, we consider an experimental measurement of strongly compressed Be at the National Ignition Facility (NIF) [D枚ppner \emph{et al.}, \textit{Nature} \textbf{618}, 270-275 (2023)]. In addition to being interesting in their own right, our results will open up new avenues for diagnostics from \emph{ab initio} simulations, help to further constrain existing chemical models, and constitute a rigorous benchmark for theory and simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08591v1-abstract-full').style.display = 'none'; document.getElementById('2409.08591v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01044">arXiv:2407.01044</a> <span> [<a href="https://arxiv.org/pdf/2407.01044">pdf</a>, <a href="https://arxiv.org/format/2407.01044">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Direct free energy calculation from ab initio path integral Monte Carlo simulations of warm dense matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dornheim%2C+T">Tobias Dornheim</a>, <a href="/search/physics?searchtype=author&query=Moldabekov%2C+Z">Zhandos Moldabekov</a>, <a href="/search/physics?searchtype=author&query=Schwalbe%2C+S">Sebastian Schwalbe</a>, <a href="/search/physics?searchtype=author&query=Vorberger%2C+J">Jan Vorberger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01044v1-abstract-short" style="display: inline;"> We carry out highly accurate \emph{ab initio} path integral Monte Carlo (PIMC) simulations to directly estimate the free energy of various warm dense matter systems including the uniform electron gas and hydrogen without any nodal restrictions or other approximations. Since our approach is based on an effective ensemble in a bosonic configuration space, it does not increase the computational compl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01044v1-abstract-full').style.display = 'inline'; document.getElementById('2407.01044v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01044v1-abstract-full" style="display: none;"> We carry out highly accurate \emph{ab initio} path integral Monte Carlo (PIMC) simulations to directly estimate the free energy of various warm dense matter systems including the uniform electron gas and hydrogen without any nodal restrictions or other approximations. Since our approach is based on an effective ensemble in a bosonic configuration space, it does not increase the computational complexity beyond the usual fermion sign problem. Its application to inhomogeneous cases such as an electronic system in a fixed external ion potential is straightforward and opens up the enticing possibility to benchmark density functional theory and other existing methods. Finally, it is not limited to warm dense matter, and can be applied to a gamut of other systems such ultracold atoms and electrons in quantum dots. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01044v1-abstract-full').style.display = 'none'; document.getElementById('2407.01044v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.18394">arXiv:2405.18394</a> <span> [<a href="https://arxiv.org/pdf/2405.18394">pdf</a>, <a href="https://arxiv.org/format/2405.18394">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jctc.4c00694">10.1021/acs.jctc.4c00694 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ensemble Generalization of the Perdew-Zunger Self-Interaction Correction: a Way Out of Multiple Minima and Symmetry Breaking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Schwalbe%2C+S">Sebastian Schwalbe</a>, <a href="/search/physics?searchtype=author&query=Schulze%2C+W+T">Wanja Timm Schulze</a>, <a href="/search/physics?searchtype=author&query=Trepte%2C+K">Kai Trepte</a>, <a href="/search/physics?searchtype=author&query=Lehtola%2C+S">Susi Lehtola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.18394v3-abstract-short" style="display: inline;"> The Perdew-Zunger (PZ) self-interaction correction (SIC) is an established tool to correct unphysical behavior in density functional approximations. Yet, PZ-SIC is well-known to sometimes break molecular symmetries. An example of this is the benzene molecule, for which PZ-SIC predicts a symmetry-broken electron density and molecular geometry, since the method does not describe the two possible Kek… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18394v3-abstract-full').style.display = 'inline'; document.getElementById('2405.18394v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.18394v3-abstract-full" style="display: none;"> The Perdew-Zunger (PZ) self-interaction correction (SIC) is an established tool to correct unphysical behavior in density functional approximations. Yet, PZ-SIC is well-known to sometimes break molecular symmetries. An example of this is the benzene molecule, for which PZ-SIC predicts a symmetry-broken electron density and molecular geometry, since the method does not describe the two possible Kekul茅 structures on an even footing, leading to local minima [Lehtola et al, J. Chem. Theory Comput. 2016, 12, 3195]. PZ-SIC is often implemented with Fermi-L枚wdin orbitals (FLOs), yielding the FLO-SIC method, which likewise has issues with symmetry breaking and local minima [Trepte et al, J. Chem. Phys. 2021, 155, 224109]. In this work, we propose a generalization of PZ-SIC - the ensemble PZ-SIC (E-PZ-SIC) method - which shares the asymptotic computational scaling of PZ-SIC (albeit with an additional prefactor). E-PZ-SIC is straightforwardly applicable to various molecules, merely requiring one to average the self-interaction correction over all possible Kekul茅 structures, in line with chemical intuition. We showcase the implementation of E-PZ-SIC with FLOs, as the resulting E-FLO-SIC method is easy to realize on top of an existing implementation of FLO-SIC. We show that E-FLO-SIC indeed eliminates symmetry breaking, reproducing a symmetric electron density and molecular geometry for benzene. The ensemble approach suggested herein could also be employed within approximate or locally scaled variants of PZ-SIC and their FLO-SIC versions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18394v3-abstract-full').style.display = 'none'; document.getElementById('2405.18394v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Theory Comput. 20, 7144 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.10627">arXiv:2405.10627</a> <span> [<a href="https://arxiv.org/pdf/2405.10627">pdf</a>, <a href="https://arxiv.org/format/2405.10627">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0219405">10.1063/5.0219405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First principles simulations of dense hydrogen </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bonitz%2C+M">Michael Bonitz</a>, <a href="/search/physics?searchtype=author&query=Vorberger%2C+J">Jan Vorberger</a>, <a href="/search/physics?searchtype=author&query=Bethkenhagen%2C+M">Mandy Bethkenhagen</a>, <a href="/search/physics?searchtype=author&query=B%C3%B6hme%2C+M">Maximilian B枚hme</a>, <a href="/search/physics?searchtype=author&query=Ceperley%2C+D">David Ceperley</a>, <a href="/search/physics?searchtype=author&query=Filinov%2C+A">Alexey Filinov</a>, <a href="/search/physics?searchtype=author&query=Gawne%2C+T">Thomas Gawne</a>, <a href="/search/physics?searchtype=author&query=Graziani%2C+F">Frank Graziani</a>, <a href="/search/physics?searchtype=author&query=Gregori%2C+G">Gianluca Gregori</a>, <a href="/search/physics?searchtype=author&query=Hamann%2C+P">Paul Hamann</a>, <a href="/search/physics?searchtype=author&query=Hansen%2C+S">Stephanie Hansen</a>, <a href="/search/physics?searchtype=author&query=Holzmann%2C+M">Markus Holzmann</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+S+X">S. X. Hu</a>, <a href="/search/physics?searchtype=author&query=K%C3%A4hlert%2C+H">Hanno K盲hlert</a>, <a href="/search/physics?searchtype=author&query=Karasiev%2C+V">Valentin Karasiev</a>, <a href="/search/physics?searchtype=author&query=Kleinschmidt%2C+U">Uwe Kleinschmidt</a>, <a href="/search/physics?searchtype=author&query=Kordts%2C+L">Linda Kordts</a>, <a href="/search/physics?searchtype=author&query=Makait%2C+C">Christopher Makait</a>, <a href="/search/physics?searchtype=author&query=Militzer%2C+B">Burkhard Militzer</a>, <a href="/search/physics?searchtype=author&query=Moldabekov%2C+Z">Zhandos Moldabekov</a>, <a href="/search/physics?searchtype=author&query=Pierleoni%2C+C">Carlo Pierleoni</a>, <a href="/search/physics?searchtype=author&query=Preising%2C+M">Martin Preising</a>, <a href="/search/physics?searchtype=author&query=Ramakrishna%2C+K">Kushal Ramakrishna</a>, <a href="/search/physics?searchtype=author&query=Redmer%2C+R">Ronald Redmer</a>, <a href="/search/physics?searchtype=author&query=Schwalbe%2C+S">Sebastian Schwalbe</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.10627v1-abstract-short" style="display: inline;"> Accurate knowledge of the properties of hydrogen at high compression is crucial for astrophysics (e.g. planetary and stellar interiors, brown dwarfs, atmosphere of compact stars) and laboratory experiments, including inertial confinement fusion. There exists experimental data for the equation of state, conductivity, and Thomson scattering spectra. However, the analysis of the measurements at extre… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10627v1-abstract-full').style.display = 'inline'; document.getElementById('2405.10627v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.10627v1-abstract-full" style="display: none;"> Accurate knowledge of the properties of hydrogen at high compression is crucial for astrophysics (e.g. planetary and stellar interiors, brown dwarfs, atmosphere of compact stars) and laboratory experiments, including inertial confinement fusion. There exists experimental data for the equation of state, conductivity, and Thomson scattering spectra. However, the analysis of the measurements at extreme pressures and temperatures typically involves additional model assumptions, which makes it difficult to assess the accuracy of the experimental data. rigorously. On the other hand, theory and modeling have produced extensive collections of data. They originate from a very large variety of models and simulations including path integral Monte Carlo (PIMC) simulations, density functional theory (DFT), chemical models, machine-learned models, and combinations thereof. At the same time, each of these methods has fundamental limitations (fermion sign problem in PIMC, approximate exchange-correlation functionals of DFT, inconsistent interaction energy contributions in chemical models, etc.), so for some parameter ranges accurate predictions are difficult. Recently, a number of breakthroughs in first principle PIMC and DFT simulations were achieved which are discussed in this review. Here we use these results to benchmark different simulation methods. We present an update of the hydrogen phase diagram at high pressures, the expected phase transitions, and thermodynamic properties including the equation of state and momentum distribution. Furthermore, we discuss available dynamic results for warm dense hydrogen, including the conductivity, dynamic structure factor, plasmon dispersion, imaginary-time structure, and density response functions. We conclude by outlining strategies to combine different simulations to achieve accurate theoretical predictions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10627v1-abstract-full').style.display = 'none'; document.getElementById('2405.10627v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.17815">arXiv:2403.17815</a> <span> [<a href="https://arxiv.org/pdf/2403.17815">pdf</a>, <a href="https://arxiv.org/format/2403.17815">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast Heating Induced Suppression of $d$-band Dominance in the Electronic Excitation Spectrum of Cuprum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Moldabekov%2C+Z">Zhandos Moldabekov</a>, <a href="/search/physics?searchtype=author&query=Gawne%2C+T+D">Thomas D. Gawne</a>, <a href="/search/physics?searchtype=author&query=Schwalbe%2C+S">Sebastian Schwalbe</a>, <a href="/search/physics?searchtype=author&query=Preston%2C+T+R">Thomas R. Preston</a>, <a href="/search/physics?searchtype=author&query=Vorberger%2C+J">Jan Vorberger</a>, <a href="/search/physics?searchtype=author&query=Dornheim%2C+T">Tobias Dornheim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.17815v2-abstract-short" style="display: inline;"> The combination of isochoric heating of solids by free electron lasers (FEL) and in situ diagnostics by X-ray Thomson scattering (XRTS) allows for measurements of material properties at warm dense matter (WDM) conditions relevant for astrophysics, inertial confinement fusion, and material science. In the case of metals, the FEL beam pumps energy directly into electrons with the lattice structure o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17815v2-abstract-full').style.display = 'inline'; document.getElementById('2403.17815v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.17815v2-abstract-full" style="display: none;"> The combination of isochoric heating of solids by free electron lasers (FEL) and in situ diagnostics by X-ray Thomson scattering (XRTS) allows for measurements of material properties at warm dense matter (WDM) conditions relevant for astrophysics, inertial confinement fusion, and material science. In the case of metals, the FEL beam pumps energy directly into electrons with the lattice structure of ions being nearly unaffected. This leads to a unique transient state that gives rise to a set of interesting physical effects, which can serve as a reliable testing platform for WDM theories. In this work, we present extensive linear-response time-dependent density functional theory (TDDFT) results for the electronic dynamic structure factor of isochorically heated copper with a face-centered cubic lattice. At ambient conditions, the plasmon is heavily damped due to the presence of $d$-band excitations, and its position is independent of the wavenumber. In contrast, the plasmon feature starts to dominate the excitation spectrum and has a Bohm-Gross type plasmon dispersion for temperatures $T \geq 4~{\rm eV}$, where the quasi-free electrons in the interstitial region are in the WDM regime. In addition, we analyze the thermal changes in the $d$-band excitations and outline the possibility to use future XRTS measurements of isochorically heated copper as a controlled testbed for WDM theories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17815v2-abstract-full').style.display = 'none'; document.getElementById('2403.17815v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.08570">arXiv:2403.08570</a> <span> [<a href="https://arxiv.org/pdf/2403.08570">pdf</a>, <a href="https://arxiv.org/format/2403.08570">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Ab initio Density Response and Local Field Factor of Warm Dense Hydrogen </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dornheim%2C+T">Tobias Dornheim</a>, <a href="/search/physics?searchtype=author&query=Schwalbe%2C+S">Sebastian Schwalbe</a>, <a href="/search/physics?searchtype=author&query=Tolias%2C+P">Panagiotis Tolias</a>, <a href="/search/physics?searchtype=author&query=B%C3%B6hme%2C+M">Maximilan B枚hme</a>, <a href="/search/physics?searchtype=author&query=Moldabekov%2C+Z">Zhandos Moldabekov</a>, <a href="/search/physics?searchtype=author&query=Vorberger%2C+J">Jan Vorberger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.08570v1-abstract-short" style="display: inline;"> We present quasi-exact ab initio path integral Monte Carlo (PIMC) results for the partial static density responses and local field factors of hydrogen in the warm dense matter regime, from solid density conditions to the strongly compressed case. The full dynamic treatment of electrons and protons on the same footing allows us to rigorously quantify both electronic and ionic exchange--correlation… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08570v1-abstract-full').style.display = 'inline'; document.getElementById('2403.08570v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.08570v1-abstract-full" style="display: none;"> We present quasi-exact ab initio path integral Monte Carlo (PIMC) results for the partial static density responses and local field factors of hydrogen in the warm dense matter regime, from solid density conditions to the strongly compressed case. The full dynamic treatment of electrons and protons on the same footing allows us to rigorously quantify both electronic and ionic exchange--correlation effects in the system, and to compare with earlier incomplete models such as the archetypal uniform electron gas [Phys. Rev. Lett. 125, 235001 (2020)] or electrons in a fixed ion snapshot potential [Phys. Rev. Lett. 129, 066402 (2022)] that do not take into account the interplay between the two constituents. The full electronic density response is highly sensitive to electronic localization around the ions, and our results constitute unambiguous predictions for upcoming X-ray Thomson scattering (XRTS) experiments with hydrogen jets and fusion plasmas. All PIMC results are made freely available and can directly be used for a gamut of applications, including inertial confinement fusion calculations and the modelling of dense astrophysical objects. Moreover, they constitute invaluable benchmark data for approximate but computationally less demanding approaches such as density functional theory or PIMC within the fixed-node approximation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08570v1-abstract-full').style.display = 'none'; document.getElementById('2403.08570v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02776">arXiv:2403.02776</a> <span> [<a href="https://arxiv.org/pdf/2403.02776">pdf</a>, <a href="https://arxiv.org/format/2403.02776">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultrahigh Resolution X-ray Thomson Scattering Measurements at the European XFEL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gawne%2C+T">Thomas Gawne</a>, <a href="/search/physics?searchtype=author&query=Moldabekov%2C+Z+A">Zhandos A. Moldabekov</a>, <a href="/search/physics?searchtype=author&query=Humphries%2C+O+S">Oliver S. Humphries</a>, <a href="/search/physics?searchtype=author&query=Appel%2C+K">Karen Appel</a>, <a href="/search/physics?searchtype=author&query=B%C3%A4htz%2C+C">Carsten B盲htz</a>, <a href="/search/physics?searchtype=author&query=Bouffetier%2C+V">Victorien Bouffetier</a>, <a href="/search/physics?searchtype=author&query=Brambrink%2C+E">Erik Brambrink</a>, <a href="/search/physics?searchtype=author&query=Cangi%2C+A">Attila Cangi</a>, <a href="/search/physics?searchtype=author&query=G%C3%B6de%2C+S">Sebastian G枚de</a>, <a href="/search/physics?searchtype=author&query=Kon%C3%B4pkov%C3%A1%2C+Z">Zuzana Kon么pkov谩</a>, <a href="/search/physics?searchtype=author&query=Makita%2C+M">Mikako Makita</a>, <a href="/search/physics?searchtype=author&query=Mishchenko%2C+M">Mikhail Mishchenko</a>, <a href="/search/physics?searchtype=author&query=Nakatsutsumi%2C+M">Motoaki Nakatsutsumi</a>, <a href="/search/physics?searchtype=author&query=Ramakrishna%2C+K">Kushal Ramakrishna</a>, <a href="/search/physics?searchtype=author&query=Randolph%2C+L">Lisa Randolph</a>, <a href="/search/physics?searchtype=author&query=Schwalbe%2C+S">Sebastian Schwalbe</a>, <a href="/search/physics?searchtype=author&query=Vorberger%2C+J">Jan Vorberger</a>, <a href="/search/physics?searchtype=author&query=Wollenweber%2C+L">Lennart Wollenweber</a>, <a href="/search/physics?searchtype=author&query=Zastrau%2C+U">Ulf Zastrau</a>, <a href="/search/physics?searchtype=author&query=Dornheim%2C+T">Tobias Dornheim</a>, <a href="/search/physics?searchtype=author&query=Preston%2C+T+R">Thomas R. Preston</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02776v3-abstract-short" style="display: inline;"> Using a novel ultrahigh resolution ($螖E \sim 0.1\,$eV) setup to measure electronic features in x-ray Thomson scattering (XRTS) experiments at the European XFEL in Germany, we have studied the collective plasmon excitation in aluminium at ambient conditions, which we can measure very accurately even at low momentum transfers. As a result, we can resolve previously reported discrepancies between ab… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02776v3-abstract-full').style.display = 'inline'; document.getElementById('2403.02776v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02776v3-abstract-full" style="display: none;"> Using a novel ultrahigh resolution ($螖E \sim 0.1\,$eV) setup to measure electronic features in x-ray Thomson scattering (XRTS) experiments at the European XFEL in Germany, we have studied the collective plasmon excitation in aluminium at ambient conditions, which we can measure very accurately even at low momentum transfers. As a result, we can resolve previously reported discrepancies between ab initio time-dependent density functional theory simulations and experimental observations. The demonstrated capability for high-resolution XRTS measurements will be a game changer for the diagnosis of experiments with matter under extreme densities, temperatures, and pressures, and unlock the full potential of state-of-the-art x-ray free electron laser (XFEL) facilities to study planetary interior conditions, to understand inertial confinement fusion applications, and for material science and discovery. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02776v3-abstract-full').style.display = 'none'; document.getElementById('2403.02776v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.01979">arXiv:2403.01979</a> <span> [<a href="https://arxiv.org/pdf/2403.01979">pdf</a>, <a href="https://arxiv.org/format/2403.01979">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Ab initio path integral Monte Carlo simulations of warm dense two-component systems without fixed nodes: structural properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dornheim%2C+T">Tobias Dornheim</a>, <a href="/search/physics?searchtype=author&query=Schwalbe%2C+S">Sebastian Schwalbe</a>, <a href="/search/physics?searchtype=author&query=B%C3%B6hme%2C+M">Maximilian B枚hme</a>, <a href="/search/physics?searchtype=author&query=Moldabekov%2C+Z">Zhandos Moldabekov</a>, <a href="/search/physics?searchtype=author&query=Vorberger%2C+J">Jan Vorberger</a>, <a href="/search/physics?searchtype=author&query=Tolias%2C+P">Panagiotis Tolias</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.01979v1-abstract-short" style="display: inline;"> We present extensive new \emph{ab initio} path integral Monte Carlo (PIMC) results for a variety of structural properties of warm dense hydrogen and beryllium. To deal with the fermion sign problem -- an exponential computational bottleneck due to the antisymmetry of the electronic thermal density matrix -- we employ the recently proposed [\textit{J.~Chem.~Phys.}~\textbf{157}, 094112 (2022); \text… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01979v1-abstract-full').style.display = 'inline'; document.getElementById('2403.01979v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.01979v1-abstract-full" style="display: none;"> We present extensive new \emph{ab initio} path integral Monte Carlo (PIMC) results for a variety of structural properties of warm dense hydrogen and beryllium. To deal with the fermion sign problem -- an exponential computational bottleneck due to the antisymmetry of the electronic thermal density matrix -- we employ the recently proposed [\textit{J.~Chem.~Phys.}~\textbf{157}, 094112 (2022); \textbf{159}, 164113 (2023)] $尉$-extrapolation method and find excellent agreement with exact direct PIMC reference data where available. This opens up the intriguing possibility to study a gamut of properties of light elements and potentially material mixtures over a substantial part of the warm dense matter regime, with direct relevance for astrophysics, material science, and inertial confinement fusion research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01979v1-abstract-full').style.display = 'none'; document.getElementById('2403.01979v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.19113">arXiv:2402.19113</a> <span> [<a href="https://arxiv.org/pdf/2402.19113">pdf</a>, <a href="https://arxiv.org/format/2402.19113">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Unraveling electronic correlations in warm dense quantum plasmas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dornheim%2C+T">Tobias Dornheim</a>, <a href="/search/physics?searchtype=author&query=D%C3%B6ppner%2C+T">Tilo D枚ppner</a>, <a href="/search/physics?searchtype=author&query=Tolias%2C+P">Panagiotis Tolias</a>, <a href="/search/physics?searchtype=author&query=B%C3%B6hme%2C+M">Maximilian B枚hme</a>, <a href="/search/physics?searchtype=author&query=Fletcher%2C+L">Luke Fletcher</a>, <a href="/search/physics?searchtype=author&query=Gawne%2C+T">Thomas Gawne</a>, <a href="/search/physics?searchtype=author&query=Graziani%2C+F">Frank Graziani</a>, <a href="/search/physics?searchtype=author&query=Kraus%2C+D">Dominik Kraus</a>, <a href="/search/physics?searchtype=author&query=MacDonald%2C+M">Michael MacDonald</a>, <a href="/search/physics?searchtype=author&query=Moldabekov%2C+Z">Zhandos Moldabekov</a>, <a href="/search/physics?searchtype=author&query=Schwalbe%2C+S">Sebastian Schwalbe</a>, <a href="/search/physics?searchtype=author&query=Gericke%2C+D">Dirk Gericke</a>, <a href="/search/physics?searchtype=author&query=Vorberger%2C+J">Jan Vorberger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.19113v1-abstract-short" style="display: inline;"> The study of matter at extreme densities and temperatures has emerged as a highly active frontier at the interface of plasma physics, material science and quantum chemistry with direct relevance for planetary modeling and inertial confinement fusion. A particular feature of such warm dense matter is the complex interplay of strong Coulomb interactions, quantum effects, and thermal excitations, r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.19113v1-abstract-full').style.display = 'inline'; document.getElementById('2402.19113v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.19113v1-abstract-full" style="display: none;"> The study of matter at extreme densities and temperatures has emerged as a highly active frontier at the interface of plasma physics, material science and quantum chemistry with direct relevance for planetary modeling and inertial confinement fusion. A particular feature of such warm dense matter is the complex interplay of strong Coulomb interactions, quantum effects, and thermal excitations, rendering its rigorous theoretical description a formidable challenge. Here, we report a breakthrough in path integral Monte Carlo simulations that allows us to unravel this intricate interplay for light elements without nodal restrictions. This new capability gives us access to electronic correlations previously unattainable. As an example, we apply our method to strongly compressed beryllium to describe x-ray Thomson scattering (XRTS) data obtained at the National Ignition Facility. We find excellent agreement between simulation and experiment. Our analysis shows an unprecedented level of consistency for independent observations without the need for any empirical input parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.19113v1-abstract-full').style.display = 'none'; document.getElementById('2402.19113v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.09005">arXiv:2402.09005</a> <span> [<a href="https://arxiv.org/pdf/2402.09005">pdf</a>, <a href="https://arxiv.org/format/2402.09005">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Excitation signatures of isochorically heated electrons in solids at finite wavenumber explored from first principles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Moldabekov%2C+Z+A">Zhandos A. Moldabekov</a>, <a href="/search/physics?searchtype=author&query=Gawne%2C+T+D">Thomas D. Gawne</a>, <a href="/search/physics?searchtype=author&query=Schwalbe%2C+S">Sebastian Schwalbe</a>, <a href="/search/physics?searchtype=author&query=Preston%2C+T+R">Thomas R. Preston</a>, <a href="/search/physics?searchtype=author&query=Vorberger%2C+J">Jan Vorberger</a>, <a href="/search/physics?searchtype=author&query=Dornheim%2C+T">Tobias Dornheim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.09005v2-abstract-short" style="display: inline;"> Ultrafast heating of solids with modern X-ray free electron lasers (XFELs) leads to a unique set of conditions that is characterized by the simultaneous presence of heated electrons in a cold ionic lattice. In this work, we analyze the effect of electronic heating on the dynamic structure factor (DSF) in bulk Aluminium (Al) with a face-centered cubic lattice and in silicon (Si) with a crystal diam… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09005v2-abstract-full').style.display = 'inline'; document.getElementById('2402.09005v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.09005v2-abstract-full" style="display: none;"> Ultrafast heating of solids with modern X-ray free electron lasers (XFELs) leads to a unique set of conditions that is characterized by the simultaneous presence of heated electrons in a cold ionic lattice. In this work, we analyze the effect of electronic heating on the dynamic structure factor (DSF) in bulk Aluminium (Al) with a face-centered cubic lattice and in silicon (Si) with a crystal diamond structure using first-principles linear-response time-dependent density functional theory simulations. We find a thermally induced red shift of the collective plasmon excitation in both materials. In addition, we show that the heating of the electrons in Al can lead to the formation of a double-plasmon peak due to the extension of the Landau damping region to smaller wavenumbers. Finally, we demonstrate that thermal effects generate a measurable and distinct signature (peak-valley structure) in the DSF of Si at small frequencies. Our simulations indicate that there is a variety of new features in the spectrum of X-ray-driven solids, specifically at finite momentum transfer, which can probed in upcoming X-ray Thomson scattering (XRTS) experiments at various XFEL facilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09005v2-abstract-full').style.display = 'none'; document.getElementById('2402.09005v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.08098">arXiv:2311.08098</a> <span> [<a href="https://arxiv.org/pdf/2311.08098">pdf</a>, <a href="https://arxiv.org/format/2311.08098">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Ab initio path integral Monte Carlo simulations of the uniform electron gas on large length scales </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dornheim%2C+T">Tobias Dornheim</a>, <a href="/search/physics?searchtype=author&query=Schwalbe%2C+S">Sebastian Schwalbe</a>, <a href="/search/physics?searchtype=author&query=Moldabekov%2C+Z">Zhandos Moldabekov</a>, <a href="/search/physics?searchtype=author&query=Vorberger%2C+J">Jan Vorberger</a>, <a href="/search/physics?searchtype=author&query=Tolias%2C+P">Panagiotis Tolias</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.08098v1-abstract-short" style="display: inline;"> The accurate description of non-ideal quantum many-body systems is of prime importance for a host of applications within physics, quantum chemistry, material science, and related disciplines. At finite temperatures, the gold standard is given by \textit{ab initio} path integral Monte Carlo (PIMC) simulations, which do not require any empirical input, but exhibit an exponential increase in the requ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08098v1-abstract-full').style.display = 'inline'; document.getElementById('2311.08098v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.08098v1-abstract-full" style="display: none;"> The accurate description of non-ideal quantum many-body systems is of prime importance for a host of applications within physics, quantum chemistry, material science, and related disciplines. At finite temperatures, the gold standard is given by \textit{ab initio} path integral Monte Carlo (PIMC) simulations, which do not require any empirical input, but exhibit an exponential increase in the required compute time for fermionic systems with increasing the system size $N$. Very recently, it has been suggested to compute fermionic properties without this bottleneck based on PIMC simulations of fictitious identical particles. In the present work, we use this technique to carry out very large ($N\leq1000$) PIMC simulations of the warm dense electron gas and demonstrate that it is capable of providing a highly accurate description of investigated properties, i.e., the static structure factor, the static density response function, and local field correction, over the entire range of length scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08098v1-abstract-full').style.display = 'none'; document.getElementById('2311.08098v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.07916">arXiv:2308.07916</a> <span> [<a href="https://arxiv.org/pdf/2308.07916">pdf</a>, <a href="https://arxiv.org/format/2308.07916">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Bound state breaking and the importance of thermal exchange-correlation effects in warm dense hydrogen </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Moldabekov%2C+Z">Zhandos Moldabekov</a>, <a href="/search/physics?searchtype=author&query=Schwalbe%2C+S">Sebastian Schwalbe</a>, <a href="/search/physics?searchtype=author&query=B%C3%B6hme%2C+M">Maximilian B枚hme</a>, <a href="/search/physics?searchtype=author&query=Vorberger%2C+J">Jan Vorberger</a>, <a href="/search/physics?searchtype=author&query=Shao%2C+X">Xuecheng Shao</a>, <a href="/search/physics?searchtype=author&query=Pavanello%2C+M">Michele Pavanello</a>, <a href="/search/physics?searchtype=author&query=Graziani%2C+F">Frank Graziani</a>, <a href="/search/physics?searchtype=author&query=Dornheim%2C+T">Tobias Dornheim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.07916v2-abstract-short" style="display: inline;"> Hydrogen at extreme temperatures and pressures is ubiquitous throughout our universe and naturally occurs in a variety of astrophysical objects. In addition, it is of key relevance for cutting-edge technological applications, with inertial confinement fusion research being a prime example. In the present work, we present exact \emph{ab initio} path integral Monte Carlo (PIMC) results for the elect… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07916v2-abstract-full').style.display = 'inline'; document.getElementById('2308.07916v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.07916v2-abstract-full" style="display: none;"> Hydrogen at extreme temperatures and pressures is ubiquitous throughout our universe and naturally occurs in a variety of astrophysical objects. In addition, it is of key relevance for cutting-edge technological applications, with inertial confinement fusion research being a prime example. In the present work, we present exact \emph{ab initio} path integral Monte Carlo (PIMC) results for the electronic density of warm dense hydrogen along a line of constant degeneracy across a broad range of densities. Using the well-known concept of reduced density gradients, we develop a new framework to identify the breaking of bound states due to pressure ionization in bulk hydrogen. Moreover, we use our PIMC results as a reference to rigorously assess the accuracy of a variety of exchange--correlation (XC) functionals in density functional theory calculations for different density regions. Here a key finding is the importance of thermal XC effects for the accurate description of density gradients in high-energy density systems. Our exact PIMC test set is freely available online and can be used to guide the development of new methodologies for the simulation of warm dense matter and beyond. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07916v2-abstract-full').style.display = 'none'; document.getElementById('2308.07916v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.02770">arXiv:2302.02770</a> <span> [<a href="https://arxiv.org/pdf/2302.02770">pdf</a>, <a href="https://arxiv.org/format/2302.02770">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0145555">10.1063/5.0145555 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bond formation insights into the Diels-Alder reaction: A bond perception and self-interaction perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Schulze%2C+W+T">Wanja Timm Schulze</a>, <a href="/search/physics?searchtype=author&query=Schwalbe%2C+S">Sebastian Schwalbe</a>, <a href="/search/physics?searchtype=author&query=Trepte%2C+K">Kai Trepte</a>, <a href="/search/physics?searchtype=author&query=Croy%2C+A">Alexander Croy</a>, <a href="/search/physics?searchtype=author&query=Kortus%2C+J">Jens Kortus</a>, <a href="/search/physics?searchtype=author&query=Gr%C3%A4fe%2C+S">Stefanie Gr盲fe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.02770v2-abstract-short" style="display: inline;"> The behavior of electrons during bond formation and breaking cannot commonly be accessed from experiments. Thus, bond perception is often based on chemical intuition or rule-based algorithms. Utilizing computational chemistry methods, we present intrinsic bond descriptors for the Diels-Alder reaction, allowing for an automatic bond perception. We show that these bond descriptors are available from… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.02770v2-abstract-full').style.display = 'inline'; document.getElementById('2302.02770v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.02770v2-abstract-full" style="display: none;"> The behavior of electrons during bond formation and breaking cannot commonly be accessed from experiments. Thus, bond perception is often based on chemical intuition or rule-based algorithms. Utilizing computational chemistry methods, we present intrinsic bond descriptors for the Diels-Alder reaction, allowing for an automatic bond perception. We show that these bond descriptors are available from localized orbitals and self-interaction correction calculations, e.g., from Fermi-orbital descriptors. The proposed descriptors allow a sparse, simple, and educational inspection of the Diels-Alder reaction from an electronic perspective. We demonstrate that bond descriptors deliver a simple visual representation of the concerted bond formation and bond breaking, which agrees with Lewis' theory of bonding. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.02770v2-abstract-full').style.display = 'none'; document.getElementById('2302.02770v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures, supplementary material can be found under ancillary files</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 158, 164102 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.06482">arXiv:2208.06482</a> <span> [<a href="https://arxiv.org/pdf/2208.06482">pdf</a>, <a href="https://arxiv.org/format/2208.06482">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0120515">10.1063/5.0120515 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> How good are recent density functionals for ground and excited states of one-electron systems? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Schwalbe%2C+S">Sebastian Schwalbe</a>, <a href="/search/physics?searchtype=author&query=Trepte%2C+K">Kai Trepte</a>, <a href="/search/physics?searchtype=author&query=Lehtola%2C+S">Susi Lehtola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.06482v3-abstract-short" style="display: inline;"> Sun et al. [J. Chem. Phys. 144, 191101 (2016)] suggested that common density functional approximations (DFAs) should exhibit large energy errors for excited states as a necessary consequence of orbital nodality. Motivated by self-interaction corrected density functional calculations on many-electron systems, we continue their study with the exactly solvable $1s$, $2p$, and $3d$ states of 36 hydrog… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.06482v3-abstract-full').style.display = 'inline'; document.getElementById('2208.06482v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.06482v3-abstract-full" style="display: none;"> Sun et al. [J. Chem. Phys. 144, 191101 (2016)] suggested that common density functional approximations (DFAs) should exhibit large energy errors for excited states as a necessary consequence of orbital nodality. Motivated by self-interaction corrected density functional calculations on many-electron systems, we continue their study with the exactly solvable $1s$, $2p$, and $3d$ states of 36 hydrogenic one-electron ions (H-Kr$^{35+}$) and demonstrate with self-consistent calculations that state-of-the-art DFAs indeed exhibit large errors for the $2p$ and $3d$ excited states. We consider 56 functionals at the local density approximation (LDA), generalized gradient approximation (GGA) as well as meta-GGA levels, also including several hybrid functionals like the recently proposed machine-learned DM21 local hybrid functional. The best non-hybrid functional for the $1s$ ground state is revTPSS. The $2p$ and $3d$ excited states are more difficult for DFAs as Sun et al. predicted, and LDA functionals turn out to yield the most systematic accuracy for these states amongst non-hybrid functionals. The best performance for the three states overall is observed with the BHandH global hybrid GGA functional, which contains 50% Hartree-Fock exchange and 50% LDA exchange. The performance of DM21 is found to be inconsistent, yielding good accuracy for some states and systems and poor accuracy for others. Based on these results, we recommend including a variety of one-electron cations in future training of machine-learned density functionals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.06482v3-abstract-full').style.display = 'none'; document.getElementById('2208.06482v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 157, 174113 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.11648">arXiv:2201.11648</a> <span> [<a href="https://arxiv.org/pdf/2201.11648">pdf</a>, <a href="https://arxiv.org/format/2201.11648">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/978-3-031-11287-4_14">10.1007/978-3-031-11287-4_14 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effect of molecular and electronic geometries on the electronic density in FLO-SIC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liebing%2C+S">Simon Liebing</a>, <a href="/search/physics?searchtype=author&query=Trepte%2C+K">Kai Trepte</a>, <a href="/search/physics?searchtype=author&query=Schwalbe%2C+S">Sebastian Schwalbe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.11648v3-abstract-short" style="display: inline;"> Recently, Trepte et al. [J. Chem. Phys., vol. 155, 2021] pointed out the importance of analyzing dipole moments in the Fermi-L枚wdin orbital (FLO) self-interaction correction (SIC) for cyclic, planar molecules. In this manuscript, the effect of the molecular and electronic geometries on dipole moments and polarizabilities is discussed for non-cyclic molecules. Computed values are presented for wate… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.11648v3-abstract-full').style.display = 'inline'; document.getElementById('2201.11648v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.11648v3-abstract-full" style="display: none;"> Recently, Trepte et al. [J. Chem. Phys., vol. 155, 2021] pointed out the importance of analyzing dipole moments in the Fermi-L枚wdin orbital (FLO) self-interaction correction (SIC) for cyclic, planar molecules. In this manuscript, the effect of the molecular and electronic geometries on dipole moments and polarizabilities is discussed for non-cyclic molecules. Computed values are presented for water, formaldehyde, and nitromethane. Continuing the work of Schwalbe et al. [J. Chem. Phys. vol. 153, (2020)], we reconfirm that systematic numerical parameter studies are essential to obtain consistent results in density functional theory (DFT) and SIC. In agreement with Trepte et al. [J. Chem. Phys., vol. 155, 2021], DFT agrees well with experiment for dipole moments, while SIC slightly overestimates them. A Linnett double-quartet electronic geometry is found to be energetically preferred for nitromethane. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.11648v3-abstract-full').style.display = 'none'; document.getElementById('2201.11648v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 8 figures, 5 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics and Its Applications. Springer Proceedings in Physics, vol 281 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.08199">arXiv:2109.08199</a> <span> [<a href="https://arxiv.org/pdf/2109.08199">pdf</a>, <a href="https://arxiv.org/format/2109.08199">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0071796">10.1063/5.0071796 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chemical bonding theories as guides for self-interaction corrected solutions: multiple local minima and symmetry breaking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Trepte%2C+K">Kai Trepte</a>, <a href="/search/physics?searchtype=author&query=Schwalbe%2C+S">Sebastian Schwalbe</a>, <a href="/search/physics?searchtype=author&query=Liebing%2C+S">Simon Liebing</a>, <a href="/search/physics?searchtype=author&query=Schulze%2C+W+T">Wanja T. Schulze</a>, <a href="/search/physics?searchtype=author&query=Kortus%2C+J">Jens Kortus</a>, <a href="/search/physics?searchtype=author&query=Myneni%2C+H">Hemanadhan Myneni</a>, <a href="/search/physics?searchtype=author&query=Ivanov%2C+A+V">Aleksei V. Ivanov</a>, <a href="/search/physics?searchtype=author&query=Lehtola%2C+S">Susi Lehtola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.08199v2-abstract-short" style="display: inline;"> Fermi--L枚wdin orbitals (FLO) are a special set of localized orbitals, which have become commonly used in combination with the Perdew--Zunger self-interaction correction (SIC) in the FLO-SIC method. The FLOs are obtained for a set of occupied orbitals by specifying a classical position for each electron. These positions are known as Fermi-orbital descriptors (FODs), and they have a clear relation t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08199v2-abstract-full').style.display = 'inline'; document.getElementById('2109.08199v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.08199v2-abstract-full" style="display: none;"> Fermi--L枚wdin orbitals (FLO) are a special set of localized orbitals, which have become commonly used in combination with the Perdew--Zunger self-interaction correction (SIC) in the FLO-SIC method. The FLOs are obtained for a set of occupied orbitals by specifying a classical position for each electron. These positions are known as Fermi-orbital descriptors (FODs), and they have a clear relation to chemical bonding. In this study, we show how FLOs and FODs can be used to initialize, interpret and justify SIC solutions in a common chemical picture, both within FLO-SIC and in traditional variational SIC, and to locate distinct local minima in either of these approaches. We demonstrate that FLOs based on Lewis' theory lead to symmetry breaking for benzene -- the electron density is found to break symmetry already at the symmetric molecular structure -- while ones from Linnett's double-quartet theory reproduce symmetric electron densities and molecular geometries. Introducing a benchmark set of 16 planar, cyclic molecules, we show that using Lewis' theory as the starting point can lead to artifactual dipole moments of up to 1 Debye, while Linnett SIC dipole moments are in better agreement with experimental values. We suggest using the dipole moment as a diagnostic of symmetry breaking in SIC and monitoring it in all SIC calculations. We show that Linnett structures can often be seen as superpositions of Lewis structures and propose Linnett structures as a simple way to describe aromatic systems in SIC with reduced symmetry breaking. The role of hovering FODs is also briefly discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08199v2-abstract-full').style.display = 'none'; document.getElementById('2109.08199v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures, includes the SI as an attachment Changes to v1: Added some more theory, adjusted Fig.1 for better readability</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 155, 224109 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.02631">arXiv:1905.02631</a> <span> [<a href="https://arxiv.org/pdf/1905.02631">pdf</a>, <a href="https://arxiv.org/format/1905.02631">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0012519">10.1063/5.0012519 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> PyFLOSIC: Python-based Fermi-L枚wdin orbital self-interaction correction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Schwalbe%2C+S">Sebastian Schwalbe</a>, <a href="/search/physics?searchtype=author&query=Fiedler%2C+L">Lenz Fiedler</a>, <a href="/search/physics?searchtype=author&query=Kraus%2C+J">Jakob Kraus</a>, <a href="/search/physics?searchtype=author&query=Kortus%2C+J">Jens Kortus</a>, <a href="/search/physics?searchtype=author&query=Trepte%2C+K">Kai Trepte</a>, <a href="/search/physics?searchtype=author&query=Lehtola%2C+S">Susi Lehtola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.02631v4-abstract-short" style="display: inline;"> We present PyFLOSIC, an open-source, general-purpose Python implementation of the Fermi-L枚wdin orbital self-interaction correction (FLO-SIC), which is based on the Python simulation of chemistry frame-work (PySCF) electronic structure and quantum chemistry code. Thanks to PySCF, PyFLOSIC can be used with any kind of Gaussian-type basis set, various kinds of radial and angular quadrature grids, and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02631v4-abstract-full').style.display = 'inline'; document.getElementById('1905.02631v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.02631v4-abstract-full" style="display: none;"> We present PyFLOSIC, an open-source, general-purpose Python implementation of the Fermi-L枚wdin orbital self-interaction correction (FLO-SIC), which is based on the Python simulation of chemistry frame-work (PySCF) electronic structure and quantum chemistry code. Thanks to PySCF, PyFLOSIC can be used with any kind of Gaussian-type basis set, various kinds of radial and angular quadrature grids, and all exchange-correlation functionals within the local density approximation (LDA), generalized-gradient approximation (GGA), and meta-GGA provided in the Libxc and XCFun libraries. A central aspect of FLO-SIC are Fermi-orbital descriptors, which are used to estimate the self-interaction correction. Importantly, they can be initialized automatically within PyFLOSIC and optimized with an interface to the atomic simulation environment, a Python library which provides a variety of powerful gradient-based algorithms for geometry optimization. Although PyFLOSIC has already facilitated applications of FLO-SIC to chemical studies, it offers an excellent starting point for further developments in FLO-SIC approaches, thanks to its use of a high-level programming language and pronounced modularity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02631v4-abstract-full').style.display = 'none'; document.getElementById('1905.02631v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 153, 084104 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.00611">arXiv:1903.00611</a> <span> [<a href="https://arxiv.org/pdf/1903.00611">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5087065">10.1063/1.5087065 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stretched or noded orbital densities and self-interaction correction in density functional theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shahi%2C+C">Chandra Shahi</a>, <a href="/search/physics?searchtype=author&query=Bhattarai%2C+P">Puskar Bhattarai</a>, <a href="/search/physics?searchtype=author&query=Wagle%2C+K">Kamal Wagle</a>, <a href="/search/physics?searchtype=author&query=Santra%2C+B">Biswajit Santra</a>, <a href="/search/physics?searchtype=author&query=Schwalbe%2C+S">Sebastian Schwalbe</a>, <a href="/search/physics?searchtype=author&query=Hahn%2C+T">Torsten Hahn</a>, <a href="/search/physics?searchtype=author&query=Kortus%2C+J">Jens Kortus</a>, <a href="/search/physics?searchtype=author&query=Jackson%2C+K+A">Koblar A. Jackson</a>, <a href="/search/physics?searchtype=author&query=Peralta%2C+J+E">Juan E. Peralta</a>, <a href="/search/physics?searchtype=author&query=Trepte%2C+K">Kai Trepte</a>, <a href="/search/physics?searchtype=author&query=Lehtola%2C+S">Susi Lehtola</a>, <a href="/search/physics?searchtype=author&query=Nepal%2C+N+K">Niraj K. Nepal</a>, <a href="/search/physics?searchtype=author&query=Myneni%2C+H">Hemanadhan Myneni</a>, <a href="/search/physics?searchtype=author&query=Neupane%2C+B">Bimal Neupane</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+S">Santosh Adhikari</a>, <a href="/search/physics?searchtype=author&query=Ruzsinszky%2C+A">Adrienn Ruzsinszky</a>, <a href="/search/physics?searchtype=author&query=Yamamoto%2C+Y">Yoh Yamamoto</a>, <a href="/search/physics?searchtype=author&query=Baruah%2C+T">Tunna Baruah</a>, <a href="/search/physics?searchtype=author&query=Zope%2C+R+R">Rajendra R. Zope</a>, <a href="/search/physics?searchtype=author&query=Perdew%2C+J+P">John P. Perdew</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.00611v2-abstract-short" style="display: inline;"> Semi-local approximations to the density functional for the exchange-correlation energy of a many-electron system necessarily fail for lobed one-electron densities, including not only the familiar stretched densities but also the less familiar but closely-related noded ones. The Perdew-Zunger (PZ) self-interaction correction (SIC) to a semi-local approximation makes that approximation exact for al… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.00611v2-abstract-full').style.display = 'inline'; document.getElementById('1903.00611v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.00611v2-abstract-full" style="display: none;"> Semi-local approximations to the density functional for the exchange-correlation energy of a many-electron system necessarily fail for lobed one-electron densities, including not only the familiar stretched densities but also the less familiar but closely-related noded ones. The Perdew-Zunger (PZ) self-interaction correction (SIC) to a semi-local approximation makes that approximation exact for all one-electron ground- or excited-state densities and accurate for stretched bonds. When the minimization of the PZ total energy is made over real localized orbitals, the orbital densities can be noded, leading to energy errors in many-electron systems. Minimization over complex localized orbitals yields nodeless orbital densities, which reduce but typically do not eliminate the SIC errors of atomization energies. Other errors of PZ SIC remain, attributable to the loss of the exact constraints and appropriate norms that the semi-local approximations satisfy, and suggesting the need for a generalized SIC. These conclusions are supported by calculations for one-electron densities, and for many-electron molecules. While PZ SIC raises and improves the energy barriers of standard generalized gradient approximations (GGA's) and meta-GGA's, it reduces and often worsens the atomization energies of molecules. Thus PZ SIC raises the energy more as the nodality of the valence localized orbitals increases from atoms to molecules to transition states. PZ SIC is applied here in particular to the SCAN meta-GGA, for which the correlation part is already self-interaction-free. That property makes SCAN a natural first candidate for a generalized SIC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.00611v2-abstract-full').style.display = 'none'; document.getElementById('1903.00611v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 150, 174102 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.08991">arXiv:1610.08991</a> <span> [<a href="https://arxiv.org/pdf/1610.08991">pdf</a>, <a href="https://arxiv.org/format/1610.08991">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Mechanical, elastic and thermodynamic properties of crystalline lithium silicides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Schwalbe%2C+S">Sebastian Schwalbe</a>, <a href="/search/physics?searchtype=author&query=Gruber%2C+T">Thomas Gruber</a>, <a href="/search/physics?searchtype=author&query=Trepte%2C+K">Kai Trepte</a>, <a href="/search/physics?searchtype=author&query=Biedermann%2C+F">Franziska Biedermann</a>, <a href="/search/physics?searchtype=author&query=Mertens%2C+F">Florian Mertens</a>, <a href="/search/physics?searchtype=author&query=Kortus%2C+J">Jens Kortus</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.08991v1-abstract-short" style="display: inline;"> We investigate crystalline thermodynamic stable lithium silicides phases (LixSiy) with density functional theory (DFT) and a force-field method based on modified embedded atoms (MEAM) and compare our results with experimental data. This work presents a fast and accurate framework to calculate thermodynamic properties of crystal structures with large unit cells with MEAM based on molecular dynamics… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.08991v1-abstract-full').style.display = 'inline'; document.getElementById('1610.08991v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.08991v1-abstract-full" style="display: none;"> We investigate crystalline thermodynamic stable lithium silicides phases (LixSiy) with density functional theory (DFT) and a force-field method based on modified embedded atoms (MEAM) and compare our results with experimental data. This work presents a fast and accurate framework to calculate thermodynamic properties of crystal structures with large unit cells with MEAM based on molecular dynamics (MD). Mechanical properties like the bulk modulus and the elastic constants are evaluated in addition to thermodynamic properties including the phonon density of states, the vibrational free energy and the isochoric/isobaric specific heat capacity for Li, Li12Si7, Li7Si3, Li13Si4, Li15Si4, Li21Si5, Li17Si4, Li22Si5 and Si. For a selected phase (Li13Si4) we study the effect of a temperature dependent phonon density of states and its effect on the isobaric heat capacity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.08991v1-abstract-full').style.display = 'none'; document.getElementById('1610.08991v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.06693">arXiv:1607.06693</a> <span> [<a href="https://arxiv.org/pdf/1607.06693">pdf</a>, <a href="https://arxiv.org/format/1607.06693">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.205130">10.1103/PhysRevB.94.205130 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ab initio electronic structure and optical conductivity of bismuth tellurohalides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Schwalbe%2C+S">Sebastian Schwalbe</a>, <a href="/search/physics?searchtype=author&query=Wirnata%2C+R">Ren茅 Wirnata</a>, <a href="/search/physics?searchtype=author&query=Starke%2C+R">Ronald Starke</a>, <a href="/search/physics?searchtype=author&query=Schober%2C+G+A+H">Giulio A. H. Schober</a>, <a href="/search/physics?searchtype=author&query=Kortus%2C+J">Jens Kortus</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.06693v1-abstract-short" style="display: inline;"> We investigate the electronic structure, dielectric and optical properties of bismuth tellurohalides BiTeX (X = I, Cl, Br) by means of all-electron density functional theory. In particular, we present the ab initio conductivities and dielectric tensors calculated over a wide frequency range, and compare our results with the recent measurements by Akrap et al. , Makhnev et al. , and Rusinov et al.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.06693v1-abstract-full').style.display = 'inline'; document.getElementById('1607.06693v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.06693v1-abstract-full" style="display: none;"> We investigate the electronic structure, dielectric and optical properties of bismuth tellurohalides BiTeX (X = I, Cl, Br) by means of all-electron density functional theory. In particular, we present the ab initio conductivities and dielectric tensors calculated over a wide frequency range, and compare our results with the recent measurements by Akrap et al. , Makhnev et al. , and Rusinov et al. . We show how the low-frequency branch of the optical conductivity can be used to identify characteristic intra- and interband transitions between the Rashba spin-split bands in all three bismuth tellurohalides. We further calculate the refractive indices and dielectric constants, which in turn are systematically compared to previous predictions and measurements. We expect that our quantitative analysis will contribute to the general assessment of bulk Rashba materials for their potential use in spintronics devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.06693v1-abstract-full').style.display = 'none'; document.getElementById('1607.06693v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 205130 (2016) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>