CINXE.COM

Search results for: cake wastewater industry

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cake wastewater industry</title> <meta name="description" content="Search results for: cake wastewater industry"> <meta name="keywords" content="cake wastewater industry"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cake wastewater industry" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cake wastewater industry"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6258</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cake wastewater industry</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6258</span> H2 Production and Treatment of Cake Wastewater Industry via Up-Flow Anaerobic Staged Reactor </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manal%20A.%20Mohsen">Manal A. Mohsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Tawfik"> Ahmed Tawfik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen production from cake wastewater by anaerobic dark fermentation via upflow anaerobic staged reactor (UASR) was investigated in this study. The reactor was continuously operated for four months at constant hydraulic retention time (HRT) of 21.57 hr, PH value of 6 &plusmn; 0.6, temperature of 21.1&deg;C, and organic loading rate of 2.43 gCOD/l.d. The hydrogen production was 5.7 l H<sub>2</sub>/d and the hydrogen yield was 134.8 ml H<sub>2</sub> /g COD<sub>removed</sub>. The system showed an overall removal efficiency of TCOD, TBOD, TSS, TKN, and Carbohydrates of 40 &plusmn; 13%, 59 &plusmn; 18%, 84 &plusmn; 17%, 28 &plusmn; 27%, and 85 &plusmn; 15% respectively during the long term operation period. Based on the available results, the system is not sufficient for the effective treatment of cake wastewater, and the effluent quality of UASR is not complying for discharge into sewerage network, therefore a post treatment is needed (not covered in this study). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cake%20wastewater%20industry" title="cake wastewater industry">cake wastewater industry</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxygen%20demand%20%28COD%29" title=" chemical oxygen demand (COD)"> chemical oxygen demand (COD)</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title=" hydrogen production"> hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=up-flow%20anaerobic%20staged%20reactor%20%28UASR%29" title=" up-flow anaerobic staged reactor (UASR)"> up-flow anaerobic staged reactor (UASR)</a> </p> <a href="https://publications.waset.org/abstracts/40013/h2-production-and-treatment-of-cake-wastewater-industry-via-up-flow-anaerobic-staged-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6257</span> Comparative Analysis of White Bean Cake and Soybean Cake through Sensory Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ijeoma%20Chinyere%20Ukonu">Ijeoma Chinyere Ukonu</a>, <a href="https://publications.waset.org/abstracts/search?q=Linda%20Ojeyokan"> Linda Ojeyokan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study produced and compared the acceptability of white bean cake (akara) and soy bean cake (akara) through sensory evaluation. Two varieties of beans were used; white (haricot) beans and soy beans; processed in the wet (paste) form and dry (flour) form. They were all used in the production of samples of bean cake (akara) under the same condition. Sensory evaluation was carried out on the products; 100% white beans cake paste was labeled (A1), 50% white bean and 50% soya bean cake paste was (B1), 100% white bean cake flour was (A2); 50% white bean cake flour and 50% soya bean cake flour (B2). A five (5) point hedonic scale rating, very good (5), good (4), fair (3), poor (2) and very poor (1) was administered on the ten panel of judge. 40 questionnaires were administered to the general public to access their knowledge of soya beans akara. Correlation analysis was carried out to determine which product is more acceptable. Table, percentages and mean score were methods employed in analyzing data collected. The analysis revealed that soya bean (akara) is generally acceptable except for sample B1 that was rated poor with 2 points, white beans cake was rated very well with 5 points. It was recommended that the hospitality industry could introduce soya bean cakes in the breakfast menu. Families can also include these products in their breakfast. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=akara" title="akara">akara</a>, <a href="https://publications.waset.org/abstracts/search?q=bean%20cake" title=" bean cake"> bean cake</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean" title=" soybean"> soybean</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20bean" title=" white bean "> white bean </a> </p> <a href="https://publications.waset.org/abstracts/54338/comparative-analysis-of-white-bean-cake-and-soybean-cake-through-sensory-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6256</span> Ecotoxicological Safety of Wastewater Treated with Lignocellulosic Adsorbents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%C3%ADsa%20P.%20Cruz-Lopes">Luísa P. Cruz-Lopes</a>, <a href="https://publications.waset.org/abstracts/search?q=Artur%20Figueirinha"> Artur Figueirinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabel%20Br%C3%A1s"> Isabel Brás</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Esteves"> Bruno Esteves</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Portugal is an important wine and olive oil producer, activities which generate a high quantity of residues commonly called grape stalks and olive cake, respectively. In this work grape stalks and olive cake were used as lignocellulosic adsorbents for wastewater containing lead treatment. To attain a better knowledge of the factors that could influence the quality of the treated wastewater, a chemical characterization of the materials used in the treatment was done. To access the ecotoxicological safety of the treated wastewater, several tests were performed. The results of the toxicity test show that the samples leachate has a mild effect on the living models tested. The tests performed in lemna and bacteria were the most sensible to toxicity effects of the samples. The results obtained in this work evidenced the importance of use of simple and fast toxicity tests to predict impacts in the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20composition" title="chemical composition">chemical composition</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20residues" title=" lignocellulosic residues"> lignocellulosic residues</a>, <a href="https://publications.waset.org/abstracts/search?q=ecotoxicological%20safety" title=" ecotoxicological safety"> ecotoxicological safety</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/7640/ecotoxicological-safety-of-wastewater-treated-with-lignocellulosic-adsorbents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6255</span> Assessment of Different Industrial Wastewater Quality in the Most Common Industries in Kuwait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Aljumaa">Mariam Aljumaa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrial wastewater has been increased rapidly in the last decades, however, the generated wastewater is not treated properly on site before transfer it to the treatment plant. In this study, the most common industries (dairy, soft drinks, detergent, and petrochemical) has been studied in term of wastewater quality. The main aim of this study is to characterize and evaluate the quality of the most common industrial wastewater in Kuwait. Industrial wastewater samples were collected from detergents, dairy, beverage, and petrochemical factories. The collected wastewater samples were analyzed for temperature, EC, pH, DO, BOD, COD, TOC, TS, TSS, volatile suspended solids (VSS), total volatile solids (TVS), NO2, NO3, NH3, N, P, K, CaCO3, heavy metals, Total coliform, Fecal coliform, and E.coli bacteria. The results showed that petrochemical industry has the highest concentration of organic and nutrients, followed by detergents wastewater, then dairy, and finally, soft drink wastewater. Regarding the heavy metals, the results showed that dairy wastewater had the highest concentration, specifically in Zinc, Arsenic, and Cadmium. In term of biological analysis, the dairy industry had the highest concentration of total coliform, followed by soft drinks industry, then shampoo industry, and finally petrochemical industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial%20wastewater" title="industrial wastewater">industrial wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20quality" title=" wastewater quality"> wastewater quality</a> </p> <a href="https://publications.waset.org/abstracts/162989/assessment-of-different-industrial-wastewater-quality-in-the-most-common-industries-in-kuwait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6254</span> Protein Isolates from Chickpea (Cicer arietinum L.) and Its Application in Cake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abdullah%20Ahmed">Mohamed Abdullah Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a study of chickpea protein isolate (CPI) preparation, the wet alkaline extraction was carried out. The objectives were to determine the optimal extracting conditions of CPI and apply CPI into a sponge cake recipe to replace egg and make acceptable product. The design used in extraction was a central composite design. The response surface methodology was preferred to graphically express the relationship between extraction time and pH with the output variables of percent yield and protein content of CPI. It was noted that optimal extracting conditions were 60 min and pH 10.5 resulting in 90.07% protein content and 89.15% yield of CPI. The protein isolate (CPI) could be incorporated in cake to 20% without adversely affecting the cake physical properties such as cake hardness and sensory attributes. The higher protein content in cake was corresponding to the amount of CPI added. Therefore, adding CPI can significantly (p<0.05) increase protein content in cake. However, sensory evaluation showed that adding more than 20% of CPI decreased the overall acceptability. The results of this investigation could be used as a basic knowledge of CPI utilization in other food products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chick%20bean%20protein%20isolate" title="chick bean protein isolate">chick bean protein isolate</a>, <a href="https://publications.waset.org/abstracts/search?q=sponge%20cake" title=" sponge cake"> sponge cake</a>, <a href="https://publications.waset.org/abstracts/search?q=utilization" title=" utilization"> utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=sponge" title=" sponge "> sponge </a> </p> <a href="https://publications.waset.org/abstracts/10335/protein-isolates-from-chickpea-cicer-arietinum-l-and-its-application-in-cake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6253</span> Use of Cassava Flour in Cakes Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Silva">S. S. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20A.%20Souza"> S. M. A. Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20F.%20P.%20Oliveira"> C. F. P. Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brazil's agriculture is a major economic base in the country; in addition, family farming is directly responsible for the production of most agricultural products in Brazil, such as cassava. The number of studies on the use of cassava and its derivatives in the food industry has been increased, which is the basis of this study. Sought to develop a food that take advantage the products from farmers, adding value to these products and to study its effects as a replacement for wheat flour. For such elaborated a gluten-free cake – aiming to meet the needs of the celiac public – containing cassava flour, cane sugar, honey, egg, soya oil, coconut desiccated, baking powder and water. For evaluation of their characteristics technological, physicochemical and texture characterizations were done. Cake showed similar characteristics of cake made with wheat flour and growth and aeration of the dough. In sum up, marketing the product is viable, in that it has a typical overall appearance of cake made of wheat flour, meet the needs of celiac people and value the family farming. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=baking" title="baking">baking</a>, <a href="https://publications.waset.org/abstracts/search?q=cake" title=" cake"> cake</a>, <a href="https://publications.waset.org/abstracts/search?q=cassava%20flour" title=" cassava flour"> cassava flour</a>, <a href="https://publications.waset.org/abstracts/search?q=celiac%20disease" title=" celiac disease"> celiac disease</a> </p> <a href="https://publications.waset.org/abstracts/19521/use-of-cassava-flour-in-cakes-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6252</span> Improving the Quality and Nutrient Content of Palm Kernel Cake through Fermentation with Bacillus subtilis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirnawati">Mirnawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Gita%20Ciptaan"> Gita Ciptaan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferawati"> Ferawati </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Objective: Palm kernel cake (PKC) is a waste of the palm oil industry. Indonesia, as the largest palm oil producer in the world, produced 45-46% palm kernel cake. Palm kernel cake can potentially be used as animal ration but its utilization for poultry is limited. Thus, fermentation process was done in order to increase the utilization PKC in poultry ration. An experiment was conducted to study the effect between Inoculum Doses with Bacillus subtilis and fermentation time to improve the quality and nutrient content of fermented Palm Kernel Cake. Material and Methods: 1) Palm kernel cake derived from Palm Kernel Processing Manufacture of Andalas Agro Industry in Pasaman, West Sumatra. 2) Bacillus subtilis obtained from The Research Center of Applied Chemistry LIPI, Bogor. 3) Preparations nutrient agar medium (NA) produced by Difoo - Becton Dickinson. 4) Rice bran 5) Aquades and mineral standard. The experiment used completely randomize design (CRD) with 3 x 3 factorial and 3 replications. The first factors were three doses of inoculum Bacillus subtilis: (3%), (5%), and (7%). The second factor was fermentation time: (1) 2 day, (2) 4 day, and (3) 6 day. The parameters were crude protein, crude fiber, nitrogen retention, and crude fiber digestibility of fermented palm kernel cake (FPKC). Results: The result of the study showed that there was significant interaction (P<0.01) between factor A and factor B and each factor A and B also showed significant effect (P<0.01) on crude protein, crude fiber, nitrogen retention, and crude fiber digestibility. Conclusion: From this study, it can be concluded that fermented PKC with 7% doses of Bacillus subtilis and 6 days fermentation time provides the best result as seen from 24.65% crude protein, 17.35% crude fiber, 68.47% nitrogen retention, 53.25% crude fiber digestibility of fermented palm kernel cake (FPKC). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermentation" title="fermentation">fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20Subtilis" title=" Bacillus Subtilis"> Bacillus Subtilis</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculum" title=" inoculum"> inoculum</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20kernel%20cake" title=" palm kernel cake"> palm kernel cake</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient" title=" nutrient"> nutrient</a> </p> <a href="https://publications.waset.org/abstracts/104216/improving-the-quality-and-nutrient-content-of-palm-kernel-cake-through-fermentation-with-bacillus-subtilis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6251</span> Fouling of Regenerated Ultrafiltration Membrane in Treatment of Oily Wastewater of Palm Oil Refinery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20F.%20Md%20Yunos">K. F. Md Yunos</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20S.%20Pajar"> N. S. Pajar</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20S.%20Azmi"> N. S. Azmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oily wastewater in Malaysian refinery has become a big issue of water and environment pollution to be solved urgently. The results of an experimental study on separation of oily wastewaters are presented. The characteristic of filtration behavior of commercial polymer ultrafiltration (UF) membranes was evaluated in the treatment of oily wastewater from palm oil refinery. The performance of different molecular weight cut off 5kDa and 10kDa regenerated cellulose membrane were evaluated and compared and the fouling behavior were analyzed by scanning electron microscopy (SEM). The effect of pressure (0.5, 1.0, 1.5, 2.0, 2.5 bar) and sample concentration (100%, 75%, 50%, 25%) on fouling of 5kDa and 10kDa membrane were evaluated. The characteristic of the sample solutions were analyzed for turbidity, total dissolved solid (TDS), total suspended solid (TSS), BOD, and COD. The results showed that the best fit to experimental data corresponds to the cake layer formation followed by the intermediate blocking for the experimental conditions tested. A more detailed analysis of the fouling mechanisms was studied by dividing the filtration curves into different regions corresponding to the different fouling mechanisms. Intermediate blocking and cake layer formation or combinations of them were found to occur during the UF experiments depending on the operating conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fouling" title="fouling">fouling</a>, <a href="https://publications.waset.org/abstracts/search?q=oily%20wastewater" title=" oily wastewater"> oily wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=regenerated%20cellulose" title=" regenerated cellulose"> regenerated cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafiltration" title=" ultrafiltration"> ultrafiltration</a> </p> <a href="https://publications.waset.org/abstracts/34235/fouling-of-regenerated-ultrafiltration-membrane-in-treatment-of-oily-wastewater-of-palm-oil-refinery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6250</span> Adsorption of Phosphate from Aqueous Solution Using Filter Cake for Urban Wastewater Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Girmaye%20Abebe">Girmaye Abebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Brook%20Lemma"> Brook Lemma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adsorption of phosphorus (P as PO43-) in filter cake was studied to assess the media's capability in removing phosphorous from wastewaters. The composition of the filter cake that was generated from alum manufacturing process as waste residue has high amount of silicate from the complete silicate analysis of the experiment. Series of batches adsorption experiments were carried out to evaluate parameters that influence the adsorption capacity of PO43-. The factors studied include the effect of contact time, adsorbent dose, thermal pretreatment of the adsorbent, neutralization of the adsorbent, initial PO43- concentration, pH of the solution and effect of co-existing anions. Results showed that adsorption of PO43- is fairly rapid in first 5 min and after that it increases slowly to reach the equilibrium in about 1 h. The treatment efficiency of PO43- was increased with adsorbent extent. About 90% removal efficiency was increased within 1 h at an optimum adsorbent dose of 10 g/L for initial PO43- concentration of 10 mg/L. The amount of PO43- adsorbed increased with increasing initial PO43- concentration. Heat treatment and surface neutralization of the adsorbent did not improve the PO43- removal capacity and efficiency. The percentage of PO43- removal remains nearly constant within the pH range of 3-8. The adsorption data at ambient pH were well fitted to the Langmuir Isotherm and Dubinin–Radushkevick (D–R) isotherm model with a capacity of 25.84 and 157.55 mg/g of the adsorbent respectively. The adsorption kinetic was found to follow a pseudo-second-order rate equation with an average rate constant of 3.76 g.min−1.mg−1. The presence of bicarbonate or carbonate at higher concentrations (10–1000 mg/L) decreased the PO43- removal efficiency slightly while other anions (Cl-, SO42-, and NO3-) have no significant effect within the concentration range tested. The overall result shows that the filter cake is an efficient PO43- removing adsorbent against many parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater" title="wastewater">wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=filter%20cake" title=" filter cake"> filter cake</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20capacity" title=" adsorption capacity"> adsorption capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphate%20%28PO43-%29" title=" phosphate (PO43-)"> phosphate (PO43-)</a> </p> <a href="https://publications.waset.org/abstracts/52701/adsorption-of-phosphate-from-aqueous-solution-using-filter-cake-for-urban-wastewater-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6249</span> Removal of Chloro-Compounds from Pulp and Paper Industry Wastewater Using Electrocoagulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chhaya%20Sharma">Chhaya Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Dushyant%20Kumar"> Dushyant Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work deals with the treatment of wastewater generated by paper industry by using aluminium as anode material. The quantitative and qualitative analyses of chloropenolics have been carried out by using primary clarifier effluent with the help of gas chromatography mass spectrometry. Sixteen chlorophenolics compounds have been identified and estimated. Results indicated that among 16 identified compounds, 7 are 100% removed and overall 66% reduction in chorophenolics compounds have been detected. Moreover, during the treatment, the biodegradability index of wastewater significantly increases, along with 70 % reduction in chemical oxygen demand and 99 % in color. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%20anode" title="aluminium anode">aluminium anode</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorophenolics" title=" chlorophenolics"> chlorophenolics</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocoagulation" title=" electrocoagulation"> electrocoagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20load" title=" pollution load"> pollution load</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/71014/removal-of-chloro-compounds-from-pulp-and-paper-industry-wastewater-using-electrocoagulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6248</span> Tehran Province Water and Wastewater Company Approach on Energy Efficiency by the Development of Renewable Energy to Achieving the Sustainable Development Legal Principle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Parvaresh">Mohammad Parvaresh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Babaee"> Mahdi Babaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahareh%20Arghand"> Bahareh Arghand</a>, <a href="https://publications.waset.org/abstracts/search?q=Roushanak%20Fahimi%20Hanzaee"> Roushanak Fahimi Hanzaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Davood%20Nourmohammadi"> Davood Nourmohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, the intelligent network of water and wastewater as one of the key steps in realizing the smart city in the world. Use of pressure relief valves in urban water networks in order to reduce the pressure is necessary in Tehran city. But use these pressure relief valves lead to waste water, more power consumption, and environmental pollution because Tehran Province Water and Wastewater Co. use a quarter of industry 's electricity. In this regard, Tehran Province Water and Wastewater Co. identified solutions to reduce direct and indirect costs in energy use in the process of production, transmission and distribution of water because this company has extensive facilities and high capacity to realize green economy and industry. The aim of this study is to analyze the new project in water and wastewater industry to reach sustainable development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tehran%20Province%20Water%20and%20Wastewater%20Company" title="Tehran Province Water and Wastewater Company">Tehran Province Water and Wastewater Company</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20network%20efficiency" title=" water network efficiency"> water network efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=International%20Environmental%20Law" title=" International Environmental Law"> International Environmental Law</a> </p> <a href="https://publications.waset.org/abstracts/85116/tehran-province-water-and-wastewater-company-approach-on-energy-efficiency-by-the-development-of-renewable-energy-to-achieving-the-sustainable-development-legal-principle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6247</span> Autohydrolysis Treatment of Olive Cake to Extract Fructose and Sucrose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Bl%C3%A1zquez">G. Blázquez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G%C3%A1lvez-P%C3%A9rez"> A. Gálvez-Pérez</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Calero"> M. Calero</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20I%C3%A1%C3%B1ez-Rodr%C3%ADguez"> I. Iáñez-Rodríguez</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Mart%C3%ADn-Lara"> M. A. Martín-Lara</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20P%C3%A9rez"> A. Pérez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The production of olive oil is considered as one of the most important agri-food industries. However, some of the by-products generated in the process are potential pollutants and cause environmental problems. Consequently, the management of these by-products is currently considered as a challenge for the olive oil industry. In this context, several technologies have been developed and tested. In this sense, the autohydrolysis of these by-products could be considered as a promising technique. Therefore, this study focused on autohydrolysis treatments of a solid residue from the olive oil industry denominated olive cake. This one comes from the olive pomace extraction with hexane. Firstly, a water washing was carried out to eliminate the water soluble compounds. Then, an experimental design was developed for the autohydrolysis experiments carried out in the hydrothermal pressure reactor. The studied variables were temperature (30, 60 and 90 &ordm;C) and time (30, 60, 90 min). On the other hand, aliquots of liquid obtained fractions were analysed by HPLC to determine the fructose and sucrose contents present in the liquid fraction. Finally, the obtained results of sugars contents and the yields of the different experiments were fitted to a neuro-fuzzy and to a polynomial model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANFIS" title="ANFIS">ANFIS</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20cake" title=" olive cake"> olive cake</a>, <a href="https://publications.waset.org/abstracts/search?q=polyols" title=" polyols"> polyols</a>, <a href="https://publications.waset.org/abstracts/search?q=saccharides" title=" saccharides"> saccharides</a> </p> <a href="https://publications.waset.org/abstracts/98419/autohydrolysis-treatment-of-olive-cake-to-extract-fructose-and-sucrose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6246</span> Effects of SRT and HRT on Treatment Performance of MBR and Membrane Fouling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Aida%20Isma">M. I. Aida Isma</a>, <a href="https://publications.waset.org/abstracts/search?q=Azni%20Idris"> Azni Idris</a>, <a href="https://publications.waset.org/abstracts/search?q=Rozita%20Omar"> Rozita Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Putri%20Razreena"> A. R. Putri Razreena </a> </p> <p class="card-text"><strong>Abstract:</strong></p> 40L of hollow fiber membrane bioreactor with solids retention times (SRT) of 30, 15 and 4 days were setup for treating synthetic wastewater at hydraulic retention times (HRT) of 12, 8 and 4 hours. The objectives of the study were to investigate the effects of SRT and HRT on membrane fouling. A comparative analysis was carried out for physiochemical quality parameters (turbidity, suspended solids, COD, NH3-N and PO43-). Scanning electron microscopy (SEM), energy diffusive X-ray (EDX) analyzer and particle size distribution (PSD) were used to characterize the membrane fouling properties. The influence of SRT on the quality of effluent, activated sludge quality, and membrane fouling were also correlated. Lower membrane fouling and slower rise in trans-membrane pressure (TMP) were noticed at the longest SRT and HRT of 30d and 12h, respectively. Increasing SRT results in noticeable reduction of dissolved organic matters. The best removal efficiencies of COD, TSS, NH3-N and PO43- were 93%, 98%, 80% and 30% respectively. The high HRT with shorter SRT induced faster fouling rate. The main fouling resistance was cake layer. The most severe membrane fouling was observed at SRT and HRT of 4 and 12, respectively with thickness cake layer of 17 μm as reflected by higher TMP, lower effluent removal and thick sludge cake layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor" title="membrane bioreactor">membrane bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=SRT" title=" SRT"> SRT</a>, <a href="https://publications.waset.org/abstracts/search?q=HRT" title=" HRT"> HRT</a>, <a href="https://publications.waset.org/abstracts/search?q=fouling" title=" fouling"> fouling</a> </p> <a href="https://publications.waset.org/abstracts/6152/effects-of-srt-and-hrt-on-treatment-performance-of-mbr-and-membrane-fouling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6245</span> Evolution of Nettlespurge Oil Mud for Drilling Mud System: A Comparative Study of Diesel Oil and Nettlespurge Oil as Oil-Based Drilling Mud</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harsh%20Agarwal">Harsh Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Pratikkumar%20Patel"> Pratikkumar Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Maharshi%20Pathak"> Maharshi Pathak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently the low prices of Crude oil and increase in strict environmental regulations limit limits the use of diesel based muds as these muds are relatively costlier and toxic, as a result disposal of cuttings into the eco-system is a major issue faced by the drilling industries. To overcome these issues faced by the Oil Industry, an attempt has been made to develop oil-in-water emulsion mud system using nettlespurge oil. Nettlespurge oil could be easily available and its cost is around ₹30/litre which is about half the price of diesel in India. Oil-based mud (OBM) was formulated with Nettlespurge oil extracted from Nettlespurge seeds using the Soxhlet extraction method. The formulated nettlespurge oil mud properties were analysed with diesel oil mud properties. The compared properties were rheological properties, yield point and gel strength, and mud density and filtration loss properties, fluid loss and filter cake. The mud density measurement showed that nettlespurge OBM was slightly higher than diesel OBM with mud density values of 9.175 lb/gal and 8.5 lb/gal, respectively, at barite content of 70 g. Thus it has a higher lubricating property. Additionally, the filtration loss test results showed that nettlespurge mud fluid loss volumes, oil was 11 ml, compared to diesel oil mud volume of 15 ml. The filtration loss test indicated that the nettlespurge oil mud with filter cake thickness of 2.2 mm had a cake characteristic of thin and squashy while the diesel oil mud resulted in filter cake thickness of 2.7 mm with cake characteristic of tenacious, rubbery and resilient. The filtration loss test results showed that nettlespurge oil mud fluid loss volumes was much less than the diesel based oil mud. The filtration loss test indicated that the nettlespurge oil mud filter cake thickness less than the diesel oil mud filter cake thickness. So Low formation damage and the emulsion stability effect was analysed with this experiment. The nettlespurge oil-in-water mud system had lower coefficient of friction than the diesel oil based mud system. All the rheological properties have shown better results relative to the diesel based oil mud. Therefore, with all the above mentioned factors and with the data of the conducted experiment we could conclude that the Nettlespurge oil based mud is economically and well as eco-logically much more feasible than the worn out and shabby diesel-based oil mud in the Drilling Industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=economical%20feasible" title="economical feasible">economical feasible</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20feasible" title=" ecological feasible"> ecological feasible</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsion%20stability" title=" emulsion stability"> emulsion stability</a>, <a href="https://publications.waset.org/abstracts/search?q=nettle%20spurge%20oil" title=" nettle spurge oil"> nettle spurge oil</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title=" rheological properties"> rheological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=soxhlet%20extraction%20method" title=" soxhlet extraction method"> soxhlet extraction method</a> </p> <a href="https://publications.waset.org/abstracts/64046/evolution-of-nettlespurge-oil-mud-for-drilling-mud-system-a-comparative-study-of-diesel-oil-and-nettlespurge-oil-as-oil-based-drilling-mud" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6244</span> Desodesmus sp.: A Potential Micro Alga to Treat the Textile Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thirunavoukkarasu%20Manikkannan">Thirunavoukkarasu Manikkannan</a>, <a href="https://publications.waset.org/abstracts/search?q=Karpanai%20Selvan%20Balasubramanian"> Karpanai Selvan Balasubramanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Textile industry is the one of the most important industrial sector in India. It accounts for 5% of total Gross Domestic Product (GDP) in the country. A Textile industry consumes large quantities of water (~250 m3/ton of product) and they generate almost ~90% of wastewater from its consumption. The problem is alarming and requires proper treatment process to acquire dual benefit of Zero Liquid Discharge and no contamination to the environment. Here we describe the process by which the textile wastewater can be reused. We have collected the textile wastewater in and around Ayyampettai area of Tamilnadu, India. Among different microalgal strains used, Desodesmus sp. collected at Manali, Chennai, Tamilnadu, India was able to lessen the colour of the waste water in 12-15 hrs of its growth, COD around 81.7%, Dissolved solid reduction was 28 ± 0.5 %, Suspended solid was reduced to 40.5 ± 0.3 %, Dye degradation was 50-78%. Further, Desodesmus sp. able to achieve the biomass of 0.9 ± 0.2 g/L (dry weight) in two weeks’ time, the Chl a content was 11 mg/L. It infers that this algal strain able to utilize the textile wastewater as source for growth and algal biomass production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Desodesmus%20sp." title="Desodesmus sp.">Desodesmus sp.</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=textile" title=" textile"> textile</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/85485/desodesmus-sp-a-potential-micro-alga-to-treat-the-textile-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6243</span> Performance Assessment of Recycled Alum Sludge in the Treatment of Textile Industry Effluent in South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tony%20Ngoy%20Mbodi">Tony Ngoy Mbodi</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Muanda"> Christophe Muanda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Textile industry is considered as one of the most polluting sectors in terms of effluent volume of discharge and wastewater composition, such as dye, which represents an environmental hazard when discharged without any proper treatment. A study was conducted to investigate the capability of the use of recycled alum sludge (RAS) as an alternative treatment for the reduction of colour, chemical oxygen demand (COD), total dissolved solids (TDS) and pH adjustment from dye based synthetic textile industry wastewater. The coagulation/flocculation process was studied for coagulants of Alum:RAS ratio of, 1:1, 2:1, 1:2 and 0:1. Experiments on treating the synthetic wastewater using membrane filtration and adsorption with corn cobs were also conducted. Results from the coagulation experiment were compared to those from adsorption with corn cobs and membrane filtration experiments conducted on the same synthetic wastewater. The results of the RAS experiments were also evaluated against standard guidelines for industrial effluents treated for discharge purposes in order to establish its level of compliance. Based on current results, it can be concluded that reusing the alum sludge as a low-cost material pretreatment method into the coagulation/flocculation process can offer some advantages such as high removal efficiency for disperse dye and economic savings on overall treatment of the industry wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alum" title="alum">alum</a>, <a href="https://publications.waset.org/abstracts/search?q=coagulation%2Fflocculation" title=" coagulation/flocculation"> coagulation/flocculation</a>, <a href="https://publications.waset.org/abstracts/search?q=dye" title=" dye"> dye</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20alum%20sludge" title=" recycled alum sludge"> recycled alum sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20wastewater" title=" textile wastewater"> textile wastewater</a> </p> <a href="https://publications.waset.org/abstracts/69023/performance-assessment-of-recycled-alum-sludge-in-the-treatment-of-textile-industry-effluent-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6242</span> An Industrial Wastewater Management Using Cloud Based IoT System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaarthik%20K.">Kaarthik K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Harshini%20S."> Harshini S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Karthika%20M."> Karthika M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kripanandhini%20T."> Kripanandhini T.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water is an essential part of living organisms. Major water pollution is caused due to contamination of industrial wastewater in the river. The most important step in bringing wastewater contaminants down to levels that are safe for nature is wastewater treatment. The contamination of river water harms both humans who consume it and the aquatic life that lives there. We introduce a new cloud-based industrial IoT paradigm in this work for real-time control and monitoring of wastewater. The proposed system prevents prohibited entry of industrial wastewater into the plant by monitoring temperature, hydrogen power (pH), CO₂ and turbidity factors from the wastewater input that the wastewater treatment facility will process. Real-time sensor values are collected and uploaded to the cloud by the system using an IoT Wi-Fi Module. By doing so, we can prevent the contamination of industrial wastewater entering the river earlier, and the necessary actions will be taken by the users. The proposed system's results are 90% efficient, preventing water pollution due to industry and protecting human lives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sensors" title="sensors">sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82" title=" CO₂"> CO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=turbidity" title=" turbidity"> turbidity</a> </p> <a href="https://publications.waset.org/abstracts/163603/an-industrial-wastewater-management-using-cloud-based-iot-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6241</span> Identification of Persistent Trace Organic Pollutants in Various Waste Water Samples Using HPLC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Almas%20Hamid">Almas Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghazala%20Yaqub"> Ghazala Yaqub</a>, <a href="https://publications.waset.org/abstracts/search?q=Aqsa%20Riaz"> Aqsa Riaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Qualitative validation was performed to detect the presence of persistent organic pollutants (POPs) in various wastewater samples collected from domestic sources (Askari XI housing society, Bedian road Lahore) industrial sources (PET bottles, pharmaceutical, textile) and a municipal drain (Hudiara drain) in Lahore. In addition wastewater analysis of the selected parameter was carried out. pH for wastewater samples from Askari XI, PET bottles, pharmaceutical, textile and Hudiara drain were 6.9, 6.7, 6.27, 7.18 and 7.9 respectively, within the NEQS Pakistan range that is 6-9. TSS for the respective samples was 194, 241, 254, 140 and 251 mg/L, in effluent for pet bottle industry, pharmaceutical and Hudiara drain and exceeded the NEQS Pakistan. Chemical oxygen demand (COD) for the wastewater samples was 896 mg/L, 166 mg/L, 419 mg/L, 812 mg/L and 610 mg/L respectively, all in excess of NEQS (150 mg/L). Similarly the biological oxygen demand (BOD) values (110.8, 170, 423, 355 and 560 mg/L respectively) were also above NEQS limits (80 mg/L). Chloride (Cl-) content, total dissolved solids (TDS) and temperature were found out to be within the prescribed standard limits. The POPs selected for analysis included five pesticides/insecticides (D. D, Karate, Commando, Finis insect killer, Bifenthrin) and three polycyclic aromatic hydrocarbons (PAHs) (naphthalene, anthracene, phenanthrene). Peak values of standards were compared with that of wastewater samples. The results showed the presence of D.D in all wastewater samples, pesticide Karate was identified in Askari XI and textile industry sample. Pesticide Commando, Finis (insect killer) and Bifenthrin were detected in Askari XI and Hudiara drain wastewater samples. In case of PAHs; naphthalene was identified in all the five wastewater samples whereas anthracene and phenanthrene were detected in samples of Askari XI housing society, PET bottles industry, pharmaceutical industry and textile industry but totally absent in Hudiara drain wastewater. Practical recommendations have been put forth to avoid hazardous impacts of incurred samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HPLC%20studies" title="HPLC studies">HPLC studies</a>, <a href="https://publications.waset.org/abstracts/search?q=lahore" title=" lahore"> lahore</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20analysis" title=" physicochemical analysis"> physicochemical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/11765/identification-of-persistent-trace-organic-pollutants-in-various-waste-water-samples-using-hplc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6240</span> Domestic Wastewater Treatment by Microalgae – Removal of Nitrogen </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Siham%20Dehmani">A. Siham Dehmani</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Djamal%20Zerrouki"> B. Djamal Zerrouki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Domestic wastewater contains high concentrations of nitrogen, which can affect public health and cause harmful ecological impacts. The potential of microalgae as a source of renewable energy based on wastewater has received increasing interest worldwide in recent decades. The microalgae cultivation in wastewater has two advantages: wastewater treatment and algal biomass production. Our work aimed to remove nitrogen from municipal wastewater. Wastewater samples were taken from the wastewater treatment station located in Ouargla and used as a medium for the cultivation of chlorella microalgae strains inside a photobioreactor. Analysis of different parameters was done every 2 days along the period of the cultivation (10 days). The average removal efficiencies of nitrogen were maintained at 95%. Our results show the potential of integrating nutrient removal from wastewater by microalgae as a secondary wastewater treatment processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/40854/domestic-wastewater-treatment-by-microalgae-removal-of-nitrogen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6239</span> Nutritive Value of Three-Stage Olive Cake (Olea europaea L.) for Growing Rabbit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahia%20Dorbane">Zahia Dorbane</a>, <a href="https://publications.waset.org/abstracts/search?q=Si%20Ammar%20Kadi"> Si Ammar Kadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalila%20Boudouma"> Dalila Boudouma</a>, <a href="https://publications.waset.org/abstracts/search?q=Thierry%20Gidenne"> Thierry Gidenne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In rabbits feeding, minimum fibre intake is essential to avoid digestive disorders. However, this concentration of fibre is not easy to obtain when formulating feeds, without reduction of nutritional value. Three stage olive cake, the residual material after oil extraction by centrifugation, including pulp and stones, can be used as a fibre source in rabbit diet. The incorporation of olive cake can allow a better balance between different fibre fractions and reduce health disorder. However, for practical use of any raw material, it is necessary to know its chemical and nutritive value. The aim of this study was to assess the nutritive value of three-stage olive cake (TSOC) for growing rabbits. Thus, 36 rabbits weaned at 35 days (702.8 ± 28.5) were divided into three groups of 12 receiving one of the following diets: control with 0% of TSOC, TSOC10 (10% of TSOC) and TSOC20 (20% TSOC). The rabbits were individually housed in digestibility cages and received ad libitum one of the three diets, fresh and clean water was provided ad libitum. After an adaptation period of 7d, feces were collected for 4d. Collected feces were frozen and stored for further analysis. The chemical composition of TSOC shows that it is a rich fiber raw material since it contains (%DM): 6% of CP; 7.4% of EE; 78.7% of NDF; 55.4% of ADF and 24.3% of ADL. The inclusion of TSOC at 20% of basal diet reduced the digestibility coefficient of organic matter, crude protein and NDF from 67.8 to 55.3%, 80.4 to 75.3% and from 31.5 to 18.4% (p < 0.001) respectively. The digestible energy and digestible protein content of the three-stage olive cake estimated by regression was 2.94 ± 0.52MJ DE/kg DM and 22.4 ± 6 g DP/kg DM respectively. In conclusion, based on the results of the present experiment, the three-stage olive cake can be used as a fibre source for rabbit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digestibility" title="digestibility">digestibility</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritive%20value" title=" nutritive value"> nutritive value</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20cake" title=" olive cake"> olive cake</a>, <a href="https://publications.waset.org/abstracts/search?q=rabbit" title=" rabbit"> rabbit</a> </p> <a href="https://publications.waset.org/abstracts/106579/nutritive-value-of-three-stage-olive-cake-olea-europaea-l-for-growing-rabbit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6238</span> Edible Oil Industry Wastewater Treatment by Microfiltration with Ceramic Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zita%20%C5%A0ere%C5%A1">Zita Šereš</a>, <a href="https://publications.waset.org/abstracts/search?q=Dragana%20%C5%A0oronja%20Simovi%C4%87"> Dragana Šoronja Simović</a>, <a href="https://publications.waset.org/abstracts/search?q=Ljubica%20Doki%C4%87"> Ljubica Dokić</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidietta%20Giorno"> Lidietta Giorno</a>, <a href="https://publications.waset.org/abstracts/search?q=Biljana%20Pajin"> Biljana Pajin</a>, <a href="https://publications.waset.org/abstracts/search?q=Cecilia%20Hodur"> Cecilia Hodur</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikola%20Maravi%C4%87"> Nikola Maravić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Membrane technology is convenient for separation of suspended solids, colloids and high molecular weight materials that are present. The idea is that the waste stream from edible oil industry, after the separation of oil by using skimmers is subjected to microfiltration and the obtained permeate can be used again in the production process. The wastewater from edible oil industry was used for the microfiltration. For the microfiltration of this effluent a tubular membrane was used with a pore size of 200 nm at transmembrane pressure in range up to 3 bar and in range of flow rate up to 300 L/h. Box&ndash;Behnken design was selected for the experimental work and the responses considered were permeate flux and chemical oxygen demand (COD) reduction. The reduction of the permeate COD was in the range 40-60% according to the feed. The highest permeate flux achieved during the process of microfiltration was 160 L/m<sup>2</sup>h. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane" title="ceramic membrane">ceramic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=edible%20oil" title=" edible oil"> edible oil</a>, <a href="https://publications.waset.org/abstracts/search?q=microfiltration" title=" microfiltration"> microfiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/40236/edible-oil-industry-wastewater-treatment-by-microfiltration-with-ceramic-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6237</span> Microfiltration of the Sugar Refinery Wastewater Using Ceramic Membrane with Kenics Static Mixer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zita%20%C5%A0ere%C5%A1">Zita Šereš</a>, <a href="https://publications.waset.org/abstracts/search?q=Ljubica%20Doki%C4%87"> Ljubica Dokić</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikola%20Maravi%C4%87"> Nikola Maravić</a>, <a href="https://publications.waset.org/abstracts/search?q=Dragana%20%20%C5%A0oronja%20Simovi%C4%87"> Dragana Šoronja Simović</a>, <a href="https://publications.waset.org/abstracts/search?q=Cecilia%20Hodur"> Cecilia Hodur</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Nikoli%C4%87"> Ivana Nikolić</a>, <a href="https://publications.waset.org/abstracts/search?q=Biljana%20Pajin"> Biljana Pajin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New environmental regulations and the increasing market preference for companies that respect the ecosystem had encouraged the industry to look after new treatments for its effluents. The sugar industry, one of the largest emitter of environmental pollutants, follows this tendency. Membrane technology is convenient for separation of suspended solids, colloids and high molecular weight materials that are present in a wastewater from the sugar industry. The idea is to microfilter the wastewater, where the permeate passes through the membrane and becomes available for recycle and re-use in the sugar manufacturing process. For microfiltration of this effluent a tubular ceramic membrane was used with a pore size of 200 nm at transmembrane pressure in range of 1 – 3 bars and in range of flow rate of 50 – 150 l/h. Kenics static mixer was used for permeate flux enhancement. Turbidity and suspended solids were removed and the permeate flux was continuously monitored during the microfiltration process. The flux achieved after 90 minutes of microfiltration was in a range of 50-70 L/m2h. The obtained turbidity decrease was in the range of 50-99% and the total amount of suspended solids was removed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane" title="ceramic membrane">ceramic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=microfiltration" title=" microfiltration"> microfiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=permeate%20flux" title=" permeate flux"> permeate flux</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar%20industry" title=" sugar industry"> sugar industry</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/28798/microfiltration-of-the-sugar-refinery-wastewater-using-ceramic-membrane-with-kenics-static-mixer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6236</span> The Effects of Applying Wash and Green-A Syrups as Substitution of Sugar on Dough and Cake Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Banafsheh%20Aghamohammadi">Banafsheh Aghamohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Honarvar"> Masoud Honarvar</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Ghiassi%20Tarzi"> Babak Ghiassi Tarzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Usage of different components has been considered to improve the quality and nutritional properties of cakes in recent years. The effects of applying some sweeteners, instead of sugar, have been evaluated in cakes and many bread formulas up to now; but there has not been any research about the usage of by-products of sugar factories such as Wash and Green-A Syrups in cake formulas. In this research, the effects of substituting 25%, 50%, 75% and 100% of sugar with Wash and Green-A Syrups on some dough and cake properties, such as pH, viscosity, density, volume, weight loss, moisture, water activity, texture, staling, color and sensory evaluations, are studied. The results of these experiments showed that the pH values were not significantly different among any of the all cake batters and also most of the cake samples. Although differences among viscosity and specific gravity of all treatments were both significant and insignificant, these two parameters resulted in higher volume in all samples than the blank one. The differences in weight loss, moisture content and water activity of samples were insignificant. Evaluating of texture showed that the softness of most of samples is increased and the staling is decreased. Crumb color and sensory evaluations of samples were also affected by the replacement of sucrose with Wash and Green-A Syrups. According to the results, we can increase the shelf life and improve the quality and nutritional values of cake by using these kinds of syrups in the formulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cake" title="cake">cake</a>, <a href="https://publications.waset.org/abstracts/search?q=green-A%20syrup" title=" green-A syrup"> green-A syrup</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20tests" title=" quality tests"> quality tests</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20evaluation" title=" sensory evaluation"> sensory evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=wash%20syrup" title=" wash syrup"> wash syrup</a> </p> <a href="https://publications.waset.org/abstracts/62504/the-effects-of-applying-wash-and-green-a-syrups-as-substitution-of-sugar-on-dough-and-cake-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6235</span> Hybrid Treatment Method for Decolorization of Mixed Dyes: Rhodamine-B, Brilliant Green and Congo Red</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Naresh%20Yadav">D. Naresh Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Anand%20Kishore"> K. Anand Kishore</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhaskar%20Bethi"> Bhaskar Bethi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shirish%20H.%20Sonawane"> Shirish H. Sonawane</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Bhagawan"> D. Bhagawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The untreated industrial wastewater discharged into the environment causes the contamination of soil, water and air. Advanced treatment methods for enhanced wastewater treatment are attracting substantial interest among the currently employed unit processes in wastewater treatment. The textile industry is one of the predominant in wastewater production at current industrialized situation. The refused dyes at textile industry need to be treated in proper manner before its discharge into water bodies. In the present investigation, hybrid treatment process has been developed for the treatment of synthetic mixed dye wastewater. Photocatalysis and ceramic nanoporous membrane are mainly used for process integration to minimize the fouling and increase the flux. Commercial semiconducting powders (TiO2 and ZnO) has used as a nano photocatalyst for the degradation of mixed dye in the hybrid system. Commercial ceramic nanoporous tubular membranes have been used for the rejection of dye and suspended catalysts. Photocatalysis with catalyst has shown the average of 34% of decolorization (RB-32%, BG-34% and CR-36%), whereas ceramic nanofiltration has shown the 56% (RB-54%, BG-56% and CR-58%) of decolorization. Integration of photocatalysis and ceramic nanofiltration has shown 96% (RB-94%, BG-96% and CR-98%) of dye decolorization over 90 min of operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title="photocatalysis">photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20nanoporous%20membrane" title=" ceramic nanoporous membrane"> ceramic nanoporous membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20oxidation%20process" title=" advanced oxidation process"> advanced oxidation process</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20integration" title=" process integration"> process integration</a> </p> <a href="https://publications.waset.org/abstracts/76768/hybrid-treatment-method-for-decolorization-of-mixed-dyes-rhodamine-b-brilliant-green-and-congo-red" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6234</span> Blood Profile of Weaner Rabbits Fed Pigeon Pea (Cajanus cajan) Meal as Replacement for Groundnut Cake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adedokun%20Mathew%20Adewale">Adedokun Mathew Adewale</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayandiran%20Samuel%20Kola"> Ayandiran Samuel Kola</a>, <a href="https://publications.waset.org/abstracts/search?q=Adekunle%20Ibironke"> Adekunle Ibironke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pigeon pea (Cajanus cajan) seeds contain about 20–22 percent protein and appreciable amounts of essential amino acids and minerals. Hence, this study evaluated the blood profile of weaner rabbits fed Cajanus cajan meal (CCM) as a replacement for groundnut cake. Forty weaner rabbits of mixed breed aged 5 - 6 weeks were used for the study, which lasted for 8 weeks. The rabbits were randomly allocated to four treatments (10 rabbits per treatment) in a completely randomized design. Four concentrate diets were compounded by direct replacement of groundnut cake with Cajanus cajan meal (CCM) at 0, 50, 75, and 100%, respectively. There were no significant differences (p>0.05) among the mean counts of packed cell volume, red blood cell, haemoglobin, and monocyte. The 75% CCM diet had significantly the highest (p<0.05). However, rabbits fed diets containing CCM had significantly higher (p<0.05) eosinophil than 0%CCM. Rabbits fed diets containing 100%CCM had significantly highest (p<0.05) total protein followed by 0%CCM, 75%CCM, and least 50%CCM, while 0%CCM and 75%CCM diets were significantly higher (p<0.05) in albumin. However, animals fed diets containing CCM had significantly lower (p<0.05) cholesterol content than 0%CCM diet. It could be concluded that Cajanus cajan meal could replace groundnut cake up to 100% in the diets of rabbits without any deleterious effect on the blood profile of the animals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20profile" title="blood profile">blood profile</a>, <a href="https://publications.waset.org/abstracts/search?q=groundnut%20cake" title=" groundnut cake"> groundnut cake</a>, <a href="https://publications.waset.org/abstracts/search?q=pigeon%20pea" title=" pigeon pea"> pigeon pea</a>, <a href="https://publications.waset.org/abstracts/search?q=weaner%20rabbits" title=" weaner rabbits"> weaner rabbits</a> </p> <a href="https://publications.waset.org/abstracts/194121/blood-profile-of-weaner-rabbits-fed-pigeon-pea-cajanus-cajan-meal-as-replacement-for-groundnut-cake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">12</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6233</span> Wastewater Treatment Using Microalgae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chigbo%20Ikechukwu%20Emmanuel">Chigbo Ikechukwu Emmanuel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microalgae can be used for tertiary treatment of wastewater due to their capacity to assimilate nutrients. The pH increase which is mediated by the growing algae also induces phosphorus precipitation and ammonia stripping to the air, and may in addition act disinfecting on the wastewater. Domestic wastewater is ideal for algal growth since it contains high concentrations of all necessary nutrients. The growth limiting factor is rather light, especially at higher latitudes. The most important operational factors for successful wastewater treatment with microalgae are depth, turbulence and hydraulic retention time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microalgae" title="microalgae">microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus" title=" phosphorus"> phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=light" title=" light"> light</a>, <a href="https://publications.waset.org/abstracts/search?q=operation" title=" operation"> operation</a>, <a href="https://publications.waset.org/abstracts/search?q=ponds" title=" ponds"> ponds</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a> </p> <a href="https://publications.waset.org/abstracts/15818/wastewater-treatment-using-microalgae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6232</span> Determination of the Oxidative Potential of Organic Materials: Method Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jui%20Afrin">Jui Afrin</a>, <a href="https://publications.waset.org/abstracts/search?q=Akhtarul%20Islam"> Akhtarul Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the solution of glucose, yeast and glucose yeast mixture are being used as sample solution for determining the chemical oxygen demand (COD). In general COD determination method used to determine the different rang of oxidative potential. But in this work has shown to determine the definite oxidative potential for different concentration for known COD value and wanted to see the difference between experimental value and the theoretical value for evaluating the method drawbacks. In this study, made the values of oxidative potential like 400 mg/L, 500 mg/L, 600 mg/L, 700 mg/L and 800mg/L for various sample solutions and determined the oxidative potential according to our developed method. Plotting the experimental COD values vs. sample solutions of various concentrations in mg/L to draw the curve. From these curves see that the curves for glucose solution is not linear; its deviate from linearity for the lower concentration and the reason for this deviation is unknown. If these drawback can be removed this method can be effectively used to determine Oxidative Potential of Industrial wastewater (such as: Leather industry wastewater, Municipal wastewater, Food industry wastewater, Textile wastewater, Pharmaceuticals waste water) that’s why more experiment and study required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bod%20%28biological%20oxygen%20demand%29" title="bod (biological oxygen demand)">bod (biological oxygen demand)</a>, <a href="https://publications.waset.org/abstracts/search?q=cod%20%28chemical%20oxygen%20demand%29" title=" cod (chemical oxygen demand)"> cod (chemical oxygen demand)</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20potential" title=" oxidative potential"> oxidative potential</a>, <a href="https://publications.waset.org/abstracts/search?q=titration" title=" titration"> titration</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a> </p> <a href="https://publications.waset.org/abstracts/40766/determination-of-the-oxidative-potential-of-organic-materials-method-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6231</span> Harnessing the Potential of Renewable Energy Sources to Reduce Fossil Energy Consumption in the Wastewater Treatment Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hen%20Friman">Hen Friman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various categories of aqueous solutions are discharged within residential, institutional, commercial, and industrial structures. To safeguard public health and preserve the environment, it is imperative to subject wastewater to treatment processes that eliminate pathogens (such as bacteria and viruses), nutrients (such as nitrogen and phosphorus), and other compounds. Failure to address untreated sewage accumulation can result in an array of adverse consequences. Israel exemplifies a special case in wastewater management. Appropriate wastewater treatment significantly benefits sectors such as agriculture, tourism, horticulture, and industry. Nevertheless, untreated sewage in settlements lacking proper sewage collection or transportation networks remains an ongoing and substantial threat. Notably, the process of wastewater treatment entails substantial energy consumption. Consequently, this study explores the integration of solar energy as a renewable power source within the wastewater treatment framework. By incorporating renewable energy sources into the process, costs can be minimized, and decentralized facilities can be established even in areas lacking adequate infrastructure for traditional treatment methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title="renewable energy">renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=innovative" title=" innovative"> innovative</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a> </p> <a href="https://publications.waset.org/abstracts/168354/harnessing-the-potential-of-renewable-energy-sources-to-reduce-fossil-energy-consumption-in-the-wastewater-treatment-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6230</span> Environmental Engineering Case Study of Waste Water Treatement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harold%20Jideofor">Harold Jideofor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wastewater treatment consists of applying known technology to improve or upgrade the quality of a wastewater. Usually wastewater treatment will involve collecting the wastewater in a central, segregated location (the Wastewater Treatment Plant) and subjecting the wastewater to various treatment processes. Most often, since large volumes of wastewater are involved, treatment processes are carried out on continuously flowing wastewaters (continuous flow or "open" systems) rather than as "batch" or a series of periodic treatment processes in which treatment is carried out on parcels or "batches" of wastewaters. While most wastewater treatment processes are continuous flow, certain operations, such as vacuum filtration, involving storage of sludge, the addition of chemicals, filtration and removal or disposal of the treated sludge, are routinely handled as periodic batch operations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title="wastewater treatment">wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20engineering" title=" environmental engineering"> environmental engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a> </p> <a href="https://publications.waset.org/abstracts/14980/environmental-engineering-case-study-of-waste-water-treatement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">586</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6229</span> Comparative Study of Fenton and Activated Carbon Treatment for Dyeing Waste Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prem%20Mohan">Prem Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=Namrata%20Jariwala"> Namrata Jariwala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years 10000 dyes are approximately used by dying industry which makes dyeing wastewater more complex in nature. It is very difficult to treat dyeing wastewater by conventional methods. Here an attempt has been made to treat dyeing wastewater by the conventional and advanced method for removal of COD. Fenton process is the advanced method and activated carbon treatment is the conventional method. Experiments have been done on synthetic wastewater prepared from three different dyes; acidic, disperse and reactive. Experiments have also been conducted on real effluent obtained from industry. The optimum dose of catalyst and hydrogen peroxide in Fenton process and optimum activated carbon dose for each of these wastewaters were obtained. In Fenton treatment, COD removal was obtained up to 95% whereas 70% removal was obtained with activated carbon treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20oxidation%20process" title=" advanced oxidation process"> advanced oxidation process</a>, <a href="https://publications.waset.org/abstracts/search?q=dyeing%20waste%20water" title=" dyeing waste water"> dyeing waste water</a>, <a href="https://publications.waset.org/abstracts/search?q=fenton%20oxidation%20process" title=" fenton oxidation process"> fenton oxidation process</a> </p> <a href="https://publications.waset.org/abstracts/81307/comparative-study-of-fenton-and-activated-carbon-treatment-for-dyeing-waste-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cake%20wastewater%20industry&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cake%20wastewater%20industry&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cake%20wastewater%20industry&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cake%20wastewater%20industry&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cake%20wastewater%20industry&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cake%20wastewater%20industry&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cake%20wastewater%20industry&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cake%20wastewater%20industry&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cake%20wastewater%20industry&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cake%20wastewater%20industry&amp;page=208">208</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cake%20wastewater%20industry&amp;page=209">209</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cake%20wastewater%20industry&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10