CINXE.COM
Generative Diffusion Models for Antibody Design, Docking, and Optimization | bioRxiv
<!DOCTYPE html> <html lang="en" dir="ltr" xmlns="http://www.w3.org/1999/xhtml" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <head prefix="og: http://ogp.me/ns# article: http://ogp.me/ns/article# book: http://ogp.me/ns/book#" > <!--[if IE]><![endif]--> <link rel="dns-prefetch" href="//d33xdlntwy0kbs.cloudfront.net" /> <link rel="dns-prefetch" href="//www.google.com" /> <link rel="dns-prefetch" href="//scholar.google.com" /> <link rel="dns-prefetch" href="//www.googletagmanager.com" /> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <link rel="shortcut icon" href="https://www.biorxiv.org/sites/default/files/images/favicon.ico" type="image/vnd.microsoft.icon" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link rel="alternate" type="application/pdf" title="Full Text (PDF)" href="/content/10.1101/2023.09.25.559190v1.full.pdf" /> <link rel="alternate" type="text/plain" title="Full Text (Plain)" href="/content/10.1101/2023.09.25.559190v1.full.txt" /> <meta name="article_thumbnail" content="https://www.biorxiv.org/content/biorxiv/early/2023/09/26/2023.09.25.559190/embed/graphic-7.gif" /> <meta name="type" content="article" /> <meta name="category" content="article" /> <meta name="HW.identifier" content="/biorxiv/early/2023/09/26/2023.09.25.559190.atom" /> <meta name="HW.pisa" content="biorxiv;2023.09.25.559190v1" /> <meta name="DC.Format" content="text/html" /> <meta name="DC.Language" content="en" /> <meta name="DC.Title" content="Generative Diffusion Models for Antibody Design, Docking, and Optimization" /> <meta name="DC.Identifier" content="10.1101/2023.09.25.559190" /> <meta name="DC.Date" content="2023-09-26" /> <meta name="DC.Publisher" content="Cold Spring Harbor Laboratory" /> <meta name="DC.Rights" content="© 2023, Posted by Cold Spring Harbor Laboratory. This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0/" /> <meta name="DC.AccessRights" content="restricted" /> <meta name="DC.Description" content="In recent years, optimizing antibody binding affinity for biomedical applications has become increasingly important. However, traditional wet-experiment-based approaches are time-consuming and inefficient. To address this issue, we propose a diffusion model-based antibody optimization pipeline to improve binding affinity. Our approach involves two key models: AbDesign for designing antibody sequences and structures, and AbDock, a paratope-epitope docking model, used for screening designed CDRs. On an independent test set, our AbDesign demonstrates the exceptional performance of an RMSD of 2.56Å in structure design and an amino acid recovery of 36.47% in sequence design. In a paratope-epitope docking test set, our AbDock achieves a state-of-the-art performance of DockQ 0.44, irms 2.71Å, fnat 0.40, and Lrms 6.29Å. The effectiveness of the optimization pipeline is further experimentally validated by optimizing a flaviviruse antibody 1G5.3, resulting in a broad-spectrum antibody that demonstrates improved binding to 6 out of the nine tested flaviviruses. This research offers a general-purpose methodology to enhance antibody functionality without training on data from specific antigens. ### Competing Interest Statement The authors have declared no competing interest." /> <meta name="DC.Contributor" content="Zhangzhi Peng" /> <meta name="DC.Contributor" content="Chenchen Han" /> <meta name="DC.Contributor" content="Xiaohan Wang" /> <meta name="DC.Contributor" content="Dapeng Li" /> <meta name="DC.Contributor" content="Fajie Yuan" /> <meta name="article:published_time" content="2023-09-26" /> <meta name="article:section" content="New Results" /> <meta name="citation_title" content="Generative Diffusion Models for Antibody Design, Docking, and Optimization" /> <meta name="citation_abstract" lang="en" content="<h3>Abstract</h3> <p>In recent years, optimizing antibody binding affinity for biomedical applications has become increasingly important. However, traditional wet-experiment-based approaches are time-consuming and inefficient. To address this issue, we propose a diffusion model-based antibody optimization pipeline to improve binding affinity. Our approach involves two key models: AbDesign for designing antibody sequences and structures, and AbDock, a paratope-epitope docking model, used for screening designed CDRs. On an independent test set, our AbDesign demonstrates the exceptional performance of an RMSD of 2.56Å in structure design and an amino acid recovery of 36.47% in sequence design. In a paratope-epitope docking test set, our AbDock achieves a state-of-the-art performance of DockQ 0.44, irms 2.71Å, fnat 0.40, and Lrms 6.29Å. The effectiveness of the optimization pipeline is further experimentally validated by optimizing a flaviviruse antibody 1G5.3, resulting in a broad-spectrum antibody that demonstrates improved binding to 6 out of the nine tested flaviviruses. This research offers a general-purpose methodology to enhance antibody functionality without training on data from specific antigens.</p>" /> <meta name="citation_journal_title" content="bioRxiv" /> <meta name="citation_publisher" content="Cold Spring Harbor Laboratory" /> <meta name="citation_publication_date" content="2023/01/01" /> <meta name="citation_mjid" content="biorxiv;2023.09.25.559190v1" /> <meta name="citation_id" content="2023.09.25.559190v1" /> <meta name="citation_public_url" content="https://www.biorxiv.org/content/10.1101/2023.09.25.559190v1" /> <meta name="citation_abstract_html_url" content="https://www.biorxiv.org/content/10.1101/2023.09.25.559190v1.abstract" /> <meta name="citation_full_html_url" content="https://www.biorxiv.org/content/10.1101/2023.09.25.559190v1.full" /> <meta name="citation_pdf_url" content="https://www.biorxiv.org/content/biorxiv/early/2023/09/26/2023.09.25.559190.full.pdf" /> <meta name="citation_doi" content="10.1101/2023.09.25.559190" /> <meta name="citation_num_pages" content="23" /> <meta name="citation_article_type" content="Article" /> <meta name="citation_section" content="New Results" /> <meta name="citation_firstpage" content="2023.09.25.559190" /> <meta name="citation_author" content="Zhangzhi Peng" /> <meta name="citation_author_institution" content="Electrical Engineering & Computer Science, University of Missouri" /> <meta name="citation_author" content="Chenchen Han" /> <meta name="citation_author_institution" content="School of Life Engineering, Westlake University" /> <meta name="citation_author" content="Xiaohan Wang" /> <meta name="citation_author_institution" content="Center for Infectious Disease Research, Westlake University" /> <meta name="citation_author_institution" content="School of Life Sciences, Westlake University" /> <meta name="citation_author" content="Dapeng Li" /> <meta name="citation_author_institution" content="Center for Infectious Disease Research, Westlake University" /> <meta name="citation_author_institution" content="School of Life Sciences, Westlake University" /> <meta name="citation_author_email" content="lidapeng@westlake.edu.cn" /> <meta name="citation_author_email" content="yuanfajie@westlake.edu.cn" /> <meta name="citation_author" content="Fajie Yuan" /> <meta name="citation_author_institution" content="School of Life Engineering, Westlake University" /> <meta name="citation_author_email" content="lidapeng@westlake.edu.cn" /> <meta name="citation_author_email" content="yuanfajie@westlake.edu.cn" /> <meta name="citation_author_orcid" content="http://orcid.org/0000-0001-8452-9929" /> <meta name="citation_reference" content="Gram, H., Marconi, L.A., Barbas, C.F., Collet, T.A., Lerner, R.A., Kang, A.S.: In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin library. Proceedings of the National Academy of Sciences of the United States of America 89, 3576–3580 (1992)" /> <meta name="citation_reference" content="Hammerling, M.J., Fritz, B.R., Yoesep, D.J., Kim, D.S., Carlson, E.D., Jewett, M.C.: In vitro ribosome synthesis and evolution through ribosome display. Nature Communications 11 (2019)" /> <meta name="citation_reference" content="Ho, M., Pastan, I.H.: In vitro antibody affinity maturation targeting germline hotspots. Methods in molecular biology 525, 293–308 (2009)" /> <meta name="citation_reference" content="Jain, T., Sun, T., Durand, S., Hall, A.M., Houston, N.R., Nett, J.H., Sharkey, B., Bobrowicz, B., Caffry, I., Yu, Y., Cao, Y., Lynaugh, H., Brown, M.E., Baruah, H., Gray, L.T., Krauland, E., Xu, Y., Vasquez, M., Wittrup, K.D.: Biophysical properties of the clinical-stage antibody landscape. Proceedings of the National Academy of Sciences 114, 944–949 (2017)" /> <meta name="citation_reference" content="Li, B., Fouts, A.E., Stengel, K.F., Luan, P., Dillon, M., Liang, W.-C., Feierbach, B., Kelley, R.F., Hötzel, I.: In vitro affinity maturation of a natural human antibody overcomes a barrier to in vivo affinity maturation. mAbs 6, 437–445 (2014)" /> <meta name="citation_reference" content="Li, L., Gupta, E., Spaeth, J., Shing, L., Jaimes, R.G., Caceres, R.S., Bepler, T., Walsh, M.E.: Machine learning optimization of candidate antibody yields highly diverse sub-nanomolar affinity antibody libraries. Nature Communications 14 (2022)" /> <meta name="citation_reference" content="Shin, J.-E., Riesselman, A.J., Kollasch, A.W., McMahon, C., Simon, E., Sander, C., Manglik, A., Kruse, A.C., Marks, D.S.: Protein design and variant prediction using autoregressive generative models. Nature Communications 12 (2019)" /> <meta name="citation_reference" content="Liu, G., Zeng, H., Mueller, J.W., Carter, B., Wang, Z., Schilz, J., Horny, G., Birnbaum, M.E., Ewert, S., Gifford, D.K.: Antibody complementarity determining region design using high-capacity machine learning. Bioinformatics 36, 2126–2133 (2019)" /> <meta name="citation_reference" content="Saka, K., Kakuzaki, T., Metsugi, S., Kashiwagi, D., Yoshida, K., Wada, M., Tsun-oda, H., Teramoto, R.: Antibody design using lstm based deep generative model from phage display library for affinity maturation. Scientific Reports 11 (2021)" /> <meta name="citation_reference" content="citation_title=Advances in Neural Information Processing Systems;citation_title=Antigen-specific antibody design and optimization with diffusion-based generative models for protein structures;citation_year=2022" /> <meta name="citation_reference" content="Jin, W., Wohlwend, J., Barzilay, R., Jaakkola, T.S.: Iterative refinement graph neural network for antibody sequence-structure co-design. In: International Conference on Learning Representations (2022). https://openreview.net/forum?id=LI2bhrE2A" /> <meta name="citation_reference" content="Kong, X., Huang, W., Liu, Y.: In: The Eleventh International Conference on Learning Representations (2023). https://openreview.net/forum?id=LFHFQbjxIiP" /> <meta name="citation_reference" content="Shan, S., Luo, S., Yang, Z., Hong, J., Su, Y., Ding, F., Fu, L., Li, C., Chen, P., Ma, J., Shi, X., Zhang, Q., Berger, B., Zhang, L., Peng, J.: Deep learning guided optimization of human antibody against sars-cov-2 variants with broad neutralization. Proceedings of the National Academy of Sciences 119(11), 2122954119 (2022) 10.1073/pnas.2122954119 https://www.pnas.org/doi/pdf/10.1073/pnas.2122954119" /> <meta name="citation_reference" content="Hie, B.L., Xu, D., Shanker, V., Bruun, T.U.J., Weidenbacher, P.A.-B., Tang, S., Kim, P.S.: Efficient evolution of human antibodies from general protein language models. Nature Biotechnology, 1–9 (2022)" /> <meta name="citation_reference" content="Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10674–10685 (2021)" /> <meta name="citation_reference" content="Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. ArXiv abs/2006.11239 (2020)" /> <meta name="citation_reference" content="Anand, N., Achim, T.: Protein structure and sequence generation with equivariant denoising diffusion probabilistic models. ArXiv abs/2205.15019 (2022)" /> <meta name="citation_reference" content="Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis. ArXiv abs/2105.05233 (2021)" /> <meta name="citation_reference" content="Li, X.L., Thickstun, J., Gulrajani, I., Liang, P., Hashimoto, T.: Diffusion-lm improves controllable text generation. ArXiv abs/2205.14217 (2022)" /> <meta name="citation_reference" content="Watson, J.L., Juergens, D., Bennett, N.R., Trippe, B.L., Yim, J., Eisenach, H.E., Ahern, W., Borst, A.J., Ragotte, R.J., Milles, L.F., Wicky, B.I.M., Hanikel, N., Pellock, S.J., Courbet, A., Sheffler, W., Wang, J., Venkatesh, P., Sappington, I., Torres, S.V., Lauko, A., Bortoli, V.D., Mathieu, E., Ovchinnikov, S., Barzilay, R., Jaakkola, T., DiMaio, F., Baek, M., Baker, D.: De novo design of protein structure and function with rfdiffusion. Nature 620, 1089–1100 (2023)" /> <meta name="citation_reference" content="Modhiran, N., Song, H., Liu, L., Bletchly, C., Brillault, L., Amarilla, A.A., Xu, X., Qi, J., Chai, Y., Cheung, S.T., et al.: A broadly protective antibody that targets the flavivirus ns1 protein. Science 371(6525), 190–194 (2021)" /> <meta name="citation_reference" content="citation_title=Advances in Neural Information Processing Systems;citation_author=J. Ho;citation_author=A. Jain;citation_author=P. Abbeel;citation_pages=6840-6851;citation_volume=33;citation_year=2020;citation_doi=10.48550/ARXIV.2006.11239" /> <meta name="citation_reference" content="Kong, X., Huang, W., Liu, Y.: Conditional antibody design as 3d equivariant graph translation. In: The Eleventh International Conference on Learning Representations (2023). https://openreview.net/forum?id=LFHFQbjxIiP" /> <meta name="citation_reference" content="Satorras, V.G., Hoogeboom, E., Welling, M.: E(n) equivariant graph neural networks. In: International Conference on Machine Learning (2021)" /> <meta name="citation_reference" content="Huang, W., Han, J., Rong, Y., Xu, T., Sun, F., Huang, J.: Equivariant graph mechanics networks with constraints. In: International Conference on Learning Representations (2022). https://openreview.net/forum?id=SHbhHHfePhP" /> <meta name="citation_reference" content="Jumper, J.M., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S.A.A., Ballard, A., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D.A., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A.W., Kavukcuoglu, K., Kohli, P., Hassabis, D.: Highly accurate protein structure prediction with alphafold. Nature 596, 583–589 (2021)" /> <meta name="citation_reference" content="Dunbar, J., Krawczyk, K., Leem, J., Baker, T., Fuchs, A., Georges, G., Shi, J., Deane, C.M.: Sabdab: the structural antibody database. Nucleic Acids Research 42, 1140–1146 (2013)" /> <meta name="citation_reference" content="Mirdita, M., Steinegger, M., Breitwieser, F., Söding, J., Levy Karin, E.: Fast and sensitive taxonomic assignment to metagenomic contigs. Bioinformatics 37(18), 3029–3031 (2021) 10.1093/bioinformatics/btab184 https://academic.oup.com/bioinformatics/article-pdf/37/18/3029/40471478/btab184.pdf" /> <meta name="citation_reference" content="Pierce, B.G., Wiehe, K., Hwang, H., Kim, B.-H., Vreven, T., Weng, Z.: Zdock server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30 12, 1771–3 (2014)" /> <meta name="citation_reference" content="Yan, Y., Tao, H., He, J., Huang, S.: The hdock server for integrated protein–protein docking. Nature Protocols 15, 1829–1852 (2020)" /> <meta name="citation_reference" content="Jin, W., Barzilay, D.R., Jaakkola, T.: Conditional antibody design as 3d equivariant graph translation. In: Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S. (eds.) Proceedings of the 39th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 162, pp. 10217–10227. PMLR, ??? (2022). https://proceedings.mlr.press/v162/jin22a.html" /> <meta name="citation_reference" content="Eastman, P.K., Swails, J.M., Chodera, J.D., McGibbon, R.T., Zhao, Y., Beauchamp, K.A., Wang, L., Simmonett, A.C., Harrigan, M.P., Stern, C.D., Wiewiora, R.P., Brooks, B.R., Pande, V.S.: Openmm 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Computational Biology 13 (2016)" /> <meta name="citation_reference" content="Shanehsazzadeh, A., Bachas, S., Kasun, G., Sutton, J.M., Steiger, A.K., Shuai, R.W., Kohnert, C., Morehead, A., Brown, A., Chung, C., Luton, B.K., Diaz, N., McPartlon, M., Knight, B., Radach, M., Bateman, K.B., Spencer, D.A., Cejovic, J., Kopec-Belliveau, G., Haile, R., Yassine, E., McCloskey, C.M., Natividad, M., Chapman, D., Stojanovic, L., Rakocevic, G., Hannum, G., Yapici, E., Moran, K.M., Caguiat, R., Abdulhaqq, S., Guo, Z., Klug, L.R., Gander, M., Meier, J.: Unlocking de novo antibody design with generative artificial intelligence. bioRxiv (2023)" /> <meta name="citation_reference" content="Evans, R., O’Neill, M., Pritzel, A., Antropova, N., Senior, A., Green, T., Zídek, A., Bates, R., Blackwell, S., Yim, J., Ronneberger, O., Bodenstein, S., Zielinski, M., Bridgland, A., Potapenko, A., Cowie, A., Tunyasuvunakool, K., Jain, R., Clancy, E., Kohli, P., Jumper, J.M., Hassabis, D.: Protein complex prediction with alphafold-multimer. bioRxiv (2021)" /> <meta name="citation_reference" content="Leach, A., Schmon, S.M., Degiacomi, M.T., Willcocks, C.G.: D enoising d iffusion p robabilistic m odels on so(3) for r otational a lignment. (2022)" /> <meta name="citation_reference" content="Nikolayev, D., Savyolov, T.I.: Normal distribution on the rotation group so(3). Textures and Microstructures 29, 201–233 (1997)" /> <meta name="citation_reference" content="Cardoso, J.R., Leite, F.S.: Exponentials of skew-symmetric matrices and logarithms of orthogonal matrices. J. Comput. Appl. Math. 233, 2867–2875 (2010)" /> <meta name="citation_reference" content="Alford, R.F., Leaver-Fay, A., Jeliazkov, J.R., O’Meara, M.J., DiMaio, F., Park, H., Shapovalov, M.V., Renfrew, P.D., Mulligan, V.K., Kappel, K., Labonte, J.W., Pacella, M.S., Bonneau, R., Bradley, P., Dunbrack, R.L., Das, R., Baker, D., Kuhlman, B., Kortemme, T., Gray, J.J.: The rosetta all-atom energy function for macromolecular modeling and design. bioRxiv (2017)" /> <meta name="citation_reference" content="Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J.L., Dror, R.O., Shaw, D.E.: Improved side-chain torsion potentials for the amber ff99sb protein force field. Proteins 78, 1950–1958 (2010)" /> <meta name="twitter:title" content="Generative Diffusion Models for Antibody Design, Docking, and Optimization" /> <meta name="twitter:site" content="@biorxivpreprint" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:image" content="https://www.biorxiv.org/sites/default/files/images/biorxiv_logo_homepage7-5-small.png" /> <meta name="twitter:description" content="In recent years, optimizing antibody binding affinity for biomedical applications has become increasingly important. However, traditional wet-experiment-based approaches are time-consuming and inefficient. To address this issue, we propose a diffusion model-based antibody optimization pipeline to improve binding affinity. Our approach involves two key models: AbDesign for designing antibody sequences and structures, and AbDock, a paratope-epitope docking model, used for screening designed CDRs. On an independent test set, our AbDesign demonstrates the exceptional performance of an RMSD of 2.56Å in structure design and an amino acid recovery of 36.47% in sequence design. In a paratope-epitope docking test set, our AbDock achieves a state-of-the-art performance of DockQ 0.44, irms 2.71Å, fnat 0.40, and Lrms 6.29Å. The effectiveness of the optimization pipeline is further experimentally validated by optimizing a flaviviruse antibody 1G5.3, resulting in a broad-spectrum antibody that demonstrates improved binding to 6 out of the nine tested flaviviruses. This research offers a general-purpose methodology to enhance antibody functionality without training on data from specific antigens. ### Competing Interest Statement The authors have declared no competing interest." /> <meta name="og-title" property="og:title" content="Generative Diffusion Models for Antibody Design, Docking, and Optimization" /> <meta name="og-url" property="og:url" content="https://www.biorxiv.org/content/10.1101/2023.09.25.559190v1" /> <meta name="og-site-name" property="og:site_name" content="bioRxiv" /> <meta name="og-description" property="og:description" content="In recent years, optimizing antibody binding affinity for biomedical applications has become increasingly important. However, traditional wet-experiment-based approaches are time-consuming and inefficient. To address this issue, we propose a diffusion model-based antibody optimization pipeline to improve binding affinity. Our approach involves two key models: AbDesign for designing antibody sequences and structures, and AbDock, a paratope-epitope docking model, used for screening designed CDRs. On an independent test set, our AbDesign demonstrates the exceptional performance of an RMSD of 2.56Å in structure design and an amino acid recovery of 36.47% in sequence design. In a paratope-epitope docking test set, our AbDock achieves a state-of-the-art performance of DockQ 0.44, irms 2.71Å, fnat 0.40, and Lrms 6.29Å. The effectiveness of the optimization pipeline is further experimentally validated by optimizing a flaviviruse antibody 1G5.3, resulting in a broad-spectrum antibody that demonstrates improved binding to 6 out of the nine tested flaviviruses. This research offers a general-purpose methodology to enhance antibody functionality without training on data from specific antigens. ### Competing Interest Statement The authors have declared no competing interest." /> <meta name="og-type" property="og:type" content="article" /> <meta name="og-image" property="og:image" content="https://www.biorxiv.org/sites/default/files/images/biorxiv_logo_homepage7-5-small.png" /> <meta name="citation_date" content="2023-09-26" /> <link rel="alternate" type="application/vnd.ms-powerpoint" title="Powerpoint" href="/content/10.1101/2023.09.25.559190v1.ppt" /> <meta name="description" content="bioRxiv - the preprint server for biology, operated by Cold Spring Harbor Laboratory, a research and educational institution" /> <meta name="generator" content="Drupal 7 (http://drupal.org)" /> <link rel="canonical" href="https://www.biorxiv.org/content/10.1101/2023.09.25.559190v1" /> <link rel="shortlink" href="https://www.biorxiv.org/node/3387487" /> <title>Generative Diffusion Models for Antibody Design, Docking, and Optimization | bioRxiv</title> <link type="text/css" rel="stylesheet" href="https://www.biorxiv.org/sites/default/files/advagg_css/css__7SC0i-kTgUlQGKuqbmyS18Sez8FDO-aG9FSHkGrLGl8__EBUojqg5W_1M2-aUl2Y1w9JxEEauoJ0pj29wOb-7Vz4__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.css" media="all" /> <link type="text/css" rel="stylesheet" href="//cdn.jsdelivr.net/qtip2/2.2.1/jquery.qtip.min.css" media="all" /> <link type="text/css" rel="stylesheet" href="https://www.biorxiv.org/sites/default/files/advagg_css/css__UufzdoKtMhzTNiAJfsa_0bYn78zz-bBHwNEqMQ0UIXk__1-Opexvnkee5dlO1d6qLW5_7DT6gOdNGKRcC-FxT6QU__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.css" media="all" /> <style type="text/css" media="all"> /* <![CDATA[ */ .panels-flexible-new .panels-flexible-region{padding:0}.panels-flexible-new .panels-flexible-region-inside{padding-right:.5em;padding-left:.5em}.panels-flexible-new .panels-flexible-region-inside-first{padding-left:0}.panels-flexible-new .panels-flexible-region-inside-last{padding-right:0}.panels-flexible-new .panels-flexible-column{padding:0}.panels-flexible-new .panels-flexible-column-inside{padding-right:.5em;padding-left:.5em}.panels-flexible-new .panels-flexible-column-inside-first{padding-left:0}.panels-flexible-new .panels-flexible-column-inside-last{padding-right:0}.panels-flexible-new .panels-flexible-row{padding:0 0 .5em;margin:0}.panels-flexible-new .panels-flexible-row-last{padding-bottom:0}.panels-flexible-column-new-main{float:left;width:99.0000%}.panels-flexible-new-inside{padding-right:0}.panels-flexible-new{width:auto}.panels-flexible-region-new-center{float:left;width:99.0000%}.panels-flexible-row-new-main-row-inside{padding-right:0} /* ]]> */ </style> <link type="text/css" rel="stylesheet" href="https://www.biorxiv.org/sites/default/files/advagg_css/css__PWuQ_RYRTJ4BLEKsbWQeHysPg0gOQ3571ruQa_rXvAo__pWyBeQHtoijrNnOoDz9ZPdiNPirDrSCPOz0Q1CDCeno__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.css" media="all" /> <style type="text/css" media="all"> /* <![CDATA[ */ #sliding-popup.sliding-popup-bottom,#sliding-popup.sliding-popup-bottom .eu-cookie-withdraw-banner,.eu-cookie-withdraw-tab{background:gray}#sliding-popup.sliding-popup-bottom.eu-cookie-withdraw-wrapper{background:transparent}#sliding-popup .popup-content #popup-text h1,#sliding-popup .popup-content #popup-text h2,#sliding-popup .popup-content #popup-text h3,#sliding-popup .popup-content #popup-text p,.eu-cookie-compliance-secondary-button,.eu-cookie-withdraw-tab{color:#fff !important}.eu-cookie-withdraw-tab{border-color:#fff}.eu-cookie-compliance-more-button{color:#fff !important} /* ]]> */ </style> <!--[if lte IE 7]> <link type="text/css" rel="stylesheet" href="https://www.biorxiv.org/sites/default/files/advagg_css/css__ElJr3PIJEvw3qLXc1cnYiLj2G4KgDPSXFOfm6Phf8hw__JdWGm15cDWjsK6KrFlQVXQix9YgNeYysf22XZHj-Y-c__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.css" media="all" /> <![endif]--> <link type="text/css" rel="stylesheet" href="https://www.biorxiv.org/sites/default/files/advagg_css/css__Wnlyen9qEpwh_Qaf9okEu4QdVGM0BDothxeqA6Nbvo8__EJmw6SZD9bYoS8jocCpPYS3JFRURpdzmuvJoAUNiI-g__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.css" media="all" /> <link type="text/css" rel="stylesheet" href="https://www.biorxiv.org/sites/default/files/advagg_css/css__AWaUjB_CJFqdCLsTWh7_WG-W7zo3fP_0gXCzZa32v_g__igagZiGB2PktJMjUpZ2u3tnc56saoUGIrD5N0KSRmI4__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.css" media="all" /> <!--[if (lt IE 9)&(!IEMobile)]> <link type="text/css" rel="stylesheet" href="https://www.biorxiv.org/sites/default/files/advagg_css/css__XH6bpcI0f2dImc-p674DLCZtWBGb-QwxJK1YexVGtno__vUceGprdo5nIhV6DH93X7fI3r8RcTJbChbas9TQXeW4__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.css" media="all" /> <![endif]--> <!--[if gte IE 9]><!--> <link type="text/css" rel="stylesheet" href="https://www.biorxiv.org/sites/default/files/advagg_css/css__2WBMox6sOrN42ss5lCnH7WWVRdFdJCxtTKnQJYRwTE4__yqNvNYLvMpjy3ffuJrjjm9uW2i-Me1c23KLYuWHaqio__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.css" media="all" /> <!--<![endif]--> <link type="text/css" rel="stylesheet" href="https://www.biorxiv.org/sites/default/files/advagg_css/css__5MZAvuGF3rUWh72Qvpop9cdPSWpqBpEVThJVpbjFJZU__5c1ZiN_pM9tjxvpyA9VpEacScF0S_W4R222pC-s_-Pk__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.css" media="all" /> <link type="text/css" rel="stylesheet" href="https://d33xdlntwy0kbs.cloudfront.net/cshl_custom.css" media="all" /> <script type="text/javascript" src="https://www.biorxiv.org/sites/default/files/advagg_js/js__BKYqkKToQ7EjirB7eIdMEH5521EU3da9IpoOs8Ex2XI__aSjVoX8giBmLhN2EbCgIGQJNu89Mh5aVu1LvI_gkJ7Y__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.js"></script> <script type="text/javascript" src="//cdn.jsdelivr.net/qtip2/2.2.1/jquery.qtip.min.js"></script> <script type="text/javascript" src="https://www.biorxiv.org/sites/default/files/advagg_js/js__4Cn2dxvNlsJ-sHe6QOTLREaQvcqb0Yh0Zm9tTOHtQow__JeZEUjzbaj_yX6UjCI8eBbXy_J64ZVuoWmc2fSpLZHo__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.js"></script> <script type="text/javascript" src="https://www.google.com/recaptcha/api.js?hl=en&render=explicit&onload=drupalRecaptchaOnload"></script> <script type="text/javascript" src="https://www.biorxiv.org/sites/default/files/advagg_js/js__dGWpV57YWu3sX6UOe04RMH-iP9jSkEP7Ajt0caYXZZk__1l8Wa0iuIek7SEVmMuU0Y9TlAvRR-XZVfl1u9ezOPes__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.js"></script> <script type="text/javascript" async="async" src="https://scholar.google.com/scholar_js/casa.js"></script> <script type="text/javascript" async="async" src="https://www.googletagmanager.com/gtag/js?id=G-RZD586MC3Q"></script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- /*! * yepnope1.5.4 * (c) WTFPL, GPLv2 */ (function(a,b,c){function d(a){return"[object Function]"==o.call(a)}function e(a){return"string"==typeof a}function f(){}function g(a){return!a||"loaded"==a||"complete"==a||"uninitialized"==a}function h(){var a=p.shift();q=1,a?a.t?m(function(){("c"==a.t?B.injectCss:B.injectJs)(a.s,0,a.a,a.x,a.e,1)},0):(a(),h()):q=0}function i(a,c,d,e,f,i,j){function k(b){if(!o&&g(l.readyState)&&(u.r=o=1,!q&&h(),l.onload=l.onreadystatechange=null,b)){"img"!=a&&m(function(){t.removeChild(l)},50);for(var d in y[c])y[c].hasOwnProperty(d)&&y[c][d].onload()}}var j=j||B.errorTimeout,l=b.createElement(a),o=0,r=0,u={t:d,s:c,e:f,a:i,x:j};1===y[c]&&(r=1,y[c]=[]),"object"==a?l.data=c:(l.src=c,l.type=a),l.width=l.height="0",l.onerror=l.onload=l.onreadystatechange=function(){k.call(this,r)},p.splice(e,0,u),"img"!=a&&(r||2===y[c]?(t.insertBefore(l,s?null:n),m(k,j)):y[c].push(l))}function j(a,b,c,d,f){return q=0,b=b||"j",e(a)?i("c"==b?v:u,a,b,this.i++,c,d,f):(p.splice(this.i++,0,a),1==p.length&&h()),this}function k(){var a=B;return a.loader={load:j,i:0},a}var l=b.documentElement,m=a.setTimeout,n=b.getElementsByTagName("script")[0],o={}.toString,p=[],q=0,r="MozAppearance"in l.style,s=r&&!!b.createRange().compareNode,t=s?l:n.parentNode,l=a.opera&&"[object Opera]"==o.call(a.opera),l=!!b.attachEvent&&!l,u=r?"object":l?"script":"img",v=l?"script":u,w=Array.isArray||function(a){return"[object Array]"==o.call(a)},x=[],y={},z={timeout:function(a,b){return b.length&&(a.timeout=b[0]),a}},A,B;B=function(a){function b(a){var a=a.split("!"),b=x.length,c=a.pop(),d=a.length,c={url:c,origUrl:c,prefixes:a},e,f,g;for(f=0;f<d;f++)g=a[f].split("="),(e=z[g.shift()])&&(c=e(c,g));for(f=0;f<b;f++)c=x[f](c);return c}function g(a,e,f,g,h){var i=b(a),j=i.autoCallback;i.url.split(".").pop().split("?").shift(),i.bypass||(e&&(e=d(e)?e:e[a]||e[g]||e[a.split("/").pop().split("?")[0]]),i.instead?i.instead(a,e,f,g,h):(y[i.url]?i.noexec=!0:y[i.url]=1,f.load(i.url,i.forceCSS||!i.forceJS&&"css"==i.url.split(".").pop().split("?").shift()?"c":c,i.noexec,i.attrs,i.timeout),(d(e)||d(j))&&f.load(function(){k(),e&&e(i.origUrl,h,g),j&&j(i.origUrl,h,g),y[i.url]=2})))}function h(a,b){function c(a,c){if(a){if(e(a))c||(j=function(){var a=[].slice.call(arguments);k.apply(this,a),l()}),g(a,j,b,0,h);else if(Object(a)===a)for(n in m=function(){var b=0,c;for(c in a)a.hasOwnProperty(c)&&b++;return b}(),a)a.hasOwnProperty(n)&&(!c&&!--m&&(d(j)?j=function(){var a=[].slice.call(arguments);k.apply(this,a),l()}:j[n]=function(a){return function(){var b=[].slice.call(arguments);a&&a.apply(this,b),l()}}(k[n])),g(a[n],j,b,n,h))}else!c&&l()}var h=!!a.test,i=a.load||a.both,j=a.callback||f,k=j,l=a.complete||f,m,n;c(h?a.yep:a.nope,!!i),i&&c(i)}var i,j,l=this.yepnope.loader;if(e(a))g(a,0,l,0);else if(w(a))for(i=0;i<a.length;i++)j=a[i],e(j)?g(j,0,l,0):w(j)?B(j):Object(j)===j&&h(j,l);else Object(a)===a&&h(a,l)},B.addPrefix=function(a,b){z[a]=b},B.addFilter=function(a){x.push(a)},B.errorTimeout=1e4,null==b.readyState&&b.addEventListener&&(b.readyState="loading",b.addEventListener("DOMContentLoaded",A=function(){b.removeEventListener("DOMContentLoaded",A,0),b.readyState="complete"},0)),a.yepnope=k(),a.yepnope.executeStack=h,a.yepnope.injectJs=function(a,c,d,e,i,j){var k=b.createElement("script"),l,o,e=e||B.errorTimeout;k.src=a;for(o in d)k.setAttribute(o,d[o]);c=j?h:c||f,k.onreadystatechange=k.onload=function(){!l&&g(k.readyState)&&(l=1,c(),k.onload=k.onreadystatechange=null)},m(function(){l||(l=1,c(1))},e),i?k.onload():n.parentNode.insertBefore(k,n)},a.yepnope.injectCss=function(a,c,d,e,g,i){var e=b.createElement("link"),j,c=i?h:c||f;e.href=a,e.rel="stylesheet",e.type="text/css";for(j in d)e.setAttribute(j,d[j]);g||(n.parentNode.insertBefore(e,n),m(c,0))}})(this,document); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- yepnope({ test: Modernizr.matchmedia, nope: '/sites/all/libraries/media-match/media.match.min.js' }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- var _prum=[['id', '612e3d94173350001100005d'], ['mark', 'firstbyte', (new Date()).getTime()]]; (function() { var s=document.getElementsByTagName('script')[0], p=document.createElement('script'); p.async='async'; p.src='//rum-static.pingdom.net/prum.min.js';s.parentNode.insertBefore(p,s);})(); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- if(typeof window.MathJax === "undefined") window.MathJax = { menuSettings: { zoom: "Click" } }; //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.dataLayer = window.dataLayer || [];function gtag(){dataLayer.push(arguments)};gtag("js", new Date());gtag("set", "developer_id.dMDhkMT", true);gtag("config", "G-RZD586MC3Q", {"groups":"default","anonymize_ip":true}); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- jQuery.extend(Drupal.settings,{"basePath":"\/","pathPrefix":"","ajaxPageState":{"theme":"jcore_1","theme_token":"lqaBW7URhkMSbJ7C6Aglu5eyIKSU7mf5aYaUWdjWjh4"},"colorbox":{"opacity":"0.85","current":"{current} of {total}","previous":"\u00ab Prev","next":"Next \u00bb","close":"Close","maxWidth":"98%","maxHeight":"98%","fixed":true,"mobiledetect":true,"mobiledevicewidth":"480px"},"highwire":{"markup":[{"requested":"short-text","variant":"abstract","view":"abstract","pisa":"biorxiv;2023.09.25.559190v1"},{"requested":"short-text","variant":"abstract","view":"abstract","pisa":"biorxiv;2023.09.25.559190v1"},{"requested":"abstract","variant":"abstract","view":"abstract","pisa":"biorxiv;2023.09.25.559190v1"}],"nid":"3387487","apath":"\/biorxiv\/early\/2023\/09\/26\/2023.09.25.559190.atom","pisa":"biorxiv;2023.09.25.559190v1","ac":{"\/biorxiv\/early\/2023\/09\/26\/2023.09.25.559190.atom":{"access":{"full":true},"pisa_id":"","apath":"\/biorxiv\/early\/2023\/09\/26\/2023.09.25.559190.atom","jcode":"biorxiv"}},"processed":["highwire_math"],"modal_window_width":"560","share_modal_width":"560","share_modal_title":"Share this Article"},"jcarousel":{"ajaxPath":"\/jcarousel\/ajax\/views"},"instances":"{\u0022highwire_abstract_tooltip\u0022:{\u0022content\u0022:{\u0022text\u0022:\u0022\u0022},\u0022style\u0022:{\u0022tip\u0022:{\u0022width\u0022:20,\u0022height\u0022:20,\u0022border\u0022:1,\u0022offset\u0022:0,\u0022corner\u0022:true},\u0022classes\u0022:\u0022qtip-custom hw-tooltip hw-abstract-tooltip qtip-shadow qtip-rounded\u0022,\u0022classes_custom\u0022:\u0022hw-tooltip hw-abstract-tooltip\u0022},\u0022position\u0022:{\u0022at\u0022:\u0022right center\u0022,\u0022my\u0022:\u0022left center\u0022,\u0022viewport\u0022:true,\u0022adjust\u0022:{\u0022method\u0022:\u0022shift\u0022}},\u0022show\u0022:{\u0022event\u0022:\u0022mouseenter click \u0022,\u0022solo\u0022:true},\u0022hide\u0022:{\u0022event\u0022:\u0022mouseleave \u0022,\u0022fixed\u0022:1,\u0022delay\u0022:\u0022100\u0022}},\u0022highwire_author_tooltip\u0022:{\u0022content\u0022:{\u0022text\u0022:\u0022\u0022},\u0022style\u0022:{\u0022tip\u0022:{\u0022width\u0022:15,\u0022height\u0022:15,\u0022border\u0022:1,\u0022offset\u0022:0,\u0022corner\u0022:true},\u0022classes\u0022:\u0022qtip-custom hw-tooltip hw-author-tooltip qtip-shadow qtip-rounded\u0022,\u0022classes_custom\u0022:\u0022hw-tooltip hw-author-tooltip\u0022},\u0022position\u0022:{\u0022at\u0022:\u0022top center\u0022,\u0022my\u0022:\u0022bottom center\u0022,\u0022viewport\u0022:true,\u0022adjust\u0022:{\u0022method\u0022:\u0022\u0022}},\u0022show\u0022:{\u0022event\u0022:\u0022mouseenter \u0022,\u0022solo\u0022:true},\u0022hide\u0022:{\u0022event\u0022:\u0022mouseleave \u0022,\u0022fixed\u0022:1,\u0022delay\u0022:\u0022100\u0022}},\u0022highwire_reflinks_tooltip\u0022:{\u0022content\u0022:{\u0022text\u0022:\u0022\u0022},\u0022style\u0022:{\u0022tip\u0022:{\u0022width\u0022:15,\u0022height\u0022:15,\u0022border\u0022:1,\u0022mimic\u0022:\u0022top center\u0022,\u0022offset\u0022:0,\u0022corner\u0022:true},\u0022classes\u0022:\u0022qtip-custom hw-tooltip hw-ref-link-tooltip qtip-shadow qtip-rounded\u0022,\u0022classes_custom\u0022:\u0022hw-tooltip hw-ref-link-tooltip\u0022},\u0022position\u0022:{\u0022at\u0022:\u0022bottom left\u0022,\u0022my\u0022:\u0022top left\u0022,\u0022viewport\u0022:true,\u0022adjust\u0022:{\u0022method\u0022:\u0022flip\u0022}},\u0022show\u0022:{\u0022event\u0022:\u0022mouseenter \u0022,\u0022solo\u0022:true},\u0022hide\u0022:{\u0022event\u0022:\u0022mouseleave \u0022,\u0022fixed\u0022:1,\u0022delay\u0022:\u0022100\u0022}}}","qtipDebug":"{\u0022leaveElement\u0022:0}","panel_ajax_tab":{"path":"sites\/all\/modules\/contrib\/panels_ajax_tab"},"disqus":{"domain":"biorxivstage","url":"https:\/\/www.biorxiv.org\/content\/10.1101\/2023.09.25.559190v1","title":"Generative Diffusion Models for Antibody Design, Docking, and Optimization","identifier":"node\/3387487"},"panels_ajax_pane":{"new-28877068-b9cb-4641-830b-b6b4638c98bb":"{\u0022encrypted\u0022:\u0022{\\\u0022encrypted\\\u0022:\\\u0022HZJ0NrPQCWx\\\\\\\/sTyLUcjQKoDnf1iLVpT\\\\\\\/pEirbwtUJGZ83Qj3KB5RA5dsXv3HqsbmQeK7kP\\\\\\\/BEFVHmDB+\\\\\\\/3jo29VBdjX0nqqgHzHwUzh1CHTLBpKMmf76BBHz3kyHUxSnN3uSANaTvyaDf8TL2xnrF5WB4f4v920nuVYr1chvl7P08Ep\\\\\\\/37+xXZwm50YQahdUDT19Oa\\\\\\\/uT4LklnkNu0DLJ9mwR1G+mXRcUzDikSrCWpK4jI3flwq4\\\\\\\/aIyaV9ta7T\\\\\\\/MFEFYg0KSMRrMR3tfQwNGUGSqMBI3PhhHK9UKUr69ZnMf33r9W0tk5Sj631grfG9Nsgr7ZLKOxDTs0nJ\\\\\\\/\\\\\\\/qmBCqysfzrORjI3hCJ9aBmRCcpBY8sGI\\\\\\\/dxCgBAV7PKdgpQtaPugHMt03QtqwNHDcKkNIcffexQmAE0tW0lKabMwypsqlOdBIUuewIFOe+mCSFQZZCL42ms7atfOhujApf3k5c3OxSYB3fPzAva9p7vNyJ1oKeFHY4w+nAVsumidc+fePTikWmiX8Wxpzndnt\\\\\\\/MixhAjx\\\\\\\/io4p3\\\\\\\/UwoYzRk61NxhNQZGStVAGMOwxufVCXIonCKiXk5OxCNQi\\\\\\\/My36\\\\\\\/i4316ZmG2eV1HY3VmvZQVh232ZJBlJqA5b0L2IKFWegXYt\\\\\\\/9oMCEi6RzLx\\\\\\\/dqZ6L6Z6P3d6MaViz63DWI4sO14u9es9JSBGmM5GuIu1xSgtfoSHMarRt2KfugMRXZduAU4sJpq+h3XiAJNAh1oRKT6Hj0PaPrTIATV+QVmCvdrsUerZ1CRjc2rcI\\\\\\\/oMI9KbxVzBMkM+03LGG0SyfIbtCs1d1ZStIJxws9MdWBZV4Ok0QwEelatAKjs\\\\\\\/TL8L8MPx4cqw+yFzLAeBLWl21U5p7pxN8FZ0uNp6ejFGOU9759Yn5jF9vnwmLKcMHC\\\\\\\/T8EuViQKV5aUflo+Vw1Pq\\\\\\\/IktC+9Xgj2lqZYPmZgEEHcHI0Y6\\\\\\\/3jiWXkr2ltedLyT5fYgmSoJ3xdvaOG90sB9ZdkLjEp5YrBIoPcUiULlfPMXFWZPPlY\\\\\\\/O3bCbHpvHEpnQIVsu2Udh+96fZ+eKBVYIuv7IzUwDFIvXqtMfQksYwrSEoF8jXVXuI9sCUWhAzLrps9gcXfv6MJ3DvIZG2wuDQTb6NH5oGEfh5vKFAbpoPaGdUhZF14F\\\\\\\/tAz2Dm90\\\\\\\/3Jop9uSFoWr8qIHk7w62bY9JmqK7Bq4+gCmu4rSxmn5uM0yXvaBwLCt8piQQGQJEsWM8blHZGC1TR8NQn1EUboOZOyPgmOI5oDajLyqkEZjKareqfyVwxKfBqlPkjQfxbwwvKzXw35+x1sVxNmgaNVKDYcex42d0LqIRsT8ovzsG3eBuT1\\\u0022,\\\u0022iv\\\u0022:\\\u0022Q4gbFv8ySHYIJxl1\\\\\\\/ufUvg==\\\u0022,\\\u0022salt\\\u0022:\\\u0022f9d8845712f72c9fee5db7d9ff111eab\\\u0022}\u0022,\u0022hmac\u0022:\u00227e311a01c11f3e431789fc384f7cb7501a131e2d56ea7afe81e148a5572baacf\u0022}"},"urlIsAjaxTrusted":{"\/content\/10.1101\/2023.09.25.559190v1":true},"ws_fl":{"width":100,"height":21},"ws_gpo":{"size":"","annotation":"","lang":"","callback":"","width":300},"color":{"logo":"https:\/\/www.biorxiv.org\/sites\/default\/files\/biorxiv_article.jpg"},"highwire_list_expand":{"is_collapsed":"1"},"highwireResponsive":{"enquire_enabled":1,"breakpoints_configured":1,"breakpoints":{"zero":"all and (min-width: 0px)","xsmall":"all and (min-width: 380px)","narrow":"all and (min-width: 768px) and (min-device-width: 768px), (max-device-width: 800px) and (min-width: 768px) and (orientation:landscape)","normal":"all and (min-width: 980px) and (min-device-width: 980px), all and (max-device-width: 1024px) and (min-width: 1024px) and (orientation:landscape)","wide":"all and (min-width: 1220px)"}},"eu_cookie_compliance":{"popup_enabled":1,"popup_agreed_enabled":0,"popup_hide_agreed":0,"popup_clicking_confirmation":1,"popup_scrolling_confirmation":false,"popup_html_info":"\u003Cdiv\u003E\n \u003Cdiv class=\u0022popup-content info\u0022\u003E\n \u003Cdiv id=\u0022popup-text\u0022\u003E\n \u003Cp\u003EWe use cookies on this site to enhance your user experience. By clicking any link on this page you are giving your consent for us to set cookies.\u003C\/p\u003E\n \u003C\/div\u003E\n \u003Cdiv id=\u0022popup-buttons\u0022\u003E\n \u003Cbutton type=\u0022button\u0022 role=\u0022dialog\u0022 aria-labelledby=\u0022Continue\u0022\n class=\u0022agree-button eu-cookie-compliance-default-button\u0022\u003EContinue\u003C\/button\u003E\n \u003Cbutton type=\u0022button\u0022 role=\u0022dialog\u0022 aria-labelledby=\u0022Find out more\u0022\n class=\u0022find-more-button eu-cookie-compliance-more-button\u0022\u003EFind out more\u003C\/button\u003E\n \u003C\/div\u003E\n \u003C\/div\u003E\n\u003C\/div\u003E","use_mobile_message":false,"mobile_popup_html_info":"\u003Cdiv\u003E\n \u003Cdiv class=\u0022popup-content info\u0022\u003E\n \u003Cdiv id=\u0022popup-text\u0022\u003E\n \u003C\/div\u003E\n \u003Cdiv id=\u0022popup-buttons\u0022\u003E\n \u003Cbutton type=\u0022button\u0022 role=\u0022dialog\u0022 aria-labelledby=\u0022Continue\u0022\n class=\u0022agree-button eu-cookie-compliance-default-button\u0022\u003EContinue\u003C\/button\u003E\n \u003Cbutton type=\u0022button\u0022 role=\u0022dialog\u0022 aria-labelledby=\u0022Find out more\u0022\n class=\u0022find-more-button eu-cookie-compliance-more-button\u0022\u003EFind out more\u003C\/button\u003E\n \u003C\/div\u003E\n \u003C\/div\u003E\n\u003C\/div\u003E","mobile_breakpoint":"768","popup_html_agreed":"\u003Cdiv\u003E\n \u003Cdiv class=\u0022popup-content agreed\u0022\u003E\n \u003Cdiv id=\u0022popup-text\u0022\u003E\n \u003Ch2\u003EThank you for accepting cookies\u003C\/h2\u003E\u003Cp\u003EYou can now hide this message or find out more about cookies.\u003C\/p\u003E \u003C\/div\u003E\n \u003Cdiv id=\u0022popup-buttons\u0022\u003E\n \u003Cbutton type=\u0022button\u0022 class=\u0022hide-popup-button eu-cookie-compliance-hide-button\u0022\u003EHide\u003C\/button\u003E\n \u003Cbutton type=\u0022button\u0022 class=\u0022find-more-button eu-cookie-compliance-more-button-thank-you\u0022 \u003EMore info\u003C\/button\u003E\n \u003C\/div\u003E\n \u003C\/div\u003E\n\u003C\/div\u003E","popup_use_bare_css":false,"popup_height":"auto","popup_width":"100%","popup_delay":1000,"popup_link":"\/help\/cookie-policy","popup_link_new_window":1,"popup_position":null,"popup_language":"en","store_consent":false,"better_support_for_screen_readers":0,"reload_page":0,"domain":"","popup_eu_only_js":0,"cookie_lifetime":"365","cookie_session":false,"disagree_do_not_show_popup":0,"method":"default","whitelisted_cookies":"","withdraw_markup":"\u003Cbutton type=\u0022button\u0022 class=\u0022eu-cookie-withdraw-tab\u0022\u003EPrivacy settings\u003C\/button\u003E\n\u003Cdiv class=\u0022eu-cookie-withdraw-banner\u0022\u003E\n \u003Cdiv class=\u0022popup-content info\u0022\u003E\n \u003Cdiv id=\u0022popup-text\u0022\u003E\n \u003Cp\u003E\u0026lt;h2\u0026gt;We use cookies on this site to enhance your user experience\u0026lt;\/h2\u0026gt;\u0026lt;p\u0026gt;You have given your consent for us to set cookies.\u0026lt;\/p\u0026gt;\u003C\/p\u003E\n \u003C\/div\u003E\n \u003Cdiv id=\u0022popup-buttons\u0022\u003E\n \u003Cbutton type=\u0022button\u0022 class=\u0022eu-cookie-withdraw-button\u0022\u003EWithdraw consent\u003C\/button\u003E\n \u003C\/div\u003E\n \u003C\/div\u003E\n\u003C\/div\u003E\n","withdraw_enabled":false},"googleanalytics":{"account":["G-RZD586MC3Q"],"trackOutbound":1,"trackMailto":1,"trackDownload":1,"trackDownloadExtensions":"7z|aac|arc|arj|asf|asx|avi|bin|csv|doc(x|m)?|dot(x|m)?|exe|flv|gif|gz|gzip|hqx|jar|jpe?g|js|mp(2|3|4|e?g)|mov(ie)?|msi|msp|pdf|phps|png|ppt(x|m)?|pot(x|m)?|pps(x|m)?|ppam|sld(x|m)?|thmx|qtm?|ra(m|r)?|sea|sit|tar|tgz|torrent|txt|wav|wma|wmv|wpd|xls(x|m|b)?|xlt(x|m)|xlam|xml|z|zip","trackColorbox":1},"jnl_biorxiv_styles":{"defaultJCode":"biorxiv"},"omega":{"layouts":{"primary":"normal","order":["narrow","normal","wide"],"queries":{"narrow":"all and (min-width: 768px) and (min-device-width: 768px), (max-device-width: 800px) and (min-width: 768px) and (orientation:landscape)","normal":"all and (min-width: 980px) and (min-device-width: 980px), all and (max-device-width: 1024px) and (min-width: 1024px) and (orientation:landscape)","wide":"all and (min-width: 1220px)"}}}}); //--><!]]> </script> <!--[if lt IE 9]><script src="http://html5shiv.googlecode.com/svn/trunk/html5.js"></script><![endif]--> </head> <body class="html not-front not-logged-in page-node page-node- page-node-3387487 node-type-highwire-article context-content hw-default-jcode-biorxiv hw-article-type-article hw-article-category-new-results"> <!-- Google Tag Manager --> <noscript><iframe src="//www.googletagmanager.com/ns.html?id=GTM-M677548" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <script type="text/javascript">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start':new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0];var j=d.createElement(s);var dl=l!='dataLayer'?'&l='+l:'';j.src='//www.googletagmanager.com/gtm.js?id='+i+dl;j.type='text/javascript';j.async=true;f.parentNode.insertBefore(j,f);})(window,document,'script','dataLayer','GTM-M677548');</script> <!-- End Google Tag Manager --> <div id="skip-link"> <a href="#main-content" class="element-invisible element-focusable">Skip to main content</a> </div> <div class="page clearfix page-box-shadows footer-borders panels-page panels-layout-jcore_2col" id="page"> <header id="section-header" class="section section-header"> <div id="zone-branding" class="zone zone-branding clearfix print-display-block container-30"> <div class="grid-15 prefix-1 region region-branding print-display-block" id="region-branding"> <div class="region-inner region-branding-inner"> <div class="branding-data clearfix"> <div class="logo-img"> <a href="/" rel="home" class="" data-icon-position="" data-hide-link-title="0"><img alt="bioRxiv" src="https://www.biorxiv.org/sites/default/files/biorxiv_article.jpg" /></a> </div> </div> </div> </div><div class="grid-11 suffix-1 region region-branding-second print-hidden" id="region-branding-second"> <div class="region-inner region-branding-second-inner"> <div class="block block-system block-menu block-main-menu block-system-main-menu odd block-without-title" id="block-system-main-menu"> <div class="block-inner clearfix"> <div class="content clearfix"> <nav class="menubar-nav"><ul class="menu" role="menu"><li class="first leaf" role="menuitem"><a href="/" title="" class="" data-icon-position="" data-hide-link-title="0">Home</a></li> <li class="leaf" role="menuitem"><a href="/about-biorxiv" class="" data-icon-position="" data-hide-link-title="0">About</a></li> <li class="leaf" role="menuitem"><a href="/submit-a-manuscript" class="" data-icon-position="" data-hide-link-title="0">Submit</a></li> <li class="last leaf" role="menuitem"><a href="/alertsrss" title="" class="" data-icon-position="" data-hide-link-title="0">ALERTS / RSS</a></li> </ul></nav> </div> </div> </div><div class="block block-panels-mini block-biorxiv-search-box block-panels-mini-biorxiv-search-box even block-without-title" id="block-panels-mini-biorxiv-search-box"> <div class="block-inner clearfix"> <div class="content clearfix"> <div class="panel-display panel-1col clearfix" id="mini-panel-biorxiv_search_box"> <div class="panel-panel panel-col"> <div><div class="panel-pane pane-highwire-seach-quicksearch" > <div class="pane-content"> <form class="highwire-quicksearch button-style-mini button-style-mini" action="/content/10.1101/2023.09.25.559190v1" method="post" id="highwire-search-quicksearch-form-0" accept-charset="UTF-8"><div><div class="form-item form-item-label-invisible form-type-textfield form-item-keywords"> <label class="element-invisible" for="search_rightsidebar_keywords_479449813">Search for this keyword </label> <input placeholder="Search" type="text" id="search_rightsidebar_keywords_479449813" name="keywords" value="" size="60" maxlength="128" class="form-text" /> </div> <div class="button-wrapper button-mini"><span class="icon-search"></span><input data-icon-only="1" data-font-icon="icon-search" data-icon-position="after" type="submit" id="search_rightsidebar_submit_1972479730" name="op" value="Search" class="form-submit" /></div><input type="hidden" name="form_build_id" value="form-2VNCK8nWIR4s6Udw_kNE6f8GOE4UTA-Jmz9N3bXWlhI" /> <input type="hidden" name="form_id" value="highwire_search_quicksearch_form_0" /> </div></form> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-custom pane-2 advanced-search-link" > <div class="pane-content"> <a href="/search">Advanced Search</a> </div> </div> </div> </div> </div> </div> </div> </div> </div> </div> </div> <div id="zone-header" class="zone zone-header clearfix container-30"> </div> </header> <section id="section-content" class="section section-content"> <div id="zone-content" class="zone zone-content clearfix container-30"> <div class="grid-28 suffix-1 prefix-1 region region-content" id="region-content"> <div class="region-inner region-content-inner"> <a id="main-content"></a> <div class="block block-system block-main block-system-main odd block-without-title" id="block-system-main"> <div class="block-inner clearfix"> <div class="content clearfix"> <div class="panel-display panels-960-layout jcore-2col-layout" > <div class="panel-row-wrapper clearfix"> <div class="main-content-wrapper grid-17 suffix-1 alpha"> <div class="panel-panel panel-region-content"> <div class="inside"><div class="panel-pane pane-highwire-article-citation" > <div class="pane-content"> <div class="highwire-article-citation highwire-citation-type-highwire-article node3387487" data-node-nid="3387487" id="node-3387487--21494880747" data-pisa="biorxiv;2023.09.25.559190v1" data-pisa-master="biorxiv;2023.09.25.559190" data-apath="/biorxiv/early/2023/09/26/2023.09.25.559190.atom" data-hw-author-tooltip-instance="highwire_author_tooltip"><div class="highwire-cite highwire-cite-highwire-article highwire-citation-biorxiv-article-top clearfix has-author-tooltip" > <span class="biorxiv-article-type"> New Results </span> <h1 class="highwire-cite-title" id="page-title">Generative Diffusion Models for Antibody Design, Docking, and Optimization</h1> <div class="highwire-cite-authors" ><span class="highwire-citation-authors"><span class="highwire-citation-author first" data-delta="0"><span class="nlm-given-names">Zhangzhi</span> <span class="nlm-surname">Peng</span></span>, <span class="highwire-citation-author" data-delta="1"><span class="nlm-given-names">Chenchen</span> <span class="nlm-surname">Han</span></span>, <span class="highwire-citation-author" data-delta="2"><span class="nlm-given-names">Xiaohan</span> <span class="nlm-surname">Wang</span></span>, <span class="highwire-citation-author" data-delta="3"><span class="nlm-given-names">Dapeng</span> <span class="nlm-surname">Li</span></span>, <span class="highwire-citation-author hw-author-orcid-logo-wrapper" data-delta="4"><a href="http://orcid.org/0000-0001-8452-9929" target="_blank" class="hw-author-orcid-logo link-icon-only link-icon"><span class="hw-icon-orcid hw-icon-color-orcid"></span> <span class="title element-invisible">View ORCID Profile</span></a><span class="nlm-given-names">Fajie</span> <span class="nlm-surname">Yuan</span></span></span></div> <div class="highwire-cite-metadata" ><span class="highwire-cite-metadata-doi highwire-cite-metadata"><span class="label">doi:</span> https://doi.org/10.1101/2023.09.25.559190 </span></div> </div> <div id="hw-article-author-popups-node-3387487--21494880747" style="display: none;"><div class="author-tooltip-0"><div class="author-tooltip-name">Zhangzhi Peng </div><div class="author-tooltip-affiliation"><span class="author-tooltip-text"><div class='author-affiliation'><span class='nlm-sup'>1</span><span class='nlm-institution'>Electrical Engineering & Computer Science, University of Missouri</span>, Columbia, 65211, MO, <span class='nlm-country'>USA</span></div></span></div><ul class="author-tooltip-find-more"><li class="author-tooltip-gs-link first"><a href="/lookup/google-scholar?link_type=googlescholar&gs_type=author&author%5B0%5D=Zhangzhi%2BPeng%2B" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Find this author on Google Scholar</a></li><li class="author-tooltip-pubmed-link"><a href="/lookup/external-ref?access_num=Peng%20Z&link_type=AUTHORSEARCH" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Find this author on PubMed</a></li><li class="author-site-search-link last"><a href="/search/author1%3AZhangzhi%2BPeng%2B" rel="nofollow" class="" data-icon-position="" data-hide-link-title="0">Search for this author on this site</a></li></ul></div><div class="author-tooltip-1"><div class="author-tooltip-name">Chenchen Han </div><div class="author-tooltip-affiliation"><span class="author-tooltip-text"><div class='author-affiliation'><span class='nlm-sup'>2</span><span class='nlm-institution'>School of Life Engineering, Westlake University</span>, Hangzhou, 310024, Zhejiang, <span class='nlm-country'>China</span></div></span></div><ul class="author-tooltip-find-more"><li class="author-tooltip-gs-link first"><a href="/lookup/google-scholar?link_type=googlescholar&gs_type=author&author%5B0%5D=Chenchen%2BHan%2B" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Find this author on Google Scholar</a></li><li class="author-tooltip-pubmed-link"><a href="/lookup/external-ref?access_num=Han%20C&link_type=AUTHORSEARCH" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Find this author on PubMed</a></li><li class="author-site-search-link last"><a href="/search/author1%3AChenchen%2BHan%2B" rel="nofollow" class="" data-icon-position="" data-hide-link-title="0">Search for this author on this site</a></li></ul></div><div class="author-tooltip-2"><div class="author-tooltip-name">Xiaohan Wang </div><div class="author-tooltip-affiliation"><span class="author-tooltip-text"><div class='author-affiliation'><span class='nlm-sup'>3</span><span class='nlm-institution'>Center for Infectious Disease Research, Westlake University</span>, Hangzhou, 310024, Zhejiang, <span class='nlm-country'>China</span></div><div class='author-affiliation'><span class='nlm-sup'>4</span><span class='nlm-institution'>School of Life Sciences, Westlake University</span>, Hangzhou, 310024, Zhejiang, <span class='nlm-country'>China</span></div></span></div><ul class="author-tooltip-find-more"><li class="author-tooltip-gs-link first"><a href="/lookup/google-scholar?link_type=googlescholar&gs_type=author&author%5B0%5D=Xiaohan%2BWang%2B" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Find this author on Google Scholar</a></li><li class="author-tooltip-pubmed-link"><a href="/lookup/external-ref?access_num=Wang%20X&link_type=AUTHORSEARCH" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Find this author on PubMed</a></li><li class="author-site-search-link last"><a href="/search/author1%3AXiaohan%2BWang%2B" rel="nofollow" class="" data-icon-position="" data-hide-link-title="0">Search for this author on this site</a></li></ul></div><div class="author-tooltip-3"><div class="author-tooltip-name">Dapeng Li </div><div class="author-tooltip-affiliation"><span class="author-tooltip-text"><div class='author-affiliation'><span class='nlm-sup'>3</span><span class='nlm-institution'>Center for Infectious Disease Research, Westlake University</span>, Hangzhou, 310024, Zhejiang, <span class='nlm-country'>China</span></div><div class='author-affiliation'><span class='nlm-sup'>4</span><span class='nlm-institution'>School of Life Sciences, Westlake University</span>, Hangzhou, 310024, Zhejiang, <span class='nlm-country'>China</span></div></span></div><ul class="author-tooltip-find-more"><li class="author-tooltip-gs-link first"><a href="/lookup/google-scholar?link_type=googlescholar&gs_type=author&author%5B0%5D=Dapeng%2BLi%2B" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Find this author on Google Scholar</a></li><li class="author-tooltip-pubmed-link"><a href="/lookup/external-ref?access_num=Li%20D&link_type=AUTHORSEARCH" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Find this author on PubMed</a></li><li class="author-site-search-link"><a href="/search/author1%3ADapeng%2BLi%2B" rel="nofollow" class="" data-icon-position="" data-hide-link-title="0">Search for this author on this site</a></li><li class="author-corresp-email-link last"><span>For correspondence: <a href="mailto:lidapeng@westlake.edu.cn" class="" data-icon-position="" data-hide-link-title="0">lidapeng@westlake.edu.cn</a> <a href="mailto:yuanfajie@westlake.edu.cn" class="" data-icon-position="" data-hide-link-title="0">yuanfajie@westlake.edu.cn</a></span></li></ul></div><div class="author-tooltip-4"><div class="author-tooltip-name">Fajie Yuan </div><div class="author-tooltip-affiliation"><span class="author-tooltip-text"><div class='author-affiliation'><span class='nlm-sup'>2</span><span class='nlm-institution'>School of Life Engineering, Westlake University</span>, Hangzhou, 310024, Zhejiang, <span class='nlm-country'>China</span></div></span></div><ul class="author-tooltip-find-more"><li class="author-tooltip-gs-link first"><a href="/lookup/google-scholar?link_type=googlescholar&gs_type=author&author%5B0%5D=Fajie%2BYuan%2B" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Find this author on Google Scholar</a></li><li class="author-tooltip-pubmed-link"><a href="/lookup/external-ref?access_num=Yuan%20F&link_type=AUTHORSEARCH" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Find this author on PubMed</a></li><li class="author-site-search-link"><a href="/search/author1%3AFajie%2BYuan%2B" rel="nofollow" class="" data-icon-position="" data-hide-link-title="0">Search for this author on this site</a></li><li class="author-orcid-link"><a href="http://orcid.org/0000-0001-8452-9929" target="_blank" class="" data-icon-position="" data-hide-link-title="0">ORCID record for Fajie Yuan</a></li><li class="author-corresp-email-link last"><span>For correspondence: <a href="mailto:lidapeng@westlake.edu.cn" class="" data-icon-position="" data-hide-link-title="0">lidapeng@westlake.edu.cn</a> <a href="mailto:yuanfajie@westlake.edu.cn" class="" data-icon-position="" data-hide-link-title="0">yuanfajie@westlake.edu.cn</a></span></li></ul></div></div></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-panel-tabs pane-panels-ajax-tab-tabs" > <div class="pane-content"> <div class="item-list"><ul class="tabs inline panels-ajax-tab"><li class="first"><a href="/content/10.1101/2023.09.25.559190v1" class="panels-ajax-tab-tab" data-panel-name="biorxiv_tab_art" data-target-id="highwire_article_tabs" data-entity-context="node:3387487" data-trigger="" data-url-enabled="1">Abstract</a><a href="/panels_ajax_tab/biorxiv_tab_art/node:3387487/1" rel="nofollow" style="display:none" class="js-crawler-link"></a></li><li><a href="/content/10.1101/2023.09.25.559190v1.full-text" class="panels-ajax-tab-tab" data-panel-name="article_tab_full_text" data-target-id="highwire_article_tabs" data-entity-context="node:3387487" data-trigger="full-text" data-url-enabled="1">Full Text</a><a href="/panels_ajax_tab/article_tab_full_text/node:3387487/1" rel="nofollow" style="display:none" class="js-crawler-link"></a></li><li><a href="/content/10.1101/2023.09.25.559190v1.article-info" class="panels-ajax-tab-tab" data-panel-name="biorxiv_tab_info" data-target-id="highwire_article_tabs" data-entity-context="node:3387487" data-trigger="article-info" data-url-enabled="1">Info/History</a><a href="/panels_ajax_tab/biorxiv_tab_info/node:3387487/1" rel="nofollow" style="display:none" class="js-crawler-link"></a></li><li><a href="/content/10.1101/2023.09.25.559190v1.article-metrics" class="panels-ajax-tab-tab" data-panel-name="article_tab_metrics" data-target-id="highwire_article_tabs" data-entity-context="node:3387487" data-trigger="article-metrics" data-url-enabled="1">Metrics</a><a href="/panels_ajax_tab/article_tab_metrics/node:3387487/1" rel="nofollow" style="display:none" class="js-crawler-link"></a></li><li class="last"><a href="/content/10.1101/2023.09.25.559190v1.full.pdf+html" class="panels-ajax-tab-tab" data-panel-name="biorxiv_tab_pdf" data-target-id="highwire_article_tabs" data-entity-context="node:3387487" data-trigger="full.pdf+html" data-url-enabled="1"><i class="icon-file-alt"></i> Preview PDF</a><a href="/panels_ajax_tab/biorxiv_tab_pdf/node:3387487/1" rel="nofollow" style="display:none" class="js-crawler-link"></a></li></ul></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-panel-tabs-container" > <div class="pane-content"> <div data-panels-ajax-tab-preloaded="biorxiv_tab_art" id="panels-ajax-tab-container-highwire_article_tabs" class="panels-ajax-tab-container"><div class="panels-ajax-tab-loading" style ="display:none"><img class="loading" src="https://www.biorxiv.org/sites/all/modules/contrib/panels_ajax_tab/images/loading.gif" alt="Loading" title="Loading" /></div><div class="panels-ajax-tab-wrap-biorxiv_tab_art"><div class="panel-display panel-1col clearfix" > <div class="panel-panel panel-col"> <div><div class="panel-pane pane-highwire-markup" > <div class="pane-content"> <div class="highwire-markup"><div xmlns="http://www.w3.org/1999/xhtml" data-highwire-cite-ref-tooltip-instance="highwire_reflinks_tooltip" class="content-block-markup" xmlns:xhtml="http://www.w3.org/1999/xhtml"><div class="article abstract-view "><span class="highwire-journal-article-marker-start"></span><div class="section abstract" id="abstract-1"><h2 class="">Abstract</h2><p id="p-4">In recent years, optimizing antibody binding affinity for biomedical applications has become increasingly important. However, traditional wet-experiment-based approaches are time-consuming and inefficient. To address this issue, we propose a diffusion model-based antibody optimization pipeline to improve binding affinity. Our approach involves two key models: AbDesign for designing antibody sequences and structures, and AbDock, a paratope-epitope docking model, used for screening designed CDRs. On an independent test set, our AbDesign demonstrates the exceptional performance of an RMSD of 2.56Å in structure design and an amino acid recovery of 36.47% in sequence design. In a paratope-epitope docking test set, our AbDock achieves a state-of-the-art performance of DockQ 0.44, irms 2.71Å, fnat 0.40, and Lrms 6.29Å. The effectiveness of the optimization pipeline is further experimentally validated by optimizing a flaviviruse antibody 1G5.3, resulting in a broad-spectrum antibody that demonstrates improved binding to 6 out of the nine tested flaviviruses. This research offers a general-purpose methodology to enhance antibody functionality without training on data from specific antigens.</p></div><h3>Competing Interest Statement</h3><p id="p-5">The authors have declared no competing interest.</p><div class="section fn-group" id="fn-group-1"><h2>Footnotes</h2><ul><li class="fn-others" id="fn-1"><p id="p-1"><a class="rev-xref" href="#xref-fn-1-1">↵</a><span class="fn-label">†</span> Key experiments were conducted at Westlake Univeristy.</p></li></ul></div><span class="highwire-journal-article-marker-end"></span></div><span class="related-urls"></span></div></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-biorxiv-copyright" > <div class="pane-content"> <div class="field field-name-field-highwire-copyright field-type-text field-label-inline clearfix"><div class="field-label">Copyright </div><div class="field-items"><div class="field-item even">The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.<span class="license-type"> It is made available under a <a href="http://creativecommons.org/licenses/by-nc-nd/4.0/" class="" data-icon-position="" data-hide-link-title="0">CC-BY-NC-ND 4.0 International license</a>.</span></div></div></div> </div> </div> </div> </div> </div> </div></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-disqus-comment" > <div class="pane-content"> <div id="disqus_thread"><noscript><p><a href="http://biorxivstage.disqus.com/?url=https%3A%2F%2Fwww.biorxiv.org%2Fcontent%2F10.1101%2F2023.09.25.559190v1" class="" data-icon-position="" data-hide-link-title="0">View the discussion thread.</a></p></noscript></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-back-to-top" > <div class="pane-content"> <a href="#page" class="back-to-top" data-icon-position="" data-hide-link-title="0"><span class="icon-chevron-up"></span> Back to top</a> </div> </div> </div> </div> </div> <div class="sidebar-right-wrapper grid-10 omega"> <div class="panel-panel panel-region-sidebar-right"> <div class="inside"><div class="panel-pane pane-highwire-node-pager" > <div class="pane-content"> <div class="pager highwire-pager pager-mini clearfix highwire-node-pager highwire-article-pager"><span class="pager-prev"><a href="/content/10.1101/2023.09.25.559155v1" title="PanEffect: A pan-genome visualization tool for variant effects in maize" rel="prev" class="pager-link-prev link-icon"><span class="icon-circle-arrow-left"></span> <span class="title">Previous</span></a></span><span class="pager-next"><a href="/content/10.1101/2021.11.15.468576v1" title="WITHDRAWN: In Silico Prediction and Comparison of Resistomes in Model Pseudomonas Strains by Resistance Gene Identifier (RGI)" rel="next" class="pager-link-next link-icon-right link-icon"><span class="title">Next</span> <span class="icon-circle-arrow-right"></span></a></span></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-custom pane-1" > <div class="pane-content"> Posted September 26, 2023. </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-panels-mini pane-biorxiv-art-tools" > <div class="pane-content"> <div id="mini-panel-biorxiv_art_tools" class="highwire-2col-stacked panel-display"> <div class="panel-row-wrapper clearfix"> <div class="content-left-wrapper content-column"> <div class="panel-panel panel-region-content-left"> <div class="inside"><div class="panel-pane pane-highwire-variant-link" > <div class="pane-content"> <a href="/content/10.1101/2023.09.25.559190v1.full.pdf" target="_self" class="article-dl-pdf-link link-icon"><span class="icon-external-link-sign"></span> <span class="title">Download PDF</span></a> </div> </div> </div> </div> </div> <div class="content-right-wrapper content-column"> <div class="panel-panel panel-region-content-right"> <div class="inside"><div class="panel-pane pane-minipanel-dialog-link pane-biorxiv-art-email" > <div class="pane-content"> <div class='minipanel-dialog-wrapper'><div class='minipanel-dialog-link-link'><a href="/" oncontextmenu="javascript: return false;" class="minipanel-dialog-link-trigger" title="Email this Article" data-icon-position="" data-hide-link-title="0"><i class = 'icon-envelope'></i> Email</a></div><div class='minipanel-dialog-link-mini' style='display:none'><div class="panel-display panel-1col clearfix" id="mini-panel-biorxiv_art_email"> <div class="panel-panel panel-col"> <div><div class="panel-pane pane-block pane-forward-form pane-forward" > <div class="pane-content"> <form action="/content/10.1101/2023.09.25.559190v1" method="post" id="forward-form" accept-charset="UTF-8"><div><div id="edit-instructions" class="form-item form-item-label-before form-type-item"> <p>Thank you for your interest in spreading the word about bioRxiv.</p><p>NOTE: Your email address is requested solely to identify you as the sender of this article.</p> </div> <div class="form-item form-item-label-before form-type-textfield form-item-email"> <label for="edit-email">Your Email <span class="form-required" title="This field is required.">*</span></label> <input type="text" id="edit-email" name="email" value="" size="58" maxlength="256" class="form-text required" /> </div> <div class="form-item form-item-label-before form-type-textfield form-item-name"> <label for="edit-name">Your Name <span class="form-required" title="This field is required.">*</span></label> <input type="text" id="edit-name" name="name" value="" size="58" maxlength="256" class="form-text required" /> </div> <div class="form-item form-item-label-before form-type-textarea form-item-recipients"> <label for="edit-recipients">Send To <span class="form-required" title="This field is required.">*</span></label> <div class="form-textarea-wrapper resizable"><textarea id="edit-recipients" name="recipients" cols="50" rows="5" class="form-textarea required"></textarea></div> <div class="description">Enter multiple addresses on separate lines or separate them with commas.</div> </div> <div id="edit-page" class="form-item form-item-label-before form-type-item"> <label for="edit-page">You are going to email the following </label> <a href="/content/10.1101/2023.09.25.559190v1" class="active" data-icon-position="" data-hide-link-title="0">Generative Diffusion Models for Antibody Design, Docking, and Optimization</a> </div> <div id="edit-subject" class="form-item form-item-label-before form-type-item"> <label for="edit-subject">Message Subject </label> (Your Name) has forwarded a page to you from bioRxiv </div> <div id="edit-body" class="form-item form-item-label-before form-type-item"> <label for="edit-body">Message Body </label> (Your Name) thought you would like to see this page from the bioRxiv website. </div> <div class="form-item form-item-label-before form-type-textarea form-item-message"> <label for="edit-message--2">Your Personal Message </label> <div class="form-textarea-wrapper resizable"><textarea id="edit-message--2" name="message" cols="50" rows="10" class="form-textarea"></textarea></div> </div> <input type="hidden" name="path" value="node/3387487" /> <input type="hidden" name="path_cid" value="" /> <input type="hidden" name="forward_footer" value=" " /> <input type="hidden" name="form_build_id" value="form-6dpdeKCDISbFzO7fdSLKMcWBvEI9XShlrtO4Jz28QSc" /> <input type="hidden" name="form_id" value="forward_form" /> <fieldset class="captcha form-wrapper"><legend><span class="fieldset-legend">CAPTCHA</span></legend><div class="fieldset-wrapper"><div class="fieldset-description">This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.</div><input type="hidden" name="captcha_sid" value="838441424" /> <input type="hidden" name="captcha_token" value="9330f7c76a455eadcebb53d9fd625c78" /> <input type="hidden" name="captcha_response" value="Google no captcha" /> <div class="g-recaptcha" data-sitekey="6LfnJVIUAAAAAE-bUOMg0MJGki4lqSvDmhJp19fN" data-theme="light" data-type="image"></div></div></fieldset> <div class="form-actions form-wrapper" id="edit-actions"><input type="submit" id="edit-submit" name="op" value="Send Message" class="form-submit" /></div></div></form> </div> </div> </div> </div> </div> </div></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-share-link highwire_clipboard_link_ajax" id="shareit"> <div class="pane-content"> <a href="/" class="link-icon"><span class="icon-share-alt"></span> <span class="title">Share</span></a> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-panels-mini pane-biorxiv-share highwire_clipboard_form_ajax_shareit" > <div class="pane-content"> <div class="panel-display omega-12-onecol" id="mini-panel-biorxiv_share"> <div class="panel-panel grid-12 panel-region-preface"> <div class="inside"><div class="panel-pane pane-highwire-article-citation" > <div class="pane-content"> <div class="highwire-article-citation highwire-citation-type-highwire-article node3387487--3" data-node-nid="3387487" id="node-3387487--42126804884" data-pisa="biorxiv;2023.09.25.559190v1" data-pisa-master="biorxiv;2023.09.25.559190" data-seqnum="3387487" data-apath="/biorxiv/early/2023/09/26/2023.09.25.559190.atom"><div class="highwire-cite highwire-cite-highwire-article highwire-citation-biorxiv-article-pap-list clearfix" > <div class="highwire-cite-title" > <div class="highwire-cite-title">Generative Diffusion Models for Antibody Design, Docking, and Optimization</div> </div> <div class="highwire-cite-authors" ><span class="highwire-citation-authors"><span class="highwire-citation-author first" data-delta="0"><span class="nlm-given-names">Zhangzhi</span> <span class="nlm-surname">Peng</span></span>, <span class="highwire-citation-author" data-delta="1"><span class="nlm-given-names">Chenchen</span> <span class="nlm-surname">Han</span></span>, <span class="highwire-citation-author" data-delta="2"><span class="nlm-given-names">Xiaohan</span> <span class="nlm-surname">Wang</span></span>, <span class="highwire-citation-author" data-delta="3"><span class="nlm-given-names">Dapeng</span> <span class="nlm-surname">Li</span></span>, <span class="highwire-citation-author" data-delta="4"><span class="nlm-given-names">Fajie</span> <span class="nlm-surname">Yuan</span></span></span></div> <div class="highwire-cite-metadata" ><span class="highwire-cite-metadata-journal highwire-cite-metadata">bioRxiv </span><span class="highwire-cite-metadata-pages highwire-cite-metadata">2023.09.25.559190; </span><span class="highwire-cite-metadata-doi highwire-cite-metadata"><span class="doi_label">doi:</span> https://doi.org/10.1101/2023.09.25.559190 </span></div> </div> </div> </div> </div> </div> </div> <div class="panel-panel grid-12 panel-region-content"> <div class="inside"><div class="panel-pane pane-highwire-article-clipboard-copy" > <div class="pane-content"> <div class = "clipboard-copy"> <span class="label-url"> <label for="dynamic">Share This Article:</label> </span> <span class="input-text-url"> <input type="text" id="dynamic" value="https://www.biorxiv.org/content/10.1101/2023.09.25.559190v1" size="50"/> </span> <span class="copy-button button"> <button id="copy-dynamic" class="clipboardjs-button" data-clipboard-target="#dynamic" data-clipboard-alert-style="tooltip" data-clipboard-alert-text="Copied!">Copy</button> </span> </div> </div> </div> </div> </div> <div class="panel-panel grid-12 panel-region-postscript"> <div class="inside"><div class="panel-pane pane-service-links text-center" > <div class="pane-content"> <div class="service-links"><a href="http://twitter.com/share?url=https%3A//www.biorxiv.org/content/10.1101/2023.09.25.559190v1&text=Generative%20Diffusion%20Models%20for%20Antibody%20Design%2C%20Docking%2C%20and%20Optimization" id="twitter" title="Share this on Twitter" class="service-links-twitter" rel="nofollow" data-icon-position="" data-hide-link-title="0"><img src="https://www.biorxiv.org/sites/all/modules/highwire/highwire/images/twitter.png" alt="Twitter logo" /></a> <a href="http://www.facebook.com/sharer.php?u=https%3A//www.biorxiv.org/content/10.1101/2023.09.25.559190v1&t=Generative%20Diffusion%20Models%20for%20Antibody%20Design%2C%20Docking%2C%20and%20Optimization" id="facebook" title="Share on Facebook" class="service-links-facebook" rel="nofollow" data-icon-position="" data-hide-link-title="0"><img src="https://www.biorxiv.org/sites/all/modules/highwire/highwire/images/fb-blue.png" alt="Facebook logo" /></a> <a href="http://www.linkedin.com/shareArticle?mini=true&url=https%3A//www.biorxiv.org/content/10.1101/2023.09.25.559190v1&title=Generative%20Diffusion%20Models%20for%20Antibody%20Design%2C%20Docking%2C%20and%20Optimization&summary=&source=bioRxiv" id="linkedin" title="Publish this post to LinkedIn" class="service-links-linkedin" rel="nofollow" data-icon-position="" data-hide-link-title="0"><img src="https://www.biorxiv.org/sites/all/modules/highwire/highwire/images/linkedin-32px.png" alt="LinkedIn logo" /></a> <a href="http://www.mendeley.com/import/?url=https%3A//www.biorxiv.org/content/10.1101/2023.09.25.559190v1&title=Generative%20Diffusion%20Models%20for%20Antibody%20Design%2C%20Docking%2C%20and%20Optimization" id="mendeley" title="Share on Mendeley" class="service-links-mendeley" rel="nofollow" data-icon-position="" data-hide-link-title="0"><img src="https://www.biorxiv.org/sites/all/modules/highwire/highwire/images/mendeley.png" alt="Mendeley logo" /></a></div> </div> </div> </div> </div> </div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-minipanel-dialog-link pane-biorxiv-cite-tool" > <div class="pane-content"> <div class='minipanel-dialog-wrapper'><div class='minipanel-dialog-link-link'><a href="/" oncontextmenu="javascript: return false;" class="minipanel-dialog-link-trigger link-icon" title="Citation Tools"><span class="icon-globe"></span> <span class="title">Citation Tools</span></a></div><div class='minipanel-dialog-link-mini' style='display:none'><div class="panel-display panel-1col clearfix" id="mini-panel-biorxiv_cite_tool"> <div class="panel-panel panel-col"> <div><div class="panel-pane pane-highwire-citation-export" > <div class="pane-content"> <div class="highwire-citation-export"> <div class="highwire-citation-info"> <div class="highwire-article-citation highwire-citation-type-highwire-article cite-tool-node3387487--5" data-node-nid="3387487" id="citation-node-3387487--61157035653" data-pisa="biorxiv;2023.09.25.559190v1" data-pisa-master="biorxiv;2023.09.25.559190" data-seqnum="3387487" data-apath="/biorxiv/early/2023/09/26/2023.09.25.559190.atom"><div class="highwire-cite highwire-cite-highwire-article highwire-citation-biorxiv-article-pap-list clearfix" > <div class="highwire-cite-title" > <div class="highwire-cite-title">Generative Diffusion Models for Antibody Design, Docking, and Optimization</div> </div> <div class="highwire-cite-authors" ><span class="highwire-citation-authors"><span class="highwire-citation-author first" data-delta="0"><span class="nlm-given-names">Zhangzhi</span> <span class="nlm-surname">Peng</span></span>, <span class="highwire-citation-author" data-delta="1"><span class="nlm-given-names">Chenchen</span> <span class="nlm-surname">Han</span></span>, <span class="highwire-citation-author" data-delta="2"><span class="nlm-given-names">Xiaohan</span> <span class="nlm-surname">Wang</span></span>, <span class="highwire-citation-author" data-delta="3"><span class="nlm-given-names">Dapeng</span> <span class="nlm-surname">Li</span></span>, <span class="highwire-citation-author" data-delta="4"><span class="nlm-given-names">Fajie</span> <span class="nlm-surname">Yuan</span></span></span></div> <div class="highwire-cite-metadata" ><span class="highwire-cite-metadata-journal highwire-cite-metadata">bioRxiv </span><span class="highwire-cite-metadata-pages highwire-cite-metadata">2023.09.25.559190; </span><span class="highwire-cite-metadata-doi highwire-cite-metadata"><span class="doi_label">doi:</span> https://doi.org/10.1101/2023.09.25.559190 </span></div> </div> </div> </div> <div class="highwire-citation-formats"> <h2>Citation Manager Formats</h2> <div class="highwire-citation-formats-links"> <span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.spage&rft.epage&rft.atitle=Generative%20Diffusion%20Models%20for%20Antibody%20Design%2C%20Docking%2C%20and%20Optimization&rft.volume&rft.issue&rft.date=2023-01-01%2000%3A00%3A00&rft.stitle&rft.jtitle=bioRxiv&rft.au=Peng%2C+Zhangzhi&rft.au=Han%2C+Chenchen&rft.au=Wang%2C+Xiaohan&rft.au=Li%2C+Dapeng&rft.au=Yuan%2C+Fajie"></span><ul class="hw-citation-links inline button button-alt button-grid clearfix"><li class="bibtext first"><a href="/highwire/citation/3387487/bibtext" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">BibTeX</a></li><li class="bookends"><a href="/highwire/citation/3387487/bookends" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">Bookends</a></li><li class="easybib"><a href="/highwire/citation/3387487/easybib" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">EasyBib</a></li><li class="endnote-tagged"><a href="/highwire/citation/3387487/endnote-tagged" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">EndNote (tagged)</a></li><li class="endnote-8-xml"><a href="/highwire/citation/3387487/endnote-8-xml" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">EndNote 8 (xml)</a></li><li class="medlars"><a href="/highwire/citation/3387487/medlars" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">Medlars</a></li><li class="mendeley"><a href="/highwire/citation/3387487/mendeley" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">Mendeley</a></li><li class="papers"><a href="/highwire/citation/3387487/papers" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">Papers</a></li><li class="refworks-tagged"><a href="/highwire/citation/3387487/refworks-tagged" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">RefWorks Tagged</a></li><li class="reference-manager"><a href="/highwire/citation/3387487/reference-manager" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">Ref Manager</a></li><li class="ris"><a href="/highwire/citation/3387487/ris" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">RIS</a></li><li class="zotero last"><a href="/highwire/citation/3387487/zotero" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">Zotero</a></li></ul> </div> </div> </div> </div> </div> </div> </div> </div> </div></div> </div> </div> </div> </div> </div> </div> <!-- /.panel-row-wrapper --> </div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-service-links" > <div class="pane-content"> <div class="service-links"><div class="item-list"><ul><li class="first"><a href="http://twitter.com/share?url=https%3A//www.biorxiv.org/content/10.1101/2023.09.25.559190v1&count=horizontal&via=&text=Generative%20Diffusion%20Models%20for%20Antibody%20Design%2C%20Docking%2C%20and%20Optimization&counturl=https%3A//www.biorxiv.org/content/10.1101/2023.09.25.559190v1" class="twitter-share-button service-links-twitter-widget" id="twitter_widget" title="Tweet This" rel="nofollow" data-icon-position="" data-hide-link-title="0"><span class="element-invisible">Tweet Widget</span></a></li><li><a href="http://www.facebook.com/plugins/like.php?href=https%3A//www.biorxiv.org/content/10.1101/2023.09.25.559190v1&layout=button_count&show_faces=false&action=like&colorscheme=light&width=100&height=21&font=&locale=" id="facebook_like" title="I Like it" class="service-links-facebook-like" rel="nofollow" data-icon-position="" data-hide-link-title="0"><span class="element-invisible">Facebook Like</span></a></li><li class="last"><a href="https://www.biorxiv.org/content/10.1101/2023.09.25.559190v1" id="google_plus_one" title="Plus it" class="service-links-google-plus-one" rel="nofollow" data-icon-position="" data-hide-link-title="0"><span class="element-invisible">Google Plus One</span></a></li></ul></div></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-article-collections" > <h2 class="pane-title">Subject Area</h2> <div class="pane-content"> <div class="highwire-list-wrapper highwire-article-collections"><div class="highwire-list"><ul class="highwire-article-collection-term-list"><li class="first last odd"><span class="highwire-article-collection-term"><a href="/collection/bioinformatics" class="highlight" data-icon-position="" data-hide-link-title="0">Bioinformatics<i class="icon-caret-right"></i> </a></span></li></ul></div></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-panels-mini pane-biorxiv-subject-collections block-style-col2" > <div class="pane-content"> <div class="panel-flexible panels-flexible-new clearfix" id="mini-panel-biorxiv_subject_collections"> <div class="panel-flexible-inside panels-flexible-new-inside"> <div class="panels-flexible-region panels-flexible-region-new-center panels-flexible-region-first panels-flexible-region-last"> <div class="inside panels-flexible-region-inside panels-flexible-region-new-center-inside panels-flexible-region-inside-first panels-flexible-region-inside-last"> <div class="panel-pane pane-snippet" > <div class="pane-content"> <div class="snippet biorxiv-subject-areas-table-title" id="biorxiv-subject-areas-table-title"> <div class="snippet-content"> <b>Subject Areas</b> </div> </div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-snippet" > <div class="pane-content"> <div class="snippet biorxiv-subject-areas-view-papers" id="biorxiv-subject-areas-view-papers"> <div class="snippet-content"> <a href="/content/early/recent"><strong>All Articles</strong></a> </div> </div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-subject-collections" > <div class="pane-content"> <ul id="collection" class="collection highwire-list-expand"><li class="outer collection depth-2 child first"><div class = "data-wrapper"><a href="/collection/animal-behavior-and-cognition" class="" data-icon-position="" data-hide-link-title="0">Animal Behavior and Cognition</a> <span class = "article-count">(5842)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/biochemistry" class="" data-icon-position="" data-hide-link-title="0">Biochemistry</a> <span class = "article-count">(13243)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/bioengineering" class="" data-icon-position="" data-hide-link-title="0">Bioengineering</a> <span class = "article-count">(10085)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/bioinformatics" class="" data-icon-position="" data-hide-link-title="0">Bioinformatics</a> <span class = "article-count">(32325)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/biophysics" class="" data-icon-position="" data-hide-link-title="0">Biophysics</a> <span class = "article-count">(16624)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/cancer-biology" class="" data-icon-position="" data-hide-link-title="0">Cancer Biology</a> <span class = "article-count">(13703)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/cell-biology" class="" data-icon-position="" data-hide-link-title="0">Cell Biology</a> <span class = "article-count">(19485)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/clinical-trials" class="" data-icon-position="" data-hide-link-title="0">Clinical Trials</a> <span class = "article-count">(138)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/developmental-biology" class="" data-icon-position="" data-hide-link-title="0">Developmental Biology</a> <span class = "article-count">(10532)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/ecology" class="" data-icon-position="" data-hide-link-title="0">Ecology</a> <span class = "article-count">(15615)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/epidemiology" class="" data-icon-position="" data-hide-link-title="0">Epidemiology</a> <span class = "article-count">(2067)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/evolutionary-biology" class="" data-icon-position="" data-hide-link-title="0">Evolutionary Biology</a> <span class = "article-count">(19921)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/genetics" class="" data-icon-position="" data-hide-link-title="0">Genetics</a> <span class = "article-count">(13164)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/genomics" class="" data-icon-position="" data-hide-link-title="0">Genomics</a> <span class = "article-count">(18231)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/immunology" class="" data-icon-position="" data-hide-link-title="0">Immunology</a> <span class = "article-count">(13344)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/microbiology" class="" data-icon-position="" data-hide-link-title="0">Microbiology</a> <span class = "article-count">(31241)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/molecular-biology" class="" data-icon-position="" data-hide-link-title="0">Molecular Biology</a> <span class = "article-count">(13013)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/neuroscience" class="" data-icon-position="" data-hide-link-title="0">Neuroscience</a> <span class = "article-count">(68156)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/paleontology" class="" data-icon-position="" data-hide-link-title="0">Paleontology</a> <span class = "article-count">(501)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/pathology" class="" data-icon-position="" data-hide-link-title="0">Pathology</a> <span class = "article-count">(2103)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/pharmacology-and-toxicology" class="" data-icon-position="" data-hide-link-title="0">Pharmacology and Toxicology</a> <span class = "article-count">(3640)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/physiology" class="" data-icon-position="" data-hide-link-title="0">Physiology</a> <span class = "article-count">(5680)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/plant-biology" class="" data-icon-position="" data-hide-link-title="0">Plant Biology</a> <span class = "article-count">(11682)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/scientific-communication-and-education" class="" data-icon-position="" data-hide-link-title="0">Scientific Communication and Education</a> <span class = "article-count">(1780)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/synthetic-biology" class="" data-icon-position="" data-hide-link-title="0">Synthetic Biology</a> <span class = "article-count">(3272)</span></div></li> <li class="outer collection depth-2 child"><div class = "data-wrapper"><a href="/collection/systems-biology" class="" data-icon-position="" data-hide-link-title="0">Systems Biology</a> <span class = "article-count">(7975)</span></div></li> <li class="outer collection depth-2 child last"><div class = "data-wrapper"><a href="/collection/zoology" class="" data-icon-position="" data-hide-link-title="0">Zoology</a> <span class = "article-count">(1800)</span></div></li> </ul> </div> </div> </div> </div> </div> </div> </div> </div> </div> </div> </div> </div> <!-- /.panel-row-wrapper --> </div> </div> </div> </div> </div> </div> </div> </section> </div> <div class="region region-page-bottom" id="region-page-bottom"> <div class="region-inner region-page-bottom-inner"> </div> </div><script type="text/javascript" src="https://www.biorxiv.org/sites/default/files/advagg_js/js__Vh5BcRYb6VtLoN3uam6O4DIKltYUVMjVDWtakoysPq0__Wed8jsPTirEozek7dWSCS8970Cp7a9xKKgFk6FPuSVM__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.js"></script> <script type="text/javascript" src="//d33xdlntwy0kbs.cloudfront.net/cshl_custom.js"></script> <script type="text/javascript" src="https://www.biorxiv.org/sites/default/files/advagg_js/js__BmqjBnkz3MgYCAoc25s1lDRMEjLhC3mEPVonUFIHi08__Unwv5-ZIuHBfFwytsjEx1niBVJ7n1T4lPws7VrkHXM4__EJK5Ll7b5lGK3vCcC61vJSpnnlwWCn8d6_LJW7hCX3M.js"></script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- function euCookieComplianceLoadScripts() {} //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- var eu_cookie_compliance_cookie_name = ""; //--><!]]> </script> </body> </html>