CINXE.COM

Search results for: cholinesterase

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cholinesterase</title> <meta name="description" content="Search results for: cholinesterase"> <meta name="keywords" content="cholinesterase"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cholinesterase" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cholinesterase"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 19</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cholinesterase</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Cannabis Sativa L as Natural Source of Promising Anti-Alzheimer Drug Candidates: A Comprehensive Computational Approach Including Molecular Docking, Molecular Dynamics, Admet and MM-PBSA Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Nour">Hassan Nour</a>, <a href="https://publications.waset.org/abstracts/search?q=Nouh%20Mounadi"> Nouh Mounadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Oussama%20Abchir"> Oussama Abchir</a>, <a href="https://publications.waset.org/abstracts/search?q=Belaidi%20Salah"> Belaidi Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Chtita"> Samir Chtita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cholinesterase enzymes are biological catalysts essential for the transformation of acetylcholine, which is a neurotransmitter implicated in memory and learning, into acetic acid and choline, altering the neurotransmission process in Alzheimer’s disease patients. Therefore, inhibition of cholinesterase enzymes is a relevant strategy for the symptomatic treatment of Alzheimer’s disease. The current investigation aims to explore potential Cholinesterase (ChE) inhibitors through a comprehensive computational approach. Forty-nine phytoconstituents extracted from Cannabis sativa L were in-silico screened using molecular docking, pharmacokinetic and toxicological analysis to evaluate their possible inhibitory effect towards the cholinesterase enzymes. Two phytoconstituents belonging to cannabinoid derivatives were revealed to be promising candidates for Alzheimer therapy by acting as cholinesterase inhibitors. They have exhibited high binding affinities towards the cholinesterase enzymes and showed their ability to interact with key residues involved in cholinesterase enzymatic activity. In addition, they presented good ADMET profiles allowing them to be promising oral drug candidates. Furthermore, molecular dynamics (MD) simulations were executed to explore their interactions stability under mimetic biological conditions and thus support our findings. To corroborate the docking results, the binding free energy corresponding to the more stable ligand-ChE complexes was re-estimated by applying the MM-PBSA method. MD and MM-PBSA studies affirmed that the ligand-ChE recognition is spontaneous reaction leading to stable complexes. The conducted investigations have led to great findings that would strongly guide the pharmaceutical industries towards the rational development of potent anti-Alzheimer agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alzheimer%E2%80%99s%20disease" title="alzheimer’s disease">alzheimer’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20docking" title=" molecular docking"> molecular docking</a>, <a href="https://publications.waset.org/abstracts/search?q=cannabis%20sativa%20l" title=" cannabis sativa l"> cannabis sativa l</a>, <a href="https://publications.waset.org/abstracts/search?q=cholinesterase%20inhibitors" title=" cholinesterase inhibitors"> cholinesterase inhibitors</a> </p> <a href="https://publications.waset.org/abstracts/171130/cannabis-sativa-l-as-natural-source-of-promising-anti-alzheimer-drug-candidates-a-comprehensive-computational-approach-including-molecular-docking-molecular-dynamics-admet-and-mm-pbsa-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> The Enzyme Inhibitory Potentials of Different Extracts from Linaria genistifolia subsp. genistifolia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gokhan%20Zengin">Gokhan Zengin</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdurrahman%20Aktumsek"> Abdurrahman Aktumsek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The key enzyme inhibitory theory is one of the most accepted strategies in the treatment of global health problems including Alzheimer’s Disease and Diabetes mellitus. For this reason, the enzyme inhibitory potentials of different solvent extracts from Linaria genistifolia subsp. genistifolia were investigated against cholinesterase, and tyrosinase. The in vitro enzyme inhibitory potentials were measured with a microplate reader. The acetone and methanol extracts exhibited the strongest enzyme inhibitory effects on cholinesterase. However, the water extract was only active on tyrosinase. The results suggested that Linaria genistifolia subsp. genistifolia could be considered as a source of natural enzyme inhibitors for the treatment of major health problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enzyme%20inhibitors" title="enzyme inhibitors">enzyme inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=cholinesterase" title=" cholinesterase"> cholinesterase</a>, <a href="https://publications.waset.org/abstracts/search?q=tyrosinase" title=" tyrosinase"> tyrosinase</a>, <a href="https://publications.waset.org/abstracts/search?q=linaria" title=" linaria"> linaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a> </p> <a href="https://publications.waset.org/abstracts/46806/the-enzyme-inhibitory-potentials-of-different-extracts-from-linaria-genistifolia-subsp-genistifolia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Cannabis Sativa L as Natural Source of Promising Anti-Alzheimer Drug Candidates: A Comprehensive Computational Approach Including Molecular Docking, Molecular Dynamics, ADMET and MM-PBSA Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Nour">Hassan Nour</a>, <a href="https://publications.waset.org/abstracts/search?q=Nouh%20Mounadi"> Nouh Mounadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Oussama%20Abchir"> Oussama Abchir</a>, <a href="https://publications.waset.org/abstracts/search?q=Belaidi%20Salah"> Belaidi Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Chtita"> Samir Chtita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cholinesterase enzymes are biological catalysts essential for the transformation of acetylcholine, which is a neurotransmitter implicated in memory and learning, into acetic acid and choline, altering the neurotransmission process in Alzheimer’s disease patients. Therefore, inhibition of cholinesterase enzymes is a relevant strategy for the symptomatic treatment of Alzheimer’s disease. The current investigation aims to explore potential cholinesterase (ChE) inhibitors through a comprehensive computational approach. Forty-nine phytoconstituents extracted from Cannabis sativa L. were in-silico screened using molecular docking and pharmacokinetic and toxicological analysis to evaluate their possible inhibitory effect on the cholinesterase enzymes. Two phytoconstituents belonging to cannabinoid derivatives were revealed to be promising candidates for Alzheimer's therapy by acting as cholinesterase inhibitors. They have exhibited high binding affinities towards the cholinesterase enzymes and showed their ability to interact with key residues involved in cholinesterase enzymatic activity. In addition, they presented good ADMET profiles allowing them to be promising oral drug candidates. Furthermore, molecular dynamics (MD) simulations were executed to explore their interaction stability under mimetic biological conditions and thus support our findings. To corroborate the docking results, the binding free energy corresponding to the more stable ligand-ChE complexes was re-estimated by applying the MM-PBSA method. MD and MM-PBSA studies affirmed that the ligand-ChE recognition is a spontaneous reaction leading to stable complexes. The conducted investigations have led to great findings that would strongly guide the pharmaceutical industries toward the rational development of potent anti-Alzheimer agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%E2%80%99s%20disease" title="Alzheimer’s disease">Alzheimer’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20docking" title=" molecular docking"> molecular docking</a>, <a href="https://publications.waset.org/abstracts/search?q=Cannabis%20sativa%20L." title=" Cannabis sativa L."> Cannabis sativa L.</a>, <a href="https://publications.waset.org/abstracts/search?q=cholinesterase%20inhibitors" title=" cholinesterase inhibitors"> cholinesterase inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=ADMET" title=" ADMET"> ADMET</a>, <a href="https://publications.waset.org/abstracts/search?q=MM-PBSA" title=" MM-PBSA"> MM-PBSA</a> </p> <a href="https://publications.waset.org/abstracts/171128/cannabis-sativa-l-as-natural-source-of-promising-anti-alzheimer-drug-candidates-a-comprehensive-computational-approach-including-molecular-docking-molecular-dynamics-admet-and-mm-pbsa-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Factors Associated with Pesticides Used and Plasma Cholinesterase Level among Agricultural Workers in Rural Area, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pirakorn%20Sukonthaman">Pirakorn Sukonthaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Paphitchaya%20Temphattharachok">Paphitchaya Temphattharachok</a>, <a href="https://publications.waset.org/abstracts/search?q=Warangkana%20Thammasanya"> Warangkana Thammasanya</a>, <a href="https://publications.waset.org/abstracts/search?q=Kraichart%20Tantrakarnarpa"> Kraichart Tantrakarnarpa</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanongson%20Tientavorn"> Tanongson Tientavorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agriculture is the main occupation in Thailand. Excessive amount of pesticides are used to increase the products but are toxic to human body. In 2009, Bureau of Epidemiology received 1,691 cases reported with pesticides toxicity (2.66:100,000) which 10.61 % of them is caused by Organophosphate. The purposes are to find factors associated with pesticides used and plasma cholinesterase level and other emerging issues that previous studies did not explain among agricultural workers in Baan Na Yao, Chachoengsao, Thailand. This research was an exploratory mixed method study. Qualitative interviews and quantitative questionnaires were used together in order to gather information from the agricultural workers (mainly cassava and rice farming) directly exposed to pesticides within 2 months simultaneously. Qualitative participants were selected by purposive sampling and a total survey for quantitative ones. The quantitative data was statistically analyzed by using multiple logistic regression model. Qualitative data was transcribed verbatim and thematically analyzed. For qualitative study, 15 participants were interviewed and 300/323 participants (92.88%) were given questionnaires, of which were 175 male and 125 female and 113 among them were spraymen. The prevalence of abnormal plasma cholinesterase level was 92.28% (Safe 7.72% Risky 49.33% and Unsafe 42.95%). Participants with inappropriate behaviors during spraying had a significant association with plasma cholinesterase level (95%CI=1.399-14.858) but other factors such as age, gender, education, attitude and knowledge had no association. They also had encountered various symptoms from pesticides such as fatigue (61%), vertigo (59.67%) and headache (58.86%), etc. Although they had high knowledge and attitude they still had poor behaviors. Moreover, our qualitative component showed that though they had worn the personal protective equipment (PPE) regularly, their PPE was not standard. Not only substandard PPE, but also there were obstacles of wearing such as the hot climate and inconvenience. They misunderstood their symptoms from using pesticides as allergy. Therefore, they did not seek for proper medical check-ups and treatment. This research revealed almost all of the participants have abnormal levels of plasma cholinesterase related especially those with poor behaviors. They also wore PPE but inadequately and misunderstood the symptoms produced by organophosphate use as allergy. Therefore, they did not seek for medical treatment. Occupation health education, modification of PPE and periodic medical checking are ways to make agricultural workers concern and know if there is any progression in a long term. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pesticides" title="pesticides">pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20cholinesterase%20level" title=" plasma cholinesterase level"> plasma cholinesterase level</a>, <a href="https://publications.waset.org/abstracts/search?q=spraymen" title=" spraymen"> spraymen</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20workers" title=" agricultural workers"> agricultural workers</a> </p> <a href="https://publications.waset.org/abstracts/18815/factors-associated-with-pesticides-used-and-plasma-cholinesterase-level-among-agricultural-workers-in-rural-area-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Cholinesterase Inhibitory Indole Alkaloids from the Bark of Rauvolfia reflexa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehran%20Fadaeinasab">Mehran Fadaeinasab</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Basiri"> Alireza Basiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Yalda%20Kia"> Yalda Kia</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Karimian"> Hamed Karimian</a>, <a href="https://publications.waset.org/abstracts/search?q=Hapipah%20Mohd%20Ali"> Hapipah Mohd Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikneswaran%20Murugaiyah"> Vikneswaran Murugaiyah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two new, rauvolfine C and 3- methyl-10,11-dimethoxyl-6- methoxycarbonyl- β- carboline, along with five known indole alkaloids, macusine B, vinorine, undulifoline, isoresrpiline and rescinnamine were isolated from the bark of Rauvolfia reflexa. All the compounds showed good to moderate cholinesterase inhibitory activity with IC50 values in the range of 8.06 to 73.23 πM, except rauvolfine C that was inactive against acetylcholinesterase (AChE). Rescinnamine, a dual inhibitor was found to be the most potent inhibitor among the isolated alkaloids against both AChE and butyrylcholinesterase (BChE). Molecular docking revealed that rescinnamine interacted differently on AChE and BChE, by means of hydrophobic interactions and hydrogen bonding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rauvolfia%20reflexa" title="Rauvolfia reflexa">Rauvolfia reflexa</a>, <a href="https://publications.waset.org/abstracts/search?q=indole%20alkaloids" title=" indole alkaloids"> indole alkaloids</a>, <a href="https://publications.waset.org/abstracts/search?q=acetylcholinesterase" title=" acetylcholinesterase"> acetylcholinesterase</a>, <a href="https://publications.waset.org/abstracts/search?q=butyrylcholinesterase" title=" butyrylcholinesterase"> butyrylcholinesterase</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20docking" title=" molecular docking"> molecular docking</a> </p> <a href="https://publications.waset.org/abstracts/30034/cholinesterase-inhibitory-indole-alkaloids-from-the-bark-of-rauvolfia-reflexa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">592</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> In vivo Inhibition and Restoration of Acetyl Cholinesterase Activities in Induced Clarias Gariepinus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20O.%20Ikpesu">T. O. Ikpesu</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Tongo"> I. Tongo</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ariyo"> A. Ariyo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to assess the effects of an organophosphate pesticide glyphosate formulation on neurological enzymes in the brain, liver and serum of juvenile Clarias gariepinus, and also to examine the antidotal prospect of Garcinia kola seeds extract. The fish divided into five groups were exposed to different treatments of glyphosate formulation and Garcinia kola seeds extract. Acetyl cholinesterase activities in the brain, liver and serum of the fish were estimated in the experimental and control fishes on day -7, 14, 21 and of 28 by spectrophotometrical methods. The enzyme was significantly (p < 0.05) inhibited in glyphosate formulation test. The inhibition percentages of AChE ranged for the brain, liver and serum between 40.7–59.4%, 50-57% and 27.5–51.3%, respectively. The aberrated parameters were recovered in G. kola seeds extract treated aquaria, and was dose and time dependent. The present study demonstrated that in vivo glyphosate formulation exposure caused AChE inhibition in the brain, liver and the serum. The brain tissue, however, might be suggested as a good indicator tissue for aquatic pollutants exposure in the fish and G. kola seeds extract has shown to be a good remedy for neurology restoration in a noxious circumstance. The findings has shown that xenobiotics could be eliminated from aquatic organisms, especially fish, and could be put into practice in areas at risk of pollutants. This approach can reduce the risks of biomagnification of poison in sea food. Hence, formulation of this plant extracts into capsule should be encouraged and supported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glyphosate" title="glyphosate">glyphosate</a>, <a href="https://publications.waset.org/abstracts/search?q=Clarias%20gariepinus" title=" Clarias gariepinus"> Clarias gariepinus</a>, <a href="https://publications.waset.org/abstracts/search?q=brain" title=" brain"> brain</a>, <a href="https://publications.waset.org/abstracts/search?q=Garcinia%20kola" title=" Garcinia kola"> Garcinia kola</a>, <a href="https://publications.waset.org/abstracts/search?q=acetyl%20cholinesterase" title=" acetyl cholinesterase"> acetyl cholinesterase</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymes" title=" enzymes "> enzymes </a> </p> <a href="https://publications.waset.org/abstracts/9259/in-vivo-inhibition-and-restoration-of-acetyl-cholinesterase-activities-in-induced-clarias-gariepinus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> In vitro and in vivo Assessment of Cholinesterase Inhibitory Activity of the Bark Extracts of Pterocarpus santalinus L. for the Treatment of Alzheimer’s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Biswas">K. Biswas</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20H.%20Armin"> U. H. Armin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20J.%20Prodhan"> S. M. J. Prodhan</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Prithul"> J. A. Prithul</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sarker"> S. Sarker</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Afrin"> F. Afrin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alzheimer&rsquo;s disease (AD) (a progressive neurodegenerative disorder) is mostly predominant cause of dementia in the elderly. Prolonging the function of acetylcholine by inhibiting both acetylcholinesterase and butyrylcholinesterase is most effective treatment therapy of AD. Traditionally <em>Pterocarpus santalinus</em> L. is widely known for its medicinal use. In this study, <em>in vitro</em> acetylcholinesterase inhibitory activity was investigated and methanolic extract of the plant showed significant activity. To confirm this activity (<em>in vivo</em>), learning and memory enhancing effects were tested in mice. For the test, memory impairment was induced by scopolamine (cholinergic muscarinic receptor antagonist). Anti-amnesic effect of the extract was investigated by the passive avoidance task in mice. The study also includes brain acetylcholinesterase activity. Results proved that scopolamine induced cognitive dysfunction was significantly decreased by administration of the extract solution, in the passive avoidance task and inhibited brain acetylcholinesterase activity. These results suggest that bark extract of <em>Pterocarpus santalinus</em> can be better option for further studies on AD via their acetylcholinesterase inhibitory actions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pterocarpus%20santalinus" title="Pterocarpus santalinus">Pterocarpus santalinus</a>, <a href="https://publications.waset.org/abstracts/search?q=cholinesterase%20inhibitor" title=" cholinesterase inhibitor"> cholinesterase inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20avoidance" title=" passive avoidance"> passive avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%E2%80%99s%20disease" title=" Alzheimer’s disease"> Alzheimer’s disease</a> </p> <a href="https://publications.waset.org/abstracts/97700/in-vitro-and-in-vivo-assessment-of-cholinesterase-inhibitory-activity-of-the-bark-extracts-of-pterocarpus-santalinus-l-for-the-treatment-of-alzheimers-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Antioxidative, Anticholinesterase and Anti-Neuroinflammatory Properties of Malaysian Brown and Green Seaweeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Aisya%20Gany">Siti Aisya Gany</a>, <a href="https://publications.waset.org/abstracts/search?q=Swee%20Ching%20Tan"> Swee Ching Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sook%20Yee%20Gan"> Sook Yee Gan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diminished antioxidant defense or increased production of reactive oxygen species in the biological system can result in oxidative stress which may lead to various neurodegenerative diseases including Alzheimer’s disease (AD). Microglial activation also contributes to the progression of AD by producing several pro-inflammatory cytokines, nitric oxide (NO), and prostaglandin E2 (PGE2). Oxidative stress and inflammation have been reported to be possible pathophysiological mechanisms underlying AD. In addition, the cholinergic hypothesis postulates that memory impairment in patient with AD is also associated with the deficit of cholinergic function in the brain. Although a number of drugs have been approved for the treatment of AD, most of these synthetic drugs have diverse side effects and yield relatively modest benefits. Marine algae have great potential in pharmaceutical and biomedical applications as they are valuable sources of bioactive properties such as anti-coagulation, anti-microbial, anti-oxidative, anti-cancer and anti-inflammatory. Hence, this study aimed to provide an overview of the properties of Malaysian seaweeds (Padina australis, Sargassum polycystum and Caulerpa racemosa) in inhibiting oxidative stress, neuroinflammation and cholinesterase enzymes. All tested samples significantly exhibit potent DPPH and moderate Superoxide anion radical scavenging ability (P<0.05). Hexane and methanol extracts of S. polycystum exhibited the most potent radical scavenging ability with IC50 values of 0.1572 ± 0.004 mg/ml and 0.8493 ± 0.02 for DPPH and ABTS assays, respectively. Hexane extract of C. racemosa gave the strongest superoxide radical inhibitory effect (IC50 of 0.3862± 0.01 mg/ml). Most seaweed extracts significantly inhibited the production of cytokine (IL-6, IL-1 β, TNFα) and NO in a concentration-dependent manner without causing significant cytotoxicity to the lipopolysaccharide (LPS)-stimulated microglia cells (P<0.05). All extracts suppressed cytokine and NO level by more than 80% at the concentration of 0.4mg/ml. In addition, C. racemosa and S. polycystum also showed anti-acetylcholinesterase activities with the IC50 values ranging from 0.086-0.115 mg/ml. Moreover, C. racemosa and P. australis were also found to be active against butyrylcholinesterase with IC50 values ranging from 0.118-0.287 mg/ml. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-cholinesterase" title="anti-cholinesterase">anti-cholinesterase</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-oxidative" title=" anti-oxidative"> anti-oxidative</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroinflammation" title=" neuroinflammation"> neuroinflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=seaweeds" title=" seaweeds "> seaweeds </a> </p> <a href="https://publications.waset.org/abstracts/15540/antioxidative-anticholinesterase-and-anti-neuroinflammatory-properties-of-malaysian-brown-and-green-seaweeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">663</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Acute Myocardial Infarction Associated with Ingestion of Herbal Mixtures Containing Acetylcholinesterase Inhibitors: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hakami">M. Hakami</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Jammaly"> A. Jammaly</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Attafi"> I. Attafi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Oraiby"> M. Oraiby</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jeraiby"> M. Jeraiby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We reviewed an unusual case of a 65-year-old male taking an herbal mixture containing compounds with anticholinesterase activity for a long period of time, presented with acute my myocardial infarction and multiple organ dysfunction syndrome followed by death. Clinically, there are findings correlated with anticholinesterase activity, such as bilateral miosis, diaphoresis, vomiting and fasciculation without a history of any toxic ingestion or exposure. Gas chromatography–mass spectrometry screening studies identified the presence of thymol, anethole in the herbal extract and butylated hydroxytoluene in the blood sample. Hence, with this case report, we intend to highlight the necessity of evaluating the long-term use of the herbal mixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cholinesterase%20inhibitors" title="cholinesterase inhibitors">cholinesterase inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=thymole" title=" thymole"> thymole</a>, <a href="https://publications.waset.org/abstracts/search?q=anethole" title=" anethole"> anethole</a>, <a href="https://publications.waset.org/abstracts/search?q=butylatedhydroxytoluene" title=" butylatedhydroxytoluene"> butylatedhydroxytoluene</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiac%20toxicity" title=" cardiac toxicity"> cardiac toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=myocardial%20infarction" title=" myocardial infarction"> myocardial infarction</a> </p> <a href="https://publications.waset.org/abstracts/65998/acute-myocardial-infarction-associated-with-ingestion-of-herbal-mixtures-containing-acetylcholinesterase-inhibitors-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> The Possible Interaction between Bisphenol A, Caffeine and Epigallocatechin-3-Gallate on Neurotoxicity Induced by Manganese in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azza%20A.%20Ali">Azza A. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hebatalla%20I.%20Ahmed"> Hebatalla I. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Asmaa%20Abdelaty"> Asmaa Abdelaty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Manganese (Mn) is a naturally occurring element. Exposure to high levels of Mn causes neurotoxic effects and represents an environmental risk factor. Mn neurotoxicity is poorly understood but changing of AChE activity, monoamines and oxidative stress has been established. Bisphenol A (BPA) is a synthetic compound widely used in the production of polycarbonate plastics. There is considerable debate about whether its exposure represents an environmental risk. Caffeine is one of the major contributors to the dietary antioxidants which prevent oxidative damage and may reduce the risk of chronic neurodegenerative diseases. Epigallocatechin-3-gallate is another major component of green tea and has known interactions with caffeine. It also has health-promoting effects in CNS. Objective: To evaluate the potential protective effects of Caffeine and/or EGCG against Mn-induced neurotoxicity either alone or in the presence of BPA in rats. Methods: Seven groups of rats were used and received daily for 5 weeks MnCl2.4H2O (10 mg/kg, IP) except the control group which received saline, corn oil and distilled H2O. Mn was injected either alone or in combination with each of the following: BPA (50 mg/kg, PO), caffeine (10 mg/kg, PO), EGCG (5 mg/kg, IP), caffeine + EGCG and BPA +caffeine +EGCG. All rats were examined in five behavioral tests (grid, bar, swimming, open field and Y- maze tests). Biochemical changes in monoamines, caspase-3, PGE2, GSK-3B, glutamate, acetyl cholinesterase and oxidative parameters, as well as histopathological changes in the brain, were also evaluated for all groups. Results: Mn significantly increased MDA and nitrite content as well as caspase-3, GSK-3B, PGE2 and glutamate levels while significantly decreased TAC and SOD as well as cholinesterase in the striatum. It also decreased DA, NE and 5-HT levels in the striatum and frontal cortex. BPA together with Mn enhanced oxidative stress generation induced by Mn while increased monoamine content that was decreased by Mn in rat striatum. BPA abolished neuronal degeneration induced by Mn in the hippocampus but not in the substantia nigra, striatum and cerebral cortex. Behavioral examinations showed that caffeine and EGCG co-administration had more pronounced protective effect against Mn-induced neurotoxicity than each one alone. EGCG alone or in combination with caffeine prevented neuronal degeneration in the substantia nigra, striatum, hippocampus and cerebral cortex induced by Mn while caffeine alone prevented neuronal degeneration in the substantia nigra and striatum but still showed some nuclear pyknosis in cerebral cortex and hippocampus. The marked protection of caffeine and EGCG co-administration also confirmed by the significant increase in TAC, SOD, ACHE, DA, NE and 5-HT as well as the decrease in MDA, nitrite, caspase-3, PGE2, GSK-3B, the glutamic acid in the striatum. Conclusion: Neuronal degeneration induced by Mn showed some inhibition with BPA exposure despite the enhancement in oxidative stress generation. Co-administration of EGCG and caffeine can protect against neuronal degeneration induced by Mn and improve behavioral deficits associated with its neurotoxicity. The protective effect of EGCG was more pronounced than that of caffeine even with BPA co-exposure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manganese" title="manganese">manganese</a>, <a href="https://publications.waset.org/abstracts/search?q=bisphenol%20a" title=" bisphenol a"> bisphenol a</a>, <a href="https://publications.waset.org/abstracts/search?q=caffeine" title=" caffeine"> caffeine</a>, <a href="https://publications.waset.org/abstracts/search?q=epigallocatechin-3-gallate" title=" epigallocatechin-3-gallate"> epigallocatechin-3-gallate</a>, <a href="https://publications.waset.org/abstracts/search?q=neurotoxicity" title=" neurotoxicity"> neurotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=behavioral%20tests" title=" behavioral tests"> behavioral tests</a>, <a href="https://publications.waset.org/abstracts/search?q=rats" title=" rats"> rats</a> </p> <a href="https://publications.waset.org/abstracts/62763/the-possible-interaction-between-bisphenol-a-caffeine-and-epigallocatechin-3-gallate-on-neurotoxicity-induced-by-manganese-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Antioxidant Potential and Inhibition of Key Enzymes Linked to Alzheimer&#039;s Diseases and Diabetes Mellitus by Monoterpene-Rich Essential Oil from Sideritis Galatica Bornm. Endemic to Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gokhan%20Zengin">Gokhan Zengin</a>, <a href="https://publications.waset.org/abstracts/search?q=Cengiz%20Sarikurkcu"> Cengiz Sarikurkcu</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdurrahman%20Aktumsek"> Abdurrahman Aktumsek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramazan%20Ceylan"> Ramazan Ceylan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was designated to characterize the essential oil from S. galatica (SGEOs) and evaluate its antioxidant and enzyme inhibitory activities. Antioxidant capacity were tested different methods including free radical scavenging (DPPH, ABTS and NO), reducing power (FRAP and CUPRAC), metal chelating and phosphomolybdenum. Inhibitory activities were analyzed on acetylcholiesterase, butrylcholinesterase, α-amylase and α-glucosidase. SGEOs were chemically analyzed and identified by gas chromatography (GC) and gas chromatography/mass spectrophotometry (GC/MS). 23 components, representing 98.1% of SGEOs were identified. Monoterpene hydrocarbons (74.1%), especially α- (23.0%) and β-pinene (32.2%), were the main constituents in SGEOs. The main sesquiterpene hydrocarbons were β-caryophyllene (16.9%), Germacrene-D (1.2%) and Caryophyllene oxide (1.2%), respectively. Generally, SGEOs has shown moderate free radical, reducing power, metal chelating and enzyme inhibitory activities. These activities related to chemical profile in SGEOs. Our findings supported that the possible utility of SGEOs is a source of natural agents for food, cosmetics or pharmaceutical industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sideritis%20galatica" title="sideritis galatica">sideritis galatica</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=monoterpenes" title=" monoterpenes"> monoterpenes</a>, <a href="https://publications.waset.org/abstracts/search?q=cholinesterase" title=" cholinesterase"> cholinesterase</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-diabetic" title=" anti-diabetic"> anti-diabetic</a> </p> <a href="https://publications.waset.org/abstracts/29002/antioxidant-potential-and-inhibition-of-key-enzymes-linked-to-alzheimers-diseases-and-diabetes-mellitus-by-monoterpene-rich-essential-oil-from-sideritis-galatica-bornm-endemic-to-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Biological Activities of Gentiana brachyphylla Vill. Herba from Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hulya%20Tuba%20Kiyan">Hulya Tuba Kiyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilgun%20Ozturk"> Nilgun Ozturk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gentiana, a member of Gentianaceae, is represented by approximately 400 species in the world and 12 species in Turkey. Flavonoids, iridoids, triterpenoids and also xanthones are the major compounds of this genus, have been previously reported to have antiinflammatory, antimicrobial, antioxidant, hepatoprotective, hypotensive, hypoglycaemic, DNA repair and immunomodulatory properties. The methanolic extract of the aerial parts of Gentiana brachyphylla Vill. from Turkey was evaluated for its biological activities and its total phenolic content in the present study. According to the antioxidant activity results, G. brachyphylla methanolic extract showed very strong anti-DNA damage antioxidant activity with an inhibition of 81.82%. It showed weak ferric-reducing power with a EC50 value of 0.65 when compared to BHT (EC50 = 0.2). Also, at 0.5 mg/ml concentration, the methanolic extract inhibited ABTS radical cation activity with an inhibition of 20.13% when compared to Trolox (79.01%). Chelating ability of G. brachyphylla was 44.71% whereas EDTA showed 78.87% chelating activity at 0.2 mg/ml. Also G. brachyphylla showed weak 27.21% AChE, 20.23% BChE, strong 67.86% MAO-A and moderate 50.06% MAO-B, weak 19.14% COX-1, 29.11% COX-2 inhibitory activities at 0.25 mg/ml. The total phenolic content of G. brachyphylla was 156.23 ± 2.73 mg gallic acid equivalent/100 g extract. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=cholinesterase%20inhibitory%20activity" title=" cholinesterase inhibitory activity"> cholinesterase inhibitory activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Gentiana%20brachyphylla%20Vill." title=" Gentiana brachyphylla Vill."> Gentiana brachyphylla Vill.</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20content" title=" total phenolic content"> total phenolic content</a> </p> <a href="https://publications.waset.org/abstracts/81660/biological-activities-of-gentiana-brachyphylla-vill-herba-from-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Protective Role of Fish Oil against Hepatotoxicity Induced by Fipronil on Female Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amel%20A.%20Refaie">Amel A. Refaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Amal%20Ramadan"> Amal Ramadan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdel-Tawab%20H.%20Mossa"> Abdel-Tawab H. Mossa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was designed to evaluate the adverse effects of sub-chronic exposure to the fipronil on the liver of female rats at a dose equal to 400 mg /kg (1/10LD50) in drinking water and the protective role of fish oil at concentration 117.6 mg/Kg b.wt via oral routes daily for 28 days. Fipronil treatment caused a decrease in body weight gain and increase in relative liver weight. Fipronil induced a significant increase in the liver biomarkers enzymes such as alanine aminotransferases (ALT), aspartate aminotransferases (AST), alkaline phosphatase (ALP) and levels of total protein while fipronil caused a significant decrease in butyryl cholinesterase activity in FPN-treated rats. Oxidative stress biomarkers such as superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST) were significantly decreased in liver tissue, while lipid peroxidation (LPO) was significantly increased in fipronil treating rats in a dose-dependent manner. FPN caused histopathological alterations in liver of female rats. From our results, it can be reported that FPN induced lipid peroxidation, oxidative stress, liver injury in female rats and fish oil used to protect animals against the adverse effect of pesticide exposure. These pathophysiological alterations in liver tissues could be due to the toxic effect of fipronil that associated with a generation of free radicals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fipronil%20%28FPN%29" title="fipronil (FPN)">fipronil (FPN)</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20oil" title="fish oil">fish oil</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatotoxicity" title=" hepatotoxicity"> hepatotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=transaminases" title=" transaminases"> transaminases</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20enzymes" title=" antioxidant enzymes"> antioxidant enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=female%20rats" title=" female rats"> female rats</a> </p> <a href="https://publications.waset.org/abstracts/102552/protective-role-of-fish-oil-against-hepatotoxicity-induced-by-fipronil-on-female-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Combined Treatment of Aged Rats with Donepezil and the Gingko Extract EGb 761® Enhances Learning and Memory Superiorly to Monotherapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Linda%20Bl%C3%BCmel">Linda Blümel</a>, <a href="https://publications.waset.org/abstracts/search?q=Bettina%20Bert"> Bettina Bert</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Brosda"> Jan Brosda</a>, <a href="https://publications.waset.org/abstracts/search?q=Heidrun%20Fink"> Heidrun Fink</a>, <a href="https://publications.waset.org/abstracts/search?q=Melanie%20Hamann"> Melanie Hamann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Age-related cognitive decline can eventually lead to dementia, the most common mental illness in elderly people and an immense challenge for patients, their families and caregivers. Cholinesterase inhibitors constitute the most commonly used antidementia prescription medication. The standardized Ginkgo biloba leaf extract EGb 761® is approved for treating age-associated cognitive impairment and has been shown to improve the quality of life in patients suffering from mild dementia. A clinical trial with 96 Alzheimer´s disease patients indicated that the combined treatment with donepezil and EGb 761® had fewer side effects than donepezil alone. In an animal model of cognitive aging, we compared the effect of combined treatment with EGb 761® or donepezil monotherapy and vehicle. We compared the effect of chronic treatment (15 days of pretreatment) with donepezil (1.5 mg/kg p. o.), EGb 761® (100 mg/kg p. o.), or the combination of the two drugs, or vehicle in 18 – 20 month old male OFA rats. Learning and memory performance were assessed by Morris water maze testing, motor behavior in an open field paradigm. In addition to chronic treatment, the substances were administered orally 30 minutes before testing. Compared to the first day and to the control group, only the combination group showed a significant reduction in latency to reach the hidden platform on the second day of testing. Moreover, from the second day of testing onwards, the donepezil, the EGb 761® and the combination group required less time to reach the hidden platform compared to the first day. The control group did not reach the same latency reduction until day three. There were no effects on motor behavior. These results suggest a superiority of the combined treatment of donepezil with EGb 761® compared to monotherapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=age-related%20cognitive%20decline" title="age-related cognitive decline">age-related cognitive decline</a>, <a href="https://publications.waset.org/abstracts/search?q=dementia" title=" dementia"> dementia</a>, <a href="https://publications.waset.org/abstracts/search?q=ginkgo%20biloba%20leaf%20extract%20EGb%20761%C2%AE" title=" ginkgo biloba leaf extract EGb 761®"> ginkgo biloba leaf extract EGb 761®</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20and%20memory" title=" learning and memory"> learning and memory</a>, <a href="https://publications.waset.org/abstracts/search?q=old%20rats" title=" old rats"> old rats</a> </p> <a href="https://publications.waset.org/abstracts/35854/combined-treatment-of-aged-rats-with-donepezil-and-the-gingko-extract-egb-761-enhances-learning-and-memory-superiorly-to-monotherapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Tripeptide Inhibitor: The Simplest Aminogenic PEGylated Drug against Amyloid Beta Peptide Fibrillation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sutapa%20Som%20Chaudhury">Sutapa Som Chaudhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Chitrangada%20Das%20Mukhopadhyay"> Chitrangada Das Mukhopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alzheimer’s disease is a well-known form of dementia since its discovery in 1906. Current Food and Drug Administration approved medications e.g. cholinesterase inhibitors, memantine offer modest symptomatic relief but do not play any role in disease modification or recovery. In last three decades many small molecules, chaperons, synthetic peptides, partial β-secretase enzyme blocker have been tested for the development of a drug against Alzheimer though did not pass the 3rd clinical phase trials. Here in this study, we designed a PEGylated, aminogenic, tripeptidic polymer with two different molecular weights based on the aggregation prone amino acid sequence 17-20 in amyloid beta (Aβ) 1-42. Being conjugated with poly-ethylene glycol (PEG) which self-assembles into hydrophilic nanoparticles, these PEGylated tripeptides constitute a very good drug delivery system crossing the blood brain barrier while the peptide remains protected from proteolytic degradation and non-specific protein interactions. Moreover, being completely aminogenic they would not raise any side effects. These peptide inhibitors were evaluated for their effectiveness against Aβ42 fibrillation at an early stage of oligomer to fibril formation as well as preformed fibril clearance via Thioflavin T (ThT) assay, dynamic light scattering analyses, atomic force microscopy and scanning electron microscopy. The inhibitors were proved to be safe at a higher concentration of 20µM by the reduction assay of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) dye. Moreover, SHSY5Y neuroblastoma cells have shown a greater survivability when treated with the inhibitors following Aβ42 fibril and oligomer treatment as compared with the control Aβ42 fibril and/or oligomer treated neuroblastoma cells. These make the peptidic inhibitors a promising compound in the aspect of the discovery of alternative medication for Alzheimer’s disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%E2%80%99s%20disease" title="Alzheimer’s disease">Alzheimer’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20medication" title=" alternative medication"> alternative medication</a>, <a href="https://publications.waset.org/abstracts/search?q=amyloid%20beta" title=" amyloid beta"> amyloid beta</a>, <a href="https://publications.waset.org/abstracts/search?q=PEGylated%20peptide" title=" PEGylated peptide"> PEGylated peptide</a> </p> <a href="https://publications.waset.org/abstracts/74111/tripeptide-inhibitor-the-simplest-aminogenic-pegylated-drug-against-amyloid-beta-peptide-fibrillation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Carbendazim Toxicity and Ameliorative Effect of Vitamin E in African Giant Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Omonona">A. O. Omonona</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20A.%20Jarikre"> T. A. Jarikre </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increase specialization in agriculture and use of pesticides may inadvertently cause ecosystem degradation and eventually loss of biodiversity. The populations of numerous wildlife species have undergone a precipitous decline. Many of these problems have been attributed directly to habitat loss and over exploitation resulting from unregulated pesticide uses. Carbendazim a broad spectrum benzimidazole fungicide and a metabolite of benomyl, is used to control plant disease in cereals and fruit. The effect of carbendazim exposure and the ameliorative effect of tocopherol (vitamin E) were assessed on African giant rat AGR. Hematological, biochemical and histological changes were used to determine the health condition of the animals exposed to pesticide. Sixteen AGR were stabilized, weighed and then divided into four experimental groups (A to D). Two groups were pretreated with vitamin. Group A was exposed to carbendazim only, B- carbendazim + vitamin, C- vitamin only, and D- blank (control). Packed cell volume PCV was estimated by the microhematocrit method, Leucocyte and Platelet counts were determined using the hemocytometric method. Cholinesterase (AchE) and markers of oxidative stress were quantified, and tissue changes examined microscopically. There were no behavioral changes observed in the animals, but there was a decrease in body weight and abortion after 23 days of exposure to carbendazim. There was significant differences in the packed cell volume, the hemoglobin concentration and the red blood cell counts (p < 0.05). The increases in malonyl aldehyde MDA was significant (p < 0.05) in the pesticide intoxicated rats compared to control. Vitamin E supplementation reduced MDA level significantly (p < 0.05). There was a sharp remarkable decrease in acetylcholinesterase levels in the pesticide intoxicated rats (p < 0.05). Vitamin E supplementation normalise the AchE levels comparable to that in control. Grossly, the vital organs appeared normal in the pesticide exposed and control groups except moderate pulmonary congestion. Microscopically, there was severe diffuse hepatocellular swelling in carbendazim exposed group. The severity of hepatocellular injury was reduced in the rats with vitamin E. This study ascertained the toxic effect of carbendazim and antioxidative properties of vitamins in the Africa giant rat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=African%20giant%20rat" title="African giant rat">African giant rat</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=carbendazim" title=" carbendazim"> carbendazim</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticides" title=" pesticides"> pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/26567/carbendazim-toxicity-and-ameliorative-effect-of-vitamin-e-in-african-giant-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Chronic Pesticides Exposure and Certain Endocrine Functions Among Farmers in East Almnaif District, Ismailia, Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amani%20Waheed">Amani Waheed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Kofi"> Mostafa Kofi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaymaa%20Attia"> Shaymaa Attia</a>, <a href="https://publications.waset.org/abstracts/search?q=Soha%20Younis"> Soha Younis</a>, <a href="https://publications.waset.org/abstracts/search?q=Basma%20Abdel%20Hadi"> Basma Abdel Hadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Exposure to pesticides is one of the most important occupational risks among farmers in developing countries. Along with the wide use of pesticides in the world, the concerns over their health impacts are rapidly growing. Objective: To investigate thyroid and reproductive hormones and fasting blood glucose levels among farmers chronically exposed to pesticide from East Almnaif district, Ismailia governorate. Methods: An analytical cross-sectional study was conducted on 43 farmers with active involvement pesticides handling and 43 participants not occupationally exposed to pesticides as the control group. A structured interview questionnaire measuring the sociodemographic characteristics, pesticides exposure characteristics, and safety measures was used. General examination including measurements of height, weight, and blood pressure was done. Moreover, levels of plasma cholinesterase enzyme (PChE), glucose, as well as reproductive and thyroid hormones (TSH, T4, and testosterone) were determined. Results: There were no statistically significant differences between both groups regarding their age, educational level, smoking status, and body mass index. The mean duration of exposure was 20.60 11.06 years. Majority of farmers (76.7%) did not use any personal protective equipment (PPE) during pesticides handling. The mean systolic blood pressure among exposed farmers was greater (134.88 17.18 mm Hg) compared to control group (125 14.69 mm Hg) with statistically significant difference (p = 0.003). The mean diastolic blood pressure was higher (84.02 8.69 mm Hg) compared to control group (78.79 8.98 mm Hg) with statistically significant difference (p = 0.006). The pesticide exposed farmers had statistically significant lower level of PChE (3969.93 1841U/L) than control group (4879.29 1950.08 U/L). Additionally, TSH level was significantly higher in exposed farmers (median =1.39µIU/ml) compared to controls (median = 0.91 µIU/ml) (p=0.032). While, the exposed group had a lower T4 level (6.91 1.91 µg/dl) compared to the control group (7.79 2.10µg/dl), with the statistically significant difference between the two groups (p = 0.045). The exposed group had significantly lower level of testosterone hormone (median=3.37 ng/ml) compared to the control group (median= 6.22 ng/ml) (p=0.003). While, the exposed farmers had statistically insignificant higher level of fasting blood glucose (median =89 mg/dl) than the controls (median=88 mg/dl). Furthermore, farmers who did not use PPE had statistically significant lower level of T4 (6.57 1.81µg/dl) than farmers who used PPE during handling of pesticides (8.01 1.89 µg/dl). Conclusion: Chronic exposure to pesticides exerts disturbing action on reproductive function and thyroid function of the male farmers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chronic%20occupational%20pesticide%20exposure" title="chronic occupational pesticide exposure">chronic occupational pesticide exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=Diabetes%20mellitus" title=" Diabetes mellitus"> Diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=male%20reproductive%20hormones" title=" male reproductive hormones"> male reproductive hormones</a>, <a href="https://publications.waset.org/abstracts/search?q=thyroid%20function" title=" thyroid function"> thyroid function</a> </p> <a href="https://publications.waset.org/abstracts/96334/chronic-pesticides-exposure-and-certain-endocrine-functions-among-farmers-in-east-almnaif-district-ismailia-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> The Potential Role of Some Nutrients and Drugs in Providing Protection from Neurotoxicity Induced by Aluminium in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azza%20A.%20Ali">Azza A. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Abeer%20I.%20Abd%20El-Fattah"> Abeer I. Abd El-Fattah</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaimaa%20S.%20Hussein"> Shaimaa S. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanan%20A.%20Abd%20El-Samea"> Hanan A. Abd El-Samea</a>, <a href="https://publications.waset.org/abstracts/search?q=Karema%20Abu-Elfotuh"> Karema Abu-Elfotuh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Aluminium (Al) represents an environmental risk factor. Exposure to high levels of Al causes neurotoxic effects and different diseases. Vinpocetine is widely used to improve cognitive functions, it possesses memory-protective and memory-enhancing properties and has the ability to increase cerebral blood flow and glucose uptake. Cocoa bean represents a rich source of iron as well as a potent antioxidant. It can protect from the impact of free radicals, reduces stress as well as depression and promotes better memory and concentration. Wheatgrass is primarily used as a concentrated source of nutrients. It contains vitamins, minerals, carbohydrates, amino acids and possesses antioxidant and anti-inflammatory activities. Coenzyme Q10 (CoQ10) is an intracellular antioxidant and mitochondrial membrane stabilizer. It is effective in improving cognitive disorders and has been used as anti-aging. Zinc is a structural element of many proteins and signaling messenger that is released by neural activity at many central excitatory synapses. Objective: To study the role of some nutrients and drugs as Vinpocetine, Cocoa, Wheatgrass, CoQ10 and Zinc against neurotoxicity induced by Al in rats as well as to compare between their potency in providing protection. Methods: Seven groups of rats were used and received daily for three weeks AlCl3 (70 mg/kg, IP) for Al-toxicity model groups except for the control group which received saline. All groups of Al-toxicity model except one group (non-treated) were co-administered orally together with AlCl3 the following treatments; Vinpocetine (20mg/kg), Cocoa powder (24mg/kg), Wheat grass (100mg/kg), CoQ10 (200mg/kg) or Zinc (32mg/kg). Biochemical changes in the rat brain as acetyl cholinesterase (ACHE), Aβ, brain derived neurotrophic factor (BDNF), inflammatory mediators (TNF-α, IL-1β), oxidative parameters (MDA, SOD, TAC) were estimated for all groups besides histopathological examinations in different brain regions. Results: Neurotoxicity and neurodegenerations in the rat brain after three weeks of Al exposure were indicated by the significant increase in Aβ, ACHE, MDA, TNF-α, IL-1β, DNA fragmentation together with the significant decrease in SOD, TAC, BDNF and confirmed by the histopathological changes in the brain. On the other hand, co-administration of each of Vinpocetine, Cocoa, Wheatgrass, CoQ10 or Zinc together with AlCl3 provided protection against hazards of neurotoxicity and neurodegenerations induced by Al, their protection were indicated by the decrease in Aβ, ACHE, MDA, TNF-α, IL-1β, DNA fragmentation together with the increase in SOD, TAC, BDNF and confirmed by the histopathological examinations of different brain regions. Vinpocetine and Cocoa showed the most pronounced protection while Zinc provided the least protective effects than the other used nutrients and drugs. Conclusion: Different degrees of protection from neurotoxicity and neuronal degenerations induced by Al could be achieved through the co-administration of some nutrients and drugs during its exposure. Vinpocetine and Cocoa provided the most protection than Wheat grass, CoQ10 or Zinc which showed the least protective effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum" title="aluminum">aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=neurotoxicity" title=" neurotoxicity"> neurotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=vinpocetine" title=" vinpocetine"> vinpocetine</a>, <a href="https://publications.waset.org/abstracts/search?q=cocoa" title=" cocoa"> cocoa</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20grass" title=" wheat grass"> wheat grass</a>, <a href="https://publications.waset.org/abstracts/search?q=coenzyme%20Q10" title=" coenzyme Q10"> coenzyme Q10</a>, <a href="https://publications.waset.org/abstracts/search?q=Zinc" title=" Zinc"> Zinc</a>, <a href="https://publications.waset.org/abstracts/search?q=rats" title=" rats"> rats</a> </p> <a href="https://publications.waset.org/abstracts/62926/the-potential-role-of-some-nutrients-and-drugs-in-providing-protection-from-neurotoxicity-induced-by-aluminium-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Influence of Protein Malnutrition and Different Stressful Conditions on Aluminum-Induced Neurotoxicity in Rats: Focus on the Possible Protection Using Epigallocatechin-3-Gallate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azza%20A.%20Ali">Azza A. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Asmaa%20Abdelaty"> Asmaa Abdelaty</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20G.%20Khalil"> Mona G. Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20M.%20Kamal"> Mona M. Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Karema%20Abu-Elfotuh"> Karema Abu-Elfotuh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Aluminium (Al) is known as a neurotoxin environmental pollutant that can cause certain diseases as Dementia, Alzheimer's disease, and Parkinsonism. It is widely used in antacid drugs as well as in food additives and toothpaste. Stresses have been linked to cognitive impairment; Social isolation (SI) may exacerbate memory deficits while protein malnutrition (PM) increases oxidative damage in cortex, hippocampus and cerebellum. The risk of cognitive decline may be lower by maintaining social connections. Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea and has antioxidant, anti-inflammatory and anti-atherogenic effects as well as health-promoting effects in CNS. Objective: To study the influence of different stressful conditions as social isolation, electric shock (EC) and inadequate Nutritional condition as PM on neurotoxicity induced by Al in rats as well as to investigate the possible protective effect of EGCG in these stressful and PM conditions. Methods: Rats were divided into two major groups; protected group which was daily treated during three weeks of the experiment by EGCG (10 mg/kg, IP) or non-treated. Protected and non-protected groups included five subgroups as following: One normal control received saline and four Al toxicity groups injected daily for three weeks by ALCl3 (70 mg/kg, IP). One of them served as Al toxicity model, two groups subjected to different stresses either by isolation as mild stressful condition (SI-associated Al toxicity model) or by electric shock as high stressful condition (EC- associated Al toxicity model). The last was maintained on 10% casein diet (PM -associated Al toxicity model). Isolated rats were housed individually in cages covered with black plastic. Biochemical changes in the brain as acetyl cholinesterase (ACHE), Aβ, brain derived neurotrophic factor (BDNF), inflammatory mediators (TNF-α, IL-1β), oxidative parameters (MDA, SOD, TAC) were estimated for all groups. Histopathological changes in different brain regions were also evaluated. Results: Rats exposed to Al for three weeks showed brain neurotoxicity and neuronal degenerations. Both mild (SI) and high (EC) stressful conditions as well as inadequate nutrition (PM) enhanced Al-induced neurotoxicity and brain neuronal degenerations; the enhancement induced by stresses especially in its higher conditions (ES) was more pronounced than that of inadequate nutritional conditions (PM) as indicated by the significant increase in Aβ, ACHE, MDA, TNF-α, IL-1β together with the significant decrease in SOD, TAC, BDNF. On the other hand, EGCG showed more pronounced protection against hazards of Al in both stressful conditions (SI and EC) rather than in PM .The protective effects of EGCG were indicated by the significant decrease in Aβ, ACHE, MDA, TNF-α, IL-1β together with the increase in SOD, TAC, BDNF and confirmed by brain histopathological examinations. Conclusion: Neurotoxicity and brain neuronal degenerations induced by Al were more severe with stresses than with PM. EGCG can protect against Al-induced brain neuronal degenerations in all conditions. Consequently, administration of EGCG together with socialization as well as adequate protein nutrition is advised especially on excessive Al-exposure to avoid the severity of its neuronal toxicity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20pollution" title="environmental pollution">environmental pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum" title=" aluminum"> aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20isolation" title=" social isolation"> social isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20malnutrition" title=" protein malnutrition"> protein malnutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=neuronal%20degeneration" title=" neuronal degeneration"> neuronal degeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=epigallocatechin-3-gallate" title=" epigallocatechin-3-gallate"> epigallocatechin-3-gallate</a>, <a href="https://publications.waset.org/abstracts/search?q=rats" title=" rats"> rats</a> </p> <a href="https://publications.waset.org/abstracts/62761/influence-of-protein-malnutrition-and-different-stressful-conditions-on-aluminum-induced-neurotoxicity-in-rats-focus-on-the-possible-protection-using-epigallocatechin-3-gallate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10