CINXE.COM

Search results for: keyword search

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: keyword search</title> <meta name="description" content="Search results for: keyword search"> <meta name="keywords" content="keyword search"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="keyword search" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="keyword search"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1935</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: keyword search</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1935</span> Empirical Study on Factors Influencing SEO</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pakinee%20Aimmanee">Pakinee Aimmanee</a>, <a href="https://publications.waset.org/abstracts/search?q=Phoom%20Chokratsamesiri"> Phoom Chokratsamesiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Search engine has become an essential tool nowadays for people to search for their needed information on the internet. In this work, we evaluate the performance of the search engine from three factors: the keyword frequency, the number of inbound links, and the difficulty of the keyword. The evaluations are based on the ranking position and the number of days that Google has seen or detect the webpage. We find that the keyword frequency and the difficulty of the keyword do not affect the Google ranking where the number of inbound links gives remarkable improvement of the ranking position. The optimal number of inbound links found in the experiment is 10. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SEO" title="SEO">SEO</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20retrieval" title=" information retrieval"> information retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20search" title=" web search"> web search</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20technologies" title=" knowledge technologies"> knowledge technologies</a> </p> <a href="https://publications.waset.org/abstracts/9414/empirical-study-on-factors-influencing-seo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1934</span> Modified Active (MA) Algorithm to Generate Semantic Web Related Clustered Hierarchy for Keyword Search</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Leena%20Giri">G. Leena Giri</a>, <a href="https://publications.waset.org/abstracts/search?q=Archana%20Mathur"> Archana Mathur</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Manjula"> S. H. Manjula</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20R.%20Venugopal"> K. R. Venugopal</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20Patnaik"> L. M. Patnaik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Keyword search in XML documents is based on the notion of lowest common ancestors in the labelled trees model of XML documents and has recently gained a lot of research interest in the database community. In this paper, we propose the Modified Active (MA) algorithm which is an improvement over the active clustering algorithm by taking into consideration the entity aspect of the nodes to find the level of the node pertaining to a particular keyword input by the user. A portion of the bibliography database is used to experimentally evaluate the modified active algorithm and results show that it performs better than the active algorithm. Our modification improves the response time of the system and thereby increases the efficiency of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=keyword%20matching%20patterns" title="keyword matching patterns">keyword matching patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=MA%20algorithm" title=" MA algorithm"> MA algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20search" title=" semantic search"> semantic search</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20management" title=" knowledge management"> knowledge management</a> </p> <a href="https://publications.waset.org/abstracts/6608/modified-active-ma-algorithm-to-generate-semantic-web-related-clustered-hierarchy-for-keyword-search" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1933</span> Interactive, Topic-Oriented Search Support by a Centroid-Based Text Categorisation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mario%20Kubek">Mario Kubek</a>, <a href="https://publications.waset.org/abstracts/search?q=Herwig%20Unger"> Herwig Unger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Centroid terms are single words that semantically and topically characterise text documents and so may serve as their very compact representation in automatic text processing. In the present paper, centroids are used to measure the relevance of text documents with respect to a given search query. Thus, a new graphbased paradigm for searching texts in large corpora is proposed and evaluated against keyword-based methods. The first, promising experimental results demonstrate the usefulness of the centroid-based search procedure. It is shown that especially the routing of search queries in interactive and decentralised search systems can be greatly improved by applying this approach. A detailed discussion on further fields of its application completes this contribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=search%20algorithm" title="search algorithm">search algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=centroid" title=" centroid"> centroid</a>, <a href="https://publications.waset.org/abstracts/search?q=query" title=" query"> query</a>, <a href="https://publications.waset.org/abstracts/search?q=keyword" title=" keyword"> keyword</a>, <a href="https://publications.waset.org/abstracts/search?q=co-occurrence" title=" co-occurrence"> co-occurrence</a>, <a href="https://publications.waset.org/abstracts/search?q=categorisation" title=" categorisation"> categorisation</a> </p> <a href="https://publications.waset.org/abstracts/82581/interactive-topic-oriented-search-support-by-a-centroid-based-text-categorisation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1932</span> An Open Source Advertisement System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pushkar%20Umaranikar">Pushkar Umaranikar</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20Pollett"> Chris Pollett</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An online advertisement system and its implementation for the Yioop open source search engine are presented. This system supports both selling advertisements and displaying them within search results. The selling of advertisements is done using a system to auction off daily impressions for keyword searches. This is an open, ascending price auction system in which all accepted bids will receive a fraction of the auctioned day&rsquo;s impressions. New bids in our system are required to be at least one half of the sum of all previous bids ensuring the number of accepted bids is logarithmic in the total ad spend on a keyword for a day. The mechanics of creating an advertisement, attaching keywords to it, and adding it to an advertisement inventory are described. The algorithm used to go from accepted bids for a keyword to which ads are displayed at search time is also presented. We discuss properties of our system and compare it to existing auction systems and systems for selling online advertisements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=online%20markets" title="online markets">online markets</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20ad%20system" title=" online ad system"> online ad system</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20auctions" title=" online auctions"> online auctions</a>, <a href="https://publications.waset.org/abstracts/search?q=search%20engines" title=" search engines"> search engines</a> </p> <a href="https://publications.waset.org/abstracts/46605/an-open-source-advertisement-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1931</span> Optimization Query Image Using Search Relevance Re-Ranking Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20G.%20Asmitha%20Chandini">T. G. Asmitha Chandini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Web-based image search re-ranking, as an successful method to get better the results. In a query keyword, the first stair is store the images is first retrieve based on the text-based information. The user to select a query keywordimage, by using this query keyword other images are re-ranked based on their visual properties with images.Now a day to day, people projected to match images in a semantic space which is used attributes or reference classes closely related to the basis of semantic image. though, understanding a worldwide visual semantic space to demonstrate highly different images from the web is difficult and inefficient. The re-ranking images, which automatically offline part learns dissimilar semantic spaces for different query keywords. The features of images are projected into their related semantic spaces to get particular images. At the online stage, images are re-ranked by compare their semantic signatures obtained the semantic précised by the query keyword image. The query-specific semantic signatures extensively improve both the proper and efficiency of image re-ranking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Query" title="Query">Query</a>, <a href="https://publications.waset.org/abstracts/search?q=keyword" title=" keyword"> keyword</a>, <a href="https://publications.waset.org/abstracts/search?q=image" title=" image"> image</a>, <a href="https://publications.waset.org/abstracts/search?q=re-ranking" title=" re-ranking"> re-ranking</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic" title=" semantic"> semantic</a>, <a href="https://publications.waset.org/abstracts/search?q=signature" title=" signature"> signature</a> </p> <a href="https://publications.waset.org/abstracts/28398/optimization-query-image-using-search-relevance-re-ranking-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">552</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1930</span> Keyword Advertising: Still Need Construction in European Union; Perspective on Interflora vs. Marks and Spencer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadbagher%20Asghariaghamashhadi">Mohammadbagher Asghariaghamashhadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Internet users normally are automatically linked to an advertisement sponsored by a bidder when Internet users enter any trademarked keyword on a search engine. This advertisement appears beside the search results. Through the process of keyword advertising, advertisers can connect with many Internet users and let them know about their goods and services. This concept has generated heated disagreements among legal scholars, trademark proprietors, advertisers, search engine owners, and consumers. Therefore, use of trademarks in keyword advertising has been one of the most debatable issues in trademark law for several years. This entirely new way of using trademarks over the Internet has provoked a discussion concerning the core concepts of trademark law. In respect to legal issues, European Union (EU) trademark law is mostly governed by the Trademark Directive and the Community Trademark Regulation. Article 5 of the directive and Article 9 of the trademark regulation determine the circumstances in which a trademark owner holds the right to prohibit a third party’s use of his/her registered sign. Harmonized EU trademark law proved to be ambiguous on whether using of a trademark is amounted to trademark infringement or not. The case law of the European Court of Justice (ECJ), with reference to this legislation, is mostly unfavorable to trademark owners. This ambivalence was also exhibited by the case law of EU Member States. European keyword advertisers simply could not tell which use of a competitor‘s trademark was lawful. In recent years, ECJ has continuously expanded the scope and reach of trademark protection in the EU. It is notable that Inconsistencies in the Court’s system of infringement criteria clearly come to the fore and this approach has been criticized by analysts who believe that the Court should have adopted a more traditional approach to the analysis of trademark infringement, which was suggested by its Advocate General, in order to arrive at the same conclusion. Regarding case law of keyword advertising within Europe, one of the most disputable cases is Interflora vs. Marks and Spencer, which is still on-going. This study examines and critically analyzes the decisions of the ECJ, the high court of England, and the Court of Appeals of England and address critically keyword advertising issue within European trademark legislation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ECJ" title="ECJ">ECJ</a>, <a href="https://publications.waset.org/abstracts/search?q=Google" title=" Google"> Google</a>, <a href="https://publications.waset.org/abstracts/search?q=Interflora" title=" Interflora"> Interflora</a>, <a href="https://publications.waset.org/abstracts/search?q=keyword%20advertising" title=" keyword advertising"> keyword advertising</a>, <a href="https://publications.waset.org/abstracts/search?q=Marks%20and%20Spencer" title=" Marks and Spencer"> Marks and Spencer</a>, <a href="https://publications.waset.org/abstracts/search?q=trademark%20infringement" title=" trademark infringement"> trademark infringement</a> </p> <a href="https://publications.waset.org/abstracts/51502/keyword-advertising-still-need-construction-in-european-union-perspective-on-interflora-vs-marks-and-spencer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1929</span> The Impact of Keyword and Full Video Captioning on Listening Comprehension</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elias%20Bensalem">Elias Bensalem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the effect of two types of captioning (full and keyword captioning) on listening comprehension. Thirty-six university-level EFL students participated in the study. They were randomly assigned to watch three video clips under three conditions. The first group watched the video clips with full captions. The second group watched the same video clips with keyword captions. The control group watched the video clips without captions. After watching each clip, participants took a listening comprehension test. At the end of the experiment, participants completed a questionnaire to measure their perceptions about the use of captions and the video clips they watched. Results indicated that the full captioning group significantly outperformed both the keyword captioning and the no captioning group on the listening comprehension tests. However, this study did not find any significant difference between the keyword captioning group and the no captioning group. Results of the survey suggest that keyword captioning were a source of distraction for participants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=captions" title="captions">captions</a>, <a href="https://publications.waset.org/abstracts/search?q=EFL" title=" EFL"> EFL</a>, <a href="https://publications.waset.org/abstracts/search?q=listening%20comprehension" title=" listening comprehension"> listening comprehension</a>, <a href="https://publications.waset.org/abstracts/search?q=video" title=" video"> video</a> </p> <a href="https://publications.waset.org/abstracts/62467/the-impact-of-keyword-and-full-video-captioning-on-listening-comprehension" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1928</span> Nearest Neighbor Investigate Using R+ Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rutuja%20Desai">Rutuja Desai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Search engine is fundamentally a framework used to search the data which is pertinent to the client via WWW. Looking close-by spot identified with the keywords is an imperative concept in developing web advances. For such kind of searching, extent pursuit or closest neighbor is utilized. In range search the forecast is made whether the objects meet to query object. Nearest neighbor is the forecast of the focuses close to the query set by the client. Here, the nearest neighbor methodology is utilized where Data recovery R+ tree is utilized rather than IR2 tree. The disadvantages of IR2 tree is: The false hit number can surpass the limit and the mark in Information Retrieval R-tree must have Voice over IP bit for each one of a kind word in W set is recouped by Data recovery R+ tree. The inquiry is fundamentally subordinate upon the key words and the geometric directions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20retrieval" title="information retrieval">information retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=nearest%20neighbor%20search" title=" nearest neighbor search"> nearest neighbor search</a>, <a href="https://publications.waset.org/abstracts/search?q=keyword%20search" title=" keyword search"> keyword search</a>, <a href="https://publications.waset.org/abstracts/search?q=R%2B%20tree" title=" R+ tree"> R+ tree</a> </p> <a href="https://publications.waset.org/abstracts/33680/nearest-neighbor-investigate-using-r-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1927</span> Keyword Network Analysis on the Research Trends of Life-Long Education for People with Disabilities in Korea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jakyoung%20Kim">Jakyoung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungwook%20Jang"> Sungwook Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to examine the research trends of life-long education for people with disabilities using a keyword network analysis. For this purpose, 151 papers were selected from 594 papers retrieved using keywords such as &#39;people with disabilities&#39; and &#39;life-long education&#39; in the Korean Education and Research Information Service. The Keyword network analysis was constructed by extracting and coding the keyword used in the title of the selected papers. The frequency of the extracted keywords, the centrality of degree, and betweenness was analyzed by the keyword network. The results of the keyword network analysis are as follows. First, the main keywords that appeared frequently in the study of life-long education for people with disabilities were &#39;people with disabilities&#39;, &#39;life-long education&#39;, &#39;developmental disabilities&#39;, &#39;current situations&#39;, &#39;development&#39;. The research trends of life-long education for people with disabilities are focused on the current status of the life-long education and the program development. Second, the keyword network analysis and visualization showed that the keywords with high frequency of occurrences also generally have high degree centrality and betweenness centrality. In terms of the keyword network diagram, it was confirmed that research trends of life-long education for people with disabilities are centered on six prominent keywords. Based on these results, it was discussed that life-long education for people with disabilities in the future needs to expand the subjects and the supporting areas of the life-long education, and the research needs to be further expanded into more detailed and specific areas.&nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life-long%20education" title="life-long education">life-long education</a>, <a href="https://publications.waset.org/abstracts/search?q=people%20with%20disabilities" title=" people with disabilities"> people with disabilities</a>, <a href="https://publications.waset.org/abstracts/search?q=research%20trends" title=" research trends"> research trends</a>, <a href="https://publications.waset.org/abstracts/search?q=keyword%20network%20analysis" title=" keyword network analysis"> keyword network analysis</a> </p> <a href="https://publications.waset.org/abstracts/72646/keyword-network-analysis-on-the-research-trends-of-life-long-education-for-people-with-disabilities-in-korea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1926</span> Graph-Based Semantical Extractive Text Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mina%20Samizadeh">Mina Samizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the past few decades, there has been an explosion in the amount of available data produced from various sources with different topics. The availability of this enormous data necessitates us to adopt effective computational tools to explore the data. This leads to an intense growing interest in the research community to develop computational methods focused on processing this text data. A line of study focused on condensing the text so that we are able to get a higher level of understanding in a shorter time. The two important tasks to do this are keyword extraction and text summarization. In keyword extraction, we are interested in finding the key important words from a text. This makes us familiar with the general topic of a text. In text summarization, we are interested in producing a short-length text which includes important information about the document. The TextRank algorithm, an unsupervised learning method that is an extension of the PageRank (algorithm which is the base algorithm of Google search engine for searching pages and ranking them), has shown its efficacy in large-scale text mining, especially for text summarization and keyword extraction. This algorithm can automatically extract the important parts of a text (keywords or sentences) and declare them as a result. However, this algorithm neglects the semantic similarity between the different parts. In this work, we improved the results of the TextRank algorithm by incorporating the semantic similarity between parts of the text. Aside from keyword extraction and text summarization, we develop a topic clustering algorithm based on our framework, which can be used individually or as a part of generating the summary to overcome coverage problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=keyword%20extraction" title="keyword extraction">keyword extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=n-gram%20extraction" title=" n-gram extraction"> n-gram extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20summarization" title=" text summarization"> text summarization</a>, <a href="https://publications.waset.org/abstracts/search?q=topic%20clustering" title=" topic clustering"> topic clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20analysis" title=" semantic analysis"> semantic analysis</a> </p> <a href="https://publications.waset.org/abstracts/160526/graph-based-semantical-extractive-text-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1925</span> Identification of Spam Keywords Using Hierarchical Category in C2C E-Commerce</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shao%20Bo%20Cheng">Shao Bo Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Jin%20Han"> Yong-Jin Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Se%20Young%20Park"> Se Young Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong-Bae%20Park"> Seong-Bae Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Consumer-to-Consumer (C2C) E-commerce has been growing at a very high speed in recent years. Since identical or nearly-same kinds of products compete one another by relying on keyword search in C2C E-commerce, some sellers describe their products with spam keywords that are popular but are not related to their products. Though such products get more chances to be retrieved and selected by consumers than those without spam keywords, the spam keywords mislead the consumers and waste their time. This problem has been reported in many commercial services like e-bay and taobao, but there have been little research to solve this problem. As a solution to this problem, this paper proposes a method to classify whether keywords of a product are spam or not. The proposed method assumes that a keyword for a given product is more reliable if the keyword is observed commonly in specifications of products which are the same or the same kind as the given product. This is because that a hierarchical category of a product in general determined precisely by a seller of the product and so is the specification of the product. Since higher layers of the hierarchical category represent more general kinds of products, a reliable degree is differently determined according to the layers. Hence, reliable degrees from different layers of a hierarchical category become features for keywords and they are used together with features only from specifications for classification of the keywords. Support Vector Machines are adopted as a basic classifier using the features, since it is powerful, and widely used in many classification tasks. In the experiments, the proposed method is evaluated with a golden standard dataset from Yi-han-wang, a Chinese C2C e-commerce, and is compared with a baseline method that does not consider the hierarchical category. The experimental results show that the proposed method outperforms the baseline in F1-measure, which proves that spam keywords are effectively identified by a hierarchical category in C2C e-commerce. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spam%20keyword" title="spam keyword">spam keyword</a>, <a href="https://publications.waset.org/abstracts/search?q=e-commerce" title=" e-commerce"> e-commerce</a>, <a href="https://publications.waset.org/abstracts/search?q=keyword%20features" title=" keyword features"> keyword features</a>, <a href="https://publications.waset.org/abstracts/search?q=spam%20%EF%AC%81ltering" title=" spam filtering"> spam filtering</a> </p> <a href="https://publications.waset.org/abstracts/15501/identification-of-spam-keywords-using-hierarchical-category-in-c2c-e-commerce" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1924</span> Effect of the Keyword Strategy on Lexical Semantic Acquisition: Recognition, Retention and Comprehension in an English as Second Language Context</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Muhammad%20Shitu">Fatima Muhammad Shitu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study seeks to investigate the effect of the keyword strategy on lexico–semantic acquisition, recognition, retention and comprehension in an ESL context. The aim of the study is to determine whether the keyword strategy can be used to enhance acquisition. As a quasi- experimental research, the objectives of the study include: To determine the extent to which the scores obtained by the subjects, who were trained on the use of the keyword strategy for acquisition, differ at the pre-tests and the post–tests and also to find out the relationship in the scores obtained at these tests levels. The sample for the study consists of 300 hundred undergraduate ESL Students in the Federal College of Education, Kano. The seventy-five lexical items for acquisition belong to the lexical field category known as register, and they include Medical, Agriculture and Photography registers (MAP). These were divided in the ratio twenty-five (25) lexical items in each lexical field. The testing technique was used to collect the data while the descriptive and inferential statistics were employed for data analysis. For the purpose of testing, the two kinds of tests administered at each test level include the WARRT (Word Acquisition, Recognition, and Retention Test) and the CCPT (Cloze Comprehension Passage Test). The results of the study revealed that there are significant differences in the scores obtained between the pre-tests, and the post–tests and there are no correlations in the scores obtained as well. This implies that the keyword strategy has effectively enhanced the acquisition of the lexical items studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=keyword" title="keyword">keyword</a>, <a href="https://publications.waset.org/abstracts/search?q=lexical" title=" lexical"> lexical</a>, <a href="https://publications.waset.org/abstracts/search?q=semantics" title=" semantics"> semantics</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy" title=" strategy"> strategy</a> </p> <a href="https://publications.waset.org/abstracts/50708/effect-of-the-keyword-strategy-on-lexical-semantic-acquisition-recognition-retention-and-comprehension-in-an-english-as-second-language-context" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1923</span> Searchable Encryption in Cloud Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ren%20Junn%20Hwang">Ren Junn Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chung-Chien%20Lu"> Chung-Chien Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jain-Shing%20Wu"> Jain-Shing Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cloud outsource storage is one of important services in cloud computing. Cloud users upload data to cloud servers to reduce the cost of managing data and maintaining hardware and software. To ensure data confidentiality, users can encrypt their files before uploading them to a cloud system. However, retrieving the target file from the encrypted files exactly is difficult for cloud server. This study proposes a protocol for performing multikeyword searches for encrypted cloud data by applying k-nearest neighbor technology. The protocol ranks the relevance scores of encrypted files and keywords, and prevents cloud servers from learning search keywords submitted by a cloud user. To reduce the costs of file transfer communication, the cloud server returns encrypted files in order of relevance. Moreover, when a cloud user inputs an incorrect keyword and the number of wrong alphabet does not exceed a given threshold; the user still can retrieve the target files from cloud server. In addition, the proposed scheme satisfies security requirements for outsourced data storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault-tolerance%20search" title="fault-tolerance search">fault-tolerance search</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-keywords%20search" title=" multi-keywords search"> multi-keywords search</a>, <a href="https://publications.waset.org/abstracts/search?q=outsource%20storage" title=" outsource storage"> outsource storage</a>, <a href="https://publications.waset.org/abstracts/search?q=ranked%20search" title=" ranked search"> ranked search</a>, <a href="https://publications.waset.org/abstracts/search?q=searchable%20encryption" title=" searchable encryption"> searchable encryption</a> </p> <a href="https://publications.waset.org/abstracts/8979/searchable-encryption-in-cloud-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1922</span> Pattern Recognition Search: An Advancement Over Interpolation Search</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahpar%20Yilmaz">Shahpar Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasir%20Nadeem"> Yasir Nadeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20A.%20Mehdi"> Syed A. Mehdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Searching for a record in a dataset is always a frequent task for any data structure-related application. Hence, a fast and efficient algorithm for the approach has its importance in yielding the quickest results and enhancing the overall productivity of the company. Interpolation search is one such technique used to search through a sorted set of elements. This paper proposes a new algorithm, an advancement over interpolation search for the application of search over a sorted array. Pattern Recognition Search or PR Search (PRS), like interpolation search, is a pattern-based divide and conquer algorithm whose objective is to reduce the sample size in order to quicken the process and it does so by treating the array as a perfect arithmetic progression series and thereby deducing the key element’s position. We look to highlight some of the key drawbacks of interpolation search, which are accounted for in the Pattern Recognition Search. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=array" title="array">array</a>, <a href="https://publications.waset.org/abstracts/search?q=complexity" title=" complexity"> complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=index" title=" index"> index</a>, <a href="https://publications.waset.org/abstracts/search?q=sorting" title=" sorting"> sorting</a>, <a href="https://publications.waset.org/abstracts/search?q=space" title=" space"> space</a>, <a href="https://publications.waset.org/abstracts/search?q=time" title=" time"> time</a> </p> <a href="https://publications.waset.org/abstracts/142819/pattern-recognition-search-an-advancement-over-interpolation-search" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1921</span> Finding Related Scientific Documents Using Formal Concept Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadeem%20Akhtar">Nadeem Akhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hira%20Javed"> Hira Javed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An important aspect of research is literature survey. Availability of a large amount of literature across different domains triggers the need for optimized systems which provide relevant literature to researchers. We propose a search system based on keywords for text documents. This experimental approach provides a hierarchical structure to the document corpus. The documents are labelled with keywords using KEA (Keyword Extraction Algorithm) and are automatically organized in a lattice structure using Formal Concept Analysis (FCA). This groups the semantically related documents together. The hierarchical structure, based on keywords gives out only those documents which precisely contain them. This approach open doors for multi-domain research. The documents across multiple domains which are indexed by similar keywords are grouped together. A hierarchical relationship between keywords is obtained. To signify the effectiveness of the approach, we have carried out the experiment and evaluation on Semeval-2010 Dataset. Results depict that the presented method is considerably successful in indexing of scientific papers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=formal%20concept%20analysis" title="formal concept analysis">formal concept analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=keyword%20extraction%20algorithm" title=" keyword extraction algorithm"> keyword extraction algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=scientific%20documents" title=" scientific documents"> scientific documents</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice" title=" lattice"> lattice</a> </p> <a href="https://publications.waset.org/abstracts/71401/finding-related-scientific-documents-using-formal-concept-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1920</span> Enhanced Arabic Semantic Information Retrieval System Based on Arabic Text Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Elsehemy">A. Elsehemy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdeen"> M. Abdeen </a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Nazmy"> T. Nazmy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the appearance of the Semantic web, many semantic search techniques and models were proposed to exploit the information in ontology to enhance the traditional keyword-based search. Many advances were made in languages such as English, German, French and Spanish. However, other languages such as Arabic are not fully supported yet. In this paper we present a framework for ontology based information retrieval for Arabic language. Our system consists of four main modules, namely query parser, indexer, search and a ranking module. Our approach includes building a semantic index by linking ontology concepts to documents, including an annotation weight for each link, to be used in ranking the results. We also augmented the framework with an automatic document categorizer, which enhances the overall document ranking. We have built three Arabic domain ontologies: Sports, Economic and Politics as example for the Arabic language. We built a knowledge base that consists of 79 classes and more than 1456 instances. The system is evaluated using the precision and recall metrics. We have done many retrieval operations on a sample of 40,316 documents with a size 320 MB of pure text. The results show that the semantic search enhanced with text classification gives better performance results than the system without classification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arabic%20text%20classification" title="Arabic text classification">Arabic text classification</a>, <a href="https://publications.waset.org/abstracts/search?q=ontology%20based%20retrieval" title=" ontology based retrieval"> ontology based retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=Arabic%20semantic%20web" title=" Arabic semantic web"> Arabic semantic web</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20retrieval" title=" information retrieval"> information retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=Arabic%20ontology" title=" Arabic ontology"> Arabic ontology</a> </p> <a href="https://publications.waset.org/abstracts/34945/enhanced-arabic-semantic-information-retrieval-system-based-on-arabic-text-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1919</span> Lecture Video Indexing and Retrieval Using Topic Keywords</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20J.%20Sandesh">B. J. Sandesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Saurabha%20Jirgi"> Saurabha Jirgi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Vidya"> S. Vidya</a>, <a href="https://publications.waset.org/abstracts/search?q=Prakash%20Eljer"> Prakash Eljer</a>, <a href="https://publications.waset.org/abstracts/search?q=Gowri%20Srinivasa"> Gowri Srinivasa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a framework to help users to search and retrieve the portions in the lecture video of their interest. This is achieved by temporally segmenting and indexing the lecture video using the topic keywords. We use transcribed text from the video and documents relevant to the video topic extracted from the web for this purpose. The keywords for indexing are found by applying the non-negative matrix factorization (NMF) topic modeling techniques on the web documents. Our proposed technique first creates indices on the transcribed documents using the topic keywords, and these are mapped to the video to find the start and end time of the portions of the video for a particular topic. This time information is stored in the index table along with the topic keyword which is used to retrieve the specific portions of the video for the query provided by the users. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=video%20indexing%20and%20retrieval" title="video indexing and retrieval">video indexing and retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=lecture%20videos" title=" lecture videos"> lecture videos</a>, <a href="https://publications.waset.org/abstracts/search?q=content%20based%20video%20search" title=" content based video search"> content based video search</a>, <a href="https://publications.waset.org/abstracts/search?q=multimodal%20indexing" title=" multimodal indexing"> multimodal indexing</a> </p> <a href="https://publications.waset.org/abstracts/77066/lecture-video-indexing-and-retrieval-using-topic-keywords" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1918</span> Sentence vs. Keyword Content Analysis in Intellectual Capital Disclosures Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20Surya%20Mulyadi">Martin Surya Mulyadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yunita%20Anwar"> Yunita Anwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosinta%20Ria%20Panggabean"> Rosinta Ria Panggabean</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Major transformations in economic activity from an agricultural economy to knowledge economy have led to an increasing focus on intellectual capital (IC) that has been characterized by continuous innovation, the spread of digital and communication technologies, intangible and human factors. IC is defined as the possession of knowledge and experience, professional knowledge and skill, proper relationships and technological capacities, which when applied will give organizations a competitive advantage. All of IC report/disclosure could be captured from the corporate annual report as it is a communication device that allows a corporation to connect with various external and internal stakeholders. This study was conducted using sentence-content analysis of IC disclosure in the annual report. This research aims to analyze whether the keyword-content analysis is reliable research methodology for IC disclosure related research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intellectual%20capital" title="intellectual capital">intellectual capital</a>, <a href="https://publications.waset.org/abstracts/search?q=intellectual%20capital%20disclosure" title=" intellectual capital disclosure"> intellectual capital disclosure</a>, <a href="https://publications.waset.org/abstracts/search?q=content%20analysis" title=" content analysis"> content analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=annual%20report" title=" annual report"> annual report</a>, <a href="https://publications.waset.org/abstracts/search?q=sentence%20analysis" title=" sentence analysis"> sentence analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=keyword%20analysis" title=" keyword analysis"> keyword analysis</a> </p> <a href="https://publications.waset.org/abstracts/66892/sentence-vs-keyword-content-analysis-in-intellectual-capital-disclosures-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1917</span> Companies and Transplant Tourists to China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Porubiak">Pavel Porubiak</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukas%20Kudlacek"> Lukas Kudlacek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction Transplant tourism is a controversial method of obtaining an organ, and that goes all the more for a country such as China, where sources of evidence point out to the possibility of organs being harvested illegally. This research aimed at listing the individual countries these tourists come from, or which medical companies sell transplant related products in there, with China being used as an example. Materials and methods The methodology of scoping study was used for both parts of the research. The countries from which transplant tourists come to China were identified by a search through existing medical studies in the NCBI PubMed database, listed under the keyword ‘transplantation in China’. The search was not limited by any other criteria, but only the studies available for free – directly on PubMed or a linked source – were used. Other research studies on this topic were considered as well. The companies were identified through multiple methods. The first was an online search focused on medical companies and their products. The Bloomberg Service, used by stock brokers worldwide, was then used to identify the revenue of these companies in individual countries – if data were available – as well as their business presence in China. A search through the U.S. Securities and Exchange Commission was done in the same way. Also a search on the Chinese internet was done, and to obtain more results, a second online search was done as well. The results and discussion The extensive search has identified 14 countries with transplant tourists to China. The search for a similar studies or reports resulted in finding additional six countries. The companies identified by our research also amounted to 20. Eight of them are sourcing China with organ preservation products – of which one is just trying to enter the Chinese market, six with immunosuppressive drugs, four with transplant diagnostics, one with medical robots which Chinese doctors use for transplantation as well, and another one trying to enter the Chinese market with a consumable-type product also related to transplantation. The conclusion The question of the ethicality of transplant tourism may be very pressing, since as the research shows, just the sheer amount of participating countries, sourcing transplant tourists to another one, amounts to 20. The identified companies are facing risks due to the nature of transplantation business in China, as officially executed prisoners are used as sources, and widely cited pieces of evidence point out to illegal organ harvesting. Similar risks and ethical questions are also relevant to the countries sourcing the transplant tourists to China. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=China" title="China">China</a>, <a href="https://publications.waset.org/abstracts/search?q=illegal%20organ%20harvesting" title=" illegal organ harvesting"> illegal organ harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=transplant%20tourism" title=" transplant tourism"> transplant tourism</a>, <a href="https://publications.waset.org/abstracts/search?q=organ%20harvesting%20technology" title=" organ harvesting technology"> organ harvesting technology</a> </p> <a href="https://publications.waset.org/abstracts/125240/companies-and-transplant-tourists-to-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1916</span> Arabic Quran Search Tool Based on Ontology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Alqahtani">Mohammad Alqahtani</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Atwell"> Eric Atwell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reviews and classifies most of the important types of search techniques that have been applied on the holy Quran. Then, it addresses the limitations in these techniques. Additionally, this paper surveys most existing Quranic ontologies and what are their deficiencies. Finally, it explains a new search tool called: A semantic search tool for Al Quran based on Qur’anic ontologies. This tool will overcome all limitations in the existing Quranic search applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=holy%20Quran" title="holy Quran">holy Quran</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing%20%28NLP%29" title=" natural language processing (NLP)"> natural language processing (NLP)</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20search" title=" semantic search"> semantic search</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20retrieval%20%28IR%29" title=" information retrieval (IR)"> information retrieval (IR)</a>, <a href="https://publications.waset.org/abstracts/search?q=ontology" title=" ontology"> ontology</a> </p> <a href="https://publications.waset.org/abstracts/31315/arabic-quran-search-tool-based-on-ontology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">572</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1915</span> A Context-Sensitive Algorithm for Media Similarity Search </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guang-Ho%20Cha">Guang-Ho Cha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a context-sensitive media similarity search algorithm. One of the central problems regarding media search is the semantic gap between the low-level features computed automatically from media data and the human interpretation of them. This is because the notion of similarity is usually based on high-level abstraction but the low-level features do not sometimes reflect the human perception. Many media search algorithms have used the Minkowski metric to measure similarity between image pairs. However those functions cannot adequately capture the aspects of the characteristics of the human visual system as well as the nonlinear relationships in contextual information given by images in a collection. Our search algorithm tackles this problem by employing a similarity measure and a ranking strategy that reflect the nonlinearity of human perception and contextual information in a dataset. Similarity search in an image database based on this contextual information shows encouraging experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=context-sensitive%20search" title="context-sensitive search">context-sensitive search</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20search" title=" image search"> image search</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20ranking" title=" similarity ranking"> similarity ranking</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20search" title=" similarity search"> similarity search</a> </p> <a href="https://publications.waset.org/abstracts/65150/a-context-sensitive-algorithm-for-media-similarity-search" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1914</span> User Modeling from the Perspective of Improvement in Search Results: A Survey of the State of the Art</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Karimi-Mansoub">Samira Karimi-Mansoub</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahem%20Abri"> Rahem Abri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, users expect high quality and personalized information from search results. To satisfy user’s needs, personalized approaches to web search have been proposed. These approaches can provide the most appropriate answer for user’s needs by using user context and incorporating information about query provided by combining search technologies. To carry out personalized web search, there is a need to make different techniques on whole of user search process. There are the number of possible deployment of personalized approaches such as personalized web search, personalized recommendation, personalized summarization and filtering systems and etc. but the common feature of all approaches in various domains is that user modeling is utilized to provide personalized information from the Web. So the most important work in personalized approaches is user model mining. User modeling applications and technologies can be used in various domains depending on how the user collected information may be extracted. In addition to, the used techniques to create user model is also different in each of these applications. Since in the previous studies, there was not a complete survey in this field, our purpose is to present a survey on applications and techniques of user modeling from the viewpoint of improvement in search results by considering the existing literature and researches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=filtering%20systems" title="filtering systems">filtering systems</a>, <a href="https://publications.waset.org/abstracts/search?q=personalized%20web%20search" title=" personalized web search"> personalized web search</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20modeling" title=" user modeling"> user modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20search%20behavior" title=" user search behavior"> user search behavior</a> </p> <a href="https://publications.waset.org/abstracts/73551/user-modeling-from-the-perspective-of-improvement-in-search-results-a-survey-of-the-state-of-the-art" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1913</span> The Application of Pareto Local Search to the Single-Objective Quadratic Assignment Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Alsheddy">Abdullah Alsheddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the employment of Pareto optimality as a strategy to help (single-objective) local search escaping local optima. Instead of local search, Pareto local search is applied to solve the quadratic assignment problem which is multi-objectivized by adding a helper objective. The additional objective is defined as a function of the primary one with augmented penalties that are dynamically updated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pareto%20optimization" title="Pareto optimization">Pareto optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objectivization" title=" multi-objectivization"> multi-objectivization</a>, <a href="https://publications.waset.org/abstracts/search?q=quadratic%20assignment%20problem" title=" quadratic assignment problem"> quadratic assignment problem</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20search" title=" local search"> local search</a> </p> <a href="https://publications.waset.org/abstracts/9877/the-application-of-pareto-local-search-to-the-single-objective-quadratic-assignment-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1912</span> On the Interactive Search with Web Documents </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mario%20Kubek">Mario Kubek</a>, <a href="https://publications.waset.org/abstracts/search?q=Herwig%20Unger"> Herwig Unger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the large amount of information in the World Wide Web (WWW, web) and the lengthy and usually linearly ordered result lists of web search engines that do not indicate semantic relationships between their entries, the search for topically similar and related documents can become a tedious task. Especially, the process of formulating queries with proper terms representing specific information needs requires much effort from the user. This problem gets even bigger when the user's knowledge on a subject and its technical terms is not sufficient enough to do so. This article presents the new and interactive search application DocAnalyser that addresses this problem by enabling users to find similar and related web documents based on automatic query formulation and state-of-the-art search word extraction. Additionally, this tool can be used to track topics across semantically connected web documents <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DocAnalyser" title="DocAnalyser">DocAnalyser</a>, <a href="https://publications.waset.org/abstracts/search?q=interactive%20web%20search" title=" interactive web search"> interactive web search</a>, <a href="https://publications.waset.org/abstracts/search?q=search%20word%20extraction" title=" search word extraction"> search word extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=query%20formulation" title=" query formulation"> query formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20topic%20detection" title=" source topic detection"> source topic detection</a>, <a href="https://publications.waset.org/abstracts/search?q=topic%20tracking" title=" topic tracking "> topic tracking </a> </p> <a href="https://publications.waset.org/abstracts/17687/on-the-interactive-search-with-web-documents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1911</span> Distributed Processing for Content Based Lecture Video Retrieval on Hadoop Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20S.%20N.%20Raju">U. S. N. Raju</a>, <a href="https://publications.waset.org/abstracts/search?q=Kothuri%20Sai%20Kiran"> Kothuri Sai Kiran</a>, <a href="https://publications.waset.org/abstracts/search?q=Meena%20G.%20Kamal"> Meena G. Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Nikhil%20Pabba"> Vinay Nikhil Pabba</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Kanaparthi"> Suresh Kanaparthi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is huge amount of lecture video data available for public use, and many more lecture videos are being created and uploaded every day. Searching for videos on required topics from this huge database is a challenging task. Therefore, an efficient method for video retrieval is needed. An approach for automated video indexing and video search in large lecture video archives is presented. As the amount of video lecture data is huge, it is very inefficient to do the processing in a centralized computation framework. Hence, Hadoop Framework for distributed computing for Big Video Data is used. First, step in the process is automatic video segmentation and key-frame detection to offer a visual guideline for the video content navigation. In the next step, we extract textual metadata by applying video Optical Character Recognition (OCR) technology on key-frames. The OCR and detected slide text line types are adopted for keyword extraction, by which both video- and segment-level keywords are extracted for content-based video browsing and search. The performance of the indexing process can be improved for a large database by using distributed computing on Hadoop framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=video%20lectures" title="video lectures">video lectures</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20video%20data" title=" big video data"> big video data</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20retrieval" title=" video retrieval"> video retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=hadoop" title=" hadoop"> hadoop</a> </p> <a href="https://publications.waset.org/abstracts/26648/distributed-processing-for-content-based-lecture-video-retrieval-on-hadoop-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1910</span> Interactive Image Search for Mobile Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Komal%20V.%20Aher">Komal V. Aher</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20B.%20Waykar"> Sanjay B. Waykar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays every individual having mobile device with them. In both computer vision and information retrieval Image search is currently hot topic with many applications. The proposed intelligent image search system is fully utilizing multimodal and multi-touch functionalities of smart phones which allows search with Image, Voice, and Text on mobile phones. The system will be more useful for users who already have pictures in their minds but have no proper descriptions or names to address them. The paper gives system with ability to form composite visual query to express user’s intention more clearly which helps to give more precise or appropriate results to user. The proposed algorithm will considerably get better in different aspects. System also uses Context based Image retrieval scheme to give significant outcomes. So system is able to achieve gain in terms of search performance, accuracy and user satisfaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color%20space" title="color space">color space</a>, <a href="https://publications.waset.org/abstracts/search?q=histogram" title=" histogram"> histogram</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20device" title=" mobile device"> mobile device</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20visual%20search" title=" mobile visual search"> mobile visual search</a>, <a href="https://publications.waset.org/abstracts/search?q=multimodal%20search" title=" multimodal search "> multimodal search </a> </p> <a href="https://publications.waset.org/abstracts/33265/interactive-image-search-for-mobile-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1909</span> Analyzing Keyword Networks for the Identification of Correlated Research Topics </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thiago%20M.%20R.%20Dias">Thiago M. R. Dias</a>, <a href="https://publications.waset.org/abstracts/search?q=Patr%C3%ADcia%20M.%20Dias"> Patrícia M. Dias</a>, <a href="https://publications.waset.org/abstracts/search?q=Gray%20F.%20Moita"> Gray F. Moita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The production and publication of scientific works have increased significantly in the last years, being the Internet the main factor of access and distribution of these works. Faced with this, there is a growing interest in understanding how scientific research has evolved, in order to explore this knowledge to encourage research groups to become more productive. Therefore, the objective of this work is to explore repositories containing data from scientific publications and to characterize keyword networks of these publications, in order to identify the most relevant keywords, and to highlight those that have the greatest impact on the network. To do this, each article in the study repository has its keywords extracted and in this way the network is&nbsp; characterized, after which several metrics for social network analysis are applied for the identification of the highlighted keywords. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bibliometrics" title="bibliometrics">bibliometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20analysis" title=" data analysis"> data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction%20and%20data%20integration" title=" extraction and data integration"> extraction and data integration</a>, <a href="https://publications.waset.org/abstracts/search?q=scientometrics" title=" scientometrics"> scientometrics</a> </p> <a href="https://publications.waset.org/abstracts/67802/analyzing-keyword-networks-for-the-identification-of-correlated-research-topics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1908</span> A Review of Existing Turnover Intention Theories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pauline%20E.%20Ngo-Henha">Pauline E. Ngo-Henha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Existing turnover intention theories are reviewed in this paper. This review was conducted with the help of the search keyword &ldquo;turnover intention theories&rdquo; in Google Scholar during the month of July 2017. These theories include: The Theory of Organizational Equilibrium (TOE), Social Exchange Theory, Job Embeddedness Theory, Herzberg&rsquo;s Two-Factor Theory, the Resource-Based View, Equity Theory, Human Capital Theory, and the Expectancy Theory. One of the limitations of this review paper is that data were only collected from Google Scholar where many papers were sometimes not freely accessible. However, this paper attempts to contribute to the research in clarifying the distinction between theories and models in the context of turnover intention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Literature%20Review" title="Literature Review">Literature Review</a>, <a href="https://publications.waset.org/abstracts/search?q=Theory" title=" Theory"> Theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Turnover" title=" Turnover"> Turnover</a>, <a href="https://publications.waset.org/abstracts/search?q=Turnover%20intention" title=" Turnover intention"> Turnover intention</a> </p> <a href="https://publications.waset.org/abstracts/81252/a-review-of-existing-turnover-intention-theories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1907</span> Information Extraction Based on Search Engine Results</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20R.%20Elkobaisi">Mohammed R. Elkobaisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelsalam%20Maatuk"> Abdelsalam Maatuk </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The search engines are the large scale information retrieval tools from the Web that are currently freely available to all. This paper explains how to convert the raw resulted number of search engines into useful information. This represents a new method for data gathering comparing with traditional methods. When a query is submitted for a multiple numbers of keywords, this take a long time and effort, hence we develop a user interface program to automatic search by taking multi-keywords at the same time and leave this program to collect wanted data automatically. The collected raw data is processed using mathematical and statistical theories to eliminate unwanted data and converting it to usable data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=search%20engines" title="search engines">search engines</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20extraction" title=" information extraction"> information extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=agent%20system" title=" agent system"> agent system</a> </p> <a href="https://publications.waset.org/abstracts/20378/information-extraction-based-on-search-engine-results" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1906</span> A Comparative Study between Different Techniques of Off-Page and On-Page Search Engine Optimization </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Ishtiaq">Ahmed Ishtiaq</a>, <a href="https://publications.waset.org/abstracts/search?q=Maeeda%20Khalid"> Maeeda Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Umair%20Sajjad"> Umair Sajjad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the fast-moving world, information is the key to success. If information is easily available, then it makes work easy. The Internet is the biggest collection and source of information nowadays, and with every single day, the data on internet increases, and it becomes difficult to find required data. Everyone wants to make his/her website at the top of search results. This can be possible when you have applied some techniques of SEO inside your application or outside your application, which are two types of SEO, onsite and offsite SEO. SEO is an abbreviation of Search Engine Optimization, and it is a set of techniques, methods to increase users of a website on World Wide Web or to rank up your website in search engine indexing. In this paper, we have compared different techniques of Onpage and Offpage SEO, and we have suggested many things that should be changed inside webpage, outside web page and mentioned some most powerful and search engine considerable elements and techniques in both types of SEO in order to gain high ranking on Search Engine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auto-suggestion" title="auto-suggestion">auto-suggestion</a>, <a href="https://publications.waset.org/abstracts/search?q=search%20engine%20optimization" title=" search engine optimization"> search engine optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=SEO" title=" SEO"> SEO</a>, <a href="https://publications.waset.org/abstracts/search?q=query" title=" query"> query</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20mining" title=" web mining"> web mining</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20crawler" title=" web crawler"> web crawler</a> </p> <a href="https://publications.waset.org/abstracts/128880/a-comparative-study-between-different-techniques-of-off-page-and-on-page-search-engine-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=keyword%20search&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=keyword%20search&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=keyword%20search&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=keyword%20search&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=keyword%20search&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=keyword%20search&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=keyword%20search&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=keyword%20search&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=keyword%20search&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=keyword%20search&amp;page=64">64</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=keyword%20search&amp;page=65">65</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=keyword%20search&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10