CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 351 results for author: <span class="mathjax">Halpern, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&query=Halpern%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Halpern, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Halpern%2C+M&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Halpern, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Halpern%2C+M&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Halpern%2C+M&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Halpern%2C+M&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Halpern%2C+M&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Halpern%2C+M&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Halpern%2C+M&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10428">arXiv:2411.10428</a> <span> [<a href="https://arxiv.org/pdf/2411.10428">pdf</a>, <a href="https://arxiv.org/format/2411.10428">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> BICEP/Keck XIX: Extremely Thin Composite Polymer Vacuum Windows for BICEP and Other High Throughput Millimeter Wave Telescopes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+B">BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Carter%2C+K">K. Carter</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Corrigan%2C+L">L. Corrigan</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Crystian%2C+S">S. Crystian</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A+J">A. J. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E">E. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Echter%2C+M">M. Echter</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Elwood%2C+B+D">B. D. Elwood</a> , et al. (69 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10428v1-abstract-short" style="display: inline;"> Millimeter-wave refracting telescopes targeting the degree-scale structure of the cosmic microwave background (CMB) have recently grown to diffraction-limited apertures of over 0.5 meters. These instruments are entirely housed in vacuum cryostats to support their sub-kelvin bolometric detectors and to minimize radiative loading from thermal emission due to absorption loss in their transmissive opt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10428v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10428v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10428v1-abstract-full" style="display: none;"> Millimeter-wave refracting telescopes targeting the degree-scale structure of the cosmic microwave background (CMB) have recently grown to diffraction-limited apertures of over 0.5 meters. These instruments are entirely housed in vacuum cryostats to support their sub-kelvin bolometric detectors and to minimize radiative loading from thermal emission due to absorption loss in their transmissive optical elements. The large vacuum window is the only optical element in the system at ambient temperature, and therefore minimizing loss in the window is crucial for maximizing detector sensitivity. This motivates the use of low-loss polymer materials and a window as thin as practicable. However, the window must simultaneously meet the requirement to keep sufficient vacuum, and therefore must limit gas permeation and remain mechanically robust against catastrophic failure under pressure. We report on the development of extremely thin composite polyethylene window technology that meets these goals. Two windows have been deployed for two full observing seasons on the BICEP3 and BA150 CMB telescopes at the South Pole. On BICEP3, the window has demonstrated a 6% improvement in detector sensitivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10428v1-abstract-full').style.display = 'none'; document.getElementById('2411.10428v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 12 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23374">arXiv:2410.23374</a> <span> [<a href="https://arxiv.org/pdf/2410.23374">pdf</a>, <a href="https://arxiv.org/format/2410.23374">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> A repeating fast radio burst source in the outskirts of a quiescent galaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Shah%2C+V">V. Shah</a>, <a href="/search/astro-ph?searchtype=author&query=Shin%2C+K">K. Shin</a>, <a href="/search/astro-ph?searchtype=author&query=Leung%2C+C">C. Leung</a>, <a href="/search/astro-ph?searchtype=author&query=Fong%2C+W">W. Fong</a>, <a href="/search/astro-ph?searchtype=author&query=Eftekhari%2C+T">T. Eftekhari</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Andersen%2C+B+C">B. C. Andersen</a>, <a href="/search/astro-ph?searchtype=author&query=Andrew%2C+S">S. Andrew</a>, <a href="/search/astro-ph?searchtype=author&query=Bhardwaj%2C+M">M. Bhardwaj</a>, <a href="/search/astro-ph?searchtype=author&query=Brar%2C+C">C. Brar</a>, <a href="/search/astro-ph?searchtype=author&query=Cassanelli%2C+T">T. Cassanelli</a>, <a href="/search/astro-ph?searchtype=author&query=Chatterjee%2C+S">S. Chatterjee</a>, <a href="/search/astro-ph?searchtype=author&query=Curtin%2C+A+P">A. P. Curtin</a>, <a href="/search/astro-ph?searchtype=author&query=Dobbs%2C+M">M. Dobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Dong%2C+Y">Y. Dong</a>, <a href="/search/astro-ph?searchtype=author&query=Dong%2C+F+A">F. A. Dong</a>, <a href="/search/astro-ph?searchtype=author&query=Fonseca%2C+E">E. Fonseca</a>, <a href="/search/astro-ph?searchtype=author&query=Gaensler%2C+B+M">B. M. Gaensler</a>, <a href="/search/astro-ph?searchtype=author&query=Halpern%2C+M">M. Halpern</a>, <a href="/search/astro-ph?searchtype=author&query=Hessels%2C+J+W+T">J. W. T. Hessels</a>, <a href="/search/astro-ph?searchtype=author&query=Ibik%2C+A+L">A. L. Ibik</a>, <a href="/search/astro-ph?searchtype=author&query=Jain%2C+N">N. Jain</a>, <a href="/search/astro-ph?searchtype=author&query=Joseph%2C+R+C">R. C. Joseph</a>, <a href="/search/astro-ph?searchtype=author&query=Kaczmarek%2C+J">J. Kaczmarek</a>, <a href="/search/astro-ph?searchtype=author&query=Kahinga%2C+L+A">L. A. Kahinga</a> , et al. (24 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23374v1-abstract-short" style="display: inline;"> We report the discovery of the repeating fast radio burst source FRB 20240209A using the CHIME/FRB telescope. We have detected 22 bursts from this repeater between February and July 2024, six of which were also recorded at the Outrigger station KKO. The 66-km long CHIME-KKO baseline can provide single-pulse FRB localizations along one dimension with $2^{\prime\prime}$ accuracy. The high declinatio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23374v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23374v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23374v1-abstract-full" style="display: none;"> We report the discovery of the repeating fast radio burst source FRB 20240209A using the CHIME/FRB telescope. We have detected 22 bursts from this repeater between February and July 2024, six of which were also recorded at the Outrigger station KKO. The 66-km long CHIME-KKO baseline can provide single-pulse FRB localizations along one dimension with $2^{\prime\prime}$ accuracy. The high declination of $\sim$86 degrees for this repeater allowed its detection with a rotating range of baseline vectors, enabling the combined localization region size to be constrained to $1^{\prime\prime}\times2^{\prime\prime}$. We present deep Gemini observations that, combined with the FRB localization, enabled a robust association of FRB 20240209A to the outskirts of a luminous galaxy (P(O|x) = 0.99; $L \approx 5.3 \times 10^{10}\,L_{\odot}$). FRB 20240209A has a projected physical offset of $40 \pm 5$ kpc from the center of its host galaxy, making it the FRB with the largest host galaxy offset to date. When normalized by the host galaxy size, the offset of FRB 20240209A is comparable to that of FRB 20200120E, the only FRB source known to originate in a globular cluster. We consider several explanations for the large offset, including a progenitor that was kicked from the host galaxy or in situ formation in a low-luminosity satellite galaxy of the putative host, but find the most plausible scenario to be a globular cluster origin. This, coupled with the quiescent, elliptical nature of the host as demonstrated in our companion paper, provide strong evidence for a delayed formation channel for the progenitor of the FRB source. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23374v1-abstract-full').style.display = 'none'; document.getElementById('2410.23374v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to AAS Journals</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14404">arXiv:2410.14404</a> <span> [<a href="https://arxiv.org/pdf/2410.14404">pdf</a>, <a href="https://arxiv.org/format/2410.14404">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: a census of bridges between galaxy clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Isopi%2C+G">G. Isopi</a>, <a href="/search/astro-ph?searchtype=author&query=Capalbo%2C+V">V. Capalbo</a>, <a href="/search/astro-ph?searchtype=author&query=Hincks%2C+A+D">A. D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&query=Di+Mascolo%2C+L">L. Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&query=Barbavara%2C+E">E. Barbavara</a>, <a href="/search/astro-ph?searchtype=author&query=Battistelli%2C+E+S">E. S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Cui%2C+W">W. Cui</a>, <a href="/search/astro-ph?searchtype=author&query=Coulton%2C+W+R">W. R. Coulton</a>, <a href="/search/astro-ph?searchtype=author&query=De+Petris%2C+M">M. De Petris</a>, <a href="/search/astro-ph?searchtype=author&query=Devlin%2C+M">M. Devlin</a>, <a href="/search/astro-ph?searchtype=author&query=Dolag%2C+K">K. Dolag</a>, <a href="/search/astro-ph?searchtype=author&query=Dunkley%2C+J">J. Dunkley</a>, <a href="/search/astro-ph?searchtype=author&query=Fabjan%2C+D">D. Fabjan</a>, <a href="/search/astro-ph?searchtype=author&query=Ferragamo%2C+A">A. Ferragamo</a>, <a href="/search/astro-ph?searchtype=author&query=Gill%2C+A+S">A. S. Gill</a>, <a href="/search/astro-ph?searchtype=author&query=Guan%2C+Y">Y. Guan</a>, <a href="/search/astro-ph?searchtype=author&query=Halpern%2C+M">M. Halpern</a>, <a href="/search/astro-ph?searchtype=author&query=Hilton%2C+M">M. Hilton</a>, <a href="/search/astro-ph?searchtype=author&query=Hughes%2C+J+P">J. P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&query=Lokken%2C+M">M. Lokken</a>, <a href="/search/astro-ph?searchtype=author&query=van+Marrewijk%2C+J">J. van Marrewijk</a>, <a href="/search/astro-ph?searchtype=author&query=Moodley%2C+K">K. Moodley</a>, <a href="/search/astro-ph?searchtype=author&query=Mroczkowski%2C+T">T. Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&query=Orlowski-Scherer%2C+J">J. Orlowski-Scherer</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14404v1-abstract-short" style="display: inline;"> According to CMB measurements, baryonic matter constitutes about $5\%$ of the mass-energy density of the universe. A significant population of these baryons, for a long time referred to as `missing', resides in a low density, warm-hot intergalactic medium (WHIM) outside galaxy clusters, tracing the ``cosmic web'', a network of large scale dark matter filaments. Various studies have detected this i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14404v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14404v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14404v1-abstract-full" style="display: none;"> According to CMB measurements, baryonic matter constitutes about $5\%$ of the mass-energy density of the universe. A significant population of these baryons, for a long time referred to as `missing', resides in a low density, warm-hot intergalactic medium (WHIM) outside galaxy clusters, tracing the ``cosmic web'', a network of large scale dark matter filaments. Various studies have detected this inter-cluster gas, both by stacking and by observing individual filaments in compact, massive systems. In this paper, we study short filaments (< 10 Mpc) connecting massive clusters ($M_{500} \approx 3\times 10^{14} M_{\odot}$) detected by the Atacama Cosmology Telescope (ACT) using the scattering of CMB light off the ionised gas, a phenomenon known as the thermal Sunyaev-Zeldovich (tSZ) effect. The first part of this work is a search for suitable candidates for high resolution follow-up tSZ observations. We identify four cluster pairs with an intercluster signal above the noise floor (S/N $>$ 2), including two with a tentative $>2蟽$ statistical significance for an intercluster bridge from the ACT data alone. In the second part of this work, starting from the same cluster sample, we directly stack on ${\sim}100$ cluster pairs and observe an excess SZ signal between the stacked clusters of $y=(7.2^{+2.3}_{-2.5})\times 10^{-7}$ with a significance of $3.3蟽$. It is the first tSZ measurement of hot gas between clusters in this range of masses at moderate redshift ($\langle z\rangle\approx 0.5$). We compare this to the signal from simulated cluster pairs with similar redshifts and separations in the THE300 and MAGNETICUM Pathfinder cosmological simulations and find broad consistency. Additionally, we show that our measurement is consistent with scaling relations between filament parameters and mass of the embedded halos identified in simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14404v1-abstract-full').style.display = 'none'; document.getElementById('2410.14404v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 17 images</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 85A40 (Primary) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13064">arXiv:2410.13064</a> <span> [<a href="https://arxiv.org/pdf/2410.13064">pdf</a>, <a href="https://arxiv.org/format/2410.13064">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Quantifying Atmospheric Emission above Cerro Toco </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Morris%2C+T+W">Thomas W. Morris</a>, <a href="/search/astro-ph?searchtype=author&query=Battistelli%2C+E">Elia Battistelli</a>, <a href="/search/astro-ph?searchtype=author&query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&query=van+Marrewijk%2C+J">Joshiwa van Marrewijk</a>, <a href="/search/astro-ph?searchtype=author&query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&query=Page%2C+L+A">Lyman A. Page</a>, <a href="/search/astro-ph?searchtype=author&query=Partridge%2C+B">Bruce Partridge</a>, <a href="/search/astro-ph?searchtype=author&query=Puddu%2C+R">Roberto Puddu</a>, <a href="/search/astro-ph?searchtype=author&query=Salatino%2C+M">Maria Salatino</a>, <a href="/search/astro-ph?searchtype=author&query=Sif%C3%B3n%2C+C">Crist贸bal Sif贸n</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+Y">Yuhan Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Wollack%2C+E+J">Edward J. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13064v1-abstract-short" style="display: inline;"> At frequencies below 1\,Hz, fluctuations in atmospheric emission in the Chajnantor region in northern Chile are the primary source of interference for bolometric millimeter-wave observations. This paper focuses on the statistics of these fluctuations using measurements from the Atacama Cosmology Telescope (ACT) and the Atacama Pathfinder Experiment (APEX) water vapor radiometer. After introducing… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13064v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13064v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13064v1-abstract-full" style="display: none;"> At frequencies below 1\,Hz, fluctuations in atmospheric emission in the Chajnantor region in northern Chile are the primary source of interference for bolometric millimeter-wave observations. This paper focuses on the statistics of these fluctuations using measurements from the Atacama Cosmology Telescope (ACT) and the Atacama Pathfinder Experiment (APEX) water vapor radiometer. After introducing a method for separating atmospheric effects from other systematic effects, we present a direct measurement of the temporal outer scale of turbulence of $蟿_0\approx50$s corresponding to a spatial scale of $L_0\approx500$m. At smaller scales, the fluctuations are well described by the Kolmogorov 2/3 power law until, at yet smaller scales, the effects of beam smearing become important. As a part of this study, we present measurements of the atmosphere by the APEX radiometer over 20 years, focused on fluctuations in precipitable water vapor (PWV). We find that the 30-minute mean of the total PWV is not in general a robust estimator of the level of fluctuations. We show that the microwave frequency spectrum of these fluctuations is in good agreement with predictions by the \texttt{am} code for bands above 90~GHz. We then show that the variance of fluctuations in ACT's mm-wave bands correlates with the variance of fluctuations in PWV measured by APEX, even though the observatories are 6\,km apart and observe different lines of sight. We find that ACT's atmosphere-determined optical efficiencies are consistent with previous planet-based results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13064v1-abstract-full').style.display = 'none'; document.getElementById('2410.13064v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages plus appendix, 17 figures. Submitted to PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12089">arXiv:2410.12089</a> <span> [<a href="https://arxiv.org/pdf/2410.12089">pdf</a>, <a href="https://arxiv.org/format/2410.12089">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> BICEP/Keck XVIII: Measurement of BICEP3 polarization angles and consequences for constraining cosmic birefringence and inflation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+B">BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A+J">A. J. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E">E. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Elwood%2C+B+D">B. D. Elwood</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fortes%2C+A">A. Fortes</a>, <a href="/search/astro-ph?searchtype=author&query=Gao%2C+M">M. Gao</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12089v2-abstract-short" style="display: inline;"> We use a custom-made calibrator to measure individual detectors' polarization angles of BICEP3, a small aperture telescope observing the cosmic microwave background (CMB) at 95GHz from the South Pole. We describe our calibration strategy and the statistical and systematic uncertainties associated with the measurement. We reach an unprecedented precision for such measurement on a CMB experiment, wi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12089v2-abstract-full').style.display = 'inline'; document.getElementById('2410.12089v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12089v2-abstract-full" style="display: none;"> We use a custom-made calibrator to measure individual detectors' polarization angles of BICEP3, a small aperture telescope observing the cosmic microwave background (CMB) at 95GHz from the South Pole. We describe our calibration strategy and the statistical and systematic uncertainties associated with the measurement. We reach an unprecedented precision for such measurement on a CMB experiment, with a repeatability for each detector pair of $0.02掳$. We show that the relative angles measured using this method are in excellent agreement with those extracted from CMB data. Because the absolute measurement is currently limited by a systematic uncertainty, we do not derive cosmic birefringence constraints from BICEP3 data in this work. Rather, we forecast the sensitivity of BICEP3 sky maps for such analysis. We investigate the relative contributions of instrument noise, lensing, and dust, as well as astrophysical and instrumental systematics. We also explore the constraining power of different angle estimators, depending on analysis choices. We establish that the BICEP3 2-year dataset (2017--2018) has an on-sky sensitivity to the cosmic birefringence angle of $蟽= 0.078掳$, which could be improved to $蟽= 0.055掳$ by adding all of the existing BICEP3 data (through 2023). Furthermore, we emphasize the possibility of using the BICEP3 sky patch as a polarization calibration source for CMB experiments, which with the present data could reach a precision of $0.035掳$. Finally, in the context of inflation searches, we investigate the impact of detector-to-detector variations in polarization angles as they may bias the tensor-to-scalar ratio r. We show that while the effect is expected to remain subdominant to other sources of systematic uncertainty, it can be reliably calibrated using polarization angle measurements such as the ones we present in this paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12089v2-abstract-full').style.display = 'none'; document.getElementById('2410.12089v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 Pages, 17 Figures, 6 Tables, as submitted to PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16440">arXiv:2409.16440</a> <span> [<a href="https://arxiv.org/pdf/2409.16440">pdf</a>, <a href="https://arxiv.org/format/2409.16440">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Calibration Measurements of the BICEP3 and BICEP Array CMB Polarimeters from 2017 to 2024 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Giannakopoulos%2C+C">Christos Giannakopoulos</a>, <a href="/search/astro-ph?searchtype=author&query=Verg%C3%A8s%2C+C">Clara Verg猫s</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">Denis Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">Ritoban Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">Colin A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">Dominic Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">James J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">Hans Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">Victor Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">James R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">Jake Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">James Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">Michael Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A+J">Ari Jozef Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E">Edward Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">Marion Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">Lionel Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">Miranda Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Elwood%2C+B+D">Brodi D. Elwood</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">Sofia Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">Jeff P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fortes%2C+A">Antonio Fortes</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16440v1-abstract-short" style="display: inline;"> The BICEP3 and BICEP Array polarimeters are small-aperture refracting telescopes located at the South Pole designed to measure primordial gravitational wave signatures in the Cosmic Microwave Background (CMB) polarization, predicted by inflation. Constraining the inflationary signal requires not only excellent sensitivity, but also careful control of instrumental systematics. Both instruments use… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16440v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16440v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16440v1-abstract-full" style="display: none;"> The BICEP3 and BICEP Array polarimeters are small-aperture refracting telescopes located at the South Pole designed to measure primordial gravitational wave signatures in the Cosmic Microwave Background (CMB) polarization, predicted by inflation. Constraining the inflationary signal requires not only excellent sensitivity, but also careful control of instrumental systematics. Both instruments use antenna-coupled orthogonally polarized detector pairs, and the polarized sky signal is reconstructed by taking the difference in each detector pair. As a result, the differential response between detectors within a pair becomes an important systematic effect we must control. Additionally, mapping the intensity and polarization response in regions away from the main beam can inform how sidelobe levels affect CMB measurements. Extensive calibration measurements are taken in situ every austral summer for control of instrumental systematics and instrument characterisation. In this work, we detail the set of beam calibration measurements that we conduct on the BICEP receivers, from deep measurements of main beam response to polarized beam response and sidelobe mapping. We discuss the impact of these measurements for instrumental systematics studies and design choices for future CMB receivers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16440v1-abstract-full').style.display = 'none'; document.getElementById('2409.16440v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures, 1 table, Proceedings paper SPIE 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13132">arXiv:2409.13132</a> <span> [<a href="https://arxiv.org/pdf/2409.13132">pdf</a>, <a href="https://arxiv.org/format/2409.13132">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Using Two-Frequency Dust Spectral Matching to Separate Galactic Synchrotron and Free-Free Temperature Foregrounds from the CMB </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Weiland%2C+J+L">J. L. Weiland</a>, <a href="/search/astro-ph?searchtype=author&query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&query=Addison%2C+G+E">Graeme E. Addison</a>, <a href="/search/astro-ph?searchtype=author&query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&query=Hinshaw%2C+G">Gary Hinshaw</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13132v1-abstract-short" style="display: inline;"> We introduce a method for removing CMB and anomalous microwave emission (AME, or spinning dust) intensity signals at high to intermediate Galactic latitudes in temperature sky maps at frequencies roughly between 5 and 40 GHz. The method relies on the assumption of a spatially uniform combined dust (AME and thermal) rms spectral energy distribution for these regions, but is otherwise model independ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13132v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13132v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13132v1-abstract-full" style="display: none;"> We introduce a method for removing CMB and anomalous microwave emission (AME, or spinning dust) intensity signals at high to intermediate Galactic latitudes in temperature sky maps at frequencies roughly between 5 and 40 GHz. The method relies on the assumption of a spatially uniform combined dust (AME and thermal) rms spectral energy distribution for these regions, but is otherwise model independent. A difference map is produced from input maps at two different frequencies in thermodynamic temperature: the two frequencies are chosen such that the rms AME signal in the lower frequency (~5 - 40 GHz) map is equivalent to the thermal dust emission rms in the higher frequency (~95 - 230 GHz) map. Given the high spatial correlation between AME and thermal dust, the resulting difference map is dominated by synchrotron and free-free foreground components, and can thus provide useful insight into the morphology and possible spectral variations of these components at high latitudes. We show examples of these difference maps obtained with currently available WMAP and Planck data and demonstrate the efficacy of CMB and dust mitigation using this method. We also use these maps, in conjunction with Haslam 408 MHz and WHAM H-alpha observations, to form an estimate of the diffuse synchrotron spectral index in temperature on degree scales. The hybrid analysis approach we describe is advantageous in situations where frequency coverage is insufficient to break spectral degeneracies between AME and synchrotron. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13132v1-abstract-full').style.display = 'none'; document.getElementById('2409.13132v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 10 figures, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02296">arXiv:2409.02296</a> <span> [<a href="https://arxiv.org/pdf/2409.02296">pdf</a>, <a href="https://arxiv.org/format/2409.02296">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Development of the 220/270 GHz Receiver of BICEP Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+T+B">The BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Nakato%2C+Y">Y. Nakato</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cantrall%2C+B">B. Cantrall</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A+J">A. J. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E">E. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Elwood%2C+B+D">B. D. Elwood</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fortes%2C+A">A. Fortes</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02296v1-abstract-short" style="display: inline;"> Measurements of B-mode polarization in the CMB sourced from primordial gravitational waves would provide information on the energy scale of inflation and its potential form. To achieve these goals, one must carefully characterize the Galactic foregrounds, which can be distinguished from the CMB by conducting measurements at multiple frequencies. BICEP Array is the latest-generation multi-frequency… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02296v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02296v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02296v1-abstract-full" style="display: none;"> Measurements of B-mode polarization in the CMB sourced from primordial gravitational waves would provide information on the energy scale of inflation and its potential form. To achieve these goals, one must carefully characterize the Galactic foregrounds, which can be distinguished from the CMB by conducting measurements at multiple frequencies. BICEP Array is the latest-generation multi-frequency instrument of the BICEP/Keck program, which specifically targets degree-scale primordial B-modes in the CMB. In its final configuration, this telescope will consist of four small-aperture receivers, spanning frequency bands from 30 to 270 GHz. The 220/270 GHz receiver designed to characterize Galactic dust is currently undergoing commissioning at Stanford University and is scheduled to deploy to the South Pole during the 2024--2025 austral summer. Here, we will provide an overview of this high-frequency receiver and discuss the integration status and test results as it is being commissioned. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02296v1-abstract-full').style.display = 'none'; document.getElementById('2409.02296v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10444">arXiv:2408.10444</a> <span> [<a href="https://arxiv.org/pdf/2408.10444">pdf</a>, <a href="https://arxiv.org/format/2408.10444">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> In-Flight Performance of Spider's 280 GHz Receivers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Shaw%2C+E+C">Elle C. Shaw</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Akers%2C+S">S. Akers</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J">J. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J">J. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Becker%2C+D+T">D. T. Becker</a>, <a href="/search/astro-ph?searchtype=author&query=Benton%2C+S+J">S. J. Benton</a>, <a href="/search/astro-ph?searchtype=author&query=Bergman%2C+A+S">A. S. Bergman</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Bryan%2C+S+A">S. A. Bryan</a>, <a href="/search/astro-ph?searchtype=author&query=Chiang%2C+H+C">H. C. Chiang</a>, <a href="/search/astro-ph?searchtype=author&query=Contaldi%2C+C+R">C. R. Contaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Domagalski%2C+R+S">R. S. Domagalski</a>, <a href="/search/astro-ph?searchtype=author&query=Dor%C3%A9%2C+O">O. Dor茅</a>, <a href="/search/astro-ph?searchtype=author&query=Duff%2C+S+M">S. M. Duff</a>, <a href="/search/astro-ph?searchtype=author&query=Duivenvoorden%2C+A+J">A. J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&query=Eriksen%2C+H+K">H. K. Eriksen</a>, <a href="/search/astro-ph?searchtype=author&query=Farhang%2C+M">M. Farhang</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fissel%2C+L+M">L. M. Fissel</a>, <a href="/search/astro-ph?searchtype=author&query=Fraisse%2C+A+A">A. A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&query=Freese%2C+K">K. Freese</a>, <a href="/search/astro-ph?searchtype=author&query=Galloway%2C+M">M. Galloway</a> , et al. (62 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10444v1-abstract-short" style="display: inline;"> SPIDER is a balloon-borne instrument designed to map the cosmic microwave background at degree-angular scales in the presence of Galactic foregrounds. SPIDER has mapped a large sky area in the Southern Hemisphere using more than 2000 transition-edge sensors (TESs) during two NASA Long Duration Balloon flights above the Antarctic continent. During its first flight in January 2015, SPIDER observed i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10444v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10444v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10444v1-abstract-full" style="display: none;"> SPIDER is a balloon-borne instrument designed to map the cosmic microwave background at degree-angular scales in the presence of Galactic foregrounds. SPIDER has mapped a large sky area in the Southern Hemisphere using more than 2000 transition-edge sensors (TESs) during two NASA Long Duration Balloon flights above the Antarctic continent. During its first flight in January 2015, SPIDER observed in the 95 GHz and 150 GHz frequency bands, setting constraints on the B-mode signature of primordial gravitational waves. Its second flight in the 2022-23 season added new receivers at 280 GHz, each using an array of TESs coupled to the sky through feedhorns formed from stacks of silicon wafers. These receivers are optimized to produce deep maps of polarized Galactic dust emission over a large sky area, providing a unique data set with lasting value to the field. In this work, we describe the instrument's performance during SPIDER's second flight. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10444v1-abstract-full').style.display = 'none'; document.getElementById('2408.10444v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to SPIE Astronomical Telescopes + Instrumentation 2024, JATIS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08949">arXiv:2408.08949</a> <span> [<a href="https://arxiv.org/pdf/2408.08949">pdf</a>, <a href="https://arxiv.org/format/2408.08949">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Demonstration of hybrid foreground removal on CHIME data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Wang%2C+H">Haochen Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Masui%2C+K">Kiyoshi Masui</a>, <a href="/search/astro-ph?searchtype=author&query=Bandura%2C+K">Kevin Bandura</a>, <a href="/search/astro-ph?searchtype=author&query=Chakraborty%2C+A">Arnab Chakraborty</a>, <a href="/search/astro-ph?searchtype=author&query=Dobbs%2C+M">Matt Dobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Foreman%2C+S">Simon Foreman</a>, <a href="/search/astro-ph?searchtype=author&query=Gray%2C+L">Liam Gray</a>, <a href="/search/astro-ph?searchtype=author&query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&query=Joseph%2C+A">Albin Joseph</a>, <a href="/search/astro-ph?searchtype=author&query=MacEachern%2C+J">Joshua MacEachern</a>, <a href="/search/astro-ph?searchtype=author&query=Mena-Parra%2C+J">Juan Mena-Parra</a>, <a href="/search/astro-ph?searchtype=author&query=Miller%2C+K">Kyle Miller</a>, <a href="/search/astro-ph?searchtype=author&query=Newburgh%2C+L">Laura Newburgh</a>, <a href="/search/astro-ph?searchtype=author&query=Paul%2C+S">Sourabh Paul</a>, <a href="/search/astro-ph?searchtype=author&query=Reda%2C+A">Alex Reda</a>, <a href="/search/astro-ph?searchtype=author&query=Sanghavi%2C+P">Pranav Sanghavi</a>, <a href="/search/astro-ph?searchtype=author&query=Siegel%2C+S">Seth Siegel</a>, <a href="/search/astro-ph?searchtype=author&query=Wulf%2C+D">Dallas Wulf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08949v1-abstract-short" style="display: inline;"> The main challenge of 21 cm cosmology experiments is astrophysical foregrounds which are difficult to separate from the signal due to telescope systematics. An earlier study has shown that foreground residuals induced by antenna gain errors can be estimated and subtracted using the hybrid foreground residual subtraction (HyFoReS) technique which relies on cross-correlating linearly filtered data.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08949v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08949v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08949v1-abstract-full" style="display: none;"> The main challenge of 21 cm cosmology experiments is astrophysical foregrounds which are difficult to separate from the signal due to telescope systematics. An earlier study has shown that foreground residuals induced by antenna gain errors can be estimated and subtracted using the hybrid foreground residual subtraction (HyFoReS) technique which relies on cross-correlating linearly filtered data. In this paper, we apply a similar technique to the CHIME stacking analysis to subtract beam-induced foreground contamination. Using a linear high-pass delay filter for foreground suppression, the CHIME collaboration reported a $11.1蟽$ detection in the 21 cm signal stacked on eBOSS quasar locations, despite foreground residual contamination mostly due to the instrument chromatic transfer function. We cross-correlate the foreground-dominated data at low delay with the contaminated signal at high delay to estimate residual foregrounds and subtract them from the signal. We find foreground residual subtraction can improve the signal-to-noise ratio of the stacked 21 cm signal by $ 10 - 20\%$ after the delay foreground filter, although some of the improvement can also be achieved with an alternative flagging technique. We have shown that it is possible to use HyFoReS to reduce beam-induced foreground contamination, benefiting the analysis of the HI auto power spectrum with CHIME and enabling the recovery of large scale modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08949v1-abstract-full').style.display = 'none'; document.getElementById('2408.08949v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00172">arXiv:2408.00172</a> <span> [<a href="https://arxiv.org/pdf/2408.00172">pdf</a>, <a href="https://arxiv.org/format/2408.00172">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Holographic Beam Measurements of the Canadian Hydrogen Intensity Mapping Experiment (CHIME) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Chakraborty%2C+A">Arnab Chakraborty</a>, <a href="/search/astro-ph?searchtype=author&query=Foreman%2C+S">Simon Foreman</a>, <a href="/search/astro-ph?searchtype=author&query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&query=Hill%2C+A+S">Alex S Hill</a>, <a href="/search/astro-ph?searchtype=author&query=Hinshaw%2C+G">Gary Hinshaw</a>, <a href="/search/astro-ph?searchtype=author&query=Landecker%2C+T+L">T. L. Landecker</a>, <a href="/search/astro-ph?searchtype=author&query=MacEachern%2C+J">Joshua MacEachern</a>, <a href="/search/astro-ph?searchtype=author&query=Masui%2C+K+W">Kiyoshi W. Masui</a>, <a href="/search/astro-ph?searchtype=author&query=Mena-Parra%2C+J">Juan Mena-Parra</a>, <a href="/search/astro-ph?searchtype=author&query=Milutinovic%2C+N">Nikola Milutinovic</a>, <a href="/search/astro-ph?searchtype=author&query=Newburgh%2C+L">Laura Newburgh</a>, <a href="/search/astro-ph?searchtype=author&query=Ordog%2C+A">Anna Ordog</a>, <a href="/search/astro-ph?searchtype=author&query=Pen%2C+U">Ue-Li Pen</a>, <a href="/search/astro-ph?searchtype=author&query=Pinsonneault-Marotte%2C+T">Tristan Pinsonneault-Marotte</a>, <a href="/search/astro-ph?searchtype=author&query=Reda%2C+A">Alex Reda</a>, <a href="/search/astro-ph?searchtype=author&query=Siegel%2C+S+R">Seth R. Siegel</a>, <a href="/search/astro-ph?searchtype=author&query=Singh%2C+S">Saurabh Singh</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+H">Haochen Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Wulf%2C+D">Dallas Wulf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00172v1-abstract-short" style="display: inline;"> We present the first results of the holographic beam mapping program for the Canadian Hydrogen Intensity Mapping Experiment (CHIME). We describe the implementation of the holographic technique as adapted for CHIME, and introduce the processing pipeline which prepares the raw holographic timestreams for analysis of beam features. We use data from six bright sources across the full 400-800\,MHz obse… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00172v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00172v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00172v1-abstract-full" style="display: none;"> We present the first results of the holographic beam mapping program for the Canadian Hydrogen Intensity Mapping Experiment (CHIME). We describe the implementation of the holographic technique as adapted for CHIME, and introduce the processing pipeline which prepares the raw holographic timestreams for analysis of beam features. We use data from six bright sources across the full 400-800\,MHz observing band of CHIME to provide measurements of the co-polar and cross-polar beam response of CHIME in both amplitude and phase for the 1024 dual-polarized feeds instrumented on CHIME. In addition, we present comparisons with independent probes of the CHIME beam which indicate the presence of polarized beam leakage in CHIME. Holographic measurements of the CHIME beam have already been applied in science with CHIME, e.g. in estimating detection significance of far sidelobe FRBs, and in validating the beam models used for CHIME's first detections of \tcm emission (in cross-correlation with measurements of large-scale structure from galaxy surveys and the Lyman-$伪$ forest). Measurements presented in this paper, and future holographic results, will provide a unique data set to characterize the CHIME beam and improve the experiment's prospects for a detection of BAO. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00172v1-abstract-full').style.display = 'none'; document.getElementById('2408.00172v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20982">arXiv:2407.20982</a> <span> [<a href="https://arxiv.org/pdf/2407.20982">pdf</a>, <a href="https://arxiv.org/format/2407.20982">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Analysis of Polarized Dust Emission from the First Flight of the SPIDER Balloon-Borne Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=SPIDER+Collaboration"> SPIDER Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Benton%2C+S+J">S. J. Benton</a>, <a href="/search/astro-ph?searchtype=author&query=Bergman%2C+A+S">A. S. Bergman</a>, <a href="/search/astro-ph?searchtype=author&query=Bihary%2C+R">R. Bihary</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Bonetti%2C+J+A">J. A. Bonetti</a>, <a href="/search/astro-ph?searchtype=author&query=Bryan%2C+S+A">S. A. Bryan</a>, <a href="/search/astro-ph?searchtype=author&query=Chiang%2C+H+C">H. C. Chiang</a>, <a href="/search/astro-ph?searchtype=author&query=Contaldi%2C+C+R">C. R. Contaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Dor%C3%A9%2C+O">O. Dor茅</a>, <a href="/search/astro-ph?searchtype=author&query=Duivenvoorden%2C+A+J">A. J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&query=Eriksen%2C+H+K">H. K. Eriksen</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fraisse%2C+A+A">A. A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&query=Freese%2C+K">K. Freese</a>, <a href="/search/astro-ph?searchtype=author&query=Galloway%2C+M">M. Galloway</a>, <a href="/search/astro-ph?searchtype=author&query=Gambrel%2C+A+E">A. E. Gambrel</a>, <a href="/search/astro-ph?searchtype=author&query=Gandilo%2C+N+N">N. N. Gandilo</a>, <a href="/search/astro-ph?searchtype=author&query=Ganga%2C+K">K. Ganga</a>, <a href="/search/astro-ph?searchtype=author&query=Gourapura%2C+S">S. Gourapura</a>, <a href="/search/astro-ph?searchtype=author&query=Gualtieri%2C+R">R. Gualtieri</a>, <a href="/search/astro-ph?searchtype=author&query=Gudmundsson%2C+J+E">J. E. Gudmundsson</a> , et al. (45 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20982v1-abstract-short" style="display: inline;"> Using data from the first flight of SPIDER and from Planck HFI, we probe the properties of polarized emission from interstellar dust in the SPIDER observing region. Component separation algorithms operating in both the spatial and harmonic domains are applied to probe their consistency and to quantify modeling errors associated with their assumptions. Analyses spanning the full SPIDER region demon… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20982v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20982v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20982v1-abstract-full" style="display: none;"> Using data from the first flight of SPIDER and from Planck HFI, we probe the properties of polarized emission from interstellar dust in the SPIDER observing region. Component separation algorithms operating in both the spatial and harmonic domains are applied to probe their consistency and to quantify modeling errors associated with their assumptions. Analyses spanning the full SPIDER region demonstrate that i) the spectral energy distribution of diffuse Galactic dust emission is broadly consistent with a modified-blackbody (MBB) model with a spectral index of $尾_\mathrm{d}=1.45\pm0.05$ $(1.47\pm0.06)$ for $E$ ($B$)-mode polarization, slightly lower than that reported by Planck for the full sky; ii) its angular power spectrum is broadly consistent with a power law; and iii) there is no significant detection of line-of-sight decorrelation of the astrophysical polarization. The size of the SPIDER region further allows for a statistically meaningful analysis of the variation in foreground properties within it. Assuming a fixed dust temperature $T_\mathrm{d}=19.6$ K, an analysis of two independent sub-regions of that field results in inferred values of $尾_\mathrm{d}=1.52\pm0.06$ and $尾_\mathrm{d}=1.09\pm0.09$, which are inconsistent at the $3.9\,蟽$ level. Furthermore, a joint analysis of SPIDER and Planck 217 and 353 GHz data within a subset of the SPIDER region is inconsistent with a simple MBB at more than $3\,蟽$, assuming a common morphology of polarized dust emission over the full range of frequencies. These modeling uncertainties have a small--but non-negligible--impact on limits on the cosmological tensor-to-scalar ratio derived from the \spider dataset. The fidelity of the component separation approaches of future CMB polarization experiments may thus have a significant impact on their constraining power. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20982v1-abstract-full').style.display = 'none'; document.getElementById('2407.20982v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.19469">arXiv:2405.19469</a> <span> [<a href="https://arxiv.org/pdf/2405.19469">pdf</a>, <a href="https://arxiv.org/format/2405.19469">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Constraining Inflation with the BICEP/Keck CMB Polarization Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+T+B">The BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Elwood%2C+B">B. Elwood</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Gao%2C+M">M. Gao</a> , et al. (63 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.19469v2-abstract-short" style="display: inline;"> The BICEP/$\textit{Keck}$ (BK) series of cosmic microwave background (CMB) polarization experiments has, over the past decade and a half, produced a series of field-leading constraints on cosmic inflation via measurements of the "B-mode" polarization of the CMB. Primordial B modes are directly tied to the amplitude of primordial gravitational waves (PGW), their strength parameterized by the tensor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19469v2-abstract-full').style.display = 'inline'; document.getElementById('2405.19469v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.19469v2-abstract-full" style="display: none;"> The BICEP/$\textit{Keck}$ (BK) series of cosmic microwave background (CMB) polarization experiments has, over the past decade and a half, produced a series of field-leading constraints on cosmic inflation via measurements of the "B-mode" polarization of the CMB. Primordial B modes are directly tied to the amplitude of primordial gravitational waves (PGW), their strength parameterized by the tensor-to-scalar ratio, $r$, and thus the energy scale of inflation. Having set the most sensitive constraints to-date on $r$, $蟽(r)=0.009$ ($r_{0.05}<0.036, 95\%$ C.L.) using data through the 2018 observing season ("BK18"), the BICEP/$\textit{Keck}$ program has continued to improve its dataset in the years since. We give a brief overview of the BK program and the "BK18" result before discussing the program's ongoing efforts, including the deployment and performance of the $\textit{Keck Array}$'s successor instrument, BICEP Array, improvements to data processing and internal consistency testing, new techniques such as delensing, and how those will ultimately serve to allow BK reach $蟽(r) \lesssim 0.003$ using data through the 2027 observing season. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19469v2-abstract-full').style.display = 'none'; document.getElementById('2405.19469v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures. Contribution to the 2024 Cosmology session of the 58th Rencontres de Moriond</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.15678">arXiv:2405.15678</a> <span> [<a href="https://arxiv.org/pdf/2405.15678">pdf</a>, <a href="https://arxiv.org/format/2405.15678">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Faraday tomography with CHIME: the `tadpole' feature G137+7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Mohammed%2C+N">Nasser Mohammed</a>, <a href="/search/astro-ph?searchtype=author&query=Ordog%2C+A">Anna Ordog</a>, <a href="/search/astro-ph?searchtype=author&query=Booth%2C+R+A">Rebecca A. Booth</a>, <a href="/search/astro-ph?searchtype=author&query=Bracco%2C+A">Andrea Bracco</a>, <a href="/search/astro-ph?searchtype=author&query=Brown%2C+J+C">Jo-Anne C. Brown</a>, <a href="/search/astro-ph?searchtype=author&query=Carretti%2C+E">Ettore Carretti</a>, <a href="/search/astro-ph?searchtype=author&query=Dickey%2C+J+M">John M. Dickey</a>, <a href="/search/astro-ph?searchtype=author&query=Foreman%2C+S">Simon Foreman</a>, <a href="/search/astro-ph?searchtype=author&query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&query=Haverkorn%2C+M">Marijke Haverkorn</a>, <a href="/search/astro-ph?searchtype=author&query=Hill%2C+A+S">Alex S. Hill</a>, <a href="/search/astro-ph?searchtype=author&query=Hinshaw%2C+G">Gary Hinshaw</a>, <a href="/search/astro-ph?searchtype=author&query=Kania%2C+J+W">Joseph W Kania</a>, <a href="/search/astro-ph?searchtype=author&query=Kothes%2C+R">Roland Kothes</a>, <a href="/search/astro-ph?searchtype=author&query=Landecker%2C+T+L">T. L. Landecker</a>, <a href="/search/astro-ph?searchtype=author&query=MacEachern%2C+J">Joshua MacEachern</a>, <a href="/search/astro-ph?searchtype=author&query=Masui%2C+K+W">Kiyoshi W. Masui</a>, <a href="/search/astro-ph?searchtype=author&query=Menard%2C+A">Aimee Menard</a>, <a href="/search/astro-ph?searchtype=author&query=Ransom%2C+R+R">Ryan R. Ransom</a>, <a href="/search/astro-ph?searchtype=author&query=Reich%2C+W">Wolfgang Reich</a>, <a href="/search/astro-ph?searchtype=author&query=Reich%2C+P">Patricia Reich</a>, <a href="/search/astro-ph?searchtype=author&query=Shaw%2C+J+R">J. Richard Shaw</a>, <a href="/search/astro-ph?searchtype=author&query=Siegel%2C+S+R">Seth R. Siegel</a>, <a href="/search/astro-ph?searchtype=author&query=Tahani%2C+M">Mehrnoosh Tahani</a>, <a href="/search/astro-ph?searchtype=author&query=Thomson%2C+A+J+M">Alec J. M. Thomson</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.15678v2-abstract-short" style="display: inline;"> A direct consequence of Faraday rotation is that the polarized radio sky does not resemble the total intensity sky at long wavelengths. We analyze G137+7, which is undetectable in total intensity but appears as a depolarization feature. We use the first polarization maps from the Canadian Hydrogen Intensity Mapping Experiment. Our $400-729$ MHz bandwidth and angular resolution, $17'$ to $30'$, all… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15678v2-abstract-full').style.display = 'inline'; document.getElementById('2405.15678v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.15678v2-abstract-full" style="display: none;"> A direct consequence of Faraday rotation is that the polarized radio sky does not resemble the total intensity sky at long wavelengths. We analyze G137+7, which is undetectable in total intensity but appears as a depolarization feature. We use the first polarization maps from the Canadian Hydrogen Intensity Mapping Experiment. Our $400-729$ MHz bandwidth and angular resolution, $17'$ to $30'$, allow us to use Faraday synthesis to analyze the polarization structure. In polarized intensity and polarization angle maps, we find a "tail" extending $10^\circ$ from the "head" and designate the combined object the "tadpole". Similar polarization angles, distinct from the background, indicate that the head and tail are physically associated. The head appears as a depolarized ring in single channels, but wideband observations show that it is a Faraday rotation feature. Our investigations of H I and H$伪$ find no connections to the tadpole. The tail suggests motion of either the gas or an ionizing star through the ISM; the B2(e) star HD 20336 is a candidate. While the head features a coherent, $\sim -8$ rad m$^2$ Faraday depth, Faraday synthesis also identifies multiple components in both the head and tail. We verify the locations of the components in the spectra using QU fitting. Our results show that $\sim$octave-bandwidth Faraday rotation observations at $\sim 600$ MHz are sensitive to low-density ionized or partially-ionized gas which is undetectable in other tracers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15678v2-abstract-full').style.display = 'none'; document.getElementById('2405.15678v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ApJ in press. Replacement corrects typographical error in equation 6</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.07898">arXiv:2402.07898</a> <span> [<a href="https://arxiv.org/pdf/2402.07898">pdf</a>, <a href="https://arxiv.org/format/2402.07898">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> CHIME/FRB Outriggers: KKO Station System and Commissioning Results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Lanman%2C+A+E">Adam E. Lanman</a>, <a href="/search/astro-ph?searchtype=author&query=Andrew%2C+S">Shion Andrew</a>, <a href="/search/astro-ph?searchtype=author&query=Lazda%2C+M">Mattias Lazda</a>, <a href="/search/astro-ph?searchtype=author&query=Shah%2C+V">Vishwangi Shah</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Balasubramanian%2C+A">Arvind Balasubramanian</a>, <a href="/search/astro-ph?searchtype=author&query=Bandura%2C+K">Kevin Bandura</a>, <a href="/search/astro-ph?searchtype=author&query=Boyle%2C+P+J">P. J. Boyle</a>, <a href="/search/astro-ph?searchtype=author&query=Brar%2C+C">Charanjot Brar</a>, <a href="/search/astro-ph?searchtype=author&query=Carlson%2C+M">Mark Carlson</a>, <a href="/search/astro-ph?searchtype=author&query=Cliche%2C+J">Jean-Fran莽ois Cliche</a>, <a href="/search/astro-ph?searchtype=author&query=Gusinskaia%2C+N">Nina Gusinskaia</a>, <a href="/search/astro-ph?searchtype=author&query=Hendricksen%2C+I+T">Ian T. Hendricksen</a>, <a href="/search/astro-ph?searchtype=author&query=Kaczmarek%2C+J+F">J. F. Kaczmarek</a>, <a href="/search/astro-ph?searchtype=author&query=Landecker%2C+T">Tom Landecker</a>, <a href="/search/astro-ph?searchtype=author&query=Leung%2C+C">Calvin Leung</a>, <a href="/search/astro-ph?searchtype=author&query=Mckinven%2C+R">Ryan Mckinven</a>, <a href="/search/astro-ph?searchtype=author&query=Mena-Parra%2C+J">Juan Mena-Parra</a>, <a href="/search/astro-ph?searchtype=author&query=Milutinovic%2C+N">Nikola Milutinovic</a>, <a href="/search/astro-ph?searchtype=author&query=Nimmo%2C+K">Kenzie Nimmo</a>, <a href="/search/astro-ph?searchtype=author&query=Pearlman%2C+A+B">Aaron B. Pearlman</a>, <a href="/search/astro-ph?searchtype=author&query=Renard%2C+A">Andre Renard</a>, <a href="/search/astro-ph?searchtype=author&query=Rahman%2C+M">Mubdi Rahman</a>, <a href="/search/astro-ph?searchtype=author&query=Shaw%2C+J+R">J. Richard Shaw</a>, <a href="/search/astro-ph?searchtype=author&query=Siegel%2C+S+R">Seth R. Siegel</a> , et al. (21 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.07898v2-abstract-short" style="display: inline;"> Localizing fast radio bursts (FRBs) to their host galaxies is an essential step to better understanding their origins and using them as cosmic probes. The CHIME/FRB Outrigger program aims to add VLBI-localization capabilities to CHIME, such that FRBs may be localized to tens of milliarcsecond precision at the time of their discovery, more than sufficient for host galaxy identification. The first-b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.07898v2-abstract-full').style.display = 'inline'; document.getElementById('2402.07898v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.07898v2-abstract-full" style="display: none;"> Localizing fast radio bursts (FRBs) to their host galaxies is an essential step to better understanding their origins and using them as cosmic probes. The CHIME/FRB Outrigger program aims to add VLBI-localization capabilities to CHIME, such that FRBs may be localized to tens of milliarcsecond precision at the time of their discovery, more than sufficient for host galaxy identification. The first-built outrigger telescope is KKO, located 66 kilometers west of CHIME. Cross-correlating KKO with CHIME can achieve arcsecond-scale localization in right ascension while avoiding the worst effects of the ionosphere. This paper presents measurements of KKO's performance throughout its commissioning phase, as well as a summary of its design and function. We demonstrate KKO's capabilities as a standalone instrument by producing full-sky images, mapping the angular and frequency structure of the primary beam, and measuring feed positions. To demonstrate the localization capabilities of the CHIME -- KKO baseline, we collected five separate observations each for a set of twenty bright pulsars, and aimed to measure their positions to within 5~arcseconds. All of these pulses were successfully localized to within this specification. The next two outriggers are expected to be commissioned in 2024, and will enable subarcsecond localizations for approximately hundreds of FRBs each year. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.07898v2-abstract-full').style.display = 'none'; document.getElementById('2402.07898v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 17 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.10849">arXiv:2310.10849</a> <span> [<a href="https://arxiv.org/pdf/2310.10849">pdf</a>, <a href="https://arxiv.org/format/2310.10849">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-024-03100-6">10.1007/s10909-024-03100-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Results and Limits of Time Division Multiplexing for the BICEP Array High Frequency Receivers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J">J. Cheshire</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A+J">A. J. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M+I">M. I. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fortes%2C+A">A. Fortes</a>, <a href="/search/astro-ph?searchtype=author&query=Gao%2C+M">M. Gao</a>, <a href="/search/astro-ph?searchtype=author&query=Giannakopoulos%2C+C">C. Giannakopoulos</a>, <a href="/search/astro-ph?searchtype=author&query=Goeckner-Wald%2C+N">N. Goeckner-Wald</a>, <a href="/search/astro-ph?searchtype=author&query=Goldfinger%2C+D+C">D. C. Goldfinger</a> , et al. (62 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.10849v2-abstract-short" style="display: inline;"> Time-Division Multiplexing is the readout architecture of choice for many ground and space experiments, as it is a very mature technology with proven outstanding low-frequency noise stability, which represents a central challenge in multiplexing. Once fully populated, each of the two BICEP Array high frequency receivers, observing at 150GHz and 220/270GHz, will have 7776 TES detectors tiled on the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10849v2-abstract-full').style.display = 'inline'; document.getElementById('2310.10849v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.10849v2-abstract-full" style="display: none;"> Time-Division Multiplexing is the readout architecture of choice for many ground and space experiments, as it is a very mature technology with proven outstanding low-frequency noise stability, which represents a central challenge in multiplexing. Once fully populated, each of the two BICEP Array high frequency receivers, observing at 150GHz and 220/270GHz, will have 7776 TES detectors tiled on the focal plane. The constraints set by these two receivers required a redesign of the warm readout electronics. The new version of the standard Multi Channel Electronics, developed and built at the University of British Columbia, is presented here for the first time. BICEP Array operates Time Division Multiplexing readout technology to the limits of its capabilities in terms of multiplexing rate, noise and crosstalk, and applies them in rigorously demanding scientific application requiring extreme noise performance and systematic error control. Future experiments like CMB-S4 plan to use TES bolometers with Time Division/SQUID-based readout for an even larger number of detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10849v2-abstract-full').style.display = 'none'; document.getElementById('2310.10849v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures, Submitted to Journal of Low Temperature Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Low Temperature Physics (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.03127">arXiv:2310.03127</a> <span> [<a href="https://arxiv.org/pdf/2310.03127">pdf</a>, <a href="https://arxiv.org/format/2310.03127">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Revisiting the $A_L$ Lensing Anomaly in Planck 2018 Temperature Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Addison%2C+G+E">Graeme E. Addison</a>, <a href="/search/astro-ph?searchtype=author&query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&query=Hinshaw%2C+G">Gary Hinshaw</a>, <a href="/search/astro-ph?searchtype=author&query=Weiland%2C+J+L">Janet L. Weiland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.03127v2-abstract-short" style="display: inline;"> We revisit the lensing anomaly in the Planck 2018 temperature (TT) data and examine its robustness to frequency selection and additional sky masking. Our main findings are: (1) The phenomenological lensing amplitude parameter, $A_L$, varies with ecliptic latitude, with a $2.9蟽$ preference for $A_L>1$ near the ecliptic, and $1.0蟽$ preference near the ecliptic poles, compared to $2.5蟽$ on the origin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03127v2-abstract-full').style.display = 'inline'; document.getElementById('2310.03127v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.03127v2-abstract-full" style="display: none;"> We revisit the lensing anomaly in the Planck 2018 temperature (TT) data and examine its robustness to frequency selection and additional sky masking. Our main findings are: (1) The phenomenological lensing amplitude parameter, $A_L$, varies with ecliptic latitude, with a $2.9蟽$ preference for $A_L>1$ near the ecliptic, and $1.0蟽$ preference near the ecliptic poles, compared to $2.5蟽$ on the original masks. This behavior is largely or solely from 217 GHz and suggestive of some non-random effect given the Planck scan strategy. (2) The 217 GHz TT data also show a stronger preference for $A_L>1$ than the lower frequencies. The shifts in $A_L$ from 217 GHz with additional Galactic dust masking are too large to be explained solely by statistical fluctuations, indicating some connection with the foreground treatment. Overall, the Planck $A_L$ anomaly does not have a single simple cause. Removing the 217 GHz TT data leaves a $1.8蟽$ preference for $A_L>1$. The low-multipole ($\ell<30$) TT data contribute to the preference for $A_L>1$ through correlations with $螞$CDM parameters. The 100 and 143 GHz data at $\ell\geq30$ prefer $A_L>1$ at $1.3蟽$, and this appears robust to the masking tests we performed. The lensing anomaly may impact fits to alternative cosmological models. Marginalizing over $A_L$, optionally applied only to Planck TT spectra, can check this. Models proposed to address cosmological tensions should be robust to removal of the Planck 217 GHz TT data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03127v2-abstract-full').style.display = 'none'; document.getElementById('2310.03127v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 10 figures, updated to match version accepted by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.04404">arXiv:2309.04404</a> <span> [<a href="https://arxiv.org/pdf/2309.04404">pdf</a>, <a href="https://arxiv.org/format/2309.04404">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> A Detection of Cosmological 21 cm Emission from CHIME in Cross-correlation with eBOSS Measurements of the Lyman-$伪$ Forest </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=CHIME+Collaboration"> CHIME Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Bandura%2C+K">Kevin Bandura</a>, <a href="/search/astro-ph?searchtype=author&query=Chakraborty%2C+A">Arnab Chakraborty</a>, <a href="/search/astro-ph?searchtype=author&query=Dobbs%2C+M">Matt Dobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Fandino%2C+M">Mateus Fandino</a>, <a href="/search/astro-ph?searchtype=author&query=Foreman%2C+S">Simon Foreman</a>, <a href="/search/astro-ph?searchtype=author&query=Gan%2C+H">Hyoyin Gan</a>, <a href="/search/astro-ph?searchtype=author&query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&query=Hill%2C+A+S">Alex S. Hill</a>, <a href="/search/astro-ph?searchtype=author&query=Hinshaw%2C+G">Gary Hinshaw</a>, <a href="/search/astro-ph?searchtype=author&query=H%C3%B6fer%2C+C">Carolin H枚fer</a>, <a href="/search/astro-ph?searchtype=author&query=Landecker%2C+T+L">T. L. Landecker</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+Z">Zack Li</a>, <a href="/search/astro-ph?searchtype=author&query=MacEachern%2C+J">Joshua MacEachern</a>, <a href="/search/astro-ph?searchtype=author&query=Masui%2C+K">Kiyoshi Masui</a>, <a href="/search/astro-ph?searchtype=author&query=Mena-Parra%2C+J">Juan Mena-Parra</a>, <a href="/search/astro-ph?searchtype=author&query=Milutinovic%2C+N">Nikola Milutinovic</a>, <a href="/search/astro-ph?searchtype=author&query=Mirhosseini%2C+A">Arash Mirhosseini</a>, <a href="/search/astro-ph?searchtype=author&query=Newburgh%2C+L">Laura Newburgh</a>, <a href="/search/astro-ph?searchtype=author&query=Ordog%2C+A">Anna Ordog</a>, <a href="/search/astro-ph?searchtype=author&query=Paul%2C+S">Sourabh Paul</a>, <a href="/search/astro-ph?searchtype=author&query=Pen%2C+U">Ue-Li Pen</a>, <a href="/search/astro-ph?searchtype=author&query=Pinsonneault-Marotte%2C+T">Tristan Pinsonneault-Marotte</a>, <a href="/search/astro-ph?searchtype=author&query=Reda%2C+A">Alex Reda</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.04404v1-abstract-short" style="display: inline;"> We report the detection of 21 cm emission at an average redshift $\bar{z} = 2.3$ in the cross-correlation of data from the Canadian Hydrogen Intensity Mapping Experiment (CHIME) with measurements of the Lyman-$伪$ forest from eBOSS. Data collected by CHIME over 88 days in the $400-500$~MHz frequency band ($1.8 < z < 2.5$) are formed into maps of the sky and high-pass delay filtered to suppress the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04404v1-abstract-full').style.display = 'inline'; document.getElementById('2309.04404v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.04404v1-abstract-full" style="display: none;"> We report the detection of 21 cm emission at an average redshift $\bar{z} = 2.3$ in the cross-correlation of data from the Canadian Hydrogen Intensity Mapping Experiment (CHIME) with measurements of the Lyman-$伪$ forest from eBOSS. Data collected by CHIME over 88 days in the $400-500$~MHz frequency band ($1.8 < z < 2.5$) are formed into maps of the sky and high-pass delay filtered to suppress the foreground power, corresponding to removing cosmological scales with $k_\parallel \lesssim 0.13\ \text{Mpc}^{-1}$ at the average redshift. Line-of-sight spectra to the eBOSS background quasar locations are extracted from the CHIME maps and combined with the Lyman-$伪$ forest flux transmission spectra to estimate the 21 cm-Lyman-$伪$ cross-correlation function. Fitting a simulation-derived template function to this measurement results in a $9蟽$ detection significance. The coherent accumulation of the signal through cross-correlation is sufficient to enable a detection despite excess variance from foreground residuals $\sim6-10$ times brighter than the expected thermal noise level in the correlation function. These results are the highest-redshift measurement of \tcm emission to date, and set the stage for future 21 cm intensity mapping analyses at $z>1.8$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04404v1-abstract-full').style.display = 'none'; document.getElementById('2309.04404v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.01258">arXiv:2307.01258</a> <span> [<a href="https://arxiv.org/pdf/2307.01258">pdf</a>, <a href="https://arxiv.org/format/2307.01258">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: High-resolution component-separated maps across one-third of the sky </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Coulton%2C+W+R">William R. Coulton</a>, <a href="/search/astro-ph?searchtype=author&query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&query=Alford%2C+T">Tommy Alford</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&query=Battistelli%2C+E+S">Elia Stefano Battistelli</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&query=Beringue%2C+B">Benjamin Beringue</a>, <a href="/search/astro-ph?searchtype=author&query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&query=Biermann%2C+E">Emily Biermann</a>, <a href="/search/astro-ph?searchtype=author&query=Bolliet%2C+B">Boris Bolliet</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Cai%2C+H">Hongbo Cai</a>, <a href="/search/astro-ph?searchtype=author&query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&query=Calafut%2C+V">Victoria Calafut</a> , et al. (129 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.01258v1-abstract-short" style="display: inline;"> Observations of the millimeter sky contain valuable information on a number of signals, including the blackbody cosmic microwave background (CMB), Galactic emissions, and the Compton-$y$ distortion due to the thermal Sunyaev-Zel'dovich (tSZ) effect. Extracting new insight into cosmological and astrophysical questions often requires combining multi-wavelength observations to spectrally isolate one… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01258v1-abstract-full').style.display = 'inline'; document.getElementById('2307.01258v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.01258v1-abstract-full" style="display: none;"> Observations of the millimeter sky contain valuable information on a number of signals, including the blackbody cosmic microwave background (CMB), Galactic emissions, and the Compton-$y$ distortion due to the thermal Sunyaev-Zel'dovich (tSZ) effect. Extracting new insight into cosmological and astrophysical questions often requires combining multi-wavelength observations to spectrally isolate one component. In this work, we present a new arcminute-resolution Compton-$y$ map, which traces out the line-of-sight-integrated electron pressure, as well as maps of the CMB in intensity and E-mode polarization, across a third of the sky (around 13,000 sq.~deg.). We produce these through a joint analysis of data from the Atacama Cosmology Telescope (ACT) Data Release 4 and 6 at frequencies of roughly 93, 148, and 225 GHz, together with data from the \textit{Planck} satellite at frequencies between 30 GHz and 545 GHz. We present detailed verification of an internal linear combination pipeline implemented in a needlet frame that allows us to efficiently suppress Galactic contamination and account for spatial variations in the ACT instrument noise. These maps provide a significant advance, in noise levels and resolution, over the existing \textit{Planck} component-separated maps and will enable a host of science goals including studies of cluster and galaxy astrophysics, inferences of the cosmic velocity field, primordial non-Gaussianity searches, and gravitational lensing reconstruction of the CMB. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01258v1-abstract-full').style.display = 'none'; document.getElementById('2307.01258v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The Compton-y map and associated products will be made publicly available upon publication of the paper. The CMB T and E mode maps will be made available when the DR6 maps are made public</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05203">arXiv:2304.05203</a> <span> [<a href="https://arxiv.org/pdf/2304.05203">pdf</a>, <a href="https://arxiv.org/format/2304.05203">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acff5f">10.3847/1538-4357/acff5f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&query=Qu%2C+F+J">Frank J. Qu</a>, <a href="/search/astro-ph?searchtype=author&query=Sherwin%2C+B+D">Blake D. Sherwin</a>, <a href="/search/astro-ph?searchtype=author&query=MacCrann%2C+N">Niall MacCrann</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+Y">Yaqiong Li</a>, <a href="/search/astro-ph?searchtype=author&query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&query=Alford%2C+T">Tommy Alford</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&query=Battistelli%2C+E+S">Elia Stefano Battistelli</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&query=Beringue%2C+B">Benjamin Beringue</a>, <a href="/search/astro-ph?searchtype=author&query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&query=Biermann%2C+E">Emily Biermann</a>, <a href="/search/astro-ph?searchtype=author&query=Bolliet%2C+B">Boris Bolliet</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Cai%2C+H">Hongbo Cai</a>, <a href="/search/astro-ph?searchtype=author&query=Calabrese%2C+E">Erminia Calabrese</a> , et al. (134 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05203v2-abstract-short" style="display: inline;"> We present cosmological constraints from a gravitational lensing mass map covering 9400 sq. deg. reconstructed from CMB measurements made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with BAO measurements (from SDSS and 6dF), we obtain the amplitude of matter fluctuations $蟽_8 = 0.819 \pm 0.015$ at 1.8% precision, $S_8\equiv蟽_8({惟_{\rm m}}/0.3)^{0.5}=0.840\pm0.028$ an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05203v2-abstract-full').style.display = 'inline'; document.getElementById('2304.05203v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05203v2-abstract-full" style="display: none;"> We present cosmological constraints from a gravitational lensing mass map covering 9400 sq. deg. reconstructed from CMB measurements made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with BAO measurements (from SDSS and 6dF), we obtain the amplitude of matter fluctuations $蟽_8 = 0.819 \pm 0.015$ at 1.8% precision, $S_8\equiv蟽_8({惟_{\rm m}}/0.3)^{0.5}=0.840\pm0.028$ and the Hubble constant $H_0= (68.3 \pm 1.1)\, \text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1}$ at 1.6% precision. A joint constraint with CMB lensing measured by the Planck satellite yields even more precise values: $蟽_8 = 0.812 \pm 0.013$, $S_8\equiv蟽_8({惟_{\rm m}}/0.3)^{0.5}=0.831\pm0.023$ and $H_0= (68.1 \pm 1.0)\, \text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1}$. These measurements agree well with $螞$CDM-model extrapolations from the CMB anisotropies measured by Planck. To compare these constraints to those from the KiDS, DES, and HSC galaxy surveys, we revisit those data sets with a uniform set of assumptions, and find $S_8$ from all three surveys are lower than that from ACT+Planck lensing by varying levels ranging from 1.7-2.1$蟽$. These results motivate further measurements and comparison, not just between the CMB anisotropies and galaxy lensing, but also between CMB lensing probing $z\sim 0.5-5$ on mostly-linear scales and galaxy lensing at $z\sim 0.5$ on smaller scales. We combine our CMB lensing measurements with CMB anisotropies to constrain extensions of $螞$CDM, limiting the sum of the neutrino masses to $\sum m_谓 < 0.13$ eV (95% c.l.), for example. Our results provide independent confirmation that the universe is spatially flat, conforms with general relativity, and is described remarkably well by the $螞$CDM model, while paving a promising path for neutrino physics with gravitational lensing from upcoming ground-based CMB surveys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05203v2-abstract-full').style.display = 'none'; document.getElementById('2304.05203v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 17 figures, replaced with version accepted in ApJ (Feb 2024). Cosmological likelihood data and mass maps are public here: https://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html ; likelihood software is here: https://github.com/ACTCollaboration/act_dr6_lenslike . Also see companion papers Qu et al and MacCrann et al</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, Volume 962, 2024, Page 113 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05202">arXiv:2304.05202</a> <span> [<a href="https://arxiv.org/pdf/2304.05202">pdf</a>, <a href="https://arxiv.org/format/2304.05202">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acfe06">10.3847/1538-4357/acfe06 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and its Implications for Structure Growth </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Qu%2C+F+J">Frank J. Qu</a>, <a href="/search/astro-ph?searchtype=author&query=Sherwin%2C+B+D">Blake D. Sherwin</a>, <a href="/search/astro-ph?searchtype=author&query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&query=Crowley%2C+K+T">Kevin T. Crowley</a>, <a href="/search/astro-ph?searchtype=author&query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&query=Alford%2C+T">Tommy Alford</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&query=Battistelli%2C+E+S">Elia Stefano Battistelli</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&query=Beringue%2C+B">Benjamin Beringue</a>, <a href="/search/astro-ph?searchtype=author&query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&query=Biermann%2C+E">Emily Biermann</a>, <a href="/search/astro-ph?searchtype=author&query=Bolliet%2C+B">Boris Bolliet</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Cai%2C+H">Hongbo Cai</a>, <a href="/search/astro-ph?searchtype=author&query=Calabrese%2C+E">Erminia Calabrese</a> , et al. (133 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05202v2-abstract-short" style="display: inline;"> We present new measurements of cosmic microwave background (CMB) lensing over $9400$ sq. deg. of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB dataset, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at $2.3\%$ precision ($43蟽$ sign… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05202v2-abstract-full').style.display = 'inline'; document.getElementById('2304.05202v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05202v2-abstract-full" style="display: none;"> We present new measurements of cosmic microwave background (CMB) lensing over $9400$ sq. deg. of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB dataset, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at $2.3\%$ precision ($43蟽$ significance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. The baseline spectrum is well fit by a lensing amplitude of $A_{\mathrm{lens}}=1.013\pm0.023$ relative to the Planck 2018 CMB power spectra best-fit $螞$CDM model and $A_{\mathrm{lens}}=1.005\pm0.023$ relative to the $\text{ACT DR4} + \text{WMAP}$ best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combination $S^{\mathrm{CMBL}}_8 \equiv 蟽_8 \left({惟_m}/{0.3}\right)^{0.25}$ of $S^{\mathrm{CMBL}}_8= 0.818\pm0.022$ from ACT DR6 CMB lensing alone and $S^{\mathrm{CMBL}}_8= 0.813\pm0.018$ when combining ACT DR6 and Planck NPIPE CMB lensing power spectra. These results are in excellent agreement with $螞$CDM model constraints from Planck or $\text{ACT DR4} + \text{WMAP}$ CMB power spectrum measurements. Our lensing measurements from redshifts $z\sim0.5$--$5$ are thus fully consistent with $螞$CDM structure growth predictions based on CMB anisotropies probing primarily $z\sim1100$. We find no evidence for a suppression of the amplitude of cosmic structure at low redshifts <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05202v2-abstract-full').style.display = 'none'; document.getElementById('2304.05202v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45+22 pages, 50 figures. v2 matches with published version in ApJ. Cosmological likelihood data and lensing maps are here: https://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html ; likelihood software is here: https://github.com/ACTCollaboration/act_dr6_lenslike . Also see companion papers Madhavacheril et al and MacCrann et al</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-237-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.08038">arXiv:2210.08038</a> <span> [<a href="https://arxiv.org/pdf/2210.08038">pdf</a>, <a href="https://arxiv.org/format/2210.08038">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acc85c">10.3847/1538-4357/acc85c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> BICEP / Keck XVII: Line of Sight Distortion Analysis: Estimates of Gravitational Lensing, Anisotropic Cosmic Birefringence, Patchy Reionization, and Systematic Errors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+B">BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Bullock%2C+E">E. Bullock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fliescher%2C+S">S. Fliescher</a> , et al. (70 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.08038v2-abstract-short" style="display: inline;"> We present estimates of line-of-sight distortion fields derived from the 95 GHz and 150 GHz data taken by BICEP2, BICEP3, and Keck Array up to the 2018 observing season, leading to cosmological constraints and a study of instrumental and astrophysical systematics. Cosmological constraints are derived from three of the distortion fields concerning gravitational lensing from large-scale structure, p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08038v2-abstract-full').style.display = 'inline'; document.getElementById('2210.08038v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.08038v2-abstract-full" style="display: none;"> We present estimates of line-of-sight distortion fields derived from the 95 GHz and 150 GHz data taken by BICEP2, BICEP3, and Keck Array up to the 2018 observing season, leading to cosmological constraints and a study of instrumental and astrophysical systematics. Cosmological constraints are derived from three of the distortion fields concerning gravitational lensing from large-scale structure, polarization rotation from magnetic fields or an axion-like field, and the screening effect of patchy reionization. We measure an amplitude of the lensing power spectrum $A_L^{蠁蠁}=0.95 \pm 0.20$. We constrain polarization rotation, expressed as the coupling constant of a Chern-Simons electromagnetic term $g_{a纬} \leq 2.6 \times 10^{-2}/H_I$, where $H_I$ is the inflationary Hubble parameter, and an amplitude of primordial magnetic fields smoothed over 1 Mpc $B_{1\text{Mpc}} \leq 6.6 \;\text{nG}$ at 95 GHz. We constrain the root mean square of optical-depth fluctuations in a simple "crinkly surface" model of patchy reionization, finding $A^蟿<0.19$ ($2蟽$) for the coherence scale of $L_c=100$. We show that all of the distortion fields of the 95 GHz and 150 GHz polarization maps are consistent with simulations including lensed-$螞$CDM, dust, and noise, with no evidence for instrumental systematics. In some cases, the EB and TB quadratic estimators presented here are more sensitive than our previous map-based null tests at identifying and rejecting spurious B-modes that might arise from instrumental effects. Finally, we verify that the standard deprojection filtering in the BICEP/Keck data processing is effective at removing temperature to polarization leakage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08038v2-abstract-full').style.display = 'none'; document.getElementById('2210.08038v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 19 figures, accepted for publication in The Astrophysical Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ (2023) 949 43 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.05684">arXiv:2210.05684</a> <span> [<a href="https://arxiv.org/pdf/2210.05684">pdf</a>, <a href="https://arxiv.org/ps/2210.05684">ps</a>, <a href="https://arxiv.org/format/2210.05684">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acb64c">10.3847/1538-4357/acb64c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> BICEP / Keck XVI: Characterizing Dust Polarization through Correlations with Neutral Hydrogen </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+B">BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Bullock%2C+E">E. Bullock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Clark%2C+S+E">S. E. Clark</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a> , et al. (71 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.05684v2-abstract-short" style="display: inline;"> We characterize Galactic dust filaments by correlating BICEP/Keck and Planck data with polarization templates based on neutral hydrogen (H I) observations. Dust polarization is important for both our understanding of astrophysical processes in the interstellar medium (ISM) and the search for primordial gravitational waves in the cosmic microwave background (CMB). In the diffuse ISM, H I is strongl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05684v2-abstract-full').style.display = 'inline'; document.getElementById('2210.05684v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.05684v2-abstract-full" style="display: none;"> We characterize Galactic dust filaments by correlating BICEP/Keck and Planck data with polarization templates based on neutral hydrogen (H I) observations. Dust polarization is important for both our understanding of astrophysical processes in the interstellar medium (ISM) and the search for primordial gravitational waves in the cosmic microwave background (CMB). In the diffuse ISM, H I is strongly correlated with the dust and partly organized into filaments that are aligned with the local magnetic field. We analyze the deep BICEP/Keck data at 95, 150, and 220 GHz, over the low-column-density region of sky where BICEP/Keck has set the best limits on primordial gravitational waves. We separate the H I emission into distinct velocity components and detect dust polarization correlated with the local Galactic H I but not with the H I associated with Magellanic Stream I. We present a robust, multifrequency detection of polarized dust emission correlated with the filamentary H I morphology template down to 95 GHz. For assessing its utility for foreground cleaning, we report that the H I morphology template correlates in B modes at a $\sim$10-65$\%$ level over the multipole range $20 < \ell < 200$ with the BICEP/Keck maps, which contain contributions from dust, CMB, and noise components. We measure the spectral index of the filamentary dust component spectral energy distribution to be $尾= 1.54 \pm 0.13$. We find no evidence for decorrelation in this region between the filaments and the rest of the dust field or from the inclusion of dust associated with the intermediate velocity H I. Finally, we explore the morphological parameter space in the H I-based filamentary model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05684v2-abstract-full').style.display = 'none'; document.getElementById('2210.05684v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 945 72 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.02755">arXiv:2208.02755</a> <span> [<a href="https://arxiv.org/pdf/2208.02755">pdf</a>, <a href="https://arxiv.org/format/2208.02755">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Thermal Testing for Cryogenic CMB Instrument Optical Design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Goldfinger%2C+D+C">D. C. Goldfinger</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J">J. Cheshire</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A+J">A. J. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M+I">M. I. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Giannakopoulos%2C+C">C. Giannakopoulos</a>, <a href="/search/astro-ph?searchtype=author&query=Goeckner-Wald%2C+N">N. Goeckner-Wald</a>, <a href="/search/astro-ph?searchtype=author&query=Grayson%2C+J">J. Grayson</a>, <a href="/search/astro-ph?searchtype=author&query=Grimes%2C+P+K">P. K. Grimes</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.02755v1-abstract-short" style="display: inline;"> Observations of the Cosmic Microwave Background rely on cryogenic instrumentation with cold detectors, readout, and optics providing the low noise performance and instrumental stability required to make more sensitive measurements. It is therefore critical to optimize all aspects of the cryogenic design to achieve the necessary performance, with low temperature components and acceptable system coo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02755v1-abstract-full').style.display = 'inline'; document.getElementById('2208.02755v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.02755v1-abstract-full" style="display: none;"> Observations of the Cosmic Microwave Background rely on cryogenic instrumentation with cold detectors, readout, and optics providing the low noise performance and instrumental stability required to make more sensitive measurements. It is therefore critical to optimize all aspects of the cryogenic design to achieve the necessary performance, with low temperature components and acceptable system cooling requirements. In particular, we will focus on our use of thermal filters and cold optics, which reduce the thermal load passed along to the cryogenic stages. To test their performance, we have made a series of in situ measurements while integrating the third receiver for the BICEP Array telescope. In addition to characterizing the behavior of this receiver, these measurements continue to refine the models that are being used to inform design choices being made for future instruments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02755v1-abstract-full').style.display = 'none'; document.getElementById('2208.02755v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures, Proceedings of SPIE 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.01080">arXiv:2208.01080</a> <span> [<a href="https://arxiv.org/pdf/2208.01080">pdf</a>, <a href="https://arxiv.org/format/2208.01080">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> 2022 Upgrade and Improved Low Frequency Camera Sensitivity for CMB Observation at the South Pole </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Soliman%2C+A">A. Soliman</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J">J. Cheshire</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A+J">A. J. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M+I">M. I. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Giannakopoulos%2C+C">C. Giannakopoulos</a>, <a href="/search/astro-ph?searchtype=author&query=Goeckner-Wald%2C+N">N. Goeckner-Wald</a>, <a href="/search/astro-ph?searchtype=author&query=Goldfinger%2C+D+C">D. C. Goldfinger</a>, <a href="/search/astro-ph?searchtype=author&query=Grayson%2C+J">J. Grayson</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.01080v1-abstract-short" style="display: inline;"> Constraining the Galactic foregrounds with multi-frequency Cosmic Microwave Background (CMB) observations is an essential step towards ultimately reaching the sensitivity to measure primordial gravitational waves (PGWs), the sign of inflation after the Big-Bang that would be imprinted on the CMB. The BICEP Array telescope is a set of multi-frequency cameras designed to constrain the energy scale o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01080v1-abstract-full').style.display = 'inline'; document.getElementById('2208.01080v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.01080v1-abstract-full" style="display: none;"> Constraining the Galactic foregrounds with multi-frequency Cosmic Microwave Background (CMB) observations is an essential step towards ultimately reaching the sensitivity to measure primordial gravitational waves (PGWs), the sign of inflation after the Big-Bang that would be imprinted on the CMB. The BICEP Array telescope is a set of multi-frequency cameras designed to constrain the energy scale of inflation through CMB B-mode searches while also controlling the polarized galactic foregrounds. The lowest frequency BICEP Array receiver (BA1) has been observing from the South Pole since 2020 and provides 30 GHz and 40 GHz data to characterize the Galactic synchrotron in our CMB maps. In this paper, we present the design of the BA1 detectors and the full optical characterization of the camera including the on-sky performance at the South Pole. The paper also introduces the design challenges during the first observing season including the effect of out-of-band photons on detectors performance. It also describes the tests done to diagnose that effect and the new upgrade to minimize these photons, as well as installing more dichroic detectors during the 2022 deployment season to improve the BA1 sensitivity. We finally report background noise measurements of the detectors with the goal of having photon noise dominated detectors in both optical channels. BA1 achieves an improvement in mapping speed compared to the previous deployment season. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01080v1-abstract-full').style.display = 'none'; document.getElementById('2208.01080v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of SPIE Astronomical Telescopes + Instrumentation 2022 (AS22)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.14796">arXiv:2207.14796</a> <span> [<a href="https://arxiv.org/pdf/2207.14796">pdf</a>, <a href="https://arxiv.org/format/2207.14796">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Improved Polarization Calibration of the BICEP3 CMB Polarimeter at the South Pole </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Verg%C3%A8s%2C+C">C. Verg猫s</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A+J">A. J. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M+I">M. I. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Giannakopoulos%2C+C">C. Giannakopoulos</a>, <a href="/search/astro-ph?searchtype=author&query=Goeckner-Wald%2C+N">N. Goeckner-Wald</a>, <a href="/search/astro-ph?searchtype=author&query=Goldfinger%2C+D+C">D. C. Goldfinger</a>, <a href="/search/astro-ph?searchtype=author&query=Grayson%2C+J">J. Grayson</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.14796v2-abstract-short" style="display: inline;"> The BICEP3 Polarimeter is a small aperture, refracting telescope, dedicated to the observation of the Cosmic Microwave Background (CMB) at 95GHz. It is designed to target degree angular scale polarization patterns, in particular the very-much-sought-after primordial B-mode signal, which is a unique signature of cosmic inflation. The polarized signal from the sky is reconstructed by differencing co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14796v2-abstract-full').style.display = 'inline'; document.getElementById('2207.14796v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.14796v2-abstract-full" style="display: none;"> The BICEP3 Polarimeter is a small aperture, refracting telescope, dedicated to the observation of the Cosmic Microwave Background (CMB) at 95GHz. It is designed to target degree angular scale polarization patterns, in particular the very-much-sought-after primordial B-mode signal, which is a unique signature of cosmic inflation. The polarized signal from the sky is reconstructed by differencing co-localized, orthogonally polarized superconducting Transition Edge Sensor (TES) bolometers. In this work, we present absolute measurements of the polarization response of the detectors for more than $\sim 800$ functioning detector pairs of the BICEP3 experiment, out of a total of $\sim 1000$. We use a specifically designed Rotating Polarized Source (RPS) to measure the polarization response at multiple source and telescope boresight rotation angles, to fully map the response over 360 degrees. We present here polarization properties extracted from on-site calibration data taken in January 2022. A similar calibration campaign was performed in 2018, but we found that our constraint was dominated by systematics on the level of $\sim0.5^\circ$. After a number of improvements to the calibration set-up, we are now able to report a significantly lower level of systematic contamination. In the future, such precise measurements will be used to constrain physics beyond the standard cosmological model, namely cosmic birefringence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14796v2-abstract-full').style.display = 'none'; document.getElementById('2207.14796v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to: SPIE Astronomical Telescopes + Instrumentation (AS22)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.13876">arXiv:2207.13876</a> <span> [<a href="https://arxiv.org/pdf/2207.13876">pdf</a>, <a href="https://arxiv.org/format/2207.13876">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Characterization of the John A. Galt telescope for radio holography with CHIME </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Reda%2C+A">Alex Reda</a>, <a href="/search/astro-ph?searchtype=author&query=Pinsonneault-Marotte%2C+T">Tristan Pinsonneault-Marotte</a>, <a href="/search/astro-ph?searchtype=author&query=Deng%2C+M">Meiling Deng</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Bandura%2C+K">Kevin Bandura</a>, <a href="/search/astro-ph?searchtype=author&query=Chakraborty%2C+A">Arnab Chakraborty</a>, <a href="/search/astro-ph?searchtype=author&query=Foreman%2C+S">Simon Foreman</a>, <a href="/search/astro-ph?searchtype=author&query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&query=Hill%2C+A+S">Alex S. Hill</a>, <a href="/search/astro-ph?searchtype=author&query=H%C3%B6fer%2C+C">Carolin H枚fer</a>, <a href="/search/astro-ph?searchtype=author&query=Kania%2C+J">Joseph Kania</a>, <a href="/search/astro-ph?searchtype=author&query=Landecker%2C+T+L">T. L. Landecker</a>, <a href="/search/astro-ph?searchtype=author&query=MacEachern%2C+J">Joshua MacEachern</a>, <a href="/search/astro-ph?searchtype=author&query=Masui%2C+K">Kiyoshi Masui</a>, <a href="/search/astro-ph?searchtype=author&query=Mena-Parra%2C+J">Juan Mena-Parra</a>, <a href="/search/astro-ph?searchtype=author&query=Milutinovic%2C+N">Nikola Milutinovic</a>, <a href="/search/astro-ph?searchtype=author&query=Newburgh%2C+L">Laura Newburgh</a>, <a href="/search/astro-ph?searchtype=author&query=Ordog%2C+A">Anna Ordog</a>, <a href="/search/astro-ph?searchtype=author&query=Paul%2C+S">Sourabh Paul</a>, <a href="/search/astro-ph?searchtype=author&query=Shaw%2C+J+R">J. Richard Shaw</a>, <a href="/search/astro-ph?searchtype=author&query=Siegel%2C+S+R">Seth R. Siegel</a>, <a href="/search/astro-ph?searchtype=author&query=Smegal%2C+R">Rick Smegal</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+H">Haochen Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Wulf%2C+D">Dallas Wulf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.13876v3-abstract-short" style="display: inline;"> The Canadian Hydrogen Intensity Mapping Experiment (CHIME) will measure the 21 cm emission of astrophysical neutral hydrogen to probe large scale structure at redshifts z=0.8-2.5. However, detecting the 21 cm signal beneath substantially brighter foregrounds remains a key challenge. Due to the high dynamic range between 21 cm and foreground emission, an exquisite calibration of instrument systemat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.13876v3-abstract-full').style.display = 'inline'; document.getElementById('2207.13876v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.13876v3-abstract-full" style="display: none;"> The Canadian Hydrogen Intensity Mapping Experiment (CHIME) will measure the 21 cm emission of astrophysical neutral hydrogen to probe large scale structure at redshifts z=0.8-2.5. However, detecting the 21 cm signal beneath substantially brighter foregrounds remains a key challenge. Due to the high dynamic range between 21 cm and foreground emission, an exquisite calibration of instrument systematics, notably the telescope beam, is required to successfully filter out the foregrounds. One technique being used to achieve a high fidelity measurement of the CHIME beam is radio holography, wherein signals from each of CHIME's analog inputs are correlated with the signal from a co-located reference antenna, the 26 m John A. Galt telescope, as the 26 m Galt telescope tracks a bright point source transiting over CHIME. In this work we present an analysis of several of the Galt telescope's properties. We employ driftscan measurements of several bright sources, along with background estimates derived from the 408 MHz Haslam map, to estimate the Galt system temperature. To determine the Galt telescope's beam shape, we perform and analyze a raster scan of the bright radio source Cassiopeia A. Finally, we use early holographic measurements to measure the Galt telescope's geometry with respect to CHIME for the holographic analysis of the CHIME and Galt interferometric data set. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.13876v3-abstract-full').style.display = 'none'; document.getElementById('2207.13876v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.16556">arXiv:2203.16556</a> <span> [<a href="https://arxiv.org/pdf/2203.16556">pdf</a>, <a href="https://arxiv.org/format/2203.16556">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.58027/3q8k-ew90">10.58027/3q8k-ew90 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Latest Constraints on Inflationary B-modes from the BICEP/Keck Telescopes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+B">BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C">C. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Bullock%2C+E">E. Bullock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fliescher%2C+S">S. Fliescher</a> , et al. (71 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.16556v1-abstract-short" style="display: inline;"> For the past decade, the BICEP/Keck collaboration has been operating a series of telescopes at the Amundsen-Scott South Pole Station measuring degree-scale $B$-mode polarization imprinted in the Cosmic Microwave Background (CMB) by primordial gravitational waves (PGWs). These telescopes are compact refracting polarimeters mapping about 2% of the sky, observing at a broad range of frequencies to ac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16556v1-abstract-full').style.display = 'inline'; document.getElementById('2203.16556v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.16556v1-abstract-full" style="display: none;"> For the past decade, the BICEP/Keck collaboration has been operating a series of telescopes at the Amundsen-Scott South Pole Station measuring degree-scale $B$-mode polarization imprinted in the Cosmic Microwave Background (CMB) by primordial gravitational waves (PGWs). These telescopes are compact refracting polarimeters mapping about 2% of the sky, observing at a broad range of frequencies to account for the polarized foreground from Galactic synchrotron and thermal dust emission. Our latest publication "BK18" utilizes the data collected up to the 2018 observing season, in conjunction with the publicly available WMAP and Planck data, to constrain the tensor-to-scalar ratio $r$. It particularly includes (1) the 3-year BICEP3 data which is the current deepest CMB polarization map at the foreground-minimum 95 GHz; and (2) the Keck 220 GHz map with a higher signal-to-noise ratio on the dust foreground than the Planck 353 GHz map. We fit the auto- and cross-spectra of these maps to a multicomponent likelihood model ($螞$CDM+dust+synchrotron+noise+$r$) and find it to be an adequate description of the data at the current noise level. The likelihood analysis yields $蟽(r)=0.009$. The inference of $r$ from our baseline model is tightened to $r_{0.05}=0.014^{+0.010}_{-0.011}$ and $r_{0.05}<0.036$ at 95% confidence, meaning that the BICEP/Keck $B$-mode data is the most powerful existing dataset for the constraint of PGWs. The up-coming BICEP Array telescope is projected to reach $蟽(r) \lesssim 0.003$ using data up to 2027. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16556v1-abstract-full').style.display = 'none'; document.getElementById('2203.16556v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, contribution to the 2022 Cosmology session of the 56th Rencontres de Moriond</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.11445">arXiv:2203.11445</a> <span> [<a href="https://arxiv.org/pdf/2203.11445">pdf</a>, <a href="https://arxiv.org/format/2203.11445">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac83ab">10.3847/1538-4357/ac83ab <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Polarized Synchrotron Foreground Assessment for CMB Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Weiland%2C+J+L">Janet L. Weiland</a>, <a href="/search/astro-ph?searchtype=author&query=Addison%2C+G+E">Graeme E. Addison</a>, <a href="/search/astro-ph?searchtype=author&query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&query=Hinshaw%2C+G">Gary Hinshaw</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.11445v2-abstract-short" style="display: inline;"> Polarized Galactic synchrotron emission is an undesirable foreground for cosmic microwave background (CMB) experiments observing at frequencies $< 150$ GHz. We perform a combined analysis of observational data at 1.4, 2.3, 23, 30 and 33 GHz to quantify the spatial variation of the polarized synchrotron spectral index, $尾^{pol}$, on $\sim3.5^\circ$ scales. We compare results from different data com… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.11445v2-abstract-full').style.display = 'inline'; document.getElementById('2203.11445v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.11445v2-abstract-full" style="display: none;"> Polarized Galactic synchrotron emission is an undesirable foreground for cosmic microwave background (CMB) experiments observing at frequencies $< 150$ GHz. We perform a combined analysis of observational data at 1.4, 2.3, 23, 30 and 33 GHz to quantify the spatial variation of the polarized synchrotron spectral index, $尾^{pol}$, on $\sim3.5^\circ$ scales. We compare results from different data combinations to address limitations and inconsistencies present in these public data, and form a composite map of $尾^{pol}$. Data quality masking leaves 44% sky coverage (73% for $|b|> 45^\circ$). Generally $-3.2 < 尾^{pol} \lesssim -3$ in the inner Galactic plane and spurs, but the Fan Region in the outer Galaxy has a flatter index. We find a clear spectral index steepening with increasing latitude south of the Galactic plane with $螖尾^{pol}=0.4$, and a smaller steepening of $0.25$ in the north. Near the south Galactic pole the polarized synchrotron spectral index is $尾^{pol} \approx -3.4$. Longitudinal spectral index variations of $螖尾^{pol} \sim 0.1$ about the latitudinal mean are also detected. Within the BICEP2/Keck survey footprint, we find consistency with a constant value, $尾^{pol} = -3.25 \pm 0.04$ (statistical) $\pm 0.02$ (systematic). We compute a map of the frequency at which synchrotron and thermal dust emission contribute equally to the total polarized foreground. The limitations and inconsistencies among datasets encountered in this work make clear the value of additional independent surveys at multiple frequencies, especially between $10-20$ GHz, provided these surveys have sufficient sensitivity and control of instrumental systematic errors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.11445v2-abstract-full').style.display = 'none'; document.getElementById('2203.11445v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 18 figures, accepted by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.08024">arXiv:2203.08024</a> <span> [<a href="https://arxiv.org/pdf/2203.08024">pdf</a>, <a href="https://arxiv.org/format/2203.08024">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Snowmass 2021 CMB-S4 White Paper </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Abazajian%2C+K">Kevork Abazajian</a>, <a href="/search/astro-ph?searchtype=author&query=Abdulghafour%2C+A">Arwa Abdulghafour</a>, <a href="/search/astro-ph?searchtype=author&query=Addison%2C+G+E">Graeme E. Addison</a>, <a href="/search/astro-ph?searchtype=author&query=Adshead%2C+P">Peter Adshead</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Ajello%2C+M">Marco Ajello</a>, <a href="/search/astro-ph?searchtype=author&query=Akerib%2C+D">Daniel Akerib</a>, <a href="/search/astro-ph?searchtype=author&query=Allen%2C+S+W">Steven W. Allen</a>, <a href="/search/astro-ph?searchtype=author&query=Alonso%2C+D">David Alonso</a>, <a href="/search/astro-ph?searchtype=author&query=Alvarez%2C+M">Marcelo Alvarez</a>, <a href="/search/astro-ph?searchtype=author&query=Amin%2C+M+A">Mustafa A. Amin</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Anderson%2C+A">Adam Anderson</a>, <a href="/search/astro-ph?searchtype=author&query=Ansarinejad%2C+B">Behzad Ansarinejad</a>, <a href="/search/astro-ph?searchtype=author&query=Archipley%2C+M">Melanie Archipley</a>, <a href="/search/astro-ph?searchtype=author&query=Arnold%2C+K+S">Kam S. Arnold</a>, <a href="/search/astro-ph?searchtype=author&query=Ashby%2C+M">Matt Ashby</a>, <a href="/search/astro-ph?searchtype=author&query=Aung%2C+H">Han Aung</a>, <a href="/search/astro-ph?searchtype=author&query=Baccigalupi%2C+C">Carlo Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&query=Baker%2C+C">Carina Baker</a>, <a href="/search/astro-ph?searchtype=author&query=Bakshi%2C+A">Abhishek Bakshi</a>, <a href="/search/astro-ph?searchtype=author&query=Bard%2C+D">Debbie Bard</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">Denis Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Barron%2C+D">Darcy Barron</a>, <a href="/search/astro-ph?searchtype=author&query=Barry%2C+P+S">Peter S. Barry</a> , et al. (331 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.08024v1-abstract-short" style="display: inline;"> This Snowmass 2021 White Paper describes the Cosmic Microwave Background Stage 4 project CMB-S4, which is designed to cross critical thresholds in our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. We provide an overview of the science case, the technical design, and project plan. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.08024v1-abstract-full" style="display: none;"> This Snowmass 2021 White Paper describes the Cosmic Microwave Background Stage 4 project CMB-S4, which is designed to cross critical thresholds in our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. We provide an overview of the science case, the technical design, and project plan. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08024v1-abstract-full').style.display = 'none'; document.getElementById('2203.08024v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021. arXiv admin note: substantial text overlap with arXiv:1908.01062, arXiv:1907.04473</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.01242">arXiv:2202.01242</a> <span> [<a href="https://arxiv.org/pdf/2202.01242">pdf</a>, <a href="https://arxiv.org/format/2202.01242">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acb13f">10.3847/1538-4357/acb13f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection of Cosmological 21 cm Emission with the Canadian Hydrogen Intensity Mapping Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=CHIME+Collaboration"> CHIME Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Bandura%2C+K">Kevin Bandura</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+T">Tianyue Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Deng%2C+M">Meiling Deng</a>, <a href="/search/astro-ph?searchtype=author&query=Dobbs%2C+M">Matt Dobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Fandino%2C+M">Mateus Fandino</a>, <a href="/search/astro-ph?searchtype=author&query=Foreman%2C+S">Simon Foreman</a>, <a href="/search/astro-ph?searchtype=author&query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&query=Hill%2C+A+S">Alex S. Hill</a>, <a href="/search/astro-ph?searchtype=author&query=Hinshaw%2C+G">Gary Hinshaw</a>, <a href="/search/astro-ph?searchtype=author&query=H%C3%B6fer%2C+C">Carolin H枚fer</a>, <a href="/search/astro-ph?searchtype=author&query=Kania%2C+J">Joseph Kania</a>, <a href="/search/astro-ph?searchtype=author&query=Landecker%2C+T+L">T. L. Landecker</a>, <a href="/search/astro-ph?searchtype=author&query=MacEachern%2C+J">Joshua MacEachern</a>, <a href="/search/astro-ph?searchtype=author&query=Masui%2C+K">Kiyoshi Masui</a>, <a href="/search/astro-ph?searchtype=author&query=Mena-Parra%2C+J">Juan Mena-Parra</a>, <a href="/search/astro-ph?searchtype=author&query=Milutinovic%2C+N">Nikola Milutinovic</a>, <a href="/search/astro-ph?searchtype=author&query=Mirhosseini%2C+A">Arash Mirhosseini</a>, <a href="/search/astro-ph?searchtype=author&query=Newburgh%2C+L">Laura Newburgh</a>, <a href="/search/astro-ph?searchtype=author&query=Ordog%2C+A">Anna Ordog</a>, <a href="/search/astro-ph?searchtype=author&query=Pen%2C+U">Ue-Li Pen</a>, <a href="/search/astro-ph?searchtype=author&query=Pinsonneault-Marotte%2C+T">Tristan Pinsonneault-Marotte</a>, <a href="/search/astro-ph?searchtype=author&query=Polzin%2C+A">Ava Polzin</a>, <a href="/search/astro-ph?searchtype=author&query=Reda%2C+A">Alex Reda</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.01242v1-abstract-short" style="display: inline;"> We present a detection of 21-cm emission from large-scale structure (LSS) between redshift 0.78 and 1.43 made with the Canadian Hydrogen Intensity Mapping Experiment (CHIME). Radio observations acquired over 102 nights are used to construct maps which are foreground filtered and stacked on the angular and spectral locations of luminous red galaxies (LRG), emission line galaxies (ELG), and quasars… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.01242v1-abstract-full').style.display = 'inline'; document.getElementById('2202.01242v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.01242v1-abstract-full" style="display: none;"> We present a detection of 21-cm emission from large-scale structure (LSS) between redshift 0.78 and 1.43 made with the Canadian Hydrogen Intensity Mapping Experiment (CHIME). Radio observations acquired over 102 nights are used to construct maps which are foreground filtered and stacked on the angular and spectral locations of luminous red galaxies (LRG), emission line galaxies (ELG), and quasars (QSO) from the eBOSS clustering catalogs. We find decisive evidence for a detection when stacking on all three tracers of LSS, with the logarithm of the Bayes Factor equal to 18.9 (LRG), 10.8 (ELG), and 56.3 (QSO). An alternative frequentist interpretation, based on the likelihood-ratio test, yields a detection significance of $7.1蟽$ (LRG), $5.7蟽$ (ELG), and $11.1蟽$ (QSO). These are the first 21-cm intensity mapping measurements made with an interferometer. We constrain the effective clustering amplitude of neutral hydrogen (HI), defined as $\mathcal{A}_{\rm HI}\equiv 10^{3}\,惟_\mathrm{HI}\left(b_\mathrm{HI}+\langle\,f渭^{2}\rangle\right)$, where $惟_\mathrm{HI}$ is the cosmic abundance of HI, $b_\mathrm{HI}$ is the linear bias of HI, and $\langle\,f渭^{2}\rangle=0.552$ encodes the effect of redshift-space distortions at linear order. We find $\mathcal{A}_\mathrm{HI}=1.51^{+3.60}_{-0.97}$ for LRGs $(z=0.84)$, $\mathcal{A}_\mathrm{HI}=6.76^{+9.04}_{-3.79}$ for ELGs $(z=0.96)$, and $\mathcal{A}_\mathrm{HI}=1.68^{+1.10}_{-0.67}$ for QSOs $(z=1.20)$, with constraints limited by modeling uncertainties at nonlinear scales. We are also sensitive to bias in the spectroscopic redshifts of each tracer, and find a non-zero bias $螖\,v= -66 \pm 20 \mathrm{km/s}$ for the QSOs. We split the QSO catalog into three redshift bins and have a decisive detection in each, with the upper bin at $z=1.30$ producing the highest redshift 21-cm intensity mapping measurement thus far. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.01242v1-abstract-full').style.display = 'none'; document.getElementById('2202.01242v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">66 pages, 30 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.11822">arXiv:2201.11822</a> <span> [<a href="https://arxiv.org/pdf/2201.11822">pdf</a>, <a href="https://arxiv.org/format/2201.11822">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac6b9f">10.3847/1538-4357/ac6b9f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Using the Sun to Measure the Primary Beam Response of the Canadian Hydrogen Intensity Mapping Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=CHIME+Collaboration"> CHIME Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Bandura%2C+K">Kevin Bandura</a>, <a href="/search/astro-ph?searchtype=author&query=Boskovic%2C+A">Anja Boskovic</a>, <a href="/search/astro-ph?searchtype=author&query=Cliche%2C+J">Jean-Fran莽ois Cliche</a>, <a href="/search/astro-ph?searchtype=author&query=Deng%2C+M">Meiling Deng</a>, <a href="/search/astro-ph?searchtype=author&query=Dobbs%2C+M">Matt Dobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Fandino%2C+M">Mateus Fandino</a>, <a href="/search/astro-ph?searchtype=author&query=Foreman%2C+S">Simon Foreman</a>, <a href="/search/astro-ph?searchtype=author&query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&query=Hill%2C+A+S">Alex S. Hill</a>, <a href="/search/astro-ph?searchtype=author&query=Hinshaw%2C+G">Gary Hinshaw</a>, <a href="/search/astro-ph?searchtype=author&query=H%C3%B6fer%2C+C">Carolin H枚fer</a>, <a href="/search/astro-ph?searchtype=author&query=Kania%2C+J">Joseph Kania</a>, <a href="/search/astro-ph?searchtype=author&query=Landecker%2C+T+L">T. L. Landecker</a>, <a href="/search/astro-ph?searchtype=author&query=MacEachern%2C+J">Joshua MacEachern</a>, <a href="/search/astro-ph?searchtype=author&query=Masui%2C+K">Kiyoshi Masui</a>, <a href="/search/astro-ph?searchtype=author&query=Mena-Parra%2C+J">Juan Mena-Parra</a>, <a href="/search/astro-ph?searchtype=author&query=Newburgh%2C+L">Laura Newburgh</a>, <a href="/search/astro-ph?searchtype=author&query=Ordog%2C+A">Anna Ordog</a>, <a href="/search/astro-ph?searchtype=author&query=Pinsonneault-Marotte%2C+T">Tristan Pinsonneault-Marotte</a>, <a href="/search/astro-ph?searchtype=author&query=Polzin%2C+A">Ava Polzin</a>, <a href="/search/astro-ph?searchtype=author&query=Reda%2C+A">Alex Reda</a>, <a href="/search/astro-ph?searchtype=author&query=Shaw%2C+J+R">J. Richard Shaw</a>, <a href="/search/astro-ph?searchtype=author&query=Siegel%2C+S+R">Seth R. Siegel</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.11822v5-abstract-short" style="display: inline;"> We present a beam pattern measurement of the Canadian Hydrogen Intensity Mapping Experiment (CHIME) made using the Sun as a calibration source. As CHIME is a pure drift scan instrument, we rely on the seasonal North-South motion of the Sun to probe the beam at different elevations. This semiannual range in elevation, combined with the radio brightness of the Sun, enables a beam measurement which s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.11822v5-abstract-full').style.display = 'inline'; document.getElementById('2201.11822v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.11822v5-abstract-full" style="display: none;"> We present a beam pattern measurement of the Canadian Hydrogen Intensity Mapping Experiment (CHIME) made using the Sun as a calibration source. As CHIME is a pure drift scan instrument, we rely on the seasonal North-South motion of the Sun to probe the beam at different elevations. This semiannual range in elevation, combined with the radio brightness of the Sun, enables a beam measurement which spans ~7,200 square degrees on the sky without the need to move the telescope. We take advantage of observations made near solar minimum to minimize the impact of solar variability, which is observed to be <10% in intensity over the observation period. The resulting data set is highly complementary to other CHIME beam measurements -- both in terms of angular coverage and systematics -- and plays an important role in the ongoing program to characterize the CHIME primary beam. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.11822v5-abstract-full').style.display = 'none'; document.getElementById('2201.11822v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures, Accepted by ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 923 100 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.07869">arXiv:2201.07869</a> <span> [<a href="https://arxiv.org/pdf/2201.07869">pdf</a>, <a href="https://arxiv.org/format/2201.07869">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ac6fd9">10.3847/1538-4365/ac6fd9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An Overview of CHIME, the Canadian Hydrogen Intensity Mapping Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+CHIME+Collaboration"> The CHIME Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Bandura%2C+K">Kevin Bandura</a>, <a href="/search/astro-ph?searchtype=author&query=Boskovic%2C+A">Anja Boskovic</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+T">Tianyue Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Cliche%2C+J">Jean-Fran莽ois Cliche</a>, <a href="/search/astro-ph?searchtype=author&query=Deng%2C+M">Meiling Deng</a>, <a href="/search/astro-ph?searchtype=author&query=Denman%2C+N">Nolan Denman</a>, <a href="/search/astro-ph?searchtype=author&query=Dobbs%2C+M">Matt Dobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Fandino%2C+M">Mateus Fandino</a>, <a href="/search/astro-ph?searchtype=author&query=Foreman%2C+S">Simon Foreman</a>, <a href="/search/astro-ph?searchtype=author&query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&query=Hanna%2C+D">David Hanna</a>, <a href="/search/astro-ph?searchtype=author&query=Hill%2C+A+S">Alex S. Hill</a>, <a href="/search/astro-ph?searchtype=author&query=Hinshaw%2C+G">Gary Hinshaw</a>, <a href="/search/astro-ph?searchtype=author&query=H%C3%B6fer%2C+C">Carolin H枚fer</a>, <a href="/search/astro-ph?searchtype=author&query=Kania%2C+J">Joseph Kania</a>, <a href="/search/astro-ph?searchtype=author&query=Klages%2C+P">Peter Klages</a>, <a href="/search/astro-ph?searchtype=author&query=Landecker%2C+T+L">T. L. Landecker</a>, <a href="/search/astro-ph?searchtype=author&query=MacEachern%2C+J">Joshua MacEachern</a>, <a href="/search/astro-ph?searchtype=author&query=Masui%2C+K">Kiyoshi Masui</a>, <a href="/search/astro-ph?searchtype=author&query=Mena-Parra%2C+J">Juan Mena-Parra</a>, <a href="/search/astro-ph?searchtype=author&query=Milutinovic%2C+N">Nikola Milutinovic</a>, <a href="/search/astro-ph?searchtype=author&query=Mirhosseini%2C+A">Arash Mirhosseini</a>, <a href="/search/astro-ph?searchtype=author&query=Newburgh%2C+L">Laura Newburgh</a> , et al. (18 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.07869v3-abstract-short" style="display: inline;"> The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a drift scan radio telescope operating across the 400-800 MHz band. CHIME is located at the Dominion Radio Astrophysical Observatory near Penticton, BC Canada. The instrument is designed to map neutral hydrogen over the redshift range 0.8 to 2.5 to constrain the expansion history of the Universe. This goal drives the design features of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.07869v3-abstract-full').style.display = 'inline'; document.getElementById('2201.07869v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.07869v3-abstract-full" style="display: none;"> The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a drift scan radio telescope operating across the 400-800 MHz band. CHIME is located at the Dominion Radio Astrophysical Observatory near Penticton, BC Canada. The instrument is designed to map neutral hydrogen over the redshift range 0.8 to 2.5 to constrain the expansion history of the Universe. This goal drives the design features of the instrument. CHIME consists of four parallel cylindrical reflectors, oriented north-south, each 100 m $\times$ 20 m and outfitted with a 256 element dual-polarization linear feed array. CHIME observes a two degree wide stripe covering the entire meridian at any given moment, observing 3/4 of the sky every day due to Earth rotation. An FX correlator utilizes FPGAs and GPUs to digitize and correlate the signals, with different correlation products generated for cosmological, fast radio burst, pulsar, VLBI, and 21 cm absorber backends. For the cosmology backend, the $N_\mathrm{feed}^2$ correlation matrix is formed for 1024 frequency channels across the band every 31 ms. A data receiver system applies calibration and flagging and, for our primary cosmological data product, stacks redundant baselines and integrates for 10 s. We present an overview of the instrument, its performance metrics based on the first three years of science data, and we describe the current progress in characterizing CHIME's primary beam response. We also present maps of the sky derived from CHIME data; we are using versions of these maps for a cosmological stacking analysis as well as for investigation of Galactic foregrounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.07869v3-abstract-full').style.display = 'none'; document.getElementById('2201.07869v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 31 figures, 2 tables. Accepted by ApJS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.00820">arXiv:2112.00820</a> <span> [<a href="https://arxiv.org/pdf/2112.00820">pdf</a>, <a href="https://arxiv.org/format/2112.00820">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-022-02729-5">10.1007/s10909-022-02729-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> In-flight gain monitoring of SPIDER's transition-edge sensor arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Gambrel%2C+A+E">A. E. Gambrel</a>, <a href="/search/astro-ph?searchtype=author&query=Rahlin%2C+A+S">A. S. Rahlin</a>, <a href="/search/astro-ph?searchtype=author&query=Young%2C+E+Y">E. Y. Young</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Benton%2C+S+J">S. J. Benton</a>, <a href="/search/astro-ph?searchtype=author&query=Bergman%2C+A+S">A. S. Bergman</a>, <a href="/search/astro-ph?searchtype=author&query=Bihary%2C+R">R. Bihary</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Bonetti%2C+J+A">J. A. Bonetti</a>, <a href="/search/astro-ph?searchtype=author&query=Bryan%2C+S+A">S. A. Bryan</a>, <a href="/search/astro-ph?searchtype=author&query=Chiang%2C+H+C">H. C. Chiang</a>, <a href="/search/astro-ph?searchtype=author&query=Contaldi%2C+C+R">C. R. Contaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Dore%2C+O">O. Dore</a>, <a href="/search/astro-ph?searchtype=author&query=Duivenvoorden%2C+A+J">A. J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&query=Eriksen%2C+H+K">H. K. Eriksen</a>, <a href="/search/astro-ph?searchtype=author&query=Farhang%2C+M">M. Farhang</a>, <a href="/search/astro-ph?searchtype=author&query=Fraisse%2C+A+A">A. A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&query=Freese%2C+K">K. Freese</a>, <a href="/search/astro-ph?searchtype=author&query=Galloway%2C+M">M. Galloway</a>, <a href="/search/astro-ph?searchtype=author&query=Gandilo%2C+N+N">N. N. Gandilo</a>, <a href="/search/astro-ph?searchtype=author&query=Ganga%2C+K">K. Ganga</a>, <a href="/search/astro-ph?searchtype=author&query=Gualtieri%2C+R">R. Gualtieri</a> , et al. (45 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.00820v2-abstract-short" style="display: inline;"> Experiments deploying large arrays of transition-edge sensors (TESs) often require a robust method to monitor gain variations with minimal loss of observing time. We propose a sensitive and non-intrusive method for monitoring variations in TES responsivity using small square waves applied to the TES bias. We construct an estimator for a TES's small-signal power response from its electrical respons… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00820v2-abstract-full').style.display = 'inline'; document.getElementById('2112.00820v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.00820v2-abstract-full" style="display: none;"> Experiments deploying large arrays of transition-edge sensors (TESs) often require a robust method to monitor gain variations with minimal loss of observing time. We propose a sensitive and non-intrusive method for monitoring variations in TES responsivity using small square waves applied to the TES bias. We construct an estimator for a TES's small-signal power response from its electrical response that is exact in the limit of strong electrothermal feedback. We discuss the application and validation of this method using flight data from SPIDER, a balloon-borne telescope that observes the polarization of the cosmic microwave background with more than 2000 TESs. This method may prove useful for future balloon- and space-based instruments, where observing time and ground control bandwidth are limited. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00820v2-abstract-full').style.display = 'none'; document.getElementById('2112.00820v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures; Proceedings of the 19th International Workshop on Low Temperature Detectors (LTD19); Minor updates to match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Low Temperature Physics (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.14785">arXiv:2111.14785</a> <span> [<a href="https://arxiv.org/pdf/2111.14785">pdf</a>, <a href="https://arxiv.org/format/2111.14785">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> BICEP Array: 150 GHz detector module development </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Schillaci%2C+A">A. Schillaci</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J">J. Cheshire</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E">E. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Giannakopoulos%2C+C">C. Giannakopoulos</a>, <a href="/search/astro-ph?searchtype=author&query=Goeckner-Wald%2C+N">N. Goeckner-Wald</a>, <a href="/search/astro-ph?searchtype=author&query=Goldfinger%2C+D">D. Goldfinger</a>, <a href="/search/astro-ph?searchtype=author&query=Grayson%2C+J+A">J. A. Grayson</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.14785v1-abstract-short" style="display: inline;"> The BICEP/Keck Collaboration is currently leading the quest to the highest sensitivity measurements of the polarized CMB anisotropies on degree scale with a series of cryogenic telescopes, of which BICEP Array is the latest Stage-3 upgrade with a total of $\sim32,000$ detectors. The instrument comprises 4 receivers spanning 30 to 270 GHz, with the low-frequency 30/40 GHz deployed to the South Pole… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14785v1-abstract-full').style.display = 'inline'; document.getElementById('2111.14785v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.14785v1-abstract-full" style="display: none;"> The BICEP/Keck Collaboration is currently leading the quest to the highest sensitivity measurements of the polarized CMB anisotropies on degree scale with a series of cryogenic telescopes, of which BICEP Array is the latest Stage-3 upgrade with a total of $\sim32,000$ detectors. The instrument comprises 4 receivers spanning 30 to 270 GHz, with the low-frequency 30/40 GHz deployed to the South Pole Station in late 2019. The full complement of receivers is forecast to set the most stringent constraints on the tensor to scalar ratio $r$. Building on these advances, the overarching small-aperture telescope concept is already being used as the reference for further Stage-4 experiment design. In this paper I will present the development of the BICEP Array 150 GHz detector module and its fabrication requirements, with highlights on the high-density time division multiplexing (TDM) design of the cryogenic circuit boards. The low-impedance wiring required between the detectors and the first-stage SQUID amplifiers is crucial to maintain a stiff voltage bias on the detectors. A novel multi-layer FR4 Printed Circuit Board (PCB) with superconducting traces, capable of reading out up to 648 detectors, is presented along with its validation tests. I will also describe an ultra-high density TDM detector module we developed for a CMB-S4-like experiment that allows up to 1,920 detectors to be read out. TDM has been chosen as the detector readout technology for the Cosmic Microwave Background Stage-4 (CMB-S4) experiment based on its proven low-noise performance, predictable costs and overall maturity of the architecture. The heritage for TDM is rooted in mm- and submm-wave experiments dating back 20 years and has since evolved to support a multiplexing factor of 64x in Stage-3 experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14785v1-abstract-full').style.display = 'none'; document.getElementById('2111.14785v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figure, Proceeding of LTD19 submitted to Journal of Low Temperature Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.14751">arXiv:2111.14751</a> <span> [<a href="https://arxiv.org/pdf/2111.14751">pdf</a>, <a href="https://arxiv.org/format/2111.14751">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-023-02967-1">10.1007/s10909-023-02967-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Plastic Laminate Antireflective Coatings for Millimeter-wave Optics in BICEP Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">Marion Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">Denis Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">Ritoban Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">Colin A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">Dominic Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">James J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">Victor Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">James R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">Jake Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">James Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">Michael Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A+J">Ari Jozef Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E">Edward Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">Lionel Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">Miranda Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">Sofia Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">Jeff P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Giannakopoulos%2C+C">Christos Giannakopoulos</a>, <a href="/search/astro-ph?searchtype=author&query=Goeckner-Wald%2C+N">Neil Goeckner-Wald</a>, <a href="/search/astro-ph?searchtype=author&query=Goldfinger%2C+D">David Goldfinger</a>, <a href="/search/astro-ph?searchtype=author&query=Grayson%2C+J+A">James A. Grayson</a>, <a href="/search/astro-ph?searchtype=author&query=Grimes%2C+P">Paul Grimes</a> , et al. (60 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.14751v1-abstract-short" style="display: inline;"> The BICEP/Keck series of experiments target the Cosmic Microwave Background at degree-scale resolution from the South Pole. Over the next few years, the "Stage-3" BICEP Array (BA) telescope will improve the program's frequency coverage and sensitivity to primordial B-mode polarization by an order of magnitude. The first receiver in the array, BA1, began observing at 30/40 GHz in early 2020. The ne… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14751v1-abstract-full').style.display = 'inline'; document.getElementById('2111.14751v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.14751v1-abstract-full" style="display: none;"> The BICEP/Keck series of experiments target the Cosmic Microwave Background at degree-scale resolution from the South Pole. Over the next few years, the "Stage-3" BICEP Array (BA) telescope will improve the program's frequency coverage and sensitivity to primordial B-mode polarization by an order of magnitude. The first receiver in the array, BA1, began observing at 30/40 GHz in early 2020. The next two receivers, BA2 and BA3, are currently being assembled and will map the southern sky at frequencies ranging from 95 GHz to 150 GHz. Common to all BA receivers is a refractive, on-axis, cryogenic optical design that focuses microwave radiation onto a focal plane populated with antenna-coupled bolometers. High-performance antireflective coatings up to 760 mm in aperture are needed for each element in the optical chain, and must withstand repeated thermal cycles down to 4 K. Here we present the design and fabrication of the 30/40 GHz anti-reflection coatings for the recently deployed BA1 receiver, then discuss laboratory measurements of their reflectance. We review the lamination method for these single- and dual-layer plastic coatings with indices matched to various polyethylene, nylon and alumina optics. We also describe ongoing efforts to optimize coatings for the next BA cryostats, which may inform technological choices for future Small-Aperture Telescopes of the CMB "Stage 4" experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14751v1-abstract-full').style.display = 'none'; document.getElementById('2111.14751v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures. Submitted to Journal of Low Temperature Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.01113">arXiv:2111.01113</a> <span> [<a href="https://arxiv.org/pdf/2111.01113">pdf</a>, <a href="https://arxiv.org/format/2111.01113">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac562f">10.3847/1538-4357/ac562f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Simulation-Based Method for Correcting Mode Coupling in CMB Angular Power Spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Leung%2C+J+S+-">J. S. -Y. Leung</a>, <a href="/search/astro-ph?searchtype=author&query=Hartley%2C+J">J. Hartley</a>, <a href="/search/astro-ph?searchtype=author&query=Nagy%2C+J+M">J. M. Nagy</a>, <a href="/search/astro-ph?searchtype=author&query=Netterfield%2C+C+B">C. B. Netterfield</a>, <a href="/search/astro-ph?searchtype=author&query=Shariff%2C+J+A">J. A. Shariff</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Benton%2C+S+J">S. J. Benton</a>, <a href="/search/astro-ph?searchtype=author&query=Bergman%2C+A+S">A. S. Bergman</a>, <a href="/search/astro-ph?searchtype=author&query=Bihary%2C+R">R. Bihary</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Bonetti%2C+J+A">J. A. Bonetti</a>, <a href="/search/astro-ph?searchtype=author&query=Bryan%2C+S+A">S. A. Bryan</a>, <a href="/search/astro-ph?searchtype=author&query=Chiang%2C+H+C">H. C. Chiang</a>, <a href="/search/astro-ph?searchtype=author&query=Contaldi%2C+C+R">C. R. Contaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Dor%C3%A9%2C+O">O. Dor茅</a>, <a href="/search/astro-ph?searchtype=author&query=Duivenvoorden%2C+A+J">A. J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&query=Eriksen%2C+H+K">H. K. Eriksen</a>, <a href="/search/astro-ph?searchtype=author&query=Farhang%2C+M">M. Farhang</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fraisse%2C+A+A">A. A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&query=Freese%2C+K">K. Freese</a>, <a href="/search/astro-ph?searchtype=author&query=Galloway%2C+M">M. Galloway</a>, <a href="/search/astro-ph?searchtype=author&query=Gambrel%2C+A+E">A. E. Gambrel</a> , et al. (45 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.01113v2-abstract-short" style="display: inline;"> Modern CMB analysis pipelines regularly employ complex time-domain filters, beam models, masking, and other techniques during the production of sky maps and their corresponding angular power spectra. However, these processes can generate couplings between multipoles from the same spectrum and from different spectra, in addition to the typical power attenuation. Within the context of pseudo-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01113v2-abstract-full').style.display = 'inline'; document.getElementById('2111.01113v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.01113v2-abstract-full" style="display: none;"> Modern CMB analysis pipelines regularly employ complex time-domain filters, beam models, masking, and other techniques during the production of sky maps and their corresponding angular power spectra. However, these processes can generate couplings between multipoles from the same spectrum and from different spectra, in addition to the typical power attenuation. Within the context of pseudo-$C_\ell$ based, MASTER-style analyses, the net effect of the time-domain filtering is commonly approximated by a multiplicative transfer function, $F_{\ell}$, that can fail to capture mode mixing and is dependent on the spectrum of the signal. To address these shortcomings, we have developed a simulation-based spectral correction approach that constructs a two-dimensional transfer matrix, $J_{\ell\ell'}$, which contains information about mode mixing in addition to mode attenuation. We demonstrate the application of this approach on data from the first flight of the SPIDER balloon-borne CMB experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01113v2-abstract-full').style.display = 'none'; document.getElementById('2111.01113v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures; updated to match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 928(2):109, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.00483">arXiv:2110.00483</a> <span> [<a href="https://arxiv.org/pdf/2110.00483">pdf</a>, <a href="https://arxiv.org/format/2110.00483">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.151301">10.1103/PhysRevLett.127.151301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> BICEP / Keck XIII: Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+B">BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C">C. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Bullock%2C+E">E. Bullock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fliescher%2C+S">S. Fliescher</a> , et al. (68 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.00483v1-abstract-short" style="display: inline;"> We present results from an analysis of all data taken by the BICEP2, Keck Array and BICEP3 CMB polarization experiments up to and including the 2018 observing season. We add additional Keck Array observations at 220 GHz and BICEP3 observations at 95 GHz to the previous 95/150/220 GHz data set. The $Q/U$ maps now reach depths of 2.8, 2.8 and 8.8 $渭{\mathrm K}_{cmb}$ arcmin at 95, 150 and 220 GHz re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.00483v1-abstract-full').style.display = 'inline'; document.getElementById('2110.00483v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.00483v1-abstract-full" style="display: none;"> We present results from an analysis of all data taken by the BICEP2, Keck Array and BICEP3 CMB polarization experiments up to and including the 2018 observing season. We add additional Keck Array observations at 220 GHz and BICEP3 observations at 95 GHz to the previous 95/150/220 GHz data set. The $Q/U$ maps now reach depths of 2.8, 2.8 and 8.8 $渭{\mathrm K}_{cmb}$ arcmin at 95, 150 and 220 GHz respectively over an effective area of $\approx 600$ square degrees at 95 GHz and $\approx 400$ square degrees at 150 & 220 GHz. The 220 GHz maps now achieve a signal-to-noise on polarized dust emission exceeding that of Planck at 353 GHz. We take auto- and cross-spectra between these maps and publicly available WMAP and Planck maps at frequencies from 23 to 353 GHz and evaluate the joint likelihood of the spectra versus a multicomponent model of lensed-$螞$CDM+$r$+dust+synchrotron+noise. The foreground model has seven parameters, and no longer requires a prior on the frequency spectral index of the dust emission taken from measurements on other regions of the sky. This model is an adequate description of the data at the current noise levels. The likelihood analysis yields the constraint $r_{0.05}<0.036$ at 95% confidence. Running maximum likelihood search on simulations we obtain unbiased results and find that $蟽(r)=0.009$. These are the strongest constraints to date on primordial gravitational waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.00483v1-abstract-full').style.display = 'none'; document.getElementById('2110.00483v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 24 figures, as published in PRL, data and figures available for download at http://bicepkeck.org</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 127, 151301 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.00482">arXiv:2110.00482</a> <span> [<a href="https://arxiv.org/pdf/2110.00482">pdf</a>, <a href="https://arxiv.org/format/2110.00482">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac4886">10.3847/1538-4357/ac4886 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> BICEP / Keck XV: The BICEP3 CMB Polarimeter and the First Three Year Data Set </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+B">BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C">C. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Bullock%2C+E">E. Bullock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fliescher%2C+S">S. Fliescher</a> , et al. (68 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.00482v1-abstract-short" style="display: inline;"> We report on the design and performance of the BICEP3 instrument and its first three-year data set collected from 2016 to 2018. BICEP3 is a 52cm aperture, refracting telescope designed to observe the polarization of the cosmic microwave background (CMB) on degree angular scales at 95GHz. It started science observation at the South Pole in 2016 with 2400 antenna-coupled transition-edge sensor (TES)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.00482v1-abstract-full').style.display = 'inline'; document.getElementById('2110.00482v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.00482v1-abstract-full" style="display: none;"> We report on the design and performance of the BICEP3 instrument and its first three-year data set collected from 2016 to 2018. BICEP3 is a 52cm aperture, refracting telescope designed to observe the polarization of the cosmic microwave background (CMB) on degree angular scales at 95GHz. It started science observation at the South Pole in 2016 with 2400 antenna-coupled transition-edge sensor (TES) bolometers. The receiver first demonstrated new technologies such as large-diameter alumina optics, Zotefoam infrared filters, and flux-activated SQUIDs, allowing $\sim 10\times$ higher optical throughput compared to the Keck design. BICEP3 achieved instrument noise-equivalent temperatures of 9.2, 6.8 and 7.1$渭\text{K}_{\text{CMB}}\sqrt{\text{s}}$ and reached Stokes $Q$ and $U$ map depths of 5.9, 4.4 and 4.4$渭$K-arcmin in 2016, 2017 and 2018, respectively. The combined three-year data set achieved a polarization map depth of 2.8$渭$K-arcmin over an effective area of 585 square degrees, which is the deepest CMB polarization map made to date at 95GHz. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.00482v1-abstract-full').style.display = 'none'; document.getElementById('2110.00482v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 35 figures, as submitted to ApJ, data and figures available for download at http://bicepkeck.org</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal 927, 77 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.03316">arXiv:2108.03316</a> <span> [<a href="https://arxiv.org/pdf/2108.03316">pdf</a>, <a href="https://arxiv.org/format/2108.03316">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.022006">10.1103/PhysRevD.105.022006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> BICEP / Keck XIV: Improved constraints on axion-like polarization oscillations in the cosmic microwave background </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+B">BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Bullock%2C+E">E. Bullock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fliescher%2C+S">S. Fliescher</a> , et al. (68 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.03316v2-abstract-short" style="display: inline;"> We present an improved search for axion-like polarization oscillations in the cosmic microwave background (CMB) with observations from the Keck Array. An all-sky, temporally sinusoidal rotation of CMB polarization, equivalent to a time-variable cosmic birefringence, is an observable manifestation of a local axion field and potentially allows a CMB polarimeter to detect axion-like dark matter direc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.03316v2-abstract-full').style.display = 'inline'; document.getElementById('2108.03316v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.03316v2-abstract-full" style="display: none;"> We present an improved search for axion-like polarization oscillations in the cosmic microwave background (CMB) with observations from the Keck Array. An all-sky, temporally sinusoidal rotation of CMB polarization, equivalent to a time-variable cosmic birefringence, is an observable manifestation of a local axion field and potentially allows a CMB polarimeter to detect axion-like dark matter directly. We describe improvements to the method presented in previous work, and we demonstrate the updated method with an expanded dataset consisting of the 2012-2015 observing seasons. We set limits on the axion-photon coupling constant for mass $m$ in the range $10^{-23}$-$10^{-18}~\mathrm{eV}$, which corresponds to oscillation periods on the order of hours to years. Our results are consistent with the background model. For periods between $1$ and $30~\mathrm{d}$ ($1.6 \times 10^{-21} \leq m \leq 4.8 \times 10^{-20}~\mathrm{eV}$), the $95\%$-confidence upper limits on rotation amplitude are approximately constant with a median of $0.27^\circ$, which constrains the axion-photon coupling constant to $g_{蠁纬} < (4.5 \times 10^{-12}~\mathrm{GeV}^{-1}) m/(10^{-21}~\mathrm{eV}$), if axion-like particles constitute all of the dark matter. More than half of the collected BICEP dataset has yet to be analyzed, and several current and future CMB polarimetry experiments can apply the methods presented here to achieve comparable or superior constraints. In the coming years, oscillation measurements can achieve the sensitivity to rule out unexplored regions of the axion parameter space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.03316v2-abstract-full').style.display = 'none'; document.getElementById('2108.03316v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 105, 022006 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.12467">arXiv:2106.12467</a> <span> [<a href="https://arxiv.org/pdf/2106.12467">pdf</a>, <a href="https://arxiv.org/format/2106.12467">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac26b6">10.3847/1538-4357/ac26b6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraining CMB temperature evolution with Sunyaev-Zel'dovich galaxy clusters from the Atacama Cosmology Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&query=Battistelli%2C+E+S">Elia S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&query=Gluscevic%2C+V">Vera Gluscevic</a>, <a href="/search/astro-ph?searchtype=author&query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&query=Hlozek%2C+R">Renee Hlozek</a>, <a href="/search/astro-ph?searchtype=author&query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&query=Moodley%2C+K">Kavilan Moodley</a>, <a href="/search/astro-ph?searchtype=author&query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&query=Nati%2C+F">Federico Nati</a>, <a href="/search/astro-ph?searchtype=author&query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&query=Page%2C+L">Lyman Page</a>, <a href="/search/astro-ph?searchtype=author&query=Partridge%2C+B">Bruce Partridge</a>, <a href="/search/astro-ph?searchtype=author&query=Salatino%2C+M">Maria Salatino</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.12467v2-abstract-short" style="display: inline;"> The Sunyaev-Zel'dovich (SZ) effect introduces a specific distortion of the blackbody spectrum of the cosmic microwave background (CMB) radiation when it scatters off hot gas in clusters of galaxies. The frequency dependence of the distortion is only independent of the cluster redshift when the evolution of the CMB radiation is adiabatic. Using 370 clusters within the redshift range… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12467v2-abstract-full').style.display = 'inline'; document.getElementById('2106.12467v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.12467v2-abstract-full" style="display: none;"> The Sunyaev-Zel'dovich (SZ) effect introduces a specific distortion of the blackbody spectrum of the cosmic microwave background (CMB) radiation when it scatters off hot gas in clusters of galaxies. The frequency dependence of the distortion is only independent of the cluster redshift when the evolution of the CMB radiation is adiabatic. Using 370 clusters within the redshift range $0.07\lesssim z\lesssim1.4$ from the largest SZ-selected cluster sample to date from the Atacama Cosmology Telescope, we provide new constraints on the deviation of CMB temperature evolution from the standard model $伪=0.017^{+0.029}_{-0.032}$, where $T(z)=T_0(1+z)^{1-伪}$. This result is consistent with no deviation from the standard adiabatic model. Combining it with previous, independent datasets we obtain a joint constraint of $伪=-0.001\pm0.012$. Attributing deviation from adiabaticity to the decay of dark energy, this result constrains its effective equation of state $w_\mathrm{eff}=-0.998^{+0.008}_{-0.010}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12467v2-abstract-full').style.display = 'none'; document.getElementById('2106.12467v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.04354">arXiv:2106.04354</a> <span> [<a href="https://arxiv.org/pdf/2106.04354">pdf</a>, <a href="https://arxiv.org/format/2106.04354">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac1dab">10.3847/1538-4357/ac1dab <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CHIME/FRB Catalog 1 results: statistical cross-correlations with large-scale structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Rafiei-Ravandi%2C+M">Masoud Rafiei-Ravandi</a>, <a href="/search/astro-ph?searchtype=author&query=Smith%2C+K+M">Kendrick M. Smith</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+D">Dongzi Li</a>, <a href="/search/astro-ph?searchtype=author&query=Masui%2C+K+W">Kiyoshi W. Masui</a>, <a href="/search/astro-ph?searchtype=author&query=Josephy%2C+A">Alexander Josephy</a>, <a href="/search/astro-ph?searchtype=author&query=Dobbs%2C+M">Matt Dobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Lang%2C+D">Dustin Lang</a>, <a href="/search/astro-ph?searchtype=author&query=Bhardwaj%2C+M">Mohit Bhardwaj</a>, <a href="/search/astro-ph?searchtype=author&query=Patel%2C+C">Chitrang Patel</a>, <a href="/search/astro-ph?searchtype=author&query=Bandura%2C+K">Kevin Bandura</a>, <a href="/search/astro-ph?searchtype=author&query=Berger%2C+S">Sabrina Berger</a>, <a href="/search/astro-ph?searchtype=author&query=Boyle%2C+P+J">P. J. Boyle</a>, <a href="/search/astro-ph?searchtype=author&query=Brar%2C+C">Charanjot Brar</a>, <a href="/search/astro-ph?searchtype=author&query=Breitman%2C+D">Daniela Breitman</a>, <a href="/search/astro-ph?searchtype=author&query=Cassanelli%2C+T">Tomas Cassanelli</a>, <a href="/search/astro-ph?searchtype=author&query=Chawla%2C+P">Pragya Chawla</a>, <a href="/search/astro-ph?searchtype=author&query=Dong%2C+F+A">Fengqiu Adam Dong</a>, <a href="/search/astro-ph?searchtype=author&query=Fonseca%2C+E">Emmanuel Fonseca</a>, <a href="/search/astro-ph?searchtype=author&query=Gaensler%2C+B+M">B. M. Gaensler</a>, <a href="/search/astro-ph?searchtype=author&query=Giri%2C+U">Utkarsh Giri</a>, <a href="/search/astro-ph?searchtype=author&query=Good%2C+D+C">Deborah C. Good</a>, <a href="/search/astro-ph?searchtype=author&query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&query=Kaczmarek%2C+J">Jane Kaczmarek</a>, <a href="/search/astro-ph?searchtype=author&query=Kaspi%2C+V+M">Victoria M. Kaspi</a>, <a href="/search/astro-ph?searchtype=author&query=Leung%2C+C">Calvin Leung</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.04354v2-abstract-short" style="display: inline;"> The CHIME/FRB Project has recently released its first catalog of fast radio bursts (FRBs), containing 492 unique sources. We present results from angular cross-correlations of CHIME/FRB sources with galaxy catalogs. We find a statistically significant ($p$-value $\sim 10^{-4}$, accounting for look-elsewhere factors) cross-correlation between CHIME FRBs and galaxies in the redshift range… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.04354v2-abstract-full').style.display = 'inline'; document.getElementById('2106.04354v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.04354v2-abstract-full" style="display: none;"> The CHIME/FRB Project has recently released its first catalog of fast radio bursts (FRBs), containing 492 unique sources. We present results from angular cross-correlations of CHIME/FRB sources with galaxy catalogs. We find a statistically significant ($p$-value $\sim 10^{-4}$, accounting for look-elsewhere factors) cross-correlation between CHIME FRBs and galaxies in the redshift range $0.3 \lesssim z \lesssim 0.5$, in three photometric galaxy surveys: WISE$\times$SCOS, DESI-BGS, and DESI-LRG. The level of cross-correlation is consistent with an order-one fraction of the CHIME FRBs being in the same dark matter halos as survey galaxies in this redshift range. We find statistical evidence for a population of FRBs with large host dispersion measure ($\sim 400$ pc cm$^{-3}$), and show that this can plausibly arise from gas in large halos ($M \sim 10^{14} M_\odot$), for FRBs near the halo center ($r \lesssim 100$ kpc). These results will improve in future CHIME/FRB catalogs, with more FRBs and better angular resolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.04354v2-abstract-full').style.display = 'none'; document.getElementById('2106.04354v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 16 figures, published in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.04352">arXiv:2106.04352</a> <span> [<a href="https://arxiv.org/pdf/2106.04352">pdf</a>, <a href="https://arxiv.org/format/2106.04352">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ac33ab">10.3847/1538-4365/ac33ab <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The First CHIME/FRB Fast Radio Burst Catalog </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+T+C">The CHIME/FRB Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Andersen%2C+B+C">Bridget C. Andersen</a>, <a href="/search/astro-ph?searchtype=author&query=Bandura%2C+K">Kevin Bandura</a>, <a href="/search/astro-ph?searchtype=author&query=Berger%2C+S">Sabrina Berger</a>, <a href="/search/astro-ph?searchtype=author&query=Bhardwaj%2C+M">Mohit Bhardwaj</a>, <a href="/search/astro-ph?searchtype=author&query=Boyce%2C+M+M">Michelle M. Boyce</a>, <a href="/search/astro-ph?searchtype=author&query=Boyle%2C+P+J">P. J. Boyle</a>, <a href="/search/astro-ph?searchtype=author&query=Brar%2C+C">Charanjot Brar</a>, <a href="/search/astro-ph?searchtype=author&query=Breitman%2C+D">Daniela Breitman</a>, <a href="/search/astro-ph?searchtype=author&query=Cassanelli%2C+T">Tomas Cassanelli</a>, <a href="/search/astro-ph?searchtype=author&query=Chawla%2C+P">Pragya Chawla</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+T">Tianyue Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Cliche%2C+J+-">J. -F. Cliche</a>, <a href="/search/astro-ph?searchtype=author&query=Cook%2C+A">Amanda Cook</a>, <a href="/search/astro-ph?searchtype=author&query=Cubranic%2C+D">Davor Cubranic</a>, <a href="/search/astro-ph?searchtype=author&query=Curtin%2C+A+P">Alice P. Curtin</a>, <a href="/search/astro-ph?searchtype=author&query=Deng%2C+M">Meiling Deng</a>, <a href="/search/astro-ph?searchtype=author&query=Dobbs%2C+M">Matt Dobbs</a>, <a href="/search/astro-ph?searchtype=author&query=Fengqiu"> Fengqiu</a>, <a href="/search/astro-ph?searchtype=author&query=Dong"> Dong</a>, <a href="/search/astro-ph?searchtype=author&query=Eadie%2C+G">Gwendolyn Eadie</a>, <a href="/search/astro-ph?searchtype=author&query=Fandino%2C+M">Mateus Fandino</a>, <a href="/search/astro-ph?searchtype=author&query=Fonseca%2C+E">Emmanuel Fonseca</a> , et al. (52 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.04352v3-abstract-short" style="display: inline;"> We present a catalog of 536 fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) Project between 400 and 800 MHz from 2018 July 25 to 2019 July 1, including 62 bursts from 18 previously reported repeating sources. The catalog represents the first large sample, including bursts from repeaters and non-repeaters, observed in a single sur… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.04352v3-abstract-full').style.display = 'inline'; document.getElementById('2106.04352v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.04352v3-abstract-full" style="display: none;"> We present a catalog of 536 fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) Project between 400 and 800 MHz from 2018 July 25 to 2019 July 1, including 62 bursts from 18 previously reported repeating sources. The catalog represents the first large sample, including bursts from repeaters and non-repeaters, observed in a single survey with uniform selection effects. This facilitates comparative and absolute studies of the FRB population. We show that repeaters and apparent non-repeaters have sky locations and dispersion measures (DMs) that are consistent with being drawn from the same distribution. However, bursts from repeating sources differ from apparent non-repeaters in intrinsic temporal width and spectral bandwidth. Through injection of simulated events into our detection pipeline, we perform an absolute calibration of selection effects to account for systematic biases. We find evidence for a population of FRBs - comprising a large fraction of the overall population - with a scattering time at 600 MHz in excess of 10 ms, of which only a small fraction are observed by CHIME/FRB. We infer a power-law index for the cumulative fluence distribution of $伪=-1.40\pm0.11(\textrm{stat.})^{+0.06}_{-0.09}(\textrm{sys.})$, consistent with the $-3/2$ expectation for a non-evolving population in Euclidean space. We find $伪$ is steeper for high-DM events and shallower for low-DM events, which is what would be expected when DM is correlated with distance. We infer a sky rate of $[525\pm30(\textrm{stat.})^{+140}_{-130}({\textrm{sys.}})]/\textrm{sky}/\textrm{day}$ above a fluence of 5 Jy ms at 600 MHz, with scattering time at $600$ MHz under 10 ms, and DM above 100 pc cm$^{-3}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.04352v3-abstract-full').style.display = 'none'; document.getElementById('2106.04352v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">67 pages, 27 figures, 5 tables. Published in ApJS and updated with changes reflected in an erratum (affecting the sky rate). Extended figures and data at https://www.chime-frb.ca/catalog</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.10264">arXiv:2104.10264</a> <span> [<a href="https://arxiv.org/pdf/2104.10264">pdf</a>, <a href="https://arxiv.org/format/2104.10264">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac2307">10.3847/1538-4357/ac2307 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: A search for Planet 9 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&query=Battaglia%2C+N">Nick Battaglia</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+R+J">Richard J. Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&query=Koopman%2C+B+J">Brian J. Koopman</a>, <a href="/search/astro-ph?searchtype=author&query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&query=Van+Engelen%2C+A">Alexander Van Engelen</a>, <a href="/search/astro-ph?searchtype=author&query=Fanfani%2C+V">Valentina Fanfani</a>, <a href="/search/astro-ph?searchtype=author&query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&query=Hasselfield%2C+M">Matthew Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&query=Huffenberger%2C+K">Kevin Huffenberger</a>, <a href="/search/astro-ph?searchtype=author&query=Kosowsky%2C+A+B">Arthur B. Kosowsky</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.10264v2-abstract-short" style="display: inline;"> We use Atacama Cosmology Telescope (ACT) observations at 98 GHz (2015--2019), 150 GHz (2013--2019) and 229 GHz (2017--2019) to perform a blind shift-and-stack search for Planet 9. The search explores distances from 300 AU to 2000 AU and velocities up to 6.3 arcmin per year, depending on the distance. For a 5 Earth-mass Planet 9 the detection limit varies from 325 AU to 625 AU, depending on the sky… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10264v2-abstract-full').style.display = 'inline'; document.getElementById('2104.10264v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.10264v2-abstract-full" style="display: none;"> We use Atacama Cosmology Telescope (ACT) observations at 98 GHz (2015--2019), 150 GHz (2013--2019) and 229 GHz (2017--2019) to perform a blind shift-and-stack search for Planet 9. The search explores distances from 300 AU to 2000 AU and velocities up to 6.3 arcmin per year, depending on the distance. For a 5 Earth-mass Planet 9 the detection limit varies from 325 AU to 625 AU, depending on the sky location. For a 10 Earth-mass planet the corresponding range is 425 AU to 775 AU. The search covers the whole 18,000 square degrees of the ACT survey, though a slightly deeper search is performed for the parts of the sky consistent with Planet 9's expected orbital inclination. No significant detections are found, which is used to place limits on the mm-wave flux density of Planet 9 over much of its orbit. Overall we eliminate roughly 17% and 9% of the parameter space for a 5 and 10 Earth-mass Planet 9 respectively. We also provide a list of the 10 strongest candidates from the search for possible follow-up. More generally, we exclude (at 95% confidence) the presence of an unknown Solar system object within our survey area brighter than 4--12 mJy (depending on position) at 150 GHz with current distance $300 \text{ AU} < r < 600 \text{ AU}$ and heliocentric angular velocity $1.5'/\text{yr} < v \cdot \frac{500 \text{ AU}}{r} < 2.3'\text{yr}$, corresponding to low-to-moderate eccentricities. These limits worsen gradually beyond 600 AU, reaching 5--15 mJy by 1500 AU. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10264v2-abstract-full').style.display = 'none'; document.getElementById('2104.10264v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 10 figures, 5 tables, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.01172">arXiv:2104.01172</a> <span> [<a href="https://arxiv.org/pdf/2104.01172">pdf</a>, <a href="https://arxiv.org/format/2104.01172">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac230b">10.3847/1538-4357/ac230b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The XFaster Power Spectrum and Likelihood Estimator for the Analysis of Cosmic Microwave Background Maps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Gambrel%2C+A+E">A. E. Gambrel</a>, <a href="/search/astro-ph?searchtype=author&query=Rahlin%2C+A+S">A. S. Rahlin</a>, <a href="/search/astro-ph?searchtype=author&query=Song%2C+X">X. Song</a>, <a href="/search/astro-ph?searchtype=author&query=Contaldi%2C+C+R">C. R. Contaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Benton%2C+S+J">S. J. Benton</a>, <a href="/search/astro-ph?searchtype=author&query=Bergman%2C+A+S">A. S. Bergman</a>, <a href="/search/astro-ph?searchtype=author&query=Bihary%2C+R">R. Bihary</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Bonetti%2C+J+A">J. A. Bonetti</a>, <a href="/search/astro-ph?searchtype=author&query=Bryan%2C+S+A">S. A. Bryan</a>, <a href="/search/astro-ph?searchtype=author&query=Chiang%2C+H+C">H. C. Chiang</a>, <a href="/search/astro-ph?searchtype=author&query=Duivenvoorden%2C+A+J">A. J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&query=Eriksen%2C+H+K">H. K. Eriksen</a>, <a href="/search/astro-ph?searchtype=author&query=Farhang%2C+M">M. Farhang</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fraisse%2C+A+A">A. A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&query=Freese%2C+K">K. Freese</a>, <a href="/search/astro-ph?searchtype=author&query=Galloway%2C+M">M. Galloway</a>, <a href="/search/astro-ph?searchtype=author&query=Gandilo%2C+N+N">N. N. Gandilo</a>, <a href="/search/astro-ph?searchtype=author&query=Gualtieri%2C+R">R. Gualtieri</a>, <a href="/search/astro-ph?searchtype=author&query=Gudmundsson%2C+J+E">J. E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&query=Halpern%2C+M">M. Halpern</a> , et al. (42 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.01172v2-abstract-short" style="display: inline;"> We present the XFaster analysis package. XFaster is a fast, iterative angular power spectrum estimator based on a diagonal approximation to the quadratic Fisher matrix estimator. XFaster uses Monte Carlo simulations to compute noise biases and filter transfer functions and is thus a hybrid of both Monte Carlo and quadratic estimator methods. In contrast to conventional pseudo-$C_\ell$ based method… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01172v2-abstract-full').style.display = 'inline'; document.getElementById('2104.01172v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.01172v2-abstract-full" style="display: none;"> We present the XFaster analysis package. XFaster is a fast, iterative angular power spectrum estimator based on a diagonal approximation to the quadratic Fisher matrix estimator. XFaster uses Monte Carlo simulations to compute noise biases and filter transfer functions and is thus a hybrid of both Monte Carlo and quadratic estimator methods. In contrast to conventional pseudo-$C_\ell$ based methods, the algorithm described here requires a minimal number of simulations, and does not require them to be precisely representative of the data to estimate accurate covariance matrices for the bandpowers. The formalism works with polarization-sensitive observations and also data sets with identical, partially overlapping, or independent survey regions. The method was first implemented for the analysis of BOOMERanG data, and also used as part of the Planck analysis. Here, we describe the full, publicly available analysis package, written in Python, as developed for the analysis of data from the 2015 flight of the SPIDER instrument. The package includes extensions for self-consistently estimating null spectra and for estimating fits for Galactic foreground contributions. We show results from the extensive validation of XFaster using simulations, and its application to the SPIDER data set. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01172v2-abstract-full').style.display = 'none'; document.getElementById('2104.01172v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.13334">arXiv:2103.13334</a> <span> [<a href="https://arxiv.org/pdf/2103.13334">pdf</a>, <a href="https://arxiv.org/format/2103.13334">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> A Constraint on Primordial $B$-Modes from the First Flight of the SPIDER Balloon-Borne Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=SPIDER+Collaboration"> SPIDER Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Benton%2C+S+J">S. J. Benton</a>, <a href="/search/astro-ph?searchtype=author&query=Bergman%2C+A+S">A. S. Bergman</a>, <a href="/search/astro-ph?searchtype=author&query=Bihary%2C+R">R. Bihary</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Bonetti%2C+J+A">J. A. Bonetti</a>, <a href="/search/astro-ph?searchtype=author&query=Bryan%2C+S+A">S. A. Bryan</a>, <a href="/search/astro-ph?searchtype=author&query=Chiang%2C+H+C">H. C. Chiang</a>, <a href="/search/astro-ph?searchtype=author&query=Contaldi%2C+C+R">C. R. Contaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Dor%C3%A9%2C+O">O. Dor茅</a>, <a href="/search/astro-ph?searchtype=author&query=Duivenvoorden%2C+A+J">A. J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&query=Eriksen%2C+H+K">H. K. Eriksen</a>, <a href="/search/astro-ph?searchtype=author&query=Farhang%2C+M">M. Farhang</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fraisse%2C+A+A">A. A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&query=Freese%2C+K">K. Freese</a>, <a href="/search/astro-ph?searchtype=author&query=Galloway%2C+M">M. Galloway</a>, <a href="/search/astro-ph?searchtype=author&query=Gambrel%2C+A+E">A. E. Gambrel</a>, <a href="/search/astro-ph?searchtype=author&query=Gandilo%2C+N+N">N. N. Gandilo</a>, <a href="/search/astro-ph?searchtype=author&query=Ganga%2C+K">K. Ganga</a>, <a href="/search/astro-ph?searchtype=author&query=Gualtieri%2C+R">R. Gualtieri</a>, <a href="/search/astro-ph?searchtype=author&query=Gudmundsson%2C+J+E">J. E. Gudmundsson</a> , et al. (46 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.13334v1-abstract-short" style="display: inline;"> We present the first linear polarization measurements from the 2015 long-duration balloon flight of SPIDER, an experiment designed to map the polarization of the cosmic microwave background (CMB) on degree angular scales. Results from these measurements include maps and angular power spectra from observations of 4.8% of the sky at 95 and 150 GHz, along with the results of internal consistency test… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.13334v1-abstract-full').style.display = 'inline'; document.getElementById('2103.13334v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.13334v1-abstract-full" style="display: none;"> We present the first linear polarization measurements from the 2015 long-duration balloon flight of SPIDER, an experiment designed to map the polarization of the cosmic microwave background (CMB) on degree angular scales. Results from these measurements include maps and angular power spectra from observations of 4.8% of the sky at 95 and 150 GHz, along with the results of internal consistency tests on these data. While the polarized CMB anisotropy from primordial density perturbations is the dominant signal in this region of sky, Galactic dust emission is also detected with high significance; Galactic synchrotron emission is found to be negligible in the SPIDER bands. We employ two independent foreground-removal techniques in order to explore the sensitivity of the cosmological result to the assumptions made by each. The primary method uses a dust template derived from Planck data to subtract the Galactic dust signal. A second approach, employing a joint analysis of SPIDER and Planck data in the harmonic domain, assumes a modified-blackbody model for the spectral energy distribution of the dust with no constraint on its spatial morphology. Using a likelihood that jointly samples the template amplitude and $r$ parameter space, we derive 95% upper limits on the primordial tensor-to-scalar ratio from Feldman-Cousins and Bayesian constructions, finding $r<0.11$ and $r<0.19$, respectively. Roughly half the uncertainty in $r$ derives from noise associated with the template subtraction. New data at 280 GHz from SPIDER's second flight will complement the Planck polarization maps, providing powerful measurements of the polarized Galactic dust emission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.13334v1-abstract-full').style.display = 'none'; document.getElementById('2103.13334v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.02386">arXiv:2102.02386</a> <span> [<a href="https://arxiv.org/pdf/2102.02386">pdf</a>, <a href="https://arxiv.org/format/2102.02386">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2562729">10.1117/12.2562729 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Analysis of Temperature-to-Polarization Leakage in BICEP3 and Keck CMB Data from 2016 to 2018 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+T+B">The BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Germaine%2C+T+S">T. St. Germaine</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Bullock%2C+E">E. Bullock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E">E. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fliescher%2C+S">S. Fliescher</a> , et al. (64 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.02386v1-abstract-short" style="display: inline;"> The BICEP/Keck Array experiment is a series of small-aperture refracting telescopes observing degree-scale Cosmic Microwave Background polarization from the South Pole in search of a primordial $B$-mode signature. As a pair differencing experiment, an important systematic that must be controlled is the differential beam response between the co-located, orthogonally polarized detectors. We use high… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.02386v1-abstract-full').style.display = 'inline'; document.getElementById('2102.02386v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.02386v1-abstract-full" style="display: none;"> The BICEP/Keck Array experiment is a series of small-aperture refracting telescopes observing degree-scale Cosmic Microwave Background polarization from the South Pole in search of a primordial $B$-mode signature. As a pair differencing experiment, an important systematic that must be controlled is the differential beam response between the co-located, orthogonally polarized detectors. We use high-fidelity, in-situ measurements of the beam response to estimate the temperature-to-polarization (T $\rightarrow$ P) leakage in our latest data including observations from 2016 through 2018. This includes three years of BICEP3 observing at 95 GHz, and multifrequency data from Keck Array. Here we present band-averaged far-field beam maps, differential beam mismatch, and residual beam power (after filtering out the leading difference modes via deprojection) for these receivers. We show preliminary results of "beam map simulations," which use these beam maps to observe a simulated temperature (no $Q/U$) sky to estimate T $\rightarrow$ P leakage in our real data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.02386v1-abstract-full').style.display = 'none'; document.getElementById('2102.02386v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. SPIE 11453, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X, 114532E (15 December 2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.14347">arXiv:2012.14347</a> <span> [<a href="https://arxiv.org/pdf/2012.14347">pdf</a>, <a href="https://arxiv.org/format/2012.14347">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/abfe6d">10.3847/1538-4357/abfe6d <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Detection of mm-wave transient sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&query=Battaglia%2C+N">Nick Battaglia</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&query=Duell%2C+C+J">Cody J. Duell</a>, <a href="/search/astro-ph?searchtype=author&query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&query=Gralla%2C+M">Megan Gralla</a>, <a href="/search/astro-ph?searchtype=author&query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&query=Huffenberger%2C+K+M">Kevin M. Huffenberger</a>, <a href="/search/astro-ph?searchtype=author&query=Koopman%2C+B+J">Brian J. Koopman</a>, <a href="/search/astro-ph?searchtype=author&query=Kosowsky%2C+A+B">Arthur B. Kosowsky</a>, <a href="/search/astro-ph?searchtype=author&query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&query=Nati%2C+F">Federico Nati</a>, <a href="/search/astro-ph?searchtype=author&query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&query=Page%2C+L">Lyman Page</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.14347v2-abstract-short" style="display: inline;"> We report on the serendipitous discovery of three transient mm-wave sources using data from the Atacama Cosmology Telescope. The first, detected at RA = 273.8138, dec = -49.4628 at ${\sim}50蟽$ total, brightened from less than 5 mJy to at least 1100 mJy at 150 GHz with an unknown rise time shorter than thirteen days, during which the increase from 250 mJy to 1100 mJy took only 8 minutes. Maximum fl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14347v2-abstract-full').style.display = 'inline'; document.getElementById('2012.14347v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.14347v2-abstract-full" style="display: none;"> We report on the serendipitous discovery of three transient mm-wave sources using data from the Atacama Cosmology Telescope. The first, detected at RA = 273.8138, dec = -49.4628 at ${\sim}50蟽$ total, brightened from less than 5 mJy to at least 1100 mJy at 150 GHz with an unknown rise time shorter than thirteen days, during which the increase from 250 mJy to 1100 mJy took only 8 minutes. Maximum flux was observed on 2019-11-8. The source's spectral index in flux between 90 and 150 GHz was positive, $伪= 1.5\pm0.2$. The second, detected at RA = 105.1584, dec = -11.2434 at ${\sim}20蟽$ total, brightened from less than 20 mJy to at least 300 mJy at 150 GHz with an unknown rise time shorter than eight days. Maximum flux was observed on 2019-12-15. Its spectral index was also positive, $伪= 1.8\pm0.2$. The third, detected at RA = 301.9952, dec = 16.1652 at ${\sim}40蟽$ total, brightened from less than 8 mJy to at least 300 mJy at 150 GHz over a day or less but decayed over a few days. Maximum flux was observed on 2018-9-11. Its spectrum was approximately flat, with a spectral index of $伪= -0.2\pm0.1$. None of the sources were polarized to the limits of these measurements. The two rising-spectrum sources are coincident in position with M and K stars, while the third is coincident with a G star. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14347v2-abstract-full').style.display = 'none'; document.getElementById('2012.14347v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.12407">arXiv:2012.12407</a> <span> [<a href="https://arxiv.org/pdf/2012.12407">pdf</a>, <a href="https://arxiv.org/format/2012.12407">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2562941">10.1117/12.2562941 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and pre-flight performance of SPIDER 280 GHz receivers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Shaw%2C+E+C">E. C. Shaw</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Akers%2C+S">S. Akers</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J">J. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J">J. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Becker%2C+D+T">D. T. Becker</a>, <a href="/search/astro-ph?searchtype=author&query=Benton%2C+S+J">S. J. Benton</a>, <a href="/search/astro-ph?searchtype=author&query=Bergman%2C+A+S">A. S. Bergman</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Bryan%2C+S+A">S. A. Bryan</a>, <a href="/search/astro-ph?searchtype=author&query=Chiang%2C+H+C">H. C. Chiang</a>, <a href="/search/astro-ph?searchtype=author&query=Contaldi%2C+C+R">C. R. Contaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Domagalski%2C+R+S">R. S. Domagalski</a>, <a href="/search/astro-ph?searchtype=author&query=Dor%C3%A9%2C+O">O. Dor茅</a>, <a href="/search/astro-ph?searchtype=author&query=Duff%2C+S+M">S. M. Duff</a>, <a href="/search/astro-ph?searchtype=author&query=Duivenvoorden%2C+A+J">A. J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&query=Eriksen%2C+H+K">H. K. Eriksen</a>, <a href="/search/astro-ph?searchtype=author&query=Farhang%2C+M">M. Farhang</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fissel%2C+L+M">L. M. Fissel</a>, <a href="/search/astro-ph?searchtype=author&query=Fraisse%2C+A+A">A. A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&query=Freese%2C+K">K. Freese</a>, <a href="/search/astro-ph?searchtype=author&query=Galloway%2C+M">M. Galloway</a> , et al. (57 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.12407v1-abstract-short" style="display: inline;"> In this work we describe upgrades to the Spider balloon-borne telescope in preparation for its second flight, currently planned for December 2021. The Spider instrument is optimized to search for a primordial B-mode polarization signature in the cosmic microwave background at degree angular scales. During its first flight in 2015, Spider mapped ~10% of the sky at 95 and 150 GHz. The payload for th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12407v1-abstract-full').style.display = 'inline'; document.getElementById('2012.12407v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.12407v1-abstract-full" style="display: none;"> In this work we describe upgrades to the Spider balloon-borne telescope in preparation for its second flight, currently planned for December 2021. The Spider instrument is optimized to search for a primordial B-mode polarization signature in the cosmic microwave background at degree angular scales. During its first flight in 2015, Spider mapped ~10% of the sky at 95 and 150 GHz. The payload for the second Antarctic flight will incorporate three new 280 GHz receivers alongside three refurbished 95- and 150 GHz receivers from Spider's first flight. In this work we discuss the design and characterization of these new receivers, which employ over 1500 feedhorn-coupled transition-edge sensors. We describe pre-flight laboratory measurements of detector properties, and the optical performance of completed receivers. These receivers will map a wide area of the sky at 280 GHz, providing new information on polarized Galactic dust emission that will help to separate it from the cosmological signal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12407v1-abstract-full').style.display = 'none'; document.getElementById('2012.12407v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures; as published in the conference proceedings for SPIE Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X (2020)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> "Design and pre-flight performance of SPIDER 280 GHz receivers," Proc. SPIE 11453, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X, 114532F (13 December 2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.09363">arXiv:2012.09363</a> <span> [<a href="https://arxiv.org/pdf/2012.09363">pdf</a>, <a href="https://arxiv.org/format/2012.09363">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2562066">10.1117/12.2562066 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observing low elevation sky and the CMB Cold Spot with BICEP3 at the South Pole </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Kang%2C+J">J. Kang</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Bullock%2C+E">E. Bullock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E">E. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fliescher%2C+S">S. Fliescher</a>, <a href="/search/astro-ph?searchtype=author&query=Goeckner-Wald%2C+N">N. Goeckner-Wald</a>, <a href="/search/astro-ph?searchtype=author&query=Goldfinger%2C+D+C">D. C. Goldfinger</a> , et al. (62 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.09363v2-abstract-short" style="display: inline;"> BICEP3 is a 520 mm aperture on-axis refracting telescope at the South Pole, which observes the polarization of the cosmic microwave background (CMB) at 95 GHz to search for the B-mode signal from inflationary gravitational waves. In addition to this main target, we have developed a low-elevation observation strategy to extend coverage of the Southern sky at the South Pole, where BICEP3 can quickly… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.09363v2-abstract-full').style.display = 'inline'; document.getElementById('2012.09363v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.09363v2-abstract-full" style="display: none;"> BICEP3 is a 520 mm aperture on-axis refracting telescope at the South Pole, which observes the polarization of the cosmic microwave background (CMB) at 95 GHz to search for the B-mode signal from inflationary gravitational waves. In addition to this main target, we have developed a low-elevation observation strategy to extend coverage of the Southern sky at the South Pole, where BICEP3 can quickly achieve degree-scale E-mode measurements over a large area. An interesting E-mode measurement is probing a potential polarization anomaly around the CMB Cold Spot. During the austral summer seasons of 2018-19 and 2019-20, BICEP3 observed the sky with a flat mirror to redirect the beams to various low elevation ranges. The preliminary data analysis shows degree-scale E-modes measured with high signal-to-noise ratio. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.09363v2-abstract-full').style.display = 'none'; document.getElementById('2012.09363v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 10 figures; Figure 7 shows the correct file</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. SPIE 11453, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X, 114532D (13 December 2020) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Halpern%2C+M&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Halpern%2C+M&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Halpern%2C+M&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Halpern%2C+M&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Halpern%2C+M&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Halpern%2C+M&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>