CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 52 results for author: <span class="mathjax">Orlowski-Scherer, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&amp;query=Orlowski-Scherer%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Orlowski-Scherer, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Orlowski-Scherer%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Orlowski-Scherer, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Orlowski-Scherer%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Orlowski-Scherer%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Orlowski-Scherer%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14404">arXiv:2410.14404</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14404">pdf</a>, <a href="https://arxiv.org/format/2410.14404">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: a census of bridges between galaxy clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Isopi%2C+G">G. Isopi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Capalbo%2C+V">V. Capalbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">A. D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">L. Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbavara%2C+E">E. Barbavara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">E. S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cui%2C+W">W. Cui</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coulton%2C+W+R">W. R. Coulton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Petris%2C+M">M. De Petris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">M. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dolag%2C+K">K. Dolag</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">J. Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fabjan%2C+D">D. Fabjan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferragamo%2C+A">A. Ferragamo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gill%2C+A+S">A. S. Gill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Y. Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">M. Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">M. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">J. P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lokken%2C+M">M. Lokken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Marrewijk%2C+J">J. van Marrewijk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moodley%2C+K">K. Moodley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">T. Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">J. Orlowski-Scherer</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14404v1-abstract-short" style="display: inline;"> According to CMB measurements, baryonic matter constitutes about $5\%$ of the mass-energy density of the universe. A significant population of these baryons, for a long time referred to as `missing&#39;, resides in a low density, warm-hot intergalactic medium (WHIM) outside galaxy clusters, tracing the ``cosmic web&#39;&#39;, a network of large scale dark matter filaments. Various studies have detected this i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14404v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14404v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14404v1-abstract-full" style="display: none;"> According to CMB measurements, baryonic matter constitutes about $5\%$ of the mass-energy density of the universe. A significant population of these baryons, for a long time referred to as `missing&#39;, resides in a low density, warm-hot intergalactic medium (WHIM) outside galaxy clusters, tracing the ``cosmic web&#39;&#39;, a network of large scale dark matter filaments. Various studies have detected this inter-cluster gas, both by stacking and by observing individual filaments in compact, massive systems. In this paper, we study short filaments (&lt; 10 Mpc) connecting massive clusters ($M_{500} \approx 3\times 10^{14} M_{\odot}$) detected by the Atacama Cosmology Telescope (ACT) using the scattering of CMB light off the ionised gas, a phenomenon known as the thermal Sunyaev-Zeldovich (tSZ) effect. The first part of this work is a search for suitable candidates for high resolution follow-up tSZ observations. We identify four cluster pairs with an intercluster signal above the noise floor (S/N $&gt;$ 2), including two with a tentative $&gt;2蟽$ statistical significance for an intercluster bridge from the ACT data alone. In the second part of this work, starting from the same cluster sample, we directly stack on ${\sim}100$ cluster pairs and observe an excess SZ signal between the stacked clusters of $y=(7.2^{+2.3}_{-2.5})\times 10^{-7}$ with a significance of $3.3蟽$. It is the first tSZ measurement of hot gas between clusters in this range of masses at moderate redshift ($\langle z\rangle\approx 0.5$). We compare this to the signal from simulated cluster pairs with similar redshifts and separations in the THE300 and MAGNETICUM Pathfinder cosmological simulations and find broad consistency. Additionally, we show that our measurement is consistent with scaling relations between filament parameters and mass of the embedded halos identified in simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14404v1-abstract-full').style.display = 'none'; document.getElementById('2410.14404v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 17 images</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 85A40 (Primary) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08429">arXiv:2409.08429</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.08429">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Systematic Transient Search of Single Observation Maps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Biermann%2C+E+K">Emily K. Biermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yaqiong Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clark%2C+S+E">Susan E. Clark</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">P. A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Foster%2C+A">Allen Foster</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">Matthew Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Herv%C3%ADas-Caimapo%2C+C">Carlos Herv铆as-Caimapo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+A+Y+Q">Anna Y. Q. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hood%2C+J+C">John C. Hood II</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huffenberger%2C+K+M">Kevin M. Huffenberger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kosowsky%2C+A">Arthur Kosowsky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+L">Lyman Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Partridge%2C+B">Bruce Partridge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salatino%2C+M">Maria Salatino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sif%C3%B3n%2C+C">Crist贸bal Sif贸n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staggs%2C+S+T">Suzanne T. Staggs</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08429v1-abstract-short" style="display: inline;"> We conduct a systematic search for astrophysical transients using data from the Atacama Cosmology Telescope (ACT). The data were taken from 2017 to 2022 in three frequency bands spanning 77 GHz to 277 GHz. In this paper we present a pipeline for transient detection using single observation maps where each pixel of a map contains one observation with an integration time of approximately four minute&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08429v1-abstract-full').style.display = 'inline'; document.getElementById('2409.08429v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08429v1-abstract-full" style="display: none;"> We conduct a systematic search for astrophysical transients using data from the Atacama Cosmology Telescope (ACT). The data were taken from 2017 to 2022 in three frequency bands spanning 77 GHz to 277 GHz. In this paper we present a pipeline for transient detection using single observation maps where each pixel of a map contains one observation with an integration time of approximately four minutes. We find 34 transient events at 27 unique locations. All but two of the transients are associated with Galactic stars and exhibit a wide range of properties. We also detect an event coincident with the classical nova, YZ Ret and one event consistent with a flaring active galactic nucleus. We notably do not detect any reverse shock emission from gamma ray bursts, a non-detection which is in tension with current models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08429v1-abstract-full').style.display = 'none'; document.getElementById('2409.08429v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 10 figures, 10 tables. First and second author share equal contributions. Article and accompanying data submitted to ApJ. Data tables will be made available upon publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02177">arXiv:2408.02177</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02177">pdf</a>, <a href="https://arxiv.org/format/2408.02177">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The RAdio Galaxy Environment Reference Survey (RAGERS): Evidence of an anisotropic distribution of submillimeter galaxies in the 4C 23.56 protocluster at z=2.48 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zhou%2C+D">Dazhi Zhou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Greve%2C+T+R">Thomas R. Greve</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gullberg%2C+B">Bitten Gullberg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+M+M">Minju M. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C+E">Charles E. Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chapman%2C+S+C">Scott C. Chapman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+C">Chian-Chou Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cornish%2C+T">Thomas Cornish</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+L+C">Luis C. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kohno%2C+K">Kotaro Kohno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lagos%2C+C+D+P">Claudia D. P. Lagos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B+S">Brian S. Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wagg%2C+J+F+W">Jeff F. W. Wagg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+Q+D">Q. Daniel Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+R">Ran Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brinch%2C+M">Malte. Brinch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dannerbauer%2C+H">Helmut Dannerbauer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jiang%2C+X">Xue-Jian Jiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lauritsen%2C+L+R+B">Lynge R. B. Lauritsen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vijayan%2C+A+P">Aswin P. Vijayan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vizgan%2C+D">David Vizgan</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02177v1-abstract-short" style="display: inline;"> High-redshift radio(-loud) galaxies (H$z$RGs) are massive galaxies with powerful radio-loud active galactic nuclei (AGNs) and serve as beacons for protocluster identification. However, the interplay between H$z$RGs and the large-scale environment remains unclear. To understand the connection between H$z$RGs and the surrounding obscured star formation, we investigated the overdensity and spatial di&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02177v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02177v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02177v1-abstract-full" style="display: none;"> High-redshift radio(-loud) galaxies (H$z$RGs) are massive galaxies with powerful radio-loud active galactic nuclei (AGNs) and serve as beacons for protocluster identification. However, the interplay between H$z$RGs and the large-scale environment remains unclear. To understand the connection between H$z$RGs and the surrounding obscured star formation, we investigated the overdensity and spatial distribution of submillimeter-bright galaxies (SMGs) in the field of 4C\,23.56, a well-known H$z$RG at $z=2.48$. We used SCUBA-2 data ($蟽\,{\sim}\,0.6$\,mJy) to estimate the $850\,{\rm 渭m}$ source number counts and examine the radial and azimuthal overdensities of the $850\,{\rm 渭m}$ sources in the vicinity of the H$z$RG. The angular distribution of SMGs is inhomogeneous around the H$z$RG 4C\,23.56, with fewer sources oriented along the radio jet. We also find a significant overdensity of bright SMGs (${\rm S}_{850\rm\,渭m}\geq5\,$mJy). Faint and bright SMGs exhibit different spatial distributions. The former are concentrated in the core region, while the latter prefer the outskirts of the H$z$RG field. High-resolution observations show that the seven brightest SMGs in our sample are intrinsically bright, suggesting that the overdensity of bright SMGs is less likely due to the source multiplicity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02177v1-abstract-full').style.display = 'none'; document.getElementById('2408.02177v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 17 figures, 5 tables, accepted to A&amp;A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20873">arXiv:2407.20873</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20873">pdf</a>, <a href="https://arxiv.org/format/2407.20873">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> CCAT: Prime-Cam Optics Overview and Status Update </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Huber%2C+Z+B">Zachary B. Huber</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lin%2C+L+T">Lawrence T. Lin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vavagiakis%2C+E+M">Eve M. Vavagiakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Freundt%2C+R+G">Rodrigo G. Freundt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Butler%2C+V">Victoria Butler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chapman%2C+S+C">Scott C. Chapman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crites%2C+A+T">Abigail T. Crites</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duell%2C+C+J">Cody J. Duell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huber%2C+A+I">Anthony I. Huber</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Keller%2C+B">Ben Keller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Middleton%2C+A">Alicia Middleton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nikola%2C+T">Thomas Nikola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smith%2C+E">Ema Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stacey%2C+G">Gordon Stacey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Walker%2C+S">Samantha Walker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zou%2C+B">Bugao Zou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20873v1-abstract-short" style="display: inline;"> Prime-Cam is a first-generation science instrument for the CCAT Observatory&#39;s six-meter aperture Fred Young Submillimeter Telescope (FYST). FYST&#39;s crossed-Dragone design provides high optical throughput to take advantage of its unique site at 5600 m on Cerro Chajnantor in Chile&#39;s Atacama Desert to reach mapping speeds over ten times greater than current and near-term submillimeter experiments. Hou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20873v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20873v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20873v1-abstract-full" style="display: none;"> Prime-Cam is a first-generation science instrument for the CCAT Observatory&#39;s six-meter aperture Fred Young Submillimeter Telescope (FYST). FYST&#39;s crossed-Dragone design provides high optical throughput to take advantage of its unique site at 5600 m on Cerro Chajnantor in Chile&#39;s Atacama Desert to reach mapping speeds over ten times greater than current and near-term submillimeter experiments. Housing up to seven independent instrument modules in its 1.8-meter diameter cryostat, Prime-Cam will combine broadband polarization-sensitive modules and spectrometer modules designed for observations in several frequency windows between 210 GHz and 850 GHz to study a wide range of astrophysical questions from Big Bang cosmology to the formation of stars and galaxies in the Epoch of Reionization and beyond. In order to cover this range of frequencies and observation modes, each of the modules contains a set of cold reimaging optics that is optimized for the science goals of that module. These optical setups include several filters, three or four anti-reflection-coated silicon lenses, and a Lyot stop to control the field of view and illumination of the primary mirror, satisfy a series of mechanical constraints, and maximize optical performance within each passband. We summarize the design considerations and trade-offs for the optics in these modules and provide a status update on the fabrication of the Prime-Cam receiver and the design of its 1 K and 100 mK thermal BUSs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20873v1-abstract-full').style.display = 'none'; document.getElementById('2407.20873v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures, presented at SPIE Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09669">arXiv:2407.09669</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.09669">pdf</a>, <a href="https://arxiv.org/format/2407.09669">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.3019247">10.1117/12.3019247 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: Dark Characterization of the Large Aperture Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Haridas%2C+S+K">Saianeesh K. Haridas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dutcher%2C+D">Daniel Dutcher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henderson%2C+S+W">Shawn W. Henderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+B+R">Bradley R. Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A">Anna Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manduca%2C+A">Alex Manduca</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Randall%2C+M+J">Michael J. Randall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Satterthwaite%2C+T+P">Thomas P. Satterthwaite</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schmitt%2C+B+L">Benjamin L. Schmitt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sierra%2C+C">Carlos Sierra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Silva-Feaver%2C+M">Max Silva-Feaver</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thornton%2C+R+J">Robert J. Thornton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+Y">Yuhan Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zheng%2C+K">Kaiwen Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09669v1-abstract-short" style="display: inline;"> The Simons Observatory (SO) is a cosmic microwave background experiment composed of three 0.42 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT) in the Atacama Desert of Chile. The Large Aperture Telescope Receiver (LATR) was integrated into the LAT in August 2023; however, because mirrors were not yet installed, the LATR optical chain was capped at the 4K stage. In thi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09669v1-abstract-full').style.display = 'inline'; document.getElementById('2407.09669v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09669v1-abstract-full" style="display: none;"> The Simons Observatory (SO) is a cosmic microwave background experiment composed of three 0.42 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT) in the Atacama Desert of Chile. The Large Aperture Telescope Receiver (LATR) was integrated into the LAT in August 2023; however, because mirrors were not yet installed, the LATR optical chain was capped at the 4K stage. In this dark configuration we are able to characterize many elements of the instrument without contributions from atmospheric noise. Here we show this noise is below the required upper limit and its features are well described with a simple noise model. Maps produced using this noise model have properties that are in good agreement with the white noise levels of our dark data. Additionally, we show that our nominal scan strategy has a minimal effect on the noise when compared to the noise when the telescope is stationary <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09669v1-abstract-full').style.display = 'none'; document.getElementById('2407.09669v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.04606">arXiv:2407.04606</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.04606">pdf</a>, <a href="https://arxiv.org/format/2407.04606">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope DR6 and DESI: Structure formation over cosmic time with a measurement of the cross-correlation of CMB Lensing and Luminous Red Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+J">Joshua Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sailer%2C+N">Noah Sailer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguilar%2C+J+N">Jessica Nicole Aguilar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahlen%2C+S">Steven Ahlen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brooks%2C+D">David Brooks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burtin%2C+E">Etienne Burtin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+S">Shi-Fan Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Claybaugh%2C+T">Todd Claybaugh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Darwish%2C+O">Omar Darwish</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+la+Macorra%2C+A">Axel de la Macorra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=DeRose%2C+J">Joseph DeRose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dey%2C+A">Arjun Dey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doel%2C+P">Peter Doel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Embil-Villagra%2C+C">Carmen Embil-Villagra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Farren%2C+G+S">Gerrit S. Farren</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Font-Ribera%2C+A">Andreu Font-Ribera</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Forero-Romero%2C+J+E">Jaime E. Forero-Romero</a> , et al. (48 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.04606v1-abstract-short" style="display: inline;"> We present a high-significance cross-correlation of CMB lensing maps from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) with spectroscopically calibrated luminous red galaxies (LRGs) from the Dark Energy Spectroscopic Instrument (DESI). We detect this cross-correlation at a significance of 38$蟽$; combining our measurement with the Planck Public Release 4 (PR4) lensing map, we detect t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04606v1-abstract-full').style.display = 'inline'; document.getElementById('2407.04606v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.04606v1-abstract-full" style="display: none;"> We present a high-significance cross-correlation of CMB lensing maps from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) with spectroscopically calibrated luminous red galaxies (LRGs) from the Dark Energy Spectroscopic Instrument (DESI). We detect this cross-correlation at a significance of 38$蟽$; combining our measurement with the Planck Public Release 4 (PR4) lensing map, we detect the cross-correlation at 50$蟽$. Fitting this jointly with the galaxy auto-correlation power spectrum to break the galaxy bias degeneracy with $蟽_8$, we perform a tomographic analysis in four LRG redshift bins spanning $0.4 \le z \le 1.0$ to constrain the amplitude of matter density fluctuations through the parameter combination $S_8^\times = 蟽_8 \left(惟_m / 0.3\right)^{0.4}$. Prior to unblinding, we confirm with extragalactic simulations that foreground biases are negligible and carry out a comprehensive suite of null and consistency tests. Using a hybrid effective field theory (HEFT) model that allows scales as small as $k_{\rm max}=0.6$ $h/{\rm Mpc}$, we obtain a 3.3% constraint on $S_8^\times = 蟽_8 \left(惟_m / 0.3\right)^{0.4} = 0.792^{+0.024}_{-0.028}$ from ACT data, as well as constraints on $S_8^\times(z)$ that probe structure formation over cosmic time. Our result is consistent with the early-universe extrapolation from primary CMB anisotropies measured by Planck PR4 within 1.2$蟽$. Jointly fitting ACT and Planck lensing cross-correlations we obtain a 2.7% constraint of $S_8^\times = 0.776^{+0.019}_{-0.021}$, which is consistent with the Planck early-universe extrapolation within 2.1$蟽$, with the lowest redshift bin showing the largest difference in mean. The latter may motivate further CMB lensing tomography analyses at $z&lt;0.6$ to assess the impact of potential systematics or the consistency of the $螞$CDM model over cosmic time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04606v1-abstract-full').style.display = 'none'; document.getElementById('2407.04606v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Prepared for submission to JCAP (47 pages, 13 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01413">arXiv:2407.01413</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.01413">pdf</a>, <a href="https://arxiv.org/format/2407.01413">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> AtLAST Science Overview Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Booth%2C+M">Mark Booth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Kampen%2C+E">Eelco van Kampen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+M+M">Minju M. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+D">Daizhong Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saintonge%2C+A">Am茅lie Saintonge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smith%2C+M+W+L">Matthew W. L. Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thelen%2C+A">Alexander Thelen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wedemeyer%2C+S">Sven Wedemeyer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akiyama%2C+K">Kazunori Akiyama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreon%2C+S">Stefano Andreon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arzoumanian%2C+D">Doris Arzoumanian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bakx%2C+T+J+L+C">Tom J. L. C. Bakx</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bot%2C+C">Caroline Bot</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bower%2C+G">Geoffrey Bower</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Braj%C5%A1a%2C+R">Roman Braj拧a</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+C">Chian-Chou Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=da+Cunha%2C+E">Elisabete da Cunha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eden%2C+D">David Eden</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01413v2-abstract-short" style="display: inline;"> Submillimeter and millimeter wavelengths provide a unique view of the Universe, from the gas and dust that fills and surrounds galaxies to the chromosphere of our own Sun. Current single-dish facilities have presented a tantalising view of the brightest (sub-)mm sources, and interferometers have provided the exquisite resolution necessary to analyse the details in small fields, but there are still&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01413v2-abstract-full').style.display = 'inline'; document.getElementById('2407.01413v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01413v2-abstract-full" style="display: none;"> Submillimeter and millimeter wavelengths provide a unique view of the Universe, from the gas and dust that fills and surrounds galaxies to the chromosphere of our own Sun. Current single-dish facilities have presented a tantalising view of the brightest (sub-)mm sources, and interferometers have provided the exquisite resolution necessary to analyse the details in small fields, but there are still many open questions that cannot be answered with current facilities. In this report we summarise the science that is guiding the design of the Atacama Large Aperture Submillimeter Telescope (AtLAST). We demonstrate how tranformational advances in topics including star formation in high redshift galaxies, the diffuse circumgalactic medium, Galactic ecology, cometary compositions and solar flares motivate the need for a 50m, single-dish telescope with a 1-2 degree field of view and a new generation of highly multiplexed continuum and spectral cameras. AtLAST will have the resolution to drastically lower the confusion limit compared to current single-dish facilities, whilst also being able to rapidly map large areas of the sky and detect extended, diffuse structures. Its high sensitivity and large field of view will open up the field of submillimeter transient science by increasing the probability of serendipitous detections. Finally, the science cases listed here motivate the need for a highly flexible operations model capable of short observations of individual targets, large surveys, monitoring programmes, target of opportunity observations and coordinated observations with other observatories. AtLAST aims to be a sustainable, upgradeable, multipurpose facility that will deliver orders of magnitude increases in sensitivity and mapping speeds over current and planned submillimeter observatories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01413v2-abstract-full').style.display = 'none'; document.getElementById('2407.01413v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">47 pages, 12 figures. For further details on AtLAST see https://atlast.uio.no</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00856">arXiv:2407.00856</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.00856">pdf</a>, <a href="https://arxiv.org/format/2407.00856">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Drone-Based Antenna Beam Calibration in the High Arctic </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Herman%2C+L">Lawrence Herman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbarie%2C+C">Christopher Barbarie</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agrawal%2C+M">Mohan Agrawal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calinescu%2C+V">Vlad Calinescu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+S">Simon Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chiang%2C+H+C">H. Cynthia Chiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Day%2C+C+K">Cherie K. Day</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Egan%2C+E">Eamon Egan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fay%2C+S">Stephen Fay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gerodias%2C+K">Kit Gerodias</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goss%2C+M">Maya Goss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=H%C3%A9tu%2C+M">Michael H茅tu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jacobs%2C+D+C">Daniel C. Jacobs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lalonde%2C+M+R">Marc-Olivier R. Lalonde</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McGee%2C+F">Francis McGee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miara%2C+L">Lo茂c Miara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">Jonathan Sievers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00856v1-abstract-short" style="display: inline;"> The development of low-frequency radio astronomy experiments for detecting 21-cm line emission from hydrogen presents new opportunities for creative solutions to the challenge of characterizing an antenna beam pattern. The Array of Long Baseline Antennas for Taking Radio Observations from the Seventy-ninth parallel (ALBATROS) is a new radio interferometer sited in the Canadian high Arctic that aim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00856v1-abstract-full').style.display = 'inline'; document.getElementById('2407.00856v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00856v1-abstract-full" style="display: none;"> The development of low-frequency radio astronomy experiments for detecting 21-cm line emission from hydrogen presents new opportunities for creative solutions to the challenge of characterizing an antenna beam pattern. The Array of Long Baseline Antennas for Taking Radio Observations from the Seventy-ninth parallel (ALBATROS) is a new radio interferometer sited in the Canadian high Arctic that aims to map Galactic foregrounds at frequencies below $\sim$30 MHz. We present PteroSoar, a custom-built hexacopter outfitted with a transmitter, that will be used to characterize the beam patterns of ALBATROS and other experiments. The PteroSoar drone hardware is motivated by the need for user-servicing at remote sites and environmental factors that are unique to the high Arctic. In particular, magnetic heading is unreliable because the magnetic field lines near the north pole are almost vertical. We therefore implement moving baseline real time kinematic (RTK) positioning with two GPS units to obtain heading solutions with $\sim$1$^\circ$ accuracy. We present a preliminary beam map of an ALBATROS antenna, thus demonstrating successful PteroSoar operation in the high Arctic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00856v1-abstract-full').style.display = 'none'; document.getElementById('2407.00856v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01844">arXiv:2406.01844</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.01844">pdf</a>, <a href="https://arxiv.org/format/2406.01844">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.3019196">10.1117/12.3019196 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: Studies of Detector Yield and Readout Noise From the First Large-Scale Deployment of Microwave Multiplexing at the Large Aperture Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Satterthwaite%2C+T+P">Thomas P. Satterthwaite</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bae%2C+K">Kyuyoung Bae</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dutcher%2C+D">Daniel Dutcher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haridas%2C+S+K">Saianeesh K. Haridas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henderson%2C+S+W">Shawn W. Henderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+B+R">Bradley R. Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A">Anna Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lashner%2C+J">Jack Lashner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Link%2C+M+J">Michael J. Link</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lucas%2C+T+J">Tammy J. Lucas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manduca%2C+A">Alex Manduca</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pinsonneault-Marotte%2C+T">Tristan Pinsonneault-Marotte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Silva-Feaver%2C+M">Max Silva-Feaver</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staggs%2C+S">Suzanne Staggs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vavagiakis%2C+E+M">Eve M. Vavagiakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+Y">Yuhan Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zheng%2C+K">Kaiwen Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01844v1-abstract-short" style="display: inline;"> The Simons Observatory is a new ground-based cosmic microwave background experiment, which is currently being commissioned in Chile&#39;s Atacama Desert. During its survey, the observatory&#39;s small aperture telescopes will map 10% of the sky in bands centered at frequencies ranging from 27 to 280 GHz to constrain cosmic inflation models, and its large aperture telescope will map 40% of the sky in the s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01844v1-abstract-full').style.display = 'inline'; document.getElementById('2406.01844v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01844v1-abstract-full" style="display: none;"> The Simons Observatory is a new ground-based cosmic microwave background experiment, which is currently being commissioned in Chile&#39;s Atacama Desert. During its survey, the observatory&#39;s small aperture telescopes will map 10% of the sky in bands centered at frequencies ranging from 27 to 280 GHz to constrain cosmic inflation models, and its large aperture telescope will map 40% of the sky in the same bands to constrain cosmological parameters and use weak lensing to study large-scale structure. To achieve these science goals, the Simons Observatory is deploying these telescopes&#39; receivers with 60,000 state-of-the-art superconducting transition-edge sensor bolometers for its first five year survey. Reading out this unprecedented number of cryogenic sensors, however, required the development of a novel readout system. The SMuRF electronics were developed to enable high-density readout of superconducting sensors using cryogenic microwave SQUID multiplexing technology. The commissioning of the SMuRF systems at the Simons Observatory is the largest deployment to date of microwave multiplexing technology for transition-edge sensors. In this paper, we show that a significant fraction of the systems deployed so far to the Simons Observatory&#39;s large aperture telescope meet baseline specifications for detector yield and readout noise in this early phase of commissioning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01844v1-abstract-full').style.display = 'none'; document.getElementById('2406.01844v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, 1 table. To be presented at SPIE Astronomical Telescopes + Instrumentation 2024</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. SPIE 13102, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII. 1310223 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.20140">arXiv:2405.20140</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.20140">pdf</a>, <a href="https://arxiv.org/format/2405.20140">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> The key science drivers for the Atacama Large Aperture Submillimeter Telescope (AtLAST) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Booth%2C+M">Mark Booth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wedemeyer%2C+S">Sven Wedemeyer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akiyama%2C+K">Kazunori Akiyama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bower%2C+G">Geoffrey Bower</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Kampen%2C+E">Eelco van Kampen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+M+M">Minju M. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+D">Daizhong Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saintonge%2C+A">Am茅lie Saintonge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smith%2C+M">Matthew Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thelen%2C+A+E">Alexander E. Thelen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.20140v1-abstract-short" style="display: inline;"> Sub-mm and mm wavelengths provide a unique view of the Universe, from the gas and dust that fills and surrounds galaxies to the chromosphere of our own Sun. Current single-dish facilities have presented a tantalising view of the brightest (sub-)mm sources, and interferometers have provided the exquisite resolution necessary to analyse the details in small fields, but there are still many open ques&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20140v1-abstract-full').style.display = 'inline'; document.getElementById('2405.20140v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.20140v1-abstract-full" style="display: none;"> Sub-mm and mm wavelengths provide a unique view of the Universe, from the gas and dust that fills and surrounds galaxies to the chromosphere of our own Sun. Current single-dish facilities have presented a tantalising view of the brightest (sub-)mm sources, and interferometers have provided the exquisite resolution necessary to analyse the details in small fields, but there are still many open questions that cannot be answered with current facilities: Where are all the baryons? How do structures interact with their environments? What does the time-varying (sub-)mm sky look like? In order to make major advances on these questions and others, what is needed now is a facility capable of rapidly mapping the sky spatially, spectrally, and temporally, which can only be done by a high throughput, single-dish observatory. An extensive design study for this new facility is currently being undertaken. In this paper, we focus on the key science drivers and the requirements they place on the observatory. As a 50m single dish telescope with a 1-2掳 field of view, the strength of the Atacama Large Aperture Submillimeter Telescope (AtLAST) is in science where a large field of view, highly multiplexed instrumentation and sensitivity to faint large-scale structure is important. AtLAST aims to be a sustainable, upgradeable, multipurpose facility that will deliver orders of magnitude increases in sensitivity and mapping speeds over current and planned telescopes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20140v1-abstract-full').style.display = 'none'; document.getElementById('2405.20140v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, Conference proceedings paper for the 2024 SPIE Astronomical Telescopes + Instrumentation meeting</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13133">arXiv:2404.13133</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.13133">pdf</a>, <a href="https://arxiv.org/format/2404.13133">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Atacama Large Aperture Submillimeter Telescope \mbox{(AtLAST)} Science: Probing the Transient and Time-variable Sky </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maccarone%2C+T+J">Thomas J. Maccarone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bright%2C+J">Joe Bright</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaminski%2C+T">Tomasz Kaminski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koss%2C+M">Michael Koss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mohan%2C+A">Atul Mohan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Montenegro-Montes%2C+F+M">Francisco Miguel Montenegro-Montes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=N%C3%A6ss%2C+S+u">Sig urd N忙ss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ricci%2C+C">Claudio Ricci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Severgnini%2C+P">Paola Severgnini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanke%2C+T">Thomas Stanke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vignali%2C+C">Cristian Vignali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wedemeyer%2C+S">Sven Wedemeyer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Booth%2C+M">Mark Booth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Greiner%2C+J">Jochen Greiner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hatziminaoglou%2C+E">Evanthia Hatziminaoglou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Kampen%2C+E">Eelco van Kampen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+M+M">Minju M. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+D">Daizhong Liu</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13133v1-abstract-short" style="display: inline;"> The study of transient and variable events, including novae, active galactic nuclei, and black hole binaries, has historically been a fruitful path for elucidating the evolutionary mechanisms of our universe. The study of such events in the millimeter and submillimeter is, however, still in its infancy. Submillimeter observations probe a variety of materials, such as optically thick dust, which ar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13133v1-abstract-full').style.display = 'inline'; document.getElementById('2404.13133v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13133v1-abstract-full" style="display: none;"> The study of transient and variable events, including novae, active galactic nuclei, and black hole binaries, has historically been a fruitful path for elucidating the evolutionary mechanisms of our universe. The study of such events in the millimeter and submillimeter is, however, still in its infancy. Submillimeter observations probe a variety of materials, such as optically thick dust, which are hard to study in other wavelengths. Submillimeter observations are sensitive to a number of emission mechanisms, from the aforementioned cold dust, to hot free-free emission, and synchrotron emission from energetic particles. Study of these phenomena has been hampered by a lack of prompt, high sensitivity submillimeter follow-up, as well as by a lack of high-sky-coverage submillimeter surveys. In this paper, we describe how the proposed Atacama Large Aperture Submillimeter Telescope (AtLAST) could fill in these gaps in our understanding of the transient universe. We discuss a number of science cases that would benefit from AtLAST observations, and detail how AtLAST is uniquely suited to contributing to them. In particular, AtLAST&#39;s large field of view will enable serendipitous detections of transient events, while its anticipated ability to get on source quickly and observe simultaneously in multiple bands make it also ideally suited for transient follow-up. We make theoretical predictions for the instrumental and observatory properties required to significantly contribute to these science cases, and compare them to the projected AtLAST capabilities. Finally, we consider the unique ways in which transient science cases constrain the observational strategies of AtLAST, and make prescriptions for how AtLAST should observe in order to maximize its transient science output without impinging on other science cases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13133v1-abstract-full').style.display = 'none'; document.getElementById('2404.13133v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09855">arXiv:2403.09855</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.09855">pdf</a>, <a href="https://arxiv.org/format/2403.09855">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad4e35">10.3847/1538-4357/ad4e35 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sensitive 3mm Imaging of Discrete Sources in the Fields of tSZ-Selected Galaxy Clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarmiento%2C+K+P">Karen Perez Sarmiento</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B">Brian Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haridas%2C+S">Saianeesh Haridas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M">Mathew Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moravec%2C+E">Emily Moravec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C">Charles Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarazin%2C+C+L">Craig L. Sarazin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">Jonathan Sievers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09855v2-abstract-short" style="display: inline;"> In this paper we present the results of a blind survey for compact sources in 243 Galaxy clusters that were identified using the thermal Sunyaev-Zeldovich effect (tSZ). The survey was carried out at 90 GHz using MUSTANG2 on the Green Bank telescope and achieved a $5蟽$ detection limit of 1 mJy in the center of each cluster. We detected 24 discrete sources. The majority (18) of these correspond to k&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09855v2-abstract-full').style.display = 'inline'; document.getElementById('2403.09855v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09855v2-abstract-full" style="display: none;"> In this paper we present the results of a blind survey for compact sources in 243 Galaxy clusters that were identified using the thermal Sunyaev-Zeldovich effect (tSZ). The survey was carried out at 90 GHz using MUSTANG2 on the Green Bank telescope and achieved a $5蟽$ detection limit of 1 mJy in the center of each cluster. We detected 24 discrete sources. The majority (18) of these correspond to known radio sources, and of these, 5 show signs of significant variability, either with time or in spectral index. The remaining sources have no clear counterparts at other wavelengths. Searches for galaxy clusters via the tSZ effect strongly rely on observations at 90 GHz, and the sources found have the potential to bias mass estimates of clusters. We compare our results to the simulation Websky that can be used to estimate the source contamination in galaxy cluster catalogs. While the simulation showed a good match to our observations at the clusters&#39; centers, it does not match our source distribution further out. Sources over 104&#34; from a cluster&#39;s center bias the tSZ signal high, for some of our sources, by over 50%. When averaged over the whole cluster population the effect is smaller but still at a level of 1 to 2%. We also discovered that unlike previous measurements and simulations we see an enhancement of source counts in the outer regions of the clusters and fewer sources than expected in the centers of this tSZ selected sample. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09855v2-abstract-full').style.display = 'none'; document.getElementById('2403.09855v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures and 2 tables Extended version of figure 4 is included and the full data for table 1 can be found as the auxiliary file tab1.txt</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ,970,2024,84 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00920">arXiv:2403.00920</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.00920">pdf</a>, <a href="https://arxiv.org/format/2403.00920">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Atacama Large Aperture Submillimeter Telescope (AtLAST) Science: Solar and stellar observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Wedemeyer%2C+S">Sven Wedemeyer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barta%2C+M">Miroslav Barta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brajsa%2C+R">Roman Brajsa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chai%2C+Y">Yi Chai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Costa%2C+J">Joaquim Costa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gary%2C+D">Dale Gary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Castro%2C+G+G">Guillermo Gimenez de Castro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gunar%2C+S">Stanislav Gunar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fleishman%2C+G">Gregory Fleishman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hales%2C+A">Antonio Hales</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hudson%2C+H">Hugh Hudson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kirkaune%2C+M">Mats Kirkaune</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mohan%2C+A">Atul Mohan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Motorina%2C+G">Galina Motorina</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pellizzoni%2C+A">Alberto Pellizzoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saberi%2C+M">Maryam Saberi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Selhorst%2C+C+L">Caius L. Selhorst</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Simoes%2C+P+J+A">Paulo J. A. Simoes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shimojo%2C+M">Masumi Shimojo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Skokic%2C+I">Ivica Skokic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sudar%2C+D">Davor Sudar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Menezes%2C+F">Fabian Menezes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=White%2C+S">Stephen White</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Booth%2C+M">Mark Booth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00920v3-abstract-short" style="display: inline;"> Observations at (sub-)millimeter wavelengths offer a complementary perspective on our Sun and other stars, offering significant insights into both the thermal and magnetic composition of their chromospheres. Despite the fundamental progress in (sub-)millimeter observations of the Sun, some important aspects require diagnostic capabilities that are not offered by existing observatories. In particul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00920v3-abstract-full').style.display = 'inline'; document.getElementById('2403.00920v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00920v3-abstract-full" style="display: none;"> Observations at (sub-)millimeter wavelengths offer a complementary perspective on our Sun and other stars, offering significant insights into both the thermal and magnetic composition of their chromospheres. Despite the fundamental progress in (sub-)millimeter observations of the Sun, some important aspects require diagnostic capabilities that are not offered by existing observatories. In particular, simultaneous observations of the radiation continuum across an extended frequency range would facilitate the mapping of different layers and thus ultimately the 3D structure of the solar atmosphere. Mapping large regions on the Sun or even the whole solar disk at a very high temporal cadence would be crucial for systematically detecting and following the temporal evolution of flares, while synoptic observations, i.e., daily maps, over periods of years would provide an unprecedented view of the solar activity cycle in this wavelength regime. As our Sun is a fundamental reference for studying the atmospheres of active main sequence stars, observing the Sun and other stars with the same instrument would unlock the enormous diagnostic potential for understanding stellar activity and its impact on exoplanets. The Atacama Large Aperture Submillimeter Telescope (AtLAST), a single-dish telescope with 50\,m aperture proposed to be built in the Atacama desert in Chile, would be able to provide these observational capabilities. Equipped with a large number of detector elements for probing the radiation continuum across a wide frequency range, AtLAST would address a wide range of scientific topics including the thermal structure and heating of the solar chromosphere, flares and prominences, and the solar activity cycle. In this white paper, the key science cases and their technical requirements for AtLAST are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00920v3-abstract-full').style.display = 'none'; document.getElementById('2403.00920v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures, submitted to Open Research Europe as part of a collection on the Atacama Large Aperture Submillimeter Telescope (AtLAST) -- revised version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.10731">arXiv:2402.10731</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.10731">pdf</a>, <a href="https://arxiv.org/format/2402.10731">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> maria: A novel simulator for forecasting (sub-)mm observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=van+Marrewijk%2C+J">J. van Marrewijk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morris%2C+T+W">T. W. Morris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">T. Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cicone%2C+C">C. Cicone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">S. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">L. Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haridas%2C+S+K">S. K. Haridas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">J. Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rasia%2C+E">E. Rasia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C">C. Romero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.10731v2-abstract-short" style="display: inline;"> Submillimeter single-dish telescopes offer two key advantages compared to interferometers: they can efficiently map larger portions of the sky and recover larger spatial scales. Nonetheless, fluctuations in the atmosphere limit the accurate retrieval of signals from astronomical sources. Therefore, we introduce a user-friendly simulator named ${\tt maria}$ to optimize scanning strategies and instr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10731v2-abstract-full').style.display = 'inline'; document.getElementById('2402.10731v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.10731v2-abstract-full" style="display: none;"> Submillimeter single-dish telescopes offer two key advantages compared to interferometers: they can efficiently map larger portions of the sky and recover larger spatial scales. Nonetheless, fluctuations in the atmosphere limit the accurate retrieval of signals from astronomical sources. Therefore, we introduce a user-friendly simulator named ${\tt maria}$ to optimize scanning strategies and instrument designs to efficiently reduce atmospheric noise and filtering effects. We further use this tool to produce synthetic time streams and maps from hydrodynamical simulations, enabling a fair comparison between theory and reality. ${\tt maria}$ has implemented a suite of telescope and instrument designs intended to mimic current and future facilities. To generate synthetic time-ordered data, each mock observatory scans through the atmosphere in a configurable pattern over the celestial object. We generate evolving and location-and-time-specific weather for each of the fiducial sites using a combination of satellite and ground-based measurements. While ${\tt maria}$ is a generic virtual telescope, this study specifically focuses on mimicking broadband bolometers observing at 100 GHz. To validate our virtual telescope, we compare the mock time streams with real MUSTANG-2 observations and find that they are quantitatively similar by conducting a k-sample Anderson-Darling test resulting in p&lt;0.001. Subsequently, we image the time-ordered data to create noise maps and mock observations of clusters of galaxies for both MUSTANG-2 and an instrument concept for the 50m Atacama Large Aperture Submillimeter Telescope (AtLAST). Furthermore, using ${\tt maria}$, we find that a 50m dish provides the highest levels of correlation of atmospheric signals across adjacent detectors compared to smaller apertures (e.g., 42-cm and 6-m survey experiments), facilitating removal of atmospheric signal on large scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10731v2-abstract-full').style.display = 'none'; document.getElementById('2402.10731v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.01258">arXiv:2307.01258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.01258">pdf</a>, <a href="https://arxiv.org/format/2307.01258">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: High-resolution component-separated maps across one-third of the sky </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Coulton%2C+W+R">William R. Coulton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alford%2C+T">Tommy Alford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia Stefano Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beringue%2C+B">Benjamin Beringue</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Biermann%2C+E">Emily Biermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolliet%2C+B">Boris Bolliet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cai%2C+H">Hongbo Cai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calafut%2C+V">Victoria Calafut</a> , et al. (129 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.01258v1-abstract-short" style="display: inline;"> Observations of the millimeter sky contain valuable information on a number of signals, including the blackbody cosmic microwave background (CMB), Galactic emissions, and the Compton-$y$ distortion due to the thermal Sunyaev-Zel&#39;dovich (tSZ) effect. Extracting new insight into cosmological and astrophysical questions often requires combining multi-wavelength observations to spectrally isolate one&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01258v1-abstract-full').style.display = 'inline'; document.getElementById('2307.01258v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.01258v1-abstract-full" style="display: none;"> Observations of the millimeter sky contain valuable information on a number of signals, including the blackbody cosmic microwave background (CMB), Galactic emissions, and the Compton-$y$ distortion due to the thermal Sunyaev-Zel&#39;dovich (tSZ) effect. Extracting new insight into cosmological and astrophysical questions often requires combining multi-wavelength observations to spectrally isolate one component. In this work, we present a new arcminute-resolution Compton-$y$ map, which traces out the line-of-sight-integrated electron pressure, as well as maps of the CMB in intensity and E-mode polarization, across a third of the sky (around 13,000 sq.~deg.). We produce these through a joint analysis of data from the Atacama Cosmology Telescope (ACT) Data Release 4 and 6 at frequencies of roughly 93, 148, and 225 GHz, together with data from the \textit{Planck} satellite at frequencies between 30 GHz and 545 GHz. We present detailed verification of an internal linear combination pipeline implemented in a needlet frame that allows us to efficiently suppress Galactic contamination and account for spatial variations in the ACT instrument noise. These maps provide a significant advance, in noise levels and resolution, over the existing \textit{Planck} component-separated maps and will enable a host of science goals including studies of cluster and galaxy astrophysics, inferences of the cosmic velocity field, primordial non-Gaussianity searches, and gravitational lensing reconstruction of the CMB. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01258v1-abstract-full').style.display = 'none'; document.getElementById('2307.01258v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The Compton-y map and associated products will be made publicly available upon publication of the paper. The CMB T and E mode maps will be made available when the DR6 maps are made public</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.05468">arXiv:2306.05468</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.05468">pdf</a>, <a href="https://arxiv.org/format/2306.05468">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Millimeter Observations of a Population of Asteroids or: ACTeroids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Venterea%2C+R">Ricco Venterea</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Biermann%2C+E">Emily Biermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hervias-Caimapo%2C+C">Carlos Hervias-Caimapo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Knowles%2C+K">Kenda Knowles</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yaqiong Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J+J">Jefferey J. McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+L+A">Lyman A. Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Partridge%2C+B">Bruce Partridge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salatino%2C+M">Maria Salatino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">Jonathan Sievers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sifon%2C+C">Cristobal Sifon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staggs%2C+S">Suzanne Staggs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Van+Engelen%2C+A">Alexander Van Engelen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vargas%2C+C">Cristian Vargas</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.05468v2-abstract-short" style="display: inline;"> We present fluxes and light curves for a population of asteroids at millimeter (mm) wavelengths, detected by the Atacama Cosmology Telescope (ACT) over 18, 000 deg2 of the sky using data from 2017 to 2021. We utilize high cadence maps, which can be used in searching for moving objects such as asteroids and trans-Neptunian Objects (TNOs), as well as for studying transients. We detect 160 asteroids&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05468v2-abstract-full').style.display = 'inline'; document.getElementById('2306.05468v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.05468v2-abstract-full" style="display: none;"> We present fluxes and light curves for a population of asteroids at millimeter (mm) wavelengths, detected by the Atacama Cosmology Telescope (ACT) over 18, 000 deg2 of the sky using data from 2017 to 2021. We utilize high cadence maps, which can be used in searching for moving objects such as asteroids and trans-Neptunian Objects (TNOs), as well as for studying transients. We detect 160 asteroids with a signal-to-noise of at least 5 in at least one of the ACT observing bands, which are centered near 90, 150, and 220 GHz. For each asteroid, we compare the ACT measured flux to predicted fluxes from the Near Earth Asteroid Thermal Model (NEATM) fit to WISE data. We confirm previous results that detected a deficit of flux at millimeter wavelengths. Moreover, we report a spectral characteristic to this deficit, such that the flux is relatively lower at 150 and 220 GHz than at 90 GHz. Additionally, we find that the deficit in flux is greater for S-type asteroids than for C-type. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05468v2-abstract-full').style.display = 'none'; document.getElementById('2306.05468v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 Figures, 4 Tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.05790">arXiv:2305.05790</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.05790">pdf</a>, <a href="https://arxiv.org/format/2305.05790">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acd3f0">10.3847/1538-4357/acd3f0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inferences from surface brightness fluctuations of Zwicky 3146 via the Sunyaev-Zeldovich effect and X-ray observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C+E">Charles E. Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaspari%2C+M">Massimo Gaspari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schellenberger%2C+G">Gerrit Schellenberger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Forman%2C+W">William Forman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Khatri%2C+R">Rishi Khatri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kraft%2C+R">Ralph Kraft</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B+S">Brian S. Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moravec%2C+E">Emily Moravec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nulsen%2C+P">Paul Nulsen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarmiento%2C+K+P">Karen Perez Sarmiento</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarazin%2C+C">Craig Sarazin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">Jonathan Sievers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Su%2C+Y">Yuanyuan Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.05790v1-abstract-short" style="display: inline;"> The galaxy cluster Zwicky 3146 is a sloshing cool core cluster at $z{=}0.291$ that in SZ imaging does not appear to exhibit significant pressure substructure in the intracluster medium (ICM). We perform a surface brightness fluctuation analysis via Fourier amplitude spectra on SZ (MUSTANG-2) and X-ray (XMM-Newton) images of this cluster. These surface brightness fluctuations can be deprojected to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05790v1-abstract-full').style.display = 'inline'; document.getElementById('2305.05790v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.05790v1-abstract-full" style="display: none;"> The galaxy cluster Zwicky 3146 is a sloshing cool core cluster at $z{=}0.291$ that in SZ imaging does not appear to exhibit significant pressure substructure in the intracluster medium (ICM). We perform a surface brightness fluctuation analysis via Fourier amplitude spectra on SZ (MUSTANG-2) and X-ray (XMM-Newton) images of this cluster. These surface brightness fluctuations can be deprojected to infer pressure and density fluctuations from the SZ and X-ray data, respectively. In the central region (Ring 1, $r &lt; 100^{\prime\prime} = 440$ kpc, in our analysis) we find fluctuation spectra that suggest injection scales around 200 kpc ($\sim 140$ kpc from pressure fluctuations and $\sim 250$ kpc from density fluctuations). When comparing the pressure and density fluctuations in the central region, we observe a change in the effective thermodynamic state from large to small scales, from isobaric (likely due to the slow sloshing) to adiabatic (due to more vigorous motions). By leveraging scalings from hydrodynamical simulations, we find an average 3D Mach number $\approx0.5$. We further compare our results to other studies of Zwicky 3146 and, more broadly, to other studies of fluctuations in other clusters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05790v1-abstract-full').style.display = 'none'; document.getElementById('2305.05790v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ApJ; 22 pages, 19 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05203">arXiv:2304.05203</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.05203">pdf</a>, <a href="https://arxiv.org/format/2304.05203">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acff5f">10.3847/1538-4357/acff5f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Qu%2C+F+J">Frank J. Qu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sherwin%2C+B+D">Blake D. Sherwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=MacCrann%2C+N">Niall MacCrann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yaqiong Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alford%2C+T">Tommy Alford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia Stefano Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beringue%2C+B">Benjamin Beringue</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Biermann%2C+E">Emily Biermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolliet%2C+B">Boris Bolliet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cai%2C+H">Hongbo Cai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a> , et al. (134 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05203v2-abstract-short" style="display: inline;"> We present cosmological constraints from a gravitational lensing mass map covering 9400 sq. deg. reconstructed from CMB measurements made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with BAO measurements (from SDSS and 6dF), we obtain the amplitude of matter fluctuations $蟽_8 = 0.819 \pm 0.015$ at 1.8% precision, $S_8\equiv蟽_8({惟_{\rm m}}/0.3)^{0.5}=0.840\pm0.028$ an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05203v2-abstract-full').style.display = 'inline'; document.getElementById('2304.05203v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05203v2-abstract-full" style="display: none;"> We present cosmological constraints from a gravitational lensing mass map covering 9400 sq. deg. reconstructed from CMB measurements made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with BAO measurements (from SDSS and 6dF), we obtain the amplitude of matter fluctuations $蟽_8 = 0.819 \pm 0.015$ at 1.8% precision, $S_8\equiv蟽_8({惟_{\rm m}}/0.3)^{0.5}=0.840\pm0.028$ and the Hubble constant $H_0= (68.3 \pm 1.1)\, \text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1}$ at 1.6% precision. A joint constraint with CMB lensing measured by the Planck satellite yields even more precise values: $蟽_8 = 0.812 \pm 0.013$, $S_8\equiv蟽_8({惟_{\rm m}}/0.3)^{0.5}=0.831\pm0.023$ and $H_0= (68.1 \pm 1.0)\, \text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1}$. These measurements agree well with $螞$CDM-model extrapolations from the CMB anisotropies measured by Planck. To compare these constraints to those from the KiDS, DES, and HSC galaxy surveys, we revisit those data sets with a uniform set of assumptions, and find $S_8$ from all three surveys are lower than that from ACT+Planck lensing by varying levels ranging from 1.7-2.1$蟽$. These results motivate further measurements and comparison, not just between the CMB anisotropies and galaxy lensing, but also between CMB lensing probing $z\sim 0.5-5$ on mostly-linear scales and galaxy lensing at $z\sim 0.5$ on smaller scales. We combine our CMB lensing measurements with CMB anisotropies to constrain extensions of $螞$CDM, limiting the sum of the neutrino masses to $\sum m_谓 &lt; 0.13$ eV (95% c.l.), for example. Our results provide independent confirmation that the universe is spatially flat, conforms with general relativity, and is described remarkably well by the $螞$CDM model, while paving a promising path for neutrino physics with gravitational lensing from upcoming ground-based CMB surveys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05203v2-abstract-full').style.display = 'none'; document.getElementById('2304.05203v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 17 figures, replaced with version accepted in ApJ (Feb 2024). Cosmological likelihood data and mass maps are public here: https://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html ; likelihood software is here: https://github.com/ACTCollaboration/act_dr6_lenslike . Also see companion papers Qu et al and MacCrann et al</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, Volume 962, 2024, Page 113 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05202">arXiv:2304.05202</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.05202">pdf</a>, <a href="https://arxiv.org/format/2304.05202">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acfe06">10.3847/1538-4357/acfe06 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and its Implications for Structure Growth </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Qu%2C+F+J">Frank J. Qu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sherwin%2C+B+D">Blake D. Sherwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+T">Kevin T. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alford%2C+T">Tommy Alford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia Stefano Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beringue%2C+B">Benjamin Beringue</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Biermann%2C+E">Emily Biermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolliet%2C+B">Boris Bolliet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cai%2C+H">Hongbo Cai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a> , et al. (133 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05202v2-abstract-short" style="display: inline;"> We present new measurements of cosmic microwave background (CMB) lensing over $9400$ sq. deg. of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB dataset, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at $2.3\%$ precision ($43蟽$ sign&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05202v2-abstract-full').style.display = 'inline'; document.getElementById('2304.05202v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05202v2-abstract-full" style="display: none;"> We present new measurements of cosmic microwave background (CMB) lensing over $9400$ sq. deg. of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB dataset, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at $2.3\%$ precision ($43蟽$ significance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. The baseline spectrum is well fit by a lensing amplitude of $A_{\mathrm{lens}}=1.013\pm0.023$ relative to the Planck 2018 CMB power spectra best-fit $螞$CDM model and $A_{\mathrm{lens}}=1.005\pm0.023$ relative to the $\text{ACT DR4} + \text{WMAP}$ best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combination $S^{\mathrm{CMBL}}_8 \equiv 蟽_8 \left({惟_m}/{0.3}\right)^{0.25}$ of $S^{\mathrm{CMBL}}_8= 0.818\pm0.022$ from ACT DR6 CMB lensing alone and $S^{\mathrm{CMBL}}_8= 0.813\pm0.018$ when combining ACT DR6 and Planck NPIPE CMB lensing power spectra. These results are in excellent agreement with $螞$CDM model constraints from Planck or $\text{ACT DR4} + \text{WMAP}$ CMB power spectrum measurements. Our lensing measurements from redshifts $z\sim0.5$--$5$ are thus fully consistent with $螞$CDM structure growth predictions based on CMB anisotropies probing primarily $z\sim1100$. We find no evidence for a suppression of the amplitude of cosmic structure at low redshifts <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05202v2-abstract-full').style.display = 'none'; document.getElementById('2304.05202v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45+22 pages, 50 figures. v2 matches with published version in ApJ. Cosmological likelihood data and lensing maps are here: https://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html ; likelihood software is here: https://github.com/ACTCollaboration/act_dr6_lenslike . Also see companion papers Madhavacheril et al and MacCrann et al</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-237-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.04767">arXiv:2303.04767</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.04767">pdf</a>, <a href="https://arxiv.org/format/2303.04767">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ace599">10.3847/1538-4357/ace599 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Systematic Transient Search of 3-Day Maps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yaqiong Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Biermann%2C+E">Emily Biermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+T">Kevin T. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duell%2C+C+J">Cody J. Duell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunner%2C+R">Rolando Dunner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hervias-Caimapo%2C+C">Carlos Hervias-Caimapo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huffenberger%2C+K+M">Kevin M. Huffenberger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kosowsky%2C+A">Arthur Kosowsky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Louis%2C+T">Thibaut Louis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mallaby-Kay%2C+M">Maya Mallaby-Kay</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.04767v1-abstract-short" style="display: inline;"> We conduct a systematic search for transients in three years of data (2017-2019) from the Atacama Cosmology Telescope (ACT). ACT covers 40 percent of the sky at three bands spanning from 77 GHz to 277 GHz. Analysis of 3-day mean-subtracted sky maps, which were match-filtered for point sources, yielded 29 transients detections. Eight of these transients are due to known asteroids, and three others&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04767v1-abstract-full').style.display = 'inline'; document.getElementById('2303.04767v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.04767v1-abstract-full" style="display: none;"> We conduct a systematic search for transients in three years of data (2017-2019) from the Atacama Cosmology Telescope (ACT). ACT covers 40 percent of the sky at three bands spanning from 77 GHz to 277 GHz. Analysis of 3-day mean-subtracted sky maps, which were match-filtered for point sources, yielded 29 transients detections. Eight of these transients are due to known asteroids, and three others were previously published. Four of these events occur in areas of with poor noise models and thus we cannot be confident they are real transients. We are left with 14 new transient events occurring at 11 unique locations. All of these events are associated with either rotationally variable stars or cool stars. Ten events have flat or falling spectra indicating radiation from synchrotron emission. One event has a rising spectrum indicating a different engine for the flare. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04767v1-abstract-full').style.display = 'none'; document.getElementById('2303.04767v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.07651">arXiv:2301.07651</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.07651">pdf</a>, <a href="https://arxiv.org/format/2301.07651">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stae583">10.1093/mnras/stae583 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Flux Upper Limits from a Targeted Search for Extragalactic Transients </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Herv%C3%ADas-Caimapo%2C+C">Carlos Herv铆as-Caimapo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huffenberger%2C+A+Y+Q+H+K+M">Anna Y. Q. Ho Kevin M. Huffenberger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ma%2C+X">Xiaoyi Ma</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+L+A">Lyman A. Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Partridge%2C+B">Bruce Partridge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Puddu%2C+R">Roberto Puddu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salatino%2C+M">Maria Salatino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sif%C3%B3n%2C+C">Crist贸bal Sif贸n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staggs%2C+S+T">Suzanne T. Staggs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vargas%2C+C">Cristian Vargas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vavagiakis%2C+E+M">Eve M. Vavagiakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.07651v2-abstract-short" style="display: inline;"> We have performed targeted searches of known extragalactic transient events at millimetre wavelengths using nine seasons (2013--2021) of 98, 150, and 229\,GHz Atacama Cosmology Telescope (ACT) observations that mapped ${\sim}40$ per cent of the sky for most of the data volume. Our data cover 88 gamma-ray bursts (GRBs), 12 tidal disruption events (TDEs) and 203 other transients, including supernova&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07651v2-abstract-full').style.display = 'inline'; document.getElementById('2301.07651v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.07651v2-abstract-full" style="display: none;"> We have performed targeted searches of known extragalactic transient events at millimetre wavelengths using nine seasons (2013--2021) of 98, 150, and 229\,GHz Atacama Cosmology Telescope (ACT) observations that mapped ${\sim}40$ per cent of the sky for most of the data volume. Our data cover 88 gamma-ray bursts (GRBs), 12 tidal disruption events (TDEs) and 203 other transients, including supernovae (SNe). We stack our ACT observations to increase the signal-to-noise ratio of the maps. In all cases but one, we do not detect these transients in the ACT data. The single candidate detection (event AT2019ppm), seen at ${\sim}5蟽$ significance in our data, appears to be due to active galactic nuclei (AGN) activity in the host galaxy coincident with a transient alert. For each source in our search we provide flux upper limits. For example, the medians for the 95 per cent confidence upper limits at 98\,GHz are $15$, $18$, and $16$\,mJy for GRBs, SNe, and TDEs respectively, in the first month after discovery. The projected sensitivity of future wide-area cosmic microwave background (CMB) surveys should be sufficient to detect many of these events using the methods described in this paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07651v2-abstract-full').style.display = 'none'; document.getElementById('2301.07651v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures, 8 tables. The full tables of flux upper limits for individual transients are available at https://lambda.gsfc.nasa.gov/product/act/actadv_targeted_transient_constraints_2023_info.html. Accepted for publication by MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05468">arXiv:2208.05468</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.05468">pdf</a>, <a href="https://arxiv.org/format/2208.05468">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> CCAT-prime: Design of the Mod-Cam receiver and 280 GHz MKID instrument module </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Vavagiakis%2C+E+M">Eve M. Vavagiakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duell%2C+C+J">Cody J. Duell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J">Jason Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J">James Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chapman%2C+S+C">Scott C. Chapman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Freundt%2C+R+G">Rodrigo G. Freundt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gao%2C+J">Jiansong Gao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groppi%2C+C">Christopher Groppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Herter%2C+T+L">Terry L. Herter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huber%2C+Z+B">Zachary B. Huber</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Keller%2C+B">Ben Keller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A+M">Anna M. Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yaqiong Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mauskopf%2C+P">Philip Mauskopf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moore%2C+J">Jenna Moore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Murphy%2C+C+C">Colin C. Murphy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05468v1-abstract-short" style="display: inline;"> Mod-Cam is a first light and commissioning instrument for the CCAT-prime project&#39;s six-meter aperture Fred Young Submillimeter Telescope (FYST), currently under construction at 5600 m on Cerro Chajnantor in Chile&#39;s Atacama Desert. Prime-Cam, a first-generation science instrument for FYST, will deliver over ten times greater mapping speed than current and near-term facilities for unprecedented 280-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05468v1-abstract-full').style.display = 'inline'; document.getElementById('2208.05468v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05468v1-abstract-full" style="display: none;"> Mod-Cam is a first light and commissioning instrument for the CCAT-prime project&#39;s six-meter aperture Fred Young Submillimeter Telescope (FYST), currently under construction at 5600 m on Cerro Chajnantor in Chile&#39;s Atacama Desert. Prime-Cam, a first-generation science instrument for FYST, will deliver over ten times greater mapping speed than current and near-term facilities for unprecedented 280-850 GHz broadband and spectroscopic measurements with microwave kinetic inductance detectors (MKIDs). CCAT-prime will address a suite of science goals, from Big Bang cosmology to star formation and galaxy evolution over cosmic time. Mod-Cam deployment on FYST with a 280 GHz instrument module containing MKID arrays is planned for early science observations in 2024. Mod-Cam will be used to test instrument modules for Prime-Cam, which can house up to seven instrument modules. We discuss the design and status of the 0.9 m diameter, 1.8 m long Mod-Cam receiver and 40 cm diameter 280 GHz instrument module, with cold stages at 40 K, 4 K, 1 K, and 100 mK. We also describe the instrument module&#39;s cryogenic readout designs to enable the readout of more than 10,000 MKIDs across 18 networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05468v1-abstract-full').style.display = 'none'; document.getElementById('2208.05468v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Presented at SPIE Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.14212">arXiv:2207.14212</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.14212">pdf</a>, <a href="https://arxiv.org/format/2207.14212">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: Development and Validation of the Large Aperture Telescope Receiver </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhimani%2C+S">Sanah Bhimani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haridas%2C+S+K">Saianeesh K. Haridas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+B">Bradley Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A+M">Anna M. Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lashner%2C+J">Jack Lashner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moore%2C+J">Jenna Moore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nguyen%2C+D+V">David V. Nguyen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarmiento%2C+K+P">Karen Perez Sarmiento</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Robe%2C+J">Julia Robe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Silva-Feaver%2C+M">Maximiliano Silva-Feaver</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thornton%2C+R+J">Robert J. Thornton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+Y">Yuhan Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.14212v1-abstract-short" style="display: inline;"> The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) survey experiment that consists of three 0.5 m small-aperture telescopes (SATs) and one 6 m large-aperture telescope (LAT), sited at an elevation of 5200 m in the Atacama Desert in Chile. In order to meet the sensitivity requirements set for next-generation CMB telescopes, the LAT will deploy 30,000 transition edge sen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14212v1-abstract-full').style.display = 'inline'; document.getElementById('2207.14212v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.14212v1-abstract-full" style="display: none;"> The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) survey experiment that consists of three 0.5 m small-aperture telescopes (SATs) and one 6 m large-aperture telescope (LAT), sited at an elevation of 5200 m in the Atacama Desert in Chile. In order to meet the sensitivity requirements set for next-generation CMB telescopes, the LAT will deploy 30,000 transition edge sensor (TES) detectors at 100 mK across 7 optics tubes (OT), all within the Large Aperture Telescope Receiver (LATR). Additionally, the LATR has the capability to expand to 62,000 TES across 13 OTs. The LAT will be capable of making arcminute-resolution observations of the CMB, with detector bands centered at 30, 40, 90, 150, 230, and 280 GHz. We have rigorously tested the LATR systems prior to deployment in order to fully characterize the instrument and show that it can achieve the desired sensitivity levels. We show that the LATR meets cryogenic and mechanical requirements, and maintains acceptably low baseline readout noise. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14212v1-abstract-full').style.display = 'none'; document.getElementById('2207.14212v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.13737">arXiv:2207.13737</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.13737">pdf</a>, <a href="https://arxiv.org/format/2207.13737">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Development and performance of Universal Readout Harnesses for the Simons Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Moore%2C+J+E">Jenna E. Moore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=DiGia%2C+B">Brooke DiGia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duell%2C+C">Cody Duell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mathewson%2C+J">Justin Mathewson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Silva-Feaver%2C+M">Max Silva-Feaver</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+Y">Yuhan Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wheeler%2C+C">Caleb Wheeler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mauskopf%2C+P">Philip Mauskopf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.13737v1-abstract-short" style="display: inline;"> The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) survey experiment that consists of three 0.5 m small-aperture telescopes and one 6 m large-aperture telescope, sited at an elevation of 5200 m in the Atacama Desert in Chile. SO will utilize more than 60,000 transition edge sensors (TES) to observe CMB temperature and polarization in six frequency bands from 27-280 GHz&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.13737v1-abstract-full').style.display = 'inline'; document.getElementById('2207.13737v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.13737v1-abstract-full" style="display: none;"> The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) survey experiment that consists of three 0.5 m small-aperture telescopes and one 6 m large-aperture telescope, sited at an elevation of 5200 m in the Atacama Desert in Chile. SO will utilize more than 60,000 transition edge sensors (TES) to observe CMB temperature and polarization in six frequency bands from 27-280 GHz. Common to both the small and large aperture telescope receivers (LATR) is the 300K-4K Universal Readout Harness (URH), which supports up to 600 DC bias lines and 24 radio frequency (RF) channels consisting of input and output coaxial cables, input attenuators and custom high dynamic range 40K low-noise amplifiers (LNAs) on the output readout coaxial cable. Each RF channel can read out up to 1000 TES detectors. In this paper, we will present the design and characterization of the six URHs constructed for the initial phase of SO deployment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.13737v1-abstract-full').style.display = 'none'; document.getElementById('2207.13737v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 16 figures. Submitted to Proc. SPIE 12190, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07100">arXiv:2207.07100</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.07100">pdf</a>, <a href="https://arxiv.org/format/2207.07100">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202244547">10.1051/0004-6361/202244547 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GBT/MUSTANG-2 9&#34; resolution imaging of the SZ effect in MS0735.6+7421: Confirmation of the SZ Cavities through direct imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haridas%2C+S+K">Saianeesh K. Haridas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarmiento%2C+K+P">Karen Perez Sarmiento</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C+E">Charles E. Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Churazov%2C+E">Eugene Churazov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clarke%2C+T+E">Tracy E Clarke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaspari%2C+M">Massimo Gaspari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lowe%2C+I">Ian Lowe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B">Brian Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarazin%2C+C+L">Craig L Sarazin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">Jonathon Sievers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sunyaev%2C+R">Rashid Sunyaev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07100v4-abstract-short" style="display: inline;"> Mechanical feedback from active galactic nuclei (AGN) is thought to be the dominant feedback mechanism quenching cooling flows and star formation in galaxy cluster cores. However, the mechanisms by which AGN couple to the intracluster medium (ICM) are not well understood. The nature of pressure supporting the cavities is not known. Using the MUSTANG-2 instrument on the Green Bank Telescope (GBT),&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07100v4-abstract-full').style.display = 'inline'; document.getElementById('2207.07100v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07100v4-abstract-full" style="display: none;"> Mechanical feedback from active galactic nuclei (AGN) is thought to be the dominant feedback mechanism quenching cooling flows and star formation in galaxy cluster cores. However, the mechanisms by which AGN couple to the intracluster medium (ICM) are not well understood. The nature of pressure supporting the cavities is not known. Using the MUSTANG-2 instrument on the Green Bank Telescope (GBT), we aimed to measure thermal Sunyaev-Zeldovich (SZ) effect signals associated with the X-ray cavities in MS0735.6+7421, a moderate mass cluster hosting one of the most energetic AGN outbursts known. We use these measurements to infer the level of non-thermal sources of pressure, such as magnetic fields and turbulence, as well as relativistic and cosmic ray components, supporting the cavities. We used preconditioned gradient descent to fit a model for the cluster, cavities, and central point source directly to the time ordered data of the MUSTANG-2 signal. We use this model to probe the thermodynamic state of the cavities. We have shown that the SZ signal associated with the cavities is suppressed compared to the expectations for a thermal plasma with the temperature $\sim$few tens keV. The smallest value of the suppression factor $f$ that is consistent with the data is $\sim$0.4, lower than inferred in earlier work. Larger values of $f$ are possible once the contribution of the cocoon shock surrounding the bubbles is taken into account. The baseline model with this particular geometrical setup yields best-fitting value f~0.5, which at face value implies a mix of thermal and non-thermal pressure support. Larger values of $f$ (up to 1, i.e. no tSZ signal from the bubbles) are still possible when allowing for variations in the line-of-sight geometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07100v4-abstract-full').style.display = 'none'; document.getElementById('2207.07100v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 667, L6 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07040">arXiv:2207.07040</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.07040">pdf</a>, <a href="https://arxiv.org/format/2207.07040">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/AO.470138">10.1364/AO.470138 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: Characterizing the Large Aperture Telescope Receiver with Radio Holography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chesmore%2C+G+E">Grace E. Chesmore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sierra%2C+C+E">Carlos E. Sierra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sutariya%2C+S">Shreya Sutariya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alford%2C+T">Tommy Alford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adler%2C+A+E">Alexandre E. Adler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dachlythra%2C+N">Nadia Dachlythra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Golec%2C+J">Joseph Golec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J">Jon Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haridas%2C+S+K">Saianeesh K. Haridas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+B+R">Bradley R. Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A+M">Anna M. Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarmiento%2C+K+P">Karen Perez Sarmiento</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Puddu%2C+R">Roberto Puddu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Silva-Feaver%2C+M">Max Silva-Feaver</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Simon%2C+S+M">Sara M. Simon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Robe%2C+J">Julia Robe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07040v2-abstract-short" style="display: inline;"> We present near-field radio holography measurements of the Simons Observatory Large Aperture Telescope Receiver optics. These measurements demonstrate that radio holography of complex millimeter-wave optical systems comprising cryogenic lenses, filters, and feed horns can provide detailed characterization of wave propagation before deployment. We used the measured amplitude and phase, at 4K, of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07040v2-abstract-full').style.display = 'inline'; document.getElementById('2207.07040v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07040v2-abstract-full" style="display: none;"> We present near-field radio holography measurements of the Simons Observatory Large Aperture Telescope Receiver optics. These measurements demonstrate that radio holography of complex millimeter-wave optical systems comprising cryogenic lenses, filters, and feed horns can provide detailed characterization of wave propagation before deployment. We used the measured amplitude and phase, at 4K, of the receiver near-field beam pattern to predict two key performance parameters: 1) the amount of scattered light that will spill past the telescope to 300K and 2) the beam pattern expected from the receiver when fielded on the telescope. These cryogenic measurements informed the removal of a filter, which led to improved optical efficiency and reduced side-lobes at the exit of the receiver. Holography measurements of this system suggest that the spilled power past the telescope mirrors will be less than 1\% and the main beam with its near side-lobes are consistent with the nominal telescope design. This is the first time such parameters have been confirmed in the lab prior to deployment of a new receiver. This approach is broadly applicable to millimeter and sub-millimeter instruments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07040v2-abstract-full').style.display = 'none'; document.getElementById('2207.07040v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Vol. 61, Issue 34, pp. 10309-10319 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.06094">arXiv:2201.06094</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.06094">pdf</a>, <a href="https://arxiv.org/format/2201.06094">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0093857">10.1063/5.0093857 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: Design and Measured Performance of a Carbon Fiber Strut for a Cryogenic Truss </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+D">Kevin D. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dow%2C+P">Peter Dow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shroyer%2C+J+E">Jordan E. Shroyer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groh%2C+J+C">John C. Groh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dober%2C+B">Bradley Dober</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Spisak%2C+J">Jacob Spisak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+B+R">Bradley R. Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+D">Delwin Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A+M">Anna M. Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kusaka%2C+A">Akito Kusaka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+A">Adrian Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Limon%2C+M">Michele Limon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nati%2C+F">Federico Nati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+L">Lyman Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Randall%2C+M">Michael Randall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Teply%2C+G">Grant Teply</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tsan%2C+T">Tran Tsan</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.06094v2-abstract-short" style="display: inline;"> We present the design and measured performance of a new carbon fiber strut design that is used in a cryogenically cooled truss for the Simons Observatory Small Aperture Telescope (SAT). The truss consists of two aluminum 6061 rings separated by 24 struts. Each strut consists of a central carbon fiber tube fitted with two aluminum end caps. We tested the performance of the strut and truss by (i) cr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06094v2-abstract-full').style.display = 'inline'; document.getElementById('2201.06094v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.06094v2-abstract-full" style="display: none;"> We present the design and measured performance of a new carbon fiber strut design that is used in a cryogenically cooled truss for the Simons Observatory Small Aperture Telescope (SAT). The truss consists of two aluminum 6061 rings separated by 24 struts. Each strut consists of a central carbon fiber tube fitted with two aluminum end caps. We tested the performance of the strut and truss by (i) cryogenically cycling and destructively pull-testing strut samples, (ii) non-destructively pull-testing the final truss, and (iii) measuring the thermal conductivity of the carbon fiber tubes. We found that the strut strength is limited by the mounting fasteners and the strut end caps, not the epoxy adhesive or the carbon fiber tube. This result is consistent with our numerical predictions. Our thermal measurements suggest that the conductive heat load through the struts (from 4 K to 1 K) will be less than 1 mW. This strut design may be a promising candidate for use in other cryogenic support structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06094v2-abstract-full').style.display = 'none'; document.getElementById('2201.06094v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Review of Scientific Instruments 93, 055106 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.06725">arXiv:2107.06725</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.06725">pdf</a>, <a href="https://arxiv.org/format/2107.06725">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab2679">10.1093/mnras/stab2679 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observations of compact sources in galaxy clusters using MUSTANG2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G">Gene Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huffenberger%2C+K">Kevin Huffenberger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B+S">Brian S. Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mates%2C+J+A+B">J. A. B. Mates</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Partridge%2C+B">Bruce Partridge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Radiconi%2C+F">Federico Radiconi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C">Charles Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarazin%2C+C+L">Craig L. Sarazin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sehgal%2C+N">Neelima Sehgal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">Jonathan Sievers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sif%C3%B3n%2C+C">Crist贸bal Sif贸n</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.06725v2-abstract-short" style="display: inline;"> Compact sources can cause scatter in the scaling relationships between the amplitude of the thermal Sunyaev-Zel&#39;dovich Effect (tSZE) in galaxy clusters and cluster mass. Estimates of the importance of this scatter vary - largely due to limited data on sources in clusters at the frequencies at which tSZE cluster surveys operate. In this paper we present 90 GHz compact source measurements from a sam&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.06725v2-abstract-full').style.display = 'inline'; document.getElementById('2107.06725v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.06725v2-abstract-full" style="display: none;"> Compact sources can cause scatter in the scaling relationships between the amplitude of the thermal Sunyaev-Zel&#39;dovich Effect (tSZE) in galaxy clusters and cluster mass. Estimates of the importance of this scatter vary - largely due to limited data on sources in clusters at the frequencies at which tSZE cluster surveys operate. In this paper we present 90 GHz compact source measurements from a sample of 30 clusters observed using the MUSTANG2 instrument on the Green Bank Telescope. We present simulations of how a source&#39;s flux density, spectral index, and angular separation from the cluster&#39;s center affect the measured tSZE in clusters detected by the Atacama Cosmology Telescope (ACT). By comparing the MUSTANG2 measurements with these simulations we calibrate an empirical relationship between 1.4 GHz flux densities from radio surveys and source contamination in ACT tSZE measurements. We find 3 per cent of the ACT clusters have more than a 20 per cent decrease in Compton-y but another 3 per cent have a 10 per cent increase in the Compton-y due to the matched filters used to find clusters. As sources affect the measured tSZE signal and hence the likelihood that a cluster will be detected, testing the level of source contamination in the tSZE signal using a tSZE selected catalog is inherently biased. We confirm this by comparing the ACT tSZE catalog with optically and X-ray selected cluster catalogs. There is a strong case for a large, high resolution survey of clusters to better characterize their source population. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.06725v2-abstract-full').style.display = 'none'; document.getElementById('2107.06725v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 Pages, 10 figures, 2 tables, with 4 pages of online only figures at end. Published on-line in MNRAS on 22/9/2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.14797">arXiv:2106.14797</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.14797">pdf</a>, <a href="https://arxiv.org/format/2106.14797">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac2232">10.3847/1538-4357/ac2232 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory microwave SQUID multiplexing detector module design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=McCarrick%2C+H">Heather McCarrick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Healy%2C+E">Erin Healy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arnold%2C+K">Kam Arnold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">Jim A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruno%2C+S+M">Sarah Marie Bruno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Connors%2C+J">Jake Connors</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+D">Kevin D. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dober%2C+B">Bradley Dober</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duell%2C+C+J">Cody J. Duell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dutcher%2C+D">Daniel Dutcher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frisch%2C+J+C">Josef C. Frisch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gralla%2C+M+B">Megan B. Gralla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henderson%2C+S+W">Shawn W. Henderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G+C">Gene C. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a> , et al. (34 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.14797v2-abstract-short" style="display: inline;"> Advances in cosmic microwave background (CMB) science depend on increasing the number of sensitive detectors observing the sky. New instruments deploy large arrays of superconducting transition-edge sensor (TES) bolometers tiled densely into ever larger focal planes. High multiplexing factors reduce the thermal loading on the cryogenic receivers and simplify their design. We present the design of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14797v2-abstract-full').style.display = 'inline'; document.getElementById('2106.14797v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.14797v2-abstract-full" style="display: none;"> Advances in cosmic microwave background (CMB) science depend on increasing the number of sensitive detectors observing the sky. New instruments deploy large arrays of superconducting transition-edge sensor (TES) bolometers tiled densely into ever larger focal planes. High multiplexing factors reduce the thermal loading on the cryogenic receivers and simplify their design. We present the design of focal-plane modules with an order of magnitude higher multiplexing factor than has previously been achieved with TES bolometers. We focus on the novel cold readout component, which employs microwave SQUID multiplexing ($渭$mux). Simons Observatory will use 49 modules containing 60,000 bolometers to make exquisitely sensitive measurements of the CMB. We validate the focal-plane module design, presenting measurements of the readout component with and without a prototype detector array of 1728 polarization-sensitive bolometers coupled to feedhorns. The readout component achieves a $95\%$ yield and a 910 multiplexing factor. The median white noise of each readout channel is 65 $\mathrm{pA/\sqrt{Hz}}$. This impacts the projected SO mapping speed by $&lt; 8\%$, which is less than is assumed in the sensitivity projections. The results validate the full functionality of the module. We discuss the measured performance in the context of SO science requirements, which are exceeded. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14797v2-abstract-full').style.display = 'none'; document.getElementById('2106.14797v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to The Astrophysical Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2021 ApJ 922 38 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.12467">arXiv:2106.12467</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.12467">pdf</a>, <a href="https://arxiv.org/format/2106.12467">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac26b6">10.3847/1538-4357/ac26b6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraining CMB temperature evolution with Sunyaev-Zel&#39;dovich galaxy clusters from the Atacama Cosmology Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gluscevic%2C+V">Vera Gluscevic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hlozek%2C+R">Renee Hlozek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moodley%2C+K">Kavilan Moodley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nati%2C+F">Federico Nati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+L">Lyman Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Partridge%2C+B">Bruce Partridge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salatino%2C+M">Maria Salatino</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.12467v2-abstract-short" style="display: inline;"> The Sunyaev-Zel&#39;dovich (SZ) effect introduces a specific distortion of the blackbody spectrum of the cosmic microwave background (CMB) radiation when it scatters off hot gas in clusters of galaxies. The frequency dependence of the distortion is only independent of the cluster redshift when the evolution of the CMB radiation is adiabatic. Using 370 clusters within the redshift range&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12467v2-abstract-full').style.display = 'inline'; document.getElementById('2106.12467v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.12467v2-abstract-full" style="display: none;"> The Sunyaev-Zel&#39;dovich (SZ) effect introduces a specific distortion of the blackbody spectrum of the cosmic microwave background (CMB) radiation when it scatters off hot gas in clusters of galaxies. The frequency dependence of the distortion is only independent of the cluster redshift when the evolution of the CMB radiation is adiabatic. Using 370 clusters within the redshift range $0.07\lesssim z\lesssim1.4$ from the largest SZ-selected cluster sample to date from the Atacama Cosmology Telescope, we provide new constraints on the deviation of CMB temperature evolution from the standard model $伪=0.017^{+0.029}_{-0.032}$, where $T(z)=T_0(1+z)^{1-伪}$. This result is consistent with no deviation from the standard adiabatic model. Combining it with previous, independent datasets we obtain a joint constraint of $伪=-0.001\pm0.012$. Attributing deviation from adiabaticity to the decay of dark energy, this result constrains its effective equation of state $w_\mathrm{eff}=-0.998^{+0.008}_{-0.010}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12467v2-abstract-full').style.display = 'none'; document.getElementById('2106.12467v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.13432">arXiv:2105.13432</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.13432">pdf</a>, <a href="https://arxiv.org/format/2105.13432">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac5d4f">10.3847/1538-4357/ac5d4f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A study of 90 GHz dust emissivity on molecular cloud and filament scales </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lowe%2C+I">Ian Lowe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B">Brian Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clark%2C+S+E">S. E. Clark</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Friesen%2C+R">Rachel Friesen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hacar%2C+A">Alvaro Hacar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hensley%2C+B">Brandon Hensley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C">Charles Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sadavoy%2C+S">Sarah Sadavoy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salatino%2C+M">Maria Salatino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarazin%2C+C">Craig Sarazin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schillaci%2C+A">Alessandro Schillaci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">Jonathan Sievers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanke%2C+T">Thomas Stanke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stutz%2C+A">Amelia Stutz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.13432v2-abstract-short" style="display: inline;"> Recent observations from the MUSTANG2 instrument on the Green Bank Telescope have revealed evidence of enhanced long-wavelength emission in the dust spectral energy distribution (SED) in the Orion Molecular Cloud (OMC) 2/3 filament on 25&#34; (0.1 pc) scales. Here we present a measurement of the SED on larger spatial scales (map size 0.5-3 degrees or 3-20 pc), at somewhat lower resolution (120&#34;, corre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13432v2-abstract-full').style.display = 'inline'; document.getElementById('2105.13432v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.13432v2-abstract-full" style="display: none;"> Recent observations from the MUSTANG2 instrument on the Green Bank Telescope have revealed evidence of enhanced long-wavelength emission in the dust spectral energy distribution (SED) in the Orion Molecular Cloud (OMC) 2/3 filament on 25&#34; (0.1 pc) scales. Here we present a measurement of the SED on larger spatial scales (map size 0.5-3 degrees or 3-20 pc), at somewhat lower resolution (120&#34;, corresponding to 0.25 pc at 400 pc) using data from the Herschel satellite and Atacama Cosmology Telescope (ACT). We then extend the 120&#34;-scale investigation to other regions covered in the Herschel Gould Belt Survey (HGBS) specifically: the dense filaments in the southerly regions of Orion A; Orion B; and Serpens-S. Our dataset in aggregate covers approximately 10 square degrees, with continuum photometry spanning from 160um to 3mm. These OMC 2/3 data display excess emission at 3mm, though less (10.9% excess) than what is seen at higher resolution. Strikingly, we find that the enhancement is present even more strongly in the other filaments we targeted, with an average excess of 42.4% and 30/46 slices showing an inconsistency with the modified blackbody to at least 4蟽. Applying this analysis to the other targeted regions, we lay the groundwork for future high-resolution analyses. Additionally, we also consider a two-component dust model motivated by Planck results and an amorphous grain dust model. While both of these have been proposed to explain deviations in emission from a generic modified blackbody (MBB), we find that they have significant drawbacks, requiring many spectral points or lacking experimental data coverage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13432v2-abstract-full').style.display = 'none'; document.getElementById('2105.13432v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal 929 (2022) 102 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.00068">arXiv:2105.00068</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.00068">pdf</a>, <a href="https://arxiv.org/format/2105.00068">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202141200">10.1051/0004-6361/202141200 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atacama Cosmology Telescope measurements of a large sample of candidates from the Massive and Distant Clusters of WISE Survey: Sunyaev-Zeldovich effect confirmation of MaDCoWS candidates using ACT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manduca%2C+A">Alex Manduca</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nick Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brodwin%2C+M">Mark Brodwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gonzalez%2C+A+H">Anthony H. Gonzalez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huffenberger%2C+K">Kevin Huffenberger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=MacInnis%2C+A">Amanda MacInnis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Knowles%2C+K">Kenda Knowles</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koopman%2C+B+J">Brian J. Koopman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lowe%2C+I">Ian Lowe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moodley%2C+K">Kavilan Moodley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nati%2C+F">Federico Nati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+L+A">Lyman A. Page</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.00068v2-abstract-short" style="display: inline;"> Galaxy clusters are an important tool for cosmology, and their detection and characterization are key goals for current and future surveys. Using data from the Wide-field Infrared Survey Explorer (WISE), the Massive and Distant Clusters of WISE Survey (MaDCoWS) located 2,839 significant galaxy overdensities at redshifts $0.7\lesssim z\lesssim 1.5$, which included extensive follow-up imaging from t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.00068v2-abstract-full').style.display = 'inline'; document.getElementById('2105.00068v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.00068v2-abstract-full" style="display: none;"> Galaxy clusters are an important tool for cosmology, and their detection and characterization are key goals for current and future surveys. Using data from the Wide-field Infrared Survey Explorer (WISE), the Massive and Distant Clusters of WISE Survey (MaDCoWS) located 2,839 significant galaxy overdensities at redshifts $0.7\lesssim z\lesssim 1.5$, which included extensive follow-up imaging from the Spitzer Space Telescope to determine cluster richnesses. Concurrently, the Atacama Cosmology Telescope (ACT) has produced large area mm-wave maps in three frequency bands along with a large catalog of Sunyaev-Zeldovich (SZ) selected clusters, as part of its Data Release 5 (DR5). Using the maps and cluster catalog from DR5, we explore the scaling between SZ mass and cluster richness. We use complementary radio survey data from the Very Large Array, submillimeter data from Herschel, and ACT 224~GHz data to assess the impact of contaminating sources on the SZ signals. We then use a hierarchical Bayesian model to fit the mass-richness scaling relation. We find that MaDCoWS clusters have submillimeter contamination which is consistent with a gray-body spectrum, while the ACT clusters are consistent with no submillimeter emission on average. We find the best fit ACT SZ mass vs. MaDCoWS richness scaling relation has a slope of $魏= 1.84^{+0.15}_{-0.14}$, where the slope is defined as $M\propto 位_{15}^魏$ where $位_{15}$ is the richness. Additionally, we find that the approximate level of in-fill of the ACT and MaDCoWS cluster SZ signals to be at the percent level <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.00068v2-abstract-full').style.display = 'none'; document.getElementById('2105.00068v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 17 Figures; accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 653, A135 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.10264">arXiv:2104.10264</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.10264">pdf</a>, <a href="https://arxiv.org/format/2104.10264">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac2307">10.3847/1538-4357/ac2307 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: A search for Planet 9 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nick Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+R+J">Richard J. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koopman%2C+B+J">Brian J. Koopman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Van+Engelen%2C+A">Alexander Van Engelen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fanfani%2C+V">Valentina Fanfani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">Matthew Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huffenberger%2C+K">Kevin Huffenberger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kosowsky%2C+A+B">Arthur B. Kosowsky</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.10264v2-abstract-short" style="display: inline;"> We use Atacama Cosmology Telescope (ACT) observations at 98 GHz (2015--2019), 150 GHz (2013--2019) and 229 GHz (2017--2019) to perform a blind shift-and-stack search for Planet 9. The search explores distances from 300 AU to 2000 AU and velocities up to 6.3 arcmin per year, depending on the distance. For a 5 Earth-mass Planet 9 the detection limit varies from 325 AU to 625 AU, depending on the sky&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10264v2-abstract-full').style.display = 'inline'; document.getElementById('2104.10264v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.10264v2-abstract-full" style="display: none;"> We use Atacama Cosmology Telescope (ACT) observations at 98 GHz (2015--2019), 150 GHz (2013--2019) and 229 GHz (2017--2019) to perform a blind shift-and-stack search for Planet 9. The search explores distances from 300 AU to 2000 AU and velocities up to 6.3 arcmin per year, depending on the distance. For a 5 Earth-mass Planet 9 the detection limit varies from 325 AU to 625 AU, depending on the sky location. For a 10 Earth-mass planet the corresponding range is 425 AU to 775 AU. The search covers the whole 18,000 square degrees of the ACT survey, though a slightly deeper search is performed for the parts of the sky consistent with Planet 9&#39;s expected orbital inclination. No significant detections are found, which is used to place limits on the mm-wave flux density of Planet 9 over much of its orbit. Overall we eliminate roughly 17% and 9% of the parameter space for a 5 and 10 Earth-mass Planet 9 respectively. We also provide a list of the 10 strongest candidates from the search for possible follow-up. More generally, we exclude (at 95% confidence) the presence of an unknown Solar system object within our survey area brighter than 4--12 mJy (depending on position) at 150 GHz with current distance $300 \text{ AU} &lt; r &lt; 600 \text{ AU}$ and heliocentric angular velocity $1.5&#39;/\text{yr} &lt; v \cdot \frac{500 \text{ AU}}{r} &lt; 2.3&#39;\text{yr}$, corresponding to low-to-moderate eccentricities. These limits worsen gradually beyond 600 AU, reaching 5--15 mJy by 1500 AU. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10264v2-abstract-full').style.display = 'none'; document.getElementById('2104.10264v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 10 figures, 5 tables, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.09511">arXiv:2104.09511</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.09511">pdf</a>, <a href="https://arxiv.org/format/2104.09511">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2515-5172/abf9ab">10.3847/2515-5172/abf9ab <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: the Large Aperture Telescope (LAT) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adachi%2C+S">Shunsuke Adachi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P">Peter Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">J. A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chesmore%2C+G+E">Grace E. Chesmore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chinone%2C+Y">Yuji Chinone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Connors%2C+J+A">Jake A. Connors</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+D">Kevin D. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dober%2C+B">Bradley Dober</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Golec%2C+J+E">Joseph E. Golec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haridas%2C+S+K">Saianeesh K. Haridas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hervias-Caimapo%2C+C">Carlos Hervias-Caimapo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a> , et al. (35 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.09511v2-abstract-short" style="display: inline;"> The Simons Observatory (SO) is a Cosmic Microwave Background (CMB) experiment to observe the microwave sky in six frequency bands from 30GHz to 290GHz. The Observatory -- at $\sim$5200m altitude -- comprises three Small Aperture Telescopes (SATs) and one Large Aperture Telescope (LAT) at the Atacama Desert, Chile. This research note describes the design and current status of the LAT along with its&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09511v2-abstract-full').style.display = 'inline'; document.getElementById('2104.09511v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.09511v2-abstract-full" style="display: none;"> The Simons Observatory (SO) is a Cosmic Microwave Background (CMB) experiment to observe the microwave sky in six frequency bands from 30GHz to 290GHz. The Observatory -- at $\sim$5200m altitude -- comprises three Small Aperture Telescopes (SATs) and one Large Aperture Telescope (LAT) at the Atacama Desert, Chile. This research note describes the design and current status of the LAT along with its future timeline. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09511v2-abstract-full').style.display = 'none'; document.getElementById('2104.09511v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 1 figure</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Research Notes AAS, 5, 100 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.02747">arXiv:2103.02747</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.02747">pdf</a>, <a href="https://arxiv.org/format/2103.02747">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ac0db7">10.3847/1538-4365/ac0db7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory Large Aperture Telescope Receiver </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+N">Ningfeng Zhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A+M">Anna M. Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J+L">John L. Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adachi%2C+S">Shunsuke Adachi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P">Peter Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J">Jason Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bazarko%2C+A+O">Andrew O. Bazarko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhimani%2C+S">Sanah Bhimani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chesmore%2C+G+E">Grace E. Chesmore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Connors%2C+J">Jake Connors</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dober%2C+B">Bradley Dober</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duell%2C+C+J">Cody J. Duell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fabbian%2C+G">Giulio Fabbian</a> , et al. (46 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.02747v1-abstract-short" style="display: inline;"> The Simons Observatory (SO) Large Aperture Telescope Receiver (LATR) will be coupled to the Large Aperture Telescope located at an elevation of 5,200 m on Cerro Toco in Chile. The resulting instrument will produce arcminute-resolution millimeter-wave maps of half the sky with unprecedented precision. The LATR is the largest cryogenic millimeter-wave camera built to date with a diameter of 2.4 m an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02747v1-abstract-full').style.display = 'inline'; document.getElementById('2103.02747v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.02747v1-abstract-full" style="display: none;"> The Simons Observatory (SO) Large Aperture Telescope Receiver (LATR) will be coupled to the Large Aperture Telescope located at an elevation of 5,200 m on Cerro Toco in Chile. The resulting instrument will produce arcminute-resolution millimeter-wave maps of half the sky with unprecedented precision. The LATR is the largest cryogenic millimeter-wave camera built to date with a diameter of 2.4 m and a length of 2.6 m. It cools 1200 kg of material to 4 K and 200 kg to 100 mk, the operating temperature of the bolometric detectors with bands centered around 27, 39, 93, 145, 225, and 280 GHz. Ultimately, the LATR will accommodate 13 40 cm diameter optics tubes, each with three detector wafers and a total of 62,000 detectors. The LATR design must simultaneously maintain the optical alignment of the system, control stray light, provide cryogenic isolation, limit thermal gradients, and minimize the time to cool the system from room temperature to 100 mK. The interplay between these competing factors poses unique challenges. We discuss the trade studies involved with the design, the final optimization, the construction, and ultimate performance of the system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02747v1-abstract-full').style.display = 'none'; document.getElementById('2103.02747v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.02129">arXiv:2102.02129</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.02129">pdf</a>, <a href="https://arxiv.org/format/2102.02129">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2562647">10.1117/12.2562647 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Integration and Testing Program for the Simons Observatory Large Aperture Telescope Optics Tubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sierra%2C+C">Carlos Sierra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chesmore%2C+G">Grace Chesmore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sutariya%2C+S">Shreya Sutariya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A+M">Aamir M. Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A+M">Anna M. Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koopman%2C+B+J">Brian J. Koopman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lashner%2C+J">Jack Lashner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Seibert%2C+J">Joseph Seibert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Silva-Feaver%2C+M">Max Silva-Feaver</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vavagiakis%2C+E+M">Eve M. Vavagiakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+N">Ningfeng Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.02129v1-abstract-short" style="display: inline;"> The Simons Observatory (SO) will be a cosmic microwave background (CMB) survey experiment with three small-aperture telescopes and one large-aperture telescope, which will observe from the Atacama Desert in Chile. In total, SO will field over 60,000 transition-edge sensor (TES) bolometers in six spectral bands centered between 27 and 280 GHz in order to achieve the sensitivity necessary to measure&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.02129v1-abstract-full').style.display = 'inline'; document.getElementById('2102.02129v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.02129v1-abstract-full" style="display: none;"> The Simons Observatory (SO) will be a cosmic microwave background (CMB) survey experiment with three small-aperture telescopes and one large-aperture telescope, which will observe from the Atacama Desert in Chile. In total, SO will field over 60,000 transition-edge sensor (TES) bolometers in six spectral bands centered between 27 and 280 GHz in order to achieve the sensitivity necessary to measure or constrain numerous cosmological quantities, as outlined in The Simons Observatory Collaboration et al. (2019). The 6~m Large Aperture Telescope (LAT), which will target the smaller angular scales of the CMB, utilizes a cryogenic receiver (LATR) designed to house up to 13 individual optics tubes. Each optics tube is comprised of three silicon lenses, IR blocking filters, and three dual-polarization, dichroic TES detector wafers. The scientific objectives of the SO project require these optics tubes to achieve high-throughput optical performance while maintaining exquisite control of systematic effects. We describe the integration and testing program for the SO LATR optics tubes that will verify the design and assembly of the optics tubes before they are shipped to the SO site and installed in the LATR cryostat. The program includes a quick turn-around test cryostat that is used to cool single optics tubes and validate the cryogenic performance and detector readout assembly. We discuss the optical design specifications the optics tubes must meet to be deployed on sky and the suite of optical test equipment that is prepared to measure these requirements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.02129v1-abstract-full').style.display = 'none'; document.getElementById('2102.02129v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. SPIE 11453, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X, 1145318 (31 December 2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.07862">arXiv:2012.07862</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.07862">pdf</a>, <a href="https://arxiv.org/format/2012.07862">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2576151">10.1117/12.2576151 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: the Large Aperture Telescope Receiver (LATR) Integration and Validation Results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A+M">Anna M. Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J+L">John L. Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+N">Ningfeng Zhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A+M">Aamir M. Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arnold%2C+K">Kam Arnold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Connors%2C+J">Jake Connors</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dober%2C+B">Bradley Dober</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fabbian%2C+G">Giulio Fabbian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haridas%2C+S+K">Saianeesh K. Haridas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Healy%2C+E">Erin Healy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lashner%2C+J">Jack Lashner</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.07862v1-abstract-short" style="display: inline;"> The Simons Observatory (SO) will observe the cosmic microwave background (CMB) from Cerro Toco in the Atacama Desert of Chile. The observatory consists of three 0.5 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT), covering six frequency bands centering around 30, 40, 90, 150, 230, and 280 GHz. The SO observations will transform the understanding of our universe by cha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.07862v1-abstract-full').style.display = 'inline'; document.getElementById('2012.07862v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.07862v1-abstract-full" style="display: none;"> The Simons Observatory (SO) will observe the cosmic microwave background (CMB) from Cerro Toco in the Atacama Desert of Chile. The observatory consists of three 0.5 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT), covering six frequency bands centering around 30, 40, 90, 150, 230, and 280 GHz. The SO observations will transform the understanding of our universe by characterizing the properties of the early universe, measuring the number of relativistic species and the mass of neutrinos, improving our understanding of galaxy evolution, and constraining the properties of cosmic reionization. As a critical instrument, the Large Aperture Telescope Receiver (LATR) is designed to cool $\sim$ 60,000 transition-edge sensors (TES) to $&lt;$ 100 mK on a 1.7 m diameter focal plane. The unprecedented scale of the LATR drives a complex design. In this paper, we will first provide an overview of the LATR design. Integration and validation of the LATR design are discussed in detail, including mechanical strength, optical alignment, and cryogenic performance of the five cryogenic stages (80 K, 40 K, 4 K, 1 K, and 100 mK). We will also discuss the microwave-multiplexing ($渭$Mux) readout system implemented in the LATR and demonstrate the operation of dark prototype TES bolometers. The $渭$Mux readout technology enables one coaxial loop to read out $\mathcal{O}(10^3)$ TES detectors. Its implementation within the LATR serves as a critical validation for the complex RF chain design. The successful validation of the LATR performance is not only a critical milestone within the Simons Observatory, it also provides a valuable reference for other experiments, e.g. CCAT-prime and CMB-S4. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.07862v1-abstract-full').style.display = 'none'; document.getElementById('2012.07862v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 12 figures, submitted to the 2020 SPIE Astronomical Telescopes + Instrumentation</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.11043">arXiv:2009.11043</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.11043">pdf</a>, <a href="https://arxiv.org/format/2009.11043">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/abd023">10.3847/1538-4365/abd023 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: A Catalog of &gt; 4000 Sunyaev-Zel&#39;dovich Galaxy Clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">M. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sif%C3%B3n%2C+C">C. Sif贸n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">S. Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M">M. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oguri%2C+M">M. Oguri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rozo%2C+E">E. Rozo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rykoff%2C+E">E. Rykoff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abbott%2C+T+M+C">T. M. C. Abbott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhikari%2C+S">S. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguena%2C+M">M. Aguena</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">S. Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allam%2C+S">S. Allam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">S. Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Annis%2C+J">J. Annis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ansarinejad%2C+B">B. Ansarinejad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aros-Bunster%2C+C">C. Aros-Bunster</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">J. E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Avila%2C+S">S. Avila</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bacon%2C+D">D. Bacon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">N. Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">J. A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+D+T">D. T. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernstein%2C+G+M">G. M. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bertin%2C+E">E. Bertin</a> , et al. (124 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.11043v2-abstract-short" style="display: inline;"> We present a catalog of 4195 optically confirmed Sunyaev-Zel&#39;dovich (SZ) selected galaxy clusters detected with signal-to-noise &gt; 4 in 13,211 deg$^2$ of sky surveyed by the Atacama Cosmology Telescope (ACT). Cluster candidates were selected by applying a multi-frequency matched filter to 98 and 150 GHz maps constructed from ACT observations obtained from 2008-2018, and confirmed using deep, wide-a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11043v2-abstract-full').style.display = 'inline'; document.getElementById('2009.11043v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.11043v2-abstract-full" style="display: none;"> We present a catalog of 4195 optically confirmed Sunyaev-Zel&#39;dovich (SZ) selected galaxy clusters detected with signal-to-noise &gt; 4 in 13,211 deg$^2$ of sky surveyed by the Atacama Cosmology Telescope (ACT). Cluster candidates were selected by applying a multi-frequency matched filter to 98 and 150 GHz maps constructed from ACT observations obtained from 2008-2018, and confirmed using deep, wide-area optical surveys. The clusters span the redshift range 0.04 &lt; z &lt; 1.91 (median z = 0.52). The catalog contains 222 z &gt; 1 clusters, and a total of 868 systems are new discoveries. Assuming an SZ-signal vs. mass scaling relation calibrated from X-ray observations, the sample has a 90% completeness mass limit of M500c &gt; 3.8 x 10$^{14}$ MSun, evaluated at z = 0.5, for clusters detected at signal-to-noise ratio &gt; 5 in maps filtered at an angular scale of 2.4&#39;. The survey has a large overlap with deep optical weak-lensing surveys that are being used to calibrate the SZ-signal mass-scaling relation, such as the Dark Energy Survey (4566 deg$^2$), the Hyper Suprime-Cam Subaru Strategic Program (469 deg$^2$), and the Kilo Degree Survey (825 deg$^2$). We highlight some noteworthy objects in the sample, including potentially projected systems; clusters with strong lensing features; clusters with active central galaxies or star formation; and systems of multiple clusters that may be physically associated. The cluster catalog will be a useful resource for future cosmological analyses, and studying the evolution of the intracluster medium and galaxies in massive clusters over the past 10 Gyr. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11043v2-abstract-full').style.display = 'none'; document.getElementById('2009.11043v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 27 figures, accepted for publication in ApJS; v1.0 catalogs will be available from LAMBDA https://lambda.gsfc.nasa.gov/product/act/actpol_prod_table.cfm; v1.0 catalogs available from https://astro.ukzn.ac.za/~mjh/ACTDR5/v1.0/ until then</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.10138">arXiv:2009.10138</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.10138">pdf</a>, <a href="https://arxiv.org/format/2009.10138">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/AO.411533">10.1364/AO.411533 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: Modeling Optical Systematics in the Large Aperture Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Puddu%2C+R">Roberto Puddu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adler%2C+A+E">Alexandre E. Adler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A+M">Aamir M. Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bazarko%2C+A">Andrew Bazarko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chesmore%2C+G+E">Grace E. Chesmore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dachlythra%2C+N">Nadia Dachlythra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fabbian%2C+G">Giulio Fabbian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Golec%2C+J+E">Joseph E. Golec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hargrave%2C+P+C">Peter C. Hargrave</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A+M">Anna M. Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+A+T">Adrian T. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Limon%2C+M">Michele Limon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matsuda%2C+F+T">Frederick T. Matsuda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mauskopf%2C+P+D">Philip D. Mauskopf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moodley%2C+K">Kavilan Moodley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nati%2C+F">Federico Nati</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.10138v1-abstract-short" style="display: inline;"> We present geometrical and physical optics simulation results for the Simons Observatory Large Aperture Telescope. This work was developed as part of the general design process for the telescope; allowing us to evaluate the impact of various design choices on performance metrics and potential systematic effects. The primary goal of the simulations was to evaluate the final design of the reflectors&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.10138v1-abstract-full').style.display = 'inline'; document.getElementById('2009.10138v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.10138v1-abstract-full" style="display: none;"> We present geometrical and physical optics simulation results for the Simons Observatory Large Aperture Telescope. This work was developed as part of the general design process for the telescope; allowing us to evaluate the impact of various design choices on performance metrics and potential systematic effects. The primary goal of the simulations was to evaluate the final design of the reflectors and the cold optics which are now being built. We describe non-sequential ray tracing used to inform the design of the cold optics, including absorbers internal to each optics tube. We discuss ray tracing simulations of the telescope structure that allow us to determine geometries that minimize detector loading and mitigate spurious near-field effects that have not been resolved by the internal baffling. We also describe physical optics simulations, performed over a range of frequencies and field locations, that produce estimates of monochromatic far field beam patterns which in turn are used to gauge general optical performance. Finally, we describe simulations that shed light on beam sidelobes from panel gap diffraction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.10138v1-abstract-full').style.display = 'none'; document.getElementById('2009.10138v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Opt. 60, 823-837 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.07848">arXiv:2001.07848</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.07848">pdf</a>, <a href="https://arxiv.org/format/2001.07848">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-020-02430-5">10.1007/s10909-020-02430-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Small Aperture Telescopes for the Simons Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A+M">Aamir M. Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adachi%2C+S">Shunsuke Adachi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arnold%2C+K">Kam Arnold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashton%2C+P">Peter Ashton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bazarko%2C+A">Andrew Bazarko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chinone%2C+Y">Yuji Chinone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Corbett%2C+L">Lance Corbett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+D">Kevin D Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+T">Kevin T Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S">Shannon Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ellis%2C+C">Chris Ellis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goeckner-Wald%2C+N">Neil Goeckner-Wald</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Healy%2C+E">Erin Healy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+C+A">Charles A Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Keating%2C+B">Brian Keating</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kiuchi%2C+K">Kenji Kiuchi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kusaka%2C+A">Akito Kusaka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+A+T">Adrian T Lee</a> , et al. (27 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.07848v2-abstract-short" style="display: inline;"> The Simons Observatory (SO) is an upcoming cosmic microwave background (CMB) experiment located on Cerro Toco, Chile, that will map the microwave sky in temperature and polarization in six frequency bands spanning 27 to 285 GHz. SO will consist of one 6-meter Large Aperture Telescope (LAT) fielding $\sim$30,000 detectors and an array of three 0.42-meter Small Aperture Telescopes (SATs) fielding an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.07848v2-abstract-full').style.display = 'inline'; document.getElementById('2001.07848v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.07848v2-abstract-full" style="display: none;"> The Simons Observatory (SO) is an upcoming cosmic microwave background (CMB) experiment located on Cerro Toco, Chile, that will map the microwave sky in temperature and polarization in six frequency bands spanning 27 to 285 GHz. SO will consist of one 6-meter Large Aperture Telescope (LAT) fielding $\sim$30,000 detectors and an array of three 0.42-meter Small Aperture Telescopes (SATs) fielding an additional 30,000 detectors. This synergy will allow for the extremely sensitive characterization of the CMB over angular scales ranging from an arcmin to tens of degrees, enabling a wide range of scientific output. Here we focus on the SATs targeting degree angular scales with successive dichroic instruments observing at Mid-Frequency (MF: 93/145 GHz), Ultra-High-Frequency (UHF: 225/285 GHz), and Low-Frequency (LF: 27/39 GHz). The three SATs will be able to map $\sim$10% of the sky to a noise level of 2 $渭$K-arcmin when combining 93 and 145 GHz. The multiple frequency bands will allow the CMB to be separated from galactic foregrounds (primarily synchrotron and dust), with the primary science goal of characterizing the primordial tensor-to-scalar ratio, $r$, at a target level of $蟽\left(r\right) \approx 0.003$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.07848v2-abstract-full').style.display = 'none'; document.getElementById('2001.07848v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.08284">arXiv:1907.08284</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.08284">pdf</a>, <a href="https://arxiv.org/format/1907.08284">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: Astro2020 Decadal Project Whitepaper </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=The+Simons+Observatory+Collaboration"> The Simons Observatory Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abitbol%2C+M+H">Maximilian H. Abitbol</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adachi%2C+S">Shunsuke Adachi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P">Peter Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguirre%2C+J">James Aguirre</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A">Aamir Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alonso%2C+D">David Alonso</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alvarez%2C+M+A">Marcelo A. Alvarez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arnold%2C+K">Kam Arnold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashton%2C+P">Peter Ashton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J">Jason Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Awan%2C+H">Humna Awan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baccigalupi%2C+C">Carlo Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baildon%2C+T">Taylor Baildon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lizancos%2C+A+B">Anton Baleato Lizancos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barron%2C+D">Darcy Barron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nick Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battye%2C+R">Richard Battye</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baxter%2C+E">Eric Baxter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bazarko%2C+A">Andrew Bazarko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a> , et al. (258 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.08284v1-abstract-short" style="display: inline;"> The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) experiment sited on Cerro Toco in the Atacama Desert in Chile that promises to provide breakthrough discoveries in fundamental physics, cosmology, and astrophysics. Supported by the Simons Foundation, the Heising-Simons Foundation, and with contributions from collaborating institutions, SO will see first light in 2021&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08284v1-abstract-full').style.display = 'inline'; document.getElementById('1907.08284v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.08284v1-abstract-full" style="display: none;"> The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) experiment sited on Cerro Toco in the Atacama Desert in Chile that promises to provide breakthrough discoveries in fundamental physics, cosmology, and astrophysics. Supported by the Simons Foundation, the Heising-Simons Foundation, and with contributions from collaborating institutions, SO will see first light in 2021 and start a five year survey in 2022. SO has 287 collaborators from 12 countries and 53 institutions, including 85 students and 90 postdocs. The SO experiment in its currently funded form (&#39;SO-Nominal&#39;) consists of three 0.4 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT). Optimized for minimizing systematic errors in polarization measurements at large angular scales, the SATs will perform a deep, degree-scale survey of 10% of the sky to search for the signature of primordial gravitational waves. The LAT will survey 40% of the sky with arc-minute resolution. These observations will measure (or limit) the sum of neutrino masses, search for light relics, measure the early behavior of Dark Energy, and refine our understanding of the intergalactic medium, clusters and the role of feedback in galaxy formation. With up to ten times the sensitivity and five times the angular resolution of the Planck satellite, and roughly an order of magnitude increase in mapping speed over currently operating (&#34;Stage 3&#34;) experiments, SO will measure the CMB temperature and polarization fluctuations to exquisite precision in six frequency bands from 27 to 280 GHz. SO will rapidly advance CMB science while informing the design of future observatories such as CMB-S4. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08284v1-abstract-full').style.display = 'none'; document.getElementById('1907.08284v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Astro2020 Decadal Project Whitepaper. arXiv admin note: text overlap with arXiv:1808.07445</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Bull. Am. Astron. Soc. 51 (2019) 147 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.13347">arXiv:1904.13347</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.13347">pdf</a>, <a href="https://arxiv.org/format/1904.13347">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.063519">10.1103/PhysRevD.100.063519 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraints on the redshift evolution of astrophysical feedback with Sunyaev-Zeldovich effect cross-correlations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Pandey%2C+S">S. Pandey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baxter%2C+E+J">E. J. Baxter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Z. Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">J. Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+N">N. Zhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lidz%2C+A">A. Lidz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguirre%2C+J">J. Aguirre</a>, <a href="/search/astro-ph?searchtype=author&amp;query=DeRose%2C+J">J. DeRose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">M. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. C. Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jain%2C+B">B. Jain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sheth%2C+R+K">R. K. Sheth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Avila%2C+S">S. Avila</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bertin%2C+E">E. Bertin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brooks%2C+D">D. Brooks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buckley-Geer%2C+E">E. Buckley-Geer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rosell%2C+A+C">A. Carnero Rosell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kind%2C+M+C">M. Carrasco Kind</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carretero%2C+J">J. Carretero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Castander%2C+F+J">F. J. Castander</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cawthon%2C+R">R. Cawthon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=da+Costa%2C+L+N">L. N. da Costa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Vicente%2C+J">J. De Vicente</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Desai%2C+S">S. Desai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Diehl%2C+H+T">H. T. Diehl</a> , et al. (34 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.13347v1-abstract-short" style="display: inline;"> An understanding of astrophysical feedback is important for constraining models of galaxy formation and for extracting cosmological information from current and future weak lensing surveys. The thermal Sunyaev-Zel&#39;dovich effect, quantified via the Compton-$y$ parameter, is a powerful tool for studying feedback, because it directly probes the pressure of the hot, ionized gas residing in dark matter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.13347v1-abstract-full').style.display = 'inline'; document.getElementById('1904.13347v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.13347v1-abstract-full" style="display: none;"> An understanding of astrophysical feedback is important for constraining models of galaxy formation and for extracting cosmological information from current and future weak lensing surveys. The thermal Sunyaev-Zel&#39;dovich effect, quantified via the Compton-$y$ parameter, is a powerful tool for studying feedback, because it directly probes the pressure of the hot, ionized gas residing in dark matter halos. Cross-correlations between galaxies and maps of Compton-$y$ obtained from cosmic microwave background surveys are sensitive to the redshift evolution of the gas pressure, and its dependence on halo mass. In this work, we use galaxies identified in year one data from the Dark Energy Survey and Compton-$y$ maps constructed from Planck observations. We find highly significant (roughly $12蟽$) detections of galaxy-$y$ cross-correlation in multiple redshift bins. By jointly fitting these measurements as well as measurements of galaxy clustering, we constrain the halo bias-weighted, gas pressure of the Universe as a function of redshift between $0.15 \lesssim z \lesssim 0.75$. We compare these measurements to predictions from hydrodynamical simulations, allowing us to constrain the amount of thermal energy in the halo gas relative to that resulting from gravitational collapse. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.13347v1-abstract-full').style.display = 'none'; document.getElementById('1904.13347v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 12 figures, comments welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 063519 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.06598">arXiv:1903.06598</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.06598">pdf</a>, <a href="https://arxiv.org/format/1903.06598">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> Characterizing Extra-solar Oort Clouds with Submillimeter-wave Observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baxter%2C+E">Eric Baxter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blake%2C+C">Cullen Blake</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jain%2C+B">Bhuvnesh Jain</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.06598v2-abstract-short" style="display: inline;"> The Oort cloud, a collection of icy bodies orbiting the sun at roughly $10^{3}$ AU to $10^{5}$ AU, is believed to be the source of the long-period comets observed in the inner solar system. Although its existence was predicted nearly 70 years ago, no direct detection of the Oort cloud has been made to date. Given our current understanding of the formation of the Oort cloud, it is likely that many&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.06598v2-abstract-full').style.display = 'inline'; document.getElementById('1903.06598v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.06598v2-abstract-full" style="display: none;"> The Oort cloud, a collection of icy bodies orbiting the sun at roughly $10^{3}$ AU to $10^{5}$ AU, is believed to be the source of the long-period comets observed in the inner solar system. Although its existence was predicted nearly 70 years ago, no direct detection of the Oort cloud has been made to date. Given our current understanding of the formation of the Oort cloud, it is likely that many stars beyond the sun host their own exo-Oort clouds. We have recently pointed out that submillimeter-wave telescopes have the capability to detect the thermal emission from these clouds. High resolution observations of nearby stars with next generation submillimeter telescopes can obtain high significance detections of exo-Oort clouds, even in fairly conservative emission models. A detection and characterization of such emission would open a new window into the study of the properties and evolution of planetary systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.06598v2-abstract-full').style.display = 'none'; document.getElementById('1903.06598v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.07373">arXiv:1809.07373</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.07373">pdf</a>, <a href="https://arxiv.org/format/1809.07373">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2313405">10.1117/12.2313405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Feedhorn development and scalability for Simons Observatory and beyond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Simon%2C+S+M">Sara M. Simon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Golec%2C+J+E">Joseph E. Golec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A">Aamir Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J">Jason Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruno%2C+S+M+M">Sarah Marie M. Bruno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+T">Kevin T. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dober%2C+B">Bradley Dober</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Healy%2C+E">Erin Healy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+C+A">Charles A. Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yaqiong Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lungu%2C+M">Marius Lungu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salatino%2C+M">Maria Salatino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staggs%2C+S">Suzanne Staggs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+N">Ningfeng Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.07373v1-abstract-short" style="display: inline;"> The Simons Observatory (SO) will measure the cosmic microwave background (CMB) in both temperature and polarization over a wide range of angular scales and frequencies from 27-270 GHz with unprecedented sensitivity. One technology for coupling light onto the $\sim$50 detector wafers that SO will field is spline-profiled feedhorns, which offer tunability between coupling efficiency and control of b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.07373v1-abstract-full').style.display = 'inline'; document.getElementById('1809.07373v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.07373v1-abstract-full" style="display: none;"> The Simons Observatory (SO) will measure the cosmic microwave background (CMB) in both temperature and polarization over a wide range of angular scales and frequencies from 27-270 GHz with unprecedented sensitivity. One technology for coupling light onto the $\sim$50 detector wafers that SO will field is spline-profiled feedhorns, which offer tunability between coupling efficiency and control of beam polarization leakage effects. We will present efforts to scale up feedhorn production for SO and their viability for future CMB experiments, including direct-machining metal feedhorn arrays and laser machining stacked Si arrays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.07373v1-abstract-full').style.display = 'none'; document.getElementById('1809.07373v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of the SPIE, Volume 10708, id. 107084B 12 pp. (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.10037">arXiv:1808.10037</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.10037">pdf</a>, <a href="https://arxiv.org/format/1808.10037">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Simons Observatory Large Aperture Telescope Receiver Design Overview </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+N">Ningfeng Zhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J+L">John L. Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A">Aamir Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arnold%2C+K+S">Kam S. Arnold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashton%2C+P+C">Peter C. Ashton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henderson%2C+S+W">Shawn W. Henderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Keating%2C+B">Brian Keating</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+A+T">Adrian T. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Limon%2C+M">Michele Limon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lungu%2C+M">Marius Lungu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mauskopf%2C+P+D">Philip D. Mauskopf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=May%2C+A+J">Andrew J. May</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Piccirillo%2C+L">Lucio Piccirillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Puglisi%2C+G">Giuseppe Puglisi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rao%2C+M+S">Mayuri Sathyanarayana Rao</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.10037v1-abstract-short" style="display: inline;"> The Simons Observatory (SO) will make precision temperature and polarization measurements of the cosmic microwave background (CMB) using a series of telescopes which will cover angular scales between one arcminute and tens of degrees and sample frequencies between 27 and 270 GHz. Here we present the current design of the large aperture telescope receiver (LATR), a 2.4 m diameter cryostat that will&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10037v1-abstract-full').style.display = 'inline'; document.getElementById('1808.10037v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.10037v1-abstract-full" style="display: none;"> The Simons Observatory (SO) will make precision temperature and polarization measurements of the cosmic microwave background (CMB) using a series of telescopes which will cover angular scales between one arcminute and tens of degrees and sample frequencies between 27 and 270 GHz. Here we present the current design of the large aperture telescope receiver (LATR), a 2.4 m diameter cryostat that will be mounted on the SO 6 m telescope and will be the largest CMB receiver to date. The cryostat size was chosen to take advantage of the large focal plane area having high Strehl ratios, which is inherent to the Cross-Dragone telescope design. The LATR will be able to accommodate thirteen optics tubes, each having a 36 cm diameter aperture and illuminating several thousand transition-edge sensor (TES) bolometers. This set of equipment will provide an opportunity to make measurements with unparalleled sensitivity. However, the size and complexity of the LATR also pose numerous technical challenges. In the following paper, we present the design of the LATR and include how we address these challenges. The solutions we develop in the process of designing the LATR will be informative for the general CMB community, and for future CMB experiments like CMB-S4. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10037v1-abstract-full').style.display = 'none'; document.getElementById('1808.10037v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.07896">arXiv:1808.07896</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.07896">pdf</a>, <a href="https://arxiv.org/format/1808.07896">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2312679">10.1117/12.2312679 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cooldown Strategies and Transient Thermal Simulations for the Simons Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A">Aamir Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Keating%2C+B">Brian Keating</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Limon%2C+M">Michele Limon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Longu%2C+M">Marius Longu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=May%2C+A+J">Andrew J. May</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J+L">Jack L. Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Piccirillo%2C+L">Lucio Piccirillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Puglisi%2C+G">Giuseppe Puglisi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salatino%2C+M">Maria Salatino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Simon%2C+S+M">Sara M. Simon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Teply%2C+G">Grant Teply</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thornton%2C+R">Robert Thornton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vavagiakis%2C+E+M">Eve M. Vavagiakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+N">Ningfeng Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.07896v1-abstract-short" style="display: inline;"> The Simons Observatory (SO) will provide precision polarimetry of the cosmic microwave background (CMB) using a series of telescopes which will cover angular scales from arc-minutes to tens of degrees, contain over 60,000 detectors, and observe in frequency bands between 27 GHz and 270 GHz. SO will consist of a six-meter-aperture telescope initially coupled to ~35,000 detectors along with an array&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.07896v1-abstract-full').style.display = 'inline'; document.getElementById('1808.07896v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.07896v1-abstract-full" style="display: none;"> The Simons Observatory (SO) will provide precision polarimetry of the cosmic microwave background (CMB) using a series of telescopes which will cover angular scales from arc-minutes to tens of degrees, contain over 60,000 detectors, and observe in frequency bands between 27 GHz and 270 GHz. SO will consist of a six-meter-aperture telescope initially coupled to ~35,000 detectors along with an array of 0.5m aperture refractive cameras, coupled to an additional 30,000+ detectors. The large aperture telescope receiver (LATR) is coupled to a six-meter crossed Dragone telescope and will be 2.4m in diameter, weigh over 3 tons, and have five cryogenic stages (80 K, 40 K, 4 K, 1 K and 100 mK). The LATR is coupled to the telescope via 13 independent optics tubes containing cryogenic optical elements and detectors. The cryostat will be cooled by by two Cryomech PT90 (80 K) and three Cryomech PT420 (40 K and 4 K) pulse tube cryocoolers, with cooling of the 1 K and 100 mK stages by a commercial dilution refrigerator system. The second component, the small aperture telescope (SAT), is a single optics tube refractive cameras of 42cm diameter. Cooling of the SAT stages will be provided by two Cryomech PT420, one of which is dedicated to the dilution refrigeration system which will cool the focal plane to 100 mK. SO will deploy a total of three SATs. In order to estimate the cool down time of the camera systems given their size and complexity, a finite difference code based on an implicit solver has been written to simulate the transient thermal behavior of both cryostats. The result from the simulations presented here predict a 35 day cool down for the LATR. The simulations suggest additional heat switches between stages would be effective in distribution cool down power and reducing the time it takes for the LATR to cool. The SAT is predicted to cool down in one week, which meets the SO design goals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.07896v1-abstract-full').style.display = 'none'; document.getElementById('1808.07896v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc.SPIE, vol. 10708, pag. 10708 - 10708 - 13, year 2018 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.07445">arXiv:1808.07445</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.07445">pdf</a>, <a href="https://arxiv.org/format/1808.07445">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2019/02/056">10.1088/1475-7516/2019/02/056 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: Science goals and forecasts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=The+Simons+Observatory+Collaboration"> The Simons Observatory Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P">Peter Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguirre%2C+J">James Aguirre</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A">Aamir Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alonso%2C+D">David Alonso</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alvarez%2C+M+A">Marcelo A. Alvarez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arnold%2C+K">Kam Arnold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashton%2C+P">Peter Ashton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J">Jason Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Awan%2C+H">Humna Awan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baccigalupi%2C+C">Carlo Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baildon%2C+T">Taylor Baildon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barron%2C+D">Darcy Barron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nick Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battye%2C+R">Richard Battye</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baxter%2C+E">Eric Baxter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bazarko%2C+A">Andrew Bazarko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beck%2C+D">Dominic Beck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beckman%2C+S">Shawn Beckman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beringue%2C+B">Benjamin Beringue</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bianchini%2C+F">Federico Bianchini</a> , et al. (225 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.07445v2-abstract-short" style="display: inline;"> The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands: 27, 39, 93, 145, 225&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.07445v2-abstract-full').style.display = 'inline'; document.getElementById('1808.07445v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.07445v2-abstract-full" style="display: none;"> The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands: 27, 39, 93, 145, 225 and 280 GHz. The initial configuration of SO will have three small-aperture 0.5-m telescopes (SATs) and one large-aperture 6-m telescope (LAT), with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The SATs will target the largest angular scales observable from Chile, mapping ~10% of the sky to a white noise level of 2 $渭$K-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, $r$, at a target level of $蟽(r)=0.003$. The LAT will map ~40% of the sky at arcminute angular resolution to an expected white noise level of 6 $渭$K-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the LSST sky region and partially with DESI. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel&#39;dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.07445v2-abstract-full').style.display = 'none'; document.getElementById('1808.07445v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper presents an overview of the Simons Observatory science goals, details about the instrument will be presented in a companion paper. The author contribution to this paper is available at https://simonsobservatory.org/publications.php (Abstract abridged) -- matching version published in JCAP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 1902 (2019) 056 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.06648">arXiv:1808.06648</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.06648">pdf</a>, <a href="https://arxiv.org/format/1808.06648">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2312868">10.1117/12.2312868 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simons Observatory large aperture receiver simulation overview </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J+L">John L. Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+N">Ningfeng Zhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A">Aamir Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arnold%2C+K+S">Kam S. Arnold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashton%2C+P+C">Peter C. Ashton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Keating%2C+B">Brian Keating</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+A+T">Adrian T. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Limon%2C+M">Michele Limon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lungu%2C+M">Marius Lungu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=May%2C+A">Andrew May</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Piccirillo%2C+L">Lucio Piccirillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Puglisi%2C+G">Giuseppe Puglisi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salatino%2C+M">Maria Salatino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Silva-Feaver%2C+M">Max Silva-Feaver</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Simon%2C+S+M">Sara M. Simon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thornton%2C+R">Robert Thornton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vavagiakis%2C+E+M">Eve M. Vavagiakis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.06648v1-abstract-short" style="display: inline;"> The Simons Observatory (SO) will make precision temperature and polarization measurements of the cosmic microwave background (CMB) using a series of telescopes which will cover angular scales between one arcminute and tens of degrees, contain over 60,000 detectors, and sample frequencies between 27 and 270 GHz. SO will consist of a six-meter-aperture telescope coupled to over 30,000 detectors alon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.06648v1-abstract-full').style.display = 'inline'; document.getElementById('1808.06648v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.06648v1-abstract-full" style="display: none;"> The Simons Observatory (SO) will make precision temperature and polarization measurements of the cosmic microwave background (CMB) using a series of telescopes which will cover angular scales between one arcminute and tens of degrees, contain over 60,000 detectors, and sample frequencies between 27 and 270 GHz. SO will consist of a six-meter-aperture telescope coupled to over 30,000 detectors along with an array of half-meter aperture refractive cameras, which together couple to an additional 30,000+ detectors. SO will measure fundamental cosmological parameters of our universe, find high redshift clusters via the Sunyaev-Zeldovich effect, constrain properties of neutrinos, and seek signatures of dark matter through gravitational lensing. In this paper we will present results of the simulations of the SO large aperture telescope receiver (LATR). We will show details of simulations performed to ensure the structural integrity and thermal performance of our receiver, as well as will present the results of finite element analyses (FEA) of designs for the structural support system. Additionally, a full thermal model for the LATR will be described. The model will be used to ensure we meet our design requirements. Finally, we will present the results of FEA used to identify the primary vibrational modes, and planned methods for suppressing these modes. Design solutions to each of these problems that have been informed by simulation will be presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.06648v1-abstract-full').style.display = 'none'; document.getElementById('1808.06648v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures, Proceedings of SPIE</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of SPIE, Volume 10708, 2018, pages 10708 - 10708 - 132 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.05152">arXiv:1808.05152</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.05152">pdf</a>, <a href="https://arxiv.org/format/1808.05152">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2312971">10.1117/12.2312971 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Studies of Systematic Uncertainties for Simons Observatory: Optical Effects and Sensitivity Considerations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J">Jon Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koopman%2C+B+J">Brian J. Koopman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matsuda%2C+F+T">Frederick T. Matsuda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Simon%2C+S+M">Sara M. Simon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A">Aamir Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bryan%2C+S">Sean Bryan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chinone%2C+Y">Yuji Chinone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N">Nicholas Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fabbian%2C+G">Giulio Fabbian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+C+A">Charles A. Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Keating%2C+B">Brian Keating</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kusaka%2C+A">Akito Kusaka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lashner%2C+J">Jacob Lashner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+A+T">Adrian T. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Limon%2C+M">Michele Limon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mauskopf%2C+P+D">Philip D. Mauskopf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nati%2C+F">Federico Nati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J+L">John L. Orlowski-Scherer</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.05152v1-abstract-short" style="display: inline;"> The Simons Observatory (SO) is a new experiment that aims to measure the cosmic microwave background (CMB) in temperature and polarization. SO will measure the polarized sky over a large range of microwave frequencies and angular scales using a combination of small ($\sim0.5 \, \rm m$) and large ($\sim 6\, \rm m $) aperture telescopes and will be located in the Atacama Desert in Chile. This work i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.05152v1-abstract-full').style.display = 'inline'; document.getElementById('1808.05152v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.05152v1-abstract-full" style="display: none;"> The Simons Observatory (SO) is a new experiment that aims to measure the cosmic microwave background (CMB) in temperature and polarization. SO will measure the polarized sky over a large range of microwave frequencies and angular scales using a combination of small ($\sim0.5 \, \rm m$) and large ($\sim 6\, \rm m $) aperture telescopes and will be located in the Atacama Desert in Chile. This work is part of a series of papers studying calibration, sensitivity, and systematic errors for SO. In this paper, we discuss current efforts to model optical systematic effects, how these have been used to guide the design of the SO instrument, and how these studies can be used to inform instrument design of future experiments like CMB-S4. While optical systematics studies are underway for both the small aperture and large aperture telescopes, we limit the focus of this paper to the more mature large aperture telescope design for which our studies include: pointing errors, optical distortions, beam ellipticity, cross-polar response, instrumental polarization rotation and various forms of sidelobe pickup. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.05152v1-abstract-full').style.display = 'none'; document.getElementById('1808.05152v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Poster presented at SPIE Astronomical Telescopes and Instrumentation 2018</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.05058">arXiv:1808.05058</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.05058">pdf</a>, <a href="https://arxiv.org/format/1808.05058">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Cold optical design for the Large Aperture Simons Observatory telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">S. R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">P. A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">J. E Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mauskopf%2C+P+D">P. D. Mauskopf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A">A. Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashton%2C+P+C">P. C. Ashton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">G. Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">M. J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">N. Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">S. P. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+C+A">C. A. Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">J. Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Keating%2C+B">B. Keating</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+A+T">A. T. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Limon%2C+M">M. Limon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matsuda%2C+F">F. Matsuda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">J. McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">M. D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J+L">J. L. Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Piccirillo%2C+L">L. Piccirillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salatino%2C+M">M. Salatino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Simon%2C+S+M">S. M. Simon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staggs%2C+S+T">S. T. Staggs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thornton%2C+R">R. Thornton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ullom%2C+J+N">J. N. Ullom</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.05058v2-abstract-short" style="display: inline;"> The Simons Observatory will consist of a single large (6 m diameter) telescope and a number of smaller (0.5 m diameter) refracting telescopes designed to measure the polarization of the Cosmic Microwave Background to unprecedented accuracy. The large aperture telescope is the same design as the CCAT-prime telescope, a modified Crossed Dragone design with a field-of-view of over 7.8 degrees diamete&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.05058v2-abstract-full').style.display = 'inline'; document.getElementById('1808.05058v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.05058v2-abstract-full" style="display: none;"> The Simons Observatory will consist of a single large (6 m diameter) telescope and a number of smaller (0.5 m diameter) refracting telescopes designed to measure the polarization of the Cosmic Microwave Background to unprecedented accuracy. The large aperture telescope is the same design as the CCAT-prime telescope, a modified Crossed Dragone design with a field-of-view of over 7.8 degrees diameter at 90 GHz. This paper presents an overview of the cold reimaging optics for this telescope and what drove our choice of 350-400 mm diameter silicon lenses in a 2.4 m cryostat over other possibilities. We will also consider the future expandability of this design to CMB Stage-4 and beyond. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.05058v2-abstract-full').style.display = 'none'; document.getElementById('1808.05058v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Orlowski-Scherer%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Orlowski-Scherer%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Orlowski-Scherer%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10