CINXE.COM
Search
<!DOCTYPE html> <html lang="en" class="no-js"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes"> <title>Search</title> <meta id="meta-title" property="citation_title" content="Search"/> <meta id="og-title" property="og:title" content="Search"/> <meta name="twitter:widgets:autoload" content="off"/> <meta name="twitter:dnt" content="on"/> <meta name="twitter:widgets:csp" content="on"/> <meta name="google-site-verification" content="lQbRRf0vgPqMbnbCsgELjAjIIyJjiIWo917M7hBshvI"/> <meta id="og-image" property="og:image" content="https://escholarship.org/images/escholarship-facebook2.jpg"/> <meta id="og-image-width" property="og:image:width" content="1242"/> <meta id="og-image-height" property="og:image:height" content="1242"/> <link rel="stylesheet" href="/css/main-fa87d2fbdbef47d2.css"> <link rel="resource" type="application/l10n" href="/node_modules/pdfjs-embed2/dist/locale/locale.properties"> <noscript><style> .jsonly { display: none } </style></noscript> <!-- Matomo --> <!-- TBD Configure Matomo for SPA https://developer.matomo.org/guides/spa-tracking --> <script type="text/plain" data-type="application/javascript" data-name="matomo"> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.cdlib.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '7']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); console.log('*** MATOMO LOADED ***'); })(); </script> <!-- End Matomo Code --> </head> <body> <div id="main"><div data-reactroot=""><div class="body"><a href="#maincontent" class="c-skipnav">Skip to main content</a><div class="l_search"><div><div style="margin-top:-10px"></div><header id="#top" class="c-header"><a class="c-header__logo2" href="/"><picture><source srcSet="/images/logo_eschol-small.svg" media="(min-width: 870px)"/><img src="/images/logo_eschol-mobile.svg" alt="eScholarship"/></picture><div class="c-header__logo2-tagline">Open Access Publications from the University of California</div></a><div class="c-header__search"><form class="c-search1"><label class="c-search1__label" for="c-search1__field">search</label><input type="search" id="c-search1__field" name="q" class="c-search1__field" placeholder="Search over 500,000 items" autoCapitalize="off" value="author:Bhattacharyya, Amrita"/><button type="submit" class="c-search1__submit-button" aria-label="submit search"></button><button type="button" class="c-search1__search-close-button" aria-label="close search field"></button></form></div><button class="c-header__search-open-button" aria-label="open search field"></button></header></div><div class="c-navbar"><nav class="c-nav"><details open="" class="c-nav__main"><summary class="c-nav__main-button">Menu</summary><ul class="c-nav__main-items"><li><details class="c-nav__sub"><summary class="c-nav__sub-button">About eScholarship</summary><div class="c-nav__sub-items"><button class="c-nav__sub-items-button" aria-label="return to menu">Main Menu</button><ul><li><a href="/aboutEschol">About eScholarship</a></li><li><a href="/repository">eScholarship Repository</a></li><li><a href="/publishing">eScholarship Publishing</a></li><li><a href="/policies">Site policies</a></li><li><a href="/terms">Terms of Use and Copyright Information</a></li><li><a href="/privacyPolicy">Privacy statement</a></li></ul></div></details></li><li><details class="c-nav__sub"><summary class="c-nav__sub-button">Campus Sites</summary><div class="c-nav__sub-items"><button class="c-nav__sub-items-button" aria-label="return to menu">Main Menu</button><ul><li><a href="/uc/ucb">UC Berkeley</a></li><li><a href="/uc/ucd">UC Davis</a></li><li><a href="/uc/uci">UC Irvine</a></li><li><a href="/uc/ucla">UCLA</a></li><li><a href="/uc/ucm">UC Merced</a></li><li><a href="/uc/ucr">UC Riverside</a></li><li><a href="/uc/ucsd">UC San Diego</a></li><li><a href="/uc/ucsf">UCSF</a></li><li><a href="/uc/ucsb">UC Santa Barbara</a></li><li><a href="/uc/ucsc">UC Santa Cruz</a></li><li><a href="/uc/ucop">UC Office of the President</a></li><li><a href="/uc/lbnl">Lawrence Berkeley National Laboratory</a></li><li><a href="/uc/anrcs">UC Agriculture & Natural Resources</a></li></ul></div></details></li><li><a href="/ucoapolicies">UC Open Access Policies</a></li><li><a href="/publishing">eScholarship Publishing</a></li><li><a href="/ucpubs">UCPUBS</a></li></ul></details></nav></div><form id="facetForm" class="c-columns"><aside><div><div class="c-filter"><h1 class="c-filter__heading">Your search: "author:Bhattacharyya, Amrita"</h1><input type="hidden" name="q" value="author:Bhattacharyya, Amrita"/><div class="c-filter__results">9<!-- --> results</div><div class="c-filter__inactive-note">No filters applied</div><details class="c-filter__active" open=""><summary><span><strong></strong> filter<!-- -->s<!-- --> applied</span></summary><button class="c-filter__clear-all">clear all</button><ul class="c-filter__active-list"></ul></details><a href="https://help.escholarship.org/support/solutions/articles/9000148939-using-advanced-search-beta-" class="c-filter__tips">Search tips</a></div><div class="c-refine--has-drawer"><button class="c-refine__button--open">Refine Results</button><button class="c-refine__button--close" hidden="">Back to Results</button><div class="c-refine__drawer--closed"><details class="c-facetbox" open=""><summary class="c-facetbox__summary"><span id="facetbox0">Type of Work</span></summary><fieldset aria-labelledby="facetbox0"><ul class="c-checkbox"><li class=""><input type="checkbox" id="type_of_work-article" class="c-checkbox__input" name="type_of_work" value="article"/><label for="type_of_work-article" class="c-checkbox__label">Article<!-- --> (<!-- -->9<!-- -->)</label></li><li class=""><input type="checkbox" id="type_of_work-monograph" class="c-checkbox__input" name="type_of_work" value="monograph"/><label for="type_of_work-monograph" class="c-checkbox__label">Book<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="type_of_work-dissertation" class="c-checkbox__input" name="type_of_work" value="dissertation"/><label for="type_of_work-dissertation" class="c-checkbox__label">Theses<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="type_of_work-multimedia" class="c-checkbox__input" name="type_of_work" value="multimedia"/><label for="type_of_work-multimedia" class="c-checkbox__label">Multimedia<!-- --> (<!-- -->0<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox" open=""><summary class="c-facetbox__summary"><span id="facetbox1">Peer Review</span></summary><fieldset aria-labelledby="facetbox1"><ul class="c-checkbox"><li class=""><input type="checkbox" id="peer_reviewed-1" class="c-checkbox__input" name="peer_reviewed" value="1"/><label for="peer_reviewed-1" class="c-checkbox__label">Peer-reviewed only<!-- --> (<!-- -->9<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox2">Supplemental Material</span></summary><fieldset aria-labelledby="facetbox2"><ul class="c-checkbox--2column"><li class=""><input type="checkbox" id="supp_file_types-video" class="c-checkbox__input" name="supp_file_types" value="video"/><label for="supp_file_types-video" class="c-checkbox__label">Video<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-audio" class="c-checkbox__input" name="supp_file_types" value="audio"/><label for="supp_file_types-audio" class="c-checkbox__label">Audio<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-images" class="c-checkbox__input" name="supp_file_types" value="images"/><label for="supp_file_types-images" class="c-checkbox__label">Images<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-zip" class="c-checkbox__input" name="supp_file_types" value="zip"/><label for="supp_file_types-zip" class="c-checkbox__label">Zip<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-other_files" class="c-checkbox__input" name="supp_file_types" value="other files"/><label for="supp_file_types-other_files" class="c-checkbox__label">Other files<!-- --> (<!-- -->0<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox3">Publication Year</span></summary><fieldset aria-labelledby="facetbox3"><div class="c-pubyear"><div class="c-pubyear__field"><label for="c-pubyear__textfield1">From:</label><input type="text" id="c-pubyear__textfield1" name="pub_year_start" maxLength="4" placeholder="1900" value=""/></div><div class="c-pubyear__field"><label for="c-pubyear__textfield2">To:</label><input type="text" id="c-pubyear__textfield2" name="pub_year_end" maxLength="4" placeholder="2025" value=""/></div><button class="c-pubyear__button">Apply</button></div></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox4">Campus</span></summary><fieldset aria-labelledby="facetbox4"><ul class="c-checkbox"><li class=""><input type="checkbox" id="campuses-ucb" class="c-checkbox__input" name="campuses" value="ucb"/><label for="campuses-ucb" class="c-checkbox__label">UC Berkeley<!-- --> (<!-- -->7<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucd" class="c-checkbox__input" name="campuses" value="ucd"/><label for="campuses-ucd" class="c-checkbox__label">UC Davis<!-- --> (<!-- -->1<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-uci" class="c-checkbox__input" name="campuses" value="uci"/><label for="campuses-uci" class="c-checkbox__label">UC Irvine<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucla" class="c-checkbox__input" name="campuses" value="ucla"/><label for="campuses-ucla" class="c-checkbox__label">UCLA<!-- --> (<!-- -->1<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucm" class="c-checkbox__input" name="campuses" value="ucm"/><label for="campuses-ucm" class="c-checkbox__label">UC Merced<!-- --> (<!-- -->1<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucr" class="c-checkbox__input" name="campuses" value="ucr"/><label for="campuses-ucr" class="c-checkbox__label">UC Riverside<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsd" class="c-checkbox__input" name="campuses" value="ucsd"/><label for="campuses-ucsd" class="c-checkbox__label">UC San Diego<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsf" class="c-checkbox__input" name="campuses" value="ucsf"/><label for="campuses-ucsf" class="c-checkbox__label">UCSF<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsb" class="c-checkbox__input" name="campuses" value="ucsb"/><label for="campuses-ucsb" class="c-checkbox__label">UC Santa Barbara<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsc" class="c-checkbox__input" name="campuses" value="ucsc"/><label for="campuses-ucsc" class="c-checkbox__label">UC Santa Cruz<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucop" class="c-checkbox__input" name="campuses" value="ucop"/><label for="campuses-ucop" class="c-checkbox__label">UC Office of the President<!-- --> (<!-- -->3<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-lbnl" class="c-checkbox__input" name="campuses" value="lbnl"/><label for="campuses-lbnl" class="c-checkbox__label">Lawrence Berkeley National Laboratory<!-- --> (<!-- -->9<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-anrcs" class="c-checkbox__input" name="campuses" value="anrcs"/><label for="campuses-anrcs" class="c-checkbox__label">UC Agriculture & Natural Resources<!-- --> (<!-- -->0<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox5">Department</span></summary><fieldset aria-labelledby="facetbox5"><ul class="c-checkbox"><li class=""><input type="checkbox" id="departments-lbnl_ees" class="c-checkbox__input" name="departments" value="lbnl_ees"/><label for="departments-lbnl_ees" class="c-checkbox__label">Earth & Environmental Sciences<!-- --> (<!-- -->7<!-- -->)</label></li><li class=""><input type="checkbox" id="departments-lbnl_es" class="c-checkbox__input" name="departments" value="lbnl_es"/><label for="departments-lbnl_es" class="c-checkbox__label">Energy Sciences<!-- --> (<!-- -->7<!-- -->)</label></li><li class=""><input type="checkbox" id="departments-rgpo" class="c-checkbox__input" name="departments" value="rgpo"/><label for="departments-rgpo" class="c-checkbox__label">Research Grants Program Office<!-- --> (<!-- -->3<!-- -->)</label></li><li class=""><input type="checkbox" id="departments-lbnl_bs" class="c-checkbox__input" name="departments" value="lbnl_bs"/><label for="departments-lbnl_bs" class="c-checkbox__label">BioSciences<!-- --> (<!-- -->2<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox6">Journal</span></summary><fieldset aria-labelledby="facetbox6"><ul class="c-checkbox"></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox7">Discipline</span></summary><fieldset aria-labelledby="facetbox7"><ul class="c-checkbox"><li class=""><input type="checkbox" id="disciplines-Life_Sciences" class="c-checkbox__input" name="disciplines" value="Life Sciences"/><label for="disciplines-Life_Sciences" class="c-checkbox__label">Life Sciences<!-- --> (<!-- -->1<!-- -->)</label></li><li class=""><input type="checkbox" id="disciplines-Physical_Sciences_and_Mathematics" class="c-checkbox__input" name="disciplines" value="Physical Sciences and Mathematics"/><label for="disciplines-Physical_Sciences_and_Mathematics" class="c-checkbox__label">Physical Sciences and Mathematics<!-- --> (<!-- -->1<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox8">Reuse License</span></summary><fieldset aria-labelledby="facetbox8"><ul class="c-checkbox"><li class="c-checkbox__attrib-cc-by"><input type="checkbox" id="rights-CC_BY" class="c-checkbox__input" name="rights" value="CC BY"/><label for="rights-CC_BY" class="c-checkbox__label">BY - Attribution required<!-- --> (<!-- -->5<!-- -->)</label></li></ul></fieldset></details></div></div><button type="submit" id="facet-form-submit" style="display:none">Search</button></div></aside><main id="maincontent"><section class="o-columnbox1"><header><h2 class="o-columnbox1__heading" aria-live="polite">Scholarly Works (<!-- -->9 results<!-- -->)</h2></header><div class="c-sortpagination"><div class="c-sort"><div class="o-input__droplist1"><label for="c-sort1">Sort By:</label><select name="sort" id="c-sort1" form="facetForm"><option selected="" value="rel">Relevance</option><option value="a-title">A-Z By Title</option><option value="z-title">Z-A By Title</option><option value="a-author">A-Z By Author</option><option value="z-author">Z-A By Author</option><option value="asc">Date Ascending</option><option value="desc">Date Descending</option></select></div></div><input type="hidden" name="start" form="facetForm" value="0"/></div><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/2k51w8rn"><div class="c-clientmarkup">Fast redox switches lead to rapid transformation of goethite in humid tropical soils: A Mössbauer spectroscopy study</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3ABhattacharyya%2C%20Amrita">Bhattacharyya, Amrita</a>; </li><li><a href="/search/?q=author%3AKukkadapu%2C%20Ravi%20K">Kukkadapu, Ravi K</a>; </li><li><a href="/search/?q=author%3ABowden%2C%20Mark">Bowden, Mark</a>; </li><li><a href="/search/?q=author%3APett%E2%80%90Ridge%2C%20Jennifer">Pett‐Ridge, Jennifer</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3ANico%2C%20Peter%20S">Nico, Peter S</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucb_postprints">UC Berkeley Previously Published Works</a> (<!-- -->2022<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">Humid tropical forest soils experience frequent rainfall, which limits oxygen diffusion and creates redox heterogeneity in upland soils. In this study we gauged the effect of short-term anoxic conditions on Fe mineralogy of relatively Fe- and C-rich surface soils (C/Fe mole ratio ∼5) from a humid tropical forest in Puerto Rico. Soils subjected to 4-d oxic/anoxic oscillation were characterized by selective chemical extractions, Mössbauer spectroscopy (MBS), and X-ray diffraction. Chemical extraction data suggested that rapidly switching redox conditions had subtle effects on bulk Fe mineralogy. Mössbauer, on the other hand, indicated that (a) the soil Fe is a mixture of goethites of varying characteristics with minor contributions from ferrihydrite (<5%) and Fe(III)-organic matter (OM) phases (∼10%), and (b) anoxic conditions rapidly transformed all forms of goethite to relatively stable Fe oxides. Such fast changes in goethite features could be due to rapid depletion and sorption of bio-released structural Al or sorbed OM onto residual soil components. The rapid temporal changes in MBS parameters and corresponding pore water nominal oxidation state of C values suggest that Fe-C transformations in these upland tropical soils are complex and intricately coupled. A comprehensive understanding of the fate of Fe, Al, and OM (Fe-organic moieties) during redox switches and concurrent changes in pore water chemistry is critical for development of robust transport models in humid tropical soils, which are subject to episodic low-redox events.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/2k51w8rn"><img src="/cms-assets/e7a0c93e31f96541a88bb284724a51642cba8f158ab36f27d5b6f8e6142825d3" alt="Cover page: Fast redox switches lead to rapid transformation of goethite in humid tropical soils: A Mössbauer spectroscopy study"/></a><a href="https://creativecommons.org/licenses/by/4.0/" class="c-scholworks__license"><img class="c-lazyimage" data-src="/images/cc-by-small.svg" alt="Creative Commons 'BY' version 4.0 license"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/5d64r4sk"><div class="c-clientmarkup">Phosphorus fractionation responds to dynamic redox conditions in a humid tropical forest soil</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3ALin%2C%20Yang">Lin, Yang</a>; </li><li><a href="/search/?q=author%3ABhattacharyya%2C%20Amrita">Bhattacharyya, Amrita</a>; </li><li><a href="/search/?q=author%3ACampbell%2C%20Ashley%20N">Campbell, Ashley N</a>; </li><li><a href="/search/?q=author%3ANico%2C%20Peter%20S">Nico, Peter S</a>; </li><li><a href="/search/?q=author%3APett-Ridge%2C%20Jennifer">Pett-Ridge, Jennifer</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3ASilver%2C%20Whendee%20L">Silver, Whendee L</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucb_postprints">UC Berkeley Previously Published Works</a> (<!-- -->2018<!-- -->)</div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/5d64r4sk"><img src="/cms-assets/4de1a17e6e17cb7f57d443bd417d316fafd7c8724779a42d6341e4365402784b" alt="Cover page: Phosphorus fractionation responds to dynamic redox conditions in a humid tropical forest soil"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/6b9885fp"><div class="c-clientmarkup">Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3ABhattacharyya%2C%20Amrita">Bhattacharyya, Amrita</a>; </li><li><a href="/search/?q=author%3ACampbell%2C%20Kate%20M">Campbell, Kate M</a>; </li><li><a href="/search/?q=author%3AKelly%2C%20Shelly%20D">Kelly, Shelly D</a>; </li><li><a href="/search/?q=author%3ARoebbert%2C%20Yvonne">Roebbert, Yvonne</a>; </li><li><a href="/search/?q=author%3AWeyer%2C%20Stefan">Weyer, Stefan</a>; </li><li><a href="/search/?q=author%3ABernier-Latmani%2C%20Rizlan">Bernier-Latmani, Rizlan</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3ABorch%2C%20Thomas">Borch, Thomas</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/lbnl_rw">LBL Publications</a> (<!-- -->2017<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U<sup>(VI)</sup>) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U<sup>(IV)</sup> generated through biologically mediated U<sup>(VI)</sup> reduction is the predominant U<sup>(IV)</sup> species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (∼58-89%) of U is bound as U<sup>(IV)</sup> to C-containing organic functional groups or inorganic carbonate, while uraninite and U<sup>(VI)</sup> represent only minor components. The uranium deposit exhibited mostly <sup>238</sup>U-enriched isotope signatures, consistent with largely biotic reduction of U<sup>(VI)</sup> to U<sup>(IV)</sup>. This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U<sup>(IV)</sup> also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/6b9885fp"><img src="/cms-assets/3bbe91344e66606b710a6ef847658a9884105f536fce889263dafac2b21d943a" alt="Cover page: Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/1tf3p9t7"><div class="c-clientmarkup">Characterizing Natural Organic Matter Transformations by Microbial Communities in Terrestrial Subsurface Ecosystems: A Critical Review of Analytical Techniques and Challenges</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3ACabugao%2C%20Kristine%20Grace%20M">Cabugao, Kristine Grace M</a>; </li><li><a href="/search/?q=author%3AGushgari-Doyle%2C%20Sara">Gushgari-Doyle, Sara</a>; </li><li><a href="/search/?q=author%3AChacon%2C%20Stephany%20S">Chacon, Stephany S</a>; </li><li><a href="/search/?q=author%3AWu%2C%20Xiaoqin">Wu, Xiaoqin</a>; </li><li><a href="/search/?q=author%3ABhattacharyya%2C%20Amrita">Bhattacharyya, Amrita</a>; </li><li><a href="/search/?q=author%3ABouskill%2C%20Nicholas">Bouskill, Nicholas</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AChakraborty%2C%20Romy">Chakraborty, Romy</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucm_postprints">UC Merced Previously Published Works</a> (<!-- -->2022<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">Determining the mechanisms, traits, and pathways that regulate microbial transformation of natural organic matter (NOM) is critical to informing our understanding of the microbial impacts on the global carbon cycle. The capillary fringe of subsurface soils is a highly dynamic environment that remains poorly understood. Characterization of organo-mineral chemistry combined with a nuanced understanding of microbial community composition and function is necessary to understand microbial impacts on NOM speciation in the capillary fringe. We present a critical review of the popular analytical and omics techniques used for characterizing complex carbon transformation by microbial communities and focus on how complementary information obtained from the different techniques enable us to connect chemical signatures with microbial genes and pathways. This holistic approach offers a way forward for the comprehensive characterization of the formation, transformation, and mineralization of terrestrial NOM as influenced by microbial communities.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/1tf3p9t7"><img src="/cms-assets/6564511a3f7c12a7656e9762382bd29f1ae29f4147f9513d641fa6d5b5ac1c45" alt="Cover page: Characterizing Natural Organic Matter Transformations by Microbial Communities in Terrestrial Subsurface Ecosystems: A Critical Review of Analytical Techniques and Challenges"/></a><a href="https://creativecommons.org/licenses/by/4.0/" class="c-scholworks__license"><img class="c-lazyimage" data-src="/images/cc-by-small.svg" alt="Creative Commons 'BY' version 4.0 license"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/6g9186tk"><div class="c-clientmarkup">Production of hydrogen peroxide in an intra-meander hyporheic zone at East River, Colorado</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AYuan%2C%20Xiu">Yuan, Xiu</a>; </li><li><a href="/search/?q=author%3ALiu%2C%20Tongxu">Liu, Tongxu</a>; </li><li><a href="/search/?q=author%3AFox%2C%20Patricia">Fox, Patricia</a>; </li><li><a href="/search/?q=author%3ABhattacharyya%2C%20Amrita">Bhattacharyya, Amrita</a>; </li><li><a href="/search/?q=author%3ADwivedi%2C%20Dipankar">Dwivedi, Dipankar</a>; </li><li><a href="/search/?q=author%3AWilliams%2C%20Kenneth%20H">Williams, Kenneth H</a>; </li><li><a href="/search/?q=author%3ADavis%2C%20James%20A">Davis, James A</a>; </li><li><a href="/search/?q=author%3AWaite%2C%20T%20David">Waite, T David</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3ANico%2C%20Peter%20S">Nico, Peter S</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucb_postprints">UC Berkeley Previously Published Works</a> (<!-- -->2022<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">The traditionally held assumption that photo-dependent processes are the predominant source of H<sub>2</sub>O<sub>2</sub> in natural waters has been recently questioned by an increrasing body of evidence showing the ubiquitiousness of H<sub>2</sub>O<sub>2</sub> in dark water bodies and in groundwater. In this study, we conducted field measurement of H<sub>2</sub>O<sub>2</sub> in an intra-meander hyporheic zone and in surface water at East River, CO. On-site detection using a sensitive chemiluminescence method suggests H<sub>2</sub>O<sub>2</sub> concentrations in groundwater ranging from 6 nM (at the most reduced region) to ~ 80 nM (in a locally oxygen-rich area) along the intra-meander transect with a maxima of 186 nM detected in the surface water in an early afternoon, lagging the maximum solar irradiance by ∼ 1.5 h. Our results suggest that the dark profile of H<sub>2</sub>O<sub>2</sub> in the hyporheic zone is closely correlated to local redox gradients, indicating that interactions between various redox sensitive elements could play an essential role. Due to its transient nature, the widespread presence of H<sub>2</sub>O<sub>2</sub> in the hyporheic zone indicates the existence of a sustained balance between H<sub>2</sub>O<sub>2</sub> production and consumption, which potentially involves a relatively rapid succession of various biogeochemically important processes (such as organic matter turnover, metal cycling and contaminant mobilization). More importantly, this study confirmed the occurrence of reactive oxygen species at a subsurface redox transition zone and further support our understanding of redox boundaries on reactive oxygen species generation and as key locations of biogeochemical activity.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/6g9186tk"><img src="/cms-assets/2e779a4407ad25fb3605bcc4b8360cc4ab4ef6ffa5907aa7db16ce07627e6c72" alt="Cover page: Production of hydrogen peroxide in an intra-meander hyporheic zone at East River, Colorado"/></a><a href="https://creativecommons.org/licenses/by/4.0/" class="c-scholworks__license"><img class="c-lazyimage" data-src="/images/cc-by-small.svg" alt="Creative Commons 'BY' version 4.0 license"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/9ht6z28p"><div class="c-clientmarkup">Redox Fluctuations Control the Coupled Cycling of Iron and Carbon in Tropical Forest Soils</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3ABhattacharyya%2C%20Amrita">Bhattacharyya, Amrita</a>; </li><li><a href="/search/?q=author%3ACampbell%2C%20Ashley%20N">Campbell, Ashley N</a>; </li><li><a href="/search/?q=author%3ATfaily%2C%20Malak%20M">Tfaily, Malak M</a>; </li><li><a href="/search/?q=author%3ALin%2C%20Yang">Lin, Yang</a>; </li><li><a href="/search/?q=author%3AKukkadapu%2C%20Ravi%20K">Kukkadapu, Ravi K</a>; </li><li><a href="/search/?q=author%3ASilver%2C%20Whendee%20L">Silver, Whendee L</a>; </li><li><a href="/search/?q=author%3ANico%2C%20Peter%20S">Nico, Peter S</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3APett-Ridge%2C%20Jennifer">Pett-Ridge, Jennifer</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucb_postprints">UC Berkeley Previously Published Works</a> (<!-- -->2018<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">Oscillating redox conditions are a common feature of humid tropical forest soils, driven by an ample supply and dynamics of reductants, high moisture, microbial oxygen consumption, and finely textured clays that limit diffusion. However, the net result of variable soil redox regimes on iron (Fe) mineral dynamics and associated carbon (C) forms and fluxes is poorly understood in tropical soils. Using a 44-day redox incubation experiment with humid tropical forest soils from Puerto Rico, we examined patterns in Fe and C transformations under four redox regimes: static anoxic, "flux 4-day" (4d oxic, 4d anoxic), "flux 8-day" (8d oxic, 4d anoxic) and static oxic. Prolonged anoxia promoted reductive dissolution of Fe-oxides, and led to an increase in soluble Fe(II) and amorphous Fe oxide pools. Preferential dissolution of the less-crystalline Fe pool was evident immediately following a shift in bulk redox status (oxic to anoxic), and coincided with increased dissolved organic C, presumably due to acidification or direct release of organic matter (OM) from dissolving Fe(III) mineral phases. The average nominal oxidation state of water-soluble C was lowest under persistent anoxic conditions, suggesting that more reduced organic compounds were metabolically unavailable for microbial consumption under reducing conditions. Anoxic soil compounds had high H/C values (and were similar to lignin-like compounds) whereas oxic soil compounds had higher O/C values, akin to tannin- and cellulose-like components. Cumulative respiration derived from native soil organic C was highest in static oxic soils. These results show how Fe minerals and Fe-OM interactions in tropical soils are highly sensitive to variable redox effects. Shifting soil oxygen availability rapidly impacted exchanges between mineral-sorbed and aqueous C pools, increased the dissolved organic C pool under anoxic conditions implying that the periodicity of low-redox events may control the fate of C in wet tropical soils.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/9ht6z28p"><img src="/cms-assets/59da4dc91a434d377bd3225315a1ea6bdee897d0e59a972267d2d02dff9623e2" alt="Cover page: Redox Fluctuations Control the Coupled Cycling of Iron and Carbon in Tropical Forest Soils"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/12d0c439"><div class="c-clientmarkup">Association between soil organic carbon and calcium in acidic grassland soils from Point Reyes National Seashore, CA</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3ARowley%2C%20Mike%20C">Rowley, Mike C</a>; </li><li><a href="/search/?q=author%3ANico%2C%20Peter%20S">Nico, Peter S</a>; </li><li><a href="/search/?q=author%3ABone%2C%20Sharon%20E">Bone, Sharon E</a>; </li><li><a href="/search/?q=author%3AMarcus%2C%20Matthew%20A">Marcus, Matthew A</a>; </li><li><a href="/search/?q=author%3APegoraro%2C%20Elaine%20F">Pegoraro, Elaine F</a>; </li><li><a href="/search/?q=author%3ACastanha%2C%20Cristina">Castanha, Cristina</a>; </li><li><a href="/search/?q=author%3AKang%2C%20Kyounglim">Kang, Kyounglim</a>; </li><li><a href="/search/?q=author%3ABhattacharyya%2C%20Amrita">Bhattacharyya, Amrita</a>; </li><li><a href="/search/?q=author%3ATorn%2C%20Margaret%20S">Torn, Margaret S</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3APe%C3%B1a%2C%20Jasquelin">Peña, Jasquelin</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucb_postprints">UC Berkeley Previously Published Works</a> (<!-- -->2023<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">Organo-mineral and organo-metal associations play an important role in the retention and accumulation of soil organic carbon (SOC). Recent studies have demonstrated a positive correlation between calcium (Ca) and SOC content in a range of soil types. However, most of these studies have focused on soils that contain calcium carbonate (pH > 6). To assess the importance of Ca-SOC associations in lower pH soils, we investigated their physical and chemical interaction in the grassland soils of Point Reyes National Seashore (CA, USA) at a range of spatial scales. Multivariate analyses of our bulk soil characterisation dataset showed a strong correlation between exchangeable Ca (Ca<sub>Exch</sub>; 5-8.3 c.mol<sub>c</sub> kg<sup>-1</sup>) and SOC (0.6-4%) content. Additionally, linear combination fitting (LCF) of bulk Ca K-edge X-ray absorption near-edge structure (XANES) spectra revealed that Ca was predominantly associated with organic carbon across all samples. Scanning transmission X-ray microscopy near-edge X-ray absorption fine structure spectroscopy (STXM C/Ca NEXAFS) showed that Ca had a strong spatial correlation with C at the microscale. The STXM C NEXAFS K-edge spectra indicated that SOC had a higher abundance of aromatic/olefinic and phenolic C functional groups when associated with Ca, relative to C associated with Fe. In regions of high Ca-C association, the STXM C NEXAFS spectra were similar to the spectrum from lignin, with moderate changes in peak intensities and positions that are consistent with oxidative C transformation. Through this association, Ca thus seems to be preferentially associated with plant-like organic matter that has undergone some oxidative transformation, at depth in acidic grassland soils of California. Our study highlights the importance of Ca-SOC complexation in acidic grassland soils and provides a conceptual model of its contribution to SOC preservation, a research area that has previously been unexplored.<h3>Supplementary information</h3>The online version contains supplementary material available at 10.1007/s10533-023-01059-2.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/12d0c439"><img src="/cms-assets/f76ad1f9fe0f5639bfc3e17a01807a6c339f04cdf1093c9924ddbc9d41101675" alt="Cover page: Association between soil organic carbon and calcium in acidic grassland soils from Point Reyes National Seashore, CA"/></a><a href="https://creativecommons.org/licenses/by/4.0/" class="c-scholworks__license"><img class="c-lazyimage" data-src="/images/cc-by-small.svg" alt="Creative Commons 'BY' version 4.0 license"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/4h07s93q"><div class="c-clientmarkup">Conversion of marginal land into switchgrass conditionally accrues soil carbon but reduces methane consumption</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3ABates%2C%20Colin%20T">Bates, Colin T</a>; </li><li><a href="/search/?q=author%3AEscalas%2C%20Arthur">Escalas, Arthur</a>; </li><li><a href="/search/?q=author%3AKuang%2C%20Jialiang">Kuang, Jialiang</a>; </li><li><a href="/search/?q=author%3AHale%2C%20Lauren">Hale, Lauren</a>; </li><li><a href="/search/?q=author%3AWang%2C%20Yuan">Wang, Yuan</a>; </li><li><a href="/search/?q=author%3AHerman%2C%20Don">Herman, Don</a>; </li><li><a href="/search/?q=author%3ANuccio%2C%20Erin%20E">Nuccio, Erin E</a>; </li><li><a href="/search/?q=author%3AWan%2C%20Xiaoling">Wan, Xiaoling</a>; </li><li><a href="/search/?q=author%3ABhattacharyya%2C%20Amrita">Bhattacharyya, Amrita</a>; </li><li><a href="/search/?q=author%3AFu%2C%20Ying">Fu, Ying</a>; </li><li><a href="/search/?q=author%3ATian%2C%20Renmao">Tian, Renmao</a>; </li><li><a href="/search/?q=author%3AWang%2C%20Gangsheng">Wang, Gangsheng</a>; </li><li><a href="/search/?q=author%3ANing%2C%20Daliang">Ning, Daliang</a>; </li><li><a href="/search/?q=author%3AYang%2C%20Yunfeng">Yang, Yunfeng</a>; </li><li><a href="/search/?q=author%3AWu%2C%20Liyou">Wu, Liyou</a>; </li><li><a href="/search/?q=author%3APett-Ridge%2C%20Jennifer">Pett-Ridge, Jennifer</a>; </li><li><a href="/search/?q=author%3ASaha%2C%20Malay">Saha, Malay</a>; </li><li><a href="/search/?q=author%3ACraven%2C%20Kelly">Craven, Kelly</a>; </li><li><a href="/search/?q=author%3ABrodie%2C%20Eoin%20L">Brodie, Eoin L</a>; </li><li><a href="/search/?q=author%3AFirestone%2C%20Mary">Firestone, Mary</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AZhou%2C%20Jizhong">Zhou, Jizhong</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucb_postprints">UC Berkeley Previously Published Works</a> (<!-- -->2022<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">Switchgrass is a deep-rooted perennial native to the US prairies and an attractive feedstock for bioenergy production; when cultivated on marginal soils it can provide a potential mechanism to sequester and accumulate soil carbon (C). However, the impacts of switchgrass establishment on soil biotic/abiotic properties are poorly understood. Additionally, few studies have reported the effects of switchgrass cultivation on marginal lands that have low soil nutrient quality (N/P) or in areas that have experienced high rates of soil erosion. Here, we report a comparative analyses of soil greenhouse gases (GHG), soil chemistry, and microbial communities in two contrasting soil types (with or without switchgrass) over 17 months (1428 soil samples). These soils are highly eroded, 'Dust Bowl' remnant field sites in southern Oklahoma, USA. Our results revealed that soil C significantly increased at the sandy-loam (SL) site, but not at the clay-loam (CL) site. Significantly higher CO<sub>2</sub> flux was observed from the CL switchgrass site, along with reduced microbial diversity (both alpha and beta). Strikingly, methane (CH<sub>4</sub>) consumption was significantly reduced by an estimated 39 and 47% at the SL and CL switchgrass sites, respectively. Together, our results suggest that soil C stocks and GHG fluxes are distinctly different at highly degraded sites when switchgrass has been cultivated, implying that carbon balance considerations should be accounted for to fully evaluate the sustainability of deep-rooted perennial grass cultivation in marginal lands.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/4h07s93q"><img src="/cms-assets/283d03ad18019d1920a3f991fad35b898fb6151320805958249ff021441c20c2" alt="Cover page: Conversion of marginal land into switchgrass conditionally accrues soil carbon but reduces methane consumption"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/36q3d77h"><div class="c-clientmarkup">The path from root input to mineral-associated soil carbon is dictated by habitat-specific microbial traits and soil moisture</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3ASokol%2C%20Noah%20W">Sokol, Noah W</a>; </li><li><a href="/search/?q=author%3AFoley%2C%20Megan%20M">Foley, Megan M</a>; </li><li><a href="/search/?q=author%3ABlazewicz%2C%20Steven%20J">Blazewicz, Steven J</a>; </li><li><a href="/search/?q=author%3ABhattacharyya%2C%20Amrita">Bhattacharyya, Amrita</a>; </li><li><a href="/search/?q=author%3ADiDonato%2C%20Nicole">DiDonato, Nicole</a>; </li><li><a href="/search/?q=author%3AEstera-Molina%2C%20Katerina">Estera-Molina, Katerina</a>; </li><li><a href="/search/?q=author%3AFirestone%2C%20Mary">Firestone, Mary</a>; </li><li><a href="/search/?q=author%3AGreenlon%2C%20Alex">Greenlon, Alex</a>; </li><li><a href="/search/?q=author%3AHungate%2C%20Bruce%20A">Hungate, Bruce A</a>; </li><li><a href="/search/?q=author%3AKimbrel%2C%20Jeffrey">Kimbrel, Jeffrey</a>; </li><li><a href="/search/?q=author%3ALiquet%2C%20Jose">Liquet, Jose</a>; </li><li><a href="/search/?q=author%3ALafler%2C%20Marissa">Lafler, Marissa</a>; </li><li><a href="/search/?q=author%3AMarple%2C%20Maxwell">Marple, Maxwell</a>; </li><li><a href="/search/?q=author%3ANico%2C%20Peter%20S">Nico, Peter S</a>; </li><li><a href="/search/?q=author%3APa%C5%A1a-Toli%C4%87%2C%20Ljiljana">Paša-Tolić, Ljiljana</a>; </li><li><a href="/search/?q=author%3ASlessarev%2C%20Eric">Slessarev, Eric</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3APett-Ridge%2C%20Jennifer">Pett-Ridge, Jennifer</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucb_postprints">UC Berkeley Previously Published Works</a> (<!-- -->2024<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">Soil microorganisms help transform plant inputs into mineral-associated soil organic carbon (SOC) – the largest and slowest-cycling pool of organic carbon on land. However, the microbial traits that influence this process are widely debated. While current theory and biogeochemical models have settled on carbon-use efficiency (CUE) and growth rate as positive predictors of mineral-associated SOC, empirical tests are sparse, with contradictory observations. Using 13C-labeling of an annual grass (Avena barbata) under two moisture regimes, we found that microbial traits associated with formation of 13C-mineral-associated SOC varied by soil habitat, as did active microbial taxa and SOC chemical composition. In the rhizosphere, bacterial-dominated communities with fast growth, high biomass, and high extracellular polymeric substance (EPS) production were positively associated with 13C-mineral-associated SOC. In contrast, the detritusphere held communities dominated by fungi and more filamentous bacteria, and with greater exoenzyme activity; there, 13C-mineral-associated SOC was associated with slower microbial growth and lower microbial biomass. CUE was a negative predictor of 13C-mineral-associated SOC in both habitats. Using 13C-quantitative stable isotope probing, we found that the majority of 13C assimilation in the rhizosphere and detritusphere at week 12 of the experiment was performed by very few bacterial and fungal taxa (3–5% of the total taxa that assimilated 13C). Several complementary chemical analyses (13C-NMR, FTICR-MS, and STXM-NEXAFS) suggested that SOC in the rhizosphere had a more oxidized chemical signature, while SOC in the detritusphere had a less oxidized, more lignin-like chemical signature. Our findings challenge current theory by demonstrating that microbial traits linked with mineral-associated SOC are not universal, but vary with soil habitat and moisture conditions, and are shaped by a small number of active taxa. Emerging SOC models that explicitly reflect these interactions may better predict SOC storage, since climate change causes shifts in soil moisture regimes and the ratio of living versus decaying roots.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/36q3d77h"><img src="/cms-assets/257f6332edf5b573c3b6400bd8416a3c0c36829a8634e8fca603d4fa774f1cc2" alt="Cover page: The path from root input to mineral-associated soil carbon is dictated by habitat-specific microbial traits and soil moisture"/></a><a href="https://creativecommons.org/licenses/by/4.0/" class="c-scholworks__license"><img class="c-lazyimage" data-src="/images/cc-by-small.svg" alt="Creative Commons 'BY' version 4.0 license"/></a></div></section></section></main></form></div><div><div class="c-toplink"><a href="javascript:window.scrollTo(0, 0)">Top</a></div><footer class="c-footer"><nav class="c-footer__nav"><ul><li><a href="/">Home</a></li><li><a href="/aboutEschol">About eScholarship</a></li><li><a href="/campuses">Campus Sites</a></li><li><a href="/ucoapolicies">UC Open Access Policy</a></li><li><a href="/publishing">eScholarship Publishing</a></li><li><a href="https://www.cdlib.org/about/accessibility.html">Accessibility</a></li><li><a href="/privacypolicy">Privacy Statement</a></li><li><a href="/policies">Site Policies</a></li><li><a href="/terms">Terms of Use</a></li><li><a href="/login"><strong>Admin Login</strong></a></li><li><a href="https://help.escholarship.org"><strong>Help</strong></a></li></ul></nav><div class="c-footer__logo"><a href="/"><img class="c-lazyimage" data-src="/images/logo_footer-eschol.svg" alt="eScholarship, University of California"/></a></div><div class="c-footer__copyright">Powered by the<br/><a href="http://www.cdlib.org">California Digital Library</a><br/>Copyright © 2017<br/>The Regents of the University of California</div></footer></div></div></div></div> <script src="/js/vendors~app-bundle-2aefc956e545366a5d4e.js"></script> <script src="/js/app-bundle-4477d7630fb8c6f70662.js"></script> </body> </html>