CINXE.COM

Search results for: aquatic macroinvertebrates

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: aquatic macroinvertebrates</title> <meta name="description" content="Search results for: aquatic macroinvertebrates"> <meta name="keywords" content="aquatic macroinvertebrates"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="aquatic macroinvertebrates" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="aquatic macroinvertebrates"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 444</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: aquatic macroinvertebrates</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">444</span> Macroinvertebrate Variation of Endorheic Depression Wetlands within North West and Mpumalanga Provinces, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lee-Ann%20Foster">Lee-Ann Foster</a>, <a href="https://publications.waset.org/abstracts/search?q=Wynand%20Malherbe"> Wynand Malherbe</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Ferriera"> Martin Ferriera</a>, <a href="https://publications.waset.org/abstracts/search?q=Johan%20Van%20Vuren"> Johan Van Vuren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aquatic macroinvertebrates are rarely used in wetland assessments due to their variability. However, in terms of biodiversity, these invertebrates form an important component of wetlands. The objective of this study was to compare the spatial and temporal variation of macroinvertebrate assemblages within endorheic depressions in Mpumalanga and North West Provinces of South Africa. Sampling was conducted over a period of two seasons during 2012 and 2013 at all sampling points to account for a wet and dry season. The identification of macroinvertebrate community samples resulted in 24 taxa for both provinces. Results showed similarities in the structure of communities in perennial endorheic depressions in both provinces with the exception of one or two species. Macroinvertebrates sampled in Mpumalanga depressions (locally called pans) were similar to those reported in previous studies completed in the area and most of the macroinvertebrates sampled in Mpumalanga and the North West are known to be commonly found in temporary habitats. The knowledge acquired can now be utilised to enhance the available literature on these systems. Long-term studies have to be implemented to better understand the ecological functioning of the pans in the North West Province. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquatic" title="aquatic">aquatic</a>, <a href="https://publications.waset.org/abstracts/search?q=macroinvertebrate%20assemblages" title=" macroinvertebrate assemblages"> macroinvertebrate assemblages</a>, <a href="https://publications.waset.org/abstracts/search?q=pans" title=" pans"> pans</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20variation" title=" spatial variation "> spatial variation </a> </p> <a href="https://publications.waset.org/abstracts/31859/macroinvertebrate-variation-of-endorheic-depression-wetlands-within-north-west-and-mpumalanga-provinces-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">443</span> Monitoring and Management of Aquatic Macroinvertebrates for Determining the Level of Water Pollution Catchment Basin of Debed River, Armenia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inga%20Badasyan">Inga Badasyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Every year we do monitoring of water pollution of catchment basin of Debed River. Next, the Ministry of Nature Protection does modeling programme. Finely, we are managing the impact of water pollution in Debed river. Ecosystem technologies efficiency performance were estimated based on the physical, chemical, and macrobiological analyses of water on regular base between 2012 to 2015. Algae community composition was determined to assess the ecological status of Debed river, while vegetation was determined to assess biodiversity. Last time, experts werespeaking about global warming, which is having bad impact on the surface water, freshwater, etc. As, we know that global warming is caused by the current high levels of carbon dioxide in the water. Geochemical modelling is increasingly playing an important role in various areas of hydro sciences and earth sciences. Geochemical modelling of highly concentrated aqueous solutions represents an important topic in the study of many environments such as evaporation ponds, groundwater and soils in arid and semi-arid zones, costal aquifers, etc. The sampling time is important for benthic macroinvertebrates, for that reason we have chosen in the spring (abundant flow of the river, the beginning of the vegetation season) and autumn (the flow of river is scarce). The macroinvertebrates are good indicator for a chromic pollution and aquatic ecosystems. Results of our earlier investigations in the Debed river reservoirs clearly show that management problem of ecosystem reservoirs is topical. Research results can be applied to studies of monitoring water quality in the rivers and allow for rate changes and to predict possible future changes in the nature of the lake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecohydrological%20monitoring" title="ecohydrological monitoring">ecohydrological monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20risk%20management" title=" flood risk management"> flood risk management</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20warming" title=" global warming"> global warming</a>, <a href="https://publications.waset.org/abstracts/search?q=aquatic%20macroinvertebrates" title=" aquatic macroinvertebrates"> aquatic macroinvertebrates</a> </p> <a href="https://publications.waset.org/abstracts/41252/monitoring-and-management-of-aquatic-macroinvertebrates-for-determining-the-level-of-water-pollution-catchment-basin-of-debed-river-armenia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">442</span> Effects of Large Woody Debris on the Abundance and Diversity of Freshwater Invertebrates and Vertebrates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Matulino">M. J. Matulino</a>, <a href="https://publications.waset.org/abstracts/search?q=Carissa%20Ganong"> Carissa Ganong</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Mills"> Mark Mills</a>, <a href="https://publications.waset.org/abstracts/search?q=Jazmine%20Harry"> Jazmine Harry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Large Woody Debris (LWD), defined as wooden debris with a diameter of at least 10 cm and a length of 2 m, serves as a crucial resource and habitat for aquatic organisms. While research on the ecological impacts of LWD has been conducted in temperate streams, LWD's influence on tropical stream biodiversity remains understudied, making this investigation particularly valuable for future conservation efforts. The Sura River in La Selva Biological Station includes both LWD and open channel sites. We sampled paired LWD and open-channel sites using minnow traps, Promar traps, and dip nets. Vertebrates were identified as species, while macroinvertebrates were identified to order level. We quantified abundance, richness, and Shannon diversity at each. We captured a total of 467 individuals, including 2 turtles, 17 fishes, 1 freshwater crab, 39 shrimp, and 408 other macroinvertebrates. Total abundance was significantly higher in LWD sites. Species richness was marginally higher in LWD sites, but the Shannon diversity index did not differ significantly with habitat. Shrimp (Macrobrachium olfersi) length was significantly higher in LWD areas. Increased food resources and microhabitat availability could contribute to higher abundance, richness, and organismal size in LWD environments. This study fills a critical gap by investigating LWD effects in a tropical environment, providing valuable insights for conservation efforts and the preservation of aquatic biodiversity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=large%20woody%20debris%20%28LWD%29" title="large woody debris (LWD)">large woody debris (LWD)</a>, <a href="https://publications.waset.org/abstracts/search?q=aquatic%20organisms" title=" aquatic organisms"> aquatic organisms</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20impacts" title=" ecological impacts"> ecological impacts</a>, <a href="https://publications.waset.org/abstracts/search?q=tropical%20stream%20biodiversity" title=" tropical stream biodiversity"> tropical stream biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation%20efforts" title=" conservation efforts"> conservation efforts</a> </p> <a href="https://publications.waset.org/abstracts/168856/effects-of-large-woody-debris-on-the-abundance-and-diversity-of-freshwater-invertebrates-and-vertebrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">441</span> Functional Feeding Groups and Trophic Levels of Benthic Macroinvertebrates Assemblages in Albertine Rift Rivers and Streams in South Western Uganda</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peace%20Liz%20Sasha%20Musonge">Peace Liz Sasha Musonge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Behavioral aspects of species nutrition such as feeding methods and food type are archetypal biological traits signifying how species have adapted to their environment. This concept of functional feeding groups (FFG) analysis is currently used to ascertain the trophic levels of the aquatic food web in a specific microhabitat. However, in Eastern Africa, information about the FFG classification of benthic macroinvertebrates in highland rivers and streams is almost absent, and existing studies have fragmented datasets. For this reason, we carried out a robust study to determine the feed type, trophic level and FFGs, of 56 macroinvertebrate taxa (identified to family level) from Albertine rift valley streams. Our findings showed that all five major functional feeding groups were represented; Gatherer Collectors (GC); Predators (PR); shredders (SH); Scrapers (SC); and Filterer collectors. The most dominant functional feeding group was the Gatherer Collectors (GC) that accounted for 53.5% of the total population. The most abundant (GC) families were Baetidae (7813 individuals), Chironomidae NTP (5628) and Caenidae (1848). Majority of the macroinvertebrate population feed on Fine particulate organic matter (FPOM) from the stream bottom. In terms of taxa richness the Predators (PR) had the highest value of 24 taxa and the Filterer Collectors group had the least number of taxa (3). The families that had the highest number of predators (PR) were Corixidae (1024 individuals), Coenagrionidae (445) and Libellulidae (283). However, Predators accounted for only 7.4% of the population. The findings highlighted the functional feeding groups and habitat type of macroinvertebrate communities along an altitudinal gradient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trophic%20levels" title="trophic levels">trophic levels</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20feeding%20groups" title=" functional feeding groups"> functional feeding groups</a>, <a href="https://publications.waset.org/abstracts/search?q=macroinvertebrates" title=" macroinvertebrates"> macroinvertebrates</a>, <a href="https://publications.waset.org/abstracts/search?q=Albertine%20rift" title=" Albertine rift"> Albertine rift</a> </p> <a href="https://publications.waset.org/abstracts/63656/functional-feeding-groups-and-trophic-levels-of-benthic-macroinvertebrates-assemblages-in-albertine-rift-rivers-and-streams-in-south-western-uganda" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">440</span> Macroinvertebrates of Paravani and Saghamo Lakes, South Georgia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bella%20Japoshvili">Bella Japoshvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhanetta%20Shubitidze"> Zhanetta Shubitidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Ani%20Bikashvili"> Ani Bikashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Sophio%20Gabelashvili"> Sophio Gabelashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Marina%20Gioshvili"> Marina Gioshvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Levan%20Mumladze"> Levan Mumladze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Paravani and Saghamo Lakes are oligotrophic lentic systems located in Javakheti plateau (South Georgia) at 2073 m and 1996 m a.s.l. respectively. Javakheti plateau is known as a lakes region as there are located almost 60 small and medium size lakes. Paravani Lake is the biggest lake by its surface area in Georgia, 37 km 2. The Saghamo Lake is smaller and its surface area consists 4.58 km2. These two lakes are connected with Paravani River, because of this the main hydrobiological and ichthyological features are the same. More than 15-30 years were not studied macroinvertebrates of these lakes. Even the existing information is lack and very limited. The aim of our study was to identify main macroinvertebrate groups inhabiting both lakes and to compare obtaining results to existing information. Our investigation was carried out during 2014 and 2015, in 3 seasons of the year, in winter because of severe condition samples were not taken. Kick-net and Petersen grab were used for material collecting, 4 sites from Paravani Lake and 3–from Saghamo Lake were sampled. Collected invertebrates were fixed in ethanol and late taken to the laboratory, where organisms were identified to the lowest taxon possible, usually family. By our results identified 14 taxa for Paravani Lake and 12 taxa for Saghamo Lake. Our results differ from previous information; for Saghamo Lake previously 13 taxa and for Paravani Lake 12 taxa were described. The percentage of the groups also differ from existing information. Our investigation showed that in Paravani Lake most abundant are Apmhipoda, Hydrachnidae, and Hemiptera, in our samples the number of individuals for those 3 taxa was more than thousand, in each. For Saghamo Lake numerous taxon was Amphipoda-36.3%, following by Ephemeroptera-11.37%, Chironomidae-10.5% and Hydrachnidae-7.03% respectively. We also identified the dominant taxon for all studied seasons. Autumn is the period when the diversity of macroinvertebrates are higher in both lakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Georgia" title="Georgia">Georgia</a>, <a href="https://publications.waset.org/abstracts/search?q=lakes" title=" lakes"> lakes</a>, <a href="https://publications.waset.org/abstracts/search?q=macroinvertebrates" title=" macroinvertebrates"> macroinvertebrates</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a> </p> <a href="https://publications.waset.org/abstracts/54026/macroinvertebrates-of-paravani-and-saghamo-lakes-south-georgia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">439</span> Hydraulic Analysis on Microhabitat of Benthic Macroinvertebrates at Riparian Riffles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin-Hong%20Kim">Jin-Hong Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydraulic analysis on microhabitat of Benthic Macro- invertebrates was performed at riparian riffles of Hongcheon River and Gapyeong Stream. As for the representative species, <em>Ecdyonurus kibunensis</em>, <em>Paraleptophlebia cocorata</em>, <em>Chironomidae </em>sp. and <em>Psilotreta kisoensis iwata</em> were chosen. They showed hydraulically different habitat types by flow velocity and particle diameters of streambed materials. Habitat conditions of the swimmers were determined mainly by the flow velocity rather than by flow depth or by riverbed materials. Burrowers prefer sand and silt, and inhabited at the riverbed. Sprawlers prefer cobble or boulder and inhabited for velocity of 0.05-0.15 m/s. Clingers prefer pebble or cobble and inhabited for velocity of 0.06-0.15 m/s. They were found to be determined mainly by the flow velocity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benthic%20macroinvertebrates" title="benthic macroinvertebrates">benthic macroinvertebrates</a>, <a href="https://publications.waset.org/abstracts/search?q=riffles" title=" riffles"> riffles</a>, <a href="https://publications.waset.org/abstracts/search?q=clinger" title=" clinger"> clinger</a>, <a href="https://publications.waset.org/abstracts/search?q=swimmer" title=" swimmer"> swimmer</a>, <a href="https://publications.waset.org/abstracts/search?q=burrower" title=" burrower"> burrower</a>, <a href="https://publications.waset.org/abstracts/search?q=sprawler" title=" sprawler"> sprawler</a> </p> <a href="https://publications.waset.org/abstracts/49551/hydraulic-analysis-on-microhabitat-of-benthic-macroinvertebrates-at-riparian-riffles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">438</span> Study of Eatable Aquatic Invertebrates in the River Dhansiri, Dimapur, Nagaland, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dilip%20Nath">Dilip Nath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study has been conducted on the available aquatic invertebrates in the river Dhansiri at Dimapur site. The study confirmed that the river body composed of aquatic macroinvertebrate community under two phyla viz., Arthropods and Molluscs. Total 10 species have been identified from there as the source of alternative protein food for the common people. Not only the protein source, they are also the component of aquatic food chain and indicators of aquatic ecosystem. Proper management and strategies to promote the edible invertebrates can be considered as the alternative protein and alternative income source for the common people for sustainable livelihood improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhansiri" title="Dhansiri">Dhansiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimapur" title=" Dimapur"> Dimapur</a>, <a href="https://publications.waset.org/abstracts/search?q=invertebrates" title=" invertebrates"> invertebrates</a>, <a href="https://publications.waset.org/abstracts/search?q=livelihood%20improvement" title=" livelihood improvement"> livelihood improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=protein" title=" protein"> protein</a> </p> <a href="https://publications.waset.org/abstracts/138477/study-of-eatable-aquatic-invertebrates-in-the-river-dhansiri-dimapur-nagaland-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">437</span> Aquatic Intervention Research for Children with Autism Spectrum Disorders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Yanardag">Mehmet Yanardag</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilker%20Yilmaz"> Ilker Yilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Children with autism spectrum disorders (ASD) enjoy and success the aquatic-based exercise and play skills in a pool instead of land-based exercise in a gym. Some authors also observed that many children with ASD experience more success in attaining movement skills in aquatic environment. Properties of the water and hydrodynamic principles cause buoyancy of the water and decrease effects of gravity and it leads to allow a child to practice important aquatic skills with limited motor skills. Also, some authors experience that parents liked the effects of the aquatic intervention program on children with ASD such as improving motor performance, movement capacity and learning basic swimming skills. The purpose of this study was to investigate the effects of aquatic exercise training on water orientation and underwater working capacity were measured in the pool. This study included in four male children between 5 and 7 years old with ASD and 6.25±0.5 years old. Aquatic exercise skills were applied by using one of the error less teaching which is called the 'most to least prompt' procedure during 12-week, three times a week and 60 minutes a day. The findings of this study indicated that there were improvements test results both water orientation skill and underwater working capacity of children with ASD after 12-weeks exercise training. It was seen that the aquatic exercise intervention would be affected to improve working capacity and orientation skills with the special education approaches applying children with ASD in multidisciplinary team-works. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquatic" title="aquatic">aquatic</a>, <a href="https://publications.waset.org/abstracts/search?q=autism" title=" autism"> autism</a>, <a href="https://publications.waset.org/abstracts/search?q=orientation" title=" orientation"> orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=ASD" title=" ASD"> ASD</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children "> children </a> </p> <a href="https://publications.waset.org/abstracts/3252/aquatic-intervention-research-for-children-with-autism-spectrum-disorders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">436</span> Reducing Metabolism Residues in Maintenance Goldfish (Carrasius auratus auratus) by Phytoremediation Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Nurkhasanah">Anna Nurkhasanah</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamzah%20Muhammad%20Ihsan"> Hamzah Muhammad Ihsan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Wulandari"> Nurul Wulandari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water quality affects the body condition of aquatic organisms. One of the methods to manage water quality, usually called phytoremediation, involves using aquatic plants. The purpose of this study is to find out the best aquatic plants to reducing metabolism residues from aquatic organism. 5 aquariums (40x30x30 cm) containing 100 grams from each 4 different plants such as water hyacinth (Eichhornia crassipes), salvinia (Salvinia molesta), cabomba (Cabomba caroliniana), and hydrilla (Hydrilla verticillata), thirteen goldfis (Carrasius auratus auratus) are maintained. The maintenance is conducted through a week and water quality measurements are performed three times. The results show that pH value tends to range between 7,22-8,72. The temperature varies between 25-26 °C. DO values varies between 5,2-10,5 mg/L. Amoniac value is between 0,005–5,2 mg/L. Nitrite value is between 0,005 mg/L-2,356 mg/L. Nitrate value is between 0,791 mg/L-1,737 mg/L. CO2 value is between 2,2 mg/L-6,1 mg/L. The result of survival rate of goldfish for all treatments is 100%. Based on this study, the best aquatic plant to reduce metabolism residues is hydrilla. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title="phytoremediation">phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=goldfish" title=" goldfish"> goldfish</a>, <a href="https://publications.waset.org/abstracts/search?q=aquatic%20plants" title=" aquatic plants"> aquatic plants</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/6221/reducing-metabolism-residues-in-maintenance-goldfish-carrasius-auratus-auratus-by-phytoremediation-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">435</span> Assessment of Spatial and Temporal Variations of Some Biological Water Quality Parameters in Mat River, Albania</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Etleva%20Hamzaraj">Etleva Hamzaraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Eva%20Kica"> Eva Kica</a>, <a href="https://publications.waset.org/abstracts/search?q=Anila%20Paparisto"> Anila Paparisto</a>, <a href="https://publications.waset.org/abstracts/search?q=Pranvera%20Lazo"> Pranvera Lazo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Worldwide demographic developments of recent decades have been associated with negative environmental consequences. For this reason, there is a growing interest in assessing the state of natural ecosystems or assessing human impact on them. In this respect, this study aims to evaluate the change in water quality of the Mat River for a period of about ten years to highlight human impact. In one year, period of study, several biological and environmental parameters are determined to evaluate river water quality, and the data collected are compared with those of a similar study in 2007. Samples are collected every month in five stations evenly distributed along the river. Total coliform bacteria, the number of heterotrophic bacteria in water, and benthic macroinvertebrates are used as biological parameters of water quality. The most probable number index is used for evaluation of total coliform bacteria in water, while the number of heterotrophic bacteria is determined by counting colonies on plates with Plate Count Agar, cultivated with 0.1 ml sample after series dilutions. Benthic macroinvertebrates are analyzed by the number of individuals per taxa, the value of biotic index, EPT Richness Index value and tolerance value. Environmental parameters like pH, temperature, and electrical conductivity are measured onsite. As expected, the bacterial load was higher near urban areas, and the pollution increased with the course of the river. The maximum concentration of fecal coliforms was 1100 MPN/100 ml in summer and near the most urbanized area of the river. The data collected during this study show that after about ten years, there is a change in water quality of Mat River. According to a similar study carried out in 2007, the water of Mat River was of ‘excellent’ quality. But, according to this study, the water was classified as of ‘excellent’ quality only in one sampling site, near river source, while in all other stations was of ‘good’ quality. This result is based on biological and environmental parameters measured. The human impact on the quality of water of Mat River is more than evident. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title="water quality">water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=coliform%20bacteria" title=" coliform bacteria"> coliform bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=MPN%20index" title=" MPN index"> MPN index</a>, <a href="https://publications.waset.org/abstracts/search?q=benthic%20macroinvertebrates" title=" benthic macroinvertebrates"> benthic macroinvertebrates</a>, <a href="https://publications.waset.org/abstracts/search?q=biotic%20index" title=" biotic index"> biotic index</a> </p> <a href="https://publications.waset.org/abstracts/122764/assessment-of-spatial-and-temporal-variations-of-some-biological-water-quality-parameters-in-mat-river-albania" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">434</span> Influence of Physicochemical Water Quality Parameters on Abundance of Aquatic Insects in Rivers of Perak, Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20Atirah%20Hasmi">Nur Atirah Hasmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Nisha%20Musa"> Nadia Nisha Musa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasnun%20Nita%20Ismail"> Hasnun Nita Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Zulfadli%20Mahfodz"> Zulfadli Mahfodz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of water quality parameters on the abundance of aquatic insects has been studied in Batu Berangkai, Dipang, Kuala Woh and Lata Kinjang Rivers, Perak, northern peninsular Malaysia. The focuses are to compare the abundance of aquatic insects in each sampling areas and to investigate the physical and chemical factors (water temperature, depth of water, canopy, water velocity, pH value, and dissolved oxygen) on the abundance of aquatic insects. The samples and data were collected by using aquatic net and multi-probe parameter. Physical parameters; water velocity, water temperature, depth, canopy cover, and two chemical parameters; pH value and dissolved oxygen have been measured in situ and recorded. A total of 631 individuals classified into 6 orders and 18 families of aquatic insects were identified from four sampling sites. The largest percentage of samples collected is from order Plecoptera 35.8%, followed by Ephemeroptera 32.6%, Trichoptera 17.0%, Hemiptera 8.1%, Coleoptera 4.8%, and the least is Odonata 1.7%. The aquatic insects collected from Dipang River have the highest abundance of 273 individuals from 6 orders and 13 families and the least insects trapped at Lata Kinjang which only have 64 individuals from 5 orders and 6 families. There is significant association between different sampling areas and abundance of aquatic insects (p<0.05). High abundance of aquatic insects was found in higher water temperature, low water velocity, deeper water, low pH, high amount of dissolved oxygen, and the area that is not covered by canopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquatic%20insect" title="aquatic insect">aquatic insect</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20parameter" title=" physicochemical parameter"> physicochemical parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=river" title=" river"> river</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/57477/influence-of-physicochemical-water-quality-parameters-on-abundance-of-aquatic-insects-in-rivers-of-perak-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">433</span> Changes in Inorganic Element Contents in Potamogeton Natans Exposed to Cement Factory Pollution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yavuz%20Demir">Yavuz Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mucip%20Genisel"> Mucip Genisel</a>, <a href="https://publications.waset.org/abstracts/search?q=Hulya%20Turk"> Hulya Turk</a>, <a href="https://publications.waset.org/abstracts/search?q=Turgay%20Sisman"> Turgay Sisman</a>, <a href="https://publications.waset.org/abstracts/search?q=Serkan%20Erdal"> Serkan Erdal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the changes in contents of inorganic elements in the aquatic plant (Potamogeton natans) as a reflection of the impact of chemical nature pollution in a cement factory region (CFR) was evaluated. For this purpose, P, S, K, Ca, Fe, Cl, Mn, Cu, Zn, Mo, Ni, Si, Al, and Cd concentrations were measured in the aquatic plant (Potamogeton natans) taken from a CFR. As a control, aquatic plant was collected at a distance of 2000 m from the outer zone of the cement factory. Inorganic element compositions were measured by energy dispersive X-ray fluorescence spectrometry (EDXRF). Three aquatic plant exhibited similar changes in contents of microelements and macroelements in their leaves. P, S, K, Cl, Ca, and Mo contents in plant grown in the CFR were reduced significantly compared to control plant, whereas their contents of Al, Mn, Fe, Ni, Cu, Zn and Cd were very high. According to these findings, it is possible that aquatic plant (Potamogeton natans) inhabiting in the vicinity of cement factory sustains the deficiency of important essential elements like P, S, K, Ca, and Mo and greatly accumulate heavy metals like Al, Mn, Fe, Ni, Cu, Zn, and Cd. In addition, results of water analysis showed that heavy metal content such as Cu, Pb, Zn, Co, and Al of water taken from CFR was remarkably high than that of outer zone of CFR. These findings with relation to changes in inorganic composition can contribute to be elucidated of effect mechanism on growth and development of aquatic plant (Potamogeton natans) of pollution resulted from cement factories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquatic%20plant" title="aquatic plant">aquatic plant</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20factory" title=" cement factory"> cement factory</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20pollution" title=" heavy metal pollution"> heavy metal pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=inorganic%20element" title=" inorganic element"> inorganic element</a>, <a href="https://publications.waset.org/abstracts/search?q=Potamogeton%20natans" title=" Potamogeton natans "> Potamogeton natans </a> </p> <a href="https://publications.waset.org/abstracts/45228/changes-in-inorganic-element-contents-in-potamogeton-natans-exposed-to-cement-factory-pollution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">432</span> Nutrient in River Ecosystems Follows Human Activities More Than Climate Warming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Abdulridha%20Hamdan">Mohammed Abdulridha Hamdan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To face the water crisis, understanding the role of human activities on nutrient concentrations in aquatic ecosystems needs more investigations to compare to extensively studies which have been carried out to understand these impacts on the water quality of different aquatic ecosystems. We hypothesized human activates on the catchments of Tigris river may change nutrient concentrations in water along the river. The results showed that phosphate concentration differed significantly among the studied sites due to distributed human activities, while nitrate concentration did not. Phosphate and nitrate concentrations were not affected by water temperature. We concluded that human activities on the surrounding landscapes could be more essential sources for nutrients of aquatic ecosystems than role of ongoing climate warming. Despite the role of warming in driving nutrients availability in aquatic ecosystems, our findings suggest to take the different activities on the surrounding catchments into account in the studies caring about the trophic status classification of aquatic ecosystems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrate" title="nitrate">nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphate" title=" phosphate"> phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropogenic" title=" anthropogenic"> anthropogenic</a>, <a href="https://publications.waset.org/abstracts/search?q=warming" title=" warming"> warming</a> </p> <a href="https://publications.waset.org/abstracts/161505/nutrient-in-river-ecosystems-follows-human-activities-more-than-climate-warming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">431</span> Nutrient Availability in River Ecosystems Follows Human Activities More than Climate Warming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Abdulridha%20Hamdan">Mohammed Abdulridha Hamdan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To face the water crisis, understanding the role of human activities on nutrient concentrations in aquatic ecosystems needs more investigations compare to extensively studies which have been carried out to understand these impacts on water quality of different aquatic ecosystems. We hypothesized human activates on the catchments of Tigris river may change nutrient concentrations in water along the river. The results showed that phosphate concentration differed significantly among the studied sites due to distributed human activities, while nitrate concentration did not. Phosphate and nitrate concentrations were not affected by water temperature. We concluded that human activities on the surrounding landscapes could be more essential sources for nutrients of aquatic ecosystems than role of ongoing climate warming. Despite the role of warming in driving nutrients availability in aquatic ecosystems, our findings suggest to take the different activities on the surrounding catchments into account in the studies caring about trophic status classification of aquatic ecosystems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phosphate" title="phosphate">phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate" title=" nitrate"> nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropogenic" title=" anthropogenic"> anthropogenic</a>, <a href="https://publications.waset.org/abstracts/search?q=warming" title=" warming"> warming</a> </p> <a href="https://publications.waset.org/abstracts/161466/nutrient-availability-in-river-ecosystems-follows-human-activities-more-than-climate-warming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">430</span> Nutrient Availability in River Ecosystems Follows Human Activities More than Climate Warming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Abdulridha%20Hamdan">Mohammed Abdulridha Hamdan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To face the water crisis, understanding the role of human activities on nutrient concentrations in aquatic ecosystems needs more investigations compare to extensively studies, which have been carried out to understand these impacts on water quality of different aquatic ecosystems. We hypothesized human activates on the catchments of Tigris river may change nutrient concentrations in water along the river. The results showed that phosphate concentration differed significantly among the studied sites due to distributed human activities, while nitrate concentration did not. Phosphate and nitrate concentrations were not affected by water temperature. We concluded that human activities on the surrounding landscapes could be more essential sources for nutrients of aquatic ecosystems than role of ongoing climate warming. Despite the role of warming in driving nutrients availability in aquatic ecosystems, our findings suggest to take the different activities on the surrounding catchments into account in the studies caring about trophic status classification of aquatic ecosystems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phosphate" title="phosphate">phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate" title=" nitrate"> nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthropogenic" title=" Anthropogenic"> Anthropogenic</a>, <a href="https://publications.waset.org/abstracts/search?q=warming" title=" warming"> warming</a> </p> <a href="https://publications.waset.org/abstracts/160728/nutrient-availability-in-river-ecosystems-follows-human-activities-more-than-climate-warming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">429</span> The Aquatic Plants Community in the Owena-Idanre Section of the Owena River of Ondo State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafiu%20O.%20Sanni">Rafiu O. Sanni</a>, <a href="https://publications.waset.org/abstracts/search?q=Abayomi%20O.%20Olajuyigbe"> Abayomi O. Olajuyigbe</a>, <a href="https://publications.waset.org/abstracts/search?q=Nelson%20R.%20Osungbemiro"> Nelson R. Osungbemiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Rotimi%20F.%20Olaniyan"> Rotimi F. Olaniyan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Owena River lies within the drainage basins of the Oni, Siluko, and Ogbesse rivers. The river’s immediate surroundings are covered by dense forests, interspersed by plantations of cocoa, oil palm, kolanut, bananas, and other crops. The objectives were to identify the aquatic plants community, comprising the algae and aquatic macrophytes, observe their population dynamics in relation to the two seasons and identify their economic importance, especially to the neighbouring community. The study sites were determined using a stratified sampling method. Three strata were marked out for sampling namely strata I (upstream)–5 stations, strata II (reservoir) –2 stations, and strata III (outflow) 2 stations. These nine stations were tagged st1, st2, st3…st9. The aquatic macrophytes were collected using standard methods and identified at the University of Ibadan herbarium while the algal samples were collected using standard methods for microalgae. The periphytonic species were scraped from surfaces of rocks (perilithic), sucked with large syringe from mud (epipellic), scraped from suspended logs, washed from roots of aquatic angiosperms (epiphytic), as well as shaken from other particles such as suspended plant parts. Some were collected physically by scooping floating thallus of non-microscopic multicellular forms. The specimens were taken to the laboratory and observed under a microscope with mounted digital camera for photomicrography. Identification was done using Prescott. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquatic%20plants" title="aquatic plants">aquatic plants</a>, <a href="https://publications.waset.org/abstracts/search?q=aquatic%20macrophytes" title=" aquatic macrophytes"> aquatic macrophytes</a>, <a href="https://publications.waset.org/abstracts/search?q=algae" title=" algae"> algae</a>, <a href="https://publications.waset.org/abstracts/search?q=Owena%20river" title=" Owena river"> Owena river</a> </p> <a href="https://publications.waset.org/abstracts/25176/the-aquatic-plants-community-in-the-owena-idanre-section-of-the-owena-river-of-ondo-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">559</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">428</span> Chronic Exposure of Mercury on Amino Acid Level in Freshwater Fish Clarias batrachus (Linn.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mary%20Josephine%20Rani">Mary Josephine Rani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Virtually all metals are toxic to aquatic organisms because of the devastating effect of these metals on humans; heavy metals are one of the most toxic forms of aquatic pollution. Metal concentrations in aquatic organisms appear to be of several magnitudes higher than concentrations present in the ecosystem. Mercury is one of the most toxic heavy metals in the environment. The principal sources of contamination in wastewater are chloralkali plants, battery factories, mercury switches, and medical wastes. Elevated levels of mercury in aquatic organisms specially fish represent both an ecological and human concern. Amino acid levels were estimated in five tissues (gills, liver, kidney, brain and muscle) of Clariasbatrachus after 28 days of chronic exposure to mercury. Free amino acids serve as precursor for energy production under stress and for the synthesis of required proteins to face the metal challenge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title="amino acids">amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a>, <a href="https://publications.waset.org/abstracts/search?q=mercury" title=" mercury"> mercury</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/23927/chronic-exposure-of-mercury-on-amino-acid-level-in-freshwater-fish-clarias-batrachus-linn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">427</span> Combined Effect of Global Warming and Water Structures on Rivers’ Water Quality and Aquatic Life: Case Study of Esna Barrage on the Nile River in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sherine%20A.%20El%20Baradei">Sherine A. El Baradei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global warming and climatic change are very important topics that are being studied and investigated nowadays as they have lots of diverse impacts on mankind, water quality, aquatic life, wildlife,…etc. Also, many water and hydraulics structures like dams and barrages are being built every day to satisfy water consumption needs, irrigation purposes and power generating purposes. Each of global warming and water structures alone has diversity of impacts on water quality and aquatic life in rivers. This research is investigating the dual combined effect of both water structures and global warming on the water quality and aquatic life through mathematical modeling. A case study of the Esna Barrage on the Nile River in Egypt is being studied. This research study is taking into account the effects of both seasons; namely, winter and summer and their effects on air and hence water temperature of the Nile reach under study. To do so, the study is conducted on the last 23 years to investigate the effect of global warming and climatic change on the studied river water. The mathematical model is then combining the dual effect of the Esna barrage and the global warming on the water quality; as well as, on aquatic life of the Nile reach under study. From the results of the mathematical model, it could be concluded that the dual effect of water structures and global warming is very negative on the water quality and the aquatic life in rivers upstream those structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquatic%20life" title="aquatic life">aquatic life</a>, <a href="https://publications.waset.org/abstracts/search?q=barrages" title=" barrages"> barrages</a>, <a href="https://publications.waset.org/abstracts/search?q=climatic%20change" title=" climatic change"> climatic change</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolved%20oxygen" title=" dissolved oxygen"> dissolved oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20warming" title=" global warming"> global warming</a>, <a href="https://publications.waset.org/abstracts/search?q=river" title=" river"> river</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20structures" title=" water structures"> water structures</a> </p> <a href="https://publications.waset.org/abstracts/55379/combined-effect-of-global-warming-and-water-structures-on-rivers-water-quality-and-aquatic-life-case-study-of-esna-barrage-on-the-nile-river-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">426</span> Biological Monitoring: Vegetation Cover, Bird Assemblages, Rodents, Terrestrial and Aquatic Invertebrates from a Closed Landfill </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Cittadino">A. Cittadino</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Gantes"> P. Gantes</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Coviella"> C. Coviella</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Casset"> M. Casset</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sanchez%20Caro"> A. Sanchez Caro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three currently active landfills receive the waste from Buenos Aires city and the Great Buenos Aires suburbs. One of the first landfills to receive solid waste from this area was located in Villa Dominico, some 7 km south from Buenos Aires City. With an area of some 750 ha, including riparian habitats, divided into 14 cells, it received solid wastes from June 1979 through February 2004. In December 2010, a biological monitoring program was set up by CEAMSE and Universidad Nacional de Lujan, still operational to date. The aim of the monitoring program is to assess the state of several biological groups within the landfill and to follow their dynamics overtime in order to identify if any, early signs of damage the landfill activities might have over the biota present. Bird and rodent populations, aquatic and terrestrial invertebrates’ populations, cells vegetation coverage, and surrounding areas vegetation coverage and main composition are followed by quarterly samplings. Bird species richness and abundance were estimated by observation over walk transects on each environment. A total of 74 different species of birds were identified. Species richness and diversity were high for both riparian surrounding areas and within the landfill. Several grassland -typical of the 'Pampa'- bird species were found within the landfill, as well as some migratory and endangered bird species. Sherman and Tomahawk traps are set overnight for small mammal sampling. Rodent populations are just above detection limits, and the few specimens captured belong mainly to species common to rural areas, instead of city-dwelling species. The two marsupial species present in the region were captured on occasions. Aquatic macroinvertebrates were sampled on a watercourse upstream and downstream the outlet of the landfill’s wastewater treatment plant and are used to follow water quality using biological indices. Water quality ranged between weak and severe pollution; benthic invertebrates sampled before and after the landfill, show no significant differences in water quality using the IBMWP index. Insect biota from yellow sticky cards and pitfall traps showed over 90 different morphospecies, with Shannon diversity index running from 1.9 to 3.9, strongly affected by the season. An easy-to-perform non-expert demandant method was used to assess vegetation coverage. Two scales of determination are utilized: field observation (1 m resolution), and Google Earth images (that allow for a better than 5 m resolution). Over the eight year period of the study, vegetation coverage over the landfill cells run from a low 83% to 100% on different cells, with an average between 95 to 99% for the entire landfill depending on seasonality. Surrounding area vegetation showed almost 100% coverage during the entire period, with an average density from 2 to 6 species per sq meter and no signs of leachate damaged vegetation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20indicators" title="biological indicators">biological indicators</a>, <a href="https://publications.waset.org/abstracts/search?q=biota%20monitoring" title=" biota monitoring"> biota monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=landfill%20species%20diversity" title=" landfill species diversity"> landfill species diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/101027/biological-monitoring-vegetation-cover-bird-assemblages-rodents-terrestrial-and-aquatic-invertebrates-from-a-closed-landfill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">425</span> The Role of Biosecurity in Sustainable Aquaculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barbara%20Montwill">Barbara Montwill</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The last three decades of continuing increase in the farming of aquatic animals worldwide placed a biosecurity in a different perspective. An introduction of new countries, technologies, species to aquaculture, increased movement of animals are a few factors the might be associated with biosecurity risks. Most farms depend on trade for various inputs such as broodstock, post-larvae/fingerlings and feed. These inputs represent potential pathways by which pathogens can enter farming operations and create conditions for emergence of new or reoccurrence of diseases and production loses. Farm biosecurity should be considered an essential component of a national aquatic animal biosecurity program and together with adequate import and export controls can lead to the development of successful aquaculture industry as a reliable source of safe seafood product. This presentation would describe some biosecurity management approaches to minimize the negative impact of aquatic diseases on production and preserve the power of antibiotics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquaculture" title="aquaculture">aquaculture</a>, <a href="https://publications.waset.org/abstracts/search?q=biosecurity" title=" biosecurity"> biosecurity</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotics" title=" antibiotics"> antibiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotics%20residues" title=" antibiotics residues"> antibiotics residues</a> </p> <a href="https://publications.waset.org/abstracts/42097/the-role-of-biosecurity-in-sustainable-aquaculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">424</span> Diversity and Ecology of the Aquatic Avifauna of the Wetland of Sebkhet Bazer Sakhra, South of Setif, Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gouga%20Hadjer">Gouga Hadjer</a>, <a href="https://publications.waset.org/abstracts/search?q=Djerdali%20Sofia"> Djerdali Sofia</a>, <a href="https://publications.waset.org/abstracts/search?q=Benssaci%20Ettayeb"> Benssaci Ettayeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to estimate the evolution of the numbers of the aquatic avifauna and their seasonal variations in Sebkhet of Bazer-Sakhra (Site of the eco-complex wetlands of Setif) a monitoring realized during the period from September 2012 to August 2013 allowed to inventory 54 species are spread over 08 orders, 15 families, 34 genres. To follow the global dynamics and the seasonal distribution of species inventoried at Sebkhet Bazer, an analysis of the variation of the total workforce has been established by ecological indices. The autumn season includes the largest number of birds, it totals 3639 individuals. Accidental species are well represented at the autumn and spring seasons denote the interest of the site with respect to migration passages of aquatic birds. During the fall and spring, the Flamingo and the Belon Shelduck are the most abundant with respectively (500, 883) and (560, 1296) individuals. The ecological analysis of this stand showed us that the highest species richness is recorded in spring, (45 species) and the lowest value is obtained in summer it is 20 species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sebkhet%20of%20BazerSakra" title="Sebkhet of BazerSakra">Sebkhet of BazerSakra</a>, <a href="https://publications.waset.org/abstracts/search?q=ecology" title=" ecology"> ecology</a>, <a href="https://publications.waset.org/abstracts/search?q=aquatic%20avifauna" title=" aquatic avifauna"> aquatic avifauna</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title=" biodiversity"> biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonal%20evolution" title=" seasonal evolution"> seasonal evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=wetland" title=" wetland"> wetland</a> </p> <a href="https://publications.waset.org/abstracts/96245/diversity-and-ecology-of-the-aquatic-avifauna-of-the-wetland-of-sebkhet-bazer-sakhra-south-of-setif-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">423</span> Impact of Microbial Pathogen on Aquatic Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Younis%20Laghari">Muhammad Younis Laghari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global climate change has had many effects on the aquatic environment, and the major issue is pollution. Along with the other pollutants, there are a significant number of human microbial pathogens that pollute the water bodies. Another concern about the water quality is that the major aquatic resources bring water-borne pathogens and other related diseases. These resources include industrial effluent, untreated domestic sewage, acid mine drainage, etc. However, these water discharges through various routes may have treatment to eliminate the pathogenic microbes. Therefore, it is essential to control the leakage from sewer systems, residential discharge, and agricultural run-off. These pathogenic microbes have been implicated in the lives of water health (fishes), which is harmful and causes diseases. Mostly, the mortality of aquatic species results because of catastrophic floods due to poor water waste treatment and sanitation that introduce pathogenic bacteria into rivers. Pathogens survive in rivers and remain poorly known but essential to control water-borne diseases. The presence of bacteria in watercourses is diverse and constitutes a complicated subject. Many species are autochthonous and play an important role in aquatic ecosystems, while many others arise from untreated or poorly treated waste from industrial and domestic sources. Further, more investigation is required to know the induction of water-borne pathogens in various water resources and the potential impacts of water resource development on pathogen contamination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20pathogens" title="microbial pathogens">microbial pathogens</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination" title=" contamination"> contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resources" title=" water resources"> water resources</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20water%20body" title=" river water body"> river water body</a> </p> <a href="https://publications.waset.org/abstracts/171894/impact-of-microbial-pathogen-on-aquatic-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">422</span> The Effects of Human Activities on Plant Diversity in Tropical Wetlands of Lake Tana (Ethiopia)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abrehet%20Kahsay%20Mehari">Abrehet Kahsay Mehari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aquatic plants provide the physical structure of wetlands and increase their habitat complexity and heterogeneity, and as such, have a profound influence on other biotas. In this study, we investigated how human disturbance activities influenced the species richness and community composition of aquatic plants in the wetlands of Lake Tana, Ethiopia. Twelve wetlands were selected: four lacustrine, four river mouths, and four riverine papyrus swamps. Data on aquatic plants, environmental variables, and human activities were collected during the dry and wet seasons of 2018. A linear mixed effect model and a distance-based Redundancy Analysis (db-RDA) were used to relate aquatic plant species richness and community composition, respectively, to human activities and environmental variables. A total of 113 aquatic plant species, belonging to 38 families, were identified across all wetlands during the dry and wet seasons. Emergent species had the maximum area covered at 73.45 % and attained the highest relative abundance, followed by amphibious and other forms. The mean taxonomic richness of aquatic plants was significantly lower in wetlands with high overall human disturbance scores compared to wetlands with low overall human disturbance scores. Moreover, taxonomic richness showed a negative correlation with livestock grazing, tree plantation, and sand mining. The community composition also varied across wetlands with varying levels of human disturbance and was primarily driven by turnover (i.e., replacement of species) rather than nestedness resultant(i.e., loss of species). Distance-based redundancy analysis revealed that livestock grazing, tree plantation, sand mining, waste dumping, and crop cultivation were significant predictors of variation in aquatic plant communities’ composition in the wetlands. Linear mixed effect models and distance-based redundancy analysis also revealed that water depth, turbidity, conductivity, pH, sediment depth, and temperature were important drivers of variations in aquatic plant species richness and community composition. Papyrus swamps had the highest species richness and supported different plant communities. Conservation efforts should therefore focus on these habitats and measures should be taken to restore the highly disturbed and species poor wetlands near the river mouths. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=species%20richness" title="species richness">species richness</a>, <a href="https://publications.waset.org/abstracts/search?q=community%20composition" title=" community composition"> community composition</a>, <a href="https://publications.waset.org/abstracts/search?q=aquatic%20plants" title=" aquatic plants"> aquatic plants</a>, <a href="https://publications.waset.org/abstracts/search?q=wetlands" title=" wetlands"> wetlands</a>, <a href="https://publications.waset.org/abstracts/search?q=Lake%20Tana" title=" Lake Tana"> Lake Tana</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20disturbance%20activities" title=" human disturbance activities"> human disturbance activities</a> </p> <a href="https://publications.waset.org/abstracts/152793/the-effects-of-human-activities-on-plant-diversity-in-tropical-wetlands-of-lake-tana-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">421</span> Ecological impacts of Cage Farming: A Case Study of Lake Victoria, Kenya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mercy%20Chepkirui">Mercy Chepkirui</a>, <a href="https://publications.waset.org/abstracts/search?q=Reuben%20Omondi"> Reuben Omondi</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Orina"> Paul Orina</a>, <a href="https://publications.waset.org/abstracts/search?q=Albert%20Getabu"> Albert Getabu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lewis%20Sitoki"> Lewis Sitoki</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Munguti"> Jonathan Munguti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Globally, the decline in capture fisheries as a result of the growing population and increasing awareness of the nutritional benefits of white meat has led to the development of aquaculture. This is anticipated to meet the increasing call for more food for the human population, which is likely to increase further by 2050. Statistics showed that more than 50% of the global future fish diet will come from aquaculture. Aquaculture began commercializing some decades ago; this is accredited to technological advancement from traditional to modern cultural systems, including cage farming. Cage farming technology has been rapidly growing since its inception in Lake Victoria, Kenya. Currently, over 6,000 cages have been set up in Kenyan waters, and this offers an excellent opportunity for recognition of Kenya’s government tactic to eliminate food insecurity and malnutrition, create employment and promote a Blue Economy. However, being an open farming enterprise is likely to emit large bulk of waste hence altering the ecosystem integrity of the lake. This is through increased chlorophyll-a pigments, alteration of the plankton community, macroinvertebrates, fish genetic pollution, transmission of fish diseases and pathogens. Cage farming further increases the nutrient loads leading to the production of harmful algal blooms, thus negatively affecting aquatic and human life. Despite the ecological transformation, cage farming provides a platform for the achievement of the Sustainable Development Goals of 2030, especially the achievement of food security and nutrition. Therefore, there is a need for Integrated Multitrophic Aquaculture as part of Blue Transformation for ecosystem monitoring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquaculture" title="aquaculture">aquaculture</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem" title=" ecosystem"> ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=blue%20economy" title=" blue economy"> blue economy</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20security" title=" food security"> food security</a> </p> <a href="https://publications.waset.org/abstracts/168046/ecological-impacts-of-cage-farming-a-case-study-of-lake-victoria-kenya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">420</span> The Results of Longitudinal Water Quality Monitoring of the Brandywine River, Chester County, Pennsylvania by High School Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dina%20L.%20DiSantis">Dina L. DiSantis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Strengthening a sense of responsibility while relating global sustainability concepts such as water quality and pollution to a local water system can be achieved by teaching students to conduct and interpret water quality monitoring tests. When students conduct their own research, they become better stewards of the environment. Providing outdoor learning and place-based opportunities for students helps connect them to the natural world. By conducting stream studies and collecting data, students are able to better understand how the natural environment is a place where everything is connected. Students have been collecting physical, chemical and biological data along the West and East Branches of the Brandywine River, in Pennsylvania for over ten years. The stream studies are part of the advanced placement environmental science and aquatic science courses that are offered as electives to juniors and seniors at the Downingtown High School West Campus in Downingtown, Pennsylvania. Physical data collected includes: temperature, turbidity, width, depth, velocity, and volume of flow or discharge. The chemical tests conducted are: dissolved oxygen, carbon dioxide, pH, nitrates, alkalinity and phosphates. Macroinvertebrates are collected with a kick net, identified and then released. Students collect the data from several locations while traveling by canoe. In the classroom, students prepare a water quality data analysis and interpretation report based on their collected data. The summary of the results from longitudinal water quality data collection by students, as well as the strengths and weaknesses of student data collection will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=place-based" title="place-based">place-based</a>, <a href="https://publications.waset.org/abstracts/search?q=student%20data%20collection" title=" student data collection"> student data collection</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality%20monitoring" title=" water quality monitoring"> water quality monitoring</a> </p> <a href="https://publications.waset.org/abstracts/84177/the-results-of-longitudinal-water-quality-monitoring-of-the-brandywine-river-chester-county-pennsylvania-by-high-school-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">419</span> The Role of Phycoremediation in the Sustainable Management of Aquatic Pollution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raymond%20Ezenweani">Raymond Ezenweani</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeffrey%20Ogbebor"> Jeffrey Ogbebor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The menace of aquatic pollution has become increasingly of great concern and the effects of this pollution as a result of anthropogenic activities cannot be over emphasized. Phycoremediation is the application of algal remediation technology in the removal of harmful products from the environment. Harmful products also known as pollutants are usually introduced into the environment through variety of processes such as industrial discharge, agricultural runoff, flooding, and acid rain. This work has to do with the capability of algae in the efficient removal of different pollutants, ranging from hydrocarbons, eutrophication, agricultural chemicals and wastes, heavy metals, foul smell from septic tanks or dumps through different processes such as bioconversion, biosorption, bioabsorption and biodecomposition. Algae are capable of bioconversion of environmentally persistent compounds to degradable compounds and also capable of putting harmful bacteria growth into check in waste water remediation. Numerous algal organisms such as Nannochloropsis spp, Chlorella spp, Tetraselmis spp, Shpaerocystics spp, cyanobacteria and different macroalgae have been tested by different researchers in laboratory scale and shown to have 100% efficiency in environmental remediation. Algae as a result of their photosynthetic capacity are also efficient in air cleansing and management of global warming by sequestering carbon iv oxide in air and converting it into organic carbon, thereby making food available for the other organisms in the higher trophic level of the aquatic food chain. Algae play major role in the sustenance of the aquatic ecosystem by their virtue of being photosynthetic. They are the primary producers and their role in environmental sustainability is remarkable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Algae" title="Algae ">Algae </a>, <a href="https://publications.waset.org/abstracts/search?q=Pollutant" title=" Pollutant"> Pollutant</a>, <a href="https://publications.waset.org/abstracts/search?q=." title=".">.</a>, <a href="https://publications.waset.org/abstracts/search?q=Phycoremediation" title=" Phycoremediation"> Phycoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=Aquatic" title=" Aquatic"> Aquatic</a>, <a href="https://publications.waset.org/abstracts/search?q=Sustainability" title=" Sustainability"> Sustainability</a> </p> <a href="https://publications.waset.org/abstracts/120451/the-role-of-phycoremediation-in-the-sustainable-management-of-aquatic-pollution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">418</span> Avifaunal Diversity in the Mallathahalli Lake of Bangalore Urban District, Karnataka, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vidya%20Padmakumar">Vidya Padmakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20C.%20Tharavathy"> N. C. Tharavathy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was conducted from July 2015 to July 2017 to determine and understand the occurrence, frequency and diversity of avifauna in the Mallathahalli Lake of Bangalore Urban district. During the study period, 46 species of both terrestrial, as well as, aquatic birds belonging to 30 families were identified out of which 9 families were aquatic birds and 21 families were terrestrial birds. There were 4 species of migratory birds out of 46, showing diurnal migration. There was a significant reduce in the number of bird species both terrestrial and aquatic during the summer season and also varied greatly during winters and monsoon. Of the total 24 species of aquatic birds, Fulica atra and Tachybaptus ruficolis were the most common with 100% frequency and the least frequent species with 3.02% frequency was identified as Threskiornis melanocephalus. Among the 22 species of terrestrial birds, Acridotheres tristis had a frequency of 89% and the least frequent was Pycnonotus cafer (4.45%). The most commonly encountered bird species were from the families- Anatidae, Podicipedidae, Ardeidae, Phalacrocoracidae, Rallidae, Accipitridae, Scolopacidae, Charadridae, Laridae, Meropidae, Hirudinidae. All the birds surviving around the area are dependent on the wetland and crop vegetation surrounding the lake, which are deteriorating due to anthropogenic interventions and urbanization which are rising to its peak gradually causing the decline in the avifaunal diversity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avifaunal%20diversity" title="Avifaunal diversity">Avifaunal diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=Mallathahalli%20lake" title=" Mallathahalli lake"> Mallathahalli lake</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonal%20migration" title=" seasonal migration"> seasonal migration</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization" title=" urbanization"> urbanization</a> </p> <a href="https://publications.waset.org/abstracts/87938/avifaunal-diversity-in-the-mallathahalli-lake-of-bangalore-urban-district-karnataka-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">417</span> Mapping Stress in Submerged Aquatic Vegetation Using Multispectral Imagery and Structure from Motion Photogrammetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amritha%20Nair">Amritha Nair</a>, <a href="https://publications.waset.org/abstracts/search?q=Fleur%20Visser"> Fleur Visser</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20Maddock"> Ian Maddock</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonas%20Schoelynck"> Jonas Schoelynck</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inland waters such as streams sustain a rich variety of species and are essentially hotspots for biodiversity. Submerged aquatic vegetation, also known as SAV, forms an important part of ecologically healthy river systems. Direct and indirect human influences, such as climate change are putting stress on aquatic plant communities, ranging from the invasion of non-native species and grazing, to changes in the river flow conditions and temperature. There is a need to monitor SAV, because they are in a state of deterioration and their disappearance will greatly impact river ecosystems. Like terrestrial plants, SAV can show visible signs of stress. However, the techniques used to map terrestrial vegetation from its spectral reflectance, are not easily transferable to a submerged environment. Optical remote sensing techniques are employed to detect the stress from remotely sensed images through multispectral imagery and Structure from Motion photogrammetry. The effect of the overlying water column in the form of refraction, attenuation of visible and near infrared bands in water, as well as highly moving targets, are NIR) key challenges that arise when remotely mapping SAV. This study looks into the possibility of mapping the changes in spectral signatures from SAV and their response to certain stresses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=submerged%20aquatic%20vegetation" title="submerged aquatic vegetation">submerged aquatic vegetation</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20from%20motion" title=" structure from motion"> structure from motion</a>, <a href="https://publications.waset.org/abstracts/search?q=photogrammetry" title=" photogrammetry"> photogrammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=multispectral" title=" multispectral"> multispectral</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopy" title=" spectroscopy"> spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/174497/mapping-stress-in-submerged-aquatic-vegetation-using-multispectral-imagery-and-structure-from-motion-photogrammetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">416</span> The Hepatoprotective Effects of Aquatic Extract of Levesticum Officinale against Paraquat Toxicity of Hepatocytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Afarnegan">Hasan Afarnegan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Shahraki"> Ali Shahraki</a>, <a href="https://publications.waset.org/abstracts/search?q=Jafar%20%20Shahraki"> Jafar Shahraki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Paraquat is widely used as a strong nitrogen-based herbicide for controlling of weeds in agriculture. This poison is extremely toxic for humans which induces several – organ failure by accumulation in cells and many instances of death occurred due to its poisoning. Paraquat metabolized primarily in the liver. The purpose of this study was to assess the effects of aquatic extract of levisticum officinale on oxidative status and biochemical factors in hepatocytes exposed to paraquat. Our results determined that hepatocytes destruction induced by paraquat is mediated by reactive oxygen species (ROS) production, lipid peroxidation and decrease of mitochondrial membrane potential were significantly (P<0.05) prevented by aquatic extract of Levisicum officinale (100, 200 and 300 µg/ml). These effects of paraquat also prevented via antioxidants and ROS scavengers (α-tocopherol, DMSO, manitol), mitochondrial permeability transition (MPT) pore sealing compound (carnitine).MPT pore sealing compound inhibited the hepatotoxicity, indicating that paraquat induced cell death via mithochondrial pathway. Pretreatment of hepatocytes with aquatic extracts of Levisticum officinale, antioxidants and ROS scavengers also blocked hepatic cell death caused by paraquat, suggesting that oxidative stress may be directly induced decline of mithochondrial membrane potential. In conclusion, paraquat hepatotoxicity can be attributed to oxidative stress and continued by mithochondrial membrane potential disruption. Levisticum officinale aquatic extract, presumably due to its strong antoxidant properties, could protect the destructive effects of paraquat on rat hepatocytes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hepatocyte%20protection" title="hepatocyte protection">hepatocyte protection</a>, <a href="https://publications.waset.org/abstracts/search?q=levisticum%20officinale" title=" levisticum officinale"> levisticum officinale</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=paraquat" title=" paraquat"> paraquat</a> </p> <a href="https://publications.waset.org/abstracts/75121/the-hepatoprotective-effects-of-aquatic-extract-of-levesticum-officinale-against-paraquat-toxicity-of-hepatocytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">415</span> Effect of Aquatic and Land Plyometric Training on Selected Physical Fitness Variables in Intercollegiate Male Handball Players </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nisith%20K.%20Datta">Nisith K. Datta</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20Bharti"> Rakesh Bharti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the study was to find out the effects of Aquatic and Land plyometric training on selected physical variables in intercollegiate male handball players. To achieve this purpose of the study, forty five handball players of Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat were selected as players at random and their age ranged between 18 to 21 years. The selected players were divided into three equal groups of fifteen players each. Group I underwent Aquatic plyometric training, Group II underwent Land plyometric training and Group III Control group for three days per week for twelve weeks. Control Group did not participate in any special training programme apart from their regular activities as per their curriculum. The following physical fitness variables namely speed; leg explosive power and agility were selected as dependent variables. All the players of three groups were tested on selected dependent variables prior to and immediately after the training programme. The analysis of covariance was used to analyze the significant difference, if any among the groups. Since, three groups were compared, whenever the obtained ‘F’ ratio for adjusted post test was found to be significant, the Scheffe’s test to find out the paired mean differences, if any. The 0.05 level of confidence was fixed as the level of significance to test the ‘F’ ratio obtained by the analysis of covariance, which was considered as an appropriate. The result of the study indicates due to Aquatic and Land plyometric training on speed, explosive power, and agility has been improved significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquatic%20training" title="aquatic training">aquatic training</a>, <a href="https://publications.waset.org/abstracts/search?q=explosive%20power" title=" explosive power"> explosive power</a>, <a href="https://publications.waset.org/abstracts/search?q=plyometric%20training" title=" plyometric training"> plyometric training</a>, <a href="https://publications.waset.org/abstracts/search?q=speed" title=" speed"> speed</a> </p> <a href="https://publications.waset.org/abstracts/21241/effect-of-aquatic-and-land-plyometric-training-on-selected-physical-fitness-variables-in-intercollegiate-male-handball-players" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aquatic%20macroinvertebrates&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aquatic%20macroinvertebrates&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aquatic%20macroinvertebrates&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aquatic%20macroinvertebrates&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aquatic%20macroinvertebrates&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aquatic%20macroinvertebrates&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aquatic%20macroinvertebrates&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aquatic%20macroinvertebrates&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aquatic%20macroinvertebrates&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aquatic%20macroinvertebrates&amp;page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aquatic%20macroinvertebrates&amp;page=15">15</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aquatic%20macroinvertebrates&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10