CINXE.COM
Search results for: semiconductor materials
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: semiconductor materials</title> <meta name="description" content="Search results for: semiconductor materials"> <meta name="keywords" content="semiconductor materials"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="semiconductor materials" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="semiconductor materials"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7175</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: semiconductor materials</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7175</span> Barrier Lowering in Contacts between Graphene and Semiconductor Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhipeng%20Dong">Zhipeng Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Guo"> Jing Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene-semiconductor contacts have been extensively studied recently, both as a stand-alone diode device for potential applications in photodetectors and solar cells, and as a building block to vertical transistors. Graphene is a two-dimensional nanomaterial with vanishing density-of-states at the Dirac point, which differs from conventional metal. In this work, image-charge-induced barrier lowering (BL) in graphene-semiconductor contacts is studied and compared to that in metal Schottky contacts. The results show that despite of being a semimetal with vanishing density-of-states at the Dirac point, the image-charge-induced BL is significant. The BL value can be over 50% of that of metal contacts even in an intrinsic graphene contacted to an organic semiconductor, and it increases as the graphene doping increases. The dependences of the BL on the electric field and semiconductor dielectric constant are examined, and an empirical expression for estimating the image-charge-induced BL in graphene-semiconductor contacts is provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20materials" title=" semiconductor materials"> semiconductor materials</a>, <a href="https://publications.waset.org/abstracts/search?q=schottky%20barrier" title=" schottky barrier"> schottky barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20charge" title=" image charge"> image charge</a>, <a href="https://publications.waset.org/abstracts/search?q=contacts" title=" contacts "> contacts </a> </p> <a href="https://publications.waset.org/abstracts/69844/barrier-lowering-in-contacts-between-graphene-and-semiconductor-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7174</span> Radiation Hardness Materials Article Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Abou%20El-Azm">S. Abou El-Azm</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Kruchonak"> U. Kruchonak</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gostkin"> M. Gostkin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Guskov"> A. Guskov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zhemchugov"> A. Zhemchugov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Semiconductor detectors are widely used in nuclear physics and high-energy physics experiments. The application of semiconductor detectors could be limited by their ultimate radiation resistance. The increase of radiation defects concentration leads to significant degradation of the working parameters of semiconductor detectors. The investigation of radiation defects properties in order to enhance the radiation hardness of semiconductor detectors is an important task for the successful implementation of a number of nuclear physics experiments; we presented some information about radiation hardness materials like diamond, sapphire and CdTe. Also, the results of measurements I-V characteristics, charge collection efficiency and its dependence on the bias voltage for different doses of high resistivity (GaAs: Cr) and Si at LINAC-200 accelerator and reactor IBR-2 are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20detectors" title="semiconductor detectors">semiconductor detectors</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20hardness" title=" radiation hardness"> radiation hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=GaAs" title=" GaAs"> GaAs</a>, <a href="https://publications.waset.org/abstracts/search?q=Si" title=" Si"> Si</a>, <a href="https://publications.waset.org/abstracts/search?q=CCE" title=" CCE"> CCE</a>, <a href="https://publications.waset.org/abstracts/search?q=I-V" title=" I-V"> I-V</a>, <a href="https://publications.waset.org/abstracts/search?q=C-V" title=" C-V"> C-V</a> </p> <a href="https://publications.waset.org/abstracts/146949/radiation-hardness-materials-article-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7173</span> Electrotechnology for Silicon Refining: Plasma Generator and Arc Furnace Installations and Theoretical Base</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashot%20Navasardian">Ashot Navasardian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Vardanian"> Mariam Vardanian</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladik%20Vardanian"> Vladik Vardanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The photovoltaic and the semiconductor industries are in growth and it is necessary to supply a large amount of silicon to maintain this growth. Since silicon is still the best material for the manufacturing of solar cells and semiconductor components so the pure silicon like solar grade and semiconductor grade materials are demanded. There are two main routes for silicon production: metallurgical and chemical. In this article, we reviewed the electrotecnological installations and systems for semiconductor manufacturing. The main task is to design the installation which can produce SOG Silicon from river sand by one work unit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metallurgical%20grade%20silicon" title="metallurgical grade silicon">metallurgical grade silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20grade%20silicon" title=" solar grade silicon"> solar grade silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=impurity" title=" impurity"> impurity</a>, <a href="https://publications.waset.org/abstracts/search?q=refining" title=" refining"> refining</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma" title=" plasma"> plasma</a> </p> <a href="https://publications.waset.org/abstracts/21380/electrotechnology-for-silicon-refining-plasma-generator-and-arc-furnace-installations-and-theoretical-base" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7172</span> Trions in Semiconductor Quantum Dot System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jayden%20Leonard">Jayden Leonard</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Que%20Huong"> Nguyen Que Huong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we study the Trion state in a spherical quantum dot of a direct band gap semiconductor with a shell of organic material. The electronic structure of the Trion due to degenerate valence band will be considered. The coupling between the wannier exciton inside the dot and the Frenkel exciton in the shell will make the Trion state become hybrid. The competition between “semiconductor” and “organic” phases of the Trion and the transitions between them depend on Parameters of the system such as the materials, the size of the dot and the thickness of the shell, etc… and could be manipulated using those parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trion" title="trion">trion</a>, <a href="https://publications.waset.org/abstracts/search?q=exciton" title=" exciton"> exciton</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dot" title=" quantum dot"> quantum dot</a>, <a href="https://publications.waset.org/abstracts/search?q=heterostructure" title=" heterostructure"> heterostructure</a> </p> <a href="https://publications.waset.org/abstracts/143644/trions-in-semiconductor-quantum-dot-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7171</span> Investigation of Al/Si, Au/Si and Au/GaAs Interfaces by Positron Annihilation Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulnasser%20S.%20Saleh">Abdulnasser S. Saleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The importance of metal-semiconductor interfaces comes from the fact that most electronic devices are interconnected using metallic wiring that forms metal–semiconductor contacts. The properties of these contacts can vary considerably depending on the nature of the interface with the semiconductor. Variable-energy positron annihilation spectroscopy has been applied to study interfaces in Al/Si, Au/Si, and Au/GaAs structures. A computational modeling by ROYPROF program is used to analyze Doppler broadening results in order to determine kinds of regions that positrons are likely to sample. In all fittings, the interfaces are found 1 nm thick and act as an absorbing sink for positrons diffusing towards them and may be regarded as highly defective. Internal electric fields were found to influence positrons diffusing to the interfaces and unable to force them cross to the other side. The materials positron affinities are considered in understanding such motion. The results of these theoretical fittings have clearly demonstrated the sensitivity of interfaces in any fitting attempts of analyzing positron spectroscopy data and gave valuable information about metal-semiconductor interfaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interfaces" title="interfaces">interfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor" title=" semiconductor"> semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=positron" title=" positron"> positron</a>, <a href="https://publications.waset.org/abstracts/search?q=defects" title=" defects "> defects </a> </p> <a href="https://publications.waset.org/abstracts/46927/investigation-of-alsi-ausi-and-augaas-interfaces-by-positron-annihilation-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7170</span> Study of a Fabry-Perot Resonator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Hadjaj">F. Hadjaj</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Belghachi"> A. Belghachi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Halmaoui"> A. Halmaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Belhadj"> M. Belhadj</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mazouz"> H. Mazouz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A laser is essentially an optical oscillator consisting of a resonant cavity, an amplifying medium and a pumping source. In semiconductor diode lasers, the cavity is created by the boundary between the cleaved face of the semiconductor crystal and air and also has reflective properties as a result of the differing refractive indices of the two media. For a GaAs-air interface a reflectance of 0.3 is typical and therefore the length of the semiconductor junction forms the resonant cavity. To prevent light, being emitted in unwanted directions from the junction and Sides perpendicular to the required direction are roughened. The objective of this work is to simulate the optical resonator Fabry-Perot and explore its main characteristics, such as FSR, Finesse, Linewidth, Transmission and so on that describe the performance of resonator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabry-Perot%20Resonator" title="Fabry-Perot Resonator">Fabry-Perot Resonator</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20diod" title=" laser diod"> laser diod</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectance" title=" reflectance"> reflectance</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor" title=" semiconductor "> semiconductor </a> </p> <a href="https://publications.waset.org/abstracts/4422/study-of-a-fabry-perot-resonator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7169</span> Semiconductor Nanofilm Based Schottky-Barrier Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariyappan%20Shanmugam">Mariyappan Shanmugam</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Yu"> Bin Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Schottky-barrier solar cells are demonstrated employing 2D-layered MoS2 and WS2 semiconductor nanofilms as photo-active material candidates synthesized by chemical vapor deposition method. Large area MoS2 and WS2 nanofilms are stacked by layer transfer process to achieve thicker photo-active material studied by atomic force microscopy showing a thickness in the range of ~200 nm. Two major vibrational active modes associated with 2D-layered MoS2 and WS2 are studied by Raman spectroscopic technique to estimate the quality of the nanofilms. Schottky-barrier solar cells employed MoS2 and WS2 active materials exhibited photoconversion efficiency of 1.8 % and 1.7 % respectively. Fermi-level pinning at metal/semiconductor interface, electronic transport and possible recombination mechanisms are studied in the Schottky-barrier solar cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-dimensional%20nanosheet" title="two-dimensional nanosheet">two-dimensional nanosheet</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=hexagonal%20boron%20nitride" title=" hexagonal boron nitride"> hexagonal boron nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=Schottky%20barrier" title=" Schottky barrier"> Schottky barrier</a> </p> <a href="https://publications.waset.org/abstracts/22592/semiconductor-nanofilm-based-schottky-barrier-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7168</span> Study on Filter for Semiconductor of Minimizing Damage by X-Ray Laminography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chan%20Jong%20Park">Chan Jong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hye%20Min%20Park"> Hye Min Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Ho%20Kim"> Jeong Ho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki%20Hyun%20Park"> Ki Hyun Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Koan%20Sik%20Joo"> Koan Sik Joo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research used the MCNPX simulation program to evaluate the utility of a filter that was developed to minimize the damage to a semiconductor device during defect testing with X-ray. The X-ray generator was designed using the MCNPX code, and the X-ray absorption spectrum of the semiconductor device was obtained based on the designed X-ray generator code. To evaluate the utility of the filter, the X-ray absorption rates of the semiconductor device were calculated and compared for Ag, Rh, Mo and V filters with thicknesses of 25μm, 50μm, and 75μm. The results showed that the X-ray absorption rate varied with the type and thickness of the filter, ranging from 8.74% to 49.28%. The Rh filter showed the highest X-ray absorption rates of 29.8%, 15.18% and 8.74% for the above-mentioned filter thicknesses. As shown above, the characteristics of the X-ray absorption with respect to the type and thickness of the filter were identified using MCNPX simulation. With these results, both time and expense could be saved in the production of the desired filter. In the future, this filter will be produced, and its performance will be evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=X-ray" title="X-ray">X-ray</a>, <a href="https://publications.waset.org/abstracts/search?q=MCNPX" title=" MCNPX"> MCNPX</a>, <a href="https://publications.waset.org/abstracts/search?q=filter" title=" filter"> filter</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor" title=" semiconductor"> semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a> </p> <a href="https://publications.waset.org/abstracts/53350/study-on-filter-for-semiconductor-of-minimizing-damage-by-x-ray-laminography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7167</span> A Review of Optomechatronic Ecosystem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sam%20Zhang">Sam Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The landscape of Opto mechatronics is viewed along the line of light vs. matter, photonics vs. semiconductors, and optics vs. mechatronics. Optomechatronics is redefined as the integration of light and matter from the atom, device, and system to the application. The markets and megatrends in Opto mechatronics are further listed. The author then focuses on Opto mechatronic technology in the semiconductor industry as an example and reviews the practical systems, characteristics, and trends. Opto mechatronics, together with photonics and semiconductor, will continue producing the computational and smart infrastructure required for the 4th industrial revolution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photonics" title="photonics">photonics</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor" title=" semiconductor"> semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=optomechatronics" title=" optomechatronics"> optomechatronics</a>, <a href="https://publications.waset.org/abstracts/search?q=4th%20industrial%20revolution" title=" 4th industrial revolution"> 4th industrial revolution</a> </p> <a href="https://publications.waset.org/abstracts/159341/a-review-of-optomechatronic-ecosystem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7166</span> Model Predictive Control Using Thermal Inputs for Crystal Growth Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Shimizu">Takashi Shimizu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomoaki%20Hashimoto"> Tomoaki Hashimoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, crystal growth technologies have made progress by the requirement for the high quality of crystal materials. To control the crystal growth dynamics actively by external forces is useuful for reducing composition non-uniformity. In this study, a control method based on model predictive control using thermal inputs is proposed for crystal growth dynamics of semiconductor materials. The control system of crystal growth dynamics considered here is governed by the continuity, momentum, energy, and mass transport equations. To establish the control method for such thermal fluid systems, we adopt model predictive control known as a kind of optimal feedback control in which the control performance over a finite future is optimized with a performance index that has a moving initial time and terminal time. The objective of this study is to establish a model predictive control method for crystal growth dynamics of semiconductor materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model%20predictive%20control" title="model predictive control">model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title=" optimal control"> optimal control</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20control" title=" process control"> process control</a>, <a href="https://publications.waset.org/abstracts/search?q=crystal%20growth" title=" crystal growth"> crystal growth</a> </p> <a href="https://publications.waset.org/abstracts/88644/model-predictive-control-using-thermal-inputs-for-crystal-growth-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7165</span> Enhanced Optical and Electrical Properties of P-Type AgBiS₂ Energy Harvesting Materials as an Absorber of Solar Cell by Copper Doping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasaman%20Tabari-Saadi">Yasaman Tabari-Saadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaiwen%20Sun"> Kaiwen Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jialiang%20Huang"> Jialiang Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Green"> Martin Green</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaojing%20Hao"> Xiaojing Hao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optical and electrical properties of p-type AgBiS₂ absorber material have been improved by copper doping on silver sites. X-Ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis suggest that complete solid solutions of Ag₁₋ₓCuₓBiS₂ thin film have been formed. The carrier concentration of pure AgBiS₂ thin film deposited by the chemical process is 4.5*E+14 cm⁻³, and copper doping leads to the improved carrier concentration despite the semiconductor AgBiS₂ remains p-type semiconductor. Copper doping directly changed the absorption coefficient and increased the optical band gap (~1.5eV), which makes it a promising absorber for thin-film solar cell applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20doped" title="copper doped">copper doped</a>, <a href="https://publications.waset.org/abstracts/search?q=AgBiS%E2%82%82" title=" AgBiS₂"> AgBiS₂</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-film%20solar%20cell" title=" thin-film solar cell"> thin-film solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=carrier%20concentration" title=" carrier concentration"> carrier concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=p-type%20semiconductor" title=" p-type semiconductor"> p-type semiconductor</a> </p> <a href="https://publications.waset.org/abstracts/125554/enhanced-optical-and-electrical-properties-of-p-type-agbis2-energy-harvesting-materials-as-an-absorber-of-solar-cell-by-copper-doping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7164</span> A Spectroscopic Study by Photoluminescence of Erbium in Gallium Nitride</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Melouah">A. Melouah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Diaf"> M. Diaf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The III-N nitride semiconductors appear to be excellent host materials, in particular, GaN epilayers doped with Erbium ions have shown a highly reduced thermal quenching of the Er luminescence intensity from cryogenic to elevated temperatures. The remarkable stability may be due to the large energy band gap of the material. Two methods are used for doping the Gallium nitride films with Erbium ions; ion implantation in the wafers obtained by (CVDOM) and in-situ incorporation during epitaxial growth of the layers by (MBE). Photoluminescence (PL) spectroscopy has been the main optical technique used to characterize the emission of Er-doped III-N semiconductor materials. This technique involves optical excitation of Er3+ ions and measurement of the spectrum of the light emission as a function of energy (wavelength). Excitation at above band gap energy leads to the creation of Electron-Hole pairs. Some of this pairs may transfer their energy to the Er3+ ions, exciting the 4f-electrons and resulting in optical emission. This corresponds to an indirect excitation of the Er3+ ions by electron-hole pairs. The direct excitation by the optical pumping of the radiation can be obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title="photoluminescence">photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=Erbium" title=" Erbium"> Erbium</a>, <a href="https://publications.waset.org/abstracts/search?q=GaN" title=" GaN"> GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20%20materials" title=" semiconductor materials"> semiconductor materials</a> </p> <a href="https://publications.waset.org/abstracts/46060/a-spectroscopic-study-by-photoluminescence-of-erbium-in-gallium-nitride" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7163</span> Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zheng%20Yuxun">Zheng Yuxun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20defect%20detection" title="semiconductor defect detection">semiconductor defect detection</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence%20in%20semiconductor%20manufacturing" title=" artificial intelligence in semiconductor manufacturing"> artificial intelligence in semiconductor manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning%20applications" title=" machine learning applications"> machine learning applications</a>, <a href="https://publications.waset.org/abstracts/search?q=technological%20evolution%20in%20defect%20analysis" title=" technological evolution in defect analysis"> technological evolution in defect analysis</a> </p> <a href="https://publications.waset.org/abstracts/186116/advanced-techniques-in-semiconductor-defect-detection-an-overview-of-current-technologies-and-future-trends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7162</span> Synchronization of Semiconductor Laser Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20M.%20L%C3%B3pez-Guti%C3%A9rrez">R. M. López-Gutiérrez</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Cardoza-Avenda%C3%B1o"> L. Cardoza-Avendaño</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Cervantes-de%20%C3%81vila"> H. Cervantes-de Ávila</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Michel-Macarty"> J. A. Michel-Macarty</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Cruz-Hern%C3%A1ndez"> C. Cruz-Hernández</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Arellano-Delgado"> A. Arellano-Delgado</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Carmona-Rodr%C3%ADguez"> R. Carmona-Rodríguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, synchronization of multiple chaotic semiconductor lasers is achieved by appealing to complex system theory. In particular, we consider dynamical networks composed by semiconductor laser, as interconnected nodes, where the interaction in the networks are defined by coupling the first state of each node. An interesting case is synchronized with master-slave configuration in star topology. Nodes of these networks are modeled for the laser and simulated by Matlab. These results are applicable to private communication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chaotic%20laser" title="chaotic laser">chaotic laser</a>, <a href="https://publications.waset.org/abstracts/search?q=network" title=" network"> network</a>, <a href="https://publications.waset.org/abstracts/search?q=star%20topology" title=" star topology"> star topology</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronization" title=" synchronization"> synchronization</a> </p> <a href="https://publications.waset.org/abstracts/34528/synchronization-of-semiconductor-laser-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">566</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7161</span> Determination of Optical Constants of Semiconductor Thin Films by Ellipsometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A%C3%AFssa%20Manallah">Aïssa Manallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Bouafia"> Mohamed Bouafia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ellipsometry is an optical method based on the study of the behavior of polarized light. The light reflected on a surface induces a change in the polarization state which depends on the characteristics of the material (complex refractive index and thickness of the different layers constituting the device). The purpose of this work is to determine the optical properties of semiconductor thin films by ellipsometry. This paper describes the experimental aspects concerning the semiconductor samples, the SE400 ellipsometer principle, and the results obtained by direct measurements of ellipsometric parameters and modelling using appropriate software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ellipsometry" title="ellipsometry">ellipsometry</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20constants" title=" optical constants"> optical constants</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductors" title=" semiconductors"> semiconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a> </p> <a href="https://publications.waset.org/abstracts/53464/determination-of-optical-constants-of-semiconductor-thin-films-by-ellipsometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7160</span> A Spatial Point Pattern Analysis to Recognize Fail Bit Patterns in Semiconductor Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youngji%20Yoo">Youngji Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung%20Hwan%20Park"> Seung Hwan Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Daewoong%20An"> Daewoong An</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Shick%20Kim"> Sung-Shick Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Geol%20Baek"> Jun-Geol Baek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The yield management system is very important to produce high-quality semiconductor chips in the semiconductor manufacturing process. In order to improve quality of semiconductors, various tests are conducted in the post fabrication (FAB) process. During the test process, large amount of data are collected and the data includes a lot of information about defect. In general, the defect on the wafer is the main causes of yield loss. Therefore, analyzing the defect data is necessary to improve performance of yield prediction. The wafer bin map (WBM) is one of the data collected in the test process and includes defect information such as the fail bit patterns. The fail bit has characteristics of spatial point patterns. Therefore, this paper proposes the feature extraction method using the spatial point pattern analysis. Actual data obtained from the semiconductor process is used for experiments and the experimental result shows that the proposed method is more accurately recognize the fail bit patterns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semiconductor" title="semiconductor">semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=wafer%20bin%20map" title=" wafer bin map"> wafer bin map</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20point%20patterns" title=" spatial point patterns"> spatial point patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=contour%20map" title=" contour map"> contour map</a> </p> <a href="https://publications.waset.org/abstracts/5010/a-spatial-point-pattern-analysis-to-recognize-fail-bit-patterns-in-semiconductor-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7159</span> A Comparative Study of a Defective Superconductor/ Semiconductor-Dielectric Photonic Crystal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Sadegzadeh">S. Sadegzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mousavi"> A. Mousavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Temperature-dependent tunable photonic crystals have attracted widespread interest in recent years. In this research, transmission characteristics of a one-dimensional photonic crystal structure with a single defect have been studied. Here, we assume two different defect layers: InSb as a semiconducting layer and HgBa<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>10</sub> as a high-temperature superconducting layer. Both the defect layers have temperature-dependent refractive indexes. Two different types of dielectric materials (Si as a high-refractive index dielectric and MgF<sub>2</sub> as a low-refractive index dielectric) are used to construct the asymmetric structures (Si/MgF<sub>2</sub>)<sup>N</sup>InSb(Si/MgF<sub>2</sub>)<sup>N</sup> named S.I, and (Si/MgF<sub>2</sub>)<sup>N</sup>HgBa<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>10</sub>(Si/MgF<sub>2</sub>)<sup>N</sup> named S.II. It is found that in response to the temperature changes, transmission peaks within the photonic band gap of the S.II structure, in contrast to S.I, show a small wavelength shift. Furthermore, the results show that under the same conditions, S.I structure generates an extra defect mode in the transmission spectra. Besides high efficiency transmission property of S.II structure, it can be concluded that the semiconductor-dielectric photonic crystals are more sensitive to temperature variation than superconductor types. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defect%20modes" title="defect modes">defect modes</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystals" title=" photonic crystals"> photonic crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor" title=" semiconductor"> semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=superconductor" title=" superconductor"> superconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission" title=" transmission"> transmission</a> </p> <a href="https://publications.waset.org/abstracts/67733/a-comparative-study-of-a-defective-superconductor-semiconductor-dielectric-photonic-crystal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7158</span> Ab-Initio Study of Native Defects in SnO Under Strain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Albar">A. Albar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20B.%20Granato"> D. B. Granato</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Schwingenschlogl"> U. Schwingenschlogl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tin monoxide (SnO) has promising properties to be applied as a p-type semiconductor in transparent electronics. To this end, it is necessary to understand the behavior of defects in order to control them. We use density functional theory to study native defects of SnO under tensile and compressive strain. We show that Sn vacancies are more stable under tension and less stable under compression, irrespectively of the charge state. In contrast, O vacancies behave differently for different charge. It turns out that the most stable defect under compression is the +1 charged O vacancy in a Sn-rich environment and the charge neutral O interstitial in an O-rich environment. Therefore, compression can be used to transform SnO from an n-type into un-doped semiconductor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=native%20defects" title="native defects">native defects</a>, <a href="https://publications.waset.org/abstracts/search?q=ab-initio" title=" ab-initio"> ab-initio</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20defect" title=" point defect"> point defect</a>, <a href="https://publications.waset.org/abstracts/search?q=tension" title=" tension"> tension</a>, <a href="https://publications.waset.org/abstracts/search?q=compression" title=" compression"> compression</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor" title=" semiconductor"> semiconductor</a> </p> <a href="https://publications.waset.org/abstracts/1948/ab-initio-study-of-native-defects-in-sno-under-strain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7157</span> Research on Modern Semiconductor Converters and the Usage of SiC Devices in the Technology Centre of Ostrava</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Vacul%C3%ADk">P. Vaculík</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Ka%C5%88ovsk%C3%BD"> P. Kaňovský</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The following article presents Technology Centre of Ostrava (TCO) in the Czech Republic. Describes the structure and main research areas realized by the project ENET-Energy Units for Utilization of non-traditional Energy Sources. More details are presented from the research program dealing with transformation, accumulation, and distribution of electric energy. Technology Centre has its own energy mix consisting of alternative sources of fuel sources that use of process gases from the storage part and also the energy from distribution network. The article will focus on the properties and application possibilities SiC semiconductor devices for power semiconductor converter for photo-voltaic systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SiC" title="SiC">SiC</a>, <a href="https://publications.waset.org/abstracts/search?q=Si" title=" Si"> Si</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20centre%20of%20Ostrava" title=" technology centre of Ostrava"> technology centre of Ostrava</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20systems" title=" photovoltaic systems"> photovoltaic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%2FDC%20Converter" title=" DC/DC Converter"> DC/DC Converter</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/20398/research-on-modern-semiconductor-converters-and-the-usage-of-sic-devices-in-the-technology-centre-of-ostrava" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">610</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7156</span> TiO₂ Deactivation Process during Photocatalytic Ethanol Degradation in the Gas Phase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20El-Alami">W. El-Alami</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Ara%C3%B1a"> J. Araña</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Gonz%C3%A1lez%20D%C3%ADaz"> O. González Díaz</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Do%C3%B1a%20Rodr%C3%ADguez"> J. M. Doña Rodríguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The efficiency of the semiconductor TiO₂ needs to be improved to be an effective tool for pollutant removal. To improve the efficiency of this semiconductor, it is necessary to deepen the knowledge of the processes that take place on its surface. In this sense, the deactivation of the catalyst is one of the aspects considered relevant. In order to study this point, the processes of deactivation of TiO₂ during the gas phase degradation of ethanol have been studied. For this, catalysts with only the anatase phase (SA and PC100) and catalysts with anatase and rutile phases (P25 and P90) have been selected. In order to force the deactivation processes, different cycles have been performed, adding ethanol gas but avoiding the degradation of acetates to determine their effect on the process. The surface concentration of fluorine on the catalysts was semi-quantitatively determined by EDAX analysis. The photocatalytic experiments were done with four commercial catalysts (P25, SA, P90, and PC100) and the two fluoride catalysts indicated above. The interaction and photocatalytic degradation of ethanol were followed by Fourier transform infrared spectroscopy (FTIR). EDAX analysis has revealed the presence of sodium on the surface of fluorinated catalysts. In FTIR studies, it has been observed that the acetates adsorbed on the anatase phase in P25 and P90 give rise to electron transfer to surface traps that modify the electronic states of the semiconductor. These deactivation studies have also been carried out with fluorinated P25 and SA catalysts (F-P25 and F-SA) which have observed similar electron transfers but in the opposite direction during illumination. In these materials, it has been observed that the electrons present in the surface traps, as a consequence of the interaction Ti-F, react with the holes, causing a change in the electronic states of the semiconductor. In this way, deactivated states of these materials have been detected by different electron transfer routes. It has been identified that acetates produced from the degradation of ethanol in P25 and P90 are probably hydrated on the surface of the rutile phase. In the catalysts with only the anatase phase (SA and PC100), the deactivation is immediate if the acetates are not removed before adsorbing ethanol again. In F-P25 and F-SA has been observed that the acetates formed react with the sodium ions present on the surface and not with the Ti atoms because they are interacting with the fluorine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20degradation" title="photocatalytic degradation">photocatalytic degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82" title=" TiO₂"> TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=deactivation%20process" title=" deactivation process"> deactivation process</a>, <a href="https://publications.waset.org/abstracts/search?q=F-P25" title=" F-P25"> F-P25</a> </p> <a href="https://publications.waset.org/abstracts/161238/tio2-deactivation-process-during-photocatalytic-ethanol-degradation-in-the-gas-phase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7155</span> Machine Learning Approach for Yield Prediction in Semiconductor Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heramb%20Somthankar">Heramb Somthankar</a>, <a href="https://publications.waset.org/abstracts/search?q=Anujoy%20Chakraborty"> Anujoy Chakraborty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a classification study on yield prediction in semiconductor production using machine learning approaches. A complicated semiconductor production process is generally monitored continuously by signals acquired from sensors and measurement sites. A monitoring system contains a variety of signals, all of which contain useful information, irrelevant information, and noise. In the case of each signal being considered a feature, "Feature Selection" is used to find the most relevant signals. The open-source UCI SECOM Dataset provides 1567 such samples, out of which 104 fail in quality assurance. Feature extraction and selection are performed on the dataset, and useful signals were considered for further study. Afterward, common machine learning algorithms were employed to predict whether the signal yields pass or fail. The most relevant algorithm is selected for prediction based on the accuracy and loss of the ML model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning%20classification%20algorithms" title=" machine learning classification algorithms"> machine learning classification algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20production%20monitoring" title=" semiconductor production monitoring"> semiconductor production monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=time-series%20analysis" title=" time-series analysis"> time-series analysis</a> </p> <a href="https://publications.waset.org/abstracts/150276/machine-learning-approach-for-yield-prediction-in-semiconductor-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7154</span> Pattern Recognition Using Feature Based Die-Map Clustering in the Semiconductor Manufacturing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seung%20Hwan%20Park">Seung Hwan Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Sool%20Park"> Cheng-Sool Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Seok%20Kim"> Jun Seok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Youngji%20Yoo"> Youngji Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Daewoong%20An"> Daewoong An</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Geol%20Baek"> Jun-Geol Baek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Depending on the big data analysis becomes important, yield prediction using data from the semiconductor process is essential. In general, yield prediction and analysis of the causes of the failure are closely related. The purpose of this study is to analyze pattern affects the final test results using a die map based clustering. Many researches have been conducted using die data from the semiconductor test process. However, analysis has limitation as the test data is less directly related to the final test results. Therefore, this study proposes a framework for analysis through clustering using more detailed data than existing die data. This study consists of three phases. In the first phase, die map is created through fail bit data in each sub-area of die. In the second phase, clustering using map data is performed. And the third stage is to find patterns that affect final test result. Finally, the proposed three steps are applied to actual industrial data and experimental results showed the potential field application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=die-map%20clustering" title="die-map clustering">die-map clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20manufacturing%20process" title=" semiconductor manufacturing process"> semiconductor manufacturing process</a> </p> <a href="https://publications.waset.org/abstracts/5000/pattern-recognition-using-feature-based-die-map-clustering-in-the-semiconductor-manufacturing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7153</span> Multi-Analyte Indium Gallium Zinc Oxide-Based Dielectric Electrolyte-Insulator-Semiconductor Sensing Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chyuan%20Haur%20Kao">Chyuan Haur Kao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsiang%20Chen"> Hsiang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Sheng%20Tsai"> Yu Sheng Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Hao%20Hung"> Chen Hao Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Shan%20Lee"> Yu Shan Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dielectric electrolyte-insulator-semiconductor sensing membranes-based biosensors have been intensively investigated because of their simple fabrication, low cost, and fast response. However, to enhance their sensing performance, it is worthwhile to explore alternative materials, distinct processes, and novel treatments. An ISFET can be viewed as a variation of MOSFET with the dielectric oxide layer as the sensing membrane. Then, modulation on the work function of the gate caused by electrolytes in various ion concentrations could be used to calculate the ion concentrations. Recently, owing to the advancement of CMOS technology, some high dielectric materials substrates as the sensing membranes of electrolyte-insulator-semiconductor (EIS) structures. The EIS with a stacked-layer of SiO₂ layer between the sensing membrane and the silicon substrate exhibited a high pH sensitivity and good long-term stability. IGZO is a wide-bandgap (~3.15eV) semiconductor of the III-VI semiconductor group with several preferable properties, including good transparency, high electron mobility, wide band gap, and comparable with CMOS technology. IGZO was sputtered by reactive radio frequency (RF) on a p-type silicon wafer with various gas ratios of Ar:O₂ and was treated with rapid thermal annealing in O₂ ambient. The sensing performance, including sensitivity, hysteresis, and drift rate was measured and XRD, XPS, and AFM analyses were also used to study the material properties of the IGZO membrane. Moreover, IGZO was used as a sensing membrane in dielectric EIS bio-sensor structures. In addition to traditional pH sensing capability, detection for concentrations of Na+, K+, urea, glucose, and creatinine was performed. Moreover, post rapid thermal annealing (RTA) treatment was confirmed to improve the material properties and enhance the multi-analyte sensing capability for various ions or chemicals in solutions. In this study, the IGZO sensing membrane with annealing in O₂ ambient exhibited a higher sensitivity, higher linearity, higher H+ selectivity, lower hysteresis voltage and lower drift rate. Results indicate that the IGZO dielectric sensing membrane on the EIS structure is promising for future bio-medical device applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dielectric%20sensing%20membrane" title="dielectric sensing membrane">dielectric sensing membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=IGZO" title=" IGZO"> IGZO</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20ion" title=" hydrogen ion"> hydrogen ion</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma" title=" plasma"> plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20thermal%20annealing" title=" rapid thermal annealing"> rapid thermal annealing</a> </p> <a href="https://publications.waset.org/abstracts/79689/multi-analyte-indium-gallium-zinc-oxide-based-dielectric-electrolyte-insulator-semiconductor-sensing-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7152</span> Application to Molecular Electronics of Thin Layers of Organic Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Benamrani">M. I. Benamrani</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Benamrani"> H. Benamrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the research to replace silicon and other thin-film semiconductor technologies and to develop long-term technology that is environmentally friendly, low-cost, and abundant, there is growing interest today given to organic materials. Our objective is to prepare polymeric layers containing metal particles deposited on a surface of semiconductor material which can have better electrical properties and which could be applied in the fields of nanotechnology as an alternative to the existing processes involved in the design of electronic circuits. This work consists in the development of composite materials by complexation and electroreduction of copper in a film of poly (pyrrole benzoic acid). The deposition of the polymer film on a monocrystalline silicon substrate is made by electrochemical oxidation in an organic medium. The incorporation of copper particles into the polymer is achieved by dipping the electrode in a solution of copper sulphate to complex the cupric ions, followed by electroreduction in an aqueous solution to precipitate the copper. In order to prepare the monocrystalline silicon substrate as an electrode for electrodeposition, an in-depth study on its surface state was carried out using photoacoustic spectroscopy. An analysis of the optical properties using this technique on the effect of pickling using a chemical solution was carried out. Transmission-photoacoustic and impedance spectroscopic techniques give results in agreement with those of photoacoustic spectroscopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photoacoustic" title="photoacoustic">photoacoustic</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopy" title=" spectroscopy"> spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20sulphate" title=" copper sulphate"> copper sulphate</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20solution" title=" chemical solution"> chemical solution</a> </p> <a href="https://publications.waset.org/abstracts/158235/application-to-molecular-electronics-of-thin-layers-of-organic-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7151</span> Cu Nanoparticle Embedded-Zno Nanoplate Thin Films for Highly Efficient Photocatalytic Hydrogen Production </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Premrudee%20Promdet">Premrudee Promdet</a>, <a href="https://publications.waset.org/abstracts/search?q=Fan%20Cui"> Fan Cui</a>, <a href="https://publications.waset.org/abstracts/search?q=Gi%20Byoung%20%20Hwang"> Gi Byoung Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ka%20Chuen%20To"> Ka Chuen To</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjayan%20Sathasivam"> Sanjayan Sathasivam</a>, <a href="https://publications.waset.org/abstracts/search?q=Claire%20J.%20%20Carmalt"> Claire J. Carmalt</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20P.%20Parkin"> Ivan P. Parkin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel single-step fabrication of Cu nanoparticle embedded ZnO (Cu.ZnO) thin films was developed by aerosol-assisted chemical vapor deposition for stable and efficient hydrogen production in Photoelectrochemical (PEC) cell. In this approach, the Cu.ZnO nanoplate thin films were grown by using acetic acid to promote preferential growth and enhance surface active sites, where Cu nanoparticles can be formed under chemical deposition by reduction of Cu salt. Studies using photoluminescence spectroscopy indicate the enhanced photocatalytic performance is attributed to hot electron generated from SPR. The Cu metal in the composite material is functioning as a sensitizer to supply electrons to the semiconductor resulting in enhanced electron density for redox reaction. This work not only describes a way to obtain photoanodes with high photocatalytic activity but also suggests a low-cost route towards production of photocatalysts for hydrogen production. This work also supports a vital need to understand electron transfer between photoexcited semiconductor materials and metals, a requirement for tailoring the properties of semiconductor/metal composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title="photocatalysis">photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=photoelectrochemical%20cell%20%28PEC%29" title=" photoelectrochemical cell (PEC)"> photoelectrochemical cell (PEC)</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosol-assisted%20chemical%20vapor%20deposition%20%28AACVD%29" title=" aerosol-assisted chemical vapor deposition (AACVD)"> aerosol-assisted chemical vapor deposition (AACVD)</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20resonance%20%28SPR%29" title=" surface plasmon resonance (SPR)"> surface plasmon resonance (SPR)</a> </p> <a href="https://publications.waset.org/abstracts/138288/cu-nanoparticle-embedded-zno-nanoplate-thin-films-for-highly-efficient-photocatalytic-hydrogen-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7150</span> Investigation of the Stability and Spintronic Properties of NbrhgeX (X= Cr, Co, Mn, Fe, Ni) Using Density Functional Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shittu%20Akinpelu">Shittu Akinpelu</a>, <a href="https://publications.waset.org/abstracts/search?q=Issac%20Popoola"> Issac Popoola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The compound NbRhGe has been predicted to be a semiconductor with excellent mechanical properties. It is an indirect band gap material. The potential of NbRhGe for non-volatile data storage via element addition is being studied using the Density Functional Theory (DFT). Preliminary results on the electronic and magnetic properties are suggestive for their application in spintronic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=half-metals" title="half-metals">half-metals</a>, <a href="https://publications.waset.org/abstracts/search?q=Heusler%20compound" title=" Heusler compound"> Heusler compound</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor" title=" semiconductor"> semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=spintronic" title=" spintronic "> spintronic </a> </p> <a href="https://publications.waset.org/abstracts/124973/investigation-of-the-stability-and-spintronic-properties-of-nbrhgex-x-cr-co-mn-fe-ni-using-density-functional-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7149</span> Influence of Strong Optical Feedback on Frequency Chirp and Lineshape Broadening in High-Speed Semiconductor Laser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20Ahmed">Moustafa Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Fumio%20Koyama"> Fumio Koyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Directly-modulated semiconductor lasers, including edge-emitting and vertical-cavity surface-emitting lasers, have received considerable interest recently for use in data transmitters in cost-effective high-speed data centers, metro, and access networks. Optical feedback has been proved as an efficient technique to boost the modulation bandwidth and enhance the speed of the semiconductor laser. However, both the laser linewidth and frequency chirping in directly-modulated lasers are sensitive to both intensity modulation and optical feedback. These effects along width fiber dispersion affect the transmission bit rate and distance in single-mode fiber links. In this work, we continue our recent research on directly-modulated semiconductor lasers with modulation bandwidth in the millimeter-wave band by introducing simultaneous modeling and simulations on both the frequency chirping and lineshape broadening. The lasers are operating under strong optical feedback. The model takes into account the multiple reflections of laser reflections of laser radiation in the external cavity. The analyses are given in terms of the chirp-to-modulated power ratio, and the results are shown for the possible dynamic states of continuous wave, period-1 oscillation, and chaos. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chirp" title="chirp">chirp</a>, <a href="https://publications.waset.org/abstracts/search?q=linewidth" title=" linewidth"> linewidth</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20feedback" title=" optical feedback"> optical feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20laser" title=" semiconductor laser"> semiconductor laser</a> </p> <a href="https://publications.waset.org/abstracts/79640/influence-of-strong-optical-feedback-on-frequency-chirp-and-lineshape-broadening-in-high-speed-semiconductor-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7148</span> Optimization of SOL-Gel Copper Oxide Layers for Field-Effect Transistors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Vincze">Tomas Vincze</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20Micjan"> Michal Micjan</a>, <a href="https://publications.waset.org/abstracts/search?q=Milan%20Pavuk"> Milan Pavuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Weis"> Martin Weis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, alternative materials are gaining attention to replace polycrystalline and amorphous silicon, which are a standard for low requirement devices, where silicon is unnecessarily and high cost. For that reason, metal oxides are envisioned as the new materials for these low-requirement applications such as sensors, solar cells, energy storage devices, or field-effect transistors. Their most common way of layer growth is sputtering; however, this is a high-cost fabrication method, and a more industry-suitable alternative is the sol-gel method. In this group of materials, many oxides exhibit a semiconductor-like behavior with sufficiently high mobility to be applied as transistors. The sol-gel method is a cost-effective deposition technique for semiconductor-based devices. Copper oxides, as p-type semiconductors with free charge mobility up to 1 cm2/Vs., are suitable replacements for poly-Si or a-Si:H devices. However, to reach the potential of silicon devices, a fine-tuning of material properties is needed. Here we focus on the optimization of the electrical parameters of copper oxide-based field-effect transistors by modification of precursor solvent (usually 2-methoxy ethanol). However, to achieve solubility and high-quality films, a better solvent is required. Since almost no solvents have both high dielectric constant and high boiling point, an alternative approach was proposed with blend solvents. By mixing isopropyl alcohol (IPA) and 2-methoxy ethanol (2ME) the precursor reached better solubility. The quality of the layers fabricated using mixed solutions was evaluated in accordance with the surface morphology and electrical properties. The IPA:2ME solution mixture reached optimum results for the weight ratio of 1:3. The cupric oxide layers for optimal mixture had the highest crystallinity and highest effective charge mobility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide" title="copper oxide">copper oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=field-effect%20transistor" title=" field-effect transistor"> field-effect transistor</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor" title=" semiconductor"> semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20method" title=" sol-gel method"> sol-gel method</a> </p> <a href="https://publications.waset.org/abstracts/146143/optimization-of-sol-gel-copper-oxide-layers-for-field-effect-transistors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7147</span> A Computational Study of the Electron Transport in HgCdTe Bulk Semiconductor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Dahbi">N. Dahbi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Daoudi"> M. Daoudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the use of computational method based on Monte Carlo simulation in order to investigate the transport phenomena of the electron in HgCdTe narrow band gap semiconductor. Via this method we can evaluate the time dependence of the transport parameters: velocity, energy and mobility of electrons through matter (HgCdTe). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo" title="Monte Carlo">Monte Carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20parameters" title=" transport parameters"> transport parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=HgCdTe" title=" HgCdTe"> HgCdTe</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20mechanics" title=" computational mechanics"> computational mechanics</a> </p> <a href="https://publications.waset.org/abstracts/4221/a-computational-study-of-the-electron-transport-in-hgcdte-bulk-semiconductor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7146</span> Semiconductor Variable Wavelength Generator of Near-Infrared-to-Terahertz Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isao%20Tomita">Isao Tomita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Power characteristics are obtained for laser beams of near-infrared and terahertz wavelengths when produced by difference-frequency generation with a quasi-phase-matched (QPM) waveguide made of gallium phosphide (GaP). A refractive-index change of the QPM GaP waveguide is included in computations with Sellmeier’s formula for varying input wavelengths, where optical loss is also included. Although the output power decreases with decreasing photon energy as the beam wavelength changes from near-infrared to terahertz wavelengths, the beam generation with such greatly different wavelengths, which is not achievable with an ordinary laser diode without the replacement of semiconductor material with a different bandgap one, can be made with the same semiconductor (GaP) by changing the QPM period, where a way of changing the period is provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=difference-frequency%20generation" title="difference-frequency generation">difference-frequency generation</a>, <a href="https://publications.waset.org/abstracts/search?q=gallium%20phosphide" title=" gallium phosphide"> gallium phosphide</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-phase-matching" title=" quasi-phase-matching"> quasi-phase-matching</a>, <a href="https://publications.waset.org/abstracts/search?q=waveguide" title=" waveguide"> waveguide</a> </p> <a href="https://publications.waset.org/abstracts/145853/semiconductor-variable-wavelength-generator-of-near-infrared-to-terahertz-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semiconductor%20materials&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semiconductor%20materials&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semiconductor%20materials&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semiconductor%20materials&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semiconductor%20materials&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semiconductor%20materials&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semiconductor%20materials&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semiconductor%20materials&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semiconductor%20materials&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semiconductor%20materials&page=239">239</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semiconductor%20materials&page=240">240</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=semiconductor%20materials&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>