CINXE.COM
Search results for: Prager kinematic hardening model
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Prager kinematic hardening model</title> <meta name="description" content="Search results for: Prager kinematic hardening model"> <meta name="keywords" content="Prager kinematic hardening model"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Prager kinematic hardening model" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Prager kinematic hardening model"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 17061</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Prager kinematic hardening model</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17061</span> Analysis of Cyclic Elastic-Plastic Loading of Shaft Based on Kinematic Hardening Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isa%20Ahmadi">Isa Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Khamedi"> Ramin Khamedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the elasto-plastic and cyclic torsion of a shaft is studied using a finite element method. The Prager kinematic hardening theory of plasticity with the Ramberg and Osgood stress-strain equation is used to evaluate the cyclic loading behavior of the shaft under the torsional loading. The material of shaft is assumed to follow the non-linear strain hardening property based on the Prager model. The finite element method with C1 continuity is developed and used for solution of the governing equations of the problem. The successive substitution iterative method is used to calculate the distribution of stresses and plastic strains in the shaft due to cyclic loads. The shear stress, effective stress, residual stress and elastic and plastic shear strain distribution are presented in the numerical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title="cyclic loading">cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Prager%20kinematic%20hardening%20model" title=" Prager kinematic hardening model"> Prager kinematic hardening model</a>, <a href="https://publications.waset.org/abstracts/search?q=torsion%20of%20shaft" title=" torsion of shaft"> torsion of shaft</a> </p> <a href="https://publications.waset.org/abstracts/10130/analysis-of-cyclic-elastic-plastic-loading-of-shaft-based-on-kinematic-hardening-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17060</span> Experimental Determination of Aluminum 7075-T6 Parameters Using Stabilized Cycle Tests to Predict Thermal Ratcheting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armin%20Rahmatfam">Armin Rahmatfam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Zehsaz"> Mohammad Zehsaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Farid%20Vakili%20Tahami"> Farid Vakili Tahami</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasser%20Ghassembaglou"> Nasser Ghassembaglou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the thermal ratcheting, kinematic hardening parameters C, γ, isotropic hardening parameters and also k, b, Q combined isotropic/kinematic hardening parameters have been obtained experimentally from the monotonic, strain controlled cyclic tests at room and elevated temperatures of 20°C, 100°C, and 400°C. These parameters are used in nonlinear combined isotropic/kinematic hardening model to predict better description of the loading and reloading cycles in the cyclic indentation as well as thermal ratcheting. For this purpose, three groups of specimens made of Aluminum 7075-T6 have been investigated. After each test and using stable hysteretic cycles, material parameters have been obtained for using in combined nonlinear isotropic/kinematic hardening models. Also the methodology of obtaining the correct kinematic/isotropic hardening parameters is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combined%20hardening%20model" title="combined hardening model">combined hardening model</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematic%20hardening" title=" kinematic hardening"> kinematic hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=isotropic%20hardening" title=" isotropic hardening"> isotropic hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20tests" title=" cyclic tests"> cyclic tests</a> </p> <a href="https://publications.waset.org/abstracts/18280/experimental-determination-of-aluminum-7075-t6-parameters-using-stabilized-cycle-tests-to-predict-thermal-ratcheting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17059</span> A TFETI Domain Decompositon Solver for von Mises Elastoplasticity Model with Combination of Linear Isotropic-Kinematic Hardening</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20Cermak">Martin Cermak</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanislav%20Sysala"> Stanislav Sysala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we present the efficient parallel implementation of elastoplastic problems based on the TFETI (Total Finite Element Tearing and Interconnecting) domain decomposition method. This approach allow us to use parallel solution and compute this nonlinear problem on the supercomputers and decrease the solution time and compute problems with millions of DOFs. In our approach we consider an associated elastoplastic model with the von Mises plastic criterion and the combination of linear isotropic-kinematic hardening law. This model is discretized by the implicit Euler method in time and by the finite element method in space. We consider the system of nonlinear equations with a strongly semismooth and strongly monotone operator. The semismooth Newton method is applied to solve this nonlinear system. Corresponding linearized problems arising in the Newton iterations are solved in parallel by the above mentioned TFETI. The implementation of this problem is realized in our in-house MatSol packages developed in MATLAB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isotropic-kinematic%20hardening" title="isotropic-kinematic hardening">isotropic-kinematic hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=TFETI" title=" TFETI"> TFETI</a>, <a href="https://publications.waset.org/abstracts/search?q=domain%20decomposition" title=" domain decomposition"> domain decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20solution" title=" parallel solution"> parallel solution</a> </p> <a href="https://publications.waset.org/abstracts/20197/a-tfeti-domain-decompositon-solver-for-von-mises-elastoplasticity-model-with-combination-of-linear-isotropic-kinematic-hardening" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17058</span> Kinematic Hardening Parameters Identification with Respect to Objective Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marina%20Franulovic">Marina Franulovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Basan"> Robert Basan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bozidar%20Krizan"> Bozidar Krizan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Constitutive modelling of material behaviour is becoming increasingly important in prediction of possible failures in highly loaded engineering components, and consequently, optimization of their design. In order to account for large number of phenomena that occur in the material during operation, such as kinematic hardening effect in low cycle fatigue behaviour of steels, complex nonlinear material models are used ever more frequently, despite of the complexity of determination of their parameters. As a method for the determination of these parameters, genetic algorithm is good choice because of its capability to provide very good approximation of the solution in systems with large number of unknown variables. For the application of genetic algorithm to parameter identification, inverse analysis must be primarily defined. It is used as a tool to fine-tune calculated stress-strain values with experimental ones. In order to choose proper objective function for inverse analysis among already existent and newly developed functions, the research is performed to investigate its influence on material behaviour modelling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematic%20hardening" title=" kinematic hardening"> kinematic hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20model" title=" material model"> material model</a>, <a href="https://publications.waset.org/abstracts/search?q=objective%20function" title=" objective function"> objective function</a> </p> <a href="https://publications.waset.org/abstracts/3561/kinematic-hardening-parameters-identification-with-respect-to-objective-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17057</span> New Dynamic Constitutive Model for OFHC Copper Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin%20Sung%20Kim">Jin Sung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoon%20Huh"> Hoon Huh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The material properties of OFHC copper film was investigated with the High-Speed Material Micro Testing Machine (HSMMTM) at the high strain rates. The rate-dependent stress-strain curves from the experiment and the Johnson-Cook curve fitting showed large discrepancies as the plastic strain increases since the constitutive model implies no rate-dependent strain hardening effect. A new constitutive model was proposed in consideration of rate-dependent strain hardening effect. The strain rate hardening term in the new constitutive model consists of the strain rate sensitivity coefficients of the yield strength and strain hardening. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rate%20dependent%20material%20properties" title="rate dependent material properties">rate dependent material properties</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20constitutive%20model" title=" dynamic constitutive model"> dynamic constitutive model</a>, <a href="https://publications.waset.org/abstracts/search?q=OFHC%20copper%20film" title=" OFHC copper film"> OFHC copper film</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20rate" title=" strain rate"> strain rate</a> </p> <a href="https://publications.waset.org/abstracts/3721/new-dynamic-constitutive-model-for-ofhc-copper-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17056</span> Prediction of the Behavior of 304L Stainless Steel under Uniaxial and Biaxial Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aboussalih%20Amira">Aboussalih Amira</a>, <a href="https://publications.waset.org/abstracts/search?q=Zarza%20Tahar"> Zarza Tahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Fedaoui%20Kamel"> Fedaoui Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Hammoudi%20Saleh"> Hammoudi Saleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work focuses on the simulation of the prediction of the behaviour of austenitic stainless steel (SS) 304L under complex loading in stress and imposed strain. The Chaboche model is a cable to describe the response of the material by the combination of two isotropic and nonlinear kinematic work hardening, the model is implemented in the ZébuLon computer code. First, we represent the evolution of the axial stress as a function of the plastic strain through hysteresis loops revealing a hardening behaviour caused by the increase in stress by stress in the direction of tension/compression. In a second step, the study of the ratcheting phenomenon takes a key place in this work by the appearance of the average stress. In addition to the solicitation of the material in the biaxial direction in traction / torsion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage" title="damage">damage</a>, <a href="https://publications.waset.org/abstracts/search?q=304L" title=" 304L"> 304L</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratcheting" title=" Ratcheting"> Ratcheting</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20strain" title=" plastic strain"> plastic strain</a> </p> <a href="https://publications.waset.org/abstracts/181848/prediction-of-the-behavior-of-304l-stainless-steel-under-uniaxial-and-biaxial-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17055</span> Topology Optimization of Composite Structures with Material Nonlinearity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mengxiao%20Li">Mengxiao Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Johnson%20Zhang"> Johnson Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, topology optimization technique is widely used to define the layout design of structures that are presented as truss-like topologies. However, due to the difficulty in combining optimization technique with more realistic material models where their nonlinear properties should be considered, the achieved optimized topologies are commonly unable to apply straight towards the practical design problems. This study presented an optimization procedure of composite structures where different elastic stiffness, yield criteria, and hardening models are assumed for the candidate materials. From the results, it can be concluded that a more explicit modeling has the significant influence on the resulting topologies. Also, the isotropic or kinematic hardening is important for elastoplastic structural optimization design. The capability of the proposed optimization procedure is shown through several cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=topology%20optimization" title="topology optimization">topology optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20composition" title=" material composition"> material composition</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20%20modeling" title=" nonlinear modeling"> nonlinear modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=hardening%20rules" title=" hardening rules"> hardening rules</a> </p> <a href="https://publications.waset.org/abstracts/63520/topology-optimization-of-composite-structures-with-material-nonlinearity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17054</span> Design and Analysis of Flexible Slider Crank Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thanh-Phong%20Dao">Thanh-Phong Dao</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyh-Chour%20Huang"> Shyh-Chour Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the optimal design and formulation of a kinematic model of a flexible slider crank mechanism. The objective of the proposed innovative design is to take extra advantage of the compliant mechanism and maximize the fatigue life by applying the Taguchi method. A formulated kinematic model is developed using a Pseudo-Rigid-Body Model (PRBM). By means of mathematic models, the kinematic behaviors of the flexible slider crank mechanism are captured using MATLAB software. Finite Element Analysis (FEA) is used to show the stress distribution. The results show that the optimal shape of the flexible hinge includes a force of 8.5N, a width of 9mm and a thickness of 1.1mm. Analysis of variance shows that the thickness of the proposed hinge is the most significant parameter, with an F test of 15.5. Finally, a prototype is manufactured to prepare for testing the kinematic and dynamic behaviors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinematic%20behavior" title="kinematic behavior">kinematic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20life" title=" fatigue life"> fatigue life</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo-rigid-body%20model" title=" pseudo-rigid-body model"> pseudo-rigid-body model</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20slider%20crank%20mechanism" title=" flexible slider crank mechanism"> flexible slider crank mechanism</a> </p> <a href="https://publications.waset.org/abstracts/4242/design-and-analysis-of-flexible-slider-crank-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17053</span> Simulation of Uniaxial Ratcheting Behaviors of SA508-3 Steel at Elevated Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun%20Tian">Jun Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Yang"> Yu Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Liping%20Zhang"> Liping Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qianhua%20Kan"> Qianhua Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental results show that SA 508-3 steel exhibits temperature dependent cyclic softening characteristic and obvious ratcheting behaviors, and dynamic strain age was observed at temperature range of 200 ºC to 350 ºC. Based on these observations, a temperature dependent cyclic plastic constitutive model was proposed by introducing the nonlinear cyclic softening and kinematic hardening rules, and the dynamic strain age was also considered into the constitutive model. Comparisons between experiments and simulations were carried out to validate the proposed model at elevated temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constitutive%20model" title="constitutive model">constitutive model</a>, <a href="https://publications.waset.org/abstracts/search?q=elevated%20temperature" title=" elevated temperature"> elevated temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=ratcheting" title=" ratcheting"> ratcheting</a>, <a href="https://publications.waset.org/abstracts/search?q=SA%20508-3" title=" SA 508-3"> SA 508-3</a> </p> <a href="https://publications.waset.org/abstracts/53469/simulation-of-uniaxial-ratcheting-behaviors-of-sa508-3-steel-at-elevated-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17052</span> Precipitation and Age Hardening in Al-Mg-Si-(Cu) Alloys for Automotive Body Sheet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahar%20Abid">Tahar Abid</a>, <a href="https://publications.waset.org/abstracts/search?q=Haoues%20Ghouss"> Haoues Ghouss</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhamid%20Boubertakh"> Abdelhamid Boubertakh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This present work is focused on the hardening precipitation in two AlMgSi(Cu) automotive body sheets. The effect of pre-aging, aging treatment and 0.10 wt % copper addition on the hardening response was investigated using scanning calorimetry (DSC), transmission electron microscopy (TEM), and Vickers microhardness measurements (Hv). The results reveal the apparition of α-AlFeSi, α-AlFe(Mn)Si type precipitates frequently present and witch remain stable at high temperature in Al-Mg-Si alloys. Indeed, the hardening response in both sheets is certainly due to the predominance of very fine typical phases β' and β'' as rods and needles developed during aging with and without pre-aging. The effect of pre ageing just after homogenization and quenching is to correct the undesirable effect of aging at ambient temperature by making faster alloy hardening during artificial aging.The addition of 0.10 wt % copper has allowed to refine and to enhance the precipitation hardening after quenching. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AlMgSi%20alloys" title="AlMgSi alloys">AlMgSi alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation" title=" precipitation"> precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=hardening" title=" hardening"> hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=activation%20energy" title=" activation energy"> activation energy</a> </p> <a href="https://publications.waset.org/abstracts/166964/precipitation-and-age-hardening-in-al-mg-si-cu-alloys-for-automotive-body-sheet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17051</span> Modeling and Shape Prediction for Elastic Kinematic Chains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiun%20Jeon">Jiun Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Byung-Ju%20Yi"> Byung-Ju Yi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates modeling and shape prediction of elastic kinematic chains such as colonoscopy. 2D and 3D models of elastic kinematic chains are suggested and their behaviors are demonstrated through simulation. To corroborate the effectiveness of those models, experimental work is performed using a magnetic sensor system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20kinematic%20chain" title="elastic kinematic chain">elastic kinematic chain</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20prediction" title=" shape prediction"> shape prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=colonoscopy" title=" colonoscopy"> colonoscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a> </p> <a href="https://publications.waset.org/abstracts/4177/modeling-and-shape-prediction-for-elastic-kinematic-chains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">605</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17050</span> Soil Parameters Identification around PMT Test by Inverse Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Toumi">I. Toumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Abed"> Y. Abed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bouafia"> A. Bouafia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a methodology for identifying the cohesive soil parameters that takes into account different constitutive equations. The procedure, applied to identify the parameters of generalized Prager model associated to the Drucker & Prager failure criterion from a pressuremeter expansion curve, is based on an inverse analysis approach, which consists of minimizing the function representing the difference between the experimental curve and the simulated curve using a simplex algorithm. The model response on pressuremeter path and its identification from experimental data lead to the determination of the friction angle, the cohesion and the Young modulus. Some parameters effects on the simulated curves and stresses path around pressuremeter probe are presented. Comparisons between the parameters determined with the proposed method and those obtained by other means are also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cohesive%20soils" title="cohesive soils">cohesive soils</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity%20expansion" title=" cavity expansion"> cavity expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=pressuremeter%20test" title=" pressuremeter test"> pressuremeter test</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20procedure" title=" optimization procedure"> optimization procedure</a>, <a href="https://publications.waset.org/abstracts/search?q=simplex%20algorithm" title=" simplex algorithm"> simplex algorithm</a> </p> <a href="https://publications.waset.org/abstracts/49462/soil-parameters-identification-around-pmt-test-by-inverse-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17049</span> Modeling and Simulation of the Tripod Gait of a Hexapod Robot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=El%20Hansali%20Hasnaa">El Hansali Hasnaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Bennani%20Mohammed"> Bennani Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hexapod legged robot’s missions, particularly in irregular and dangerous areas, require high stability and high precision. In this paper, we consider the rectangular architecture body of legged robots with six legs distributed symmetrically along two sides, each leg contains three degrees of freedom for greater mobility. The aim of this work is planning tripod gait trajectory, based on the computing of the kinematic model to determine the joint variables in the lifting and the propelling phases. For this, appropriate coordinate frames are attached to the body and legs in order to obtain clear representation and efficient generation of the system equations. A simulation in MATLAB software platform is developed to confirm the kinematic model and various trajectories to the tripod gait adopted by the hexapod robot in its locomotion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hexapod%20legged%20robot" title="hexapod legged robot">hexapod legged robot</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20kinematic%20model" title=" inverse kinematic model"> inverse kinematic model</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20in%20MATLAB" title=" simulation in MATLAB"> simulation in MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=tripod%20gait" title=" tripod gait"> tripod gait</a> </p> <a href="https://publications.waset.org/abstracts/66261/modeling-and-simulation-of-the-tripod-gait-of-a-hexapod-robot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17048</span> Modeling of Anisotropic Hardening Based on Crystal Plasticity Theory and Virtual Experiments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bekim%20Berisha">Bekim Berisha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Hirsiger"> Sebastian Hirsiger</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Hora"> Pavel Hora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advanced material models involving several sets of model parameters require a big experimental effort. As models are getting more and more complex like e.g. the so called “Homogeneous Anisotropic Hardening - HAH” model for description of the yielding behavior in the 2D/3D stress space, the number and complexity of the required experiments are also increasing continuously. In the context of sheet metal forming, these requirements are even more pronounced, because of the anisotropic behavior or sheet materials. In addition, some of the experiments are very difficult to perform e.g. the plane stress biaxial compression test. Accordingly, tensile tests in at least three directions, biaxial tests and tension-compression or shear-reverse shear experiments are performed to determine the parameters of the macroscopic models. Therefore, determination of the macroscopic model parameters based on virtual experiments is a very promising strategy to overcome these difficulties. For this purpose, in the framework of multiscale material modeling, a dislocation density based crystal plasticity model in combination with a FFT-based spectral solver is applied to perform virtual experiments. Modeling of the plastic behavior of metals based on crystal plasticity theory is a well-established methodology. However, in general, the computation time is very high and therefore, the computations are restricted to simplified microstructures as well as simple polycrystal models. In this study, a dislocation density based crystal plasticity model – including an implementation of the backstress – is used in a spectral solver framework to generate virtual experiments for three deep drawing materials, DC05-steel, AA6111-T4 and AA4045 aluminum alloys. For this purpose, uniaxial as well as multiaxial loading cases, including various pre-strain histories, has been computed and validated with real experiments. These investigations showed that crystal plasticity modeling in the framework of Representative Volume Elements (RVEs) can be used to replace most of the expensive real experiments. Further, model parameters of advanced macroscopic models like the HAH model can be determined from virtual experiments, even for multiaxial deformation histories. It was also found that crystal plasticity modeling can be used to model anisotropic hardening more accurately by considering the backstress, similar to well-established macroscopic kinematic hardening models. It can be concluded that an efficient coupling of crystal plasticity models and the spectral solver leads to a significant reduction of the amount of real experiments needed to calibrate macroscopic models. This advantage leads also to a significant reduction of computational effort needed for the optimization of metal forming process. Further, due to the time efficient spectral solver used in the computation of the RVE models, detailed modeling of the microstructure are possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20hardening" title="anisotropic hardening">anisotropic hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=crystal%20plasticity" title=" crystal plasticity"> crystal plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20structure" title=" micro structure"> micro structure</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20solver" title=" spectral solver"> spectral solver</a> </p> <a href="https://publications.waset.org/abstracts/91272/modeling-of-anisotropic-hardening-based-on-crystal-plasticity-theory-and-virtual-experiments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17047</span> OmniDrive Model of a Holonomic Mobile Robot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Altartouri">Hussein Altartouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the kinematic and kinetic models of an omnidirectional holonomic mobile robot is presented. The kinematic and kinetic models form the OmniDrive model. Therefore, a mathematical model for the robot equipped with three- omnidirectional wheels is derived. This model which takes into consideration the kinematics and kinetics of the robot, is developed to state space representation. Relative analysis of the velocities and displacements is used for the kinematics of the robot. Lagrange’s approach is considered in this study for deriving the equation of motion. The drive train and the mechanical assembly only of the Festo Robotino® is considered in this model. Mainly the model is developed for motion control. Furthermore, the model can be used for simulation purposes in different virtual environments not only Robotino® View. Further use of the model is in the mechatronics research fields with the aim of teaching and learning the advanced control theories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20robot" title="mobile robot">mobile robot</a>, <a href="https://publications.waset.org/abstracts/search?q=omni-direction%20wheel" title=" omni-direction wheel"> omni-direction wheel</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=holonomic%20mobile%20robot" title=" holonomic mobile robot"> holonomic mobile robot</a> </p> <a href="https://publications.waset.org/abstracts/11200/omnidrive-model-of-a-holonomic-mobile-robot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">609</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17046</span> Simulation of Hamming Coding and Decoding for Microcontroller Radiation Hardening</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rehab%20I.%20Abdul%20Rahman">Rehab I. Abdul Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazhar%20B.%20Tayel"> Mazhar B. Tayel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a method of hardening the 8051 microcontroller, that able to assure reliable operation in the presence of bit flips caused by radiation. Aiming at avoiding such faults in the 8051 microcontroller, Hamming code protection was used in its SRAM memory and registers. A VHDL code and its simulation have been used for this hamming code protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiation" title="radiation">radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=hardening" title=" hardening"> hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=bitflip" title=" bitflip"> bitflip</a>, <a href="https://publications.waset.org/abstracts/search?q=hamming" title=" hamming"> hamming</a> </p> <a href="https://publications.waset.org/abstracts/20963/simulation-of-hamming-coding-and-decoding-for-microcontroller-radiation-hardening" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17045</span> A Crystal Plasticity Approach to Model Dynamic Strain Aging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burak%20Bal">Burak Bal</a>, <a href="https://publications.waset.org/abstracts/search?q=Demircan%20Canadinc"> Demircan Canadinc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic strain aging (DSA), resulting from the reorientation of C-Mn clusters in the core of dislocations, can provide a strain hardening mechanism. In addition, in Hadfield steel, negative strain rate sensitivity is observed due to the DSA. In our study, we incorporated dynamic strain aging onto crystal plasticity computations to predict the local instabilities and corresponding negative strain rate sensitivity. Specifically, the material response of Hadfield steel was obtained from monotonic and strain-rate jump experiments under tensile loading. The strain rate range was adjusted from 10⁻⁴ to 10⁻¹s ⁻¹. The crystal plasticity modeling of the material response was carried out based on Voce-type hardening law and corresponding Voce hardening parameters were determined. The solute pinning effect of carbon atom was incorporated to crystal plasticity simulations at microscale level by computing the shear stress contribution imposed on an arrested dislocation by carbon atom. After crystal plasticity simulations with modifying hardening rule, which takes into account the contribution of DSA, it was seen that the model successfully predicts both the role of DSA and corresponding strain rate sensitivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crystal%20plasticity" title="crystal plasticity">crystal plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20strain%20aging" title=" dynamic strain aging"> dynamic strain aging</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadfield%20steel" title=" Hadfield steel"> Hadfield steel</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20strain%20rate%20sensitivity" title=" negative strain rate sensitivity"> negative strain rate sensitivity</a> </p> <a href="https://publications.waset.org/abstracts/76918/a-crystal-plasticity-approach-to-model-dynamic-strain-aging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17044</span> A Leader-Follower Kinematic-Based Control System for a Cable-Driven Hyper-Redundant Manipulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abolfazl%20Zaraki">Abolfazl Zaraki</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshikatsu%20Hayashi"> Yoshikatsu Hayashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Harry%20Thorpe"> Harry Thorpe</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Strong"> Vincent Strong</a>, <a href="https://publications.waset.org/abstracts/search?q=Gisle-Andre%20Larsen"> Gisle-Andre Larsen</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Holderbaum"> William Holderbaum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thanks to the high maneuverability of the cable-driven hyper-redundant manipulators (HRMs), this class of robots has shown a superior capability in highly confined and unstructured space applications. Although the large number of degrees of freedom (DOF) of HRMs enhances the motion flexibility and the robot’s reachability range, it highly increases the complexity of the kinematic configuration which makes the kinematic control problem very challenging or even impossible to solve. This paper presents our current progress achieved on the development of a kinematic-based leader-follower control system which is designed to control not only the robot’s body posture but also to control the trajectory of the robot’s movement in a semi-autonomous manner (the human operator is retained in the robot’s control loop). To obtain the forward kinematic model, the coordinate frames are established by the classical Denavit–Hartenburg (D-H) convention for a hyper-redundant serial manipulator which has a controlled cables-driven mechanism. To solve the inverse kinematics of the robot, unlike the conventional methods, a leader-follower mechanism, based on the sequential inverse kinematic, is followed. Using this mechanism, the inverse kinematic problem is solved for all sequential joints starting from the head joint to the base joint of the robot. To verify the kinematic design and simulate the robot motion, the MATLAB robotic toolbox is used. The simulation result demonstrated the promising capability of the proposed leader-follower control system in controlling the robot motion and trajectory in our confined space application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hyper-redundant%20robots" title="hyper-redundant robots">hyper-redundant robots</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematic%20analysis" title=" kinematic analysis"> kinematic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-autonomous%20control" title=" semi-autonomous control"> semi-autonomous control</a>, <a href="https://publications.waset.org/abstracts/search?q=serial%20manipulators" title=" serial manipulators"> serial manipulators</a> </p> <a href="https://publications.waset.org/abstracts/109499/a-leader-follower-kinematic-based-control-system-for-a-cable-driven-hyper-redundant-manipulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17043</span> An Advanced Exponential Model for Seismic Isolators Having Hardening or Softening Behavior at Large Displacements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicol%C3%B2%20Vaiana">Nicolò Vaiana</a>, <a href="https://publications.waset.org/abstracts/search?q=Giorgio%20Serino"> Giorgio Serino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an advanced Nonlinear Exponential Model (NEM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement in the relatively large displacements range and a hardening or softening behavior at large displacements, is presented. The mathematical model is validated by comparing the experimental force-displacement hysteresis loops obtained during cyclic tests, conducted on a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted analytically. Good agreement between the experimental and simulated results shows that the proposed model can be an effective numerical tool to predict the force-displacement relationship of seismic isolation devices within the large displacements range. Compared to the widely used Bouc-Wen model, unable to simulate the response of seismic isolators at large displacements, the proposed one allows to avoid the numerical solution of a first order nonlinear ordinary differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort. Furthermore, the proposed model can simulate the smooth transition of the hysteresis loops from small to large displacements by adopting only one set of five parameters determined from the experimental hysteresis loops having the largest amplitude. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base%20isolation" title="base isolation">base isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=hardening%20behavior" title=" hardening behavior"> hardening behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20exponential%20model" title=" nonlinear exponential model"> nonlinear exponential model</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20isolators" title=" seismic isolators"> seismic isolators</a>, <a href="https://publications.waset.org/abstracts/search?q=softening%20behavior" title=" softening behavior"> softening behavior</a> </p> <a href="https://publications.waset.org/abstracts/59055/an-advanced-exponential-model-for-seismic-isolators-having-hardening-or-softening-behavior-at-large-displacements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17042</span> Modeling the Road Pavement Dynamic Response Due to Heavy Vehicles Loadings and Kinematic Excitations General Asymmetries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Josua%20K.%20Junias">Josua K. Junias</a>, <a href="https://publications.waset.org/abstracts/search?q=Fillemon%20N.%20Nangolo"> Fillemon N. Nangolo</a>, <a href="https://publications.waset.org/abstracts/search?q=Petrina%20T.%20Johaness"> Petrina T. Johaness</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The deterioration of pavement can lead to the formation of potholes, which cause the wheels of a vehicle to experience unusual and uneven movement. In addition, improper loading practices of heavy vehicles can result in dynamic loading of the pavement due to the vehicle's response to the irregular movement caused by the potholes. Previous studies have only focused on the effects of either the road's uneven surface or the asymmetrical loading of the vehicle, but not both. This study aimed to model the pavement's dynamic response to heavy vehicles under different loading configurations and wheel movements. A sample of 225 cases with symmetrical and asymmetrical loading and kinematic movements was used, and 27 validated 3D pavement-vehicle interactive models were developed using SIMWISE 4D. The study found that the type of kinematic movement experienced by the heavy vehicle affects the pavement's dynamic loading, with eccentrically loaded, asymmetrically kinematic heavy vehicles having a statistically significant impact. The study also suggests that the mass of the vehicle's suspension system plays a role in the pavement's dynamic loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eccentricities" title="eccentricities">eccentricities</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20dynamic%20loading" title=" pavement dynamic loading"> pavement dynamic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20displacement%20dynamic%20response" title=" vertical displacement dynamic response"> vertical displacement dynamic response</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20vehicles" title=" heavy vehicles"> heavy vehicles</a> </p> <a href="https://publications.waset.org/abstracts/166750/modeling-the-road-pavement-dynamic-response-due-to-heavy-vehicles-loadings-and-kinematic-excitations-general-asymmetries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17041</span> Bake Hardening Behavior of Ultrafine Grained and Nano-Grained AA6061 Aluminum Alloy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Alihosseini">Hamid Alihosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Dehghani"> Kamran Dehghani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effects of grain size of AA6061 aluminum on the bake hardening have been investigated. The grains of sample sheets refined by applying 4, 8, and 12 passes of ECAP and their microstructures and mechanical properties were investigated. EBSD and TEM studies of the sheets showed grain refinement, and the EBSD micrograph of the alloy ECAPed for 12 passes showed nano-grained (NG) ∼95nm in size. Then, the bake hardenability of processed sheet was compared by pre-straining to 6% followed by baking at 200°C for 20 min. The results show that in case of baking at 200°C, there was an increase about 108%, 93%, and 72% in the bake hardening for 12, 8, and 4 passes, respectively. The maximum in bake hardenability (120 MPa) and final yield stress (583 MPa) were pertaining to the ultra-fine grain specimen pre-strained 6% followed by baking at 200◦C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bake%20hardening" title="bake hardening">bake hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafine%20grain" title=" ultrafine grain"> ultrafine grain</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20grain" title=" nano grain"> nano grain</a>, <a href="https://publications.waset.org/abstracts/search?q=AA6061%20aluminum" title=" AA6061 aluminum"> AA6061 aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a> </p> <a href="https://publications.waset.org/abstracts/33963/bake-hardening-behavior-of-ultrafine-grained-and-nano-grained-aa6061-aluminum-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17040</span> Derivation of Generic Kinematic Equations of Above-Knee Prosthetic Legs Using DH Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serdar%20Kucuk">Serdar Kucuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Redwan%20Alqasemi"> Redwan Alqasemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the generic kinematic equations of 1-Degrees-Of-Freedom (DOF), 2-DOF, and 3-DOF above-knee prosthetic legs are derived using the mathematical tools used in science of robotics. As it is known, since the human leg performs rotational motions in the knee joint and foot-ankle joint, the axial rotational motions in the above-knee prosthetic legs are performed by using one or more revolute joints. When deriving the kinematic equations of the 1-DOF, 2-DOF, and 3-DOF above-knee prosthetic legs, the foot-ankle is treated as if there were a fixed non-rotating joint, a revolute joint, and a universal joint, respectively. The kinematic equations of the prosthetic legs presented in this article are obtained using DH method. The main advantages of this method are the easy physical interpretation of robot mechanisms and the use of 4x4 homogeneous transformation matrices, which are widely used in the literature. It is thought that the equations presented in this article contribute positively to the design, control, simulation and hence easy production of above-knee prosthetic legs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robotic%20above-knee%20prosthetic%20legs" title="robotic above-knee prosthetic legs">robotic above-knee prosthetic legs</a>, <a href="https://publications.waset.org/abstracts/search?q=generic%20kinematic%20equations" title=" generic kinematic equations"> generic kinematic equations</a>, <a href="https://publications.waset.org/abstracts/search?q=revolute%20and%20universal%20joints" title=" revolute and universal joints"> revolute and universal joints</a>, <a href="https://publications.waset.org/abstracts/search?q=DH%20method" title=" DH method"> DH method</a> </p> <a href="https://publications.waset.org/abstracts/195454/derivation-of-generic-kinematic-equations-of-above-knee-prosthetic-legs-using-dh-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/195454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17039</span> Improvement of Wear Resistance of 356 Aluminum Alloy by High Energy Electron Beam Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Farnush">M. Farnush</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is concerned with the microstructural analysis and improvement of wear resistance of 356 aluminum alloy by a high energy electron beam. Shock hardening on material by high energy electron beam improved wear resistance. Particularly, in the surface of material by shock hardening, the wear resistance was greatly enhanced to 29% higher than that of the 356 aluminum alloy substrate. These findings suggested that surface shock hardening using high energy electron beam irradiation was economical and useful for the development of surface shock hardening with improved wear resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al356%20alloy" title="Al356 alloy">Al356 alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=HEEB" title=" HEEB"> HEEB</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20resistance" title=" wear resistance"> wear resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=frictional%20characteristics" title=" frictional characteristics"> frictional characteristics</a> </p> <a href="https://publications.waset.org/abstracts/47963/improvement-of-wear-resistance-of-356-aluminum-alloy-by-high-energy-electron-beam-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17038</span> Substitution of Natural Aggregates by Crushed Concrete Waste in Concrete Products Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jozef%20Junak">Jozef Junak</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadezda%20Stevulova"> Nadezda Stevulova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is aimed to the use of different types of industrial wastes in concrete production. From examined waste (crushed concrete waste) our tested concrete samples with dimension 150 mm were prepared. In these samples, fractions 4/8 mm and 8/16 mm by recycled concrete aggregate with a range of variation from 0 to 100% were replaced. Experiment samples were tested for compressive strength after 2, 7, 14 and 28 days of hardening. From obtained results it is evident that all samples prepared with washed recycled concrete aggregates met the requirement of standard for compressive strength of 20 MPa already after 14 days of hardening. Sample prepared with recycled concrete aggregates (4/8 mm: 100% and 8/16 mm: 60%) reached 101% of compressive strength value (34.7 MPa) after 28 days of hardening in comparison with the reference sample (34.4 MPa). The lowest strength after 28 days of hardening (27.42 MPa) was obtained for sample consisting of recycled concrete in proportion of 40% for 4/8 fraction and 100% for 8/16 fraction of recycled concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete%20aggregate" title="recycled concrete aggregate">recycled concrete aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=re-use" title=" re-use"> re-use</a>, <a href="https://publications.waset.org/abstracts/search?q=workability" title=" workability"> workability</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/28665/substitution-of-natural-aggregates-by-crushed-concrete-waste-in-concrete-products-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17037</span> Adaptive Motion Planning for 6-DOF Robots Based on Trigonometric Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jincan%20Li">Jincan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingyu%20Gao"> Mingyu Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiwei%20He"> Zhiwei He</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuxiang%20Yang"> Yuxiang Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongfei%20Yu"> Zhongfei Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuanyuan%20Liu"> Yuanyuan Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building an appropriate motion model is crucial for trajectory planning of robots and determines the operational quality directly. An adaptive acceleration and deceleration motion planning based on trigonometric functions for the end-effector of 6-DOF robots in Cartesian coordinate system is proposed in this paper. This method not only achieves the smooth translation motion and rotation motion by constructing a continuous jerk model, but also automatically adjusts the parameters of trigonometric functions according to the variable inputs and the kinematic constraints. The results of computer simulation show that this method is correct and effective to achieve the adaptive motion planning for linear trajectories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinematic%20constraints" title="kinematic constraints">kinematic constraints</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20planning" title=" motion planning"> motion planning</a>, <a href="https://publications.waset.org/abstracts/search?q=trigonometric%20function" title=" trigonometric function"> trigonometric function</a>, <a href="https://publications.waset.org/abstracts/search?q=6-DOF%20robots" title=" 6-DOF robots"> 6-DOF robots</a> </p> <a href="https://publications.waset.org/abstracts/87082/adaptive-motion-planning-for-6-dof-robots-based-on-trigonometric-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17036</span> Destructive and Nondestructive Characterization of Advanced High Strength Steels DP1000/1200</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carla%20M.%20Machado">Carla M. Machado</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20A.%20Silva"> André A. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Armando%20Bastos"> Armando Bastos</a>, <a href="https://publications.waset.org/abstracts/search?q=Telmo%20G.%20Santos"> Telmo G. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Pamies%20Teixeira"> J. Pamies Teixeira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advanced high-strength steels (AHSS) are increasingly being used in automotive components. The use of AHSS sheets plays an important role in reducing weight, as well as increasing the resistance to impact in vehicle components. However, the large-scale use of these sheets becomes more difficult due to the limitations during the forming process. Such limitations are due to the elastically driven change of shape of a metal sheet during unloading and following forming, known as the springback effect. As the magnitude of the springback tends to increase with the strength of the material, it is among the most worrisome problems in the use of AHSS steels. The prediction of strain hardening, especially under non-proportional loading conditions, is very limited due to the lack of constitutive models and mainly due to very limited experimental tests. It is very clear from the literature that in experimental terms there is not much work to evaluate deformation behavior under real conditions, which implies a very limited and scarce development of mathematical models for these conditions. The Bauschinger effect is also fundamental to the difference between kinematic and isotropic hardening models used to predict springback in sheet metal forming. It is of major importance to deepen the phenomenological knowledge of the mechanical and microstructural behavior of the materials, in order to be able to reproduce with high fidelity the behavior of extension of the materials by means of computational simulation. For this, a multi phenomenological analysis and characterization are necessary to understand the various aspects involved in plastic deformation, namely the stress-strain relations and also the variations of electrical conductivity and magnetic permeability associated with the metallurgical changes due to plastic deformation. Aiming a complete mechanical-microstructural characterization, uniaxial tensile tests involving successive cycles of loading and unloading were performed, as well as biaxial tests such as the Erichsen test. Also, nondestructive evaluation comprising eddy currents to verify microstructural changes due to plastic deformation and ultrasonic tests to evaluate the local variations of thickness were made. The material parameters for the stable yield function and the monotonic strain hardening were obtained using uniaxial tension tests in different material directions and balanced biaxial tests. Both the decrease of the modulus of elasticity and Bauschinger effect were determined through the load-unload tensile tests. By means of the eddy currents tests, it was possible to verify changes in the magnetic permeability of the material according to the different plastically deformed areas. The ultrasonic tests were an important aid to quantify the local plastic extension. With these data, it is possible to parameterize the different models of kinematic hardening to better approximate the results obtained by simulation with the experimental results, which are fundamental for the springback prediction of the stamped parts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20high%20strength%20steel" title="advanced high strength steel">advanced high strength steel</a>, <a href="https://publications.waset.org/abstracts/search?q=Bauschinger%20effect" title=" Bauschinger effect"> Bauschinger effect</a>, <a href="https://publications.waset.org/abstracts/search?q=sheet%20metal%20forming" title=" sheet metal forming"> sheet metal forming</a>, <a href="https://publications.waset.org/abstracts/search?q=springback" title=" springback"> springback</a> </p> <a href="https://publications.waset.org/abstracts/65694/destructive-and-nondestructive-characterization-of-advanced-high-strength-steels-dp10001200" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17035</span> Dynamic Investigation of Brake Squeal Problem in The Presence of Kinematic Nonlinearities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahroz%20Khan">Shahroz Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Osman%20Taha%20%C5%9Een"> Osman Taha Şen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In automotive brake systems, brake noise has been a major problem, and brake squeal is one of the critical ones which is an instability issue. The brake squeal produces an audible sound at high frequency that is irritating to the human ear. To study this critical problem, first a nonlinear mathematical model with three degree of freedom is developed. This model consists of a point mass that simulates the brake pad and a sliding surface that simulates the brake rotor. The model exposes kinematic and clearance nonlinearities, but no friction nonlinearity. In the formulation, the friction coefficient is assumed to be constant and the friction force does not change direction. The nonlinear governing equations of the model are first obtained, and numerical solutions are sought for different cases. Second, a computational model for the squeal problem is developed with a commercial software, and computational solutions are obtained with two different types of contact cases (solid-to-solid and sphere-to-plane). This model consists of three rigid bodies and several elastic elements that simulate the key characteristics of a brake system. The response obtained from this model is compared with numerical solutions in time and frequency domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20force" title="contact force">contact force</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinearities" title=" nonlinearities"> nonlinearities</a>, <a href="https://publications.waset.org/abstracts/search?q=brake%20squeal" title=" brake squeal"> brake squeal</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20brake" title=" vehicle brake"> vehicle brake</a> </p> <a href="https://publications.waset.org/abstracts/52950/dynamic-investigation-of-brake-squeal-problem-in-the-presence-of-kinematic-nonlinearities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17034</span> Analysis of the Inverse Kinematics for 5 DOF Robot Arm Using D-H Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Apurva%20Patil">Apurva Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Maithilee%20Kulkarni"> Maithilee Kulkarni</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashay%20Aswale"> Ashay Aswale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes an algorithm to develop the kinematic model of a 5 DOF robot arm. The formulation of the problem is based on finding the D-H parameters of the arm. Brute Force iterative method is employed to solve the system of non linear equations. The focus of the paper is to obtain the accurate solutions by reducing the root mean square error. The result obtained will be implemented to grip the objects. The trajectories followed by the end effector for the required workspace coordinates are plotted. The methodology used here can be used in solving the problem for any other kinematic chain of up to six DOF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=5%20DOF%20robot%20arm" title="5 DOF robot arm">5 DOF robot arm</a>, <a href="https://publications.waset.org/abstracts/search?q=D-H%20parameters" title=" D-H parameters"> D-H parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20kinematics" title=" inverse kinematics"> inverse kinematics</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20method" title=" iterative method"> iterative method</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectories" title=" trajectories"> trajectories</a> </p> <a href="https://publications.waset.org/abstracts/70099/analysis-of-the-inverse-kinematics-for-5-dof-robot-arm-using-d-h-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17033</span> MARTI and MRSD: Newly Developed Isolation-Damping Devices with Adaptive Hardening for Seismic Protection of Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Murast%20Dicleli">Murast Dicleli</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20SalemMilani"> Ali SalemMilani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a summary of analytical and experimental studies into the behavior of a new hysteretic damper, designed for seismic protection of structures is presented. The Multi-directional Torsional Hysteretic Damper (MRSD) is a patented invention in which a symmetrical arrangement of identical cylindrical steel cores is so configured as to yield in torsion while the structure experiences planar movements due to earthquake shakings. The new device has certain desirable properties. Notably, it is characterized by a variable and controllable-via-design post-elastic stiffness. The mentioned property is a result of MRSD’s kinematic configuration which produces this geometric hardening, rather than being a secondary large-displacement effect. Additionally, the new system is capable of reaching high force and displacement capacities, shows high levels of damping, and very stable cyclic response. The device has gone through many stages of design refinement, multiple prototype verification tests and development of design guide-lines and computer codes to facilitate its implementation in practice. Practicality of the new device, as offspring of an academic sphere, is assured through extensive collaboration with industry in its final design stages, prototyping and verification test programs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic" title="seismic">seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=isolation" title=" isolation"> isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=damper" title=" damper"> damper</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20stiffness" title=" adaptive stiffness"> adaptive stiffness</a> </p> <a href="https://publications.waset.org/abstracts/22428/marti-and-mrsd-newly-developed-isolation-damping-devices-with-adaptive-hardening-for-seismic-protection-of-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17032</span> Parameters Identification of Granular Soils around PMT Test by Inverse Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Younes%20Abed">Younes Abed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The successful application of in-situ testing of soils heavily depends on development of interpretation methods of tests. The pressuremeter test simulates the expansion of a cylindrical cavity and because it has well defined boundary conditions, it is more unable to rigorous theoretical analysis (i. e. cavity expansion theory) then most other in-situ tests. In this article, and in order to make the identification process more convenient, we propose a relatively simple procedure which involves the numerical identification of some mechanical parameters of a granular soil, especially, the elastic modulus and the friction angle from a pressuremeter curve. The procedure, applied here to identify the parameters of generalised prager model associated to the Drucker & Prager criterion from a pressuremeter curve, is based on an inverse analysis approach, which consists of minimizing the function representing the difference between the experimental curve and the curve obtained by integrating the model along the loading path in in-situ testing. The numerical process implemented here is based on the established finite element program. We present a validation of the proposed approach by a database of tests on expansion of cylindrical cavity. This database consists of four types of tests; thick cylinder tests carried out on the Hostun RF sand, pressuremeter tests carried out on the Hostun sand, in-situ pressuremeter tests carried out at the site of Fos with marine self-boring pressuremeter and in-situ pressuremeter tests realized on the site of Labenne with Menard pressuremeter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=granular%20soils" title="granular soils">granular soils</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity%20expansion" title=" cavity expansion"> cavity expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=pressuremeter%20test" title=" pressuremeter test"> pressuremeter test</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=identification%20procedure" title=" identification procedure"> identification procedure</a> </p> <a href="https://publications.waset.org/abstracts/2474/parameters-identification-of-granular-soils-around-pmt-test-by-inverse-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Prager%20kinematic%20hardening%20model&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Prager%20kinematic%20hardening%20model&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Prager%20kinematic%20hardening%20model&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Prager%20kinematic%20hardening%20model&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Prager%20kinematic%20hardening%20model&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Prager%20kinematic%20hardening%20model&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Prager%20kinematic%20hardening%20model&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Prager%20kinematic%20hardening%20model&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Prager%20kinematic%20hardening%20model&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Prager%20kinematic%20hardening%20model&page=568">568</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Prager%20kinematic%20hardening%20model&page=569">569</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Prager%20kinematic%20hardening%20model&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>