CINXE.COM
Search results for: Graphene
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Graphene</title> <meta name="description" content="Search results for: Graphene"> <meta name="keywords" content="Graphene"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Graphene" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Graphene"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 376</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Graphene</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">376</span> Sunlight-Activated Graphene Heterostructure Transparent Cathodes for High-Performance Graphene/Si Schottky Junction Photovoltaics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Po-Sun%20Ho">Po-Sun Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Wei%20Chen"> Chun-Wei Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work demonstrated a “sunlight-activated” graphene-heterostructure transparent electrode in which photogenerated charges from a light-absorbing material are transferred to graphene, resulting in the modulation of electrical properties of the graphene transparent electrode caused by a strong light–matter interaction at graphene-heterostructure interfaces. A photoactive graphene/TiOx-heterostructure transparent cathode was used to fabricate an n-graphene/p-Si Schottky junction solar cell, achieving a record-high power conversion efficiency (>10%). The photoactive graphene-heterostructure transparent electrode, which exhibits excellent tunable electrical properties under sunlight illumination, has great potential for use in the future development of graphene-based photovoltaics and optoelectronics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=transparent%20electrode" title=" transparent electrode"> transparent electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%2FSi%20Schottky%20junction" title=" graphene/Si Schottky junction"> graphene/Si Schottky junction</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cells" title=" solar cells"> solar cells</a> </p> <a href="https://publications.waset.org/abstracts/61633/sunlight-activated-graphene-heterostructure-transparent-cathodes-for-high-performance-graphenesi-schottky-junction-photovoltaics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">375</span> Scanning Electronic Microscopy for Analysis of the Effects of Surfactants on De-Wrinkling and Dispersion of Graphene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kostandinos%20Katsamangas">Kostandinos Katsamangas</a>, <a href="https://publications.waset.org/abstracts/search?q=Fawad%20Inam"> Fawad Inam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene was dispersed using a tip sonicator and the effect of surfactants were analysed. Sodium Dodecyl Sulphate (SDS) and Polyvinyl Alcohol (PVA) were compared to observe whether or not they had any effect on any de-wrinkling, and secondly whether they aided to achieve better dispersions. There is a huge demand for wrinkle free graphene as this will greatly increase its usefulness in various engineering applications. A comprehensive literature on de-wrinkling graphene has been discussed. Low magnification Scanning Electronic Microscopy (SEM) was conducted to assess the quality of graphene de-wrinkling. The utilization of the PVA has a significant effect on de-wrinkling whereas SDS had minimal effect on the de-wrinkling of graphene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Graphene" title="Graphene">Graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=de-wrinkling" title=" de-wrinkling"> de-wrinkling</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactants" title=" surfactants"> surfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electronic%20microscopy" title=" scanning electronic microscopy"> scanning electronic microscopy</a> </p> <a href="https://publications.waset.org/abstracts/26054/scanning-electronic-microscopy-for-analysis-of-the-effects-of-surfactants-on-de-wrinkling-and-dispersion-of-graphene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">374</span> Antireflection Performance of Graphene Directly Deposited on Silicon Substrate by the Atmospheric Pressure Chemical Vapor Deposition Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Naghdi">Samira Naghdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyong%20Yop%20Rhee"> Kyong Yop Rhee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transfer-free synthesis of graphene on dielectric substrates is highly desirable but remains challenging. Here, by using a thin sacrificial platinum layer as a catalyst, graphene was deposited on a silicon substrate through a simple and transfer-free synthesis method. During graphene growth, the platinum layer evaporated, resulting in direct deposition of graphene on the silicon substrate. In this work, different growth conditions of graphene were optimized. Raman spectra of the produced graphene indicated that the obtained graphene was bilayer. The sheet resistance obtained from four-point probe measurements demonstrated that the deposited graphene had high conductivity. Reflectance spectroscopy of graphene-coated silicon showed a decrease in reflectance across the wavelength range of 200-800 nm, indicating that the graphene coating on the silicon surface had antireflection capabilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antireflection%20coating" title="antireflection coating">antireflection coating</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20vapor%20deposition" title=" chemical vapor deposition"> chemical vapor deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20sheet%20resistance" title=" the sheet resistance"> the sheet resistance</a> </p> <a href="https://publications.waset.org/abstracts/92381/antireflection-performance-of-graphene-directly-deposited-on-silicon-substrate-by-the-atmospheric-pressure-chemical-vapor-deposition-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">373</span> Annealing of the Contact between Graphene and Metal: Electrical and Raman Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Sakavi%C4%8Dius">A. Sakavičius</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Luk%C5%A1a"> A. Lukša</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Nargelien%C4%97"> V. Nargelienė</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Bukauskas"> V. Bukauskas</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Astromskas"> G. Astromskas</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20%C5%A0etkus"> A. Šetkus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate the influence of annealing on the properties of a contact between graphene and metal (Au and Ni), using circular transmission line model (CTLM) contact geometry. Kelvin probe force microscopy (KPFM) and Raman spectroscopy are applied for characterization of the surface and interface properties. Annealing causes a decrease of the metal-graphene contact resistance for both Ni and Au. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Au%2FGraphene%20contacts" title="Au/Graphene contacts">Au/Graphene contacts</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=Kelvin%20force%20probe%20microscopy" title=" Kelvin force probe microscopy"> Kelvin force probe microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=NiC%2FGraphene%20contacts" title=" NiC/Graphene contacts"> NiC/Graphene contacts</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni%2FGraphene%20contacts" title=" Ni/Graphene contacts"> Ni/Graphene contacts</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title=" Raman spectroscopy"> Raman spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/67751/annealing-of-the-contact-between-graphene-and-metal-electrical-and-raman-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">372</span> Nitrite Sensor Platform Functionalized Reduced Graphene Oxide with Thionine Dye Based</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurulasma%20Zainudin">Nurulasma Zainudin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mashitah%20Mohd%20Yusoff"> Mashitah Mohd Yusoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwok%20Feng%20Chong"> Kwok Feng Chong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Functionalized reduced graphene oxide is essential importance for their end applications. Chemical functionalization of reduced graphene oxide with strange atoms is a leading strategy to modify the properties of the materials moreover maintains the inherent properties of reduced graphene oxide. A thionine functionalized reduce graphene oxide electrode was fabricated and was used to electrochemically determine nitrite. The electrochemical behaviour of thionine functionalized reduced graphene oxide towards oxidation of nitrite via cyclic voltammetry was studied and the proposed method exhibited enhanced electrocatalytic behaviour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrite" title="nitrite">nitrite</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=thionine" title=" thionine"> thionine</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20graphene%20oxide" title=" reduced graphene oxide"> reduced graphene oxide</a> </p> <a href="https://publications.waset.org/abstracts/37261/nitrite-sensor-platform-functionalized-reduced-graphene-oxide-with-thionine-dye-based" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">371</span> Effect of Hydroxyl Functionalization on the Mechanical and Fracture Behaviour of Monolayer Graphene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akarsh%20Verma">Akarsh Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Avinash%20Parashar"> Avinash Parashar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this article is to study the effects of hydroxyl functional group on the mechanical strength and fracture toughness of graphene. This functional group forms the backbone of intrinsic atomic structure of graphene oxide (GO). Molecular dynamics-based simulations were performed in conjunction with reactive force field (ReaxFF) parameters to capture the mode-I fracture toughness of hydroxyl functionalised graphene. Moreover, these simulations helped in concluding that spatial distribution and concentration of hydroxyl functional group significantly affects the fracture morphology of graphene nanosheet. In contrast to literature investigations, atomistic simulations predicted a transition in the failure morphology of hydroxyl functionalised graphene from brittle to ductile as a function of its spatial distribution on graphene sheet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=ReaxFF" title=" ReaxFF"> ReaxFF</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a> </p> <a href="https://publications.waset.org/abstracts/84672/effect-of-hydroxyl-functionalization-on-the-mechanical-and-fracture-behaviour-of-monolayer-graphene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">370</span> Facile Synthesis of Metal Nanoparticles on Graphene via Galvanic Displacement Reaction for Sensing Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juree%20Hong">Juree Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanggeun%20Lee"> Sanggeun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungmok%20Seo"> Jungmok Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Taeyoon%20Lee"> Taeyoon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report a facile synthesis of metal nano particles (NPs) on graphene layer via galvanic displacement reaction between graphene-buffered copper (Cu) and metal ion-containing salts. Diverse metal NPs can be formed on graphene surface and their morphologies can be tailored by controlling the concentration of metal ion-containing salt and immersion time. The obtained metal NP-decorated single-layer graphene (SLG) has been used as hydrogen gas (H2) sensing material and exhibited highly sensitive response upon exposure to 2% of H2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20nanoparticle" title="metal nanoparticle">metal nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=galvanic%20displacement%20reaction" title=" galvanic displacement reaction"> galvanic displacement reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20sensor" title=" hydrogen sensor"> hydrogen sensor</a> </p> <a href="https://publications.waset.org/abstracts/18400/facile-synthesis-of-metal-nanoparticles-on-graphene-via-galvanic-displacement-reaction-for-sensing-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">369</span> Next Generation Membrane for Water Desalination: Facile Fabrication of Patterned Graphene Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae-Kyung%20Choi">Jae-Kyung Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Soon-Yong%20Kwon"> Soon-Yong Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung%20Duk%20Yun"> Hyung Duk Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun-Sang%20Chung"> Hyun-Sang Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Seongho%20Seo"> Seongho Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Kukjin%20Bae"> Kukjin Bae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, there were several attempts to utilize a graphene layer as a water desalination membrane. In order to use a graphene layer as a water desalination membrane, fabrication of crack-free suspension of graphene on a porous membrane, having hydrophobic surface, and generation of a uniform holes on a graphene are very important. In here, we showed a simple chemical vapor deposition (CVD) method to create a patterned graphene membrane on a patterned platinum film. After CVD growth process of patterned graphene layer/patterned Pt on SiO2 substrates, the patterned graphene layer can be successfully transferred onto arbitrary substrates via thermal-assisted transfer method. In this result, the transferred patterned graphene membrane has so hydrophobic surface which will certainly impact on the naturally and speed pass way for fresh water. In addition to this, we observed that overlapping of patterned graphene membranes reported previously by our group may generate different size of holes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20vapor%20deposition%20%28CVD%29" title="chemical vapor deposition (CVD)">chemical vapor deposition (CVD)</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic%20surface" title=" hydrophobic surface"> hydrophobic surface</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20desalination" title=" membrane desalination"> membrane desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20graphene" title=" porous graphene"> porous graphene</a> </p> <a href="https://publications.waset.org/abstracts/57970/next-generation-membrane-for-water-desalination-facile-fabrication-of-patterned-graphene-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">368</span> Facile, Cost Effective and Green Synthesis of Graphene in Alkaline Aqueous Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Illyas%20Isa">Illyas Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Nur%20Akmar%20Mohd%20Yazid"> Siti Nur Akmar Mohd Yazid</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhayati%20Hashim"> Norhayati Hashim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report a simple, green and cost effective synthesis of graphene via chemical reduction of graphene oxide in alkaline aqueous solution. Extensive characterizations have been studied to confirm the formation of graphene in sodium carbonate solution. Cyclic voltammetry was used to study the electrochemical properties of the prepared graphene-modified glassy carbon electrode using potassium ferricyanide as a redox probe. Based on the result, with the addition of graphene to the glassy carbon electrode the current flow increases and the peak also broadens as compared to graphite and graphene oxide. This method is fast, cost effective, and green as nontoxic solvents are used which will not result in contamination of the products. Thus, this method can serve for the preparation of graphene which can be effectively used in sensors, electronic devices and supercapacitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20reduction" title="chemical reduction">chemical reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title=" electrochemical"> electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20synthesis" title=" green synthesis"> green synthesis</a> </p> <a href="https://publications.waset.org/abstracts/45193/facile-cost-effective-and-green-synthesis-of-graphene-in-alkaline-aqueous-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">367</span> Effects of Biocompatible Substrates on the Electrical Properties of Graphene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Simchi">M. Simchi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Amiri"> M. Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Rezvani"> E. Rezvani</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Mirzaei"> I. Mirzaei</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Berahman"> M. Berahman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Simchi"> A. Simchi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Fardmanesh"> M. Fardmanesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene is a single-atomic two-dimensional crystal of carbon atoms that has considerable properties due to its unique structure and physics with applications in different fields. Graphene has sensitive electrical properties due to its atomic-thin structure. Along with the substrate materials and their influence on the transport properties in graphene, design and fabrication of graphene-based devices for biomedical and biosensor applications are challenging. In this work, large-area high-quality graphene nanosheets were prepared by low pressure chemical vapor deposition using methane gas as carbon source on copper foil and transferred on the biocompatible substrates. Through deposition of titanium and gold contacts, current-voltage response of the transferred graphene on four biocompatible substrates, including PDMS, SU-8, Nitrocellulose, and Kapton (Fig. 2) were experimentally determined. The considerable effect of the substrate type on the electrical properties of graphene is shown. The sheet resistance of graphene is changed from 0.34 to 14.5 kΩ/sq, depending on the substrate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocompatible%20substrates" title="biocompatible substrates">biocompatible substrates</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20properties" title=" electrical properties"> electrical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=sheet%20resistance" title=" sheet resistance"> sheet resistance</a> </p> <a href="https://publications.waset.org/abstracts/119292/effects-of-biocompatible-substrates-on-the-electrical-properties-of-graphene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">366</span> Properties of Hot-Pressed Alumina-Graphene Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Rutkowski">P. Rutkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20G%C3%B3rny"> G. Górny</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Stobierski"> L. Stobierski</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Zientara"> D. Zientara</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Piekarczyk"> W. Piekarczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Tran"> K. Tran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The polycrystalline dense alumina shows thermal conductivity about 30 W/mK and very high electrical resistivity. These last two properties can be modified by introducing commercial relatively cheap graphene nanoparticles which, as two-dimensional flakes show very high thermal and electrical properties. The aim of this work is to show that it is possible to manufacture the anisotropic alumina-graphene material with directed multilayer graphene particles. Such materials can show the anisotropic properties mentioned before. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina" title="alumina">alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=hot-pressed" title=" hot-pressed"> hot-pressed</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a> </p> <a href="https://publications.waset.org/abstracts/40596/properties-of-hot-pressed-alumina-graphene-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">365</span> Electrical Properties of CVD-Graphene on SiC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bilal%20Jabakhanji">Bilal Jabakhanji</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitris%20Kazazis"> Dimitris Kazazis</a>, <a href="https://publications.waset.org/abstracts/search?q=Adrien%20Michon"> Adrien Michon</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Consejo"> Christophe Consejo</a>, <a href="https://publications.waset.org/abstracts/search?q=Wilfried%20Desrat"> Wilfried Desrat</a>, <a href="https://publications.waset.org/abstracts/search?q=Benoit%20Jouault"> Benoit Jouault</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we investigate the electrical properties of graphene grown by Chemical Vapor Deposition (CVD) on the Si face of SiC substrates. Depending on the growth condition, hole or electron doping can be achieved, down to a few 1011cm−2. The high homogeneity of the graphene and the low intrinsic carrier concentration, allow the remarkable observation of the Half Integer Quantum Hall Effect, typical of graphene, at the centimeter scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20hall%20effect" title=" quantum hall effect"> quantum hall effect</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20vapor" title=" chemical vapor"> chemical vapor</a>, <a href="https://publications.waset.org/abstracts/search?q=deposition" title=" deposition"> deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20carbide" title=" silicon carbide"> silicon carbide</a> </p> <a href="https://publications.waset.org/abstracts/18647/electrical-properties-of-cvd-graphene-on-sic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">667</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">364</span> Theoretical Investigation of Gas Adsorption on Metal- Graphene Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Safdari">Fatemeh Safdari</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirnaser%20Shamkhali"> Amirnaser Shamkhali</a>, <a href="https://publications.waset.org/abstracts/search?q=Gholamabbas%20Parsafar"> Gholamabbas Parsafar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanostructures are of great importance in academic research and industry, which can be mentioned to chemical sensors, catalytic processes, pharmaceutical and environmental issues. Common point in all of these applications is the occurrence of adsorption of molecules on these structures. Important carbon nanostructures in this case are mainly nanotubes and graphene. To modify pure graphene, recently, many experimental and theoretical studies have carried out to investigate of metal adsorption on graphene. In this work, the adsorption of CO molecules on pure graphene and on metal adatom on graphene surface has been simulated based on density functional theory (DFT). All calculations were performed by PBE functional and Troullier-Martins pseudopotentials. Density of states (DOS) for graphene-CO, graphen and CO around the Fermi energy has been moved and very small mixing occured which implies the physisorption of CO on the bare graphen surface. While, the results have showed that CO adsorption on transition-metal adatom on graphene surface is chemisorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title=" density functional theory"> density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20adatom" title=" metal adatom"> metal adatom</a> </p> <a href="https://publications.waset.org/abstracts/35219/theoretical-investigation-of-gas-adsorption-on-metal-graphene-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">363</span> Graphene Transistors Based Microwave Amplifiers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pejman%20Hosseinioun">Pejman Hosseinioun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Safari"> Ali Safari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Sarbazi"> Hamed Sarbazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene is a one-atom-thick sheet of carbon with numerous impressive properties. It is a promising material for future high-speed nanoelectronics due to its intrinsic superior carrier mobility and very high saturation velocity. These exceptional carrier transport properties suggest that graphene field effect transistors (G-FETs) can potentially outperform other FET technologies. In this paper, detailed discussions are introduced for Graphene Transistors Based Microwave Amplifiers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20FETs" title=" microwave FETs"> microwave FETs</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20amplifiers" title=" microwave amplifiers"> microwave amplifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=transistors" title=" transistors "> transistors </a> </p> <a href="https://publications.waset.org/abstracts/20419/graphene-transistors-based-microwave-amplifiers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">362</span> NFC Kenaf Core Graphene Paper: In-situ Method Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Izzati">M. A. Izzati</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rosazley"> R. Rosazley</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20W.%20Fareezal"> A. W. Fareezal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Shazana"> M. Z. Shazana</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Rushdan"> I. Rushdan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jani"> M. Jani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultrasonic probe were using to produce nanofibrillated cellulose (NFC) kenaf core. NFC kenaf core and graphene was mixed using in-situ method with the 5V voltage for 24 hours. The resulting NFC graphene paper was characterized by field emission scanning electron microscopy (FESEM), fourier transformed infrared (FTIR) spectra and thermogavimetric analysis (TGA). The properties of NFC kenaf core graphene paper are compared with properties of pure NFC kenaf core paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NFC" title="NFC">NFC</a>, <a href="https://publications.waset.org/abstracts/search?q=kenaf%20core" title=" kenaf core"> kenaf core</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=in-situ%20method" title=" in-situ method"> in-situ method</a> </p> <a href="https://publications.waset.org/abstracts/17245/nfc-kenaf-core-graphene-paper-in-situ-method-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">361</span> Characterization of Mechanical Properties of Graphene-Modified Epoxy Resin for Pipeline Repair</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Nur%20Afifah%20Azraai">Siti Nur Afifah Azraai</a>, <a href="https://publications.waset.org/abstracts/search?q=Lim%20Kar%20Sing"> Lim Kar Sing</a>, <a href="https://publications.waset.org/abstracts/search?q=Nordin%20Yahaya"> Nordin Yahaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhazilan%20Md%20Noor"> Norhazilan Md Noor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experimental study consists of a characterization of epoxy grout where an amount of 2% of graphene nanoplatelets particles were added to commercial epoxy resin to evaluate their behavior regarding neat epoxy resin. Compressive tests, tensile tests and flexural tests were conducted to study the effect of graphene nanoplatelets on neat epoxy resin. By comparing graphene-based and neat epoxy grout, there is no significant increase of strength due to weak interface in the graphene nanoplatelets/epoxy composites. From this experiment, the tension and flexural strength of graphene-based epoxy grouts is slightly lower than ones of neat epoxy grout. Nevertheless, the addition of graphene has produced more consistent results according to a smaller standard deviation of strength. Furthermore, the graphene has also improved the ductility of the grout, hence reducing its brittle behaviour. This shows that the performance of graphene-based grout is reliably predictable and able to minimize sudden rupture. This is important since repair design of damaged pipeline is of deterministic nature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resin" title=" epoxy resin"> epoxy resin</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20nanoplatelets" title=" graphene nanoplatelets"> graphene nanoplatelets</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline" title=" pipeline"> pipeline</a> </p> <a href="https://publications.waset.org/abstracts/35293/characterization-of-mechanical-properties-of-graphene-modified-epoxy-resin-for-pipeline-repair" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">360</span> Graphene/h-BN Heterostructure Interconnects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikhil%20Jain">Nikhil Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Xu"> Yang Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Yu"> Bin Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The material behavior of graphene, a single layer of carbon lattice, is extremely sensitive to its dielectric environment. We demonstrate improvement in electronic performance of graphene nanowire interconnects with full encapsulation by lattice-matching, chemically inert, 2D layered insulator hexagonal boron nitride (h- BN). A novel layer-based transfer technique is developed to construct the h-BN/MLG/h-BN heterostructures. The encapsulated graphene wires are characterized and compared with that on SiO2 or h-BN substrate without passivating h-BN layer. Significant improvements in maximum current-carrying density, breakdown threshold, and power density in encapsulated graphene wires are observed. These critical improvements are achieved without compromising the carrier transport characteristics in graphene. Furthermore, graphene wires exhibit electrical behavior less insensitive to ambient conditions, as compared with the non-passivated ones. Overall, h-BN/graphene/h- BN heterostructure presents a robust material platform towards the implementation of high-speed carbon-based interconnects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-dimensional%20nanosheet" title="two-dimensional nanosheet">two-dimensional nanosheet</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=hexagonal%20boron%20nitride" title=" hexagonal boron nitride"> hexagonal boron nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=heterostructure" title=" heterostructure"> heterostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=interconnects" title=" interconnects"> interconnects</a> </p> <a href="https://publications.waset.org/abstracts/6905/grapheneh-bn-heterostructure-interconnects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">359</span> Molecular Dynamics Study on Mechanical Responses of Circular Graphene Nanoflake under Nanoindentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeong-Won%20Kang">Jeong-Won Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene, a single-atom sheet, has been considered as the most promising material for making future nanoelectromechanical systems as well as purely electrical switching with graphene transistors. Graphene-based devices have advantages in scaled-up device fabrication due to the recent progress in large area graphene growth and lithographic patterning of graphene nanostructures. Here we investigated its mechanical responses of circular graphene nanoflake under the nanoindentation using classical molecular dynamics simulations. A correlation between the load and the indentation depth was constructed. The nanoindented force in this work was applied to the center point of the circular graphene nanoflake and then, the resonance frequency could be tuned by a nanoindented depth. We found the hardening or the softening of the graphene nanoflake during its nanoindented-deflections, and such properties were recognized by the shift of the resonance frequency. The calculated mechanical parameters in the force vs deflection plot were in good agreement with previous experimental and theoretical works. This proposed schematics can detect the pressure via the deflection change or/and the resonance frequency shift, and also have great potential for versatile applications in nanoelectromechanical systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20sensor" title=" pressure sensor"> pressure sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20graphene%20nanoflake" title=" circular graphene nanoflake"> circular graphene nanoflake</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a> </p> <a href="https://publications.waset.org/abstracts/31250/molecular-dynamics-study-on-mechanical-responses-of-circular-graphene-nanoflake-under-nanoindentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">358</span> Removal of Nickel and Zinc Ions from Aqueous Solution by Graphene Oxide and Graphene Oxide Functionalized Glycine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Rajabi">M. Rajabi</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Moradi"> O. Moradi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, removal of Nickel and Zinc by graphene oxide and functionalized graphene oxide–gelaycin surfaces was examined. Amino group was added to surface of graphene oxide to produced functionalized graphene oxide–gelaycin. Effect of contact time and initial concentration of Ni (II) and Zn(II) ions were studied. Results showed that with increase of initial concentration of Ni (II) and Zn(II) adsorption capacity was increased. After 50 min has not a large change at adsorption capacity therefore, 50 min was selected as optimaze time. Scanning electron microscope (SEM) and fourier transform infrared (FT-IR) spectroscopy spectra used for the analysis confirmed the successful fictionalization of the Graphene oxide surface. Adsorption experiments of Ni (II) and Zn(II) ions graphene oxide and functionalized graphene oxide–gelaycin surfaces fixed at 298 K and pH=6. The Pseudo Firs-order and the Pseudo Second-order (types I, II, III and IV) kinetic models were tested for adsorption process and results showed that the kinetic parameters best fits with to type (I) of pseudo-second-order model because presented low X2 values and also high R2 values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title="graphene oxide">graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=gelaycin" title=" gelaycin"> gelaycin</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic" title=" kinetic"> kinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=gelaycin" title=" gelaycin"> gelaycin</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic" title=" kinetic"> kinetic</a> </p> <a href="https://publications.waset.org/abstracts/39809/removal-of-nickel-and-zinc-ions-from-aqueous-solution-by-graphene-oxide-and-graphene-oxide-functionalized-glycine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">357</span> Epitaxial Growth of Crystalline Polyaniline on Reduced Graphene Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Majumdar">D. Majumdar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Baskey"> M. Baskey</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Saha"> S. K. Saha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene has already been identified as a promising material for future carbon based electronics. To develop graphene technology, the fabrication of a high quality P-N junction is a great challenge. In the present work, we have described a simple and general technique to grow single crystalline polyaniline (PANI) films on graphene sheets using in situ polymerization via the oxidation-reduction of aniline monomer and graphene oxide, respectively, to fabricate a high quality P-N junction, which shows diode-like behavior with a remarkably low turn-on voltage (60 mV) and high rectification ratio (1880:1) up to a voltage of 0.2 Volt. The origin of these superior electronic properties is the preferential growth of a highly crystalline PANI film as well as lattice matching between the d-values [~2.48 Å] of graphene and {120} planes of PANI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epitaxial%20growth" title="epitaxial growth">epitaxial growth</a>, <a href="https://publications.waset.org/abstracts/search?q=PANI" title=" PANI"> PANI</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20graphene%20oxide" title=" reduced graphene oxide"> reduced graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=rectification%20ratio" title=" rectification ratio"> rectification ratio</a> </p> <a href="https://publications.waset.org/abstracts/16296/epitaxial-growth-of-crystalline-polyaniline-on-reduced-graphene-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">356</span> Status of Bio-Graphene Extraction from Biomass: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simon%20Peter%20Wafula">Simon Peter Wafula</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziporah%20Nakabazzi%20Kitooke"> Ziporah Nakabazzi Kitooke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene is a carbon allotrope made of a two-dimensional shape. This material has got a number of materials researchers’ interest due to its properties that are special compared to ordinary material. Graphene is thought to enhance a number of material properties in the manufacturing, energy, and construction industries. Many studies consider graphene to be a wonder material, just like plastic in the 21st century. This shows how much should be invested in graphene research. This review highlights the status of graphene extracted from various biomass sources together with their appropriate extraction techniques, including the pretreatment methods for a better product. The functional groups and structure of graphene extracted using several common methods of synthesis are in this paper as well. The review explores methods like chemical vapor deposition (CVD), hydrothermal, chemical exfoliation method, liquid exfoliation, and Hummers. Comparative analysis of the various extraction techniques gives an insight into each of their advantages, challenges, and potential scalability. The review also highlights the pretreatment process for biomass before carbonation for better quality of bio-graphene. The various graphene modes, as well as their applications, are in this study. Recommendations for future research for improving the efficiency and sustainability of bio-graphene are highlighted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exfoliation" title="exfoliation">exfoliation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=biochar" title=" biochar"> biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=large-scale" title=" large-scale"> large-scale</a>, <a href="https://publications.waset.org/abstracts/search?q=two-dimension" title=" two-dimension"> two-dimension</a> </p> <a href="https://publications.waset.org/abstracts/185390/status-of-bio-graphene-extraction-from-biomass-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">355</span> Study on the Electrochemical Performance of Graphene Effect on Cadmium Oxide in Lithium Battery </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atef%20Y.%20Shenouda">Atef Y. Shenouda</a>, <a href="https://publications.waset.org/abstracts/search?q=Anton%20A.%20Momchilov"> Anton A. Momchilov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene and CdO with different stoichiometric ratios of Cd(CH₃COO)₂ and graphene samples were prepared by hydrothermal reaction. The crystalline phases of pure CdO and 3CdO:1graphene were identified by X-ray diffraction (XRD). The particle morphology was studied with SEM. Furthermore, impedance measurements were applied. Galvanostatic measurements for the cells were carried out using potential limits between 0.01 and 3 V vs. Li/Li⁺. The current cycling intensity was 10⁻⁴ A. The specific discharge capacity of 3CdO-1G cell was about 450 Ah.Kg⁻¹ up to more than 100 cycles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CdO" title="CdO">CdO</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20electrode" title=" negative electrode"> negative electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20battery" title=" lithium battery"> lithium battery</a> </p> <a href="https://publications.waset.org/abstracts/112920/study-on-the-electrochemical-performance-of-graphene-effect-on-cadmium-oxide-in-lithium-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">354</span> Photo Electrical Response in Graphene Based Resistive Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20C.%20Woo">H. C. Woo</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Bouanis"> F. Bouanis</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20Cojocaur"> C. S. Cojocaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene, which consists of a single layer of carbon atoms in a honeycomb lattice, is an interesting potential optoelectronic material because of graphene’s high carrier mobility, zero bandgap, and electron–hole symmetry. Graphene can absorb light and convert it into a photocurrent over a wide range of the electromagnetic spectrum, from the ultraviolet to visible and infrared regimes. Over the last several years, a variety of graphene-based photodetectors have been reported, such as graphene transistors, graphene-semiconductor heterojunction photodetectors, graphene based bolometers. It is also reported that there are several physical mechanisms enabling photodetection: photovoltaic effect, photo-thermoelectric effect, bolometric effect, photogating effect, and so on. In this work, we report a simple approach for the realization of graphene based resistive photo-detection devices and the measurements of their photoelectrical response. The graphene were synthesized directly on the glass substrate by novel growth method patented in our lab. Then, the metal electrodes were deposited by thermal evaporation on it, with an electrode length and width of 1.5 mm and 300 μm respectively, using Co to fabricate simple graphene based resistive photosensor. The measurements show that the graphene resistive devices exhibit a photoresponse to the illumination of visible light. The observed re-sistance response was reproducible and similar after many cycles of on and off operations. This photoelectrical response may be attributed not only to the direct photocurrent process but also to the desorption of oxygen. Our work shows that the simple graphene resistive devices have potential in photodetection applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=resistive%20sensor" title=" resistive sensor"> resistive sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=optoelectronics" title=" optoelectronics"> optoelectronics</a>, <a href="https://publications.waset.org/abstracts/search?q=photoresponse" title=" photoresponse"> photoresponse</a> </p> <a href="https://publications.waset.org/abstracts/25297/photo-electrical-response-in-graphene-based-resistive-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">353</span> Graphene-Based Reconfigurable Lens Antenna for 5G/6G and Satellite Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20Lages">André Lages</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Dmitriev"> Victor Dmitriev</a>, <a href="https://publications.waset.org/abstracts/search?q=Juliano%20Bazzo"> Juliano Bazzo</a>, <a href="https://publications.waset.org/abstracts/search?q=Gianni%20Portela"> Gianni Portela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work evaluates the feasibility of the graphene application to perform as a wideband reconfigurable material for lens antennas in 5G/6G and satellite applications. Based on transformation optics principles, the electromagnetic waves can be efficiently guided by modifying the effective refractive index. Graphene behavior can range between a lossy dielectric and a good conductor due to the variation of its chemical potential bias, thus arising as a promising solution for electromagnetic devices. The graphene properties and a lens antenna comprising multiples layers and periodic arrangements of graphene patches were analyzed using full-wave simulations. A dipole directivity was improved from 7 to 18.5 dBi at 29 GHz. In addition, the realized gain was enhanced 7 dB across a 14 GHz bandwidth within the Ka/5G band. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=5G%2F6G" title="5G/6G">5G/6G</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=lens" title=" lens"> lens</a>, <a href="https://publications.waset.org/abstracts/search?q=reconfigurable" title=" reconfigurable"> reconfigurable</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite" title=" satellite"> satellite</a> </p> <a href="https://publications.waset.org/abstracts/121554/graphene-based-reconfigurable-lens-antenna-for-5g6g-and-satellite-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">352</span> Study on the Morphology and Dynamic Mechanical and Thermal Properties of HIPS/Graphene Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirhosein%20Rostampour">Amirhosein Rostampour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Sharif"> Mehdi Sharif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, a series of high impact polystyrene/graphene (HIPS/Gr) nanocomposites were prepared by solution mixing method and their morphology and dynamic mechanical properties were investigated as a function of graphene content. SEM images and X-Ray diffraction data confirm that the graphene platelets are well dispersed in HIPS matrix for the nanocomposites with Gr contents up to 5.0 wt%. Mechanical properties analysis demonstrates that yielding strength and initial modulus of HIPS/Gr nanocomposites are highly improved with the increment of Gr content compared to pure HIPS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title="nanocomposite">nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20mechanical%20properties" title=" dynamic mechanical properties"> dynamic mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a> </p> <a href="https://publications.waset.org/abstracts/29222/study-on-the-morphology-and-dynamic-mechanical-and-thermal-properties-of-hipsgraphene-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">536</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">351</span> Fe-Doped Graphene Nanoparticles for Gas Sensing Applications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shivani%20A.%20Singh">Shivani A. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Pravin%20S.%20More"> Pravin S. More</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present inspection, we indicate the falsification of Fe-doped graphene nanoparticles by modified Hummers method. Structural and physiochemical properties of the resulting pallets were explored with the help of ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), Photoluminescence spectroscopy (PL) for graphene sample exhibits absorption peaks ~248nm. Pure graphene shows PL peak at 348 nm. After doping of Fe with graphene the PL peak shifted from 348 nm to 332 nm. The oxidation degree, i.e. the relative amount of oxygen functional groups was estimated from the relative intensities of the oxygen related bands (ORB) in the FTIR measurements. These analyses show that this modified material can be useful for gas sensing applications and to be used in diverse areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20doping" title="chemical doping">chemical doping</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensing" title=" gas sensing"> gas sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=sensing" title=" sensing"> sensing</a> </p> <a href="https://publications.waset.org/abstracts/79785/fe-doped-graphene-nanoparticles-for-gas-sensing-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">350</span> Molecular Dynamics Simulation on Nanoelectromechanical Graphene Nanoflake Shuttle Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eunae%20Lee">Eunae Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Oh-Kuen%20Kwon"> Oh-Kuen Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki-Sub%20Kim"> Ki-Sub Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Won%20Kang"> Jeong Won Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigated the dynamic properties of graphene-nanoribbon (GNR) memory encapsulating graphene-nanoflake (GNF) shuttle in the potential to be applicable as a non-volatile random access memory via molecular dynamics simulations. This work explicitly demonstrates that the GNR encapsulating the GNF shuttle can be applied to nonvolatile memory. The potential well was originated by the increase of the attractive vdW energy between the GNRs when the GNF approached the edges of the GNRs. So the bistable positions were located near the edges of the GNRs. Such a nanoelectromechanical non-volatile memory based on graphene is also applicable to the development of switches, sensors, and quantum computing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene%20nanoribbon" title="graphene nanoribbon">graphene nanoribbon</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20nanoflake" title=" graphene nanoflake"> graphene nanoflake</a>, <a href="https://publications.waset.org/abstracts/search?q=shuttle%20memory" title=" shuttle memory"> shuttle memory</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a> </p> <a href="https://publications.waset.org/abstracts/37278/molecular-dynamics-simulation-on-nanoelectromechanical-graphene-nanoflake-shuttle-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">349</span> Characterization of Graphene Oxide Coated Gold Electrodes for Bioimpedance Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20G%C3%BClden%20%C5%9Ei%CC%87m%C5%9Fek">Fatma Gülden Şi̇mşek</a>, <a href="https://publications.waset.org/abstracts/search?q=Osman%20Meli%CC%87h%20Can"> Osman Meli̇h Can</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Yumak"> Mehmet Yumak</a>, <a href="https://publications.waset.org/abstracts/search?q=Bora%20Gari%CC%87pcan"> Bora Gari̇pcan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yekta%20%C3%9Clgen"> Yekta Ülgen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the impedance spectroscopy is used as a detection tool in order to characterize surface coating with graphene oxide. Gold electrodes are produced by standard lithography procedures and then coated with graphene oxide using self-assembly method. The impedance of redox solution through bare gold electrodes and graphene oxide coated gold electrodes is measured in the low and high frequency range. The graphene oxide coating reduces the impedance value of the gold electrode and this reduction is distinguishable in the low-frequency range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioimpedance" title="bioimpedance">bioimpedance</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode%20characterization" title=" electrode characterization"> electrode characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20electrodes" title=" gold electrodes"> gold electrodes</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20spectroscopy" title=" impedance spectroscopy"> impedance spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/47355/characterization-of-graphene-oxide-coated-gold-electrodes-for-bioimpedance-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">348</span> An Atomic Finite Element Model for Mechanical Properties of Graphene Sheets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Win-Jin%20Chang">Win-Jin Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Haw-Long%20Lee"> Haw-Long Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Ching%20Yang"> Yu-Ching Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we use the atomic-scale finite element method to investigate the mechanical behavior of the armchair- and zigzag-structured nanoporous graphene sheets with the clamped-free-free-free boundary condition under tension and shear loadings. The effect of porosity on Young’s modulus and shear modulus of nanoporous graphene sheets is obvious. For the armchair- and zigzag-structured nanoporous graphene sheets, Young’s modulus and shear modulus decreases with increasing porosity. Young’s modulus and shear modulus of zigzag graphene are larger than that of armchair one for the same porosity. The results are useful for application in the design of nanoporous graphene sheets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoporous" title=" nanoporous"> nanoporous</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%27s%20modulus" title=" Young's modulus"> Young's modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20modulus" title=" shear modulus"> shear modulus</a> </p> <a href="https://publications.waset.org/abstracts/65038/an-atomic-finite-element-model-for-mechanical-properties-of-graphene-sheets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">347</span> Barrier Lowering in Contacts between Graphene and Semiconductor Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhipeng%20Dong">Zhipeng Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Guo"> Jing Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene-semiconductor contacts have been extensively studied recently, both as a stand-alone diode device for potential applications in photodetectors and solar cells, and as a building block to vertical transistors. Graphene is a two-dimensional nanomaterial with vanishing density-of-states at the Dirac point, which differs from conventional metal. In this work, image-charge-induced barrier lowering (BL) in graphene-semiconductor contacts is studied and compared to that in metal Schottky contacts. The results show that despite of being a semimetal with vanishing density-of-states at the Dirac point, the image-charge-induced BL is significant. The BL value can be over 50% of that of metal contacts even in an intrinsic graphene contacted to an organic semiconductor, and it increases as the graphene doping increases. The dependences of the BL on the electric field and semiconductor dielectric constant are examined, and an empirical expression for estimating the image-charge-induced BL in graphene-semiconductor contacts is provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20materials" title=" semiconductor materials"> semiconductor materials</a>, <a href="https://publications.waset.org/abstracts/search?q=schottky%20barrier" title=" schottky barrier"> schottky barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20charge" title=" image charge"> image charge</a>, <a href="https://publications.waset.org/abstracts/search?q=contacts" title=" contacts "> contacts </a> </p> <a href="https://publications.waset.org/abstracts/69844/barrier-lowering-in-contacts-between-graphene-and-semiconductor-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Graphene&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Graphene&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Graphene&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Graphene&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Graphene&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Graphene&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Graphene&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Graphene&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Graphene&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Graphene&page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Graphene&page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Graphene&page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Graphene&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>