CINXE.COM

Action potential - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Action potential - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"2e8dfc6d-a390-4b64-8182-2933501eb032","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Action_potential","wgTitle":"Action potential","wgCurRevisionId":1252254940,"wgRevisionId":1252254940,"wgArticleId":156998,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: location missing publisher","CS1 errors: periodical ignored","CS1: long volume value","Articles with short description","Short description is different from Wikidata","Wikipedia pages move-protected due to vandalism","Use dmy dates from March 2020","All articles with unsourced statements","Articles with unsourced statements from August 2020","Articles with unsourced statements from May 2024","Articles needing additional references from February 2014", "All articles needing additional references","Articles with unsourced statements from November 2019","Articles with unsourced statements from May 2011","Articles with hAudio microformats","Spoken articles","All articles with dead external links","Articles with dead external links from October 2016","Articles with permanently dead external links","Webarchive template wayback links","Capacitors","Neural coding","Electrophysiology","Electrochemistry","Computational neuroscience","Cellular neuroscience","Cellular processes","Membrane biology","Plant cognition","Action potentials"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Action_potential","wgRelevantArticleId":156998,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":["sysop"],"wgRedirectedFrom":"Nerve_impulse","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{ "status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":200000,"wgInternalRedirectTargetUrl":"/wiki/Action_potential","wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q194277","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={ "ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","ext.tmh.player.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","mediawiki.page.media","ext.tmh.player","ext.scribunto.logs","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init", "ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.tmh.player.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.6"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/9/95/Action_Potential.gif"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="854"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/95/Action_Potential.gif/800px-Action_Potential.gif"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="570"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/95/Action_Potential.gif/640px-Action_Potential.gif"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="456"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Action potential - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Action_potential"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Action_potential&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Action_potential"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Action_potential rootpage-Action_potential skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Action+potential" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Action+potential" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Action+potential" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Action+potential" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Overview" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Overview"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Overview</span> </div> </a> <button aria-controls="toc-Overview-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Overview subsection</span> </button> <ul id="toc-Overview-sublist" class="vector-toc-list"> <li id="toc-Process_in_a_typical_neuron" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Process_in_a_typical_neuron"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Process in a typical neuron</span> </div> </a> <ul id="toc-Process_in_a_typical_neuron-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Biophysical_basis" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Biophysical_basis"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Biophysical basis</span> </div> </a> <button aria-controls="toc-Biophysical_basis-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Biophysical basis subsection</span> </button> <ul id="toc-Biophysical_basis-sublist" class="vector-toc-list"> <li id="toc-Maturation_of_the_electrical_properties_of_the_action_potential" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Maturation_of_the_electrical_properties_of_the_action_potential"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Maturation of the electrical properties of the action potential</span> </div> </a> <ul id="toc-Maturation_of_the_electrical_properties_of_the_action_potential-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Neurotransmission" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Neurotransmission"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Neurotransmission</span> </div> </a> <button aria-controls="toc-Neurotransmission-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Neurotransmission subsection</span> </button> <ul id="toc-Neurotransmission-sublist" class="vector-toc-list"> <li id="toc-Anatomy_of_a_neuron" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Anatomy_of_a_neuron"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Anatomy of a neuron</span> </div> </a> <ul id="toc-Anatomy_of_a_neuron-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Initiation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Initiation"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Initiation</span> </div> </a> <ul id="toc-Initiation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dynamics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dynamics"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Dynamics</span> </div> </a> <ul id="toc-Dynamics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-&quot;All-or-none&quot;_principle" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#&quot;All-or-none&quot;_principle"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>"All-or-none" principle</span> </div> </a> <ul id="toc-&quot;All-or-none&quot;_principle-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sensory_neurons" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sensory_neurons"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>Sensory neurons</span> </div> </a> <ul id="toc-Sensory_neurons-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Pacemaker_potentials" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Pacemaker_potentials"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6</span> <span>Pacemaker potentials</span> </div> </a> <ul id="toc-Pacemaker_potentials-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Phases" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Phases"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Phases</span> </div> </a> <button aria-controls="toc-Phases-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Phases subsection</span> </button> <ul id="toc-Phases-sublist" class="vector-toc-list"> <li id="toc-Stimulation_and_rising_phase" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Stimulation_and_rising_phase"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Stimulation and rising phase</span> </div> </a> <ul id="toc-Stimulation_and_rising_phase-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Peak_phase" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Peak_phase"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Peak phase</span> </div> </a> <ul id="toc-Peak_phase-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Afterhyperpolarization" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Afterhyperpolarization"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Afterhyperpolarization</span> </div> </a> <ul id="toc-Afterhyperpolarization-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Refractory_period" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Refractory_period"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Refractory period</span> </div> </a> <ul id="toc-Refractory_period-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Propagation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Propagation"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Propagation</span> </div> </a> <button aria-controls="toc-Propagation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Propagation subsection</span> </button> <ul id="toc-Propagation-sublist" class="vector-toc-list"> <li id="toc-Myelin_and_saltatory_conduction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Myelin_and_saltatory_conduction"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Myelin and saltatory conduction</span> </div> </a> <ul id="toc-Myelin_and_saltatory_conduction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cable_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cable_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Cable theory</span> </div> </a> <ul id="toc-Cable_theory-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Termination" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Termination"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Termination</span> </div> </a> <button aria-controls="toc-Termination-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Termination subsection</span> </button> <ul id="toc-Termination-sublist" class="vector-toc-list"> <li id="toc-Chemical_synapses" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Chemical_synapses"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Chemical synapses</span> </div> </a> <ul id="toc-Chemical_synapses-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Electrical_synapses" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Electrical_synapses"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Electrical synapses</span> </div> </a> <ul id="toc-Electrical_synapses-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Neuromuscular_junctions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Neuromuscular_junctions"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Neuromuscular junctions</span> </div> </a> <ul id="toc-Neuromuscular_junctions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Other_cell_types" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Other_cell_types"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Other cell types</span> </div> </a> <button aria-controls="toc-Other_cell_types-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Other cell types subsection</span> </button> <ul id="toc-Other_cell_types-sublist" class="vector-toc-list"> <li id="toc-Cardiac_action_potentials" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cardiac_action_potentials"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Cardiac action potentials</span> </div> </a> <ul id="toc-Cardiac_action_potentials-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Muscular_action_potentials" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Muscular_action_potentials"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Muscular action potentials</span> </div> </a> <ul id="toc-Muscular_action_potentials-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Plant_action_potentials" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Plant_action_potentials"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Plant action potentials</span> </div> </a> <ul id="toc-Plant_action_potentials-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Taxonomic_distribution_and_evolutionary_advantages" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Taxonomic_distribution_and_evolutionary_advantages"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Taxonomic distribution and evolutionary advantages</span> </div> </a> <ul id="toc-Taxonomic_distribution_and_evolutionary_advantages-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Experimental_methods" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Experimental_methods"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Experimental methods</span> </div> </a> <ul id="toc-Experimental_methods-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Neurotoxins" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Neurotoxins"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Neurotoxins</span> </div> </a> <ul id="toc-Neurotoxins-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantitative_models" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Quantitative_models"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Quantitative models</span> </div> </a> <ul id="toc-Quantitative_models-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>References</span> </div> </a> <button aria-controls="toc-References-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle References subsection</span> </button> <ul id="toc-References-sublist" class="vector-toc-list"> <li id="toc-Footnotes" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Footnotes"> <div class="vector-toc-text"> <span class="vector-toc-numb">15.1</span> <span>Footnotes</span> </div> </a> <ul id="toc-Footnotes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Journal_articles" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Journal_articles"> <div class="vector-toc-text"> <span class="vector-toc-numb">15.2</span> <span>Journal articles</span> </div> </a> <ul id="toc-Journal_articles-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Books" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Books"> <div class="vector-toc-text"> <span class="vector-toc-numb">15.3</span> <span>Books</span> </div> </a> <ul id="toc-Books-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Web_pages" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Web_pages"> <div class="vector-toc-text"> <span class="vector-toc-numb">15.4</span> <span>Web pages</span> </div> </a> <ul id="toc-Web_pages-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">16</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">17</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Action potential</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 61 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-61" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">61 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Aksiepotensiaal" title="Aksiepotensiaal – Afrikaans" lang="af" hreflang="af" data-title="Aksiepotensiaal" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AC%D9%87%D8%AF_%D8%A7%D9%84%D9%81%D8%B9%D9%84" title="جهد الفعل – Arabic" lang="ar" hreflang="ar" data-title="جهد الفعل" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Potencial_d%27aici%C3%B3n" title="Potencial d&#039;aición – Asturian" lang="ast" hreflang="ast" data-title="Potencial d&#039;aición" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/F%C9%99aliyy%C9%99t_potensial%C4%B1" title="Fəaliyyət potensialı – Azerbaijani" lang="az" hreflang="az" data-title="Fəaliyyət potensialı" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9D%D0%B5%D1%80%D0%B2%D0%B5%D0%BD_%D0%B8%D0%BC%D0%BF%D1%83%D0%BB%D1%81" title="Нервен импулс – Bulgarian" lang="bg" hreflang="bg" data-title="Нервен импулс" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bo mw-list-item"><a href="https://bo.wikipedia.org/wiki/%E0%BD%A3%E0%BD%A6%E0%BC%8B%E0%BD%A0%E0%BD%87%E0%BD%B4%E0%BD%82%E0%BC%8B%E0%BD%93%E0%BD%B4%E0%BD%A6%E0%BC%8B%E0%BD%94%E0%BC%8D" title="ལས་འཇུག་ནུས་པ། – Tibetan" lang="bo" hreflang="bo" data-title="ལས་འཇུག་ནུས་པ།" data-language-autonym="བོད་ཡིག" data-language-local-name="Tibetan" class="interlanguage-link-target"><span>བོད་ཡིག</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Akcijski_potencijal" title="Akcijski potencijal – Bosnian" lang="bs" hreflang="bs" data-title="Akcijski potencijal" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Potencial_d%27acci%C3%B3" title="Potencial d&#039;acció – Catalan" lang="ca" hreflang="ca" data-title="Potencial d&#039;acció" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Ak%C4%8Dn%C3%AD_potenci%C3%A1l" title="Akční potenciál – Czech" lang="cs" hreflang="cs" data-title="Akční potenciál" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Aktionspotential" title="Aktionspotential – Danish" lang="da" hreflang="da" data-title="Aktionspotential" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Aktionspotential" title="Aktionspotential – German" lang="de" hreflang="de" data-title="Aktionspotential" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/N%C3%A4rviimpulss" title="Närviimpulss – Estonian" lang="et" hreflang="et" data-title="Närviimpulss" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%94%CF%85%CE%BD%CE%B1%CE%BC%CE%B9%CE%BA%CF%8C_%CE%B5%CE%BD%CE%AD%CF%81%CE%B3%CE%B5%CE%B9%CE%B1%CF%82" title="Δυναμικό ενέργειας – Greek" lang="el" hreflang="el" data-title="Δυναμικό ενέργειας" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Potencial_de_acci%C3%B3n" title="Potencial de acción – Spanish" lang="es" hreflang="es" data-title="Potencial de acción" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://eu.wikipedia.org/wiki/Ekintza_potentzial" title="Ekintza potentzial – Basque" lang="eu" hreflang="eu" data-title="Ekintza potentzial" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%BE%D8%AA%D8%A7%D9%86%D8%B3%DB%8C%D9%84_%D8%B9%D9%85%D9%84" title="پتانسیل عمل – Persian" lang="fa" hreflang="fa" data-title="پتانسیل عمل" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Potentiel_d%27action" title="Potentiel d&#039;action – French" lang="fr" hreflang="fr" data-title="Potentiel d&#039;action" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Poit%C3%A9inseal_gn%C3%ADomhaithe" title="Poitéinseal gníomhaithe – Irish" lang="ga" hreflang="ga" data-title="Poitéinseal gníomhaithe" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Impulso_nervioso" title="Impulso nervioso – Galician" lang="gl" hreflang="gl" data-title="Impulso nervioso" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-gu mw-list-item"><a href="https://gu.wikipedia.org/wiki/%E0%AA%B8%E0%AA%95%E0%AB%8D%E0%AA%B0%E0%AA%BF%E0%AA%AF_%E0%AA%95%E0%AA%B2%E0%AA%BE_%E0%AA%B5%E0%AB%80%E0%AA%9C%E0%AA%B8%E0%AB%8D%E0%AA%A5%E0%AA%BF%E0%AA%A4%E0%AA%BF%E0%AA%AE%E0%AA%BE%E0%AA%A8" title="સક્રિય કલા વીજસ્થિતિમાન – Gujarati" lang="gu" hreflang="gu" data-title="સક્રિય કલા વીજસ્થિતિમાન" data-language-autonym="ગુજરાતી" data-language-local-name="Gujarati" class="interlanguage-link-target"><span>ગુજરાતી</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%99%9C%EB%8F%99%EC%A0%84%EC%9C%84" title="활동전위 – Korean" lang="ko" hreflang="ko" data-title="활동전위" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B3%D5%B8%D6%80%D5%AE%D5%B8%D5%B2%D5%B8%D6%82%D5%A9%D5%B5%D5%A1%D5%B6_%D5%BA%D5%B8%D5%BF%D5%A5%D5%B6%D6%81%D5%AB%D5%A1%D5%AC" title="Գործողության պոտենցիալ – Armenian" lang="hy" hreflang="hy" data-title="Գործողության պոտենցիալ" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%95%E0%A5%8D%E0%A4%B0%E0%A4%BF%E0%A4%AF%E0%A4%BE_%E0%A4%B5%E0%A4%BF%E0%A4%AD%E0%A4%B5" title="क्रिया विभव – Hindi" lang="hi" hreflang="hi" data-title="क्रिया विभव" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Potensial_aksi" title="Potensial aksi – Indonesian" lang="id" hreflang="id" data-title="Potensial aksi" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Bo%C3%B0spenna" title="Boðspenna – Icelandic" lang="is" hreflang="is" data-title="Boðspenna" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Potenziale_d%27azione" title="Potenziale d&#039;azione – Italian" lang="it" hreflang="it" data-title="Potenziale d&#039;azione" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%93%D7%97%D7%A3_%D7%A2%D7%A6%D7%91%D7%99" title="דחף עצבי – Hebrew" lang="he" hreflang="he" data-title="דחף עצבי" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%95%E0%B3%8D%E0%B2%B0%E0%B2%BF%E0%B2%AF%E0%B2%BE%E0%B2%B6%E0%B3%80%E0%B2%B2_%E0%B2%B5%E0%B2%BF%E0%B2%AD%E0%B2%B5(%E0%B2%B6%E0%B2%95%E0%B3%8D%E0%B2%A4%E0%B2%BF%E0%B2%AE%E0%B3%82%E0%B2%B2)" title="ಕ್ರಿಯಾಶೀಲ ವಿಭವ(ಶಕ್ತಿಮೂಲ) – Kannada" lang="kn" hreflang="kn" data-title="ಕ್ರಿಯಾಶೀಲ ವಿಭವ(ಶಕ್ತಿಮೂಲ)" data-language-autonym="ಕನ್ನಡ" data-language-local-name="Kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%9B%E1%83%9D%E1%83%A5%E1%83%9B%E1%83%94%E1%83%93%E1%83%94%E1%83%91%E1%83%98%E1%83%A1_%E1%83%9E%E1%83%9D%E1%83%A2%E1%83%94%E1%83%9C%E1%83%AA%E1%83%98%E1%83%90%E1%83%9A%E1%83%98" title="მოქმედების პოტენციალი – Georgian" lang="ka" hreflang="ka" data-title="მოქმედების პოტენციალი" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-ku mw-list-item"><a href="https://ku.wikipedia.org/wiki/Erk%C3%AA_kar" title="Erkê kar – Kurdish" lang="ku" hreflang="ku" data-title="Erkê kar" data-language-autonym="Kurdî" data-language-local-name="Kurdish" class="interlanguage-link-target"><span>Kurdî</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%9D%D0%B5%D1%80%D0%B2_%D0%B8%D0%BC%D0%BF%D1%83%D0%BB%D1%8C%D1%81%D1%83" title="Нерв импульсу – Kyrgyz" lang="ky" hreflang="ky" data-title="Нерв импульсу" data-language-autonym="Кыргызча" data-language-local-name="Kyrgyz" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Darb%C4%ABbas_potenci%C4%81ls" title="Darbības potenciāls – Latvian" lang="lv" hreflang="lv" data-title="Darbības potenciāls" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Inger%C3%BClet" title="Ingerület – Hungarian" lang="hu" hreflang="hu" data-title="Ingerület" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%94%D0%B5%D1%98%D1%81%D1%82%D0%B2%D0%B5%D0%BD_%D0%BF%D0%BE%D1%82%D0%B5%D0%BD%D1%86%D0%B8%D1%98%D0%B0%D0%BB" title="Дејствен потенцијал – Macedonian" lang="mk" hreflang="mk" data-title="Дејствен потенцијал" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Keupayaan_tindakan" title="Keupayaan tindakan – Malay" lang="ms" hreflang="ms" data-title="Keupayaan tindakan" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Actiepotentiaal" title="Actiepotentiaal – Dutch" lang="nl" hreflang="nl" data-title="Actiepotentiaal" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-new mw-list-item"><a href="https://new.wikipedia.org/wiki/%E0%A4%8F%E0%A4%95%E0%A5%8D%E0%A4%B8%E0%A4%A8_%E0%A4%AA%E0%A5%8B%E0%A4%9F%E0%A5%87%E0%A4%A8%E0%A5%8D%E0%A4%B8%E0%A4%BF%E0%A4%AF%E0%A4%B2" title="एक्सन पोटेन्सियल – Newari" lang="new" hreflang="new" data-title="एक्सन पोटेन्सियल" data-language-autonym="नेपाल भाषा" data-language-local-name="Newari" class="interlanguage-link-target"><span>नेपाल भाषा</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E6%B4%BB%E5%8B%95%E9%9B%BB%E4%BD%8D" title="活動電位 – Japanese" lang="ja" hreflang="ja" data-title="活動電位" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Nerv_impulsi" title="Nerv impulsi – Uzbek" lang="uz" hreflang="uz" data-title="Nerv impulsi" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-ps mw-list-item"><a href="https://ps.wikipedia.org/wiki/%DA%A9%DA%93%D9%86%DB%8C_%D8%B3%DB%90%DA%A9" title="کړنی سېک – Pashto" lang="ps" hreflang="ps" data-title="کړنی سېک" data-language-autonym="پښتو" data-language-local-name="Pashto" class="interlanguage-link-target"><span>پښتو</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Potencja%C5%82_czynno%C5%9Bciowy" title="Potencjał czynnościowy – Polish" lang="pl" hreflang="pl" data-title="Potencjał czynnościowy" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Potencial_de_a%C3%A7%C3%A3o" title="Potencial de ação – Portuguese" lang="pt" hreflang="pt" data-title="Potencial de ação" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Poten%C8%9Bial_de_ac%C8%9Biune" title="Potențial de acțiune – Romanian" lang="ro" hreflang="ro" data-title="Potențial de acțiune" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D1%82%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB_%D0%B4%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D1%8F" title="Потенциал действия – Russian" lang="ru" hreflang="ru" data-title="Потенциал действия" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-stq mw-list-item"><a href="https://stq.wikipedia.org/wiki/Aktions-Potentioal" title="Aktions-Potentioal – Saterland Frisian" lang="stq" hreflang="stq" data-title="Aktions-Potentioal" data-language-autonym="Seeltersk" data-language-local-name="Saterland Frisian" class="interlanguage-link-target"><span>Seeltersk</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Nerve_impulse" title="Nerve impulse – Simple English" lang="en-simple" hreflang="en-simple" data-title="Nerve impulse" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Ak%C4%8Dn%C3%BD_potenci%C3%A1l" title="Akčný potenciál – Slovak" lang="sk" hreflang="sk" data-title="Akčný potenciál" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Akcijski_potencial" title="Akcijski potencial – Slovenian" lang="sl" hreflang="sl" data-title="Akcijski potencial" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D9%BE%DB%86%D8%AA%DB%95%D9%86%D8%B4%DA%B5%DB%8C_%DA%A9%D8%A7%D8%B1" title="پۆتەنشڵی کار – Central Kurdish" lang="ckb" hreflang="ckb" data-title="پۆتەنشڵی کار" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%90%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%B8_%D0%BF%D0%BE%D1%82%D0%B5%D0%BD%D1%86%D0%B8%D1%98%D0%B0%D0%BB" title="Акциони потенцијал – Serbian" lang="sr" hreflang="sr" data-title="Акциони потенцијал" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Akcioni_potencijal" title="Akcioni potencijal – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Akcioni potencijal" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Toimintapotentiaali" title="Toimintapotentiaali – Finnish" lang="fi" hreflang="fi" data-title="Toimintapotentiaali" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Nervimpuls" title="Nervimpuls – Swedish" lang="sv" hreflang="sv" data-title="Nervimpuls" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Aksiyon_potensiyal" title="Aksiyon potensiyal – Tagalog" lang="tl" hreflang="tl" data-title="Aksiyon potensiyal" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%A8%E0%B8%B1%E0%B8%81%E0%B8%A2%E0%B8%B0%E0%B8%87%E0%B8%B2%E0%B8%99" title="ศักยะงาน – Thai" lang="th" hreflang="th" data-title="ศักยะงาน" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Aksiyon_potansiyeli" title="Aksiyon potansiyeli – Turkish" lang="tr" hreflang="tr" data-title="Aksiyon potansiyeli" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9F%D0%BE%D1%82%D0%B5%D0%BD%D1%86%D1%96%D0%B0%D0%BB_%D0%B4%D1%96%D1%97" title="Потенціал дії – Ukrainian" lang="uk" hreflang="uk" data-title="Потенціал дії" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/%C4%90i%E1%BB%87n_th%E1%BA%BF_ho%E1%BA%A1t_%C4%91%E1%BB%99ng" title="Điện thế hoạt động – Vietnamese" lang="vi" hreflang="vi" data-title="Điện thế hoạt động" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%8A%A8%E4%BD%9C%E7%94%B5%E4%BD%8D" title="动作电位 – Wu" lang="wuu" hreflang="wuu" data-title="动作电位" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%8B%95%E4%BD%9C%E9%9B%BB%E4%BD%8D" title="動作電位 – Cantonese" lang="yue" hreflang="yue" data-title="動作電位" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%8A%A8%E4%BD%9C%E7%94%B5%E4%BD%8D" title="动作电位 – Chinese" lang="zh" hreflang="zh" data-title="动作电位" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q194277#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Action_potential" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Action_potential" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Action_potential"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Action_potential&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Action_potential&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Action_potential"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Action_potential&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Action_potential&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Action_potential" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Action_potential" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Action_potential&amp;oldid=1252254940" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Action_potential&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Action_potential&amp;id=1252254940&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlQ%C4%B1sald%C4%B1c%C4%B1s%C4%B1&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAction_potential"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrKodu&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAction_potential"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Action_potential&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Action_potential&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Action_potentials" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q194277" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-spoken-icon" class="mw-indicator"><div class="mw-parser-output"><span typeof="mw:File"><a href="/wiki/File:Action_potential.ogg" title="Listen to this article"><img alt="Listen to this article" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/47/Sound-icon.svg/20px-Sound-icon.svg.png" decoding="async" width="20" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/47/Sound-icon.svg/30px-Sound-icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/47/Sound-icon.svg/40px-Sound-icon.svg.png 2x" data-file-width="128" data-file-height="96" /></a></span></div></div> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirected from <a href="/w/index.php?title=Nerve_impulse&amp;redirect=no" class="mw-redirect" title="Nerve impulse">Nerve impulse</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Neuron communication by electric impulses</div> <p class="mw-empty-elt"> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Action_Potential.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/Action_Potential.gif/330px-Action_Potential.gif" decoding="async" width="330" height="235" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/Action_Potential.gif/495px-Action_Potential.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/95/Action_Potential.gif/660px-Action_Potential.gif 2x" data-file-width="1000" data-file-height="712" /></a><figcaption>As an action potential (nerve impulse) travels down an <a href="/wiki/Axon" title="Axon">axon</a> there is a change in electric polarity across the <a href="/wiki/Cell_membrane" title="Cell membrane">membrane</a> of the axon. In response to a signal from another <a href="/wiki/Neuron" title="Neuron">neuron</a>, sodium- (Na<sup>+</sup>) and potassium- (K<sup>+</sup>)–gated <a href="/wiki/Voltage-gated_ion_channel" title="Voltage-gated ion channel">ion channels</a> open and close as the membrane reaches its <a href="/wiki/Threshold_potential" title="Threshold potential">threshold potential</a>. Na<sup>+</sup> channels open at the beginning of the action potential, and Na<sup>+</sup> moves into the axon, causing <a href="/wiki/Depolarization" title="Depolarization">depolarization</a>. <a href="/wiki/Repolarization" title="Repolarization">Repolarization</a> occurs when K<sup>+</sup> channels open and K<sup>+</sup> moves out of the axon, creating a change in electric polarity between the outside of the cell and the inside. The impulse travels down the axon in one direction only, to the <a href="/wiki/Axon_terminal" title="Axon terminal">axon terminal</a> where it signals other neurons.</figcaption></figure> <p>An <b>action potential</b> occurs when the <a href="/wiki/Membrane_potential" title="Membrane potential">membrane potential</a> of a specific <a href="/wiki/Cell_(biology)" title="Cell (biology)">cell</a> rapidly rises and falls.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> This <a href="/wiki/Depolarization" title="Depolarization">depolarization</a> then causes adjacent locations to similarly depolarize. Action potentials occur in several types of <a href="/wiki/Membrane_potential#Cell_excitability" title="Membrane potential">excitable cells</a>, which include <a href="/wiki/Animal_cell" class="mw-redirect" title="Animal cell">animal cells</a> like <a href="/wiki/Neuron" title="Neuron">neurons</a> and <a href="/wiki/Myocyte" class="mw-redirect" title="Myocyte">muscle cells</a>, as well as some <a href="/wiki/Plant_cell" title="Plant cell">plant cells</a>. Certain <a href="/wiki/Endocrine" class="mw-redirect" title="Endocrine">endocrine</a> cells such as <a href="/wiki/Pancreatic_beta_cell" class="mw-redirect" title="Pancreatic beta cell">pancreatic beta cells</a>, and certain cells of the <a href="/wiki/Anterior_pituitary_gland" class="mw-redirect" title="Anterior pituitary gland">anterior pituitary gland</a> are also excitable cells.<sup id="cite_ref-Williams_2-0" class="reference"><a href="#cite_note-Williams-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p>In neurons, action potentials play a central role in <a href="/wiki/Cell%E2%80%93cell_interaction" title="Cell–cell interaction">cell–cell communication</a> by providing for—or with regard to <a href="/wiki/Saltatory_conduction" title="Saltatory conduction">saltatory conduction</a>, assisting—the propagation of signals along the neuron's <a href="/wiki/Axon" title="Axon">axon</a> toward <a href="/wiki/Axon_terminal" title="Axon terminal">synaptic boutons</a> situated at the ends of an axon; these signals can then connect with other neurons at synapses, or to motor cells or glands. In other types of cells, their main function is to activate intracellular processes. In muscle cells, for example, an action potential is the first step in the chain of events leading to contraction. In <a href="/wiki/Beta_cell" title="Beta cell">beta cells</a> of the <a href="/wiki/Pancreas" title="Pancreas">pancreas</a>, they provoke release of <a href="/wiki/Insulin" title="Insulin">insulin</a>.<sup id="cite_ref-pmid16464129_3-0" class="reference"><a href="#cite_note-pmid16464129-3"><span class="cite-bracket">&#91;</span>a<span class="cite-bracket">&#93;</span></a></sup> Action potentials in neurons are also known as "<b>nerve impulses</b>" or "<b>spikes</b>", and the temporal sequence of action potentials generated by a neuron is called its "<b>spike train</b>". A neuron that emits an action potential, or nerve impulse, is often said to "fire". </p><p>Action potentials are generated by special types of <a href="/wiki/Voltage-gated_ion_channel" title="Voltage-gated ion channel">voltage-gated ion channels</a> embedded in a cell's <a href="/wiki/Plasma_membrane" class="mw-redirect" title="Plasma membrane">plasma membrane</a>.<sup id="cite_ref-pmid17515599_4-0" class="reference"><a href="#cite_note-pmid17515599-4"><span class="cite-bracket">&#91;</span>b<span class="cite-bracket">&#93;</span></a></sup> These channels are shut when the membrane potential is near the (negative) <a href="/wiki/Resting_potential" title="Resting potential">resting potential</a> of the cell, but they rapidly begin to open if the membrane potential increases to a precisely defined threshold voltage, <a href="/wiki/Depolarization" title="Depolarization">depolarising</a> the transmembrane potential.<sup id="cite_ref-pmid17515599_4-1" class="reference"><a href="#cite_note-pmid17515599-4"><span class="cite-bracket">&#91;</span>b<span class="cite-bracket">&#93;</span></a></sup> When the channels open, they allow an inward flow of <a href="/wiki/Sodium" title="Sodium">sodium</a> ions, which changes the electrochemical gradient, which in turn produces a further rise in the membrane potential towards zero. This then causes more channels to open, producing a greater electric current across the cell membrane and so on. The process proceeds explosively until all of the available ion channels are open, resulting in a large upswing in the membrane potential. The rapid influx of sodium ions causes the polarity of the plasma membrane to reverse, and the ion channels then rapidly inactivate. As the <a href="/wiki/Sodium_channel" title="Sodium channel">sodium channels</a> close, sodium ions can no longer enter the neuron, and they are then actively transported back out of the plasma membrane. <a href="/wiki/Potassium" title="Potassium">Potassium</a> channels are then activated, and there is an outward current of potassium ions, returning the electrochemical gradient to the resting state. After an action potential has occurred, there is a transient negative shift, called the <a href="/wiki/Afterhyperpolarization" title="Afterhyperpolarization">afterhyperpolarization</a>. </p><p>In animal cells, there are two primary types of action potentials. One type is generated by <a href="/wiki/Voltage-gated_sodium_channels" class="mw-redirect" title="Voltage-gated sodium channels">voltage-gated sodium channels</a>, the other by <a href="/wiki/Voltage-gated_calcium_channel" title="Voltage-gated calcium channel">voltage-gated calcium channels</a>. Sodium-based action potentials usually last for under one millisecond, but calcium-based action potentials may last for 100 milliseconds or longer.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (August 2020)">citation needed</span></a></i>&#93;</sup> In some types of neurons, slow calcium spikes provide the driving force for a long burst of rapidly emitted sodium spikes. In <a href="/wiki/Cardiac_action_potential" title="Cardiac action potential">cardiac muscle cells</a>, on the other hand, an initial fast sodium spike provides a "primer" to provoke the rapid onset of a calcium spike, which then produces muscle contraction.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Overview">Overview</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=1" title="Edit section: Overview"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Action_potential_basic_shape.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/Action_potential_basic_shape.svg/220px-Action_potential_basic_shape.svg.png" decoding="async" width="220" height="217" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/Action_potential_basic_shape.svg/330px-Action_potential_basic_shape.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/95/Action_potential_basic_shape.svg/440px-Action_potential_basic_shape.svg.png 2x" data-file-width="491" data-file-height="485" /></a><figcaption>Shape of a typical action potential. The membrane potential remains near a baseline level until at some point in time, it abruptly spikes upward and then rapidly falls.</figcaption></figure> <p>Nearly all <a href="/wiki/Cell_membrane" title="Cell membrane">cell membranes</a> in animals, plants and fungi maintain a <a href="/wiki/Voltage" title="Voltage">voltage</a> difference between the exterior and interior of the cell, called the <a href="/wiki/Membrane_potential" title="Membrane potential">membrane potential</a>. A typical voltage across an animal cell membrane is −70 mV. This means that the interior of the cell has a negative voltage relative to the exterior. In most types of cells, the membrane potential usually stays fairly constant. Some types of cells, however, are electrically active in the sense that their voltages fluctuate over time. In some types of electrically active cells, including <a href="/wiki/Neuron" title="Neuron">neurons</a> and muscle cells, the voltage fluctuations frequently take the form of a rapid upward (positive) spike followed by a rapid fall. These up-and-down cycles are known as <i>action potentials</i>. In some types of neurons, the entire up-and-down cycle takes place in a few thousandths of a second. In muscle cells, a typical action potential lasts about a fifth of a second. In <a href="/wiki/Plant_cell" title="Plant cell">plant cells</a>, an action potential may last three seconds or more.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p>The electrical properties of a cell are determined by the structure of its membrane. A <a href="/wiki/Cell_membrane" title="Cell membrane">cell membrane</a> consists of a <a href="/wiki/Lipid_bilayer" title="Lipid bilayer">lipid bilayer</a> of molecules in which larger protein molecules are embedded. The lipid bilayer is highly resistant to movement of electrically charged ions, so it functions as an insulator. The large membrane-embedded proteins, in contrast, provide channels through which ions can pass across the membrane. Action potentials are driven by channel proteins whose configuration switches between closed and open states as a function of the voltage difference between the interior and exterior of the cell. These voltage-sensitive proteins are known as <a href="/wiki/Voltage-gated_ion_channel" title="Voltage-gated ion channel">voltage-gated ion channels</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (May 2024)">citation needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading3"><h3 id="Process_in_a_typical_neuron">Process in a typical neuron</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=2" title="Edit section: Process in a typical neuron"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Action_potential.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Action_potential.svg/300px-Action_potential.svg.png" decoding="async" width="300" height="296" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Action_potential.svg/450px-Action_potential.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Action_potential.svg/600px-Action_potential.svg.png 2x" data-file-width="491" data-file-height="485" /></a><figcaption>Approximate plot of a typical action potential shows its various phases as the action potential passes a point on a <a href="/wiki/Cell_membrane" title="Cell membrane">cell membrane</a>. The membrane potential starts out at approximately −70 mV at time zero. A stimulus is applied at time = 1 ms, which raises the membrane potential above −55 mV (the threshold potential). After the stimulus is applied, the membrane potential rapidly rises to a peak potential of +40 mV at time = 2 ms. Just as quickly, the potential then drops and overshoots to −90 mV at time = 3 ms, and finally the resting potential of −70 mV is reestablished at time = 5 ms.</figcaption></figure> <p>All cells in animal body tissues are <a href="/wiki/Dielectric#Ionic_polarization" title="Dielectric">electrically polarized</a> – in other words, they maintain a voltage difference across the cell's <a href="/wiki/Plasma_membrane" class="mw-redirect" title="Plasma membrane">plasma membrane</a>, known as the <a href="/wiki/Membrane_potential" title="Membrane potential">membrane potential</a>. This electrical polarization results from a complex interplay between protein structures embedded in the membrane called <a href="/wiki/Ion_transporter" title="Ion transporter">ion pumps</a> and <a href="/wiki/Ion_channel" title="Ion channel">ion channels</a>. In neurons, the types of ion channels in the membrane usually vary across different parts of the cell, giving the <a href="/wiki/Dendrite" title="Dendrite">dendrites</a>, <a href="/wiki/Axon" title="Axon">axon</a>, and <a href="/wiki/Soma_(biology)" title="Soma (biology)">cell body</a> different electrical properties. As a result, some parts of the membrane of a neuron may be excitable (capable of generating action potentials), whereas others are not. Recent studies have shown that the most excitable part of a neuron is the part after the <a href="/wiki/Axon_hillock" title="Axon hillock">axon hillock</a> (the point where the axon leaves the cell body), which is called the <a href="/wiki/Axonal_initial_segment" class="mw-redirect" title="Axonal initial segment">axonal initial segment</a>, but the axon and cell body are also excitable in most cases.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>Each excitable patch of membrane has two important levels of membrane potential: the <a href="/wiki/Resting_potential" title="Resting potential">resting potential</a>, which is the value the membrane potential maintains as long as nothing perturbs the cell, and a higher value called the <a href="/wiki/Threshold_potential" title="Threshold potential">threshold potential</a>. At the axon hillock of a typical neuron, the resting potential is around –70 millivolts (mV) and the threshold potential is around –55 mV. Synaptic inputs to a neuron cause the membrane to <a href="/wiki/Depolarization" title="Depolarization">depolarize</a> or <a href="/wiki/Hyperpolarization_(biology)" title="Hyperpolarization (biology)">hyperpolarize</a>; that is, they cause the membrane potential to rise or fall. Action potentials are triggered when enough depolarization accumulates to bring the membrane potential up to threshold. When an action potential is triggered, the membrane potential abruptly shoots upward and then equally abruptly shoots back downward, often ending below the resting level, where it remains for some period of time. The shape of the action potential is stereotyped; this means that the rise and fall usually have approximately the same amplitude and time course for all action potentials in a given cell. (Exceptions are discussed later in the article). In most neurons, the entire process takes place in about a thousandth of a second. Many types of neurons emit action potentials constantly at rates of up to 10–100 per second. However, some types are much quieter, and may go for minutes or longer without emitting any action potentials. </p> <div class="mw-heading mw-heading2"><h2 id="Biophysical_basis">Biophysical basis</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=3" title="Edit section: Biophysical basis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-More_citations_needed_section plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Action_potential" title="Special:EditPage/Action potential">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>&#32;in this section. Unsourced material may be challenged and removed.</span> <span class="date-container"><i>(<span class="date">February 2014</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>Action potentials result from the presence in a cell's membrane of special types of <a href="/wiki/Voltage-gated_ion_channel" title="Voltage-gated ion channel">voltage-gated ion channels</a>.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> A voltage-gated ion channel is a transmembrane protein that has three key properties: </p> <ol><li>It is capable of assuming more than one conformation.</li> <li>At least one of the conformations creates a channel through the membrane that is permeable to specific types of ions.</li> <li>The transition between conformations is influenced by the membrane potential.</li></ol> <p>Thus, a voltage-gated ion channel tends to be open for some values of the membrane potential, and closed for others. In most cases, however, the relationship between membrane potential and channel state is probabilistic and involves a time delay. Ion channels switch between conformations at unpredictable times: The membrane potential determines the rate of transitions and the probability per unit time of each type of transition. </p> <figure class="mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Blausen_0011_ActionPotential_Nerve.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Blausen_0011_ActionPotential_Nerve.png/300px-Blausen_0011_ActionPotential_Nerve.png" decoding="async" width="300" height="500" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Blausen_0011_ActionPotential_Nerve.png/450px-Blausen_0011_ActionPotential_Nerve.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/55/Blausen_0011_ActionPotential_Nerve.png/600px-Blausen_0011_ActionPotential_Nerve.png 2x" data-file-width="1350" data-file-height="2250" /></a><figcaption>Action potential propagation along an axon</figcaption></figure> <p>Voltage-gated ion channels are capable of producing action potentials because they can give rise to <a href="/wiki/Positive_feedback" title="Positive feedback">positive feedback</a> loops: The membrane potential controls the state of the ion channels, but the state of the ion channels controls the membrane potential. Thus, in some situations, a rise in the membrane potential can cause ion channels to open, thereby causing a further rise in the membrane potential. An action potential occurs when this positive feedback cycle (<a href="/wiki/Hodgkin_cycle" title="Hodgkin cycle">Hodgkin cycle</a>) proceeds explosively. The time and amplitude trajectory of the action potential are determined by the biophysical properties of the voltage-gated ion channels that produce it. Several types of channels capable of producing the positive feedback necessary to generate an action potential do exist. Voltage-gated sodium channels are responsible for the fast action potentials involved in nerve conduction. Slower action potentials in muscle cells and some types of neurons are generated by voltage-gated calcium channels. Each of these types comes in multiple variants, with different voltage sensitivity and different temporal dynamics. </p><p>The most intensively studied type of voltage-dependent ion channels comprises the sodium channels involved in fast nerve conduction. These are sometimes known as Hodgkin-Huxley sodium channels because they were first characterized by <a href="/wiki/Alan_Lloyd_Hodgkin" class="mw-redirect" title="Alan Lloyd Hodgkin">Alan Hodgkin</a> and <a href="/wiki/Andrew_Huxley" title="Andrew Huxley">Andrew Huxley</a> in their Nobel Prize-winning studies of the biophysics of the action potential, but can more conveniently be referred to as <i>Na</i><sub>V</sub> channels. (The "V" stands for "voltage".) An <i>Na</i><sub>V</sub> channel has three possible states, known as <i>deactivated</i>, <i>activated</i>, and <i>inactivated</i>. The channel is permeable only to sodium ions when it is in the <i>activated</i> state. When the membrane potential is low, the channel spends most of its time in the <i>deactivated</i> (closed) state. If the membrane potential is raised above a certain level, the channel shows increased probability of transitioning to the <i>activated</i> (open) state. The higher the membrane potential the greater the probability of activation. Once a channel has activated, it will eventually transition to the <i>inactivated</i> (closed) state. It tends then to stay inactivated for some time, but, if the membrane potential becomes low again, the channel will eventually transition back to the <i>deactivated</i> state. During an action potential, most channels of this type go through a cycle <i>deactivated</i>→<i>activated</i>→<i>inactivated</i>→<i>deactivated</i>. This is only the population average behavior, however – an individual channel can in principle make any transition at any time. However, the likelihood of a channel's transitioning from the <i>inactivated</i> state directly to the <i>activated</i> state is very low: A channel in the <i>inactivated</i> state is refractory until it has transitioned back to the <i>deactivated</i> state. </p><p>The outcome of all this is that the kinetics of the <i>Na</i><sub>V</sub> channels are governed by a transition matrix whose rates are voltage-dependent in a complicated way. Since these channels themselves play a major role in determining the voltage, the global dynamics of the system can be quite difficult to work out. Hodgkin and Huxley approached the problem by developing a set of <a href="/wiki/Differential_equation" title="Differential equation">differential equations</a> for the parameters that govern the ion channel states, known as the <a href="/wiki/Hodgkin%E2%80%93Huxley_model" title="Hodgkin–Huxley model">Hodgkin-Huxley equations</a>. These equations have been extensively modified by later research, but form the starting point for most theoretical studies of action potential biophysics. </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Membrane_Permeability_of_a_Neuron_During_an_Action_Potential.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Membrane_Permeability_of_a_Neuron_During_an_Action_Potential.svg/390px-Membrane_Permeability_of_a_Neuron_During_an_Action_Potential.svg.png" decoding="async" width="390" height="289" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Membrane_Permeability_of_a_Neuron_During_an_Action_Potential.svg/585px-Membrane_Permeability_of_a_Neuron_During_an_Action_Potential.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Membrane_Permeability_of_a_Neuron_During_an_Action_Potential.svg/780px-Membrane_Permeability_of_a_Neuron_During_an_Action_Potential.svg.png 2x" data-file-width="1200" data-file-height="888" /></a><figcaption>Ion movement during an action potential.<br /><i>Key:</i> a) Sodium (Na<sup>+</sup>) ion. b) Potassium (K<sup>+</sup>) ion. c) Sodium channel. d) Potassium channel. e) Sodium-potassium pump.<br /> In the stages of an action potential, the permeability of the membrane of the neuron changes. At the <b>resting state</b> (1), sodium and potassium ions have limited ability to pass through the membrane, and the neuron has a net negative charge inside. Once the action potential is triggered, the <b>depolarization</b> (2) of the neuron activates sodium channels, allowing sodium ions to pass through the cell membrane into the cell, resulting in a net positive charge in the neuron relative to the extracellular fluid. After the action potential peak is reached, the neuron begins <b>repolarization</b> (3), where the sodium channels close and potassium channels open, allowing potassium ions to cross the membrane into the extracellular fluid, returning the membrane potential to a negative value. Finally, there is a <b>refractory period</b> (4), during which the voltage-dependent ion channels are <a href="/wiki/Voltage-gated_ion_channel#Mechanism" title="Voltage-gated ion channel">inactivated</a> while the Na<sup>+</sup> and K<sup>+</sup> ions return to their resting state distributions across the membrane (1), and the neuron is ready to repeat the process for the next action potential.</figcaption></figure> <p><span class="anchor" id="Firing_rate"></span><span class="anchor" id="Neural_firing_rate"></span>As the membrane potential is increased, <a href="/wiki/Sodium_channel" title="Sodium channel">sodium ion channels</a> open, allowing the entry of <a href="/wiki/Sodium" title="Sodium">sodium</a> ions into the cell. This is followed by the opening of <a href="/wiki/Potassium_channel" title="Potassium channel">potassium ion channels</a> that permit the exit of <a href="/wiki/Potassium" title="Potassium">potassium</a> ions from the cell. The inward flow of sodium ions increases the concentration of positively charged <a href="/wiki/Cation" class="mw-redirect" title="Cation">cations</a> in the cell and causes depolarization, where the potential of the cell is higher than the cell's <a href="/wiki/Resting_potential" title="Resting potential">resting potential</a>. The sodium channels close at the peak of the action potential, while potassium continues to leave the cell. The efflux of potassium ions decreases the membrane potential or hyperpolarizes the cell. For small voltage increases from rest, the potassium current exceeds the sodium current and the voltage returns to its normal resting value, typically −70&#160;mV.<sup id="cite_ref-FOOTNOTEBullockOrkandGrinnell1977150–151_9-0" class="reference"><a href="#cite_note-FOOTNOTEBullockOrkandGrinnell1977150–151-9"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEJunge198189–90_10-0" class="reference"><a href="#cite_note-FOOTNOTEJunge198189–90-10"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTESchmidt-Nielsen1997484_11-0" class="reference"><a href="#cite_note-FOOTNOTESchmidt-Nielsen1997484-11"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> However, if the voltage increases past a critical threshold, typically 15&#160;mV higher than the resting value, the sodium current dominates. This results in a runaway condition whereby the <a href="/wiki/Positive_feedback" title="Positive feedback">positive feedback</a> from the sodium current activates even more sodium channels. Thus, the cell <i>fires</i>, producing an action potential.<sup id="cite_ref-FOOTNOTEBullockOrkandGrinnell1977150–151_9-1" class="reference"><a href="#cite_note-FOOTNOTEBullockOrkandGrinnell1977150–151-9"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200848–49BullockOrkandGrinnell1977141Schmidt-Nielsen1997483Junge198189_12-0" class="reference"><a href="#cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200848–49BullockOrkandGrinnell1977141Schmidt-Nielsen1997483Junge198189-12"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEStevens1966127_13-0" class="reference"><a href="#cite_note-FOOTNOTEStevens1966127-13"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>note 1<span class="cite-bracket">&#93;</span></a></sup> The frequency at which a neuron elicits action potentials is often referred to as a <b>firing rate</b> or <b>neural firing rate</b>. </p><p>Currents produced by the opening of voltage-gated channels in the course of an action potential are typically significantly larger than the initial stimulating current. Thus, the amplitude, duration, and shape of the action potential are determined largely by the properties of the excitable membrane and not the amplitude or duration of the stimulus. This <a href="/wiki/All-or-none_law" title="All-or-none law">all-or-nothing</a> property of the action potential sets it apart from <a href="/wiki/Graded_potential" title="Graded potential">graded potentials</a> such as <a href="/wiki/Receptor_potential" title="Receptor potential">receptor potentials</a>, <a href="/wiki/Electrotonic_potential" title="Electrotonic potential">electrotonic potentials</a>, <a href="/wiki/Subthreshold_membrane_potential_oscillations" title="Subthreshold membrane potential oscillations">subthreshold membrane potential oscillations</a>, and <a href="/wiki/Synaptic_potential" title="Synaptic potential">synaptic potentials</a>, which scale with the magnitude of the stimulus. A variety of action potential types exist in many cell types and cell compartments as determined by the types of voltage-gated channels, <a href="/wiki/Leak_channels" class="mw-redirect" title="Leak channels">leak channels</a>, channel distributions, ionic concentrations, membrane capacitance, temperature, and other factors. </p><p>The principal ions involved in an action potential are sodium and potassium cations; sodium ions enter the cell, and potassium ions leave, restoring equilibrium. Relatively few ions need to cross the membrane for the membrane voltage to change drastically. The ions exchanged during an action potential, therefore, make a negligible change in the interior and exterior ionic concentrations. The few ions that do cross are pumped out again by the continuous action of the <a href="/wiki/Sodium%E2%80%93potassium_pump" title="Sodium–potassium pump">sodium–potassium pump</a>, which, with other <a href="/wiki/Ion_transporter" title="Ion transporter">ion transporters</a>, maintains the normal ratio of ion concentrations across the membrane. <a href="/wiki/Calcium" title="Calcium">Calcium</a> cations and <a href="/wiki/Chloride" title="Chloride">chloride</a> <a href="/wiki/Anion" class="mw-redirect" title="Anion">anions</a> are involved in a few types of action potentials, such as the <a href="/wiki/Cardiac_action_potential" title="Cardiac action potential">cardiac action potential</a> and the action potential in the single-cell <a href="/wiki/Algae" title="Algae">alga</a> <i><a href="/wiki/Acetabularia" title="Acetabularia">Acetabularia</a></i>, respectively. </p><p>Although action potentials are generated locally on patches of excitable membrane, the resulting currents can trigger action potentials on neighboring stretches of membrane, precipitating a domino-like propagation. In contrast to passive spread of electric potentials (<a href="/wiki/Electrotonic_potential" title="Electrotonic potential">electrotonic potential</a>), action potentials are generated anew along excitable stretches of membrane and propagate without decay.<sup id="cite_ref-no_decrement_16-0" class="reference"><a href="#cite_note-no_decrement-16"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> Myelinated sections of axons are not excitable and do not produce action potentials and the signal is propagated passively as <a href="/wiki/Electrotonic_potential" title="Electrotonic potential">electrotonic potential</a>. Regularly spaced unmyelinated patches, called the <a href="/wiki/Nodes_of_Ranvier" class="mw-redirect" title="Nodes of Ranvier">nodes of Ranvier</a>, generate action potentials to boost the signal. Known as <a href="/wiki/Saltatory_conduction" title="Saltatory conduction">saltatory conduction</a>, this type of signal propagation provides a favorable tradeoff of signal velocity and axon diameter. Depolarization of <a href="/wiki/Axon_terminal" title="Axon terminal">axon terminals</a>, in general, triggers the release of <a href="/wiki/Neurotransmitter" title="Neurotransmitter">neurotransmitter</a> into the <a href="/wiki/Synaptic_cleft" class="mw-redirect" title="Synaptic cleft">synaptic cleft</a>. In addition, backpropagating action potentials have been recorded in the dendrites of <a href="/wiki/Pyramidal_cell" title="Pyramidal cell">pyramidal neurons</a>, which are ubiquitous in the neocortex.<sup id="cite_ref-backpropagation_in_pyramidal_cells_17-0" class="reference"><a href="#cite_note-backpropagation_in_pyramidal_cells-17"><span class="cite-bracket">&#91;</span>c<span class="cite-bracket">&#93;</span></a></sup> These are thought to have a role in <a href="/wiki/Spike-timing-dependent_plasticity" title="Spike-timing-dependent plasticity">spike-timing-dependent plasticity</a>. </p><p>In the <a href="/wiki/Hodgkin%E2%80%93Huxley_model" title="Hodgkin–Huxley model">Hodgkin–Huxley membrane capacitance model</a>, the speed of transmission of an action potential was undefined and it was assumed that adjacent areas became depolarized due to released ion interference with neighbouring channels. Measurements of ion diffusion and radii have since shown this not to be possible.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (November 2019)">citation needed</span></a></i>&#93;</sup> Moreover, contradictory measurements of entropy changes and timing disputed the capacitance model as acting alone.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (November 2019)">citation needed</span></a></i>&#93;</sup> Alternatively, Gilbert Ling's adsorption hypothesis, posits that the membrane potential and action potential of a living cell is due to the adsorption of mobile ions onto adsorption sites of cells.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Maturation_of_the_electrical_properties_of_the_action_potential">Maturation of the electrical properties of the action potential</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=4" title="Edit section: Maturation of the electrical properties of the action potential"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/Neuron" title="Neuron">neuron</a>'s ability to generate and propagate an action potential changes during <a href="/wiki/Neural_development" class="mw-redirect" title="Neural development">development</a>. How much the <a href="/wiki/Membrane_potential" title="Membrane potential">membrane potential</a> of a neuron changes as the result of a current impulse is a function of the membrane <a href="/wiki/Input_impedance" title="Input impedance">input resistance</a>. As a cell grows, more <a href="/wiki/Ion_channel" title="Ion channel">channels</a> are added to the membrane, causing a decrease in input resistance. A mature neuron also undergoes shorter changes in membrane potential in response to synaptic currents. Neurons from a ferret <a href="/wiki/Lateral_geniculate_nucleus" title="Lateral geniculate nucleus">lateral geniculate nucleus</a> have a longer <a href="/wiki/Time_constant" title="Time constant">time constant</a> and larger <a href="/wiki/Voltage" title="Voltage">voltage</a> deflection at P0 than they do at P30.<sup id="cite_ref-:0_19-0" class="reference"><a href="#cite_note-:0-19"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> One consequence of the decreasing action potential duration is that the fidelity of the signal can be preserved in response to high frequency stimulation. Immature neurons are more prone to synaptic depression than potentiation after high frequency stimulation.<sup id="cite_ref-:0_19-1" class="reference"><a href="#cite_note-:0-19"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the early development of many organisms, the action potential is actually initially carried by <a href="/wiki/Calcium_channel" title="Calcium channel">calcium current</a> rather than <a href="/wiki/Sodium_channel" title="Sodium channel">sodium current</a>. The <a href="/wiki/Gating_(electrophysiology)" title="Gating (electrophysiology)">opening and closing kinetics</a> of calcium channels during development are slower than those of the voltage-gated sodium channels that will carry the action potential in the mature neurons. The longer opening times for the calcium channels can lead to action potentials that are considerably slower than those of mature neurons.<sup id="cite_ref-:0_19-2" class="reference"><a href="#cite_note-:0-19"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Xenopus" title="Xenopus">Xenopus</a> neurons initially have action potentials that take 60–90 ms. During development, this time decreases to 1 ms. There are two reasons for this drastic decrease. First, the <a href="/wiki/Depolarization" title="Depolarization">inward current</a> becomes primarily carried by sodium channels.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> Second, the <a href="/wiki/Voltage-gated_potassium_channel" title="Voltage-gated potassium channel">delayed rectifier</a>, a <a href="/wiki/Potassium_channel" title="Potassium channel">potassium channel</a> current, increases to 3.5 times its initial strength.<sup id="cite_ref-:0_19-3" class="reference"><a href="#cite_note-:0-19"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p><p>In order for the transition from a calcium-dependent action potential to a sodium-dependent action potential to proceed new channels must be added to the membrane. If Xenopus neurons are grown in an environment with <a href="/wiki/Transcription_(biology)" title="Transcription (biology)">RNA synthesis</a> or <a href="/wiki/Translation_(biology)" title="Translation (biology)">protein synthesis</a> inhibitors that transition is prevented.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> Even the electrical activity of the cell itself may play a role in channel expression. If action potentials in Xenopus <a href="/wiki/Myocyte" class="mw-redirect" title="Myocyte">myocytes</a> are blocked, the typical increase in sodium and potassium current density is prevented or delayed.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p><p>This maturation of electrical properties is seen across species. Xenopus sodium and potassium currents increase drastically after a neuron goes through its final phase of <a href="/wiki/Mitosis" title="Mitosis">mitosis</a>. The sodium current density of rat <a href="/wiki/Cerebral_cortex" title="Cerebral cortex">cortical neurons</a> increases by 600% within the first two postnatal weeks.<sup id="cite_ref-:0_19-4" class="reference"><a href="#cite_note-:0-19"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Neurotransmission">Neurotransmission</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=5" title="Edit section: Neurotransmission"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Neurotransmission" title="Neurotransmission">Neurotransmission</a></div> <div class="mw-heading mw-heading3"><h3 id="Anatomy_of_a_neuron">Anatomy of a neuron</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=6" title="Edit section: Anatomy of a neuron"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="thumb tright" style=""><div class="thumbinner" style="width:-moz-fit-content; width:fit-content;"><div class="thumbimage noresize" style="width:auto;"> <div style="position: relative;"><span typeof="mw:File"><a href="/wiki/File:Neuron_Hand-tuned2.svg" class="mw-file-description"><img alt="At one end of an elongated structure is a branching mass. At the centre of this mass is the nucleus and the branches are dendrites. A thick axon trails away from the mass, ending with further branching which are labeled as axon terminals. Along the axon are a number of protuberances labeled as myelin sheaths." src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5d/Neuron_Hand-tuned2.svg/400px-Neuron_Hand-tuned2.svg.png" decoding="async" width="400" height="215" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5d/Neuron_Hand-tuned2.svg/600px-Neuron_Hand-tuned2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5d/Neuron_Hand-tuned2.svg/800px-Neuron_Hand-tuned2.svg.png 2x" data-file-width="1179" data-file-height="634" /></a></span> <div style="position:absolute; left:50px; top:2px"><a href="/wiki/Dendrite" title="Dendrite">Dendrite</a></div> <div style="position:absolute; left:135px; top:60px"><a href="/wiki/Perikaryon" class="mw-redirect" title="Perikaryon">Soma</a></div> <div style="position:absolute; left:189px; top:116px"><a href="/wiki/Axon" title="Axon">Axon</a></div> <div style="position:absolute; left:149px; top:82px"><a href="/wiki/Axon_hillock" title="Axon hillock">Axon hillock</a></div> <div style="position:absolute; left:13px; top:197px"><a href="/wiki/Cell_nucleus" title="Cell nucleus">Nucleus</a></div> <div style="position:absolute; left:226px; top:38px"><a href="/wiki/Node_of_Ranvier" title="Node of Ranvier">Node of<br />Ranvier</a></div> <div style="position:absolute; left:319px; top:0px"><a href="/wiki/Axon_terminal" title="Axon terminal">Axon terminal</a></div> <div style="position:absolute; left:306px; top:161px"><a href="/wiki/Schwann_cell" title="Schwann cell">Schwann cell</a></div> <div style="position:absolute; left:220px; top:187px"><a href="/wiki/Myelin" title="Myelin">Myelin sheath</a></div></div></div><div class="thumbcaption">Structure of a typical neuron</div></div></div> <p>Several types of cells support an action potential, such as plant cells, muscle cells, and the specialized cells of the heart (in which occurs the <a href="/wiki/Cardiac_action_potential" title="Cardiac action potential">cardiac action potential</a>). However, the main excitable cell is the <a href="/wiki/Neuron" title="Neuron">neuron</a>, which also has the simplest mechanism for the action potential.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (May 2024)">citation needed</span></a></i>&#93;</sup> </p><p>Neurons are electrically excitable cells composed, in general, of one or more dendrites, a single <a href="/wiki/Soma_(biology)" title="Soma (biology)">soma</a>, a single axon and one or more <a href="/wiki/Axon_terminal" title="Axon terminal">axon terminals</a>. Dendrites are cellular projections whose primary function is to receive synaptic signals. Their protrusions, known as <a href="/wiki/Dendritic_spine" title="Dendritic spine">dendritic spines</a>, are designed to capture the neurotransmitters released by the presynaptic neuron. They have a high concentration of <a href="/wiki/Ligand-gated_ion_channel" title="Ligand-gated ion channel">ligand-gated ion channels</a>. These spines have a thin neck connecting a bulbous protrusion to the dendrite. This ensures that changes occurring inside the spine are less likely to affect the neighboring spines. The dendritic spine can, with rare exception (see <a href="/wiki/Long-term_potentiation#Properties" title="Long-term potentiation">LTP</a>), act as an independent unit. The dendrites extend from the soma, which houses the <a href="/wiki/Cell_nucleus" title="Cell nucleus">nucleus</a>, and many of the "normal" <a href="/wiki/Eukaryote" title="Eukaryote">eukaryotic</a> organelles. Unlike the spines, the surface of the soma is populated by voltage activated ion channels. These channels help transmit the signals generated by the dendrites. Emerging out from the soma is the <a href="/wiki/Axon_hillock" title="Axon hillock">axon hillock</a>. This region is characterized by having a very high concentration of voltage-activated sodium channels. In general, it is considered to be the spike initiation zone for action potentials,<sup id="cite_ref-FOOTNOTEBullockOrkandGrinnell197711_23-0" class="reference"><a href="#cite_note-FOOTNOTEBullockOrkandGrinnell197711-23"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> i.e. the <a href="/wiki/Trigger_zone" title="Trigger zone">trigger zone</a>. Multiple signals generated at the spines, and transmitted by the soma all converge here. Immediately after the axon hillock is the axon. This is a thin tubular protrusion traveling away from the soma. The axon is insulated by a <a href="/wiki/Myelin" title="Myelin">myelin</a> sheath. Myelin is composed of either <a href="/wiki/Schwann_cells" class="mw-redirect" title="Schwann cells">Schwann cells</a> (in the peripheral nervous system) or <a href="/wiki/Oligodendrocytes" class="mw-redirect" title="Oligodendrocytes">oligodendrocytes</a> (in the central nervous system), both of which are types of <a href="/wiki/Glial_cells" class="mw-redirect" title="Glial cells">glial cells</a>. Although glial cells are not involved with the transmission of electrical signals, they communicate and provide important biochemical support to neurons.<sup id="cite_ref-FOOTNOTESilverthorn2010253_24-0" class="reference"><a href="#cite_note-FOOTNOTESilverthorn2010253-24"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> To be specific, myelin wraps multiple times around the axonal segment, forming a thick fatty layer that prevents ions from entering or escaping the axon. This insulation prevents significant signal decay as well as ensuring faster signal speed. This insulation, however, has the restriction that no channels can be present on the surface of the axon. There are, therefore, regularly spaced patches of membrane, which have no insulation. These <a href="/wiki/Nodes_of_Ranvier" class="mw-redirect" title="Nodes of Ranvier">nodes of Ranvier</a> can be considered to be "mini axon hillocks", as their purpose is to boost the signal in order to prevent significant signal decay. At the furthest end, the axon loses its insulation and begins to branch into several <a href="/wiki/Axon_terminal" title="Axon terminal">axon terminals</a>. These presynaptic terminals, or synaptic boutons, are a specialized area within the axon of the presynaptic cell that contains <a href="/wiki/Neurotransmitters" class="mw-redirect" title="Neurotransmitters">neurotransmitters</a> enclosed in small membrane-bound spheres called <a href="/wiki/Synaptic_vesicle" title="Synaptic vesicle">synaptic vesicles</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (May 2024)">citation needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading3"><h3 id="Initiation">Initiation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=7" title="Edit section: Initiation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Before considering the propagation of action potentials along <a href="/wiki/Axon" title="Axon">axons</a> and their termination at the synaptic knobs, it is helpful to consider the methods by which action potentials can be initiated at the <a href="/wiki/Axon_hillock" title="Axon hillock">axon hillock</a>. The basic requirement is that the membrane voltage at the hillock be raised above the threshold for firing.<sup id="cite_ref-FOOTNOTEBullockOrkandGrinnell1977150–151_9-2" class="reference"><a href="#cite_note-FOOTNOTEBullockOrkandGrinnell1977150–151-9"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEJunge198189–90_10-1" class="reference"><a href="#cite_note-FOOTNOTEJunge198189–90-10"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200849–50BullockOrkandGrinnell1977140–141Schmidt-Nielsen1997480–481_25-0" class="reference"><a href="#cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200849–50BullockOrkandGrinnell1977140–141Schmidt-Nielsen1997480–481-25"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTESchmidt-Nielsen1997483–484_26-0" class="reference"><a href="#cite_note-FOOTNOTESchmidt-Nielsen1997483–484-26"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> There are several ways in which this depolarization can occur. </p> <div style="clear:both;" class=""></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:SynapseSchematic_en.svg" class="mw-file-description"><img alt="The pre- and post-synaptic axons are separated by a short distance known as the synaptic cleft. Neurotransmitter released by pre-synaptic axons diffuse through the synaptic clef to bind to and open ion channels in post-synaptic axons." src="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/SynapseSchematic_en.svg/300px-SynapseSchematic_en.svg.png" decoding="async" width="300" height="160" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/SynapseSchematic_en.svg/450px-SynapseSchematic_en.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/30/SynapseSchematic_en.svg/600px-SynapseSchematic_en.svg.png 2x" data-file-width="2000" data-file-height="1064" /></a><figcaption>When an action potential arrives at the end of the pre-synaptic axon (top), it causes the release of <a href="/wiki/Neurotransmitter" title="Neurotransmitter">neurotransmitter</a> molecules that open ion channels in the post-synaptic neuron (bottom). The combined <a href="/wiki/Excitatory_postsynaptic_potential" title="Excitatory postsynaptic potential">excitatory</a> and <a href="/wiki/Inhibitory_postsynaptic_potential" title="Inhibitory postsynaptic potential">inhibitory postsynaptic potentials</a> of such inputs can begin a new action potential in the post-synaptic neuron.</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Dynamics">Dynamics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=8" title="Edit section: Dynamics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Action potentials are most commonly initiated by <a href="/wiki/Excitatory_postsynaptic_potential" title="Excitatory postsynaptic potential">excitatory postsynaptic potentials</a> from a presynaptic neuron.<sup id="cite_ref-FOOTNOTEBullockOrkandGrinnell1977177–240Schmidt-Nielsen1997490–499Stevens196647–68_27-0" class="reference"><a href="#cite_note-FOOTNOTEBullockOrkandGrinnell1977177–240Schmidt-Nielsen1997490–499Stevens196647–68-27"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> Typically, <a href="/wiki/Neurotransmitter" title="Neurotransmitter">neurotransmitter</a> molecules are released by the <a href="/wiki/Synapse" title="Synapse">presynaptic</a> <a href="/wiki/Neuron" title="Neuron">neuron</a>. These neurotransmitters then bind to receptors on the postsynaptic cell. This binding opens various types of <a href="/wiki/Ion_channel" title="Ion channel">ion channels</a>. This opening has the further effect of changing the local permeability of the <a href="/wiki/Cell_membrane" title="Cell membrane">cell membrane</a> and, thus, the membrane potential. If the binding increases the voltage (depolarizes the membrane), the synapse is excitatory. If, however, the binding decreases the voltage (hyperpolarizes the membrane), it is inhibitory. Whether the voltage is increased or decreased, the change propagates passively to nearby regions of the membrane (as described by the <a href="/wiki/Cable_equation" class="mw-redirect" title="Cable equation">cable equation</a> and its refinements). Typically, the voltage stimulus decays exponentially with the distance from the synapse and with time from the binding of the neurotransmitter. Some fraction of an excitatory voltage may reach the <a href="/wiki/Axon_hillock" title="Axon hillock">axon hillock</a> and may (in rare cases) depolarize the membrane enough to provoke a new action potential. More typically, the excitatory potentials from several synapses must <a href="/wiki/Spatial_summation" class="mw-redirect" title="Spatial summation">work together</a> at <a href="/wiki/Temporal_summation" class="mw-redirect" title="Temporal summation">nearly the same time</a> to provoke a new action potential. Their joint efforts can be thwarted, however, by the counteracting <a href="/wiki/Inhibitory_postsynaptic_potential" title="Inhibitory postsynaptic potential">inhibitory postsynaptic potentials</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (May 2024)">citation needed</span></a></i>&#93;</sup> </p><p>Neurotransmission can also occur through <a href="/wiki/Electrical_synapse" title="Electrical synapse">electrical synapses</a>.<sup id="cite_ref-FOOTNOTEBullockOrkandGrinnell1977178–180Schmidt-Nielsen1997490–491_28-0" class="reference"><a href="#cite_note-FOOTNOTEBullockOrkandGrinnell1977178–180Schmidt-Nielsen1997490–491-28"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> Due to the direct connection between excitable cells in the form of <a href="/wiki/Gap_junction" title="Gap junction">gap junctions</a>, an action potential can be transmitted directly from one cell to the next in either direction. The free flow of ions between cells enables rapid non-chemical-mediated transmission. Rectifying channels ensure that action potentials move only in one direction through an electrical synapse.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (May 2011)">citation needed</span></a></i>&#93;</sup> Electrical synapses are found in all nervous systems, including the human brain, although they are a distinct minority.<sup id="cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall2001_29-0" class="reference"><a href="#cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall2001-29"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="&quot;All-or-none&quot;_principle"><span id=".22All-or-none.22_principle"></span>"All-or-none" principle</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=9" title="Edit section: &quot;All-or-none&quot; principle"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/All-or-none_law" title="All-or-none law">All-or-none law</a></div> <p>The <a href="/wiki/Amplitude" title="Amplitude">amplitude</a> of an action potential is often thought to be independent of the amount of current that produced it. In other words, larger currents do not create larger action potentials. Therefore, action potentials are said to be <a href="/wiki/All-or-none_law" title="All-or-none law">all-or-none</a> signals, since either they occur fully or they do not occur at all.<sup id="cite_ref-Sasaki_30-0" class="reference"><a href="#cite_note-Sasaki-30"><span class="cite-bracket">&#91;</span>d<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Aur_31-0" class="reference"><a href="#cite_note-Aur-31"><span class="cite-bracket">&#91;</span>e<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Aur,_Jog_32-0" class="reference"><a href="#cite_note-Aur,_Jog-32"><span class="cite-bracket">&#91;</span>f<span class="cite-bracket">&#93;</span></a></sup> This is in contrast to <a href="/wiki/Receptor_potential" title="Receptor potential">receptor potentials</a>, whose amplitudes are dependent on the intensity of a stimulus.<sup id="cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200826–28_33-0" class="reference"><a href="#cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200826–28-33"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> In both cases, the <a href="/wiki/Frequency" title="Frequency">frequency</a> of action potentials is correlated with the intensity of a stimulus. </p><p>Despite the classical view of the action potential as a stereotyped, uniform signal having dominated the field of neuroscience for many decades, newer evidence does suggest that action potentials are more complex events indeed capable of transmitting information through not just their amplitude, but their duration and phase as well, sometimes even up to distances originally not thought to be possible.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Sensory_neurons">Sensory neurons</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=10" title="Edit section: Sensory neurons"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Sensory_neuron" title="Sensory neuron">Sensory neuron</a></div> <p>In <a href="/wiki/Sensory_neurons" class="mw-redirect" title="Sensory neurons">sensory neurons</a>, an external signal such as pressure, temperature, light, or sound is coupled with the opening and closing of <a href="/wiki/Ion_channels" class="mw-redirect" title="Ion channels">ion channels</a>, which in turn alter the ionic permeabilities of the membrane and its voltage.<sup id="cite_ref-FOOTNOTESchmidt-Nielsen1997535–580BullockOrkandGrinnell197749–56,_76–93,_247–255Stevens196669–79_38-0" class="reference"><a href="#cite_note-FOOTNOTESchmidt-Nielsen1997535–580BullockOrkandGrinnell197749–56,_76–93,_247–255Stevens196669–79-38"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> These voltage changes can again be excitatory (depolarizing) or inhibitory (hyperpolarizing) and, in some sensory neurons, their combined effects can depolarize the axon hillock enough to provoke action potentials. Some examples in humans include the <a href="/wiki/Olfactory_receptor_neuron" title="Olfactory receptor neuron">olfactory receptor neuron</a> and <a href="/wiki/Meissner%27s_corpuscle" class="mw-redirect" title="Meissner&#39;s corpuscle">Meissner's corpuscle</a>, which are critical for the sense of <a href="/wiki/Olfaction" class="mw-redirect" title="Olfaction">smell</a> and <a href="/wiki/Somatosensory_system" title="Somatosensory system">touch</a>, respectively. However, not all sensory neurons convert their external signals into action potentials; some do not even have an axon.<sup id="cite_ref-FOOTNOTEBullockOrkandGrinnell197753BullockOrkandGrinnell1977122–124_39-0" class="reference"><a href="#cite_note-FOOTNOTEBullockOrkandGrinnell197753BullockOrkandGrinnell1977122–124-39"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> Instead, they may convert the signal into the release of a <a href="/wiki/Neurotransmitter" title="Neurotransmitter">neurotransmitter</a>, or into continuous <a href="/wiki/Receptor_potential" title="Receptor potential">graded potentials</a>, either of which may stimulate subsequent neuron(s) into firing an action potential. For illustration, in the human <a href="/wiki/Ear" title="Ear">ear</a>, <a href="/wiki/Hair_cell" title="Hair cell">hair cells</a> convert the incoming sound into the opening and closing of <a href="/wiki/Stretch-activated_ion_channel" class="mw-redirect" title="Stretch-activated ion channel">mechanically gated ion channels</a>, which may cause <a href="/wiki/Neurotransmitter" title="Neurotransmitter">neurotransmitter</a> molecules to be released. In similar manner, in the human <a href="/wiki/Retina" title="Retina">retina</a>, the initial <a href="/wiki/Photoreceptor_cell" title="Photoreceptor cell">photoreceptor cells</a> and the next layer of cells (comprising <a href="/wiki/Bipolar_cell" class="mw-redirect" title="Bipolar cell">bipolar cells</a> and <a href="/wiki/Horizontal_cell" class="mw-redirect" title="Horizontal cell">horizontal cells</a>) do not produce action potentials; only some <a href="/wiki/Amacrine_cell" title="Amacrine cell">amacrine cells</a> and the third layer, the <a href="/wiki/Retinal_ganglion_cell" title="Retinal ganglion cell">ganglion cells</a>, produce action potentials, which then travel up the <a href="/wiki/Optic_nerve" title="Optic nerve">optic nerve</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (May 2024)">citation needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading3"><h3 id="Pacemaker_potentials">Pacemaker potentials</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=11" title="Edit section: Pacemaker potentials"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Pacemaker_potential" title="Pacemaker potential">Pacemaker potential</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Pacemaker_potential.svg" class="mw-file-description"><img alt="A plot of action potential (mV) vs time. The membrane potential is initially −60 mV, rise relatively slowly to the threshold potential of −40 mV, and then quickly spikes at a potential of +10 mV, after which it rapidly returns to the starting −60 mV potential. The cycle is then repeated." src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Pacemaker_potential.svg/220px-Pacemaker_potential.svg.png" decoding="async" width="220" height="156" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Pacemaker_potential.svg/330px-Pacemaker_potential.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Pacemaker_potential.svg/440px-Pacemaker_potential.svg.png 2x" data-file-width="354" data-file-height="251" /></a><figcaption>In <a href="/wiki/Pacemaker_potential" title="Pacemaker potential">pacemaker potentials</a>, the cell spontaneously depolarizes (straight line with upward slope) until it fires an action potential.</figcaption></figure> <p>In sensory neurons, action potentials result from an external stimulus. However, some excitable cells require no such stimulus to fire: They spontaneously depolarize their axon hillock and fire action potentials at a regular rate, like an internal clock.<sup id="cite_ref-FOOTNOTEJunge1981115–132_40-0" class="reference"><a href="#cite_note-FOOTNOTEJunge1981115–132-40"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> The voltage traces of such cells are known as <a href="/wiki/Pacemaker_potential" title="Pacemaker potential">pacemaker potentials</a>.<sup id="cite_ref-FOOTNOTEBullockOrkandGrinnell1977152–153_41-0" class="reference"><a href="#cite_note-FOOTNOTEBullockOrkandGrinnell1977152–153-41"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> The <a href="/wiki/Cardiac_pacemaker" title="Cardiac pacemaker">cardiac pacemaker</a> cells of the <a href="/wiki/Sinoatrial_node" title="Sinoatrial node">sinoatrial node</a> in the <a href="/wiki/Heart" title="Heart">heart</a> provide a good example.<sup id="cite_ref-noble_1960_42-0" class="reference"><a href="#cite_note-noble_1960-42"><span class="cite-bracket">&#91;</span>g<span class="cite-bracket">&#93;</span></a></sup> Although such pacemaker potentials have a <a href="/wiki/Neural_oscillation" title="Neural oscillation">natural rhythm</a>, it can be adjusted by external stimuli; for instance, <a href="/wiki/Heart_rate" title="Heart rate">heart rate</a> can be altered by pharmaceuticals as well as signals from the <a href="/wiki/Sympathetic_nervous_system" title="Sympathetic nervous system">sympathetic</a> and <a href="/wiki/Parasympathetic_nervous_system" title="Parasympathetic nervous system">parasympathetic</a> nerves.<sup id="cite_ref-FOOTNOTEBullockOrkandGrinnell1977444–445_43-0" class="reference"><a href="#cite_note-FOOTNOTEBullockOrkandGrinnell1977444–445-43"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> The external stimuli do not cause the cell's repetitive firing, but merely alter its timing.<sup id="cite_ref-FOOTNOTEBullockOrkandGrinnell1977152–153_41-1" class="reference"><a href="#cite_note-FOOTNOTEBullockOrkandGrinnell1977152–153-41"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> In some cases, the regulation of frequency can be more complex, leading to patterns of action potentials, such as <a href="/wiki/Bursting" title="Bursting">bursting</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (May 2024)">citation needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading2"><h2 id="Phases">Phases</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=12" title="Edit section: Phases"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The course of the action potential can be divided into five parts: the rising phase, the peak phase, the falling phase, the undershoot phase, and the refractory period. During the rising phase the membrane potential depolarizes (becomes more positive). The point at which <a href="/wiki/Depolarization" title="Depolarization">depolarization</a> stops is called the peak phase. At this stage, the membrane potential reaches a maximum. Subsequent to this, there is a falling phase. During this stage the membrane potential becomes more negative, returning towards resting potential. The undershoot, or <a href="/wiki/Afterhyperpolarization" title="Afterhyperpolarization">afterhyperpolarization</a>, phase is the period during which the membrane potential temporarily becomes more negatively charged than when at rest (hyperpolarized). Finally, the time during which a subsequent action potential is impossible or difficult to fire is called the <a href="/wiki/Refractory_period_(physiology)" title="Refractory period (physiology)">refractory period</a>, which may overlap with the other phases.<sup id="cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200838_44-0" class="reference"><a href="#cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200838-44"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> </p><p>The course of the action potential is determined by two coupled effects.<sup id="cite_ref-FOOTNOTEStevens1966127–128_45-0" class="reference"><a href="#cite_note-FOOTNOTEStevens1966127–128-45"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> First, voltage-sensitive ion channels open and close in response to changes in the <a href="/wiki/Membrane_potential" title="Membrane potential">membrane voltage</a> <i>V<sub>m</sub></i>. This changes the membrane's permeability to those ions.<sup id="cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200861–65_46-0" class="reference"><a href="#cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200861–65-46"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> Second, according to the <a href="/wiki/Goldman_equation" title="Goldman equation">Goldman equation</a>, this change in permeability changes the equilibrium potential <i>E<sub>m</sub></i>, and, thus, the membrane voltage <i>V<sub>m</sub></i>.<sup id="cite_ref-goldman_1943_47-0" class="reference"><a href="#cite_note-goldman_1943-47"><span class="cite-bracket">&#91;</span>h<span class="cite-bracket">&#93;</span></a></sup> Thus, the membrane potential affects the permeability, which then further affects the membrane potential. This sets up the possibility for <a href="/wiki/Positive_feedback" title="Positive feedback">positive feedback</a>, which is a key part of the rising phase of the action potential.<sup id="cite_ref-FOOTNOTEBullockOrkandGrinnell1977150–151_9-3" class="reference"><a href="#cite_note-FOOTNOTEBullockOrkandGrinnell1977150–151-9"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200848–49BullockOrkandGrinnell1977141Schmidt-Nielsen1997483Junge198189_12-1" class="reference"><a href="#cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200848–49BullockOrkandGrinnell1977141Schmidt-Nielsen1997483Junge198189-12"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> A complicating factor is that a single ion channel may have multiple internal "gates" that respond to changes in <i>V<sub>m</sub></i> in opposite ways, or at different rates.<sup id="cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200864–74BullockOrkandGrinnell1977149–150Junge198184–85Stevens1966152–158_48-0" class="reference"><a href="#cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200864–74BullockOrkandGrinnell1977149–150Junge198184–85Stevens1966152–158-48"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-hodgkin_1952_49-0" class="reference"><a href="#cite_note-hodgkin_1952-49"><span class="cite-bracket">&#91;</span>i<span class="cite-bracket">&#93;</span></a></sup> For example, although raising <i>V<sub>m</sub></i> <i>opens</i> most gates in the voltage-sensitive sodium channel, it also <i>closes</i> the channel's "inactivation gate", albeit more slowly.<sup id="cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200847PurvesAugustineFitzpatrickHall200865BullockOrkandGrinnell1977147–148Stevens1966128_50-0" class="reference"><a href="#cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200847PurvesAugustineFitzpatrickHall200865BullockOrkandGrinnell1977147–148Stevens1966128-50"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> Hence, when <i>V<sub>m</sub></i> is raised suddenly, the sodium channels open initially, but then close due to the slower inactivation. </p><p>The voltages and currents of the action potential in all of its phases were modeled accurately by <a href="/wiki/Alan_Lloyd_Hodgkin" class="mw-redirect" title="Alan Lloyd Hodgkin">Alan Lloyd Hodgkin</a> and <a href="/wiki/Andrew_Huxley" title="Andrew Huxley">Andrew Huxley</a> in 1952,<sup id="cite_ref-hodgkin_1952_49-1" class="reference"><a href="#cite_note-hodgkin_1952-49"><span class="cite-bracket">&#91;</span>i<span class="cite-bracket">&#93;</span></a></sup> for which they were awarded the <a href="/wiki/Nobel_Prize_in_Physiology_or_Medicine" title="Nobel Prize in Physiology or Medicine">Nobel Prize in Physiology or Medicine</a> in 1963.<sup id="cite_ref-Nobel_1963_51-0" class="reference"><a href="#cite_note-Nobel_1963-51"><span class="cite-bracket">&#91;</span>lower-Greek 2<span class="cite-bracket">&#93;</span></a></sup> However, <a href="/wiki/Hodgkin%E2%80%93Huxley_model" title="Hodgkin–Huxley model">their model</a> considers only two types of voltage-sensitive ion channels, and makes several assumptions about them, e.g., that their internal gates open and close independently of one another. In reality, there are many types of ion channels,<sup id="cite_ref-goldin_2007_52-0" class="reference"><a href="#cite_note-goldin_2007-52"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> and they do not always open and close independently.<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">&#91;</span>j<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Stimulation_and_rising_phase">Stimulation and rising phase</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=13" title="Edit section: Stimulation and rising phase"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A typical action potential begins at the <a href="/wiki/Axon_hillock" title="Axon hillock">axon hillock</a><sup id="cite_ref-FOOTNOTEStevens196649_54-0" class="reference"><a href="#cite_note-FOOTNOTEStevens196649-54"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> with a sufficiently strong depolarization, e.g., a stimulus that increases <i>V<sub>m</sub></i>. This depolarization is often caused by the injection of extra sodium <a href="/wiki/Cation" class="mw-redirect" title="Cation">cations</a> into the cell; these cations can come from a wide variety of sources, such as <a href="/wiki/Chemical_synapse" title="Chemical synapse">chemical synapses</a>, <a href="/wiki/Sensory_neuron" title="Sensory neuron">sensory neurons</a> or <a href="/wiki/Pacemaker_potential" title="Pacemaker potential">pacemaker potentials</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (May 2024)">citation needed</span></a></i>&#93;</sup> </p><p>For a neuron at rest, there is a high concentration of sodium and chloride ions in the <a href="/wiki/Extracellular_fluid" title="Extracellular fluid">extracellular fluid</a> compared to the <a href="/wiki/Intracellular_fluid" class="mw-redirect" title="Intracellular fluid">intracellular fluid</a>, while there is a high concentration of potassium ions in the intracellular fluid compared to the extracellular fluid. The difference in concentrations, which causes ions to move <a href="/wiki/Second_law_of_thermodynamics" title="Second law of thermodynamics">from a high to a low concentration</a>, and electrostatic effects (attraction of opposite charges) are responsible for the movement of ions in and out of the neuron. The inside of a neuron has a negative charge, relative to the cell exterior, from the movement of K<sup>+</sup> out of the cell. The neuron membrane is more permeable to K<sup>+</sup> than to other ions, allowing this ion to selectively move out of the cell, down its concentration gradient. This concentration gradient along with <a href="/wiki/Potassium_leak_channel" class="mw-redirect" title="Potassium leak channel">potassium leak channels</a> present on the membrane of the neuron causes an <a href="https://en.wiktionary.org/wiki/Special:Search/efflux" class="extiw" title="wikt:Special:Search/efflux">efflux</a> of potassium ions making the resting potential close to <i>E</i><sub>K</sub>&#160;≈&#160;–75&#160;mV.<sup id="cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200834BullockOrkandGrinnell1977134Schmidt-Nielsen1997478–480_55-0" class="reference"><a href="#cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200834BullockOrkandGrinnell1977134Schmidt-Nielsen1997478–480-55"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> Since Na<sup>+</sup> ions are in higher concentrations outside of the cell, the concentration and voltage differences both drive them into the cell when Na<sup>+</sup> channels open. Depolarization opens both the sodium and potassium channels in the membrane, allowing the ions to flow into and out of the axon, respectively. If the depolarization is small (say, increasing <i>V<sub>m</sub></i> from −70&#160;mV to −60&#160;mV), the outward potassium current overwhelms the inward sodium current and the membrane repolarizes back to its normal resting potential around −70&#160;mV.<sup id="cite_ref-FOOTNOTEBullockOrkandGrinnell1977150–151_9-4" class="reference"><a href="#cite_note-FOOTNOTEBullockOrkandGrinnell1977150–151-9"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEJunge198189–90_10-2" class="reference"><a href="#cite_note-FOOTNOTEJunge198189–90-10"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTESchmidt-Nielsen1997484_11-1" class="reference"><a href="#cite_note-FOOTNOTESchmidt-Nielsen1997484-11"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> However, if the depolarization is large enough, the inward sodium current increases more than the outward potassium current and a runaway condition (<a href="/wiki/Positive_feedback" title="Positive feedback">positive feedback</a>) results: the more inward current there is, the more <i>V<sub>m</sub></i> increases, which in turn further increases the inward current.<sup id="cite_ref-FOOTNOTEBullockOrkandGrinnell1977150–151_9-5" class="reference"><a href="#cite_note-FOOTNOTEBullockOrkandGrinnell1977150–151-9"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200848–49BullockOrkandGrinnell1977141Schmidt-Nielsen1997483Junge198189_12-2" class="reference"><a href="#cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200848–49BullockOrkandGrinnell1977141Schmidt-Nielsen1997483Junge198189-12"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> A sufficiently strong depolarization (increase in <i>V<sub>m</sub></i>) causes the voltage-sensitive sodium channels to open; the increasing permeability to sodium drives <i>V<sub>m</sub></i> closer to the sodium equilibrium voltage <i>E</i><sub>Na</sub>≈ +55&#160;mV. The increasing voltage in turn causes even more sodium channels to open, which pushes <i>V<sub>m</sub></i> still further towards <i>E</i><sub>Na</sub>. This positive feedback continues until the sodium channels are fully open and <i>V<sub>m</sub></i> is close to <i>E</i><sub>Na</sub>.<sup id="cite_ref-FOOTNOTEBullockOrkandGrinnell1977150–151_9-6" class="reference"><a href="#cite_note-FOOTNOTEBullockOrkandGrinnell1977150–151-9"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEJunge198189–90_10-3" class="reference"><a href="#cite_note-FOOTNOTEJunge198189–90-10"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200849–50BullockOrkandGrinnell1977140–141Schmidt-Nielsen1997480–481_25-1" class="reference"><a href="#cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200849–50BullockOrkandGrinnell1977140–141Schmidt-Nielsen1997480–481-25"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTESchmidt-Nielsen1997483–484_26-1" class="reference"><a href="#cite_note-FOOTNOTESchmidt-Nielsen1997483–484-26"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> The sharp rise in <i>V<sub>m</sub></i> and sodium permeability correspond to the <i>rising phase</i> of the action potential.<sup id="cite_ref-FOOTNOTEBullockOrkandGrinnell1977150–151_9-7" class="reference"><a href="#cite_note-FOOTNOTEBullockOrkandGrinnell1977150–151-9"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEJunge198189–90_10-4" class="reference"><a href="#cite_note-FOOTNOTEJunge198189–90-10"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200849–50BullockOrkandGrinnell1977140–141Schmidt-Nielsen1997480–481_25-2" class="reference"><a href="#cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200849–50BullockOrkandGrinnell1977140–141Schmidt-Nielsen1997480–481-25"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTESchmidt-Nielsen1997483–484_26-2" class="reference"><a href="#cite_note-FOOTNOTESchmidt-Nielsen1997483–484-26"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> </p><p>The critical threshold voltage for this runaway condition is usually around −45&#160;mV, but it depends on the recent activity of the axon. A cell that has just fired an action potential cannot fire another one immediately, since the Na<sup>+</sup> channels have not recovered from the inactivated state. The period during which no new action potential can be fired is called the <i>absolute refractory period</i>.<sup id="cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200849_56-0" class="reference"><a href="#cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200849-56"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEStevens196619–20_57-0" class="reference"><a href="#cite_note-FOOTNOTEStevens196619–20-57"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEBullockOrkandGrinnell1977151Junge19814–5_58-0" class="reference"><a href="#cite_note-FOOTNOTEBullockOrkandGrinnell1977151Junge19814–5-58"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> At longer times, after some but not all of the ion channels have recovered, the axon can be stimulated to produce another action potential, but with a higher threshold, requiring a much stronger depolarization, e.g., to −30&#160;mV. The period during which action potentials are unusually difficult to evoke is called the <i>relative refractory period</i>.<sup id="cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200849_56-1" class="reference"><a href="#cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200849-56"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEStevens196619–20_57-1" class="reference"><a href="#cite_note-FOOTNOTEStevens196619–20-57"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEBullockOrkandGrinnell1977151Junge19814–5_58-1" class="reference"><a href="#cite_note-FOOTNOTEBullockOrkandGrinnell1977151Junge19814–5-58"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Peak_phase">Peak phase</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=14" title="Edit section: Peak phase"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The positive feedback of the rising phase slows and comes to a halt as the sodium ion channels become maximally open. At the peak of the action potential, the sodium permeability is maximized and the membrane voltage <i>V<sub>m</sub></i> is nearly equal to the sodium equilibrium voltage <i>E</i><sub>Na</sub>. However, the same raised voltage that opened the sodium channels initially also slowly shuts them off, by closing their pores; the sodium channels become <i>inactivated</i>.<sup id="cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200847PurvesAugustineFitzpatrickHall200865BullockOrkandGrinnell1977147–148Stevens1966128_50-1" class="reference"><a href="#cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200847PurvesAugustineFitzpatrickHall200865BullockOrkandGrinnell1977147–148Stevens1966128-50"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> This lowers the membrane's permeability to sodium relative to potassium, driving the membrane voltage back towards the resting value. At the same time, the raised voltage opens voltage-sensitive potassium channels; the increase in the membrane's potassium permeability drives <i>V<sub>m</sub></i> towards <i>E</i><sub>K</sub>.<sup id="cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200847PurvesAugustineFitzpatrickHall200865BullockOrkandGrinnell1977147–148Stevens1966128_50-2" class="reference"><a href="#cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200847PurvesAugustineFitzpatrickHall200865BullockOrkandGrinnell1977147–148Stevens1966128-50"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> Combined, these changes in sodium and potassium permeability cause <i>V<sub>m</sub></i> to drop quickly, repolarizing the membrane and producing the "falling phase" of the action potential.<sup id="cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200849_56-2" class="reference"><a href="#cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200849-56"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEBullockOrkandGrinnell1977152_59-0" class="reference"><a href="#cite_note-FOOTNOTEBullockOrkandGrinnell1977152-59"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTESchmidt-Nielsen1997483–484_26-3" class="reference"><a href="#cite_note-FOOTNOTESchmidt-Nielsen1997483–484-26"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEBullockOrkandGrinnell1977147–149Stevens1966126–127_60-0" class="reference"><a href="#cite_note-FOOTNOTEBullockOrkandGrinnell1977147–149Stevens1966126–127-60"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Afterhyperpolarization">Afterhyperpolarization</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=15" title="Edit section: Afterhyperpolarization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The depolarized voltage opens additional voltage-dependent potassium channels, and some of these do not close right away when the membrane returns to its normal resting voltage. In addition, <a href="/wiki/SK_channel" title="SK channel">further potassium channels</a> open in response to the influx of calcium ions during the action potential. The intracellular concentration of potassium ions is transiently unusually low, making the membrane voltage <i>V<sub>m</sub></i> even closer to the potassium equilibrium voltage <i>E</i><sub>K</sub>. The membrane potential goes below the resting membrane potential. Hence, there is an undershoot or <a href="/wiki/Hyperpolarization_(biology)" title="Hyperpolarization (biology)">hyperpolarization</a>, termed an <a href="/wiki/Afterhyperpolarization" title="Afterhyperpolarization">afterhyperpolarization</a>, that persists until the membrane potassium permeability returns to its usual value, restoring the membrane potential to the resting state.<sup id="cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200837_61-0" class="reference"><a href="#cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200837-61"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEBullockOrkandGrinnell1977152_59-1" class="reference"><a href="#cite_note-FOOTNOTEBullockOrkandGrinnell1977152-59"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Refractory_period">Refractory period</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=16" title="Edit section: Refractory period"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Each action potential is followed by a <a href="/wiki/Refractory_period_(physiology)" title="Refractory period (physiology)">refractory period</a>, which can be divided into an <i>absolute refractory period</i>, during which it is impossible to evoke another action potential, and then a <i>relative refractory period</i>, during which a stronger-than-usual stimulus is required.<sup id="cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200849_56-3" class="reference"><a href="#cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200849-56"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEStevens196619–20_57-2" class="reference"><a href="#cite_note-FOOTNOTEStevens196619–20-57"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEBullockOrkandGrinnell1977151Junge19814–5_58-2" class="reference"><a href="#cite_note-FOOTNOTEBullockOrkandGrinnell1977151Junge19814–5-58"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> These two refractory periods are caused by changes in the state of sodium and potassium channel molecules. When closing after an action potential, sodium channels enter an <a href="/wiki/Sodium_channel#Gating" title="Sodium channel">"inactivated" state</a>, in which they cannot be made to open regardless of the membrane potential—this gives rise to the absolute refractory period. Even after a sufficient number of sodium channels have transitioned back to their resting state, it frequently happens that a fraction of potassium channels remains open, making it difficult for the membrane potential to depolarize, and thereby giving rise to the relative refractory period. Because the density and subtypes of potassium channels may differ greatly between different types of neurons, the duration of the relative refractory period is highly variable.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (May 2024)">citation needed</span></a></i>&#93;</sup> </p><p>The absolute refractory period is largely responsible for the unidirectional propagation of action potentials along axons.<sup id="cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200856_62-0" class="reference"><a href="#cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200856-62"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> At any given moment, the patch of axon behind the actively spiking part is refractory, but the patch in front, not having been activated recently, is capable of being stimulated by the depolarization from the action potential. </p> <div class="mw-heading mw-heading2"><h2 id="Propagation">Propagation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=17" title="Edit section: Propagation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Nerve_conduction_velocity" title="Nerve conduction velocity">Nerve conduction velocity</a></div> <p>The action potential generated at the axon hillock propagates as a wave along the axon.<sup id="cite_ref-FOOTNOTEBullockOrkandGrinnell1977160–164_63-0" class="reference"><a href="#cite_note-FOOTNOTEBullockOrkandGrinnell1977160–164-63"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> The currents flowing inwards at a point on the axon during an action potential spread out along the axon, and depolarize the adjacent sections of its membrane. If sufficiently strong, this depolarization provokes a similar action potential at the neighboring membrane patches. This basic mechanism was demonstrated by <a href="/wiki/Alan_Lloyd_Hodgkin" class="mw-redirect" title="Alan Lloyd Hodgkin">Alan Lloyd Hodgkin</a> in 1937. After crushing or cooling nerve segments and thus blocking the action potentials, he showed that an action potential arriving on one side of the block could provoke another action potential on the other, provided that the blocked segment was sufficiently short.<sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">&#91;</span>k<span class="cite-bracket">&#93;</span></a></sup> </p><p>Once an action potential has occurred at a patch of membrane, the membrane patch needs time to recover before it can fire again. At the molecular level, this <i>absolute refractory period</i> corresponds to the time required for the voltage-activated sodium channels to recover from inactivation, i.e., to return to their closed state.<sup id="cite_ref-FOOTNOTEStevens196619–20_57-3" class="reference"><a href="#cite_note-FOOTNOTEStevens196619–20-57"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> There are many types of voltage-activated potassium channels in neurons. Some of them inactivate fast (A-type currents) and some of them inactivate slowly or not inactivate at all; this variability guarantees that there will be always an available source of current for repolarization, even if some of the potassium channels are inactivated because of preceding depolarization. On the other hand, all neuronal voltage-activated sodium channels inactivate within several milliseconds during strong depolarization, thus making following depolarization impossible until a substantial fraction of sodium channels have returned to their closed state. Although it limits the frequency of firing,<sup id="cite_ref-FOOTNOTEStevens196621–23_65-0" class="reference"><a href="#cite_note-FOOTNOTEStevens196621–23-65"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> the absolute refractory period ensures that the action potential moves in only one direction along an axon.<sup id="cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200856_62-1" class="reference"><a href="#cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200856-62"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> The currents flowing in due to an action potential spread out in both directions along the axon.<sup id="cite_ref-FOOTNOTEBullockOrkandGrinnell1977161–164_66-0" class="reference"><a href="#cite_note-FOOTNOTEBullockOrkandGrinnell1977161–164-66"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> However, only the unfired part of the axon can respond with an action potential; the part that has just fired is unresponsive until the action potential is safely out of range and cannot restimulate that part. In the usual <a href="/wiki/Orthodromic_conduction" class="mw-redirect" title="Orthodromic conduction">orthodromic conduction</a>, the action potential propagates from the axon hillock towards the synaptic knobs (the axonal termini); propagation in the opposite direction—known as <a href="/wiki/Antidromic_conduction" class="mw-redirect" title="Antidromic conduction">antidromic conduction</a>—is very rare.<sup id="cite_ref-FOOTNOTEBullockOrkandGrinnell1977509_67-0" class="reference"><a href="#cite_note-FOOTNOTEBullockOrkandGrinnell1977509-67"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> However, if a laboratory axon is stimulated in its middle, both halves of the axon are "fresh", i.e., unfired; then two action potentials will be generated, one traveling towards the axon hillock and the other traveling towards the synaptic knobs. </p> <div class="mw-heading mw-heading3"><h3 id="Myelin_and_saltatory_conduction">Myelin and saltatory conduction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=18" title="Edit section: Myelin and saltatory conduction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Myelination" class="mw-redirect" title="Myelination">Myelination</a> and <a href="/wiki/Saltatory_conduction" title="Saltatory conduction">Saltatory conduction</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Neuron1.jpg" class="mw-file-description"><img alt="Axons of neurons are wrapped by several myelin sheaths, which shield the axon from extracellular fluid. There are short gaps between the myelin sheaths known as nodes of Ranvier where the axon is directly exposed to the surrounding extracellular fluid." src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Neuron1.jpg/220px-Neuron1.jpg" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Neuron1.jpg/330px-Neuron1.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Neuron1.jpg/440px-Neuron1.jpg 2x" data-file-width="1300" data-file-height="1300" /></a><figcaption>In <a href="/wiki/Saltatory_conduction" title="Saltatory conduction">saltatory conduction</a>, an action potential at one <a href="/wiki/Node_of_Ranvier" title="Node of Ranvier">node of Ranvier</a> causes inwards currents that depolarize the membrane at the next node, provoking a new action potential there; the action potential appears to "hop" from node to node.</figcaption></figure> <p>In order to enable fast and efficient transduction of electrical signals in the nervous system, certain neuronal axons are covered with <a href="/wiki/Myelin" title="Myelin">myelin</a> sheaths. Myelin is a multilamellar membrane that enwraps the axon in segments separated by intervals known as <a href="/wiki/Nodes_of_Ranvier" class="mw-redirect" title="Nodes of Ranvier">nodes of Ranvier</a>. It is produced by specialized cells: <a href="/wiki/Schwann_cell" title="Schwann cell">Schwann cells</a> exclusively in the <a href="/wiki/Peripheral_nervous_system" title="Peripheral nervous system">peripheral nervous system</a>, and <a href="/wiki/Oligodendrocyte" title="Oligodendrocyte">oligodendrocytes</a> exclusively in the <a href="/wiki/Central_nervous_system" title="Central nervous system">central nervous system</a>. Myelin sheath reduces membrane capacitance and increases membrane resistance in the inter-node intervals, thus allowing a fast, saltatory movement of action potentials from node to node.<sup id="cite_ref-Zalc_68-0" class="reference"><a href="#cite_note-Zalc-68"><span class="cite-bracket">&#91;</span>l<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-S._Poliak_&amp;_E._Peles_69-0" class="reference"><a href="#cite_note-S._Poliak_&amp;_E._Peles-69"><span class="cite-bracket">&#91;</span>m<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">&#91;</span>n<span class="cite-bracket">&#93;</span></a></sup> Myelination is found mainly in <a href="/wiki/Vertebrate" title="Vertebrate">vertebrates</a>, but an analogous system has been discovered in a few invertebrates, such as some species of <a href="/wiki/Shrimp" title="Shrimp">shrimp</a>.<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">&#91;</span>o<span class="cite-bracket">&#93;</span></a></sup> Not all neurons in vertebrates are myelinated; for example, axons of the neurons comprising the autonomous nervous system are not, in general, myelinated. </p><p>Myelin prevents ions from entering or leaving the axon along myelinated segments. As a general rule, myelination increases the <a href="/wiki/Conduction_velocity" class="mw-redirect" title="Conduction velocity">conduction velocity</a> of action potentials and makes them more energy-efficient. Whether saltatory or not, the mean conduction velocity of an action potential ranges from 1&#160;<a href="/wiki/Metre_per_second" title="Metre per second">meter per second</a> (m/s) to over 100&#160;m/s, and, in general, increases with axonal diameter.<sup id="cite_ref-hursh_1939_72-0" class="reference"><a href="#cite_note-hursh_1939-72"><span class="cite-bracket">&#91;</span>p<span class="cite-bracket">&#93;</span></a></sup> </p><p>Action potentials cannot propagate through the membrane in myelinated segments of the axon. However, the current is carried by the cytoplasm, which is sufficient to depolarize the first or second subsequent <a href="/wiki/Node_of_Ranvier" title="Node of Ranvier">node of Ranvier</a>. Instead, the ionic current from an action potential at one <a href="/wiki/Node_of_Ranvier" title="Node of Ranvier">node of Ranvier</a> provokes another action potential at the next node; this apparent "hopping" of the action potential from node to node is known as <a href="/wiki/Saltatory_conduction" title="Saltatory conduction">saltatory conduction</a>. Although the mechanism of saltatory conduction was suggested in 1925 by Ralph Lillie,<sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">&#91;</span>q<span class="cite-bracket">&#93;</span></a></sup> the first experimental evidence for saltatory conduction came from <a href="/wiki/Ichiji_Tasaki" title="Ichiji Tasaki">Ichiji Tasaki</a><sup id="cite_ref-tasaki_1939_74-0" class="reference"><a href="#cite_note-tasaki_1939-74"><span class="cite-bracket">&#91;</span>r<span class="cite-bracket">&#93;</span></a></sup> and Taiji Takeuchi<sup id="cite_ref-tasaki_1941_1942_1959_75-0" class="reference"><a href="#cite_note-tasaki_1941_1942_1959-75"><span class="cite-bracket">&#91;</span>s<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> and from <a href="/wiki/Andrew_Huxley" title="Andrew Huxley">Andrew Huxley</a> and Robert Stämpfli.<sup id="cite_ref-huxley_staempfli_1949_1951_77-0" class="reference"><a href="#cite_note-huxley_staempfli_1949_1951-77"><span class="cite-bracket">&#91;</span>t<span class="cite-bracket">&#93;</span></a></sup> By contrast, in unmyelinated axons, the action potential provokes another in the membrane immediately adjacent, and moves continuously down the axon like a wave. </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Conduction_velocity_and_myelination.png" class="mw-file-description"><img alt="A log-log plot of conduction velocity (m/s) vs axon diameter (μm)." src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Conduction_velocity_and_myelination.png/300px-Conduction_velocity_and_myelination.png" decoding="async" width="300" height="287" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Conduction_velocity_and_myelination.png/450px-Conduction_velocity_and_myelination.png 1.5x, //upload.wikimedia.org/wikipedia/commons/4/4a/Conduction_velocity_and_myelination.png 2x" data-file-width="520" data-file-height="498" /></a><figcaption>Comparison of the <a href="/wiki/Conduction_velocity" class="mw-redirect" title="Conduction velocity">conduction velocities</a> of myelinated and unmyelinated <a href="/wiki/Axon" title="Axon">axons</a> in the <a href="/wiki/Cat" title="Cat">cat</a>.<sup id="cite_ref-FOOTNOTESchmidt-Nielsen1997Figure_12.13_78-0" class="reference"><a href="#cite_note-FOOTNOTESchmidt-Nielsen1997Figure_12.13-78"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> The conduction velocity <i>v</i> of myelinated neurons varies roughly linearly with axon diameter <i>d</i> (that is, <i>v</i> ∝ <i>d</i>),<sup id="cite_ref-hursh_1939_72-1" class="reference"><a href="#cite_note-hursh_1939-72"><span class="cite-bracket">&#91;</span>p<span class="cite-bracket">&#93;</span></a></sup> whereas the speed of unmyelinated neurons varies roughly as the square root (<i>v</i> ∝<span class="nowrap">&#8730;<span style="border-top:1px solid; padding:0 0.1em;"><i>d</i></span></span>).<sup id="cite_ref-rushton_1951_79-0" class="reference"><a href="#cite_note-rushton_1951-79"><span class="cite-bracket">&#91;</span>u<span class="cite-bracket">&#93;</span></a></sup> The red and blue curves are fits of experimental data, whereas the dotted lines are their theoretical extrapolations.</figcaption></figure> <p>Myelin has two important advantages: fast conduction speed and energy efficiency. For axons larger than a minimum diameter (roughly 1 <a href="/wiki/Micrometre" title="Micrometre">micrometre</a>), myelination increases the <a href="/wiki/Conduction_velocity" class="mw-redirect" title="Conduction velocity">conduction velocity</a> of an action potential, typically tenfold.<sup id="cite_ref-hartline_2007_80-0" class="reference"><a href="#cite_note-hartline_2007-80"><span class="cite-bracket">&#91;</span>v<span class="cite-bracket">&#93;</span></a></sup> Conversely, for a given conduction velocity, myelinated fibers are smaller than their unmyelinated counterparts. For example, action potentials move at roughly the same speed (25&#160;m/s) in a myelinated frog axon and an unmyelinated <a href="/wiki/Squid_giant_axon" title="Squid giant axon">squid giant axon</a>, but the frog axon has a roughly 30-fold smaller diameter and 1000-fold smaller cross-sectional area. Also, since the ionic currents are confined to the nodes of Ranvier, far fewer ions "leak" across the membrane, saving metabolic energy. This saving is a significant <a href="/wiki/Natural_selection" title="Natural selection">selective advantage</a>, since the human nervous system uses approximately 20% of the body's metabolic energy.<sup id="cite_ref-hartline_2007_80-1" class="reference"><a href="#cite_note-hartline_2007-80"><span class="cite-bracket">&#91;</span>v<span class="cite-bracket">&#93;</span></a></sup> </p><p>The length of axons' myelinated segments is important to the success of saltatory conduction. They should be as long as possible to maximize the speed of conduction, but not so long that the arriving signal is too weak to provoke an action potential at the next node of Ranvier. In nature, myelinated segments are generally long enough for the passively propagated signal to travel for at least two nodes while retaining enough amplitude to fire an action potential at the second or third node. Thus, the <a href="/wiki/Safety_factor" class="mw-redirect" title="Safety factor">safety factor</a> of saltatory conduction is high, allowing transmission to bypass nodes in case of injury. However, action potentials may end prematurely in certain places where the safety factor is low, even in unmyelinated neurons; a common example is the branch point of an axon, where it divides into two axons.<sup id="cite_ref-FOOTNOTEBullockOrkandGrinnell1977163_81-0" class="reference"><a href="#cite_note-FOOTNOTEBullockOrkandGrinnell1977163-81"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> </p><p>Some diseases degrade myelin and impair saltatory conduction, reducing the conduction velocity of action potentials.<sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">&#91;</span>w<span class="cite-bracket">&#93;</span></a></sup> The most well-known of these is <a href="/wiki/Multiple_sclerosis" title="Multiple sclerosis">multiple sclerosis</a>, in which the breakdown of myelin impairs coordinated movement.<sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Cable_theory">Cable theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=19" title="Edit section: Cable theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Cable_theory" title="Cable theory">Cable theory</a></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Cable_theory_Neuron_RC_circuit_v3.svg" class="mw-file-description"><img alt="A diagram showing the resistance and capacitance across the cell membrane of an axon. The cell membrane is divided into adjacent regions, each having its own resistance and capacitance between the cytosol and extracellular fluid across the membrane. Each of these regions is in turn connected by an intracellular circuit with a resistance." src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0c/Cable_theory_Neuron_RC_circuit_v3.svg/300px-Cable_theory_Neuron_RC_circuit_v3.svg.png" decoding="async" width="300" height="225" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0c/Cable_theory_Neuron_RC_circuit_v3.svg/450px-Cable_theory_Neuron_RC_circuit_v3.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0c/Cable_theory_Neuron_RC_circuit_v3.svg/600px-Cable_theory_Neuron_RC_circuit_v3.svg.png 2x" data-file-width="576" data-file-height="432" /></a><figcaption>Cable theory's simplified view of a neuronal fiber. The connected <a href="/wiki/RC_circuit" title="RC circuit">RC circuits</a> correspond to adjacent segments of a passive <a href="/wiki/Neurite" title="Neurite">neurite</a>. The extracellular resistances <i>r<sub>e</sub></i> (the counterparts of the intracellular resistances <i>r<sub>i</sub></i>) are not shown, since they are usually negligibly small; the extracellular medium may be assumed to have the same voltage everywhere.</figcaption></figure> <p>The flow of currents within an axon can be described quantitatively by <a href="/wiki/Cable_theory" title="Cable theory">cable theory</a><sup id="cite_ref-rall_1989_84-0" class="reference"><a href="#cite_note-rall_1989-84"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup> and its elaborations, such as the compartmental model.<sup id="cite_ref-segev_1989_85-0" class="reference"><a href="#cite_note-segev_1989-85"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup> Cable theory was developed in 1855 by <a href="/wiki/William_Thomson,_1st_Baron_Kelvin" class="mw-redirect" title="William Thomson, 1st Baron Kelvin">Lord Kelvin</a> to model the transatlantic telegraph cable<sup id="cite_ref-kelvin_1855_86-0" class="reference"><a href="#cite_note-kelvin_1855-86"><span class="cite-bracket">&#91;</span>x<span class="cite-bracket">&#93;</span></a></sup> and was shown to be relevant to neurons by <a href="/wiki/Alan_Lloyd_Hodgkin" class="mw-redirect" title="Alan Lloyd Hodgkin">Hodgkin</a> and <a href="/wiki/W._A._H._Rushton" title="W. A. H. Rushton">Rushton</a> in 1946.<sup id="cite_ref-hodgkin_1946_87-0" class="reference"><a href="#cite_note-hodgkin_1946-87"><span class="cite-bracket">&#91;</span>y<span class="cite-bracket">&#93;</span></a></sup> In simple cable theory, the neuron is treated as an electrically passive, perfectly cylindrical transmission cable, which can be described by a <a href="/wiki/Partial_differential_equation" title="Partial differential equation">partial differential equation</a><sup id="cite_ref-rall_1989_84-1" class="reference"><a href="#cite_note-rall_1989-84"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau {\frac {\partial V}{\partial t}}=\lambda ^{2}{\frac {\partial ^{2}V}{\partial x^{2}}}-V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>V</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>V</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau {\frac {\partial V}{\partial t}}=\lambda ^{2}{\frac {\partial ^{2}V}{\partial x^{2}}}-V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fb2fbc6c1ffa8f3c0e34fd16e462ed045aaefa6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:20.3ex; height:6.009ex;" alt="{\displaystyle \tau {\frac {\partial V}{\partial t}}=\lambda ^{2}{\frac {\partial ^{2}V}{\partial x^{2}}}-V}"></span></dd></dl> <p>where <i>V</i>(<i>x</i>, <i>t</i>) is the voltage across the membrane at a time <i>t</i> and a position <i>x</i> along the length of the neuron, and where λ and τ are the characteristic length and time scales on which those voltages decay in response to a stimulus. Referring to the circuit diagram on the right, these scales can be determined from the resistances and capacitances per unit length.<sup id="cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200852–53_88-0" class="reference"><a href="#cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200852–53-88"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau =\ r_{m}c_{m}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C4;<!-- τ --></mi> <mo>=</mo> <mtext>&#xA0;</mtext> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau =\ r_{m}c_{m}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85fd435a213cd9a8e2d0cc85f2a79a10b11e43b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.674ex; height:2.009ex;" alt="{\displaystyle \tau =\ r_{m}c_{m}\,}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda ={\sqrt {\frac {r_{m}}{r_{\ell }}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </msub> </mfrac> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda ={\sqrt {\frac {r_{m}}{r_{\ell }}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea22ff2efda07286befe186e84687c28b4a95b76" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:10.337ex; height:6.343ex;" alt="{\displaystyle \lambda ={\sqrt {\frac {r_{m}}{r_{\ell }}}}}"></span></dd></dl> <p>These time and length-scales can be used to understand the dependence of the conduction velocity on the diameter of the neuron in unmyelinated fibers. For example, the time-scale τ increases with both the membrane resistance <i>r<sub>m</sub></i> and capacitance <i>c<sub>m</sub></i>. As the capacitance increases, more charge must be transferred to produce a given transmembrane voltage (by <a href="/wiki/Capacitance" title="Capacitance">the equation <i>Q</i>&#160;=&#160;<i>CV</i></a>); as the resistance increases, less charge is transferred per unit time, making the equilibration slower. In a similar manner, if the internal resistance per unit length <i>r<sub>i</sub></i> is lower in one axon than in another (e.g., because the radius of the former is larger), the spatial decay length λ becomes longer and the <a href="/wiki/Conduction_velocity" class="mw-redirect" title="Conduction velocity">conduction velocity</a> of an action potential should increase. If the transmembrane resistance <i>r<sub>m</sub></i> is increased, that lowers the average "leakage" current across the membrane, likewise causing <i>λ</i> to become longer, increasing the conduction velocity. </p> <div class="mw-heading mw-heading2"><h2 id="Termination">Termination</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=20" title="Edit section: Termination"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Chemical_synapses">Chemical synapses</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=21" title="Edit section: Chemical synapses"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Chemical_synapse" title="Chemical synapse">Chemical synapse</a>, <a href="/wiki/Neurotransmitter" title="Neurotransmitter">Neurotransmitter</a>, <a href="/wiki/Excitatory_postsynaptic_potential" title="Excitatory postsynaptic potential">Excitatory postsynaptic potential</a>, and <a href="/wiki/Inhibitory_postsynaptic_potential" title="Inhibitory postsynaptic potential">Inhibitory postsynaptic potential</a></div> <p>In general, action potentials that reach the synaptic knobs cause a <a href="/wiki/Neurotransmitter" title="Neurotransmitter">neurotransmitter</a> to be released into the synaptic cleft.<sup id="cite_ref-89" class="reference"><a href="#cite_note-89"><span class="cite-bracket">&#91;</span>z<span class="cite-bracket">&#93;</span></a></sup> Neurotransmitters are small molecules that may open ion channels in the postsynaptic cell; most axons have the same neurotransmitter at all of their termini. The arrival of the action potential opens voltage-sensitive calcium channels in the presynaptic membrane; the influx of calcium causes <a href="/wiki/Synaptic_vesicle" title="Synaptic vesicle">vesicles</a> filled with neurotransmitter to migrate to the cell's surface and <a href="/wiki/Exocytosis" title="Exocytosis">release their contents</a> into the <a href="/wiki/Synaptic_cleft" class="mw-redirect" title="Synaptic cleft">synaptic cleft</a>.<sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">&#91;</span>aa<span class="cite-bracket">&#93;</span></a></sup> This complex process is inhibited by the <a href="/wiki/Neurotoxin" title="Neurotoxin">neurotoxins</a> <a href="/wiki/Tetanospasmin" class="mw-redirect" title="Tetanospasmin">tetanospasmin</a> and <a href="/wiki/Botulinum_toxin" title="Botulinum toxin">botulinum toxin</a>, which are responsible for <a href="/wiki/Tetanus" title="Tetanus">tetanus</a> and <a href="/wiki/Botulism" title="Botulism">botulism</a>, respectively.<sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">&#91;</span>ab<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Gap_cell_junction-en.svg" class="mw-file-description"><img alt="Electrical synapases are composed of protein complexes that are imbedded in both membranes of adjacent neurons and thereby provide a direct channel for ions to flow from the cytoplasm of one cell into an adjacent cell." src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Gap_cell_junction-en.svg/220px-Gap_cell_junction-en.svg.png" decoding="async" width="220" height="155" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Gap_cell_junction-en.svg/330px-Gap_cell_junction-en.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Gap_cell_junction-en.svg/440px-Gap_cell_junction-en.svg.png 2x" data-file-width="582" data-file-height="409" /></a><figcaption><a href="/wiki/Electrical_synapse" title="Electrical synapse">Electrical synapses</a> between excitable cells allow ions to pass directly from one cell to another, and are much faster than <a href="/wiki/Chemical_synapse" title="Chemical synapse">chemical synapses</a>.</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Electrical_synapses">Electrical synapses</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=22" title="Edit section: Electrical synapses"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Electrical_synapse" title="Electrical synapse">Electrical synapse</a>, <a href="/wiki/Gap_junction" title="Gap junction">Gap junction</a>, and <a href="/wiki/Connexin" title="Connexin">Connexin</a></div> <p>Some synapses dispense with the "middleman" of the neurotransmitter, and connect the presynaptic and postsynaptic cells together.<sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">&#91;</span>ac<span class="cite-bracket">&#93;</span></a></sup> When an action potential reaches such a synapse, the ionic currents flowing into the presynaptic cell can cross the barrier of the two cell membranes and enter the postsynaptic cell through pores known as <a href="/wiki/Connexon" title="Connexon">connexons</a>.<sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">&#91;</span>ad<span class="cite-bracket">&#93;</span></a></sup> Thus, the ionic currents of the presynaptic action potential can directly stimulate the postsynaptic cell. Electrical synapses allow for faster transmission because they do not require the slow diffusion of <a href="/wiki/Neurotransmitter" title="Neurotransmitter">neurotransmitters</a> across the synaptic cleft. Hence, electrical synapses are used whenever fast response and coordination of timing are crucial, as in <a href="/wiki/Escape_reflex" title="Escape reflex">escape reflexes</a>, the <a href="/wiki/Retina" title="Retina">retina</a> of <a href="/wiki/Vertebrate" title="Vertebrate">vertebrates</a>, and the <a href="/wiki/Heart" title="Heart">heart</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Neuromuscular_junctions">Neuromuscular junctions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=23" title="Edit section: Neuromuscular junctions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Neuromuscular_junction" title="Neuromuscular junction">Neuromuscular junction</a>, <a href="/wiki/Acetylcholine_receptor" title="Acetylcholine receptor">Acetylcholine receptor</a>, and <a href="/wiki/Cholinesterase_enzyme" class="mw-redirect" title="Cholinesterase enzyme">Cholinesterase enzyme</a></div> <p>A special case of a chemical synapse is the <a href="/wiki/Neuromuscular_junction" title="Neuromuscular junction">neuromuscular junction</a>, in which the <a href="/wiki/Axon" title="Axon">axon</a> of a <a href="/wiki/Motor_neuron" title="Motor neuron">motor neuron</a> terminates on a <a href="/wiki/Muscle_fiber" class="mw-redirect" title="Muscle fiber">muscle fiber</a>.<sup id="cite_ref-94" class="reference"><a href="#cite_note-94"><span class="cite-bracket">&#91;</span>ae<span class="cite-bracket">&#93;</span></a></sup> In such cases, the released neurotransmitter is <a href="/wiki/Acetylcholine" title="Acetylcholine">acetylcholine</a>, which binds to the acetylcholine receptor, an integral membrane protein in the membrane (the <i><a href="/wiki/Sarcolemma" title="Sarcolemma">sarcolemma</a></i>) of the muscle fiber.<sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">&#91;</span>af<span class="cite-bracket">&#93;</span></a></sup> However, the acetylcholine does not remain bound; rather, it dissociates and is <a href="/wiki/Hydrolysis" title="Hydrolysis">hydrolyzed</a> by the enzyme, <a href="/wiki/Acetylcholinesterase" title="Acetylcholinesterase">acetylcholinesterase</a>, located in the synapse. This enzyme quickly reduces the stimulus to the muscle, which allows the degree and timing of muscular contraction to be regulated delicately. Some poisons inactivate acetylcholinesterase to prevent this control, such as the <a href="/wiki/Nerve_agent" title="Nerve agent">nerve agents</a> <a href="/wiki/Sarin" title="Sarin">sarin</a> and <a href="/wiki/Tabun_(nerve_agent)" title="Tabun (nerve agent)">tabun</a>,<sup id="cite_ref-Newmark_96-0" class="reference"><a href="#cite_note-Newmark-96"><span class="cite-bracket">&#91;</span>ag<span class="cite-bracket">&#93;</span></a></sup> and the insecticides <a href="/wiki/Diazinon" title="Diazinon">diazinon</a> and <a href="/wiki/Malathion" title="Malathion">malathion</a>.<sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">&#91;</span>ah<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Other_cell_types">Other cell types</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=24" title="Edit section: Other cell types"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Cardiac_action_potentials">Cardiac action potentials</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=25" title="Edit section: Cardiac action potentials"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Cardiac_action_potential" title="Cardiac action potential">Cardiac action potential</a>, <a href="/wiki/Electrical_conduction_system_of_the_heart" class="mw-redirect" title="Electrical conduction system of the heart">Electrical conduction system of the heart</a>, <a href="/wiki/Cardiac_pacemaker" title="Cardiac pacemaker">Cardiac pacemaker</a>, and <a href="/wiki/Heart_arrhythmia" class="mw-redirect" title="Heart arrhythmia">Heart arrhythmia</a></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Ventricular_myocyte_action_potential.svg" class="mw-file-description"><img alt="Plot of membrane potential versus time. The initial resting phase (region 4) is negative and constant flowed by sharp rise (0) to a peak (1). The plateau phase (2) is slightly below the peak. The plateau phase is followed by a fairly rapid return (3) back to the resting potential (4)." src="//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Ventricular_myocyte_action_potential.svg/220px-Ventricular_myocyte_action_potential.svg.png" decoding="async" width="220" height="131" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Ventricular_myocyte_action_potential.svg/330px-Ventricular_myocyte_action_potential.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Ventricular_myocyte_action_potential.svg/440px-Ventricular_myocyte_action_potential.svg.png 2x" data-file-width="570" data-file-height="340" /></a><figcaption>Phases of a cardiac action potential. The sharp rise in voltage ("0") corresponds to the influx of sodium ions, whereas the two decays ("1" and "3", respectively) correspond to the sodium-channel inactivation and the repolarizing eflux of potassium ions. The characteristic plateau ("2") results from the opening of voltage-sensitive <a href="/wiki/Calcium" title="Calcium">calcium</a> channels.</figcaption></figure> <p>The cardiac action potential differs from the neuronal action potential by having an extended plateau, in which the membrane is held at a high voltage for a few hundred milliseconds prior to being repolarized by the potassium current as usual.<sup id="cite_ref-Kleber_98-0" class="reference"><a href="#cite_note-Kleber-98"><span class="cite-bracket">&#91;</span>ai<span class="cite-bracket">&#93;</span></a></sup> This plateau is due to the action of slower <a href="/wiki/Calcium" title="Calcium">calcium</a> channels opening and holding the membrane voltage near their equilibrium potential even after the sodium channels have inactivated. </p><p>The cardiac action potential plays an important role in coordinating the contraction of the heart.<sup id="cite_ref-Kleber_98-1" class="reference"><a href="#cite_note-Kleber-98"><span class="cite-bracket">&#91;</span>ai<span class="cite-bracket">&#93;</span></a></sup> The cardiac cells of the <a href="/wiki/Sinoatrial_node" title="Sinoatrial node">sinoatrial node</a> provide the <a href="/wiki/Pacemaker_potential" title="Pacemaker potential">pacemaker potential</a> that synchronizes the heart. The action potentials of those cells propagate to and through the <a href="/wiki/Atrioventricular_node" title="Atrioventricular node">atrioventricular node</a> (AV node), which is normally the only conduction pathway between the <a href="/wiki/Atrium_(heart)" title="Atrium (heart)">atria</a> and the <a href="/wiki/Ventricle_(heart)" title="Ventricle (heart)">ventricles</a>. Action potentials from the AV node travel through the <a href="/wiki/Bundle_of_His" title="Bundle of His">bundle of His</a> and thence to the <a href="/wiki/Purkinje_fiber" class="mw-redirect" title="Purkinje fiber">Purkinje fibers</a>.<sup id="cite_ref-99" class="reference"><a href="#cite_note-99"><span class="cite-bracket">&#91;</span>note 2<span class="cite-bracket">&#93;</span></a></sup> Conversely, anomalies in the cardiac action potential—whether due to a congenital mutation or injury—can lead to human pathologies, especially <a href="/wiki/Heart_arrhythmia" class="mw-redirect" title="Heart arrhythmia">arrhythmias</a>.<sup id="cite_ref-Kleber_98-2" class="reference"><a href="#cite_note-Kleber-98"><span class="cite-bracket">&#91;</span>ai<span class="cite-bracket">&#93;</span></a></sup> Several anti-arrhythmia drugs act on the cardiac action potential, such as <a href="/wiki/Quinidine" title="Quinidine">quinidine</a>, <a href="/wiki/Lidocaine" title="Lidocaine">lidocaine</a>, <a href="/wiki/Beta_blocker" title="Beta blocker">beta blockers</a>, and <a href="/wiki/Verapamil" title="Verapamil">verapamil</a>.<sup id="cite_ref-100" class="reference"><a href="#cite_note-100"><span class="cite-bracket">&#91;</span>aj<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Muscular_action_potentials">Muscular action potentials</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=26" title="Edit section: Muscular action potentials"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Neuromuscular_junction" title="Neuromuscular junction">Neuromuscular junction</a> and <a href="/wiki/Muscle_contraction" title="Muscle contraction">Muscle contraction</a></div> <p>The action potential in a normal skeletal muscle cell is similar to the action potential in neurons.<sup id="cite_ref-FOOTNOTEGanong199159–60_101-0" class="reference"><a href="#cite_note-FOOTNOTEGanong199159–60-101"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> Action potentials result from the depolarization of the cell membrane (the <a href="/wiki/Sarcolemma" title="Sarcolemma">sarcolemma</a>), which opens voltage-sensitive sodium channels; these become inactivated and the membrane is repolarized through the outward current of potassium ions. The resting potential prior to the action potential is typically −90mV, somewhat more negative than typical neurons. The muscle action potential lasts roughly 2–4&#160;ms, the absolute refractory period is roughly 1–3&#160;ms, and the conduction velocity along the muscle is roughly 5&#160;m/s. The action potential releases <a href="/wiki/Calcium" title="Calcium">calcium</a> ions that free up the <a href="/wiki/Tropomyosin" title="Tropomyosin">tropomyosin</a> and allow the muscle to contract. Muscle action potentials are provoked by the arrival of a pre-synaptic neuronal action potential at the <a href="/wiki/Neuromuscular_junction" title="Neuromuscular junction">neuromuscular junction</a>, which is a common target for <a href="/wiki/Neurotoxin" title="Neurotoxin">neurotoxins</a>.<sup id="cite_ref-Newmark_96-1" class="reference"><a href="#cite_note-Newmark-96"><span class="cite-bracket">&#91;</span>ag<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Plant_action_potentials">Plant action potentials</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=27" title="Edit section: Plant action potentials"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Variation_potential" title="Variation potential">Variation potential</a></div> <p><a href="/wiki/Plant_cells" class="mw-redirect" title="Plant cells">Plant</a> and <a href="/wiki/Fungi" class="mw-redirect" title="Fungi">fungal cells</a><sup id="cite_ref-Slayman_1976_102-0" class="reference"><a href="#cite_note-Slayman_1976-102"><span class="cite-bracket">&#91;</span>ak<span class="cite-bracket">&#93;</span></a></sup> are also electrically excitable. The fundamental difference from animal action potentials is that the depolarization in plant cells is not accomplished by an uptake of positive sodium ions, but by release of negative <i>chloride</i> ions.<sup id="cite_ref-Mummert_1991_103-0" class="reference"><a href="#cite_note-Mummert_1991-103"><span class="cite-bracket">&#91;</span>al<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Gradmann_2001_104-0" class="reference"><a href="#cite_note-Gradmann_2001-104"><span class="cite-bracket">&#91;</span>am<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Beilby_2007_105-0" class="reference"><a href="#cite_note-Beilby_2007-105"><span class="cite-bracket">&#91;</span>an<span class="cite-bracket">&#93;</span></a></sup> In 1906, J. C. Bose published the first measurements of action potentials in plants, which had previously been discovered by Burdon-Sanderson and Darwin.<sup id="cite_ref-106" class="reference"><a href="#cite_note-106"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> An increase in cytoplasmic calcium ions may be the cause of anion release into the cell. This makes calcium a precursor to ion movements, such as the influx of negative chloride ions and efflux of positive potassium ions, as seen in barley leaves.<sup id="cite_ref-107" class="reference"><a href="#cite_note-107"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup> </p><p>The initial influx of calcium ions also poses a small cellular depolarization, causing the voltage-gated ion channels to open and allowing full depolarization to be propagated by chloride ions. </p><p>Some plants (e.g. <i><a href="/wiki/Dionaea_muscipula" class="mw-redirect" title="Dionaea muscipula">Dionaea muscipula</a></i>) use sodium-gated channels to operate plant movements and "count" stimulation events to determine if a threshold for movement is met. <i>Dionaea muscipula</i>, also known as the Venus flytrap, is found in subtropical wetlands in North and South Carolina.<sup id="cite_ref-108" class="reference"><a href="#cite_note-108"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> When there are poor soil nutrients, the flytrap relies on a diet of insects and animals.<sup id="cite_ref-:1_109-0" class="reference"><a href="#cite_note-:1-109"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup> Despite research on the plant, there lacks an understanding behind the molecular basis to the Venus flytraps, and carnivore plants in general.<sup id="cite_ref-:2_110-0" class="reference"><a href="#cite_note-:2-110"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> </p><p>However, plenty of research has been done on action potentials and how they affect movement and clockwork within the Venus flytrap. To start, the resting membrane potential of the Venus flytrap (−120&#160;mV) is lower than animal cells (usually −90&#160;mV to −40&#160;mV).<sup id="cite_ref-:2_110-1" class="reference"><a href="#cite_note-:2-110"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-111" class="reference"><a href="#cite_note-111"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup> The lower resting potential makes it easier to activate an action potential. Thus, when an insect lands on the trap of the plant, it triggers a hair-like mechanoreceptor.<sup id="cite_ref-:2_110-2" class="reference"><a href="#cite_note-:2-110"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> This receptor then activates an action potential that lasts around 1.5&#160;ms.<sup id="cite_ref-112" class="reference"><a href="#cite_note-112"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup> This causes an increase of positive calcium ions into the cell, slightly depolarizing it. However, the flytrap does not close after one trigger. Instead, it requires the activation of two or more hairs.<sup id="cite_ref-:1_109-1" class="reference"><a href="#cite_note-:1-109"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:2_110-3" class="reference"><a href="#cite_note-:2-110"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> If only one hair is triggered, it disregards the activation as a false positive. Further, the second hair must be activated within a certain time interval (0.75–40&#160;s) for it to register with the first activation.<sup id="cite_ref-:2_110-4" class="reference"><a href="#cite_note-:2-110"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> Thus, a buildup of calcium begins and then slowly falls after the first trigger. When the second action potential is fired within the time interval, it reaches the calcium threshold to depolarize the cell, closing the trap on the prey within a fraction of a second.<sup id="cite_ref-:2_110-5" class="reference"><a href="#cite_note-:2-110"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> </p><p>Together with the subsequent release of positive potassium ions the action potential in plants involves an <a href="/wiki/Osmotic" class="mw-redirect" title="Osmotic">osmotic</a> loss of salt (KCl). Whereas, the animal action potential is osmotically neutral because equal amounts of entering sodium and leaving potassium cancel each other osmotically. The interaction of electrical and osmotic relations in plant cells<sup id="cite_ref-Gradmann_1998_113-0" class="reference"><a href="#cite_note-Gradmann_1998-113"><span class="cite-bracket">&#91;</span>ao<span class="cite-bracket">&#93;</span></a></sup> appears to have arisen from an osmotic function of electrical excitability in a common unicellular ancestors of plants and animals under changing salinity conditions. Further, the present function of rapid signal transmission is seen as a newer accomplishment of <a href="/wiki/Metazoan" class="mw-redirect" title="Metazoan">metazoan</a> cells in a more stable osmotic environment.<sup id="cite_ref-Gradmann_1980_114-0" class="reference"><a href="#cite_note-Gradmann_1980-114"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup> It is likely that the familiar signaling function of action potentials in some vascular plants (e.g. <i><a href="/wiki/Mimosa_pudica" title="Mimosa pudica">Mimosa pudica</a></i>) arose independently from that in metazoan excitable cells. </p><p>Unlike the rising phase and peak, the falling phase and after-hyperpolarization seem to depend primarily on cations that are not calcium. To initiate repolarization, the cell requires movement of potassium out of the cell through passive transportation on the membrane. This differs from neurons because the movement of potassium does not dominate the decrease in membrane potential. To fully repolarize, a plant cell requires energy in the form of ATP to assist in the release of hydrogen from the cell – utilizing a transporter called <a href="/wiki/Proton_ATPase" title="Proton ATPase">proton ATPase</a>.<sup id="cite_ref-Opritov_115-0" class="reference"><a href="#cite_note-Opritov-115"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:2_110-6" class="reference"><a href="#cite_note-:2-110"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Taxonomic_distribution_and_evolutionary_advantages">Taxonomic distribution and evolutionary advantages</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=28" title="Edit section: Taxonomic distribution and evolutionary advantages"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Action potentials are found throughout <a href="/wiki/Multicellular_organism" title="Multicellular organism">multicellular organisms</a>, including <a href="/wiki/Plant" title="Plant">plants</a>, <a href="/wiki/Invertebrate" title="Invertebrate">invertebrates</a> such as <a href="/wiki/Insect" title="Insect">insects</a>, and <a href="/wiki/Vertebrate" title="Vertebrate">vertebrates</a> such as <a href="/wiki/Reptile" title="Reptile">reptiles</a> and <a href="/wiki/Mammal" title="Mammal">mammals</a>.<sup id="cite_ref-Fromm_116-0" class="reference"><a href="#cite_note-Fromm-116"><span class="cite-bracket">&#91;</span>ap<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Sponge" title="Sponge">Sponges</a> seem to be the main <a href="/wiki/Phylum" title="Phylum">phylum</a> of multicellular <a href="/wiki/Eukaryote" title="Eukaryote">eukaryotes</a> that does not transmit action potentials, although some studies have suggested that these organisms have a form of electrical signaling, too.<sup id="cite_ref-117" class="reference"><a href="#cite_note-117"><span class="cite-bracket">&#91;</span>aq<span class="cite-bracket">&#93;</span></a></sup> The resting potential, as well as the size and duration of the action potential, have not varied much with evolution, although the <a href="/wiki/Conduction_velocity" class="mw-redirect" title="Conduction velocity">conduction velocity</a> does vary dramatically with axonal diameter and myelination. </p> <table class="wikitable" id="action_potential_texonomic_comparison" align="center"> <caption>Comparison of action potentials (APs) from a representative cross-section of animals<sup id="cite_ref-FOOTNOTEBullockHorridge1965_118-0" class="reference"><a href="#cite_note-FOOTNOTEBullockHorridge1965-118"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> </caption> <tbody><tr> <th>Animal</th> <th>Cell type</th> <th>Resting potential (mV)</th> <th>AP increase (mV)</th> <th>AP duration (ms)</th> <th>Conduction speed (m/s) </th></tr> <tr> <td>Squid (<i>Loligo</i>)</td> <td>Giant axon</td> <td>−60</td> <td>120</td> <td>0.75</td> <td>35 </td></tr> <tr> <td>Earthworm (<i>Lumbricus</i>)</td> <td>Median giant fiber</td> <td>−70</td> <td>100</td> <td>1.0</td> <td>30 </td></tr> <tr> <td>Cockroach (<i>Periplaneta</i>)</td> <td>Giant fiber</td> <td>−70</td> <td>80–104</td> <td>0.4</td> <td>10 </td></tr> <tr> <td>Frog (<i>Rana</i>)</td> <td>Sciatic nerve axon</td> <td>−60 to −80</td> <td>110–130</td> <td>1.0</td> <td>7–30 </td></tr> <tr> <td>Cat (<i>Felis</i>)</td> <td>Spinal motor neuron</td> <td>−55 to −80</td> <td>80–110</td> <td>1–1.5</td> <td>30–120 </td></tr></tbody></table> <p>Given its conservation throughout evolution, the action potential seems to confer evolutionary advantages. One function of action potentials is rapid, long-range signaling within the organism; the conduction velocity can exceed 110&#160;m/s, which is one-third the <a href="/wiki/Speed_of_sound" title="Speed of sound">speed of sound</a>. For comparison, a hormone molecule carried in the bloodstream moves at roughly 8&#160;m/s in large arteries. Part of this function is the tight coordination of mechanical events, such as the contraction of the heart. A second function is the computation associated with its generation. Being an all-or-none signal that does not decay with transmission distance, the action potential has similar advantages to <a href="/wiki/Digital_electronics" title="Digital electronics">digital electronics</a>. The integration of various dendritic signals at the axon hillock and its thresholding to form a complex train of action potentials is another form of computation, one that has been exploited biologically to form <a href="/wiki/Central_pattern_generator" title="Central pattern generator">central pattern generators</a> and mimicked in <a href="/wiki/Artificial_neural_network" class="mw-redirect" title="Artificial neural network">artificial neural networks</a>. </p><p>The common prokaryotic/eukaryotic ancestor, which lived perhaps four billion years ago, is believed to have had voltage-gated channels. This functionality was likely, at some later point, cross-purposed to provide a communication mechanism. Even modern single-celled bacteria can utilize action potentials to communicate with other bacteria in the same <a href="/wiki/Biofilm" title="Biofilm">biofilm</a>.<sup id="cite_ref-119" class="reference"><a href="#cite_note-119"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Experimental_methods">Experimental methods</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=29" title="Edit section: Experimental methods"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Electrophysiology" title="Electrophysiology">Electrophysiology</a></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Loligo_forbesii.jpg" class="mw-file-description"><img alt="Illustration of the longfin inshore squid." src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Loligo_forbesii.jpg/250px-Loligo_forbesii.jpg" decoding="async" width="250" height="201" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Loligo_forbesii.jpg/375px-Loligo_forbesii.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Loligo_forbesii.jpg/500px-Loligo_forbesii.jpg 2x" data-file-width="2200" data-file-height="1771" /></a><figcaption>Giant axons of the longfin inshore squid (<i><a href="/wiki/Doryteuthis_pealeii" class="mw-redirect" title="Doryteuthis pealeii">Doryteuthis pealeii</a></i>) were <a href="/wiki/Marine_Biological_Laboratory#Neuroscience,_neurobiology,_and_sensory_physiology" title="Marine Biological Laboratory">crucial for scientists</a> to understand the action potential.<sup id="cite_ref-120" class="reference"><a href="#cite_note-120"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <p>The study of action potentials has required the development of new experimental methods. The initial work, prior to 1955, was carried out primarily by <a href="/wiki/Alan_Lloyd_Hodgkin" class="mw-redirect" title="Alan Lloyd Hodgkin">Alan Lloyd Hodgkin</a> and <a href="/wiki/Andrew_Fielding_Huxley" class="mw-redirect" title="Andrew Fielding Huxley">Andrew Fielding Huxley</a>, who were, along <a href="/wiki/John_Carew_Eccles" class="mw-redirect" title="John Carew Eccles">John Carew Eccles</a>, awarded the 1963 <a href="/wiki/Nobel_Prize_in_Physiology_or_Medicine" title="Nobel Prize in Physiology or Medicine">Nobel Prize in Physiology or Medicine</a> for their contribution to the description of the ionic basis of nerve conduction. It focused on three goals: isolating signals from single neurons or axons, developing fast, sensitive electronics, and shrinking <a href="/wiki/Electrode" title="Electrode">electrodes</a> enough that the voltage inside a single cell could be recorded. </p><p>The first problem was solved by studying the <a href="/wiki/Squid_giant_axon" title="Squid giant axon">giant axons</a> found in the neurons of the <a href="/wiki/Squid" title="Squid">squid</a> (<i><a href="/wiki/Loligo_forbesii" title="Loligo forbesii">Loligo forbesii</a></i> and <i><a href="/wiki/Doryteuthis_pealeii" class="mw-redirect" title="Doryteuthis pealeii">Doryteuthis pealeii</a></i>, at the time classified as <i>Loligo pealeii</i>).<sup id="cite_ref-keynes_1989_121-0" class="reference"><a href="#cite_note-keynes_1989-121"><span class="cite-bracket">&#91;</span>ar<span class="cite-bracket">&#93;</span></a></sup> These axons are so large in diameter (roughly 1&#160;mm, or 100-fold larger than a typical neuron) that they can be seen with the naked eye, making them easy to extract and manipulate.<sup id="cite_ref-hodgkin_1952_49-2" class="reference"><a href="#cite_note-hodgkin_1952-49"><span class="cite-bracket">&#91;</span>i<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Meunier_122-0" class="reference"><a href="#cite_note-Meunier-122"><span class="cite-bracket">&#91;</span>as<span class="cite-bracket">&#93;</span></a></sup> However, they are not representative of all excitable cells, and numerous other systems with action potentials have been studied. </p><p>The second problem was addressed with the crucial development of the <a href="/wiki/Voltage_clamp" title="Voltage clamp">voltage clamp</a>,<sup id="cite_ref-cole_1949_123-0" class="reference"><a href="#cite_note-cole_1949-123"><span class="cite-bracket">&#91;</span>at<span class="cite-bracket">&#93;</span></a></sup> which permitted experimenters to study the ionic currents underlying an action potential in isolation, and eliminated a key source of <a href="/wiki/Electronic_noise" class="mw-redirect" title="Electronic noise">electronic noise</a>, the current <i>I<sub>C</sub></i> associated with the <a href="/wiki/Capacitance" title="Capacitance">capacitance</a> <i>C</i> of the membrane.<sup id="cite_ref-FOOTNOTEJunge198163–82_124-0" class="reference"><a href="#cite_note-FOOTNOTEJunge198163–82-124"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup> Since the current equals <i>C</i> times the rate of change of the transmembrane voltage <i>V<sub>m</sub></i>, the solution was to design a circuit that kept <i>V<sub>m</sub></i> fixed (zero rate of change) regardless of the currents flowing across the membrane. Thus, the current required to keep <i>V<sub>m</sub></i> at a fixed value is a direct reflection of the current flowing through the membrane. Other electronic advances included the use of <a href="/wiki/Faraday_cage" title="Faraday cage">Faraday cages</a> and electronics with high <a href="/wiki/Input_impedance" title="Input impedance">input impedance</a>, so that the measurement itself did not affect the voltage being measured.<sup id="cite_ref-FOOTNOTEKettenmannGrantyn1992_125-0" class="reference"><a href="#cite_note-FOOTNOTEKettenmannGrantyn1992-125"><span class="cite-bracket">&#91;</span>75<span class="cite-bracket">&#93;</span></a></sup> </p><p>The third problem, that of obtaining electrodes small enough to record voltages within a single axon without perturbing it, was solved in 1949 with the invention of the glass micropipette electrode,<sup id="cite_ref-ling_1949_126-0" class="reference"><a href="#cite_note-ling_1949-126"><span class="cite-bracket">&#91;</span>au<span class="cite-bracket">&#93;</span></a></sup> which was quickly adopted by other researchers.<sup id="cite_ref-nastuk_1950_127-0" class="reference"><a href="#cite_note-nastuk_1950-127"><span class="cite-bracket">&#91;</span>av<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-brock_1952_128-0" class="reference"><a href="#cite_note-brock_1952-128"><span class="cite-bracket">&#91;</span>aw<span class="cite-bracket">&#93;</span></a></sup> Refinements of this method are able to produce electrode tips that are as fine as 100 <a href="/wiki/%C3%85ngstr%C3%B6m" class="mw-redirect" title="Ångström">Å</a> (10 <a href="/wiki/Nanometre" title="Nanometre">nm</a>), which also confers high input impedance.<sup id="cite_ref-129" class="reference"><a href="#cite_note-129"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> Action potentials may also be recorded with small metal electrodes placed just next to a neuron, with <a href="/wiki/Neurochip" title="Neurochip">neurochips</a> containing <a href="/wiki/EOSFET" title="EOSFET">EOSFETs</a>, or optically with dyes that are <a href="/wiki/Calcium_imaging" title="Calcium imaging">sensitive to Ca<sup>2+</sup></a> or to voltage.<sup id="cite_ref-dyes_130-0" class="reference"><a href="#cite_note-dyes-130"><span class="cite-bracket">&#91;</span>ax<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Single_channel.png" class="mw-file-description"><img alt="Plot of membrane potential versus time. The channel is primarily in a high conductance state punctuated by random and relatively brief transitions to a low conductance states" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Single_channel.png/220px-Single_channel.png" decoding="async" width="220" height="84" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Single_channel.png/330px-Single_channel.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Single_channel.png/440px-Single_channel.png 2x" data-file-width="798" data-file-height="305" /></a><figcaption>As revealed by a <a href="/wiki/Patch_clamp" title="Patch clamp">patch clamp</a> electrode, an <a href="/wiki/Ion_channel" title="Ion channel">ion channel</a> has two states: open (high conductance) and closed (low conductance).</figcaption></figure> <p>While glass micropipette electrodes measure the sum of the currents passing through many ion channels, studying the electrical properties of a single ion channel became possible in the 1970s with the development of the <a href="/wiki/Patch_clamp" title="Patch clamp">patch clamp</a> by <a href="/wiki/Erwin_Neher" title="Erwin Neher">Erwin Neher</a> and <a href="/wiki/Bert_Sakmann" title="Bert Sakmann">Bert Sakmann</a>. For this discovery, they were awarded the <a href="/wiki/Nobel_Prize_in_Physiology_or_Medicine" title="Nobel Prize in Physiology or Medicine">Nobel Prize in Physiology or Medicine</a> in 1991.<sup id="cite_ref-Nobel_1991_131-0" class="reference"><a href="#cite_note-Nobel_1991-131"><span class="cite-bracket">&#91;</span>lower-Greek 3<span class="cite-bracket">&#93;</span></a></sup> Patch-clamping verified that ionic channels have discrete states of conductance, such as open, closed and inactivated. </p><p><a href="/wiki/Optical_imaging" class="mw-redirect" title="Optical imaging">Optical imaging</a> technologies have been developed in recent years to measure action potentials, either via simultaneous multisite recordings or with ultra-spatial resolution. Using <a href="/wiki/Potentiometric_dyes" class="mw-redirect" title="Potentiometric dyes">voltage-sensitive dyes</a>, action potentials have been optically recorded from a tiny patch of <a href="/wiki/Cardiomyocyte" class="mw-redirect" title="Cardiomyocyte">cardiomyocyte</a> membrane.<sup id="cite_ref-pmid19289075_132-0" class="reference"><a href="#cite_note-pmid19289075-132"><span class="cite-bracket">&#91;</span>ay<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Neurotoxins">Neurotoxins</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=30" title="Edit section: Neurotoxins"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Puffer_Fish_DSC01257.JPG" class="mw-file-description"><img alt="Photograph of a pufferfish." src="//upload.wikimedia.org/wikipedia/commons/thumb/7/77/Puffer_Fish_DSC01257.JPG/220px-Puffer_Fish_DSC01257.JPG" decoding="async" width="220" height="188" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/77/Puffer_Fish_DSC01257.JPG/330px-Puffer_Fish_DSC01257.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/77/Puffer_Fish_DSC01257.JPG/440px-Puffer_Fish_DSC01257.JPG 2x" data-file-width="1318" data-file-height="1128" /></a><figcaption><a href="/wiki/Tetrodotoxin" title="Tetrodotoxin">Tetrodotoxin</a> is a lethal toxin found in <a href="/wiki/Pufferfish" class="mw-redirect" title="Pufferfish">pufferfish</a> that inhibits the <a href="/wiki/Voltage-gated_ion_channel" title="Voltage-gated ion channel">voltage-sensitive sodium channel</a>, halting action potentials.</figcaption></figure> <p>Several <a href="/wiki/Neurotoxin" title="Neurotoxin">neurotoxins</a>, both natural and synthetic, function by blocking the action potential. <a href="/wiki/Tetrodotoxin" title="Tetrodotoxin">Tetrodotoxin</a> from the <a href="/wiki/Pufferfish" class="mw-redirect" title="Pufferfish">pufferfish</a> and <a href="/wiki/Saxitoxin" title="Saxitoxin">saxitoxin</a> from the <i><a href="/wiki/Gonyaulax" title="Gonyaulax">Gonyaulax</a></i> (the <a href="/wiki/Dinoflagellate" title="Dinoflagellate">dinoflagellate</a> genus responsible for "<a href="/wiki/Paralytic_shellfish_poisoning" title="Paralytic shellfish poisoning">red tides</a>") block action potentials by inhibiting the voltage-sensitive sodium channel;<sup id="cite_ref-TTX_refs_133-0" class="reference"><a href="#cite_note-TTX_refs-133"><span class="cite-bracket">&#91;</span>az<span class="cite-bracket">&#93;</span></a></sup> similarly, <a href="/wiki/Dendrotoxin" title="Dendrotoxin">dendrotoxin</a> from the <a href="/wiki/Mamba" title="Mamba">black mamba</a> snake inhibits the voltage-sensitive potassium channel. Such inhibitors of ion channels serve an important research purpose, by allowing scientists to "turn off" specific channels at will, thus isolating the other channels' contributions; they can also be useful in purifying ion channels by <a href="/wiki/Affinity_chromatography" title="Affinity chromatography">affinity chromatography</a> or in assaying their concentration. However, such inhibitors also make effective neurotoxins, and have been considered for use as <a href="/wiki/Chemical_warfare" title="Chemical warfare">chemical weapons</a>. Neurotoxins aimed at the ion channels of insects have been effective <a href="/wiki/Insecticide" title="Insecticide">insecticides</a>; one example is the synthetic <a href="/wiki/Permethrin" title="Permethrin">permethrin</a>, which prolongs the activation of the sodium channels involved in action potentials. The ion channels of insects are sufficiently different from their human counterparts that there are few side effects in humans. </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=31" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:PurkinjeCell.jpg" class="mw-file-description"><img alt="Hand drawn figure of two Purkinje cells side by side with dendrites projecting upwards that look like tree branches and a few axons projected downwards that connect to a few granule cells at the bottom of the drawing." src="//upload.wikimedia.org/wikipedia/commons/thumb/1/15/PurkinjeCell.jpg/220px-PurkinjeCell.jpg" decoding="async" width="220" height="257" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/15/PurkinjeCell.jpg/330px-PurkinjeCell.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/15/PurkinjeCell.jpg/440px-PurkinjeCell.jpg 2x" data-file-width="611" data-file-height="715" /></a><figcaption>Image of two <a href="/wiki/Purkinje_cell" title="Purkinje cell">Purkinje cells</a> (labeled as <b>A</b>) drawn by <a href="/wiki/Santiago_Ram%C3%B3n_y_Cajal" title="Santiago Ramón y Cajal">Santiago Ramón y Cajal</a> in 1899. Large trees of <a href="/wiki/Dendrite" title="Dendrite">dendrites</a> feed into the <a href="/wiki/Soma_(biology)" title="Soma (biology)">soma</a>, from which a single <a href="/wiki/Axon" title="Axon">axon</a> emerges and moves generally downwards with a few branch points. The smaller cells labeled <b>B</b> are <a href="/wiki/Granule_cell" title="Granule cell">granule cells</a>.</figcaption></figure> <p>The role of electricity in the nervous systems of animals was first observed in dissected <a href="/wiki/Frog" title="Frog">frogs</a> by <a href="/wiki/Luigi_Galvani" title="Luigi Galvani">Luigi Galvani</a>, who studied it from 1791 to 1797.<sup id="cite_ref-piccolino_1997_134-0" class="reference"><a href="#cite_note-piccolino_1997-134"><span class="cite-bracket">&#91;</span>ba<span class="cite-bracket">&#93;</span></a></sup> Galvani's results inspired <a href="/wiki/Alessandro_Volta" title="Alessandro Volta">Alessandro Volta</a> to develop the <a href="/wiki/Voltaic_pile" title="Voltaic pile">Voltaic pile</a>—the earliest-known <a href="/wiki/Battery_(electricity)" class="mw-redirect" title="Battery (electricity)">electric battery</a>—with which he studied animal electricity (such as <a href="/wiki/Electric_eel" title="Electric eel">electric eels</a>) and the physiological responses to applied <a href="/wiki/Direct_current" title="Direct current">direct-current</a> <a href="/wiki/Voltage" title="Voltage">voltages</a>.<sup id="cite_ref-piccolino_2000_135-0" class="reference"><a href="#cite_note-piccolino_2000-135"><span class="cite-bracket">&#91;</span>bb<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the 19th century scientists studied the propagation of electrical signals in whole <a href="/wiki/Nerve" title="Nerve">nerves</a> (i.e., bundles of <a href="/wiki/Neuron" title="Neuron">neurons</a>) and demonstrated that nervous tissue was made up of <a href="/wiki/Cell_(biology)" title="Cell (biology)">cells</a>, instead of an interconnected network of tubes (a <i>reticulum</i>).<sup id="cite_ref-FOOTNOTEBrazier1961McHenryGarrison1969WordenSwazeyAdelman1975_136-0" class="reference"><a href="#cite_note-FOOTNOTEBrazier1961McHenryGarrison1969WordenSwazeyAdelman1975-136"><span class="cite-bracket">&#91;</span>77<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Carlo_Matteucci" title="Carlo Matteucci">Carlo Matteucci</a> followed up Galvani's studies and demonstrated that injured nerves and muscles in frogs could produce <a href="/wiki/Direct_current" title="Direct current">direct current</a>. Matteucci's work inspired the German physiologist, <a href="/wiki/Emil_du_Bois-Reymond" title="Emil du Bois-Reymond">Emil du Bois-Reymond</a>, who discovered in 1843 that stimulating these muscle and nerve preparations produced a notable diminution in their resting currents, making him the first researcher to identify the electrical nature of the action potential.<sup id="cite_ref-137" class="reference"><a href="#cite_note-137"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup> The <a href="/wiki/Conduction_velocity" class="mw-redirect" title="Conduction velocity">conduction velocity</a> of action potentials was then measured in 1850 by du Bois-Reymond's friend, <a href="/wiki/Hermann_von_Helmholtz" title="Hermann von Helmholtz">Hermann von Helmholtz</a>.<sup id="cite_ref-138" class="reference"><a href="#cite_note-138"><span class="cite-bracket">&#91;</span>79<span class="cite-bracket">&#93;</span></a></sup> Progress in electrophysiology stagnated thereafter due to the limitations of chemical theory and experimental practice. To establish that nervous tissue is made up of discrete cells, the Spanish physician <a href="/wiki/Santiago_Ram%C3%B3n_y_Cajal" title="Santiago Ramón y Cajal">Santiago Ramón y Cajal</a> and his students used a stain developed by <a href="/wiki/Camillo_Golgi" title="Camillo Golgi">Camillo Golgi</a> to reveal the myriad shapes of neurons, which they rendered painstakingly. For their discoveries, Golgi and Ramón y Cajal were awarded the 1906 <a href="/wiki/Nobel_Prize_in_Physiology_or_Medicine" title="Nobel Prize in Physiology or Medicine">Nobel Prize in Physiology</a>.<sup id="cite_ref-Nobel_1906_139-0" class="reference"><a href="#cite_note-Nobel_1906-139"><span class="cite-bracket">&#91;</span>lower-Greek 4<span class="cite-bracket">&#93;</span></a></sup> Their work resolved a long-standing controversy in the <a href="/wiki/Neuroanatomy" title="Neuroanatomy">neuroanatomy</a> of the 19th century; Golgi himself had argued for the network model of the nervous system. </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:3b8e.png" class="mw-file-description"><img alt="Cartoon diagram of the sodium–potassium pump drawn vertically imbedded in a schematic diagram of a lipid bilayer represented by two parallel horizontal lines. The portion of the protein that is imbedded in the lipid bilayer is composed largely of anti-parallel beta sheets. There is also a large intracellular domain of the protein with a mixed alpha-helix/beta-sheet structure." src="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/3b8e.png/220px-3b8e.png" decoding="async" width="220" height="293" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/3b8e.png/330px-3b8e.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/52/3b8e.png/440px-3b8e.png 2x" data-file-width="560" data-file-height="745" /></a><figcaption><a href="/wiki/Ribbon_diagram" title="Ribbon diagram">Ribbon diagram</a> of the sodium–potassium pump in its E2-Pi state. The estimated boundaries of the <a href="/wiki/Lipid_bilayer" title="Lipid bilayer">lipid bilayer</a> are shown as blue (intracellular) and red (extracellular) planes.</figcaption></figure> <p>The 20th century saw significant breakthroughs in electrophysiology. In 1902 and again in 1912, <a href="/wiki/Julius_Bernstein" title="Julius Bernstein">Julius Bernstein</a> advanced the hypothesis that the action potential resulted from a change in the <a href="/wiki/Permeation" title="Permeation">permeability</a> of the axonal membrane to ions.<sup id="cite_ref-bernstein_1902_1912_140-0" class="reference"><a href="#cite_note-bernstein_1902_1912-140"><span class="cite-bracket">&#91;</span>bc<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEBernstein1912_141-0" class="reference"><a href="#cite_note-FOOTNOTEBernstein1912-141"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup> Bernstein's hypothesis was confirmed by <a href="/wiki/Kenneth_Stewart_Cole" title="Kenneth Stewart Cole">Ken Cole</a> and Howard Curtis, who showed that membrane conductance increases during an action potential.<sup id="cite_ref-142" class="reference"><a href="#cite_note-142"><span class="cite-bracket">&#91;</span>bd<span class="cite-bracket">&#93;</span></a></sup> In 1907, <a href="/wiki/Louis_Lapicque" title="Louis Lapicque">Louis Lapicque</a> suggested that the action potential was generated as a threshold was crossed,<sup id="cite_ref-143" class="reference"><a href="#cite_note-143"><span class="cite-bracket">&#91;</span>be<span class="cite-bracket">&#93;</span></a></sup> what would be later shown as a product of the <a href="/wiki/Dynamical_system" title="Dynamical system">dynamical systems</a> of ionic conductances. In 1949, <a href="/wiki/Alan_Lloyd_Hodgkin" class="mw-redirect" title="Alan Lloyd Hodgkin">Alan Hodgkin</a> and <a href="/wiki/Bernard_Katz" title="Bernard Katz">Bernard Katz</a> refined Bernstein's hypothesis by considering that the axonal membrane might have different permeabilities to different ions; in particular, they demonstrated the crucial role of the sodium permeability for the action potential.<sup id="cite_ref-hodgkin_1949_144-0" class="reference"><a href="#cite_note-hodgkin_1949-144"><span class="cite-bracket">&#91;</span>bf<span class="cite-bracket">&#93;</span></a></sup> They made the first actual recording of the electrical changes across the neuronal membrane that mediate the action potential.<sup id="cite_ref-145" class="reference"><a href="#cite_note-145"><span class="cite-bracket">&#91;</span>lower-Greek 5<span class="cite-bracket">&#93;</span></a></sup> This line of research culminated in the five 1952 papers of Hodgkin, Katz and <a href="/wiki/Andrew_Huxley" title="Andrew Huxley">Andrew Huxley</a>, in which they applied the <a href="/wiki/Voltage_clamp" title="Voltage clamp">voltage clamp</a> technique to determine the dependence of the axonal membrane's permeabilities to sodium and potassium ions on voltage and time, from which they were able to reconstruct the action potential quantitatively.<sup id="cite_ref-hodgkin_1952_49-3" class="reference"><a href="#cite_note-hodgkin_1952-49"><span class="cite-bracket">&#91;</span>i<span class="cite-bracket">&#93;</span></a></sup> Hodgkin and Huxley correlated the properties of their mathematical model with discrete <a href="/wiki/Ion_channel" title="Ion channel">ion channels</a> that could exist in several different states, including "open", "closed", and "inactivated". Their hypotheses were confirmed in the mid-1970s and 1980s by <a href="/wiki/Erwin_Neher" title="Erwin Neher">Erwin Neher</a> and <a href="/wiki/Bert_Sakmann" title="Bert Sakmann">Bert Sakmann</a>, who developed the technique of <a href="/wiki/Patch_clamp" title="Patch clamp">patch clamping</a> to examine the conductance states of individual ion channels.<sup id="cite_ref-patch_clamp_146-0" class="reference"><a href="#cite_note-patch_clamp-146"><span class="cite-bracket">&#91;</span>bg<span class="cite-bracket">&#93;</span></a></sup> In the 21st century, researchers are beginning to understand the structural basis for these conductance states and for the selectivity of channels for their species of ion,<sup id="cite_ref-yellen_2002_147-0" class="reference"><a href="#cite_note-yellen_2002-147"><span class="cite-bracket">&#91;</span>bh<span class="cite-bracket">&#93;</span></a></sup> through the atomic-resolution <a href="/wiki/X-ray_crystallography" title="X-ray crystallography">crystal structures</a>,<sup id="cite_ref-doyle_1998_148-0" class="reference"><a href="#cite_note-doyle_1998-148"><span class="cite-bracket">&#91;</span>bi<span class="cite-bracket">&#93;</span></a></sup> fluorescence distance measurements<sup id="cite_ref-FRET_149-0" class="reference"><a href="#cite_note-FRET-149"><span class="cite-bracket">&#91;</span>bj<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Cryo-electron_microscopy" class="mw-redirect" title="Cryo-electron microscopy">cryo-electron microscopy</a> studies.<sup id="cite_ref-cryoEM_150-0" class="reference"><a href="#cite_note-cryoEM-150"><span class="cite-bracket">&#91;</span>bk<span class="cite-bracket">&#93;</span></a></sup> </p><p>Julius Bernstein was also the first to introduce the <a href="/wiki/Nernst_equation" title="Nernst equation">Nernst equation</a> for <a href="/wiki/Resting_potential" title="Resting potential">resting potential</a> across the membrane; this was generalized by <a href="/wiki/David_E._Goldman" title="David E. Goldman">David E. Goldman</a> to the eponymous <a href="/wiki/Goldman_equation" title="Goldman equation">Goldman equation</a> in 1943.<sup id="cite_ref-goldman_1943_47-1" class="reference"><a href="#cite_note-goldman_1943-47"><span class="cite-bracket">&#91;</span>h<span class="cite-bracket">&#93;</span></a></sup> The <a href="/wiki/Sodium%E2%80%93potassium_pump" title="Sodium–potassium pump">sodium–potassium pump</a> was identified in 1957<sup id="cite_ref-151" class="reference"><a href="#cite_note-151"><span class="cite-bracket">&#91;</span>bl<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-152" class="reference"><a href="#cite_note-152"><span class="cite-bracket">&#91;</span>lower-Greek 6<span class="cite-bracket">&#93;</span></a></sup> and its properties gradually elucidated,<sup id="cite_ref-hodgkin_1955_153-0" class="reference"><a href="#cite_note-hodgkin_1955-153"><span class="cite-bracket">&#91;</span>bm<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-caldwell_1960_154-0" class="reference"><a href="#cite_note-caldwell_1960-154"><span class="cite-bracket">&#91;</span>bn<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-caldwell_1957_155-0" class="reference"><a href="#cite_note-caldwell_1957-155"><span class="cite-bracket">&#91;</span>bo<span class="cite-bracket">&#93;</span></a></sup> culminating in the determination of its atomic-resolution structure by <a href="/wiki/X-ray_crystallography" title="X-ray crystallography">X-ray crystallography</a>.<sup id="cite_ref-Na_K_pump_structure_156-0" class="reference"><a href="#cite_note-Na_K_pump_structure-156"><span class="cite-bracket">&#91;</span>bp<span class="cite-bracket">&#93;</span></a></sup> The crystal structures of related ionic pumps have also been solved, giving a broader view of how these <a href="/wiki/Molecular_machine" title="Molecular machine">molecular machines</a> work.<sup id="cite_ref-157" class="reference"><a href="#cite_note-157"><span class="cite-bracket">&#91;</span>bq<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Quantitative_models">Quantitative models</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=32" title="Edit section: Quantitative models"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Quantitative_models_of_the_action_potential" title="Quantitative models of the action potential">Quantitative models of the action potential</a></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:MembraneCircuit.svg" class="mw-file-description"><img alt="Circuit diagram depicting five parallel circuits that are interconnected at the top to the extracellular solution and at the bottom to the intracellular solution." src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1f/MembraneCircuit.svg/336px-MembraneCircuit.svg.png" decoding="async" width="336" height="216" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1f/MembraneCircuit.svg/504px-MembraneCircuit.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1f/MembraneCircuit.svg/672px-MembraneCircuit.svg.png 2x" data-file-width="448" data-file-height="288" /></a><figcaption>Equivalent electrical circuit for the Hodgkin–Huxley model of the action potential. <i>I<sub>m</sub></i> and <i>V<sub>m</sub></i> represent the current through, and the voltage across, a small patch of membrane, respectively. The <i>C<sub>m</sub></i> represents the capacitance of the membrane patch, whereas the four <i>g</i><span class="nowrap" style="padding-left:0.1em;">&#39;s</span> represent the <a href="/wiki/Electrical_conductance" class="mw-redirect" title="Electrical conductance">conductances</a> of four types of ions. The two conductances on the left, for potassium (K) and sodium (Na), are shown with arrows to indicate that they can vary with the applied voltage, corresponding to the <a href="/wiki/Voltage-gated_ion_channel" title="Voltage-gated ion channel">voltage-sensitive ion channels</a>. The two conductances on the right help determine the <a href="/wiki/Resting_membrane_potential" class="mw-redirect" title="Resting membrane potential">resting membrane potential</a>.</figcaption></figure> <p>Mathematical and computational models are essential for understanding the action potential, and offer predictions that may be tested against experimental data, providing a stringent test of a theory. The most important and accurate of the early neural models is the <a href="/wiki/Hodgkin%E2%80%93Huxley_model" title="Hodgkin–Huxley model">Hodgkin–Huxley model</a>, which describes the action potential by a coupled set of four <a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">ordinary differential equations</a> (ODEs).<sup id="cite_ref-hodgkin_1952_49-4" class="reference"><a href="#cite_note-hodgkin_1952-49"><span class="cite-bracket">&#91;</span>i<span class="cite-bracket">&#93;</span></a></sup> Although the Hodgkin–Huxley model may be a simplification with few limitations<sup id="cite_ref-158" class="reference"><a href="#cite_note-158"><span class="cite-bracket">&#91;</span>81<span class="cite-bracket">&#93;</span></a></sup> compared to the realistic nervous membrane as it exists in nature, its complexity has inspired several even-more-simplified models,<sup id="cite_ref-FOOTNOTEHoppensteadt1986_159-0" class="reference"><a href="#cite_note-FOOTNOTEHoppensteadt1986-159"><span class="cite-bracket">&#91;</span>82<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-160" class="reference"><a href="#cite_note-160"><span class="cite-bracket">&#91;</span>br<span class="cite-bracket">&#93;</span></a></sup> such as the <a href="/wiki/Morris%E2%80%93Lecar_model" title="Morris–Lecar model">Morris–Lecar model</a><sup id="cite_ref-morris_1981_161-0" class="reference"><a href="#cite_note-morris_1981-161"><span class="cite-bracket">&#91;</span>bs<span class="cite-bracket">&#93;</span></a></sup> and the <a href="/wiki/FitzHugh%E2%80%93Nagumo_model" title="FitzHugh–Nagumo model">FitzHugh–Nagumo model</a>,<sup id="cite_ref-fitzhugh_162-0" class="reference"><a href="#cite_note-fitzhugh-162"><span class="cite-bracket">&#91;</span>bt<span class="cite-bracket">&#93;</span></a></sup> both of which have only two coupled ODEs. The properties of the Hodgkin–Huxley and FitzHugh–Nagumo models and their relatives, such as the Bonhoeffer–Van der Pol model,<sup id="cite_ref-bonhoeffer_vanderPol_163-0" class="reference"><a href="#cite_note-bonhoeffer_vanderPol-163"><span class="cite-bracket">&#91;</span>bu<span class="cite-bracket">&#93;</span></a></sup> have been well-studied within mathematics,<sup id="cite_ref-math_studies_164-0" class="reference"><a href="#cite_note-math_studies-164"><span class="cite-bracket">&#91;</span>83<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-165" class="reference"><a href="#cite_note-165"><span class="cite-bracket">&#91;</span>bv<span class="cite-bracket">&#93;</span></a></sup> computation<sup id="cite_ref-computational_studies_166-0" class="reference"><a href="#cite_note-computational_studies-166"><span class="cite-bracket">&#91;</span>84<span class="cite-bracket">&#93;</span></a></sup> and electronics.<sup id="cite_ref-keener_1983_167-0" class="reference"><a href="#cite_note-keener_1983-167"><span class="cite-bracket">&#91;</span>bw<span class="cite-bracket">&#93;</span></a></sup> However the simple models of generator potential and action potential fail to accurately reproduce the near threshold neural spike rate and spike shape, specifically for the <a href="/wiki/Mechanoreceptors" class="mw-redirect" title="Mechanoreceptors">mechanoreceptors</a> like the <a href="/wiki/Pacinian_corpuscle" title="Pacinian corpuscle">Pacinian corpuscle</a>.<sup id="cite_ref-168" class="reference"><a href="#cite_note-168"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup> More modern research has focused on larger and more integrated systems; by joining action-potential models with models of other parts of the nervous system (such as dendrites and synapses), researchers can study <a href="/wiki/Neural_computation" title="Neural computation">neural computation</a><sup id="cite_ref-FOOTNOTEMcCulloch198819–39,_46–66,_72–141AndersonRosenfeld198815–41_169-0" class="reference"><a href="#cite_note-FOOTNOTEMcCulloch198819–39,_46–66,_72–141AndersonRosenfeld198815–41-169"><span class="cite-bracket">&#91;</span>86<span class="cite-bracket">&#93;</span></a></sup> and simple <a href="/wiki/Reflex" title="Reflex">reflexes</a>, such as <a href="/wiki/Escape_reflex" title="Escape reflex">escape reflexes</a> and others controlled by <a href="/wiki/Central_pattern_generator" title="Central pattern generator">central pattern generators</a>.<sup id="cite_ref-cpg_170-0" class="reference"><a href="#cite_note-cpg-170"><span class="cite-bracket">&#91;</span>87<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-pmid10713861_171-0" class="reference"><a href="#cite_note-pmid10713861-171"><span class="cite-bracket">&#91;</span>bx<span class="cite-bracket">&#93;</span></a></sup> </p> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=33" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 40em;"> <ul><li><a href="/wiki/Anode_break_excitation" title="Anode break excitation">Anode break excitation</a></li> <li><a href="/wiki/Bioelectricity" class="mw-redirect" title="Bioelectricity">Bioelectricity</a></li> <li><a href="/wiki/Biological_neuron_model" title="Biological neuron model">Biological neuron model</a></li> <li><a href="/wiki/Bursting" title="Bursting">Bursting</a></li> <li><a href="/wiki/Central_pattern_generator" title="Central pattern generator">Central pattern generator</a></li> <li><a href="/wiki/Chronaxie" title="Chronaxie">Chronaxie</a></li> <li><a href="/wiki/Frog_battery" title="Frog battery">Frog battery</a></li> <li><a href="/wiki/Law_of_specific_nerve_energies" title="Law of specific nerve energies">Law of specific nerve energies</a></li> <li><a href="/wiki/Neural_accommodation" title="Neural accommodation">Neural accommodation</a></li> <li><a href="/wiki/Single-unit_recording" title="Single-unit recording">Single-unit recording</a></li> <li><a href="/wiki/Soliton_model_in_neuroscience" title="Soliton model in neuroscience">Soliton model in neuroscience</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=34" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text">In general, while this simple description of action potential initiation is accurate, it does not explain phenomena such as excitation block (the ability to prevent neurons from eliciting action potentials by stimulating them with large current steps) and the ability to elicit action potentials by briefly hyperpolarizing the membrane. By analyzing the dynamics of a system of sodium and potassium channels in a membrane patch using <a href="/wiki/Computational_model" title="Computational model">computational models</a>, however, these phenomena are readily explained.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>lower-Greek 1<span class="cite-bracket">&#93;</span></a></sup></span> </li> <li id="cite_note-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-99">^</a></b></span> <span class="reference-text">These <a href="/wiki/Purkinje_fiber" class="mw-redirect" title="Purkinje fiber">Purkinje fibers</a> are muscle fibers and not related to the <a href="/wiki/Purkinje_cell" title="Purkinje cell">Purkinje cells</a>, which are <a href="/wiki/Neuron" title="Neuron">neurons</a> found in the <a href="/wiki/Cerebellum" title="Cerebellum">cerebellum</a>.</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=35" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Footnotes">Footnotes</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=36" title="Edit section: Footnotes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 32em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFHodgkinHuxley1952" class="citation journal cs1">Hodgkin AL, Huxley AF (August 1952). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413">"A quantitative description of membrane current and its application to conduction and excitation in nerve"</a>. <i>The Journal of Physiology</i>. <b>117</b> (4): 500–44. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1113%2Fjphysiol.1952.sp004764">10.1113/jphysiol.1952.sp004764</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413">1392413</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12991237">12991237</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Physiology&amp;rft.atitle=A+quantitative+description+of+membrane+current+and+its+application+to+conduction+and+excitation+in+nerve&amp;rft.volume=117&amp;rft.issue=4&amp;rft.pages=500-44&amp;rft.date=1952-08&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1392413%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F12991237&amp;rft_id=info%3Adoi%2F10.1113%2Fjphysiol.1952.sp004764&amp;rft.aulast=Hodgkin&amp;rft.aufirst=AL&amp;rft.au=Huxley%2C+AF&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1392413&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-Williams-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-Williams_2-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilliams1981" class="citation journal cs1">Williams JA (February 1981). "Electrical correlates of secretion in endocrine and exocrine cells". <i>Fed Proc</i>. <b>40</b> (2): 128–34. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/6257554">6257554</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fed+Proc&amp;rft.atitle=Electrical+correlates+of+secretion+in+endocrine+and+exocrine+cells&amp;rft.volume=40&amp;rft.issue=2&amp;rft.pages=128-34&amp;rft.date=1981-02&amp;rft_id=info%3Apmid%2F6257554&amp;rft.aulast=Williams&amp;rft.aufirst=JA&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.zoology.ubc.ca/~gardner/cardiac_muscle_contraction.htm#muscle_ap">"Cardiac Muscle Contraction"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">28 May</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Cardiac+Muscle+Contraction&amp;rft_id=https%3A%2F%2Fwww.zoology.ubc.ca%2F~gardner%2Fcardiac_muscle_contraction.htm%23muscle_ap&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPickard1973" class="citation journal cs1">Pickard B (June 1973). <a rel="nofollow" class="external text" href="http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Action-Potentials-in-Higher-Plants-1.pdf">"Action Potentials in Higher Plants"</a> <span class="cs1-format">(PDF)</span>. <i>The Botanical Review</i>. <b>39</b> (2): 188. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1973BotRv..39..172P">1973BotRv..39..172P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02859299">10.1007/BF02859299</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:5026557">5026557</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Botanical+Review&amp;rft.atitle=Action+Potentials+in+Higher+Plants&amp;rft.volume=39&amp;rft.issue=2&amp;rft.pages=188&amp;rft.date=1973-06&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A5026557%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF02859299&amp;rft_id=info%3Abibcode%2F1973BotRv..39..172P&amp;rft.aulast=Pickard&amp;rft.aufirst=Barbara&amp;rft_id=http%3A%2F%2Fwww.esalq.usp.br%2Flepse%2Fimgs%2Fconteudo_thumb%2FAction-Potentials-in-Higher-Plants-1.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeterrier2018" class="citation journal cs1">Leterrier C (February 2018). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596274">"The Axon Initial Segment: An Updated Viewpoint"</a>. <i>The Journal of Neuroscience</i>. <b>38</b> (9): 2135–2145. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1523%2FJNEUROSCI.1922-17.2018">10.1523/JNEUROSCI.1922-17.2018</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596274">6596274</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/29378864">29378864</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Neuroscience&amp;rft.atitle=The+Axon+Initial+Segment%3A+An+Updated+Viewpoint&amp;rft.volume=38&amp;rft.issue=9&amp;rft.pages=2135-2145&amp;rft.date=2018-02&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6596274%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F29378864&amp;rft_id=info%3Adoi%2F10.1523%2FJNEUROSCI.1922-17.2018&amp;rft.aulast=Leterrier&amp;rft.aufirst=C&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6596274&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPurvesAugustineFitzpatrick2001" class="citation book cs1">Purves D, Augustine GJ, Fitzpatrick D, et&#160;al., eds. (2001). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/books/NBK10883/">"Voltage-Gated Ion Channels"</a>. <i>Neuroscience</i> (2nd&#160;ed.). Sunderland, MA: Sinauer Associates. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180605025823/https://www.ncbi.nlm.nih.gov/books/NBK10883/">Archived</a> from the original on 5 June 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">29 August</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Voltage-Gated+Ion+Channels&amp;rft.btitle=Neuroscience&amp;rft.place=Sunderland%2C+MA&amp;rft.edition=2nd&amp;rft.pub=Sinauer+Associates&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fbooks%2FNBK10883%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEBullockOrkandGrinnell1977150–151-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEBullockOrkandGrinnell1977150–151_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEBullockOrkandGrinnell1977150–151_9-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTEBullockOrkandGrinnell1977150–151_9-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-FOOTNOTEBullockOrkandGrinnell1977150–151_9-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-FOOTNOTEBullockOrkandGrinnell1977150–151_9-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-FOOTNOTEBullockOrkandGrinnell1977150–151_9-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-FOOTNOTEBullockOrkandGrinnell1977150–151_9-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-FOOTNOTEBullockOrkandGrinnell1977150–151_9-7"><sup><i><b>h</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFBullockOrkandGrinnell1977">Bullock, Orkand &amp; Grinnell 1977</a>, pp.&#160;150–151.</span> </li> <li id="cite_note-FOOTNOTEJunge198189–90-10"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEJunge198189–90_10-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEJunge198189–90_10-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTEJunge198189–90_10-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-FOOTNOTEJunge198189–90_10-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-FOOTNOTEJunge198189–90_10-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFJunge1981">Junge 1981</a>, pp.&#160;89–90.</span> </li> <li id="cite_note-FOOTNOTESchmidt-Nielsen1997484-11"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTESchmidt-Nielsen1997484_11-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTESchmidt-Nielsen1997484_11-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFSchmidt-Nielsen1997">Schmidt-Nielsen 1997</a>, p.&#160;484.</span> </li> <li id="cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200848–49BullockOrkandGrinnell1977141Schmidt-Nielsen1997483Junge198189-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200848–49BullockOrkandGrinnell1977141Schmidt-Nielsen1997483Junge198189_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200848–49BullockOrkandGrinnell1977141Schmidt-Nielsen1997483Junge198189_12-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200848–49BullockOrkandGrinnell1977141Schmidt-Nielsen1997483Junge198189_12-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFPurvesAugustineFitzpatrickHall2008">Purves et al. 2008</a>, pp.&#160;48–49; <a href="#CITEREFBullockOrkandGrinnell1977">Bullock, Orkand &amp; Grinnell 1977</a>, p.&#160;141; <a href="#CITEREFSchmidt-Nielsen1997">Schmidt-Nielsen 1997</a>, p.&#160;483; <a href="#CITEREFJunge1981">Junge 1981</a>, p.&#160;89.</span> </li> <li id="cite_note-FOOTNOTEStevens1966127-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEStevens1966127_13-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFStevens1966">Stevens 1966</a>, p.&#160;127.</span> </li> <li id="cite_note-no_decrement-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-no_decrement_16-0">^</a></b></span> <span class="reference-text"><a href="/wiki/Knut_Schmidt-Nielsen" title="Knut Schmidt-Nielsen">Schmidt-Nielsen</a>, p. 484.</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTamagawaFunataniIkeda2016" class="citation journal cs1">Tamagawa H, Funatani M, Ikeda K (January 2016). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4812417">"Ling's Adsorption Theory as a Mechanism of Membrane Potential Generation Observed in Both Living and Nonliving Systems"</a>. <i>Membranes</i>. <b>6</b> (1): 11. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fmembranes6010011">10.3390/membranes6010011</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4812417">4812417</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26821050">26821050</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Membranes&amp;rft.atitle=Ling%27s+Adsorption+Theory+as+a+Mechanism+of+Membrane+Potential+Generation+Observed+in+Both+Living+and+Nonliving+Systems&amp;rft.volume=6&amp;rft.issue=1&amp;rft.pages=11&amp;rft.date=2016-01&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4812417%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F26821050&amp;rft_id=info%3Adoi%2F10.3390%2Fmembranes6010011&amp;rft.aulast=Tamagawa&amp;rft.aufirst=H&amp;rft.au=Funatani%2C+M&amp;rft.au=Ikeda%2C+K&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4812417&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-:0-19"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_19-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_19-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:0_19-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:0_19-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:0_19-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSanesReh2012" class="citation book cs1">Sanes DH, Reh TA (1 January 2012). <i>Development of the nervous system</i> (Third&#160;ed.). Elsevier Academic Press. pp.&#160;211–214. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780080923208" title="Special:BookSources/9780080923208"><bdi>9780080923208</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/762720374">762720374</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Development+of+the+nervous+system&amp;rft.pages=211-214&amp;rft.edition=Third&amp;rft.pub=Elsevier+Academic+Press&amp;rft.date=2012-01-01&amp;rft_id=info%3Aoclcnum%2F762720374&amp;rft.isbn=9780080923208&amp;rft.aulast=Sanes&amp;rft.aufirst=Dan+H.&amp;rft.au=Reh%2C+Thomas+A&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPartridge1991" class="citation book cs1">Partridge D (1991). <i>Calcium Channels: Their Properties, Functions, Regulation, and Clinical relevance</i>. CRC Press. pp.&#160;138–142. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780849388071" title="Special:BookSources/9780849388071"><bdi>9780849388071</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Calcium+Channels%3A+Their+Properties%2C+Functions%2C+Regulation%2C+and+Clinical+relevance&amp;rft.pages=138-142&amp;rft.pub=CRC+Press&amp;rft.date=1991&amp;rft.isbn=9780849388071&amp;rft.aulast=Partridge&amp;rft.aufirst=Donald&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlack1984" class="citation book cs1">Black I (1984). <a rel="nofollow" class="external text" href="https://www.springer.com/us/book/9780306415500"><i>Cellular and Molecular Biology of Neuronal Development | Ira Black | Springer</i></a>. Springer. p.&#160;103. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4613-2717-2" title="Special:BookSources/978-1-4613-2717-2"><bdi>978-1-4613-2717-2</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170717154858/http://www.springer.com/us/book/9780306415500">Archived</a> from the original on 17 July 2017.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Cellular+and+Molecular+Biology+of+Neuronal+Development+%7C+Ira+Black+%7C+Springer&amp;rft.pages=103&amp;rft.pub=Springer&amp;rft.date=1984&amp;rft.isbn=978-1-4613-2717-2&amp;rft.aulast=Black&amp;rft.aufirst=Ira&amp;rft_id=https%3A%2F%2Fwww.springer.com%2Fus%2Fbook%2F9780306415500&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPedersen1998" class="citation book cs1">Pedersen R (1998). <a rel="nofollow" class="external text" href="https://archive.org/details/currenttopicsind0000unse_x6e1"><i>Current Topics in Developmental Biology, Volume 39</i></a>. Elsevier Academic Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780080584621" title="Special:BookSources/9780080584621"><bdi>9780080584621</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Current+Topics+in+Developmental+Biology%2C+Volume+39&amp;rft.pub=Elsevier+Academic+Press&amp;rft.date=1998&amp;rft.isbn=9780080584621&amp;rft.aulast=Pedersen&amp;rft.aufirst=Roger&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcurrenttopicsind0000unse_x6e1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEBullockOrkandGrinnell197711-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBullockOrkandGrinnell197711_23-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBullockOrkandGrinnell1977">Bullock, Orkand &amp; Grinnell 1977</a>, p.&#160;11.</span> </li> <li id="cite_note-FOOTNOTESilverthorn2010253-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTESilverthorn2010253_24-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFSilverthorn2010">Silverthorn 2010</a>, p.&#160;253.</span> </li> <li id="cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200849–50BullockOrkandGrinnell1977140–141Schmidt-Nielsen1997480–481-25"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200849–50BullockOrkandGrinnell1977140–141Schmidt-Nielsen1997480–481_25-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200849–50BullockOrkandGrinnell1977140–141Schmidt-Nielsen1997480–481_25-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200849–50BullockOrkandGrinnell1977140–141Schmidt-Nielsen1997480–481_25-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFPurvesAugustineFitzpatrickHall2008">Purves et al. 2008</a>, pp.&#160;49–50; <a href="#CITEREFBullockOrkandGrinnell1977">Bullock, Orkand &amp; Grinnell 1977</a>, pp.&#160;140–141; <a href="#CITEREFSchmidt-Nielsen1997">Schmidt-Nielsen 1997</a>, pp.&#160;480–481.</span> </li> <li id="cite_note-FOOTNOTESchmidt-Nielsen1997483–484-26"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTESchmidt-Nielsen1997483–484_26-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTESchmidt-Nielsen1997483–484_26-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTESchmidt-Nielsen1997483–484_26-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-FOOTNOTESchmidt-Nielsen1997483–484_26-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFSchmidt-Nielsen1997">Schmidt-Nielsen 1997</a>, pp.&#160;483–484.</span> </li> <li id="cite_note-FOOTNOTEBullockOrkandGrinnell1977177–240Schmidt-Nielsen1997490–499Stevens196647–68-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBullockOrkandGrinnell1977177–240Schmidt-Nielsen1997490–499Stevens196647–68_27-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBullockOrkandGrinnell1977">Bullock, Orkand &amp; Grinnell 1977</a>, pp.&#160;177–240; <a href="#CITEREFSchmidt-Nielsen1997">Schmidt-Nielsen 1997</a>, pp.&#160;490–499; <a href="#CITEREFStevens1966">Stevens 1966</a>, p.&#160;47–68.</span> </li> <li id="cite_note-FOOTNOTEBullockOrkandGrinnell1977178–180Schmidt-Nielsen1997490–491-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBullockOrkandGrinnell1977178–180Schmidt-Nielsen1997490–491_28-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBullockOrkandGrinnell1977">Bullock, Orkand &amp; Grinnell 1977</a>, pp.&#160;178–180; <a href="#CITEREFSchmidt-Nielsen1997">Schmidt-Nielsen 1997</a>, pp.&#160;490–491.</span> </li> <li id="cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall2001-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall2001_29-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFPurvesAugustineFitzpatrickHall2001">Purves et al. 2001</a>.</span> </li> <li id="cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200826–28-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200826–28_33-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFPurvesAugustineFitzpatrickHall2008">Purves et al. 2008</a>, pp.&#160;26–28.</span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation journal cs1"><a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/339655307">"Myelination Increases the Spatial Extent of Analog Modulation of Synaptic Transmission: A Modeling Study"</a>. <i>Frontiers in Cellular Neuroscience</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Frontiers+in+Cellular+Neuroscience&amp;rft.atitle=Myelination+Increases+the+Spatial+Extent+of+Analog+Modulation+of+Synaptic+Transmission%3A+A+Modeling+Study&amp;rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F339655307&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZbiliDebanne2019" class="citation journal cs1">Zbili, M.; Debanne, D. (2019). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6492051">"Past and Future of Analog-Digital Modulation of Synaptic Transmission"</a>. <i>Frontiers in Cellular Neuroscience</i>. <b>13</b>: 160. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3389%2Ffncel.2019.00160">10.3389/fncel.2019.00160</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6492051">6492051</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31105529">31105529</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Frontiers+in+Cellular+Neuroscience&amp;rft.atitle=Past+and+Future+of+Analog-Digital+Modulation+of+Synaptic+Transmission&amp;rft.volume=13&amp;rft.pages=160&amp;rft.date=2019&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6492051%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F31105529&amp;rft_id=info%3Adoi%2F10.3389%2Ffncel.2019.00160&amp;rft.aulast=Zbili&amp;rft.aufirst=M.&amp;rft.au=Debanne%2C+D.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6492051&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFClarkHäusser2006" class="citation journal cs1">Clark, Beverley; Häusser, Michael (8 August 2006). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cub.2006.07.007">"Neural Coding: Analog Signalling in Axons"</a>. <i>Current Biology</i>. <b>16</b> (15): R585–R588. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cub.2006.07.007">10.1016/j.cub.2006.07.007</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16890514">16890514</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8295969">8295969</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Current+Biology&amp;rft.atitle=Neural+Coding%3A+Analog+Signalling+in+Axons&amp;rft.volume=16&amp;rft.issue=15&amp;rft.pages=R585-R588&amp;rft.date=2006-08-08&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8295969%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F16890514&amp;rft_id=info%3Adoi%2F10.1016%2Fj.cub.2006.07.007&amp;rft.aulast=Clark&amp;rft.aufirst=Beverley&amp;rft.au=H%C3%A4usser%2C+Michael&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.cub.2006.07.007&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiuLiuCrozierDavis2021" class="citation journal cs1">Liu, Wenke; Liu, Qing; Crozier, Robert A.; Davis, Robin L. (2021). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8461829">"Analog transmission of action potential fine structure in spiral ganglion axons"</a>. <i>Journal of Neurophysiology</i>. <b>126</b> (3): 888–905. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1152%2Fjn.00237.2021">10.1152/jn.00237.2021</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8461829">8461829</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/34346782">34346782</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Neurophysiology&amp;rft.atitle=Analog+transmission+of+action+potential+fine+structure+in+spiral+ganglion+axons&amp;rft.volume=126&amp;rft.issue=3&amp;rft.pages=888-905&amp;rft.date=2021&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8461829%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F34346782&amp;rft_id=info%3Adoi%2F10.1152%2Fjn.00237.2021&amp;rft.aulast=Liu&amp;rft.aufirst=Wenke&amp;rft.au=Liu%2C+Qing&amp;rft.au=Crozier%2C+Robert+A.&amp;rft.au=Davis%2C+Robin+L.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8461829&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTESchmidt-Nielsen1997535–580BullockOrkandGrinnell197749–56,_76–93,_247–255Stevens196669–79-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTESchmidt-Nielsen1997535–580BullockOrkandGrinnell197749–56,_76–93,_247–255Stevens196669–79_38-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFSchmidt-Nielsen1997">Schmidt-Nielsen 1997</a>, pp.&#160;535–580; <a href="#CITEREFBullockOrkandGrinnell1977">Bullock, Orkand &amp; Grinnell 1977</a>, pp.&#160;49–56, 76–93, 247–255; <a href="#CITEREFStevens1966">Stevens 1966</a>, pp.&#160;69–79.</span> </li> <li id="cite_note-FOOTNOTEBullockOrkandGrinnell197753BullockOrkandGrinnell1977122–124-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBullockOrkandGrinnell197753BullockOrkandGrinnell1977122–124_39-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBullockOrkandGrinnell1977">Bullock, Orkand &amp; Grinnell 1977</a>, pp.&#160;53; <a href="#CITEREFBullockOrkandGrinnell1977">Bullock, Orkand &amp; Grinnell 1977</a>, pp.&#160;122–124.</span> </li> <li id="cite_note-FOOTNOTEJunge1981115–132-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEJunge1981115–132_40-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFJunge1981">Junge 1981</a>, pp.&#160;115–132.</span> </li> <li id="cite_note-FOOTNOTEBullockOrkandGrinnell1977152–153-41"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEBullockOrkandGrinnell1977152–153_41-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEBullockOrkandGrinnell1977152–153_41-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFBullockOrkandGrinnell1977">Bullock, Orkand &amp; Grinnell 1977</a>, pp.&#160;152–153.</span> </li> <li id="cite_note-FOOTNOTEBullockOrkandGrinnell1977444–445-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBullockOrkandGrinnell1977444–445_43-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBullockOrkandGrinnell1977">Bullock, Orkand &amp; Grinnell 1977</a>, pp.&#160;444–445.</span> </li> <li id="cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200838-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200838_44-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFPurvesAugustineFitzpatrickHall2008">Purves et al. 2008</a>, p.&#160;38.</span> </li> <li id="cite_note-FOOTNOTEStevens1966127–128-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEStevens1966127–128_45-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFStevens1966">Stevens 1966</a>, pp.&#160;127–128.</span> </li> <li id="cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200861–65-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200861–65_46-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFPurvesAugustineFitzpatrickHall2008">Purves et al. 2008</a>, pp.&#160;61–65.</span> </li> <li id="cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200864–74BullockOrkandGrinnell1977149–150Junge198184–85Stevens1966152–158-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200864–74BullockOrkandGrinnell1977149–150Junge198184–85Stevens1966152–158_48-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFPurvesAugustineFitzpatrickHall2008">Purves et al. 2008</a>, pp.&#160;64–74; <a href="#CITEREFBullockOrkandGrinnell1977">Bullock, Orkand &amp; Grinnell 1977</a>, pp.&#160;149–150; <a href="#CITEREFJunge1981">Junge 1981</a>, pp.&#160;84–85; <a href="#CITEREFStevens1966">Stevens 1966</a>, pp.&#160;152–158.</span> </li> <li id="cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200847PurvesAugustineFitzpatrickHall200865BullockOrkandGrinnell1977147–148Stevens1966128-50"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200847PurvesAugustineFitzpatrickHall200865BullockOrkandGrinnell1977147–148Stevens1966128_50-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200847PurvesAugustineFitzpatrickHall200865BullockOrkandGrinnell1977147–148Stevens1966128_50-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200847PurvesAugustineFitzpatrickHall200865BullockOrkandGrinnell1977147–148Stevens1966128_50-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFPurvesAugustineFitzpatrickHall2008">Purves et al. 2008</a>, p.&#160;47; <a href="#CITEREFPurvesAugustineFitzpatrickHall2008">Purves et al. 2008</a>, p.&#160;65; <a href="#CITEREFBullockOrkandGrinnell1977">Bullock, Orkand &amp; Grinnell 1977</a>, pp.&#160;147–148; <a href="#CITEREFStevens1966">Stevens 1966</a>, p.&#160;128.</span> </li> <li id="cite_note-goldin_2007-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-goldin_2007_52-0">^</a></b></span> <span class="reference-text">Goldin, AL in <a href="#CITEREFWaxman2007">Waxman 2007</a>, <i>Neuronal Channels and Receptors</i>, pp. 43–58.</span> </li> <li id="cite_note-FOOTNOTEStevens196649-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEStevens196649_54-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFStevens1966">Stevens 1966</a>, p.&#160;49.</span> </li> <li id="cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200834BullockOrkandGrinnell1977134Schmidt-Nielsen1997478–480-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200834BullockOrkandGrinnell1977134Schmidt-Nielsen1997478–480_55-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFPurvesAugustineFitzpatrickHall2008">Purves et al. 2008</a>, p.&#160;34; <a href="#CITEREFBullockOrkandGrinnell1977">Bullock, Orkand &amp; Grinnell 1977</a>, p.&#160;134; <a href="#CITEREFSchmidt-Nielsen1997">Schmidt-Nielsen 1997</a>, pp.&#160;478–480.</span> </li> <li id="cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200849-56"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200849_56-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200849_56-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200849_56-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200849_56-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFPurvesAugustineFitzpatrickHall2008">Purves et al. 2008</a>, p.&#160;49.</span> </li> <li id="cite_note-FOOTNOTEStevens196619–20-57"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEStevens196619–20_57-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEStevens196619–20_57-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTEStevens196619–20_57-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-FOOTNOTEStevens196619–20_57-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFStevens1966">Stevens 1966</a>, pp.&#160;19–20.</span> </li> <li id="cite_note-FOOTNOTEBullockOrkandGrinnell1977151Junge19814–5-58"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEBullockOrkandGrinnell1977151Junge19814–5_58-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEBullockOrkandGrinnell1977151Junge19814–5_58-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTEBullockOrkandGrinnell1977151Junge19814–5_58-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFBullockOrkandGrinnell1977">Bullock, Orkand &amp; Grinnell 1977</a>, p.&#160;151; <a href="#CITEREFJunge1981">Junge 1981</a>, pp.&#160;4–5.</span> </li> <li id="cite_note-FOOTNOTEBullockOrkandGrinnell1977152-59"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEBullockOrkandGrinnell1977152_59-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEBullockOrkandGrinnell1977152_59-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFBullockOrkandGrinnell1977">Bullock, Orkand &amp; Grinnell 1977</a>, p.&#160;152.</span> </li> <li id="cite_note-FOOTNOTEBullockOrkandGrinnell1977147–149Stevens1966126–127-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBullockOrkandGrinnell1977147–149Stevens1966126–127_60-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBullockOrkandGrinnell1977">Bullock, Orkand &amp; Grinnell 1977</a>, pp.&#160;147–149; <a href="#CITEREFStevens1966">Stevens 1966</a>, pp.&#160;126–127.</span> </li> <li id="cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200837-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200837_61-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFPurvesAugustineFitzpatrickHall2008">Purves et al. 2008</a>, p.&#160;37.</span> </li> <li id="cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200856-62"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200856_62-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200856_62-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFPurvesAugustineFitzpatrickHall2008">Purves et al. 2008</a>, p.&#160;56.</span> </li> <li id="cite_note-FOOTNOTEBullockOrkandGrinnell1977160–164-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBullockOrkandGrinnell1977160–164_63-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBullockOrkandGrinnell1977">Bullock, Orkand &amp; Grinnell 1977</a>, pp.&#160;160–164.</span> </li> <li id="cite_note-FOOTNOTEStevens196621–23-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEStevens196621–23_65-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFStevens1966">Stevens 1966</a>, pp.&#160;21–23.</span> </li> <li id="cite_note-FOOTNOTEBullockOrkandGrinnell1977161–164-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBullockOrkandGrinnell1977161–164_66-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBullockOrkandGrinnell1977">Bullock, Orkand &amp; Grinnell 1977</a>, pp.&#160;161–164.</span> </li> <li id="cite_note-FOOTNOTEBullockOrkandGrinnell1977509-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBullockOrkandGrinnell1977509_67-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBullockOrkandGrinnell1977">Bullock, Orkand &amp; Grinnell 1977</a>, p.&#160;509.</span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text">Tasaki, I in <a href="#CITEREFField1959">Field 1959</a>, pp.&#160;75–121</span> </li> <li id="cite_note-FOOTNOTESchmidt-Nielsen1997Figure_12.13-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTESchmidt-Nielsen1997Figure_12.13_78-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFSchmidt-Nielsen1997">Schmidt-Nielsen 1997</a>, Figure 12.13.</span> </li> <li id="cite_note-FOOTNOTEBullockOrkandGrinnell1977163-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBullockOrkandGrinnell1977163_81-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBullockOrkandGrinnell1977">Bullock, Orkand &amp; Grinnell 1977</a>, p.&#160;163.</span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text">Waxman, SG in <a href="#CITEREFWaxman2007">Waxman 2007</a>, <i>Multiple Sclerosis as a Neurodegenerative Disease</i>, pp. 333–346.</span> </li> <li id="cite_note-rall_1989-84"><span class="mw-cite-backlink">^ <a href="#cite_ref-rall_1989_84-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-rall_1989_84-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="/wiki/Wilfrid_Rall" title="Wilfrid Rall">Rall, W</a> in <a href="#CITEREFKochSegev1989">Koch &amp; Segev 1989</a>, <i>Cable Theory for Dendritic Neurons</i>, pp. 9–62.</span> </li> <li id="cite_note-segev_1989-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-segev_1989_85-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSegevFleshmanBurke1989" class="citation book cs1">Segev I, Fleshman JW, Burke RE (1989). "Compartmental Models of Complex Neurons". In <a href="/wiki/Christof_Koch" title="Christof Koch">Koch C</a>, Segev I (eds.). <i>Methods in Neuronal Modeling: From Synapses to Networks</i>. Cambridge, Massachusetts: The MIT Press. pp.&#160;63–96. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-262-11133-1" title="Special:BookSources/978-0-262-11133-1"><bdi>978-0-262-11133-1</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/88008279">88008279</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/18384545">18384545</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Compartmental+Models+of+Complex+Neurons&amp;rft.btitle=Methods+in+Neuronal+Modeling%3A+From+Synapses+to+Networks.&amp;rft.place=Cambridge%2C+Massachusetts&amp;rft.pages=63-96&amp;rft.pub=The+MIT+Press&amp;rft.date=1989&amp;rft_id=info%3Aoclcnum%2F18384545&amp;rft_id=info%3Alccn%2F88008279&amp;rft.isbn=978-0-262-11133-1&amp;rft.aulast=Segev&amp;rft.aufirst=I&amp;rft.au=Fleshman%2C+JW&amp;rft.au=Burke%2C+RE&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEPurvesAugustineFitzpatrickHall200852–53-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEPurvesAugustineFitzpatrickHall200852–53_88-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFPurvesAugustineFitzpatrickHall2008">Purves et al. 2008</a>, pp.&#160;52–53.</span> </li> <li id="cite_note-FOOTNOTEGanong199159–60-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGanong199159–60_101-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGanong1991">Ganong 1991</a>, pp.&#160;59–60.</span> </li> <li id="cite_note-106"><span class="mw-cite-backlink"><b><a href="#cite_ref-106">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTandon2019" class="citation journal cs1">Tandon, Prakash N (1 July 2019). <a rel="nofollow" class="external text" href="http://insa.nic.in/writereaddata/UpLoadedFiles/IJHS/Vol54_2_2019__Art05.pdf">"Jagdish Chandra Bose and Plant Neurobiology: Part I"</a> <span class="cs1-format">(PDF)</span>. <i>Indian Journal of History of Science</i>. <b>54</b> (2). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.16943%2Fijhs%2F2019%2Fv54i2%2F49660">10.16943/ijhs/2019/v54i2/49660</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0019-5235">0019-5235</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Indian+Journal+of+History+of+Science&amp;rft.atitle=Jagdish+Chandra+Bose+and+Plant+Neurobiology%3A+Part+I&amp;rft.volume=54&amp;rft.issue=2&amp;rft.date=2019-07-01&amp;rft_id=info%3Adoi%2F10.16943%2Fijhs%2F2019%2Fv54i2%2F49660&amp;rft.issn=0019-5235&amp;rft.aulast=Tandon&amp;rft.aufirst=Prakash+N&amp;rft_id=http%3A%2F%2Finsa.nic.in%2Fwritereaddata%2FUpLoadedFiles%2FIJHS%2FVol54_2_2019&#95;_Art05.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-107"><span class="mw-cite-backlink"><b><a href="#cite_ref-107">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFelleZimmermann2007" class="citation journal cs1">Felle HH, Zimmermann MR (June 2007). "Systemic signalling in barley through action potentials". <i>Planta</i>. <b>226</b> (1): 203–14. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007Plant.226..203F">2007Plant.226..203F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00425-006-0458-y">10.1007/s00425-006-0458-y</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17226028">17226028</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:5059716">5059716</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Planta&amp;rft.atitle=Systemic+signalling+in+barley+through+action+potentials&amp;rft.volume=226&amp;rft.issue=1&amp;rft.pages=203-14&amp;rft.date=2007-06&amp;rft_id=info%3Adoi%2F10.1007%2Fs00425-006-0458-y&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A5059716%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F17226028&amp;rft_id=info%3Abibcode%2F2007Plant.226..203F&amp;rft.aulast=Felle&amp;rft.aufirst=HH&amp;rft.au=Zimmermann%2C+MR&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-108"><span class="mw-cite-backlink"><b><a href="#cite_ref-108">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLuken2005" class="citation journal cs1">Luken JO (December 2005). "Habitats of Dionaea muscipula (Venus' Fly Trap), Droseraceae, Associated with Carolina Bays". <i>Southeastern Naturalist</i>. <b>4</b> (4): 573–584. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1656%2F1528-7092%282005%29004%5B0573%3AHODMVF%5D2.0.CO%3B2">10.1656/1528-7092(2005)004&#91;0573:HODMVF&#93;2.0.CO&#59;2</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1528-7092">1528-7092</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9246114">9246114</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Southeastern+Naturalist&amp;rft.atitle=Habitats+of+Dionaea+muscipula+%28Venus%27+Fly+Trap%29%2C+Droseraceae%2C+Associated+with+Carolina+Bays&amp;rft.volume=4&amp;rft.issue=4&amp;rft.pages=573-584&amp;rft.date=2005-12&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9246114%23id-name%3DS2CID&amp;rft.issn=1528-7092&amp;rft_id=info%3Adoi%2F10.1656%2F1528-7092%282005%29004%5B0573%3AHODMVF%5D2.0.CO%3B2&amp;rft.aulast=Luken&amp;rft.aufirst=James+O.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-:1-109"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_109-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_109-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBöhmScherzerKrolKreuzer2016" class="citation journal cs1">Böhm J, Scherzer S, Krol E, Kreuzer I, von Meyer K, Lorey C, et&#160;al. (February 2016). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4751343">"The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake"</a>. <i>Current Biology</i>. <b>26</b> (3): 286–95. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016CBio...26..286B">2016CBio...26..286B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cub.2015.11.057">10.1016/j.cub.2015.11.057</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4751343">4751343</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26804557">26804557</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Current+Biology&amp;rft.atitle=The+Venus+Flytrap+Dionaea+muscipula+Counts+Prey-Induced+Action+Potentials+to+Induce+Sodium+Uptake&amp;rft.volume=26&amp;rft.issue=3&amp;rft.pages=286-95&amp;rft.date=2016-02&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4751343%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F26804557&amp;rft_id=info%3Adoi%2F10.1016%2Fj.cub.2015.11.057&amp;rft_id=info%3Abibcode%2F2016CBio...26..286B&amp;rft.aulast=B%C3%B6hm&amp;rft.aufirst=J&amp;rft.au=Scherzer%2C+S&amp;rft.au=Krol%2C+E&amp;rft.au=Kreuzer%2C+I&amp;rft.au=von+Meyer%2C+K&amp;rft.au=Lorey%2C+C&amp;rft.au=Mueller%2C+TD&amp;rft.au=Shabala%2C+L&amp;rft.au=Monte%2C+I&amp;rft.au=Solano%2C+R&amp;rft.au=Al-Rasheid%2C+KA&amp;rft.au=Rennenberg%2C+H&amp;rft.au=Shabala%2C+S&amp;rft.au=Neher%2C+E&amp;rft.au=Hedrich%2C+R&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4751343&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-:2-110"><span class="mw-cite-backlink">^ <a href="#cite_ref-:2_110-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:2_110-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:2_110-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:2_110-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:2_110-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-:2_110-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-:2_110-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHedrichNeher2018" class="citation journal cs1">Hedrich R, Neher E (March 2018). "Venus Flytrap: How an Excitable, Carnivorous Plant Works". <i>Trends in Plant Science</i>. <b>23</b> (3): 220–234. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018TPS....23..220H">2018TPS....23..220H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.tplants.2017.12.004">10.1016/j.tplants.2017.12.004</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/29336976">29336976</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Trends+in+Plant+Science&amp;rft.atitle=Venus+Flytrap%3A+How+an+Excitable%2C+Carnivorous+Plant+Works&amp;rft.volume=23&amp;rft.issue=3&amp;rft.pages=220-234&amp;rft.date=2018-03&amp;rft_id=info%3Apmid%2F29336976&amp;rft_id=info%3Adoi%2F10.1016%2Fj.tplants.2017.12.004&amp;rft_id=info%3Abibcode%2F2018TPS....23..220H&amp;rft.aulast=Hedrich&amp;rft.aufirst=R&amp;rft.au=Neher%2C+E&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-111">^</a></b></span> <span class="reference-text">Purves D, Augustine GJ, Fitzpatrick D, et al., editors. Neuroscience. 2nd edition. Sunderland (MA): Sinauer Associates; 2001. Electrical Potentials Across Nerve Cell Membranes. Available from: <a rel="nofollow" class="external autonumber" href="https://www.ncbi.nlm.nih.gov/books/NBK11069/">[1]</a></span> </li> <li id="cite_note-112"><span class="mw-cite-backlink"><b><a href="#cite_ref-112">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVolkovAdesinaJovanov2007" class="citation journal cs1">Volkov AG, Adesina T, Jovanov E (May 2007). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2634039">"Closing of venus flytrap by electrical stimulation of motor cells"</a>. <i>Plant Signaling &amp; Behavior</i>. <b>2</b> (3): 139–45. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007PlSiB...2..139V">2007PlSiB...2..139V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4161%2Fpsb.2.3.4217">10.4161/psb.2.3.4217</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2634039">2634039</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19516982">19516982</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Plant+Signaling+%26+Behavior&amp;rft.atitle=Closing+of+venus+flytrap+by+electrical+stimulation+of+motor+cells&amp;rft.volume=2&amp;rft.issue=3&amp;rft.pages=139-45&amp;rft.date=2007-05&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2634039%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F19516982&amp;rft_id=info%3Adoi%2F10.4161%2Fpsb.2.3.4217&amp;rft_id=info%3Abibcode%2F2007PlSiB...2..139V&amp;rft.aulast=Volkov&amp;rft.aufirst=AG&amp;rft.au=Adesina%2C+T&amp;rft.au=Jovanov%2C+E&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2634039&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-Gradmann_1980-114"><span class="mw-cite-backlink"><b><a href="#cite_ref-Gradmann_1980_114-0">^</a></b></span> <span class="reference-text"> Gradmann, D; Mummert, H in <a href="#CITEREFSpanswickLucasDainty1980">Spanswick, Lucas &amp; Dainty 1980</a>, <i>Plant action potentials</i>, pp. 333–344.</span> </li> <li id="cite_note-Opritov-115"><span class="mw-cite-backlink"><b><a href="#cite_ref-Opritov_115-0">^</a></b></span> <span class="reference-text">Opritov, V A, et al. "Direct Coupling of Action Potential Generation in Cells of a Higher Plant (Cucurbita Pepo) with the Operation of an Electrogenic Pump." <i>Russian Journal of Plant Physiology</i>, vol. 49, no. 1, 2002, pp. 142–147.</span> </li> <li id="cite_note-FOOTNOTEBullockHorridge1965-118"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBullockHorridge1965_118-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBullockHorridge1965">Bullock &amp; Horridge 1965</a>.</span> </li> <li id="cite_note-119"><span class="mw-cite-backlink"><b><a href="#cite_ref-119">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKristan2016" class="citation journal cs1">Kristan WB (October 2016). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cub.2016.05.030">"Early evolution of neurons"</a>. <i>Current Biology</i>. <b>26</b> (20): R949–R954. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016CBio...26.R949K">2016CBio...26.R949K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cub.2016.05.030">10.1016/j.cub.2016.05.030</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27780067">27780067</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Current+Biology&amp;rft.atitle=Early+evolution+of+neurons&amp;rft.volume=26&amp;rft.issue=20&amp;rft.pages=R949-R954&amp;rft.date=2016-10&amp;rft_id=info%3Apmid%2F27780067&amp;rft_id=info%3Adoi%2F10.1016%2Fj.cub.2016.05.030&amp;rft_id=info%3Abibcode%2F2016CBio...26.R949K&amp;rft.aulast=Kristan&amp;rft.aufirst=WB&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.cub.2016.05.030&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-120"><span class="mw-cite-backlink"><b><a href="#cite_ref-120">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHellier2014" class="citation book cs1">Hellier JL (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=SDi2BQAAQBAJ"><i>The Brain, the Nervous System, and Their Diseases</i></a>. ABC-Clio. p.&#160;532. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781610693387" title="Special:BookSources/9781610693387"><bdi>9781610693387</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Brain%2C+the+Nervous+System%2C+and+Their+Diseases&amp;rft.pages=532&amp;rft.pub=ABC-Clio&amp;rft.date=2014&amp;rft.isbn=9781610693387&amp;rft.aulast=Hellier&amp;rft.aufirst=Jennifer+L.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DSDi2BQAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEJunge198163–82-124"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEJunge198163–82_124-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFJunge1981">Junge 1981</a>, pp.&#160;63–82.</span> </li> <li id="cite_note-FOOTNOTEKettenmannGrantyn1992-125"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEKettenmannGrantyn1992_125-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFKettenmannGrantyn1992">Kettenmann &amp; Grantyn 1992</a>.</span> </li> <li id="cite_note-129"><span class="mw-cite-backlink"><b><a href="#cite_ref-129">^</a></b></span> <span class="reference-text">Snell, FM in <a href="#CITEREFLavalléeSchanneHébert1969">Lavallée, Schanne &amp; Hébert 1969</a>, <i>Some Electrical Properties of Fine-Tipped Pipette Microelectrodes</i>.</span> </li> <li id="cite_note-FOOTNOTEBrazier1961McHenryGarrison1969WordenSwazeyAdelman1975-136"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBrazier1961McHenryGarrison1969WordenSwazeyAdelman1975_136-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBrazier1961">Brazier 1961</a>; <a href="#CITEREFMcHenryGarrison1969">McHenry &amp; Garrison 1969</a>; <a href="#CITEREFWordenSwazeyAdelman1975">Worden, Swazey &amp; Adelman 1975</a>.</span> </li> <li id="cite_note-137"><span class="mw-cite-backlink"><b><a href="#cite_ref-137">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFinkelstein2013" class="citation book cs1">Finkelstein GW (2013). <i>Emil du Bois-Reymond&#160;: neuroscience, self, and society in nineteenth-century Germany</i>. Cambridge, Massachusetts. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781461950325" title="Special:BookSources/9781461950325"><bdi>9781461950325</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/864592470">864592470</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Emil+du+Bois-Reymond+%3A+neuroscience%2C+self%2C+and+society+in+nineteenth-century+Germany&amp;rft.place=Cambridge%2C+Massachusetts&amp;rft.date=2013&amp;rft_id=info%3Aoclcnum%2F864592470&amp;rft.isbn=9781461950325&amp;rft.aulast=Finkelstein&amp;rft.aufirst=Gabriel+Ward&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: location missing publisher (<a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">link</a>)</span></span> </li> <li id="cite_note-138"><span class="mw-cite-backlink"><b><a href="#cite_ref-138">^</a></b></span> <span class="reference-text"><a href="/wiki/Kathryn_Olesko" title="Kathryn Olesko">Olesko, Kathryn M.</a>, and Frederic L. Holmes. "Experiment, Quantification and Discovery: Helmholtz's Early Physiological Researches, 1843-50". In <i>Hermann von Helmholtz and the Foundations of Nineteenth Century Science</i>, ed. David Cahan, 50-108. Berkeley; Los Angeles; London: University of California, 1994.</span> </li> <li id="cite_note-FOOTNOTEBernstein1912-141"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBernstein1912_141-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBernstein1912">Bernstein 1912</a>.</span> </li> <li id="cite_note-158"><span class="mw-cite-backlink"><b><a href="#cite_ref-158">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBaranauskasMartina2006" class="citation journal cs1">Baranauskas G, Martina M (January 2006). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6674426">"Sodium currents activate without a Hodgkin-and-Huxley-type delay in central mammalian neurons"</a>. <i>The Journal of Neuroscience</i>. <b>26</b> (2): 671–84. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1523%2Fjneurosci.2283-05.2006">10.1523/jneurosci.2283-05.2006</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6674426">6674426</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16407565">16407565</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Neuroscience&amp;rft.atitle=Sodium+currents+activate+without+a+Hodgkin-and-Huxley-type+delay+in+central+mammalian+neurons&amp;rft.volume=26&amp;rft.issue=2&amp;rft.pages=671-84&amp;rft.date=2006-01&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6674426%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F16407565&amp;rft_id=info%3Adoi%2F10.1523%2Fjneurosci.2283-05.2006&amp;rft.aulast=Baranauskas&amp;rft.aufirst=G&amp;rft.au=Martina%2C+M&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6674426&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEHoppensteadt1986-159"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHoppensteadt1986_159-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHoppensteadt1986">Hoppensteadt 1986</a>.</span> </li> <li id="cite_note-math_studies-164"><span class="mw-cite-backlink"><b><a href="#cite_ref-math_studies_164-0">^</a></b></span> <span class="reference-text">Sato, S; Fukai, H; Nomura, T; Doi, S in <a href="#CITEREFReekePoznanskiSpornsRosenberg2005">Reeke et al. 2005</a>, <i>Bifurcation Analysis of the Hodgkin-Huxley Equations</i>, pp. 459–478.<br />* FitzHugh, R in <a href="#CITEREFSchwann1969">Schwann 1969</a>, <i>Mathematical models of axcitation and propagation in nerve</i>, pp. 12–16.<br />* <a href="#CITEREFGuckenheimerHolmes1986">Guckenheimer &amp; Holmes 1986</a>, pp.&#160;12–16</span> </li> <li id="cite_note-computational_studies-166"><span class="mw-cite-backlink"><b><a href="#cite_ref-computational_studies_166-0">^</a></b></span> <span class="reference-text">Nelson, ME; Rinzel, J in <a href="#CITEREFBowerBeeman1995">Bower &amp; Beeman 1995</a>, <i>The Hodgkin-Huxley Model</i>, pp. 29–49.<br />* Rinzel, J &amp; Ermentrout, GB; in <a href="#CITEREFKochSegev1989">Koch &amp; Segev 1989</a>, <i>Analysis of Neural Excitability and Oscillations</i>, pp. 135–169.</span> </li> <li id="cite_note-168"><span class="mw-cite-backlink"><b><a href="#cite_ref-168">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBiswasManivannanSrinivasan2015" class="citation journal cs1">Biswas A, Manivannan M, Srinivasan MA (2015). <a rel="nofollow" class="external text" href="https://zenodo.org/record/894772">"Vibrotactile sensitivity threshold: nonlinear stochastic mechanotransduction model of the Pacinian Corpuscle"</a>. <i>IEEE Transactions on Haptics</i>. <b>8</b> (1): 102–13. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTOH.2014.2369422">10.1109/TOH.2014.2369422</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25398183">25398183</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15326972">15326972</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Haptics&amp;rft.atitle=Vibrotactile+sensitivity+threshold%3A+nonlinear+stochastic+mechanotransduction+model+of+the+Pacinian+Corpuscle&amp;rft.volume=8&amp;rft.issue=1&amp;rft.pages=102-13&amp;rft.date=2015&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15326972%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F25398183&amp;rft_id=info%3Adoi%2F10.1109%2FTOH.2014.2369422&amp;rft.aulast=Biswas&amp;rft.aufirst=A&amp;rft.au=Manivannan%2C+M&amp;rft.au=Srinivasan%2C+MA&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F894772&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEMcCulloch198819–39,_46–66,_72–141AndersonRosenfeld198815–41-169"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMcCulloch198819–39,_46–66,_72–141AndersonRosenfeld198815–41_169-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMcCulloch1988">McCulloch 1988</a>, pp.&#160;19–39, 46–66, 72–141; <a href="#CITEREFAndersonRosenfeld1988">Anderson &amp; Rosenfeld 1988</a>, pp.&#160;15–41.</span> </li> <li id="cite_note-cpg-170"><span class="mw-cite-backlink"><b><a href="#cite_ref-cpg_170-0">^</a></b></span> <span class="reference-text">Getting, PA in <a href="#CITEREFKochSegev1989">Koch &amp; Segev 1989</a>, <i>Reconstruction of Small Neural Networks</i>, pp. 171–194.</span> </li> </ol></div> <div class="mw-heading mw-heading3"><h3 id="Journal_articles">Journal articles</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=37" title="Edit section: Journal articles"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width reflist-lower-alpha reflist-columns-2"> <ol class="references"> <li id="cite_note-pmid16464129-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid16464129_3-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMacDonaldRorsman2006" class="citation journal cs1">MacDonald PE, Rorsman P (February 2006). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1363709">"Oscillations, intercellular coupling, and insulin secretion in pancreatic beta cells"</a>. <i>PLOS Biology</i>. <b>4</b> (2): e49. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1371%2Fjournal.pbio.0040049">10.1371/journal.pbio.0040049</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1363709">1363709</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16464129">16464129</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=PLOS+Biology&amp;rft.atitle=Oscillations%2C+intercellular+coupling%2C+and+insulin+secretion+in+pancreatic+beta+cells&amp;rft.volume=4&amp;rft.issue=2&amp;rft.pages=e49&amp;rft.date=2006-02&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1363709%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F16464129&amp;rft_id=info%3Adoi%2F10.1371%2Fjournal.pbio.0040049&amp;rft.aulast=MacDonald&amp;rft.aufirst=PE&amp;rft.au=Rorsman%2C+P&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1363709&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span> <span style="position:relative; top: -2px;"><span typeof="mw:File"><a href="/wiki/Open_access" title="open access publication – free to read"><img alt="Open access icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/77/Open_Access_logo_PLoS_transparent.svg/9px-Open_Access_logo_PLoS_transparent.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/77/Open_Access_logo_PLoS_transparent.svg/14px-Open_Access_logo_PLoS_transparent.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/77/Open_Access_logo_PLoS_transparent.svg/18px-Open_Access_logo_PLoS_transparent.svg.png 2x" data-file-width="640" data-file-height="1000" /></a></span></span></span> </li> <li id="cite_note-pmid17515599-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-pmid17515599_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pmid17515599_4-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarnettLarkman2007" class="citation journal cs1">Barnett MW, Larkman PM (June 2007). <a rel="nofollow" class="external text" href="http://pn.bmj.com/content/7/3/192.short">"The action potential"</a>. <i>Practical Neurology</i>. <b>7</b> (3): 192–7. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17515599">17515599</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110708074452/http://pn.bmj.com/content/7/3/192.short">Archived</a> from the original on 8 July 2011.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Practical+Neurology&amp;rft.atitle=The+action+potential&amp;rft.volume=7&amp;rft.issue=3&amp;rft.pages=192-7&amp;rft.date=2007-06&amp;rft_id=info%3Apmid%2F17515599&amp;rft.aulast=Barnett&amp;rft.aufirst=MW&amp;rft.au=Larkman%2C+PM&amp;rft_id=http%3A%2F%2Fpn.bmj.com%2Fcontent%2F7%2F3%2F192.short&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-backpropagation_in_pyramidal_cells-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-backpropagation_in_pyramidal_cells_17-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoldingKathSpruston2001" class="citation journal cs1">Golding NL, Kath WL, Spruston N (December 2001). "Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites". <i>Journal of Neurophysiology</i>. <b>86</b> (6): 2998–3010. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1152%2Fjn.2001.86.6.2998">10.1152/jn.2001.86.6.2998</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11731556">11731556</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2915815">2915815</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Neurophysiology&amp;rft.atitle=Dichotomy+of+action-potential+backpropagation+in+CA1+pyramidal+neuron+dendrites&amp;rft.volume=86&amp;rft.issue=6&amp;rft.pages=2998-3010&amp;rft.date=2001-12&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2915815%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F11731556&amp;rft_id=info%3Adoi%2F10.1152%2Fjn.2001.86.6.2998&amp;rft.aulast=Golding&amp;rft.aufirst=NL&amp;rft.au=Kath%2C+WL&amp;rft.au=Spruston%2C+N&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-Sasaki-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-Sasaki_30-0">^</a></b></span> <span class="reference-text">Sasaki, T., Matsuki, N., Ikegaya, Y. 2011 Action-potential modulation during axonal conduction Science 331 (6017), pp. 599–601</span> </li> <li id="cite_note-Aur-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-Aur_31-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAurConnollyJog2005" class="citation journal cs1">Aur D, Connolly CI, Jog MS (November 2005). "Computing spike directivity with tetrodes". <i>Journal of Neuroscience Methods</i>. <b>149</b> (1): 57–63. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jneumeth.2005.05.006">10.1016/j.jneumeth.2005.05.006</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15978667">15978667</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:34131910">34131910</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Neuroscience+Methods&amp;rft.atitle=Computing+spike+directivity+with+tetrodes&amp;rft.volume=149&amp;rft.issue=1&amp;rft.pages=57-63&amp;rft.date=2005-11&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A34131910%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F15978667&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jneumeth.2005.05.006&amp;rft.aulast=Aur&amp;rft.aufirst=D&amp;rft.au=Connolly%2C+CI&amp;rft.au=Jog%2C+MS&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-Aur,_Jog-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-Aur,_Jog_32-0">^</a></b></span> <span class="reference-text">Aur D., Jog, MS., 2010 Neuroelectrodynamics: Understanding the brain language, IOS Press, 2010. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.3233%2F978-1-60750-473-3-i">10.3233/978-1-60750-473-3-i</a></span> </li> <li id="cite_note-noble_1960-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-noble_1960_42-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNoble1960" class="citation journal cs1">Noble D (November 1960). "Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations". <i>Nature</i>. <b>188</b> (4749): 495–7. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1960Natur.188..495N">1960Natur.188..495N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F188495b0">10.1038/188495b0</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/13729365">13729365</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4147174">4147174</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Cardiac+action+and+pacemaker+potentials+based+on+the+Hodgkin-Huxley+equations&amp;rft.volume=188&amp;rft.issue=4749&amp;rft.pages=495-7&amp;rft.date=1960-11&amp;rft_id=info%3Adoi%2F10.1038%2F188495b0&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4147174%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F13729365&amp;rft_id=info%3Abibcode%2F1960Natur.188..495N&amp;rft.aulast=Noble&amp;rft.aufirst=D&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-goldman_1943-47"><span class="mw-cite-backlink">^ <a href="#cite_ref-goldman_1943_47-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-goldman_1943_47-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoldman1943" class="citation journal cs1">Goldman DE (September 1943). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2142582">"Potential, Impedance, and Rectification in Membranes"</a>. <i>The Journal of General Physiology</i>. <b>27</b> (1): 37–60. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1085%2Fjgp.27.1.37">10.1085/jgp.27.1.37</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2142582">2142582</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19873371">19873371</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+General+Physiology&amp;rft.atitle=Potential%2C+Impedance%2C+and+Rectification+in+Membranes&amp;rft.volume=27&amp;rft.issue=1&amp;rft.pages=37-60&amp;rft.date=1943-09&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2142582%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F19873371&amp;rft_id=info%3Adoi%2F10.1085%2Fjgp.27.1.37&amp;rft.aulast=Goldman&amp;rft.aufirst=DE&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2142582&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-hodgkin_1952-49"><span class="mw-cite-backlink">^ <a href="#cite_ref-hodgkin_1952_49-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-hodgkin_1952_49-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-hodgkin_1952_49-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-hodgkin_1952_49-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-hodgkin_1952_49-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHodgkinHuxleyKatz1952" class="citation journal cs1"><a href="/wiki/Alan_Lloyd_Hodgkin" class="mw-redirect" title="Alan Lloyd Hodgkin">Hodgkin AL</a>, Huxley AF, <a href="/wiki/Bernard_Katz" title="Bernard Katz">Katz B</a> (April 1952). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392219">"Measurement of current-voltage relations in the membrane of the giant axon of Loligo"</a>. <i>The Journal of Physiology</i>. <b>116</b> (4): 424–48. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1113%2Fjphysiol.1952.sp004716">10.1113/jphysiol.1952.sp004716</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392219">1392219</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/14946712">14946712</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Physiology&amp;rft.atitle=Measurement+of+current-voltage+relations+in+the+membrane+of+the+giant+axon+of+Loligo&amp;rft.volume=116&amp;rft.issue=4&amp;rft.pages=424-48&amp;rft.date=1952-04&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1392219%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F14946712&amp;rft_id=info%3Adoi%2F10.1113%2Fjphysiol.1952.sp004716&amp;rft.aulast=Hodgkin&amp;rft.aufirst=AL&amp;rft.au=Huxley%2C+AF&amp;rft.au=Katz%2C+B&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1392219&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span><br />* <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHodgkinHuxley1952" class="citation journal cs1"><a href="/wiki/Alan_Lloyd_Hodgkin" class="mw-redirect" title="Alan Lloyd Hodgkin">Hodgkin AL</a>, Huxley AF (April 1952). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392213">"Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo"</a>. <i>The Journal of Physiology</i>. <b>116</b> (4): 449–72. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1113%2Fjphysiol.1952.sp004717">10.1113/jphysiol.1952.sp004717</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392213">1392213</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/14946713">14946713</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Physiology&amp;rft.atitle=Currents+carried+by+sodium+and+potassium+ions+through+the+membrane+of+the+giant+axon+of+Loligo&amp;rft.volume=116&amp;rft.issue=4&amp;rft.pages=449-72&amp;rft.date=1952-04&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1392213%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F14946713&amp;rft_id=info%3Adoi%2F10.1113%2Fjphysiol.1952.sp004717&amp;rft.aulast=Hodgkin&amp;rft.aufirst=AL&amp;rft.au=Huxley%2C+AF&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1392213&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span><br />* <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHodgkinHuxley1952" class="citation journal cs1"><a href="/wiki/Alan_Lloyd_Hodgkin" class="mw-redirect" title="Alan Lloyd Hodgkin">Hodgkin AL</a>, Huxley AF (April 1952). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392209">"The components of membrane conductance in the giant axon of Loligo"</a>. <i>The Journal of Physiology</i>. <b>116</b> (4): 473–96. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1113%2Fjphysiol.1952.sp004718">10.1113/jphysiol.1952.sp004718</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392209">1392209</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/14946714">14946714</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Physiology&amp;rft.atitle=The+components+of+membrane+conductance+in+the+giant+axon+of+Loligo&amp;rft.volume=116&amp;rft.issue=4&amp;rft.pages=473-96&amp;rft.date=1952-04&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1392209%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F14946714&amp;rft_id=info%3Adoi%2F10.1113%2Fjphysiol.1952.sp004718&amp;rft.aulast=Hodgkin&amp;rft.aufirst=AL&amp;rft.au=Huxley%2C+AF&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1392209&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span><br />* <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHodgkinHuxley1952" class="citation journal cs1"><a href="/wiki/Alan_Lloyd_Hodgkin" class="mw-redirect" title="Alan Lloyd Hodgkin">Hodgkin AL</a>, Huxley AF (April 1952). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392212">"The dual effect of membrane potential on sodium conductance in the giant axon of Loligo"</a>. <i>The Journal of Physiology</i>. <b>116</b> (4): 497–506. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1113%2Fjphysiol.1952.sp004719">10.1113/jphysiol.1952.sp004719</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392212">1392212</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/14946715">14946715</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Physiology&amp;rft.atitle=The+dual+effect+of+membrane+potential+on+sodium+conductance+in+the+giant+axon+of+Loligo&amp;rft.volume=116&amp;rft.issue=4&amp;rft.pages=497-506&amp;rft.date=1952-04&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1392212%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F14946715&amp;rft_id=info%3Adoi%2F10.1113%2Fjphysiol.1952.sp004719&amp;rft.aulast=Hodgkin&amp;rft.aufirst=AL&amp;rft.au=Huxley%2C+AF&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1392212&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span><br />* <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHodgkinHuxley1952" class="citation journal cs1"><a href="/wiki/Alan_Lloyd_Hodgkin" class="mw-redirect" title="Alan Lloyd Hodgkin">Hodgkin AL</a>, Huxley AF (August 1952). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413">"A quantitative description of membrane current and its application to conduction and excitation in nerve"</a>. <i>The Journal of Physiology</i>. <b>117</b> (4): 500–44. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1113%2Fjphysiol.1952.sp004764">10.1113/jphysiol.1952.sp004764</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413">1392413</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12991237">12991237</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Physiology&amp;rft.atitle=A+quantitative+description+of+membrane+current+and+its+application+to+conduction+and+excitation+in+nerve&amp;rft.volume=117&amp;rft.issue=4&amp;rft.pages=500-44&amp;rft.date=1952-08&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1392413%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F12991237&amp;rft_id=info%3Adoi%2F10.1113%2Fjphysiol.1952.sp004764&amp;rft.aulast=Hodgkin&amp;rft.aufirst=AL&amp;rft.au=Huxley%2C+AF&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1392413&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNaundorfWolfVolgushev2006" class="citation journal cs1">Naundorf B, Wolf F, Volgushev M (April 2006). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20181220232812/http://volgushev.uconn.edu/DownLoads/Naundorf_Nature2006v440p1060_Suppl_3_CoopModel.pdf">"Unique features of action potential initiation in cortical neurons"</a> <span class="cs1-format">(PDF)</span>. <i>Nature</i>. <b>440</b> (7087): 1060–3. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006Natur.440.1060N">2006Natur.440.1060N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature04610">10.1038/nature04610</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16625198">16625198</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1328840">1328840</a>. Archived from <a rel="nofollow" class="external text" href="http://www.volgushev.uconn.edu/DownLoads/Naundorf_Nature2006v440p1060_Suppl_3_CoopModel.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 20 December 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">24 September</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Unique+features+of+action+potential+initiation+in+cortical+neurons&amp;rft.volume=440&amp;rft.issue=7087&amp;rft.pages=1060-3&amp;rft.date=2006-04&amp;rft_id=info%3Adoi%2F10.1038%2Fnature04610&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1328840%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F16625198&amp;rft_id=info%3Abibcode%2F2006Natur.440.1060N&amp;rft.aulast=Naundorf&amp;rft.aufirst=B&amp;rft.au=Wolf%2C+F&amp;rft.au=Volgushev%2C+M&amp;rft_id=http%3A%2F%2Fwww.volgushev.uconn.edu%2FDownLoads%2FNaundorf_Nature2006v440p1060_Suppl_3_CoopModel.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHodgkin1937" class="citation journal cs1"><a href="/wiki/Alan_Lloyd_Hodgkin" class="mw-redirect" title="Alan Lloyd Hodgkin">Hodgkin AL</a> (July 1937). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1395060">"Evidence for electrical transmission in nerve: Part I"</a>. <i>The Journal of Physiology</i>. <b>90</b> (2): 183–210. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1113%2Fjphysiol.1937.sp003507">10.1113/jphysiol.1937.sp003507</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1395060">1395060</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16994885">16994885</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Physiology&amp;rft.atitle=Evidence+for+electrical+transmission+in+nerve%3A+Part+I&amp;rft.volume=90&amp;rft.issue=2&amp;rft.pages=183-210&amp;rft.date=1937-07&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1395060%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F16994885&amp;rft_id=info%3Adoi%2F10.1113%2Fjphysiol.1937.sp003507&amp;rft.aulast=Hodgkin&amp;rft.aufirst=AL&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1395060&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span><br />* <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHodgkin1937" class="citation journal cs1"><a href="/wiki/Alan_Lloyd_Hodgkin" class="mw-redirect" title="Alan Lloyd Hodgkin">Hodgkin AL</a> (July 1937). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1395062">"Evidence for electrical transmission in nerve: Part II"</a>. <i>The Journal of Physiology</i>. <b>90</b> (2): 211–32. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1113%2Fjphysiol.1937.sp003508">10.1113/jphysiol.1937.sp003508</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1395062">1395062</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16994886">16994886</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Physiology&amp;rft.atitle=Evidence+for+electrical+transmission+in+nerve%3A+Part+II&amp;rft.volume=90&amp;rft.issue=2&amp;rft.pages=211-32&amp;rft.date=1937-07&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1395062%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F16994886&amp;rft_id=info%3Adoi%2F10.1113%2Fjphysiol.1937.sp003508&amp;rft.aulast=Hodgkin&amp;rft.aufirst=AL&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1395062&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-Zalc-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-Zalc_68-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZalc2006" class="citation book cs1">Zalc B (2006). "The Acquisition of Myelin: A Success Story". <i>Purinergic Signalling in Neuron–Glia Interactions</i>. Novartis Foundation Symposia. Vol.&#160;276. pp.&#160;15–21, discussion 21–5, 54–7, 275–81. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F9780470032244.ch3">10.1002/9780470032244.ch3</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-470-03224-4" title="Special:BookSources/978-0-470-03224-4"><bdi>978-0-470-03224-4</bdi></a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16805421">16805421</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+Acquisition+of+Myelin%3A+A+Success+Story&amp;rft.btitle=Purinergic+Signalling+in+Neuron%E2%80%93Glia+Interactions&amp;rft.series=Novartis+Foundation+Symposia&amp;rft.pages=15-21%2C+discussion+21-5%2C+54-7%2C+275-81&amp;rft.date=2006&amp;rft_id=info%3Apmid%2F16805421&amp;rft_id=info%3Adoi%2F10.1002%2F9780470032244.ch3&amp;rft.isbn=978-0-470-03224-4&amp;rft.aulast=Zalc&amp;rft.aufirst=B&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span> <span class="cs1-visible-error citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: </span><span class="cs1-visible-error citation-comment"><code class="cs1-code">&#124;journal=</code> ignored (<a href="/wiki/Help:CS1_errors#periodical_ignored" title="Help:CS1 errors">help</a>)</span></span> </li> <li id="cite_note-S._Poliak_&amp;_E._Peles-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-S._Poliak_&amp;_E._Peles_69-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPoliakPeles2003" class="citation journal cs1">Poliak S, Peles E (December 2003). "The local differentiation of myelinated axons at nodes of Ranvier". <i>Nature Reviews. Neuroscience</i>. <b>4</b> (12): 968–80. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnrn1253">10.1038/nrn1253</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/14682359">14682359</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14720760">14720760</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Reviews.+Neuroscience&amp;rft.atitle=The+local+differentiation+of+myelinated+axons+at+nodes+of+Ranvier&amp;rft.volume=4&amp;rft.issue=12&amp;rft.pages=968-80&amp;rft.date=2003-12&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14720760%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F14682359&amp;rft_id=info%3Adoi%2F10.1038%2Fnrn1253&amp;rft.aulast=Poliak&amp;rft.aufirst=S&amp;rft.au=Peles%2C+E&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSimonsTrotter2007" class="citation journal cs1">Simons M, Trotter J (October 2007). "Wrapping it up: the cell biology of myelination". <i>Current Opinion in Neurobiology</i>. <b>17</b> (5): 533–40. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.conb.2007.08.003">10.1016/j.conb.2007.08.003</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17923405">17923405</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:45470194">45470194</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Current+Opinion+in+Neurobiology&amp;rft.atitle=Wrapping+it+up%3A+the+cell+biology+of+myelination&amp;rft.volume=17&amp;rft.issue=5&amp;rft.pages=533-40&amp;rft.date=2007-10&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A45470194%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F17923405&amp;rft_id=info%3Adoi%2F10.1016%2Fj.conb.2007.08.003&amp;rft.aulast=Simons&amp;rft.aufirst=M&amp;rft.au=Trotter%2C+J&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFXuTerakawa1999" class="citation journal cs1">Xu K, Terakawa S (August 1999). <a rel="nofollow" class="external text" href="http://jeb.biologists.org/cgi/pmidlookup?view=long&amp;pmid=10395528">"Fenestration nodes and the wide submyelinic space form the basis for the unusually fast impulse conduction of shrimp myelinated axons"</a>. <i>The Journal of Experimental Biology</i>. <b>202</b> (Pt 15): 1979–89. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1242%2Fjeb.202.15.1979">10.1242/jeb.202.15.1979</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10395528">10395528</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Experimental+Biology&amp;rft.atitle=Fenestration+nodes+and+the+wide+submyelinic+space+form+the+basis+for+the+unusually+fast+impulse+conduction+of+shrimp+myelinated+axons&amp;rft.volume=202&amp;rft.issue=Pt+15&amp;rft.pages=1979-89&amp;rft.date=1999-08&amp;rft_id=info%3Adoi%2F10.1242%2Fjeb.202.15.1979&amp;rft_id=info%3Apmid%2F10395528&amp;rft.aulast=Xu&amp;rft.aufirst=K&amp;rft.au=Terakawa%2C+S&amp;rft_id=http%3A%2F%2Fjeb.biologists.org%2Fcgi%2Fpmidlookup%3Fview%3Dlong%26pmid%3D10395528&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-hursh_1939-72"><span class="mw-cite-backlink">^ <a href="#cite_ref-hursh_1939_72-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-hursh_1939_72-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHursh1939" class="citation journal cs1">Hursh JB (1939). "Conduction velocity and diameter of nerve fibers". <i>American Journal of Physiology</i>. <b>127</b>: 131–39. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1152%2Fajplegacy.1939.127.1.131">10.1152/ajplegacy.1939.127.1.131</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Journal+of+Physiology&amp;rft.atitle=Conduction+velocity+and+diameter+of+nerve+fibers&amp;rft.volume=127&amp;rft.pages=131-39&amp;rft.date=1939&amp;rft_id=info%3Adoi%2F10.1152%2Fajplegacy.1939.127.1.131&amp;rft.aulast=Hursh&amp;rft.aufirst=JB&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLillie1925" class="citation journal cs1">Lillie RS (March 1925). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2140733">"Factors Affecting Transmission and Recovery in the Passive Iron Nerve Model"</a>. <i>The Journal of General Physiology</i>. <b>7</b> (4): 473–507. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1085%2Fjgp.7.4.473">10.1085/jgp.7.4.473</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2140733">2140733</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19872151">19872151</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+General+Physiology&amp;rft.atitle=Factors+Affecting+Transmission+and+Recovery+in+the+Passive+Iron+Nerve+Model&amp;rft.volume=7&amp;rft.issue=4&amp;rft.pages=473-507&amp;rft.date=1925-03&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2140733%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F19872151&amp;rft_id=info%3Adoi%2F10.1085%2Fjgp.7.4.473&amp;rft.aulast=Lillie&amp;rft.aufirst=RS&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2140733&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span> See also <a href="#CITEREFKeynesAidley1991">Keynes &amp; Aidley 1991</a>, p.&#160;78</span> </li> <li id="cite_note-tasaki_1939-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-tasaki_1939_74-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTasaki1939" class="citation journal cs1">Tasaki I (1939). "Electro-saltatory transmission of nerve impulse and effect of narcosis upon nerve fiber". <i>Am. J. Physiol</i>. <b>127</b>: 211–27. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1152%2Fajplegacy.1939.127.2.211">10.1152/ajplegacy.1939.127.2.211</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Am.+J.+Physiol.&amp;rft.atitle=Electro-saltatory+transmission+of+nerve+impulse+and+effect+of+narcosis+upon+nerve+fiber&amp;rft.volume=127&amp;rft.pages=211-27&amp;rft.date=1939&amp;rft_id=info%3Adoi%2F10.1152%2Fajplegacy.1939.127.2.211&amp;rft.aulast=Tasaki&amp;rft.aufirst=I&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-tasaki_1941_1942_1959-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-tasaki_1941_1942_1959_75-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTasakiTakeuchi1941" class="citation journal cs1">Tasaki I, Takeuchi T (1941). "Der am Ranvierschen Knoten entstehende Aktionsstrom und seine Bedeutung für die Erregungsleitung". <i>Pflügers Archiv für die gesamte Physiologie</i>. <b>244</b> (6): 696–711. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01755414">10.1007/BF01755414</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8628858">8628858</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Pfl%C3%BCgers+Archiv+f%C3%BCr+die+gesamte+Physiologie&amp;rft.atitle=Der+am+Ranvierschen+Knoten+entstehende+Aktionsstrom+und+seine+Bedeutung+f%C3%BCr+die+Erregungsleitung&amp;rft.volume=244&amp;rft.issue=6&amp;rft.pages=696-711&amp;rft.date=1941&amp;rft_id=info%3Adoi%2F10.1007%2FBF01755414&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8628858%23id-name%3DS2CID&amp;rft.aulast=Tasaki&amp;rft.aufirst=I&amp;rft.au=Takeuchi%2C+T&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span><br />* <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTasakiTakeuchi1942" class="citation journal cs1">Tasaki I, Takeuchi T (1942). "Weitere Studien über den Aktionsstrom der markhaltigen Nervenfaser und über die elektrosaltatorische Übertragung des nervenimpulses". <i>Pflügers Archiv für die gesamte Physiologie</i>. <b>245</b> (5): 764–82. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01755237">10.1007/BF01755237</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:44315437">44315437</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Pfl%C3%BCgers+Archiv+f%C3%BCr+die+gesamte+Physiologie&amp;rft.atitle=Weitere+Studien+%C3%BCber+den+Aktionsstrom+der+markhaltigen+Nervenfaser+und+%C3%BCber+die+elektrosaltatorische+%C3%9Cbertragung+des+nervenimpulses&amp;rft.volume=245&amp;rft.issue=5&amp;rft.pages=764-82&amp;rft.date=1942&amp;rft_id=info%3Adoi%2F10.1007%2FBF01755237&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A44315437%23id-name%3DS2CID&amp;rft.aulast=Tasaki&amp;rft.aufirst=I&amp;rft.au=Takeuchi%2C+T&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-huxley_staempfli_1949_1951-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-huxley_staempfli_1949_1951_77-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHuxleyStämpfli1949" class="citation journal cs1"><a href="/wiki/Andrew_Huxley" title="Andrew Huxley">Huxley AF</a>, Stämpfli R (May 1949). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392492">"Evidence for saltatory conduction in peripheral myelinated nerve fibres"</a>. <i>The Journal of Physiology</i>. <b>108</b> (3): 315–39. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1113%2Fjphysiol.1949.sp004335">10.1113/jphysiol.1949.sp004335</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392492">1392492</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16991863">16991863</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Physiology&amp;rft.atitle=Evidence+for+saltatory+conduction+in+peripheral+myelinated+nerve+fibres&amp;rft.volume=108&amp;rft.issue=3&amp;rft.pages=315-39&amp;rft.date=1949-05&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1392492%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F16991863&amp;rft_id=info%3Adoi%2F10.1113%2Fjphysiol.1949.sp004335&amp;rft.aulast=Huxley&amp;rft.aufirst=AF&amp;rft.au=St%C3%A4mpfli%2C+R&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1392492&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span><br />* <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHuxleyStampfli1951" class="citation journal cs1"><a href="/wiki/Andrew_Huxley" title="Andrew Huxley">Huxley AF</a>, Stampfli R (February 1951). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1393015">"Direct determination of membrane resting potential and action potential in single myelinated nerve fibers"</a>. <i>The Journal of Physiology</i>. <b>112</b> (3–4): 476–95. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1113%2Fjphysiol.1951.sp004545">10.1113/jphysiol.1951.sp004545</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1393015">1393015</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/14825228">14825228</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Physiology&amp;rft.atitle=Direct+determination+of+membrane+resting+potential+and+action+potential+in+single+myelinated+nerve+fibers&amp;rft.volume=112&amp;rft.issue=3%E2%80%934&amp;rft.pages=476-95&amp;rft.date=1951-02&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1393015%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F14825228&amp;rft_id=info%3Adoi%2F10.1113%2Fjphysiol.1951.sp004545&amp;rft.aulast=Huxley&amp;rft.aufirst=AF&amp;rft.au=Stampfli%2C+R&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1393015&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-rushton_1951-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-rushton_1951_79-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRushton1951" class="citation journal cs1"><a href="/wiki/W._A._H._Rushton" title="W. A. H. Rushton">Rushton WA</a> (September 1951). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392008">"A theory of the effects of fibre size in medullated nerve"</a>. <i>The Journal of Physiology</i>. <b>115</b> (1): 101–22. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1113%2Fjphysiol.1951.sp004655">10.1113/jphysiol.1951.sp004655</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392008">1392008</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/14889433">14889433</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Physiology&amp;rft.atitle=A+theory+of+the+effects+of+fibre+size+in+medullated+nerve&amp;rft.volume=115&amp;rft.issue=1&amp;rft.pages=101-22&amp;rft.date=1951-09&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1392008%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F14889433&amp;rft_id=info%3Adoi%2F10.1113%2Fjphysiol.1951.sp004655&amp;rft.aulast=Rushton&amp;rft.aufirst=WA&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1392008&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-hartline_2007-80"><span class="mw-cite-backlink">^ <a href="#cite_ref-hartline_2007_80-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-hartline_2007_80-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHartlineColman2007" class="citation journal cs1">Hartline DK, Colman DR (January 2007). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cub.2006.11.042">"Rapid conduction and the evolution of giant axons and myelinated fibers"</a>. <i>Current Biology</i>. <b>17</b> (1): R29-35. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007CBio...17R..29H">2007CBio...17R..29H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cub.2006.11.042">10.1016/j.cub.2006.11.042</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17208176">17208176</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:10033356">10033356</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Current+Biology&amp;rft.atitle=Rapid+conduction+and+the+evolution+of+giant+axons+and+myelinated+fibers&amp;rft.volume=17&amp;rft.issue=1&amp;rft.pages=R29-35&amp;rft.date=2007-01&amp;rft_id=info%3Adoi%2F10.1016%2Fj.cub.2006.11.042&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A10033356%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F17208176&amp;rft_id=info%3Abibcode%2F2007CBio...17R..29H&amp;rft.aulast=Hartline&amp;rft.aufirst=DK&amp;rft.au=Colman%2C+DR&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.cub.2006.11.042&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-82">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMillerMi2007" class="citation journal cs1">Miller RH, Mi S (November 2007). "Dissecting demyelination". <i>Nature Neuroscience</i>. <b>10</b> (11): 1351–4. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnn1995">10.1038/nn1995</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17965654">17965654</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:12441377">12441377</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Neuroscience&amp;rft.atitle=Dissecting+demyelination&amp;rft.volume=10&amp;rft.issue=11&amp;rft.pages=1351-4&amp;rft.date=2007-11&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A12441377%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F17965654&amp;rft_id=info%3Adoi%2F10.1038%2Fnn1995&amp;rft.aulast=Miller&amp;rft.aufirst=RH&amp;rft.au=Mi%2C+S&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-kelvin_1855-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-kelvin_1855_86-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKelvin1855" class="citation journal cs1"><a href="/wiki/William_Thomson,_1st_Baron_Kelvin" class="mw-redirect" title="William Thomson, 1st Baron Kelvin">Kelvin WT</a> (1855). "On the theory of the electric telegraph". <i>Proceedings of the Royal Society</i>. <b>7</b>: 382–99. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspl.1854.0093">10.1098/rspl.1854.0093</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:178547827">178547827</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+Royal+Society&amp;rft.atitle=On+the+theory+of+the+electric+telegraph&amp;rft.volume=7&amp;rft.pages=382-99&amp;rft.date=1855&amp;rft_id=info%3Adoi%2F10.1098%2Frspl.1854.0093&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A178547827%23id-name%3DS2CID&amp;rft.aulast=Kelvin&amp;rft.aufirst=WT&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-hodgkin_1946-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-hodgkin_1946_87-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHodgkinRushton1946" class="citation journal cs1"><a href="/wiki/Alan_Lloyd_Hodgkin" class="mw-redirect" title="Alan Lloyd Hodgkin">Hodgkin AL</a>, Rushton WA (December 1946). <a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspb.1946.0024">"The electrical constants of a crustacean nerve fibre"</a>. <i>Proceedings of the Royal Society of Medicine</i>. <b>134</b> (873): 444–79. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1946RSPSB.133..444H">1946RSPSB.133..444H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspb.1946.0024">10.1098/rspb.1946.0024</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20281590">20281590</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+Royal+Society+of+Medicine&amp;rft.atitle=The+electrical+constants+of+a+crustacean+nerve+fibre&amp;rft.volume=134&amp;rft.issue=873&amp;rft.pages=444-79&amp;rft.date=1946-12&amp;rft_id=info%3Apmid%2F20281590&amp;rft_id=info%3Adoi%2F10.1098%2Frspb.1946.0024&amp;rft_id=info%3Abibcode%2F1946RSPSB.133..444H&amp;rft.aulast=Hodgkin&amp;rft.aufirst=AL&amp;rft.au=Rushton%2C+WA&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1098%252Frspb.1946.0024&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-89">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSüudhof2008" class="citation book cs1">Süudhof TC (2008). "Neurotransmitter Release". <i>Pharmacology of Neurotransmitter Release</i>. Handbook of Experimental Pharmacology. Vol.&#160;184. pp.&#160;1–21. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-540-74805-2_1">10.1007/978-3-540-74805-2_1</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-74804-5" title="Special:BookSources/978-3-540-74804-5"><bdi>978-3-540-74804-5</bdi></a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18064409">18064409</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Neurotransmitter+Release&amp;rft.btitle=Pharmacology+of+Neurotransmitter+Release&amp;rft.series=Handbook+of+Experimental+Pharmacology&amp;rft.pages=1-21&amp;rft.date=2008&amp;rft_id=info%3Apmid%2F18064409&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-540-74805-2_1&amp;rft.isbn=978-3-540-74804-5&amp;rft.aulast=S%C3%BCudhof&amp;rft.aufirst=TC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRusakov2006" class="citation journal cs1">Rusakov DA (August 2006). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2684670">"Ca2+-dependent mechanisms of presynaptic control at central synapses"</a>. <i>The Neuroscientist</i>. <b>12</b> (4): 317–26. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1177%2F1073858405284672">10.1177/1073858405284672</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2684670">2684670</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16840708">16840708</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Neuroscientist&amp;rft.atitle=Ca2%2B-dependent+mechanisms+of+presynaptic+control+at+central+synapses&amp;rft.volume=12&amp;rft.issue=4&amp;rft.pages=317-26&amp;rft.date=2006-08&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2684670%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F16840708&amp;rft_id=info%3Adoi%2F10.1177%2F1073858405284672&amp;rft.aulast=Rusakov&amp;rft.aufirst=DA&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2684670&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-91">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHumeauDoussauGrantPoulain2000" class="citation journal cs1">Humeau Y, Doussau F, Grant NJ, Poulain B (May 2000). "How botulinum and tetanus neurotoxins block neurotransmitter release". <i>Biochimie</i>. <b>82</b> (5): 427–46. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0300-9084%2800%2900216-9">10.1016/S0300-9084(00)00216-9</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10865130">10865130</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biochimie&amp;rft.atitle=How+botulinum+and+tetanus+neurotoxins+block+neurotransmitter+release&amp;rft.volume=82&amp;rft.issue=5&amp;rft.pages=427-46&amp;rft.date=2000-05&amp;rft_id=info%3Adoi%2F10.1016%2FS0300-9084%2800%2900216-9&amp;rft_id=info%3Apmid%2F10865130&amp;rft.aulast=Humeau&amp;rft.aufirst=Y&amp;rft.au=Doussau%2C+F&amp;rft.au=Grant%2C+NJ&amp;rft.au=Poulain%2C+B&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-92">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZoidlDermietzel2002" class="citation journal cs1">Zoidl G, Dermietzel R (November 2002). "On the search for the electrical synapse: a glimpse at the future". <i>Cell and Tissue Research</i>. <b>310</b> (2): 137–42. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00441-002-0632-x">10.1007/s00441-002-0632-x</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12397368">12397368</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:22414506">22414506</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Cell+and+Tissue+Research&amp;rft.atitle=On+the+search+for+the+electrical+synapse%3A+a+glimpse+at+the+future&amp;rft.volume=310&amp;rft.issue=2&amp;rft.pages=137-42&amp;rft.date=2002-11&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A22414506%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F12397368&amp;rft_id=info%3Adoi%2F10.1007%2Fs00441-002-0632-x&amp;rft.aulast=Zoidl&amp;rft.aufirst=G&amp;rft.au=Dermietzel%2C+R&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-93">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrinkCroninRamanan1996" class="citation journal cs1">Brink PR, Cronin K, Ramanan SV (August 1996). "Gap junctions in excitable cells". <i>Journal of Bioenergetics and Biomembranes</i>. <b>28</b> (4): 351–8. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02110111">10.1007/BF02110111</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/8844332">8844332</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:46371790">46371790</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Bioenergetics+and+Biomembranes&amp;rft.atitle=Gap+junctions+in+excitable+cells&amp;rft.volume=28&amp;rft.issue=4&amp;rft.pages=351-8&amp;rft.date=1996-08&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A46371790%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F8844332&amp;rft_id=info%3Adoi%2F10.1007%2FBF02110111&amp;rft.aulast=Brink&amp;rft.aufirst=PR&amp;rft.au=Cronin%2C+K&amp;rft.au=Ramanan%2C+SV&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-94">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHirsch2007" class="citation journal cs1">Hirsch NP (July 2007). <a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fbja%2Faem144">"Neuromuscular junction in health and disease"</a>. <i>British Journal of Anaesthesia</i>. <b>99</b> (1): 132–8. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fbja%2Faem144">10.1093/bja/aem144</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17573397">17573397</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=British+Journal+of+Anaesthesia&amp;rft.atitle=Neuromuscular+junction+in+health+and+disease&amp;rft.volume=99&amp;rft.issue=1&amp;rft.pages=132-8&amp;rft.date=2007-07&amp;rft_id=info%3Adoi%2F10.1093%2Fbja%2Faem144&amp;rft_id=info%3Apmid%2F17573397&amp;rft.aulast=Hirsch&amp;rft.aufirst=NP&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1093%252Fbja%252Faem144&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-95">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHughesKusnerKaminski2006" class="citation journal cs1">Hughes BW, Kusner LL, Kaminski HJ (April 2006). "Molecular architecture of the neuromuscular junction". <i>Muscle &amp; Nerve</i>. <b>33</b> (4): 445–61. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fmus.20440">10.1002/mus.20440</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16228970">16228970</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1888352">1888352</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Muscle+%26+Nerve&amp;rft.atitle=Molecular+architecture+of+the+neuromuscular+junction&amp;rft.volume=33&amp;rft.issue=4&amp;rft.pages=445-61&amp;rft.date=2006-04&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1888352%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F16228970&amp;rft_id=info%3Adoi%2F10.1002%2Fmus.20440&amp;rft.aulast=Hughes&amp;rft.aufirst=BW&amp;rft.au=Kusner%2C+LL&amp;rft.au=Kaminski%2C+HJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-Newmark-96"><span class="mw-cite-backlink">^ <a href="#cite_ref-Newmark_96-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Newmark_96-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNewmark2007" class="citation journal cs1">Newmark J (January 2007). "Nerve agents". <i>The Neurologist</i>. <b>13</b> (1): 20–32. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1097%2F01.nrl.0000252923.04894.53">10.1097/01.nrl.0000252923.04894.53</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17215724">17215724</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:211234081">211234081</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Neurologist&amp;rft.atitle=Nerve+agents&amp;rft.volume=13&amp;rft.issue=1&amp;rft.pages=20-32&amp;rft.date=2007-01&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A211234081%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F17215724&amp;rft_id=info%3Adoi%2F10.1097%2F01.nrl.0000252923.04894.53&amp;rft.aulast=Newmark&amp;rft.aufirst=J&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-97">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCosta2006" class="citation journal cs1">Costa LG (April 2006). "Current issues in organophosphate toxicology". <i>Clinica Chimica Acta; International Journal of Clinical Chemistry</i>. <b>366</b> (1–2): 1–13. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cca.2005.10.008">10.1016/j.cca.2005.10.008</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16337171">16337171</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Clinica+Chimica+Acta%3B+International+Journal+of+Clinical+Chemistry&amp;rft.atitle=Current+issues+in+organophosphate+toxicology&amp;rft.volume=366&amp;rft.issue=1%E2%80%932&amp;rft.pages=1-13&amp;rft.date=2006-04&amp;rft_id=info%3Adoi%2F10.1016%2Fj.cca.2005.10.008&amp;rft_id=info%3Apmid%2F16337171&amp;rft.aulast=Costa&amp;rft.aufirst=LG&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-Kleber-98"><span class="mw-cite-backlink">^ <a href="#cite_ref-Kleber_98-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Kleber_98-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Kleber_98-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKléberRudy2004" class="citation journal cs1">Kléber AG, Rudy Y (April 2004). "Basic mechanisms of cardiac impulse propagation and associated arrhythmias". <i>Physiological Reviews</i>. <b>84</b> (2): 431–88. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1152%2Fphysrev.00025.2003">10.1152/physrev.00025.2003</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15044680">15044680</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:21823003">21823003</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physiological+Reviews&amp;rft.atitle=Basic+mechanisms+of+cardiac+impulse+propagation+and+associated+arrhythmias&amp;rft.volume=84&amp;rft.issue=2&amp;rft.pages=431-88&amp;rft.date=2004-04&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A21823003%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F15044680&amp;rft_id=info%3Adoi%2F10.1152%2Fphysrev.00025.2003&amp;rft.aulast=Kl%C3%A9ber&amp;rft.aufirst=AG&amp;rft.au=Rudy%2C+Y&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-100"><span class="mw-cite-backlink"><b><a href="#cite_ref-100">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTamargoCaballeroDelpón2004" class="citation journal cs1">Tamargo J, Caballero R, Delpón E (January 2004). "Pharmacological approaches in the treatment of atrial fibrillation". <i>Current Medicinal Chemistry</i>. <b>11</b> (1): 13–28. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2174%2F0929867043456241">10.2174/0929867043456241</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/14754423">14754423</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Current+Medicinal+Chemistry&amp;rft.atitle=Pharmacological+approaches+in+the+treatment+of+atrial+fibrillation&amp;rft.volume=11&amp;rft.issue=1&amp;rft.pages=13-28&amp;rft.date=2004-01&amp;rft_id=info%3Adoi%2F10.2174%2F0929867043456241&amp;rft_id=info%3Apmid%2F14754423&amp;rft.aulast=Tamargo&amp;rft.aufirst=J&amp;rft.au=Caballero%2C+R&amp;rft.au=Delp%C3%B3n%2C+E&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-Slayman_1976-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-Slayman_1976_102-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSlaymanLongGradmann1976" class="citation journal cs1">Slayman CL, Long WS, Gradmann D (April 1976). "<span class="cs1-kern-left"></span>"Action potentials" in Neurospora crassa, a mycelial fungus". <i>Biochimica et Biophysica Acta (BBA) - Biomembranes</i>. <b>426</b> (4): 732–44. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0005-2736%2876%2990138-3">10.1016/0005-2736(76)90138-3</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/130926">130926</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biochimica+et+Biophysica+Acta+%28BBA%29+-+Biomembranes&amp;rft.atitle=%22Action+potentials%22+in+Neurospora+crassa%2C+a+mycelial+fungus&amp;rft.volume=426&amp;rft.issue=4&amp;rft.pages=732-44&amp;rft.date=1976-04&amp;rft_id=info%3Adoi%2F10.1016%2F0005-2736%2876%2990138-3&amp;rft_id=info%3Apmid%2F130926&amp;rft.aulast=Slayman&amp;rft.aufirst=CL&amp;rft.au=Long%2C+WS&amp;rft.au=Gradmann%2C+D&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-Mummert_1991-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-Mummert_1991_103-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMummertGradmann1991" class="citation journal cs1">Mummert H, Gradmann D (December 1991). "Action potentials in Acetabularia: measurement and simulation of voltage-gated fluxes". <i>The Journal of Membrane Biology</i>. <b>124</b> (3): 265–73. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01994359">10.1007/BF01994359</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/1664861">1664861</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:22063907">22063907</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Membrane+Biology&amp;rft.atitle=Action+potentials+in+Acetabularia%3A+measurement+and+simulation+of+voltage-gated+fluxes&amp;rft.volume=124&amp;rft.issue=3&amp;rft.pages=265-73&amp;rft.date=1991-12&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A22063907%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F1664861&amp;rft_id=info%3Adoi%2F10.1007%2FBF01994359&amp;rft.aulast=Mummert&amp;rft.aufirst=H&amp;rft.au=Gradmann%2C+D&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-Gradmann_2001-104"><span class="mw-cite-backlink"><b><a href="#cite_ref-Gradmann_2001_104-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGradmann2001" class="citation journal cs1">Gradmann D (2001). "Models for oscillations in plants". <i>Aust. J. Plant Physiol</i>. <b>28</b> (7): 577–590. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1071%2Fpp01017">10.1071/pp01017</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Aust.+J.+Plant+Physiol.&amp;rft.atitle=Models+for+oscillations+in+plants&amp;rft.volume=28&amp;rft.issue=7&amp;rft.pages=577-590&amp;rft.date=2001&amp;rft_id=info%3Adoi%2F10.1071%2Fpp01017&amp;rft.aulast=Gradmann&amp;rft.aufirst=D&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-Beilby_2007-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-Beilby_2007_105-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBeilby2007" class="citation book cs1">Beilby MJ (2007). <i>Action Potential in Charophytes</i>. International Review of Cytology. Vol.&#160;257. pp.&#160;43–82. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0074-7696%2807%2957002-6">10.1016/S0074-7696(07)57002-6</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-12-373701-4" title="Special:BookSources/978-0-12-373701-4"><bdi>978-0-12-373701-4</bdi></a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17280895">17280895</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Action+Potential+in+Charophytes&amp;rft.series=International+Review+of+Cytology&amp;rft.pages=43-82&amp;rft.date=2007&amp;rft_id=info%3Apmid%2F17280895&amp;rft_id=info%3Adoi%2F10.1016%2FS0074-7696%2807%2957002-6&amp;rft.isbn=978-0-12-373701-4&amp;rft.aulast=Beilby&amp;rft.aufirst=MJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-Gradmann_1998-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-Gradmann_1998_113-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGradmannHoffstadt1998" class="citation journal cs1">Gradmann D, Hoffstadt J (November 1998). "Electrocoupling of ion transporters in plants: interaction with internal ion concentrations". <i>The Journal of Membrane Biology</i>. <b>166</b> (1): 51–9. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs002329900446">10.1007/s002329900446</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/9784585">9784585</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:24190001">24190001</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Membrane+Biology&amp;rft.atitle=Electrocoupling+of+ion+transporters+in+plants%3A+interaction+with+internal+ion+concentrations&amp;rft.volume=166&amp;rft.issue=1&amp;rft.pages=51-9&amp;rft.date=1998-11&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A24190001%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F9784585&amp;rft_id=info%3Adoi%2F10.1007%2Fs002329900446&amp;rft.aulast=Gradmann&amp;rft.aufirst=D&amp;rft.au=Hoffstadt%2C+J&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-Fromm-116"><span class="mw-cite-backlink"><b><a href="#cite_ref-Fromm_116-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrommLautner2007" class="citation journal cs1">Fromm J, Lautner S (March 2007). <a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1365-3040.2006.01614.x">"Electrical signals and their physiological significance in plants"</a>. <i>Plant, Cell &amp; Environment</i>. <b>30</b> (3): 249–257. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1365-3040.2006.01614.x">10.1111/j.1365-3040.2006.01614.x</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17263772">17263772</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Plant%2C+Cell+%26+Environment&amp;rft.atitle=Electrical+signals+and+their+physiological+significance+in+plants&amp;rft.volume=30&amp;rft.issue=3&amp;rft.pages=249-257&amp;rft.date=2007-03&amp;rft_id=info%3Adoi%2F10.1111%2Fj.1365-3040.2006.01614.x&amp;rft_id=info%3Apmid%2F17263772&amp;rft.aulast=Fromm&amp;rft.aufirst=J&amp;rft.au=Lautner%2C+S&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1111%252Fj.1365-3040.2006.01614.x&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-117"><span class="mw-cite-backlink"><b><a href="#cite_ref-117">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeysMackieMeech1999" class="citation journal cs1 cs1-prop-long-vol">Leys SP, Mackie GO, Meech RW (May 1999). <a rel="nofollow" class="external text" href="http://jeb.biologists.org/cgi/pmidlookup?view=long&amp;pmid=10101111">"Impulse conduction in a sponge"</a>. <i>The Journal of Experimental Biology</i>. 202 (Pt 9) (9): 1139–50. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1242%2Fjeb.202.9.1139">10.1242/jeb.202.9.1139</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10101111">10101111</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Experimental+Biology&amp;rft.atitle=Impulse+conduction+in+a+sponge&amp;rft.volume=202+%28Pt+9%29&amp;rft.issue=9&amp;rft.pages=1139-50&amp;rft.date=1999-05&amp;rft_id=info%3Adoi%2F10.1242%2Fjeb.202.9.1139&amp;rft_id=info%3Apmid%2F10101111&amp;rft.aulast=Leys&amp;rft.aufirst=SP&amp;rft.au=Mackie%2C+GO&amp;rft.au=Meech%2C+RW&amp;rft_id=http%3A%2F%2Fjeb.biologists.org%2Fcgi%2Fpmidlookup%3Fview%3Dlong%26pmid%3D10101111&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-keynes_1989-121"><span class="mw-cite-backlink"><b><a href="#cite_ref-keynes_1989_121-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKeynes1989" class="citation journal cs1">Keynes RD (1989). "The role of giant axons in studies of the nerve impulse". <i>BioEssays</i>. <b>10</b> (2–3): 90–3. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fbies.950100213">10.1002/bies.950100213</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/2541698">2541698</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=BioEssays&amp;rft.atitle=The+role+of+giant+axons+in+studies+of+the+nerve+impulse&amp;rft.volume=10&amp;rft.issue=2%E2%80%933&amp;rft.pages=90-3&amp;rft.date=1989&amp;rft_id=info%3Adoi%2F10.1002%2Fbies.950100213&amp;rft_id=info%3Apmid%2F2541698&amp;rft.aulast=Keynes&amp;rft.aufirst=RD&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-Meunier-122"><span class="mw-cite-backlink"><b><a href="#cite_ref-Meunier_122-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMeunierSegev2002" class="citation journal cs1">Meunier C, Segev I (November 2002). "Playing the devil's advocate: is the Hodgkin-Huxley model useful?". <i>Trends in Neurosciences</i>. <b>25</b> (11): 558–63. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0166-2236%2802%2902278-6">10.1016/S0166-2236(02)02278-6</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12392930">12392930</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1355280">1355280</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Trends+in+Neurosciences&amp;rft.atitle=Playing+the+devil%27s+advocate%3A+is+the+Hodgkin-Huxley+model+useful%3F&amp;rft.volume=25&amp;rft.issue=11&amp;rft.pages=558-63&amp;rft.date=2002-11&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1355280%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F12392930&amp;rft_id=info%3Adoi%2F10.1016%2FS0166-2236%2802%2902278-6&amp;rft.aulast=Meunier&amp;rft.aufirst=C&amp;rft.au=Segev%2C+I&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-cole_1949-123"><span class="mw-cite-backlink"><b><a href="#cite_ref-cole_1949_123-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCole1949" class="citation journal cs1"><a href="/wiki/Kenneth_Stewart_Cole" title="Kenneth Stewart Cole">Cole KS</a> (1949). "Dynamic electrical characteristics of the squid axon membrane". <i>Arch. Sci. Physiol</i>. <b>3</b>: 253–8.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Arch.+Sci.+Physiol.&amp;rft.atitle=Dynamic+electrical+characteristics+of+the+squid+axon+membrane&amp;rft.volume=3&amp;rft.pages=253-8&amp;rft.date=1949&amp;rft.aulast=Cole&amp;rft.aufirst=KS&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-ling_1949-126"><span class="mw-cite-backlink"><b><a href="#cite_ref-ling_1949_126-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLingGerard1949" class="citation journal cs1">Ling G, Gerard RW (December 1949). "The normal membrane potential of frog sartorius fibers". <i>Journal of Cellular and Comparative Physiology</i>. <b>34</b> (3): 383–96. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fjcp.1030340304">10.1002/jcp.1030340304</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15410483">15410483</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Cellular+and+Comparative+Physiology&amp;rft.atitle=The+normal+membrane+potential+of+frog+sartorius+fibers&amp;rft.volume=34&amp;rft.issue=3&amp;rft.pages=383-96&amp;rft.date=1949-12&amp;rft_id=info%3Adoi%2F10.1002%2Fjcp.1030340304&amp;rft_id=info%3Apmid%2F15410483&amp;rft.aulast=Ling&amp;rft.aufirst=G&amp;rft.au=Gerard%2C+RW&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-nastuk_1950-127"><span class="mw-cite-backlink"><b><a href="#cite_ref-nastuk_1950_127-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNastukHodgkin1950" class="citation journal cs1">Nastuk WL, Hodgkin A (1950). "The electrical activity of single muscle fibers". <i>Journal of Cellular and Comparative Physiology</i>. <b>35</b>: 39–73. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fjcp.1030350105">10.1002/jcp.1030350105</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Cellular+and+Comparative+Physiology&amp;rft.atitle=The+electrical+activity+of+single+muscle+fibers&amp;rft.volume=35&amp;rft.pages=39-73&amp;rft.date=1950&amp;rft_id=info%3Adoi%2F10.1002%2Fjcp.1030350105&amp;rft.aulast=Nastuk&amp;rft.aufirst=WL&amp;rft.au=Hodgkin%2C+A&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-brock_1952-128"><span class="mw-cite-backlink"><b><a href="#cite_ref-brock_1952_128-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrockCoombsEccles1952" class="citation journal cs1">Brock LG, Coombs JS, Eccles JC (August 1952). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392415">"The recording of potentials from motoneurones with an intracellular electrode"</a>. <i>The Journal of Physiology</i>. <b>117</b> (4): 431–60. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1113%2Fjphysiol.1952.sp004759">10.1113/jphysiol.1952.sp004759</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392415">1392415</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12991232">12991232</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Physiology&amp;rft.atitle=The+recording+of+potentials+from+motoneurones+with+an+intracellular+electrode&amp;rft.volume=117&amp;rft.issue=4&amp;rft.pages=431-60&amp;rft.date=1952-08&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1392415%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F12991232&amp;rft_id=info%3Adoi%2F10.1113%2Fjphysiol.1952.sp004759&amp;rft.aulast=Brock&amp;rft.aufirst=LG&amp;rft.au=Coombs%2C+JS&amp;rft.au=Eccles%2C+JC&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1392415&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-dyes-130"><span class="mw-cite-backlink"><b><a href="#cite_ref-dyes_130-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRossSalzbergCohenDavila1974" class="citation journal cs1">Ross WN, Salzberg BM, Cohen LB, Davila HV (December 1974). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1334592">"A large change in dye absorption during the action potential"</a>. <i>Biophysical Journal</i>. <b>14</b> (12): 983–6. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1974BpJ....14..983R">1974BpJ....14..983R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0006-3495%2874%2985963-1">10.1016/S0006-3495(74)85963-1</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1334592">1334592</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/4429774">4429774</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biophysical+Journal&amp;rft.atitle=A+large+change+in+dye+absorption+during+the+action+potential&amp;rft.volume=14&amp;rft.issue=12&amp;rft.pages=983-6&amp;rft.date=1974-12&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1334592%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F4429774&amp;rft_id=info%3Adoi%2F10.1016%2FS0006-3495%2874%2985963-1&amp;rft_id=info%3Abibcode%2F1974BpJ....14..983R&amp;rft.aulast=Ross&amp;rft.aufirst=WN&amp;rft.au=Salzberg%2C+BM&amp;rft.au=Cohen%2C+LB&amp;rft.au=Davila%2C+HV&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1334592&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span><br />* <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrynkiewiczPoenieTsien1985" class="citation journal cs1">Grynkiewicz G, Poenie M, Tsien RY (March 1985). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0021-9258%2819%2983641-4">"A new generation of Ca2+ indicators with greatly improved fluorescence properties"</a>. <i>The Journal of Biological Chemistry</i>. <b>260</b> (6): 3440–50. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0021-9258%2819%2983641-4">10.1016/S0021-9258(19)83641-4</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/3838314">3838314</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Biological+Chemistry&amp;rft.atitle=A+new+generation+of+Ca2%2B+indicators+with+greatly+improved+fluorescence+properties&amp;rft.volume=260&amp;rft.issue=6&amp;rft.pages=3440-50&amp;rft.date=1985-03&amp;rft_id=info%3Adoi%2F10.1016%2FS0021-9258%2819%2983641-4&amp;rft_id=info%3Apmid%2F3838314&amp;rft.aulast=Grynkiewicz&amp;rft.aufirst=G&amp;rft.au=Poenie%2C+M&amp;rft.au=Tsien%2C+RY&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252FS0021-9258%252819%252983641-4&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-pmid19289075-132"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid19289075_132-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBuAdamsBerbariRubart2009" class="citation journal cs1">Bu G, Adams H, Berbari EJ, Rubart M (March 2009). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2907679">"Uniform action potential repolarization within the sarcolemma of in situ ventricular cardiomyocytes"</a>. <i>Biophysical Journal</i>. <b>96</b> (6): 2532–46. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009BpJ....96.2532B">2009BpJ....96.2532B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.bpj.2008.12.3896">10.1016/j.bpj.2008.12.3896</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2907679">2907679</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19289075">19289075</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biophysical+Journal&amp;rft.atitle=Uniform+action+potential+repolarization+within+the+sarcolemma+of+in+situ+ventricular+cardiomyocytes&amp;rft.volume=96&amp;rft.issue=6&amp;rft.pages=2532-46&amp;rft.date=2009-03&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2907679%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F19289075&amp;rft_id=info%3Adoi%2F10.1016%2Fj.bpj.2008.12.3896&amp;rft_id=info%3Abibcode%2F2009BpJ....96.2532B&amp;rft.aulast=Bu&amp;rft.aufirst=G&amp;rft.au=Adams%2C+H&amp;rft.au=Berbari%2C+EJ&amp;rft.au=Rubart%2C+M&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2907679&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-TTX_refs-133"><span class="mw-cite-backlink"><b><a href="#cite_ref-TTX_refs_133-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMilliganEdwards1965" class="citation journal cs1">Milligan JV, Edwards C (July 1965). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2195447">"Some factors affecting the time course of the recovery of contracture ability following a potassium contracture in frog striated muscle"</a>. <i>The Journal of General Physiology</i>. <b>48</b> (6): 975–83. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1085%2Fjgp.48.6.975">10.1085/jgp.48.6.975</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2195447">2195447</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/5855511">5855511</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+General+Physiology&amp;rft.atitle=Some+factors+affecting+the+time+course+of+the+recovery+of+contracture+ability+following+a+potassium+contracture+in+frog+striated+muscle&amp;rft.volume=48&amp;rft.issue=6&amp;rft.pages=975-83&amp;rft.date=1965-07&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2195447%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F5855511&amp;rft_id=info%3Adoi%2F10.1085%2Fjgp.48.6.975&amp;rft.aulast=Milligan&amp;rft.aufirst=JV&amp;rft.au=Edwards%2C+C&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2195447&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span><br />* <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRitchieRogart1977" class="citation book cs1">Ritchie JM, Rogart RB (1977). "The binding of saxitoxin and tetrodotoxin to excitable tissue". <i>Reviews of Physiology, Biochemistry and Pharmacology, Volume 79</i>. Vol.&#160;79. pp.&#160;1–50. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBFb0037088">10.1007/BFb0037088</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-08326-X" title="Special:BookSources/0-387-08326-X"><bdi>0-387-08326-X</bdi></a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/335473">335473</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+binding+of+saxitoxin+and+tetrodotoxin+to+excitable+tissue&amp;rft.btitle=Reviews+of+Physiology%2C+Biochemistry+and+Pharmacology%2C+Volume+79&amp;rft.pages=1-50&amp;rft.date=1977&amp;rft_id=info%3Apmid%2F335473&amp;rft_id=info%3Adoi%2F10.1007%2FBFb0037088&amp;rft.isbn=0-387-08326-X&amp;rft.aulast=Ritchie&amp;rft.aufirst=JM&amp;rft.au=Rogart%2C+RB&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span><br />* <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKeynesRitchie1984" class="citation journal cs1">Keynes RD, Ritchie JM (August 1984). "On the binding of labelled saxitoxin to the squid giant axon". <i>Proceedings of the Royal Society of London. Series B, Biological Sciences</i>. <b>222</b> (1227): 147–53. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1984RSPSB.222..147K">1984RSPSB.222..147K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspb.1984.0055">10.1098/rspb.1984.0055</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/6148754">6148754</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:11465181">11465181</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+Royal+Society+of+London.+Series+B%2C+Biological+Sciences&amp;rft.atitle=On+the+binding+of+labelled+saxitoxin+to+the+squid+giant+axon&amp;rft.volume=222&amp;rft.issue=1227&amp;rft.pages=147-53&amp;rft.date=1984-08&amp;rft_id=info%3Adoi%2F10.1098%2Frspb.1984.0055&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A11465181%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F6148754&amp;rft_id=info%3Abibcode%2F1984RSPSB.222..147K&amp;rft.aulast=Keynes&amp;rft.aufirst=RD&amp;rft.au=Ritchie%2C+JM&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-piccolino_1997-134"><span class="mw-cite-backlink"><b><a href="#cite_ref-piccolino_1997_134-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPiccolino1997" class="citation journal cs1">Piccolino M (October 1997). "Luigi Galvani and animal electricity: two centuries after the foundation of electrophysiology". <i>Trends in Neurosciences</i>. <b>20</b> (10): 443–8. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0166-2236%2897%2901101-6">10.1016/S0166-2236(97)01101-6</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/9347609">9347609</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:23394494">23394494</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Trends+in+Neurosciences&amp;rft.atitle=Luigi+Galvani+and+animal+electricity%3A+two+centuries+after+the+foundation+of+electrophysiology&amp;rft.volume=20&amp;rft.issue=10&amp;rft.pages=443-8&amp;rft.date=1997-10&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A23394494%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F9347609&amp;rft_id=info%3Adoi%2F10.1016%2FS0166-2236%2897%2901101-6&amp;rft.aulast=Piccolino&amp;rft.aufirst=M&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-piccolino_2000-135"><span class="mw-cite-backlink"><b><a href="#cite_ref-piccolino_2000_135-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPiccolino2000" class="citation journal cs1">Piccolino M (April 2000). "The bicentennial of the Voltaic battery (1800-2000): the artificial electric organ". <i>Trends in Neurosciences</i>. <b>23</b> (4): 147–51. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0166-2236%2899%2901544-1">10.1016/S0166-2236(99)01544-1</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10717671">10717671</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:393323">393323</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Trends+in+Neurosciences&amp;rft.atitle=The+bicentennial+of+the+Voltaic+battery+%281800-2000%29%3A+the+artificial+electric+organ&amp;rft.volume=23&amp;rft.issue=4&amp;rft.pages=147-51&amp;rft.date=2000-04&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A393323%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F10717671&amp;rft_id=info%3Adoi%2F10.1016%2FS0166-2236%2899%2901544-1&amp;rft.aulast=Piccolino&amp;rft.aufirst=M&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-bernstein_1902_1912-140"><span class="mw-cite-backlink"><b><a href="#cite_ref-bernstein_1902_1912_140-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernstein1902" class="citation journal cs1"><a href="/wiki/Julius_Bernstein" title="Julius Bernstein">Bernstein J</a> (1902). <a rel="nofollow" class="external text" href="https://zenodo.org/record/2192363">"Untersuchungen zur Thermodynamik der bioelektrischen Ströme"</a>. <i>Pflügers Archiv für die gesamte Physiologie</i>. <b>92</b> (10–12): 521–562. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01790181">10.1007/BF01790181</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:33229139">33229139</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Pfl%C3%BCgers+Archiv+f%C3%BCr+die+gesamte+Physiologie&amp;rft.atitle=Untersuchungen+zur+Thermodynamik+der+bioelektrischen+Str%C3%B6me&amp;rft.volume=92&amp;rft.issue=10%E2%80%9312&amp;rft.pages=521-562&amp;rft.date=1902&amp;rft_id=info%3Adoi%2F10.1007%2FBF01790181&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A33229139%23id-name%3DS2CID&amp;rft.aulast=Bernstein&amp;rft.aufirst=J&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F2192363&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-142"><span class="mw-cite-backlink"><b><a href="#cite_ref-142">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFColeCurtis1939" class="citation journal cs1"><a href="/wiki/Kenneth_Stewart_Cole" title="Kenneth Stewart Cole">Cole KS</a>, Curtis HJ (May 1939). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2142006">"Electric Impedance of the Squid Giant Axon During Activity"</a>. <i>The Journal of General Physiology</i>. <b>22</b> (5): 649–70. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1085%2Fjgp.22.5.649">10.1085/jgp.22.5.649</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2142006">2142006</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19873125">19873125</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+General+Physiology&amp;rft.atitle=Electric+Impedance+of+the+Squid+Giant+Axon+During+Activity&amp;rft.volume=22&amp;rft.issue=5&amp;rft.pages=649-70&amp;rft.date=1939-05&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2142006%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F19873125&amp;rft_id=info%3Adoi%2F10.1085%2Fjgp.22.5.649&amp;rft.aulast=Cole&amp;rft.aufirst=KS&amp;rft.au=Curtis%2C+HJ&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2142006&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-143"><span class="mw-cite-backlink"><b><a href="#cite_ref-143">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLapicque1907" class="citation journal cs1">Lapicque L (1907). "Recherches quantitatives sur l'excitationelectrique des nerfs traitee comme une polarisation". <i>J. Physiol. Pathol. Gen</i>. <b>9</b>: 620–635.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=J.+Physiol.+Pathol.+Gen&amp;rft.atitle=Recherches+quantitatives+sur+l%27excitationelectrique+des+nerfs+traitee+comme+une+polarisation&amp;rft.volume=9&amp;rft.pages=620-635&amp;rft.date=1907&amp;rft.aulast=Lapicque&amp;rft.aufirst=L&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-hodgkin_1949-144"><span class="mw-cite-backlink"><b><a href="#cite_ref-hodgkin_1949_144-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHodgkinKatz1949" class="citation journal cs1"><a href="/wiki/Alan_Lloyd_Hodgkin" class="mw-redirect" title="Alan Lloyd Hodgkin">Hodgkin AL</a>, <a href="/wiki/Bernard_Katz" title="Bernard Katz">Katz B</a> (March 1949). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392331">"The effect of sodium ions on the electrical activity of giant axon of the squid"</a>. <i>The Journal of Physiology</i>. <b>108</b> (1): 37–77. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1113%2Fjphysiol.1949.sp004310">10.1113/jphysiol.1949.sp004310</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392331">1392331</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18128147">18128147</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Physiology&amp;rft.atitle=The+effect+of+sodium+ions+on+the+electrical+activity+of+giant+axon+of+the+squid&amp;rft.volume=108&amp;rft.issue=1&amp;rft.pages=37-77&amp;rft.date=1949-03&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1392331%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F18128147&amp;rft_id=info%3Adoi%2F10.1113%2Fjphysiol.1949.sp004310&amp;rft.aulast=Hodgkin&amp;rft.aufirst=AL&amp;rft.au=Katz%2C+B&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1392331&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-patch_clamp-146"><span class="mw-cite-backlink"><b><a href="#cite_ref-patch_clamp_146-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNeherSakmann1976" class="citation journal cs1"><a href="/wiki/Erwin_Neher" title="Erwin Neher">Neher E</a>, Sakmann B (April 1976). "Single-channel currents recorded from membrane of denervated frog muscle fibres". <i>Nature</i>. <b>260</b> (5554): 799–802. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1976Natur.260..799N">1976Natur.260..799N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F260799a0">10.1038/260799a0</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/1083489">1083489</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4204985">4204985</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Single-channel+currents+recorded+from+membrane+of+denervated+frog+muscle+fibres&amp;rft.volume=260&amp;rft.issue=5554&amp;rft.pages=799-802&amp;rft.date=1976-04&amp;rft_id=info%3Adoi%2F10.1038%2F260799a0&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4204985%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F1083489&amp;rft_id=info%3Abibcode%2F1976Natur.260..799N&amp;rft.aulast=Neher&amp;rft.aufirst=E&amp;rft.au=Sakmann%2C+B&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span><br />* <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHamillMartyNeherSakmann1981" class="citation journal cs1">Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (August 1981). "Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches". <i>Pflügers Archiv</i>. <b>391</b> (2): 85–100. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00656997">10.1007/BF00656997</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/6270629">6270629</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:12014433">12014433</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Pfl%C3%BCgers+Archiv&amp;rft.atitle=Improved+patch-clamp+techniques+for+high-resolution+current+recording+from+cells+and+cell-free+membrane+patches&amp;rft.volume=391&amp;rft.issue=2&amp;rft.pages=85-100&amp;rft.date=1981-08&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A12014433%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F6270629&amp;rft_id=info%3Adoi%2F10.1007%2FBF00656997&amp;rft.aulast=Hamill&amp;rft.aufirst=OP&amp;rft.au=Marty%2C+A&amp;rft.au=Neher%2C+E&amp;rft.au=Sakmann%2C+B&amp;rft.au=Sigworth%2C+FJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span><br />* <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNeherSakmann1992" class="citation journal cs1"><a href="/wiki/Erwin_Neher" title="Erwin Neher">Neher E</a>, Sakmann B (March 1992). "The patch clamp technique". <i>Scientific American</i>. <b>266</b> (3): 44–51. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1992SciAm.266c..44N">1992SciAm.266c..44N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fscientificamerican0392-44">10.1038/scientificamerican0392-44</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/1374932">1374932</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scientific+American&amp;rft.atitle=The+patch+clamp+technique&amp;rft.volume=266&amp;rft.issue=3&amp;rft.pages=44-51&amp;rft.date=1992-03&amp;rft_id=info%3Apmid%2F1374932&amp;rft_id=info%3Adoi%2F10.1038%2Fscientificamerican0392-44&amp;rft_id=info%3Abibcode%2F1992SciAm.266c..44N&amp;rft.aulast=Neher&amp;rft.aufirst=E&amp;rft.au=Sakmann%2C+B&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-yellen_2002-147"><span class="mw-cite-backlink"><b><a href="#cite_ref-yellen_2002_147-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYellen2002" class="citation journal cs1">Yellen G (September 2002). "The voltage-gated potassium channels and their relatives". <i>Nature</i>. <b>419</b> (6902): 35–42. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002Natur.419...35Y">2002Natur.419...35Y</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature00978">10.1038/nature00978</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12214225">12214225</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4420877">4420877</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=The+voltage-gated+potassium+channels+and+their+relatives&amp;rft.volume=419&amp;rft.issue=6902&amp;rft.pages=35-42&amp;rft.date=2002-09&amp;rft_id=info%3Adoi%2F10.1038%2Fnature00978&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4420877%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F12214225&amp;rft_id=info%3Abibcode%2F2002Natur.419...35Y&amp;rft.aulast=Yellen&amp;rft.aufirst=G&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-doyle_1998-148"><span class="mw-cite-backlink"><b><a href="#cite_ref-doyle_1998_148-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDoyleMorais_CabralPfuetznerKuo1998" class="citation journal cs1">Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, et&#160;al. (April 1998). "The structure of the potassium channel: molecular basis of K+ conduction and selectivity". <i>Science</i>. <b>280</b> (5360): 69–77. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1998Sci...280...69D">1998Sci...280...69D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.280.5360.69">10.1126/science.280.5360.69</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/9525859">9525859</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=The+structure+of+the+potassium+channel%3A+molecular+basis+of+K%2B+conduction+and+selectivity&amp;rft.volume=280&amp;rft.issue=5360&amp;rft.pages=69-77&amp;rft.date=1998-04&amp;rft_id=info%3Apmid%2F9525859&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.280.5360.69&amp;rft_id=info%3Abibcode%2F1998Sci...280...69D&amp;rft.aulast=Doyle&amp;rft.aufirst=DA&amp;rft.au=Morais+Cabral%2C+J&amp;rft.au=Pfuetzner%2C+RA&amp;rft.au=Kuo%2C+A&amp;rft.au=Gulbis%2C+JM&amp;rft.au=Cohen%2C+SL&amp;rft.au=Chait%2C+BT&amp;rft.au=MacKinnon%2C+R&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span><br />* <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhouMorais-CabralKaufmanMacKinnon2001" class="citation journal cs1">Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (November 2001). "Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution". <i>Nature</i>. <b>414</b> (6859): 43–8. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001Natur.414...43Z">2001Natur.414...43Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F35102009">10.1038/35102009</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11689936">11689936</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:205022645">205022645</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Chemistry+of+ion+coordination+and+hydration+revealed+by+a+K%2B+channel-Fab+complex+at+2.0+A+resolution&amp;rft.volume=414&amp;rft.issue=6859&amp;rft.pages=43-8&amp;rft.date=2001-11&amp;rft_id=info%3Adoi%2F10.1038%2F35102009&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A205022645%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F11689936&amp;rft_id=info%3Abibcode%2F2001Natur.414...43Z&amp;rft.aulast=Zhou&amp;rft.aufirst=Y&amp;rft.au=Morais-Cabral%2C+JH&amp;rft.au=Kaufman%2C+A&amp;rft.au=MacKinnon%2C+R&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span><br />* <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJiangLeeChenRuta2003" class="citation journal cs1">Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (May 2003). "X-ray structure of a voltage-dependent K+ channel". <i>Nature</i>. <b>423</b> (6935): 33–41. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003Natur.423...33J">2003Natur.423...33J</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature01580">10.1038/nature01580</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12721618">12721618</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4347957">4347957</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=X-ray+structure+of+a+voltage-dependent+K%2B+channel&amp;rft.volume=423&amp;rft.issue=6935&amp;rft.pages=33-41&amp;rft.date=2003-05&amp;rft_id=info%3Adoi%2F10.1038%2Fnature01580&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4347957%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F12721618&amp;rft_id=info%3Abibcode%2F2003Natur.423...33J&amp;rft.aulast=Jiang&amp;rft.aufirst=Y&amp;rft.au=Lee%2C+A&amp;rft.au=Chen%2C+J&amp;rft.au=Ruta%2C+V&amp;rft.au=Cadene%2C+M&amp;rft.au=Chait%2C+BT&amp;rft.au=MacKinnon%2C+R&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-FRET-149"><span class="mw-cite-backlink"><b><a href="#cite_ref-FRET_149-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChaSnyderSelvinBezanilla1999" class="citation journal cs1">Cha A, Snyder GE, Selvin PR, Bezanilla F (December 1999). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F45552">"Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy"</a>. <i>Nature</i>. <b>402</b> (6763): 809–13. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1999Natur.402..809C">1999Natur.402..809C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F45552">10.1038/45552</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10617201">10617201</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4353978">4353978</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Atomic+scale+movement+of+the+voltage-sensing+region+in+a+potassium+channel+measured+via+spectroscopy&amp;rft.volume=402&amp;rft.issue=6763&amp;rft.pages=809-13&amp;rft.date=1999-12&amp;rft_id=info%3Adoi%2F10.1038%2F45552&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4353978%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F10617201&amp;rft_id=info%3Abibcode%2F1999Natur.402..809C&amp;rft.aulast=Cha&amp;rft.aufirst=A&amp;rft.au=Snyder%2C+GE&amp;rft.au=Selvin%2C+PR&amp;rft.au=Bezanilla%2C+F&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252F45552&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span><br />* <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGlaunerMannuzzuGandhiIsacoff1999" class="citation journal cs1">Glauner KS, Mannuzzu LM, Gandhi CS, Isacoff EY (December 1999). "Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel". <i>Nature</i>. <b>402</b> (6763): 813–7. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1999Natur.402..813G">1999Natur.402..813G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F45561">10.1038/45561</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10617202">10617202</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4417476">4417476</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Spectroscopic+mapping+of+voltage+sensor+movement+in+the+Shaker+potassium+channel&amp;rft.volume=402&amp;rft.issue=6763&amp;rft.pages=813-7&amp;rft.date=1999-12&amp;rft_id=info%3Adoi%2F10.1038%2F45561&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4417476%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F10617202&amp;rft_id=info%3Abibcode%2F1999Natur.402..813G&amp;rft.aulast=Glauner&amp;rft.aufirst=KS&amp;rft.au=Mannuzzu%2C+LM&amp;rft.au=Gandhi%2C+CS&amp;rft.au=Isacoff%2C+EY&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span><br />* <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBezanilla2000" class="citation journal cs1">Bezanilla F (April 2000). "The voltage sensor in voltage-dependent ion channels". <i>Physiological Reviews</i>. <b>80</b> (2): 555–92. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1152%2Fphysrev.2000.80.2.555">10.1152/physrev.2000.80.2.555</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10747201">10747201</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:18629998">18629998</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physiological+Reviews&amp;rft.atitle=The+voltage+sensor+in+voltage-dependent+ion+channels&amp;rft.volume=80&amp;rft.issue=2&amp;rft.pages=555-92&amp;rft.date=2000-04&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A18629998%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F10747201&amp;rft_id=info%3Adoi%2F10.1152%2Fphysrev.2000.80.2.555&amp;rft.aulast=Bezanilla&amp;rft.aufirst=F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-cryoEM-150"><span class="mw-cite-backlink"><b><a href="#cite_ref-cryoEM_150-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCatterall2001" class="citation journal cs1">Catterall WA (February 2001). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F35059188">"A 3D view of sodium channels"</a>. <i>Nature</i>. <b>409</b> (6823): 988–9, 991. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001Natur.409..988C">2001Natur.409..988C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F35059188">10.1038/35059188</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11234048">11234048</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4371677">4371677</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=A+3D+view+of+sodium+channels&amp;rft.volume=409&amp;rft.issue=6823&amp;rft.pages=988-9%2C+991&amp;rft.date=2001-02&amp;rft_id=info%3Adoi%2F10.1038%2F35059188&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4371677%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F11234048&amp;rft_id=info%3Abibcode%2F2001Natur.409..988C&amp;rft.aulast=Catterall&amp;rft.aufirst=WA&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252F35059188&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span><br />* <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSatoUenoAsaiTakahashi2001" class="citation journal cs1">Sato C, Ueno Y, Asai K, Takahashi K, Sato M, Engel A, Fujiyoshi Y (February 2001). "The voltage-sensitive sodium channel is a bell-shaped molecule with several cavities". <i>Nature</i>. <b>409</b> (6823): 1047–51. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001Natur.409.1047S">2001Natur.409.1047S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F35059098">10.1038/35059098</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11234014">11234014</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4430165">4430165</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=The+voltage-sensitive+sodium+channel+is+a+bell-shaped+molecule+with+several+cavities&amp;rft.volume=409&amp;rft.issue=6823&amp;rft.pages=1047-51&amp;rft.date=2001-02&amp;rft_id=info%3Adoi%2F10.1038%2F35059098&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4430165%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F11234014&amp;rft_id=info%3Abibcode%2F2001Natur.409.1047S&amp;rft.aulast=Sato&amp;rft.aufirst=C&amp;rft.au=Ueno%2C+Y&amp;rft.au=Asai%2C+K&amp;rft.au=Takahashi%2C+K&amp;rft.au=Sato%2C+M&amp;rft.au=Engel%2C+A&amp;rft.au=Fujiyoshi%2C+Y&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-151"><span class="mw-cite-backlink"><b><a href="#cite_ref-151">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSkou1957" class="citation journal cs1">Skou JC (February 1957). "The influence of some cations on an adenosine triphosphatase from peripheral nerves". <i>Biochimica et Biophysica Acta</i>. <b>23</b> (2): 394–401. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0006-3002%2857%2990343-8">10.1016/0006-3002(57)90343-8</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/13412736">13412736</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:32516710">32516710</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biochimica+et+Biophysica+Acta&amp;rft.atitle=The+influence+of+some+cations+on+an+adenosine+triphosphatase+from+peripheral+nerves&amp;rft.volume=23&amp;rft.issue=2&amp;rft.pages=394-401&amp;rft.date=1957-02&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A32516710%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F13412736&amp;rft_id=info%3Adoi%2F10.1016%2F0006-3002%2857%2990343-8&amp;rft.aulast=Skou&amp;rft.aufirst=JC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-hodgkin_1955-153"><span class="mw-cite-backlink"><b><a href="#cite_ref-hodgkin_1955_153-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHodgkinKeynes1955" class="citation journal cs1"><a href="/wiki/Alan_Lloyd_Hodgkin" class="mw-redirect" title="Alan Lloyd Hodgkin">Hodgkin AL</a>, Keynes RD (April 1955). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1365754">"Active transport of cations in giant axons from Sepia and Loligo"</a>. <i>The Journal of Physiology</i>. <b>128</b> (1): 28–60. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1113%2Fjphysiol.1955.sp005290">10.1113/jphysiol.1955.sp005290</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1365754">1365754</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/14368574">14368574</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Physiology&amp;rft.atitle=Active+transport+of+cations+in+giant+axons+from+Sepia+and+Loligo&amp;rft.volume=128&amp;rft.issue=1&amp;rft.pages=28-60&amp;rft.date=1955-04&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1365754%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F14368574&amp;rft_id=info%3Adoi%2F10.1113%2Fjphysiol.1955.sp005290&amp;rft.aulast=Hodgkin&amp;rft.aufirst=AL&amp;rft.au=Keynes%2C+RD&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1365754&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-caldwell_1960-154"><span class="mw-cite-backlink"><b><a href="#cite_ref-caldwell_1960_154-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCaldwellHodgkinKeynesShaw1960" class="citation journal cs1">Caldwell PC, Hodgkin AL, Keynes RD, Shaw TL (July 1960). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1363339">"The effects of injecting 'energy-rich' phosphate compounds on the active transport of ions in the giant axons of Loligo"</a>. <i>The Journal of Physiology</i>. <b>152</b> (3): 561–90. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1113%2Fjphysiol.1960.sp006509">10.1113/jphysiol.1960.sp006509</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1363339">1363339</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/13806926">13806926</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Physiology&amp;rft.atitle=The+effects+of+injecting+%27energy-rich%27+phosphate+compounds+on+the+active+transport+of+ions+in+the+giant+axons+of+Loligo&amp;rft.volume=152&amp;rft.issue=3&amp;rft.pages=561-90&amp;rft.date=1960-07&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1363339%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F13806926&amp;rft_id=info%3Adoi%2F10.1113%2Fjphysiol.1960.sp006509&amp;rft.aulast=Caldwell&amp;rft.aufirst=PC&amp;rft.au=Hodgkin%2C+AL&amp;rft.au=Keynes%2C+RD&amp;rft.au=Shaw%2C+TL&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1363339&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-caldwell_1957-155"><span class="mw-cite-backlink"><b><a href="#cite_ref-caldwell_1957_155-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCaldwellKeynes1957" class="citation journal cs1">Caldwell PC, Keynes RD (June 1957). "The utilization of phosphate bond energy for sodium extrusion from giant axons". <i>The Journal of Physiology</i>. <b>137</b> (1): 12–3P. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1113%2Fjphysiol.1957.sp005830">10.1113/jphysiol.1957.sp005830</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/13439598">13439598</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:222188054">222188054</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Physiology&amp;rft.atitle=The+utilization+of+phosphate+bond+energy+for+sodium+extrusion+from+giant+axons&amp;rft.volume=137&amp;rft.issue=1&amp;rft.pages=12-3P&amp;rft.date=1957-06&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A222188054%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F13439598&amp;rft_id=info%3Adoi%2F10.1113%2Fjphysiol.1957.sp005830&amp;rft.aulast=Caldwell&amp;rft.aufirst=PC&amp;rft.au=Keynes%2C+RD&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-Na_K_pump_structure-156"><span class="mw-cite-backlink"><b><a href="#cite_ref-Na_K_pump_structure_156-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMorthPedersenToustrup-JensenSørensen2007" class="citation journal cs1">Morth JP, Pedersen BP, Toustrup-Jensen MS, Sørensen TL, Petersen J, Andersen JP, et&#160;al. (December 2007). "Crystal structure of the sodium-potassium pump". <i>Nature</i>. <b>450</b> (7172): 1043–9. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007Natur.450.1043M">2007Natur.450.1043M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature06419">10.1038/nature06419</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18075585">18075585</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4344526">4344526</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Crystal+structure+of+the+sodium-potassium+pump&amp;rft.volume=450&amp;rft.issue=7172&amp;rft.pages=1043-9&amp;rft.date=2007-12&amp;rft_id=info%3Adoi%2F10.1038%2Fnature06419&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4344526%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F18075585&amp;rft_id=info%3Abibcode%2F2007Natur.450.1043M&amp;rft.aulast=Morth&amp;rft.aufirst=JP&amp;rft.au=Pedersen%2C+BP&amp;rft.au=Toustrup-Jensen%2C+MS&amp;rft.au=S%C3%B8rensen%2C+TL&amp;rft.au=Petersen%2C+J&amp;rft.au=Andersen%2C+JP&amp;rft.au=Vilsen%2C+B&amp;rft.au=Nissen%2C+P&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-157"><span class="mw-cite-backlink"><b><a href="#cite_ref-157">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeeEast2001" class="citation journal cs1">Lee AG, East JM (June 2001). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1221895">"What the structure of a calcium pump tells us about its mechanism"</a>. <i>The Biochemical Journal</i>. <b>356</b> (Pt 3): 665–83. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1042%2F0264-6021%3A3560665">10.1042/0264-6021:3560665</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1221895">1221895</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11389676">11389676</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Biochemical+Journal&amp;rft.atitle=What+the+structure+of+a+calcium+pump+tells+us+about+its+mechanism&amp;rft.volume=356&amp;rft.issue=Pt+3&amp;rft.pages=665-83&amp;rft.date=2001-06&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1221895%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F11389676&amp;rft_id=info%3Adoi%2F10.1042%2F0264-6021%3A3560665&amp;rft.aulast=Lee&amp;rft.aufirst=AG&amp;rft.au=East%2C+JM&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1221895&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-160"><span class="mw-cite-backlink"><b><a href="#cite_ref-160">^</a></b></span> <span class="reference-text">* <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFitzhugh1960" class="citation journal cs1">Fitzhugh R (May 1960). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2195039">"Thresholds and plateaus in the Hodgkin-Huxley nerve equations"</a>. <i>The Journal of General Physiology</i>. <b>43</b> (5): 867–96. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1085%2Fjgp.43.5.867">10.1085/jgp.43.5.867</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2195039">2195039</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/13823315">13823315</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+General+Physiology&amp;rft.atitle=Thresholds+and+plateaus+in+the+Hodgkin-Huxley+nerve+equations&amp;rft.volume=43&amp;rft.issue=5&amp;rft.pages=867-96&amp;rft.date=1960-05&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2195039%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F13823315&amp;rft_id=info%3Adoi%2F10.1085%2Fjgp.43.5.867&amp;rft.aulast=Fitzhugh&amp;rft.aufirst=R&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2195039&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span><br />* <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKeplerAbbottMarder1992" class="citation journal cs1">Kepler TB, Abbott LF, Marder E (1992). "Reduction of conductance-based neuron models". <i>Biological Cybernetics</i>. <b>66</b> (5): 381–7. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00197717">10.1007/BF00197717</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/1562643">1562643</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6789007">6789007</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biological+Cybernetics&amp;rft.atitle=Reduction+of+conductance-based+neuron+models&amp;rft.volume=66&amp;rft.issue=5&amp;rft.pages=381-7&amp;rft.date=1992&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6789007%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F1562643&amp;rft_id=info%3Adoi%2F10.1007%2FBF00197717&amp;rft.aulast=Kepler&amp;rft.aufirst=TB&amp;rft.au=Abbott%2C+LF&amp;rft.au=Marder%2C+E&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-morris_1981-161"><span class="mw-cite-backlink"><b><a href="#cite_ref-morris_1981_161-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMorrisLecar1981" class="citation journal cs1">Morris C, Lecar H (July 1981). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1327511">"Voltage oscillations in the barnacle giant muscle fiber"</a>. <i>Biophysical Journal</i>. <b>35</b> (1): 193–213. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1981BpJ....35..193M">1981BpJ....35..193M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0006-3495%2881%2984782-0">10.1016/S0006-3495(81)84782-0</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1327511">1327511</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/7260316">7260316</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biophysical+Journal&amp;rft.atitle=Voltage+oscillations+in+the+barnacle+giant+muscle+fiber&amp;rft.volume=35&amp;rft.issue=1&amp;rft.pages=193-213&amp;rft.date=1981-07&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1327511%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F7260316&amp;rft_id=info%3Adoi%2F10.1016%2FS0006-3495%2881%2984782-0&amp;rft_id=info%3Abibcode%2F1981BpJ....35..193M&amp;rft.aulast=Morris&amp;rft.aufirst=C&amp;rft.au=Lecar%2C+H&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1327511&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-fitzhugh-162"><span class="mw-cite-backlink"><b><a href="#cite_ref-fitzhugh_162-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFitzhugh1961" class="citation journal cs1">Fitzhugh R (July 1961). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1366333">"Impulses and Physiological States in Theoretical Models of Nerve Membrane"</a>. <i>Biophysical Journal</i>. <b>1</b> (6): 445–66. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1961BpJ.....1..445F">1961BpJ.....1..445F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0006-3495%2861%2986902-6">10.1016/S0006-3495(61)86902-6</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1366333">1366333</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19431309">19431309</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biophysical+Journal&amp;rft.atitle=Impulses+and+Physiological+States+in+Theoretical+Models+of+Nerve+Membrane&amp;rft.volume=1&amp;rft.issue=6&amp;rft.pages=445-66&amp;rft.date=1961-07&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1366333%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F19431309&amp;rft_id=info%3Adoi%2F10.1016%2FS0006-3495%2861%2986902-6&amp;rft_id=info%3Abibcode%2F1961BpJ.....1..445F&amp;rft.aulast=Fitzhugh&amp;rft.aufirst=R&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1366333&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span><br />* <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNagumoArimotoYoshizawa1962" class="citation journal cs1">Nagumo J, Arimoto S, Yoshizawa S (1962). "An active pulse transmission line simulating nerve axon". <i>Proceedings of the IRE</i>. <b>50</b> (10): 2061–2070. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FJRPROC.1962.288235">10.1109/JRPROC.1962.288235</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:51648050">51648050</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+IRE&amp;rft.atitle=An+active+pulse+transmission+line+simulating+nerve+axon&amp;rft.volume=50&amp;rft.issue=10&amp;rft.pages=2061-2070&amp;rft.date=1962&amp;rft_id=info%3Adoi%2F10.1109%2FJRPROC.1962.288235&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A51648050%23id-name%3DS2CID&amp;rft.aulast=Nagumo&amp;rft.aufirst=J&amp;rft.au=Arimoto%2C+S&amp;rft.au=Yoshizawa%2C+S&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-bonhoeffer_vanderPol-163"><span class="mw-cite-backlink"><b><a href="#cite_ref-bonhoeffer_vanderPol_163-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBonhoeffer1948" class="citation journal cs1">Bonhoeffer KF (September 1948). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2213747">"Activation of passive iron as a model for the excitation of nerve"</a>. <i>The Journal of General Physiology</i>. <b>32</b> (1): 69–91. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1085%2Fjgp.32.1.69">10.1085/jgp.32.1.69</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2213747">2213747</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18885679">18885679</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+General+Physiology&amp;rft.atitle=Activation+of+passive+iron+as+a+model+for+the+excitation+of+nerve&amp;rft.volume=32&amp;rft.issue=1&amp;rft.pages=69-91&amp;rft.date=1948-09&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2213747%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F18885679&amp;rft_id=info%3Adoi%2F10.1085%2Fjgp.32.1.69&amp;rft.aulast=Bonhoeffer&amp;rft.aufirst=KF&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2213747&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span><br />* <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBonhoeffer1953" class="citation journal cs1">Bonhoeffer KF (1953). "Modelle der Nervenerregung". <i>Naturwissenschaften</i>. <b>40</b> (11): 301–311. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1953NW.....40..301B">1953NW.....40..301B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00632438">10.1007/BF00632438</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:19149460">19149460</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Naturwissenschaften&amp;rft.atitle=Modelle+der+Nervenerregung&amp;rft.volume=40&amp;rft.issue=11&amp;rft.pages=301-311&amp;rft.date=1953&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A19149460%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF00632438&amp;rft_id=info%3Abibcode%2F1953NW.....40..301B&amp;rft.aulast=Bonhoeffer&amp;rft.aufirst=KF&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span><br />* <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVan_der_Pol1926" class="citation journal cs1"><a href="/wiki/Balthasar_van_der_Pol" title="Balthasar van der Pol">Van der Pol B</a> (1926). "On relaxation-oscillations". <i>Philosophical Magazine</i>. <b>2</b>: 977–992.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Philosophical+Magazine&amp;rft.atitle=On+relaxation-oscillations&amp;rft.volume=2&amp;rft.pages=977-992&amp;rft.date=1926&amp;rft.aulast=Van+der+Pol&amp;rft.aufirst=B&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span><br />* <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVan_der_PolVan_der_Mark1928" class="citation journal cs1"><a href="/wiki/Balthasar_van_der_Pol" title="Balthasar van der Pol">Van der Pol B</a>, Van der Mark J (1928). "The heartbeat considered as a relaxation oscillation, and an electrical model of the heart". <i>Philosophical Magazine</i>. <b>6</b>: 763–775. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F14786441108564652">10.1080/14786441108564652</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Philosophical+Magazine&amp;rft.atitle=The+heartbeat+considered+as+a+relaxation+oscillation%2C+and+an+electrical+model+of+the+heart&amp;rft.volume=6&amp;rft.pages=763-775&amp;rft.date=1928&amp;rft_id=info%3Adoi%2F10.1080%2F14786441108564652&amp;rft.aulast=Van+der+Pol&amp;rft.aufirst=B&amp;rft.au=Van+der+Mark%2C+J&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span><br />* <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVan_der_Polvan_der_Mark1929" class="citation journal cs1"><a href="/wiki/Balthasar_van_der_Pol" title="Balthasar van der Pol">Van der Pol B</a>, van der Mark J (1929). "The heartbeat considered as a relaxation oscillation, and an electrical model of the heart". <i>Arch. Neerl. Physiol</i>. <b>14</b>: 418–443.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Arch.+Neerl.+Physiol.&amp;rft.atitle=The+heartbeat+considered+as+a+relaxation+oscillation%2C+and+an+electrical+model+of+the+heart&amp;rft.volume=14&amp;rft.pages=418-443&amp;rft.date=1929&amp;rft.aulast=Van+der+Pol&amp;rft.aufirst=B&amp;rft.au=van+der+Mark%2C+J&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-165"><span class="mw-cite-backlink"><b><a href="#cite_ref-165">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEvans1972" class="citation journal cs1">Evans JW (1972). <a rel="nofollow" class="external text" href="https://doi.org/10.1512%2Fiumj.1972.21.21071">"Nerve axon equations. I. Linear approximations"</a>. <i>Indiana Univ. Math. J</i>. <b>21</b> (9): 877–885. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1512%2Fiumj.1972.21.21071">10.1512/iumj.1972.21.21071</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Indiana+Univ.+Math.+J.&amp;rft.atitle=Nerve+axon+equations.+I.+Linear+approximations&amp;rft.volume=21&amp;rft.issue=9&amp;rft.pages=877-885&amp;rft.date=1972&amp;rft_id=info%3Adoi%2F10.1512%2Fiumj.1972.21.21071&amp;rft.aulast=Evans&amp;rft.aufirst=JW&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1512%252Fiumj.1972.21.21071&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span><br />* <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEvansFeroe1977" class="citation journal cs1">Evans JW, Feroe J (1977). "Local stability theory of the nerve impulse". <i>Math. Biosci</i>. <b>37</b>: 23–50. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0025-5564%2877%2990076-1">10.1016/0025-5564(77)90076-1</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Math.+Biosci.&amp;rft.atitle=Local+stability+theory+of+the+nerve+impulse&amp;rft.volume=37&amp;rft.pages=23-50&amp;rft.date=1977&amp;rft_id=info%3Adoi%2F10.1016%2F0025-5564%2877%2990076-1&amp;rft.aulast=Evans&amp;rft.aufirst=JW&amp;rft.au=Feroe%2C+J&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-keener_1983-167"><span class="mw-cite-backlink"><b><a href="#cite_ref-keener_1983_167-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKeener1983" class="citation journal cs1">Keener JP (1983). "Analogue circuitry for the Van der Pol and FitzHugh-Nagumo equations". <i>IEEE Transactions on Systems, Man, and Cybernetics</i>. <b>13</b> (5): 1010–1014. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTSMC.1983.6313098">10.1109/TSMC.1983.6313098</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:20077648">20077648</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Systems%2C+Man%2C+and+Cybernetics&amp;rft.atitle=Analogue+circuitry+for+the+Van+der+Pol+and+FitzHugh-Nagumo+equations&amp;rft.volume=13&amp;rft.issue=5&amp;rft.pages=1010-1014&amp;rft.date=1983&amp;rft_id=info%3Adoi%2F10.1109%2FTSMC.1983.6313098&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A20077648%23id-name%3DS2CID&amp;rft.aulast=Keener&amp;rft.aufirst=JP&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-pmid10713861-171"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid10713861_171-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHooper2000" class="citation journal cs1">Hooper SL (March 2000). "Central pattern generators". <i>Current Biology</i>. <b>10</b> (5): R176–R179. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000CBio...10.R176H">2000CBio...10.R176H</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.133.3378">10.1.1.133.3378</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0960-9822%2800%2900367-5">10.1016/S0960-9822(00)00367-5</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10713861">10713861</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:11388348">11388348</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Current+Biology&amp;rft.atitle=Central+pattern+generators&amp;rft.volume=10&amp;rft.issue=5&amp;rft.pages=R176-R179&amp;rft.date=2000-03&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A11388348%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2000CBio...10.R176H&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.133.3378%23id-name%3DCiteSeerX&amp;rft_id=info%3Apmid%2F10713861&amp;rft_id=info%3Adoi%2F10.1016%2FS0960-9822%2800%2900367-5&amp;rft.aulast=Hooper&amp;rft.aufirst=SL&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading3"><h3 id="Books">Books</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=38" title="Edit section: Books"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin refbegin-columns references-column-width" style="column-width: 32em"> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAndersonRosenfeld1988" class="citation book cs1">Anderson JA, Rosenfeld E, eds. (1988). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/neurocomputingfo0000unse"><i>Neurocomputing: Foundations of Research</i></a></span>. Cambridge, Massachusetts: The MIT Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-262-01097-9" title="Special:BookSources/978-0-262-01097-9"><bdi>978-0-262-01097-9</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/87003022">87003022</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/15860311">15860311</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Neurocomputing%3A+Foundations+of+Research&amp;rft.place=Cambridge%2C+Massachusetts&amp;rft.pub=The+MIT+Press&amp;rft.date=1988&amp;rft_id=info%3Aoclcnum%2F15860311&amp;rft_id=info%3Alccn%2F87003022&amp;rft.isbn=978-0-262-01097-9&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fneurocomputingfo0000unse&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernstein1912" class="citation book cs1"><a href="/wiki/Julius_Bernstein" title="Julius Bernstein">Bernstein J</a> (1912). <i>Elektrobiologie, die Lehre von den elektrischen Vorgängen im Organismus auf moderner Grundlage dargestellt</i> &#91;<i>Electric Biology, the study of the electrical processes in the organism represented on a modern basis</i>&#93;. Braunschweig: Vieweg und Sohn. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/12027986">12027986</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/11358569">11358569</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elektrobiologie%2C+die+Lehre+von+den+elektrischen+Vorg%C3%A4ngen+im+Organismus+auf+moderner+Grundlage+dargestellt&amp;rft.place=Braunschweig&amp;rft.pub=Vieweg+und+Sohn&amp;rft.date=1912&amp;rft_id=info%3Aoclcnum%2F11358569&amp;rft_id=info%3Alccn%2F12027986&amp;rft.aulast=Bernstein&amp;rft.aufirst=J&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBowerBeeman1995" class="citation book cs1">Bower JM, Beeman D (1995). <i>The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System</i>. Santa Clara, Calif.: TELOS. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-94019-9" title="Special:BookSources/978-0-387-94019-9"><bdi>978-0-387-94019-9</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/94017624">94017624</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/30518469">30518469</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Book+of+GENESIS%3A+Exploring+Realistic+Neural+Models+with+the+GEneral+NEural+SImulation+System&amp;rft.place=Santa+Clara%2C+Calif.&amp;rft.pub=TELOS&amp;rft.date=1995&amp;rft_id=info%3Aoclcnum%2F30518469&amp;rft_id=info%3Alccn%2F94017624&amp;rft.isbn=978-0-387-94019-9&amp;rft.aulast=Bower&amp;rft.aufirst=JM&amp;rft.au=Beeman%2C+D&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrazier1961" class="citation book cs1">Brazier MA (1961). <i>A History of the Electrical Activity of the Brain</i>. London: Pitman. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/62001407">62001407</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/556863">556863</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+History+of+the+Electrical+Activity+of+the+Brain&amp;rft.place=London&amp;rft.pub=Pitman&amp;rft.date=1961&amp;rft_id=info%3Aoclcnum%2F556863&amp;rft_id=info%3Alccn%2F62001407&amp;rft.aulast=Brazier&amp;rft.aufirst=MA&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBullockHorridge1965" class="citation book cs1"><a href="/wiki/Theodore_Holmes_Bullock" title="Theodore Holmes Bullock">Bullock TH</a>, Horridge GA (1965). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/structurefunctio0000bull"><i>Structure and Function in the Nervous Systems of Invertebrates</i></a></span>. A series of books in biology. San Francisco: W. H. Freeman. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/65007965">65007965</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/558128">558128</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Structure+and+Function+in+the+Nervous+Systems+of+Invertebrates&amp;rft.place=San+Francisco&amp;rft.series=A+series+of+books+in+biology&amp;rft.pub=W.+H.+Freeman&amp;rft.date=1965&amp;rft_id=info%3Aoclcnum%2F558128&amp;rft_id=info%3Alccn%2F65007965&amp;rft.aulast=Bullock&amp;rft.aufirst=TH&amp;rft.au=Horridge%2C+GA&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fstructurefunctio0000bull&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBullockOrkandGrinnell1977" class="citation book cs1"><a href="/wiki/Theodore_Holmes_Bullock" title="Theodore Holmes Bullock">Bullock TH</a>, Orkand R, Grinnell A (1977). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/introductiontone00theo"><i>Introduction to Nervous Systems</i></a></span>. A series of books in biology. San Francisco: W. H. Freeman. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-7167-0030-2" title="Special:BookSources/978-0-7167-0030-2"><bdi>978-0-7167-0030-2</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/76003735">76003735</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/2048177">2048177</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Nervous+Systems&amp;rft.place=San+Francisco&amp;rft.series=A+series+of+books+in+biology&amp;rft.pub=W.+H.+Freeman&amp;rft.date=1977&amp;rft_id=info%3Aoclcnum%2F2048177&amp;rft_id=info%3Alccn%2F76003735&amp;rft.isbn=978-0-7167-0030-2&amp;rft.aulast=Bullock&amp;rft.aufirst=TH&amp;rft.au=Orkand%2C+R&amp;rft.au=Grinnell%2C+A&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontone00theo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFField1959" class="citation book cs1">Field J, ed. (1959). <i>Handbook of Physiology: a Critical, Comprehensive Presentation of Physiological Knowledge and Concepts: Section 1: Neurophysiology</i>. Vol.&#160;1. Washington, DC: American Physiological Society. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/60004587">60004587</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/830755894">830755894</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Handbook+of+Physiology%3A+a+Critical%2C+Comprehensive+Presentation+of+Physiological+Knowledge+and+Concepts%3A+Section+1%3A+Neurophysiology&amp;rft.place=Washington%2C+DC&amp;rft.pub=American+Physiological+Society&amp;rft.date=1959&amp;rft_id=info%3Aoclcnum%2F830755894&amp;rft_id=info%3Alccn%2F60004587&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGanong1991" class="citation book cs1">Ganong, WF (1991). <i>Review of Medical Physiology</i> (15th&#160;ed.). Norwalk, Conn.: Appleton and Lange. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8385-8418-7" title="Special:BookSources/978-0-8385-8418-7"><bdi>978-0-8385-8418-7</bdi></a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0892-1253">0892-1253</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/87642343">87642343</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/23761261">23761261</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Review+of+Medical+Physiology&amp;rft.place=Norwalk%2C+Conn.&amp;rft.edition=15th&amp;rft.pub=Appleton+and+Lange&amp;rft.date=1991&amp;rft_id=info%3Aoclcnum%2F23761261&amp;rft.issn=0892-1253&amp;rft_id=info%3Alccn%2F87642343&amp;rft.isbn=978-0-8385-8418-7&amp;rft.aulast=Ganong&amp;rft.aufirst=WF&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span> <span class="cs1-visible-error citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: </span><span class="cs1-visible-error citation-comment"><code class="cs1-code">&#124;journal=</code> ignored (<a href="/wiki/Help:CS1_errors#periodical_ignored" title="Help:CS1 errors">help</a>)</span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuckenheimerHolmes1986" class="citation book cs1">Guckenheimer J, Holmes P, eds. (1986). <i>Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields</i>. Applied Mathematical Sciences. Vol.&#160;42 (2nd&#160;ed.). New York: Springer Verlag. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-90819-9" title="Special:BookSources/978-0-387-90819-9"><bdi>978-0-387-90819-9</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/751129941">751129941</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Nonlinear+Oscillations%2C+Dynamical+Systems+and+Bifurcations+of+Vector+Fields&amp;rft.place=New+York&amp;rft.series=Applied+Mathematical+Sciences&amp;rft.edition=2nd&amp;rft.pub=Springer+Verlag&amp;rft.date=1986&amp;rft_id=info%3Aoclcnum%2F751129941&amp;rft.isbn=978-0-387-90819-9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHoppensteadt1986" class="citation book cs1">Hoppensteadt FC (1986). <i>An Introduction to the Mathematics of Neurons</i>. Cambridge studies in mathematical biology. Vol.&#160;6. Cambridge: Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-31574-6" title="Special:BookSources/978-0-521-31574-6"><bdi>978-0-521-31574-6</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/85011013">85011013</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/12052275">12052275</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+the+Mathematics+of+Neurons&amp;rft.place=Cambridge&amp;rft.series=Cambridge+studies+in+mathematical+biology&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1986&amp;rft_id=info%3Aoclcnum%2F12052275&amp;rft_id=info%3Alccn%2F85011013&amp;rft.isbn=978-0-521-31574-6&amp;rft.aulast=Hoppensteadt&amp;rft.aufirst=FC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJunge1981" class="citation book cs1">Junge D (1981). <a rel="nofollow" class="external text" href="https://archive.org/details/nervemuscleexcit00jung"><i>Nerve and Muscle Excitation</i></a> (2nd&#160;ed.). Sunderland, Mass.: Sinauer Associates. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-87893-410-2" title="Special:BookSources/978-0-87893-410-2"><bdi>978-0-87893-410-2</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/80018158">80018158</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/6486925">6486925</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Nerve+and+Muscle+Excitation&amp;rft.place=Sunderland%2C+Mass.&amp;rft.edition=2nd&amp;rft.pub=Sinauer+Associates&amp;rft.date=1981&amp;rft_id=info%3Aoclcnum%2F6486925&amp;rft_id=info%3Alccn%2F80018158&amp;rft.isbn=978-0-87893-410-2&amp;rft.aulast=Junge&amp;rft.aufirst=D&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fnervemuscleexcit00jung&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKettenmannGrantyn1992" class="citation book cs1">Kettenmann H, Grantyn R, eds. (1992). <i>Practical Electrophysiological Methods: A Guide for in Vitro Studies in Vertebrate Neurobiology</i>. New York: Wiley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-56200-9" title="Special:BookSources/978-0-471-56200-9"><bdi>978-0-471-56200-9</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/92000179">92000179</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/25204689">25204689</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Practical+Electrophysiological+Methods%3A+A+Guide+for+in+Vitro+Studies+in+Vertebrate+Neurobiology&amp;rft.place=New+York&amp;rft.pub=Wiley&amp;rft.date=1992&amp;rft_id=info%3Aoclcnum%2F25204689&amp;rft_id=info%3Alccn%2F92000179&amp;rft.isbn=978-0-471-56200-9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKeynesAidley1991" class="citation book cs1"><a href="/wiki/Richard_Keynes" title="Richard Keynes">Keynes RD</a>, Aidley DJ (1991). <i>Nerve and Muscle</i> (2nd&#160;ed.). Cambridge: Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-41042-7" title="Special:BookSources/978-0-521-41042-7"><bdi>978-0-521-41042-7</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/90015167">90015167</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/25204483">25204483</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Nerve+and+Muscle&amp;rft.place=Cambridge&amp;rft.edition=2nd&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1991&amp;rft_id=info%3Aoclcnum%2F25204483&amp;rft_id=info%3Alccn%2F90015167&amp;rft.isbn=978-0-521-41042-7&amp;rft.aulast=Keynes&amp;rft.aufirst=RD&amp;rft.au=Aidley%2C+DJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKochSegev1989" class="citation book cs1"><a href="/wiki/Christof_Koch" title="Christof Koch">Koch C</a>, Segev I, eds. (1989). <i>Methods in Neuronal Modeling: From Synapses to Networks</i>. Cambridge, Massachusetts: The MIT Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-262-11133-1" title="Special:BookSources/978-0-262-11133-1"><bdi>978-0-262-11133-1</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/88008279">88008279</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/18384545">18384545</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Methods+in+Neuronal+Modeling%3A+From+Synapses+to+Networks&amp;rft.place=Cambridge%2C+Massachusetts&amp;rft.pub=The+MIT+Press&amp;rft.date=1989&amp;rft_id=info%3Aoclcnum%2F18384545&amp;rft_id=info%3Alccn%2F88008279&amp;rft.isbn=978-0-262-11133-1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLavalléeSchanneHébert1969" class="citation book cs1">Lavallée M, Schanne OF, Hébert NC, eds. (1969). <i>Glass Microelectrodes</i>. New York: Wiley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-51885-3" title="Special:BookSources/978-0-471-51885-3"><bdi>978-0-471-51885-3</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/68009252">68009252</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/686">686</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Glass+Microelectrodes&amp;rft.place=New+York&amp;rft.pub=Wiley&amp;rft.date=1969&amp;rft_id=info%3Aoclcnum%2F686&amp;rft_id=info%3Alccn%2F68009252&amp;rft.isbn=978-0-471-51885-3&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcCulloch1988" class="citation book cs1"><a href="/wiki/Warren_Sturgis_McCulloch" title="Warren Sturgis McCulloch">McCulloch WS</a> (1988). <i>Embodiments of Mind</i>. Cambridge, Massachusetts: The MIT Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-262-63114-3" title="Special:BookSources/978-0-262-63114-3"><bdi>978-0-262-63114-3</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/88002987">88002987</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/237280">237280</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Embodiments+of+Mind&amp;rft.place=Cambridge%2C+Massachusetts&amp;rft.pub=The+MIT+Press&amp;rft.date=1988&amp;rft_id=info%3Aoclcnum%2F237280&amp;rft_id=info%3Alccn%2F88002987&amp;rft.isbn=978-0-262-63114-3&amp;rft.aulast=McCulloch&amp;rft.aufirst=WS&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcHenryGarrison1969" class="citation book cs1">McHenry LC, Garrison FH (1969). <i>Garrison's History of Neurology</i>. Springfield, Ill.: Charles C. Thomas. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/429733931">429733931</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Garrison%27s+History+of+Neurology&amp;rft.place=Springfield%2C+Ill.&amp;rft.pub=Charles+C.+Thomas&amp;rft.date=1969&amp;rft_id=info%3Aoclcnum%2F429733931&amp;rft.aulast=McHenry&amp;rft.aufirst=LC&amp;rft.au=Garrison%2C+FH&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSilverthorn2010" class="citation book cs1">Silverthorn DU (2010). <i>Human Physiology: An Integrated Approach</i> (5th&#160;ed.). San Francisco: Pearson. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-321-55980-7" title="Special:BookSources/978-0-321-55980-7"><bdi>978-0-321-55980-7</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/2008050369">2008050369</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/268788623">268788623</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Human+Physiology%3A+An+Integrated+Approach&amp;rft.place=San+Francisco&amp;rft.edition=5th&amp;rft.pub=Pearson&amp;rft.date=2010&amp;rft_id=info%3Aoclcnum%2F268788623&amp;rft_id=info%3Alccn%2F2008050369&amp;rft.isbn=978-0-321-55980-7&amp;rft.aulast=Silverthorn&amp;rft.aufirst=DU&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSpanswickLucasDainty1980" class="citation book cs1">Spanswick RM, Lucas WJ, Dainty J, eds. (1980). <i>Plant Membrane Transport: Current Conceptual Issues</i>. Developments in Plant Biology. Vol.&#160;4. Amsterdam: Elsevier Biomedical Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-444-80192-0" title="Special:BookSources/978-0-444-80192-0"><bdi>978-0-444-80192-0</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/79025719">79025719</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/5799924">5799924</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Plant+Membrane+Transport%3A+Current+Conceptual+Issues&amp;rft.place=Amsterdam&amp;rft.series=Developments+in+Plant+Biology&amp;rft.pub=Elsevier+Biomedical+Press&amp;rft.date=1980&amp;rft_id=info%3Aoclcnum%2F5799924&amp;rft_id=info%3Alccn%2F79025719&amp;rft.isbn=978-0-444-80192-0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPurvesAugustineFitzpatrickHall2001" class="citation book cs1">Purves D, Augustine GJ, Fitzpatrick D, Hall WC, Lamantia AS, McNamara JO, Williams SM (2001). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=neurosci.section.326">"Release of Transmitters from Synaptic Vesicles"</a>. <i>Neuroscience</i> (2nd&#160;ed.). Sunderland, MA: Sinauer Associates. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-87893-742-4" title="Special:BookSources/978-0-87893-742-4"><bdi>978-0-87893-742-4</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/00059496">00059496</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/806472664">806472664</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Release+of+Transmitters+from+Synaptic+Vesicles&amp;rft.btitle=Neuroscience&amp;rft.place=Sunderland%2C+MA&amp;rft.edition=2nd&amp;rft.pub=Sinauer+Associates&amp;rft.date=2001&amp;rft_id=info%3Aoclcnum%2F806472664&amp;rft_id=info%3Alccn%2F00059496&amp;rft.isbn=978-0-87893-742-4&amp;rft.aulast=Purves&amp;rft.aufirst=D&amp;rft.au=Augustine%2C+GJ&amp;rft.au=Fitzpatrick%2C+D&amp;rft.au=Hall%2C+WC&amp;rft.au=Lamantia%2C+AS&amp;rft.au=McNamara%2C+JO&amp;rft.au=Williams%2C+SM&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fbooks%2Fbv.fcgi%3Frid%3Dneurosci.section.326&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPurvesAugustineFitzpatrickHall2008" class="citation book cs1">Purves D, Augustine GJ, Fitzpatrick D, Hall WC, Lamantia AS, McNamara JO, White LE (2008). <i>Neuroscience</i> (4th&#160;ed.). Sunderland, MA: Sinauer Associates. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-87893-697-7" title="Special:BookSources/978-0-87893-697-7"><bdi>978-0-87893-697-7</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/2007024950">2007024950</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/144771764">144771764</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Neuroscience&amp;rft.place=Sunderland%2C+MA&amp;rft.edition=4th&amp;rft.pub=Sinauer+Associates&amp;rft.date=2008&amp;rft_id=info%3Aoclcnum%2F144771764&amp;rft_id=info%3Alccn%2F2007024950&amp;rft.isbn=978-0-87893-697-7&amp;rft.aulast=Purves&amp;rft.aufirst=D&amp;rft.au=Augustine%2C+GJ&amp;rft.au=Fitzpatrick%2C+D&amp;rft.au=Hall%2C+WC&amp;rft.au=Lamantia%2C+AS&amp;rft.au=McNamara%2C+JO&amp;rft.au=White%2C+LE&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReekePoznanskiSpornsRosenberg2005" class="citation book cs1">Reeke GN, Poznanski RR, Sporns O, Rosenberg JR, Lindsay KA, eds. (2005). <i>Modeling in the Neurosciences: from Biological Systems to Neuromimetic Robotics</i>. Boca Raton, Fla.: Taylor &amp; Francis. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-415-32868-5" title="Special:BookSources/978-0-415-32868-5"><bdi>978-0-415-32868-5</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/2005298022">2005298022</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/489024131">489024131</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Modeling+in+the+Neurosciences%3A+from+Biological+Systems+to+Neuromimetic+Robotics&amp;rft.place=Boca+Raton%2C+Fla.&amp;rft.pub=Taylor+%26+Francis&amp;rft.date=2005&amp;rft_id=info%3Aoclcnum%2F489024131&amp;rft_id=info%3Alccn%2F2005298022&amp;rft.isbn=978-0-415-32868-5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchmidt-Nielsen1997" class="citation book cs1"><a href="/wiki/Knut_Schmidt-Nielsen" title="Knut Schmidt-Nielsen">Schmidt-Nielsen K</a> (1997). <i>Animal Physiology: Adaptation and Environment</i> (5th&#160;ed.). Cambridge: Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-57098-5" title="Special:BookSources/978-0-521-57098-5"><bdi>978-0-521-57098-5</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/96039295">96039295</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/35744403">35744403</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Animal+Physiology%3A+Adaptation+and+Environment&amp;rft.place=Cambridge&amp;rft.edition=5th&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1997&amp;rft_id=info%3Aoclcnum%2F35744403&amp;rft_id=info%3Alccn%2F96039295&amp;rft.isbn=978-0-521-57098-5&amp;rft.aulast=Schmidt-Nielsen&amp;rft.aufirst=K&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchwann1969" class="citation book cs1">Schwann HP, ed. (1969). <i>Biological Engineering</i>. Inter-University Electronics Series. Vol.&#160;9. New York: McGraw-Hill. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-07-055734-5" title="Special:BookSources/978-0-07-055734-5"><bdi>978-0-07-055734-5</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/68027513">68027513</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/51993">51993</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Biological+Engineering&amp;rft.place=New+York&amp;rft.series=Inter-University+Electronics+Series&amp;rft.pub=McGraw-Hill&amp;rft.date=1969&amp;rft_id=info%3Aoclcnum%2F51993&amp;rft_id=info%3Alccn%2F68027513&amp;rft.isbn=978-0-07-055734-5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStevens1966" class="citation book cs1">Stevens CF (1966). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/neurophysiologyp0000stev"><i>Neurophysiology: A Primer</i></a></span>. New York: John Wiley and Sons. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780471824367" title="Special:BookSources/9780471824367"><bdi>9780471824367</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/66015872">66015872</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1175605">1175605</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Neurophysiology%3A+A+Primer&amp;rft.place=New+York&amp;rft.pub=John+Wiley+and+Sons&amp;rft.date=1966&amp;rft_id=info%3Aoclcnum%2F1175605&amp;rft_id=info%3Alccn%2F66015872&amp;rft.isbn=9780471824367&amp;rft.aulast=Stevens&amp;rft.aufirst=CF&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fneurophysiologyp0000stev&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWaxman2007" class="citation book cs1">Waxman SG, ed. (2007). <i>Molecular Neurology</i>. Burlington, Mass.: Elsevier Academic Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-12-369509-3" title="Special:BookSources/978-0-12-369509-3"><bdi>978-0-12-369509-3</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/2008357317">2008357317</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/154760295">154760295</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Molecular+Neurology&amp;rft.place=Burlington%2C+Mass.&amp;rft.pub=Elsevier+Academic+Press&amp;rft.date=2007&amp;rft_id=info%3Aoclcnum%2F154760295&amp;rft_id=info%3Alccn%2F2008357317&amp;rft.isbn=978-0-12-369509-3&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWordenSwazeyAdelman1975" class="citation book cs1">Worden FG, Swazey JP, Adelman G, eds. (1975). <a rel="nofollow" class="external text" href="https://archive.org/details/TheNeurosc_00_Word"><i>The Neurosciences, Paths of Discovery</i></a>. Cambridge, Massachusetts: The MIT Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-262-23072-8" title="Special:BookSources/978-0-262-23072-8"><bdi>978-0-262-23072-8</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/75016379">75016379</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1500233">1500233</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Neurosciences%2C+Paths+of+Discovery&amp;rft.place=Cambridge%2C+Massachusetts&amp;rft.pub=The+MIT+Press&amp;rft.date=1975&amp;rft_id=info%3Aoclcnum%2F1500233&amp;rft_id=info%3Alccn%2F75016379&amp;rft.isbn=978-0-262-23072-8&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2FTheNeurosc_00_Word&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading3"><h3 id="Web_pages">Web pages</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=39" title="Edit section: Web pages"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width" style="column-width: 32em;"> <ol class="references"> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFitzhughIzhikevich2006" class="citation journal cs1">Fitzhugh R, Izhikevich E (2006). <a rel="nofollow" class="external text" href="https://doi.org/10.4249%2Fscholarpedia.1349">"FitzHugh-Nagumo model"</a>. <i>Scholarpedia</i>. <b>1</b> (9): 1349. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006SchpJ...1.1349I">2006SchpJ...1.1349I</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4249%2Fscholarpedia.1349">10.4249/scholarpedia.1349</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scholarpedia&amp;rft.atitle=FitzHugh-Nagumo+model&amp;rft.volume=1&amp;rft.issue=9&amp;rft.pages=1349&amp;rft.date=2006&amp;rft_id=info%3Adoi%2F10.4249%2Fscholarpedia.1349&amp;rft_id=info%3Abibcode%2F2006SchpJ...1.1349I&amp;rft.aulast=Fitzhugh&amp;rft.aufirst=Richard&amp;rft.au=Izhikevich%2C+Eugene&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.4249%252Fscholarpedia.1349&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-Nobel_1963-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-Nobel_1963_51-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation pressrelease cs1"><a rel="nofollow" class="external text" href="http://nobelprize.org/nobel_prizes/medicine/laureates/1963/index.html">"The Nobel Prize in Physiology or Medicine 1963"</a> (Press release). The Royal Swedish Academy of Science. 1963. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20070716195411/http://nobelprize.org/nobel_prizes/medicine/laureates/1963/index.html">Archived</a> from the original on 16 July 2007<span class="reference-accessdate">. Retrieved <span class="nowrap">21 February</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=The+Nobel+Prize+in+Physiology+or+Medicine+1963&amp;rft.pub=The+Royal+Swedish+Academy+of+Science&amp;rft.date=1963&amp;rft_id=http%3A%2F%2Fnobelprize.org%2Fnobel_prizes%2Fmedicine%2Flaureates%2F1963%2Findex.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-Nobel_1991-131"><span class="mw-cite-backlink"><b><a href="#cite_ref-Nobel_1991_131-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation pressrelease cs1"><a rel="nofollow" class="external text" href="http://nobelprize.org/nobel_prizes/medicine/laureates/1991/press.html">"The Nobel Prize in Physiology or Medicine 1991"</a> (Press release). The Royal Swedish Academy of Science. 1991. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20100324031907/http://nobelprize.org/nobel_prizes/medicine/laureates/1991/press.html">Archived</a> from the original on 24 March 2010<span class="reference-accessdate">. Retrieved <span class="nowrap">21 February</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=The+Nobel+Prize+in+Physiology+or+Medicine+1991&amp;rft.pub=The+Royal+Swedish+Academy+of+Science&amp;rft.date=1991&amp;rft_id=http%3A%2F%2Fnobelprize.org%2Fnobel_prizes%2Fmedicine%2Flaureates%2F1991%2Fpress.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-Nobel_1906-139"><span class="mw-cite-backlink"><b><a href="#cite_ref-Nobel_1906_139-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation pressrelease cs1"><a rel="nofollow" class="external text" href="http://nobelprize.org/medicine/laureates/1906/index.html">"The Nobel Prize in Physiology or Medicine 1906"</a> (Press release). The Royal Swedish Academy of Science. 1906. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20081204190959/http://nobelprize.org/medicine/laureates/1906/index.html">Archived</a> from the original on 4 December 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">21 February</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=The+Nobel+Prize+in+Physiology+or+Medicine+1906&amp;rft.pub=The+Royal+Swedish+Academy+of+Science&amp;rft.date=1906&amp;rft_id=http%3A%2F%2Fnobelprize.org%2Fmedicine%2Flaureates%2F1906%2Findex.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-145"><span class="mw-cite-backlink"><b><a href="#cite_ref-145">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWarlow2007" class="citation journal cs1">Warlow C (June 2007). <a rel="nofollow" class="external text" href="http://pn.bmj.com/content/7/3/192.full">"The Recent Evolution of a Symbiotic Ion Channel in the Legume Family Altered Ion Conductance and Improved Functionality in Calcium Signaling"</a>. <i>Practical Neurology</i>. <b>7</b> (3). BMJ Publishing Group: 192–197. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120314104408/http://pn.bmj.com/content/7/3/192.full">Archived</a> from the original on 14 March 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">23 March</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Practical+Neurology&amp;rft.atitle=The+Recent+Evolution+of+a+Symbiotic+Ion+Channel+in+the+Legume+Family+Altered+Ion+Conductance+and+Improved+Functionality+in+Calcium+Signaling&amp;rft.volume=7&amp;rft.issue=3&amp;rft.pages=192-197&amp;rft.date=2007-06&amp;rft.aulast=Warlow&amp;rft.aufirst=Charles&amp;rft_id=http%3A%2F%2Fpn.bmj.com%2Fcontent%2F7%2F3%2F192.full&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> <li id="cite_note-152"><span class="mw-cite-backlink"><b><a href="#cite_ref-152">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation pressrelease cs1"><a rel="nofollow" class="external text" href="http://nobelprize.org/nobel_prizes/medicine/laureates/1997/press.html">"The Nobel Prize in Chemistry 1997"</a> (Press release). The Royal Swedish Academy of Science. 1997. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20091023003257/http://nobelprize.org/nobel_prizes/medicine/laureates/1997/press.html">Archived</a> from the original on 23 October 2009<span class="reference-accessdate">. Retrieved <span class="nowrap">21 February</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=The+Nobel+Prize+in+Chemistry+1997&amp;rft.pub=The+Royal+Swedish+Academy+of+Science&amp;rft.date=1997&amp;rft_id=http%3A%2F%2Fnobelprize.org%2Fnobel_prizes%2Fmedicine%2Flaureates%2F1997%2Fpress.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=40" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239549316"><div class="refbegin refbegin-columns references-column-width" style="column-width: 32em"> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAidleyStanfield1996" class="citation book cs1">Aidley DJ, Stanfield PR (1996). <i>Ion Channels: Molecules in Action</i>. Cambridge: Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-49882-1" title="Special:BookSources/978-0-521-49882-1"><bdi>978-0-521-49882-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Ion+Channels%3A+Molecules+in+Action&amp;rft.place=Cambridge&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1996&amp;rft.isbn=978-0-521-49882-1&amp;rft.aulast=Aidley&amp;rft.aufirst=DJ&amp;rft.au=Stanfield%2C+PR&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBearConnorsParadiso2001" class="citation book cs1">Bear MF, Connors BW, Paradiso MA (2001). <i>Neuroscience: Exploring the Brain</i>. Baltimore: Lippincott. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-7817-3944-6" title="Special:BookSources/0-7817-3944-6"><bdi>0-7817-3944-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Neuroscience%3A+Exploring+the+Brain&amp;rft.place=Baltimore&amp;rft.pub=Lippincott&amp;rft.date=2001&amp;rft.isbn=0-7817-3944-6&amp;rft.aulast=Bear&amp;rft.aufirst=MF&amp;rft.au=Connors%2C+BW&amp;rft.au=Paradiso%2C+MA&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFClay2005" class="citation journal cs1">Clay JR (May 2005). <a rel="nofollow" class="external text" href="https://zenodo.org/record/1259297">"Axonal excitability revisited"</a>. <i>Progress in Biophysics and Molecular Biology</i>. <b>88</b> (1): 59–90. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.pbiomolbio.2003.12.004">10.1016/j.pbiomolbio.2003.12.004</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15561301">15561301</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Progress+in+Biophysics+and+Molecular+Biology&amp;rft.atitle=Axonal+excitability+revisited&amp;rft.volume=88&amp;rft.issue=1&amp;rft.pages=59-90&amp;rft.date=2005-05&amp;rft_id=info%3Adoi%2F10.1016%2Fj.pbiomolbio.2003.12.004&amp;rft_id=info%3Apmid%2F15561301&amp;rft.aulast=Clay&amp;rft.aufirst=JR&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1259297&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDeutschMicheli-Tzanakou1987" class="citation book cs1">Deutsch S, <a href="/wiki/Evangelia_Micheli-Tzanakou" title="Evangelia Micheli-Tzanakou">Micheli-Tzanakou E</a> (1987). <i>Neuroelectric Systems</i>. New York: New York University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-8147-1782-9" title="Special:BookSources/0-8147-1782-9"><bdi>0-8147-1782-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Neuroelectric+Systems&amp;rft.place=New+York&amp;rft.pub=New+York+University+Press&amp;rft.date=1987&amp;rft.isbn=0-8147-1782-9&amp;rft.aulast=Deutsch&amp;rft.aufirst=S&amp;rft.au=Micheli-Tzanakou%2C+E&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHille2001" class="citation book cs1"><a href="/wiki/Bertil_Hille" title="Bertil Hille">Hille B</a> (2001). <i>Ion Channels of Excitable Membranes</i> (3rd&#160;ed.). Sunderland, MA: Sinauer Associates. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-87893-321-1" title="Special:BookSources/978-0-87893-321-1"><bdi>978-0-87893-321-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Ion+Channels+of+Excitable+Membranes&amp;rft.place=Sunderland%2C+MA&amp;rft.edition=3rd&amp;rft.pub=Sinauer+Associates&amp;rft.date=2001&amp;rft.isbn=978-0-87893-321-1&amp;rft.aulast=Hille&amp;rft.aufirst=B&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohnstonWu1995" class="citation book cs1">Johnston D, Wu SM (1995). <i>Foundations of Cellular Neurophysiology</i>. Cambridge, Massachusetts: Bradford Book, The MIT Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-262-10053-3" title="Special:BookSources/0-262-10053-3"><bdi>0-262-10053-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Foundations+of+Cellular+Neurophysiology&amp;rft.place=Cambridge%2C+Massachusetts&amp;rft.pub=Bradford+Book%2C+The+MIT+Press&amp;rft.date=1995&amp;rft.isbn=0-262-10053-3&amp;rft.aulast=Johnston&amp;rft.aufirst=D&amp;rft.au=Wu%2C+SM&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKandelSchwartzJessell2000" class="citation book cs1"><a href="/wiki/Eric_R._Kandel" class="mw-redirect" title="Eric R. Kandel">Kandel ER</a>, Schwartz JH, Jessell TM (2000). <a href="/wiki/Principles_of_Neural_Science" title="Principles of Neural Science"><i>Principles of Neural Science</i></a> (4th&#160;ed.). New York: McGraw-Hill. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-8385-7701-6" title="Special:BookSources/0-8385-7701-6"><bdi>0-8385-7701-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Principles+of+Neural+Science&amp;rft.place=New+York&amp;rft.edition=4th&amp;rft.pub=McGraw-Hill&amp;rft.date=2000&amp;rft.isbn=0-8385-7701-6&amp;rft.aulast=Kandel&amp;rft.aufirst=ER&amp;rft.au=Schwartz%2C+JH&amp;rft.au=Jessell%2C+TM&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMiller_C1987" class="citation book cs1">Miller C (1987). "How ion channel proteins work". In Kaczmarek LK, Levitan IB (eds.). <i>Neuromodulation: The Biochemical Control of Neuronal Excitability</i>. New York: Oxford University Press. pp.&#160;39–63. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-504097-5" title="Special:BookSources/978-0-19-504097-5"><bdi>978-0-19-504097-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=How+ion+channel+proteins+work&amp;rft.btitle=Neuromodulation%3A+The+Biochemical+Control+of+Neuronal+Excitability&amp;rft.place=New+York&amp;rft.pages=39-63&amp;rft.pub=Oxford+University+Press&amp;rft.date=1987&amp;rft.isbn=978-0-19-504097-5&amp;rft.au=Miller+C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNelsonCox2008" class="citation book cs1">Nelson DL, Cox MM (2008). <a rel="nofollow" class="external text" href="https://archive.org/details/lehningerprincip00lehn_1"><i>Lehninger Principles of Biochemistry</i></a> (5th&#160;ed.). New York: W. H. Freeman. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-7167-7108-1" title="Special:BookSources/978-0-7167-7108-1"><bdi>978-0-7167-7108-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Lehninger+Principles+of+Biochemistry&amp;rft.place=New+York&amp;rft.edition=5th&amp;rft.pub=W.+H.+Freeman&amp;rft.date=2008&amp;rft.isbn=978-0-7167-7108-1&amp;rft.aulast=Nelson&amp;rft.aufirst=DL&amp;rft.au=Cox%2C+MM&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Flehningerprincip00lehn_1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AAction+potential" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Action_potential&amp;action=edit&amp;section=41" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235611614">.mw-parser-output .spoken-wikipedia{border:1px solid #a2a9b1;background-color:var(--background-color-interactive-subtle,#f8f9fa);margin:0.5em 0;padding:0.2em;line-height:1.5em;font-size:90%}.mw-parser-output .spoken-wikipedia-header{text-align:center}.mw-parser-output .spoken-wikipedia-listen-to{font-weight:bold}.mw-parser-output .spoken-wikipedia-files{text-align:center;margin-top:10px;margin-bottom:0.4em}.mw-parser-output .spoken-wikipedia-icon{float:left;margin-left:5px;margin-top:10px}.mw-parser-output .spoken-wikipedia-disclaimer{margin-left:60px;margin-top:10px;font-size:95%;line-height:1.4em}.mw-parser-output .spoken-wikipedia-footer{margin-top:10px;text-align:center}@media(min-width:720px){.mw-parser-output .spoken-wikipedia{width:20em;float:right;clear:right;margin-left:1em}}</style><div class="spoken-wikipedia noprint haudio"><div class="spoken-wikipedia-header"><span class="spoken-wikipedia-listen-to">Listen to this article</span> (<span class="duration"><span class="min">10</span> minutes</span>)</div><div class="spoken-wikipedia-files"><figure class="mw-halign-center" typeof="mw:File"><span><audio id="mwe_player_0" controls="" preload="none" data-mw-tmh="" class="mw-file-element" width="200" style="width:200px;" data-durationhint="575" data-mwtitle="Action_potential.ogg" data-mwprovider="wikimediacommons"><source src="//upload.wikimedia.org/wikipedia/commons/f/f6/Action_potential.ogg" type="audio/ogg; codecs=&quot;vorbis&quot;" data-width="0" data-height="0" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/f/f6/Action_potential.ogg/Action_potential.ogg.mp3" type="audio/mpeg" data-transcodekey="mp3" data-width="0" data-height="0" /></audio></span><figcaption></figcaption></figure> </div><div class="spoken-wikipedia-icon"><span typeof="mw:File"><span title="Spoken Wikipedia"><img alt="Spoken Wikipedia icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/47/Sound-icon.svg/45px-Sound-icon.svg.png" decoding="async" width="45" height="34" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/47/Sound-icon.svg/68px-Sound-icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/47/Sound-icon.svg/90px-Sound-icon.svg.png 2x" data-file-width="128" data-file-height="96" /></span></span></div><div class="spoken-wikipedia-disclaimer"><a href="/wiki/File:Action_potential.ogg" title="File:Action potential.ogg">This audio file</a> was created from a revision of this article dated 22&#160;June&#160;2005<span style="display:none">&#160;(<span class="bday dtstart published updated itvstart">2005-06-22</span>)</span>, and does not reflect subsequent edits.</div><div class="spoken-wikipedia-footer">(<a href="/wiki/Wikipedia:Media_help" class="mw-redirect" title="Wikipedia:Media help">Audio help</a>&#160;· <a href="/wiki/Wikipedia:Spoken_articles" title="Wikipedia:Spoken articles">More spoken articles</a>)</div></div> <ul><li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20050625075706/http://www.blackwellpublishing.com/matthews/channel.html">Ionic flow in action potentials</a> at <a href="/wiki/Blackwell_Publishing" class="mw-redirect" title="Blackwell Publishing">Blackwell Publishing</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20070615135508/http://www.blackwellpublishing.com/matthews/actionp.html">Action potential propagation in myelinated and unmyelinated axons</a> at <a href="/wiki/Blackwell_Publishing" class="mw-redirect" title="Blackwell Publishing">Blackwell Publishing</a></li> <li><a rel="nofollow" class="external text" href="http://thevirtualheart.org/CAPindex.html">Generation of AP in cardiac cells</a> and <a rel="nofollow" class="external text" href="http://thevirtualheart.org/java/neuron/apneuron.html">generation of AP in neuron cells</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20080414190744/http://bcs.whfreeman.com/thelifewire/content/chp44/4402001.html">Resting membrane potential</a> from <i>Life: The Science of Biology</i>, by WK Purves, D Sadava, GH Orians, and HC Heller, 8th edition, New York: WH Freeman, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-7167-7671-0" title="Special:BookSources/978-0-7167-7671-0">978-0-7167-7671-0</a>.</li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20100808191814/http://www.nernstgoldman.physiology.arizona.edu/">Ionic motion and the Goldman voltage for arbitrary ionic concentrations</a> at The <a href="/wiki/University_of_Arizona" title="University of Arizona">University of Arizona</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20081216233745/http://www.brainu.org/files/movies/action_potential_cartoon.swf">A cartoon illustrating the action potential</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20160611165335/http://1lec.com/action-potential/">Action potential propagation</a></li> <li><a rel="nofollow" class="external text" href="http://people.virginia.edu/~hvg2s/">Production of the action potential: voltage and current clamping simulations</a><sup class="noprint Inline-Template"><span style="white-space: nowrap;">&#91;<i><a href="/wiki/Wikipedia:Link_rot" title="Wikipedia:Link rot"><span title="&#160;Dead link tagged October 2016">permanent dead link</span></a></i><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span>&#93;</span></sup></li> <li><a rel="nofollow" class="external text" href="http://cese.sourceforge.net/">Open-source software to simulate neuronal and cardiac action potentials</a> at <a href="/wiki/SourceForge.net" class="mw-redirect" title="SourceForge.net">SourceForge.net</a></li> <li><a rel="nofollow" class="external text" href="http://nba.uth.tmc.edu/neuroscience/s1/chapter01.html">Introduction to the Action Potential</a>, <i>Neuroscience Online</i> (electronic neuroscience textbook by UT Houston Medical School)</li> <li><a rel="nofollow" class="external text" href="https://www.khanacademy.org/science/biology/human-biology/neuron-nervous-system/v/electrotonic-action%20potential">Khan Academy: Electrotonic and action potential</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140702113034/http://www.khanacademy.org/science/biology/human-biology/neuron-nervous-system/v/electrotonic-action%20potential">Archived</a> 2 July 2014 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q194277#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Aktionspotenzial"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4141745-8">Germany</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85000721">United States</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Potentiels d&#39;action (électrophysiologie)"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb145715657">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Potentiels d&#39;action (électrophysiologie)"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb145715657">BnF data</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://www.nli.org.il/en/authorities/987007293851905171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐59b954b7fb‐lxj72 Cached time: 20241206051510 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 2.309 seconds Real time usage: 2.597 seconds Preprocessor visited node count: 17404/1000000 Post‐expand include size: 451903/2097152 bytes Template argument size: 18094/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 35/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 659713/5000000 bytes Lua time usage: 1.459/10.000 seconds Lua memory usage: 8613933/52428800 bytes Lua Profile: ? 200 ms 13.2% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 160 ms 10.5% dataWrapper <mw.lua:672> 160 ms 10.5% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::find 140 ms 9.2% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::match 80 ms 5.3% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getExpensiveData 80 ms 5.3% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::sub 60 ms 3.9% recursiveClone <mwInit.lua:45> 40 ms 2.6% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::preprocess 40 ms 2.6% concat 40 ms 2.6% [others] 520 ms 34.2% Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 2193.097 1 -total 43.36% 950.994 3 Template:Reflist 30.68% 672.945 115 Template:Cite_journal 12.91% 283.069 58 Template:Sfn 10.16% 222.791 47 Template:Cite_book 5.71% 125.217 13 Template:Fix 5.27% 115.558 1 Template:Authority_control 4.28% 93.829 1 Template:Short_description 3.24% 71.117 8 Template:Cn 3.08% 67.591 4 Template:Citation_needed --> <!-- Saved in parser cache with key enwiki:pcache:156998:|#|:idhash:canonical and timestamp 20241206051510 and revision id 1252254940. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Action_potential&amp;oldid=1252254940">https://en.wikipedia.org/w/index.php?title=Action_potential&amp;oldid=1252254940</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Capacitors" title="Category:Capacitors">Capacitors</a></li><li><a href="/wiki/Category:Neural_coding" title="Category:Neural coding">Neural coding</a></li><li><a href="/wiki/Category:Electrophysiology" title="Category:Electrophysiology">Electrophysiology</a></li><li><a href="/wiki/Category:Electrochemistry" title="Category:Electrochemistry">Electrochemistry</a></li><li><a href="/wiki/Category:Computational_neuroscience" title="Category:Computational neuroscience">Computational neuroscience</a></li><li><a href="/wiki/Category:Cellular_neuroscience" title="Category:Cellular neuroscience">Cellular neuroscience</a></li><li><a href="/wiki/Category:Cellular_processes" title="Category:Cellular processes">Cellular processes</a></li><li><a href="/wiki/Category:Membrane_biology" title="Category:Membrane biology">Membrane biology</a></li><li><a href="/wiki/Category:Plant_cognition" title="Category:Plant cognition">Plant cognition</a></li><li><a href="/wiki/Category:Action_potentials" title="Category:Action potentials">Action potentials</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">CS1 maint: location missing publisher</a></li><li><a href="/wiki/Category:CS1_errors:_periodical_ignored" title="Category:CS1 errors: periodical ignored">CS1 errors: periodical ignored</a></li><li><a href="/wiki/Category:CS1:_long_volume_value" title="Category:CS1: long volume value">CS1: long volume value</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Wikipedia_pages_move-protected_due_to_vandalism" title="Category:Wikipedia pages move-protected due to vandalism">Wikipedia pages move-protected due to vandalism</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_March_2020" title="Category:Use dmy dates from March 2020">Use dmy dates from March 2020</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_August_2020" title="Category:Articles with unsourced statements from August 2020">Articles with unsourced statements from August 2020</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_May_2024" title="Category:Articles with unsourced statements from May 2024">Articles with unsourced statements from May 2024</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_February_2014" title="Category:Articles needing additional references from February 2014">Articles needing additional references from February 2014</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_November_2019" title="Category:Articles with unsourced statements from November 2019">Articles with unsourced statements from November 2019</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_May_2011" title="Category:Articles with unsourced statements from May 2011">Articles with unsourced statements from May 2011</a></li><li><a href="/wiki/Category:Articles_with_hAudio_microformats" title="Category:Articles with hAudio microformats">Articles with hAudio microformats</a></li><li><a href="/wiki/Category:Spoken_articles" title="Category:Spoken articles">Spoken articles</a></li><li><a href="/wiki/Category:All_articles_with_dead_external_links" title="Category:All articles with dead external links">All articles with dead external links</a></li><li><a href="/wiki/Category:Articles_with_dead_external_links_from_October_2016" title="Category:Articles with dead external links from October 2016">Articles with dead external links from October 2016</a></li><li><a href="/wiki/Category:Articles_with_permanently_dead_external_links" title="Category:Articles with permanently dead external links">Articles with permanently dead external links</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 20 October 2024, at 14:49<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Action_potential&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-55db797859-4zmnt","wgBackendResponseTime":179,"wgPageParseReport":{"limitreport":{"cputime":"2.309","walltime":"2.597","ppvisitednodes":{"value":17404,"limit":1000000},"postexpandincludesize":{"value":451903,"limit":2097152},"templateargumentsize":{"value":18094,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":35,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":659713,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 2193.097 1 -total"," 43.36% 950.994 3 Template:Reflist"," 30.68% 672.945 115 Template:Cite_journal"," 12.91% 283.069 58 Template:Sfn"," 10.16% 222.791 47 Template:Cite_book"," 5.71% 125.217 13 Template:Fix"," 5.27% 115.558 1 Template:Authority_control"," 4.28% 93.829 1 Template:Short_description"," 3.24% 71.117 8 Template:Cn"," 3.08% 67.591 4 Template:Citation_needed"]},"scribunto":{"limitreport-timeusage":{"value":"1.459","limit":"10.000"},"limitreport-memusage":{"value":8613933,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAidleyStanfield1996\"] = 1,\n [\"CITEREFAndersonRosenfeld1988\"] = 1,\n [\"CITEREFAurConnollyJog2005\"] = 1,\n [\"CITEREFBaranauskasMartina2006\"] = 1,\n [\"CITEREFBarnettLarkman2007\"] = 1,\n [\"CITEREFBearConnorsParadiso2001\"] = 1,\n [\"CITEREFBeilby2007\"] = 1,\n [\"CITEREFBernstein1902\"] = 1,\n [\"CITEREFBernstein1912\"] = 1,\n [\"CITEREFBezanilla2000\"] = 1,\n [\"CITEREFBiswasManivannanSrinivasan2015\"] = 1,\n [\"CITEREFBlack1984\"] = 1,\n [\"CITEREFBonhoeffer1948\"] = 1,\n [\"CITEREFBonhoeffer1953\"] = 1,\n [\"CITEREFBowerBeeman1995\"] = 1,\n [\"CITEREFBrazier1961\"] = 1,\n [\"CITEREFBrinkCroninRamanan1996\"] = 1,\n [\"CITEREFBrockCoombsEccles1952\"] = 1,\n [\"CITEREFBuAdamsBerbariRubart2009\"] = 1,\n [\"CITEREFBullockHorridge1965\"] = 1,\n [\"CITEREFBullockOrkandGrinnell1977\"] = 1,\n [\"CITEREFBöhmScherzerKrolKreuzer2016\"] = 1,\n [\"CITEREFCaldwellHodgkinKeynesShaw1960\"] = 1,\n [\"CITEREFCaldwellKeynes1957\"] = 1,\n [\"CITEREFCatterall2001\"] = 1,\n [\"CITEREFChaSnyderSelvinBezanilla1999\"] = 1,\n [\"CITEREFClarkHäusser2006\"] = 1,\n [\"CITEREFClay2005\"] = 1,\n [\"CITEREFCole1949\"] = 1,\n [\"CITEREFColeCurtis1939\"] = 1,\n [\"CITEREFCosta2006\"] = 1,\n [\"CITEREFDeutschMicheli-Tzanakou1987\"] = 1,\n [\"CITEREFDoyleMorais_CabralPfuetznerKuo1998\"] = 1,\n [\"CITEREFEvans1972\"] = 1,\n [\"CITEREFEvansFeroe1977\"] = 1,\n [\"CITEREFFelleZimmermann2007\"] = 1,\n [\"CITEREFField1959\"] = 1,\n [\"CITEREFFinkelstein2013\"] = 1,\n [\"CITEREFFitzhugh1960\"] = 1,\n [\"CITEREFFitzhugh1961\"] = 1,\n [\"CITEREFFitzhughIzhikevich2006\"] = 1,\n [\"CITEREFFrommLautner2007\"] = 1,\n [\"CITEREFGanong1991\"] = 1,\n [\"CITEREFGlaunerMannuzzuGandhiIsacoff1999\"] = 1,\n [\"CITEREFGoldingKathSpruston2001\"] = 1,\n [\"CITEREFGoldman1943\"] = 1,\n [\"CITEREFGradmann2001\"] = 1,\n [\"CITEREFGradmannHoffstadt1998\"] = 1,\n [\"CITEREFGrynkiewiczPoenieTsien1985\"] = 1,\n [\"CITEREFGuckenheimerHolmes1986\"] = 1,\n [\"CITEREFHamillMartyNeherSakmann1981\"] = 1,\n [\"CITEREFHartlineColman2007\"] = 1,\n [\"CITEREFHedrichNeher2018\"] = 1,\n [\"CITEREFHellier2014\"] = 1,\n [\"CITEREFHille2001\"] = 1,\n [\"CITEREFHirsch2007\"] = 1,\n [\"CITEREFHodgkin1937\"] = 2,\n [\"CITEREFHodgkinHuxley1952\"] = 5,\n [\"CITEREFHodgkinHuxleyKatz1952\"] = 1,\n [\"CITEREFHodgkinKatz1949\"] = 1,\n [\"CITEREFHodgkinKeynes1955\"] = 1,\n [\"CITEREFHodgkinRushton1946\"] = 1,\n [\"CITEREFHooper2000\"] = 1,\n [\"CITEREFHoppensteadt1986\"] = 1,\n [\"CITEREFHughesKusnerKaminski2006\"] = 1,\n [\"CITEREFHumeauDoussauGrantPoulain2000\"] = 1,\n [\"CITEREFHursh1939\"] = 1,\n [\"CITEREFHuxleyStampfli1951\"] = 1,\n [\"CITEREFHuxleyStämpfli1949\"] = 1,\n [\"CITEREFJiangLeeChenRuta2003\"] = 1,\n [\"CITEREFJohnstonWu1995\"] = 1,\n [\"CITEREFJunge1981\"] = 1,\n [\"CITEREFKandelSchwartzJessell2000\"] = 1,\n [\"CITEREFKeener1983\"] = 1,\n [\"CITEREFKelvin1855\"] = 1,\n [\"CITEREFKeplerAbbottMarder1992\"] = 1,\n [\"CITEREFKettenmannGrantyn1992\"] = 1,\n [\"CITEREFKeynes1989\"] = 1,\n [\"CITEREFKeynesAidley1991\"] = 1,\n [\"CITEREFKeynesRitchie1984\"] = 1,\n [\"CITEREFKléberRudy2004\"] = 1,\n [\"CITEREFKochSegev1989\"] = 1,\n [\"CITEREFKristan2016\"] = 1,\n [\"CITEREFLapicque1907\"] = 1,\n [\"CITEREFLavalléeSchanneHébert1969\"] = 1,\n [\"CITEREFLeeEast2001\"] = 1,\n [\"CITEREFLeterrier2018\"] = 1,\n [\"CITEREFLeysMackieMeech1999\"] = 1,\n [\"CITEREFLillie1925\"] = 1,\n [\"CITEREFLingGerard1949\"] = 1,\n [\"CITEREFLiuLiuCrozierDavis2021\"] = 1,\n [\"CITEREFLuken2005\"] = 1,\n [\"CITEREFMacDonaldRorsman2006\"] = 1,\n [\"CITEREFMcCulloch1988\"] = 1,\n [\"CITEREFMcHenryGarrison1969\"] = 1,\n [\"CITEREFMeunierSegev2002\"] = 1,\n [\"CITEREFMillerMi2007\"] = 1,\n [\"CITEREFMiller_C1987\"] = 1,\n [\"CITEREFMilliganEdwards1965\"] = 1,\n [\"CITEREFMorrisLecar1981\"] = 1,\n [\"CITEREFMorthPedersenToustrup-JensenSørensen2007\"] = 1,\n [\"CITEREFMummertGradmann1991\"] = 1,\n [\"CITEREFNagumoArimotoYoshizawa1962\"] = 1,\n [\"CITEREFNastukHodgkin1950\"] = 1,\n [\"CITEREFNaundorfWolfVolgushev2006\"] = 1,\n [\"CITEREFNeherSakmann1976\"] = 1,\n [\"CITEREFNeherSakmann1992\"] = 1,\n [\"CITEREFNelsonCox2008\"] = 1,\n [\"CITEREFNewmark2007\"] = 1,\n [\"CITEREFNoble1960\"] = 1,\n [\"CITEREFPartridge1991\"] = 1,\n [\"CITEREFPedersen1998\"] = 1,\n [\"CITEREFPiccolino1997\"] = 1,\n [\"CITEREFPiccolino2000\"] = 1,\n [\"CITEREFPickard1973\"] = 1,\n [\"CITEREFPoliakPeles2003\"] = 1,\n [\"CITEREFPurvesAugustineFitzpatrickHall2001\"] = 1,\n [\"CITEREFPurvesAugustineFitzpatrickHall2008\"] = 1,\n [\"CITEREFPurvesAugustineFitzpatricket_al2001\"] = 1,\n [\"CITEREFReekePoznanskiSpornsRosenberg2005\"] = 1,\n [\"CITEREFRitchieRogart1977\"] = 1,\n [\"CITEREFRossSalzbergCohenDavila1974\"] = 1,\n [\"CITEREFRusakov2006\"] = 1,\n [\"CITEREFRushton1951\"] = 1,\n [\"CITEREFSanesReh2012\"] = 1,\n [\"CITEREFSatoUenoAsaiTakahashi2001\"] = 1,\n [\"CITEREFSchmidt-Nielsen1997\"] = 1,\n [\"CITEREFSchwann1969\"] = 1,\n [\"CITEREFSegevFleshmanBurke1989\"] = 1,\n [\"CITEREFSilverthorn2010\"] = 1,\n [\"CITEREFSimonsTrotter2007\"] = 1,\n [\"CITEREFSkou1957\"] = 1,\n [\"CITEREFSlaymanLongGradmann1976\"] = 1,\n [\"CITEREFSpanswickLucasDainty1980\"] = 1,\n [\"CITEREFStevens1966\"] = 1,\n [\"CITEREFSüudhof2008\"] = 1,\n [\"CITEREFTamagawaFunataniIkeda2016\"] = 1,\n [\"CITEREFTamargoCaballeroDelpón2004\"] = 1,\n [\"CITEREFTandon2019\"] = 1,\n [\"CITEREFTasaki1939\"] = 1,\n [\"CITEREFTasakiTakeuchi1941\"] = 1,\n [\"CITEREFTasakiTakeuchi1942\"] = 1,\n [\"CITEREFVan_der_Pol1926\"] = 1,\n [\"CITEREFVan_der_PolVan_der_Mark1928\"] = 1,\n [\"CITEREFVan_der_Polvan_der_Mark1929\"] = 1,\n [\"CITEREFVolkovAdesinaJovanov2007\"] = 1,\n [\"CITEREFWarlow2007\"] = 1,\n [\"CITEREFWaxman2007\"] = 1,\n [\"CITEREFWilliams1981\"] = 1,\n [\"CITEREFWordenSwazeyAdelman1975\"] = 1,\n [\"CITEREFXuTerakawa1999\"] = 1,\n [\"CITEREFYellen2002\"] = 1,\n [\"CITEREFZalc2006\"] = 1,\n [\"CITEREFZbiliDebanne2019\"] = 1,\n [\"CITEREFZhouMorais-CabralKaufmanMacKinnon2001\"] = 1,\n [\"CITEREFZoidlDermietzel2002\"] = 1,\n [\"Firing_rate\"] = 1,\n [\"Neural_firing_rate\"] = 1,\n}\ntemplate_list = table#1 {\n [\"!\"] = 2,\n [\"'s\"] = 1,\n [\"Anchor\"] = 1,\n [\"Authority control\"] = 1,\n [\"Citation needed\"] = 4,\n [\"Cite book\"] = 47,\n [\"Cite journal\"] = 115,\n [\"Cite press release\"] = 4,\n [\"Cite web\"] = 1,\n [\"Clear\"] = 2,\n [\"Cn\"] = 8,\n [\"Col div\"] = 1,\n [\"Colend\"] = 1,\n [\"DEFAULTSORT:Action Potential\"] = 1,\n [\"Dead link\"] = 1,\n [\"Doi\"] = 1,\n [\"Harvnb\"] = 13,\n [\"ISBN\"] = 1,\n [\"Main\"] = 13,\n [\"More citations needed section\"] = 1,\n [\"Ndash\"] = 1,\n [\"Neuron map\"] = 1,\n [\"Open access\"] = 1,\n [\"Pp-move-vandalism\"] = 1,\n [\"Radic\"] = 1,\n [\"Refbegin\"] = 2,\n [\"Refend\"] = 2,\n [\"Reflist\"] = 3,\n [\"Refn\"] = 1,\n [\"See also\"] = 2,\n [\"Sfn\"] = 58,\n [\"Sfnm\"] = 21,\n [\"Short description\"] = 1,\n [\"Spoken Wikipedia\"] = 1,\n [\"Use dmy dates\"] = 1,\n [\"Webarchive\"] = 1,\n}\narticle_whitelist = table#1 {\n}\nciteref_patterns = table#1 {\n}\n","limitreport-profile":[["?","200","13.2"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","160","10.5"],["dataWrapper \u003Cmw.lua:672\u003E","160","10.5"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::find","140","9.2"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::match","80","5.3"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getExpensiveData","80","5.3"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::sub","60","3.9"],["recursiveClone \u003CmwInit.lua:45\u003E","40","2.6"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::preprocess","40","2.6"],["concat","40","2.6"],["[others]","520","34.2"]]},"cachereport":{"origin":"mw-web.codfw.main-59b954b7fb-lxj72","timestamp":"20241206051510","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Action potential","url":"https:\/\/en.wikipedia.org\/wiki\/Action_potential","sameAs":"http:\/\/www.wikidata.org\/entity\/Q194277","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q194277","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-12-11T21:32:18Z","dateModified":"2024-10-20T14:49:27Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/9\/95\/Action_Potential.gif","headline":"process by which neurons communicate with each other by changes in their membrane potentials."}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10