CINXE.COM
Search results for: retinal prosthetic devices
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: retinal prosthetic devices</title> <meta name="description" content="Search results for: retinal prosthetic devices"> <meta name="keywords" content="retinal prosthetic devices"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="retinal prosthetic devices" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="retinal prosthetic devices"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2596</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: retinal prosthetic devices</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2596</span> 3D Electrode Carrier and its Implications on Retinal Implants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diego%20Luj%C3%A1n%20Villarreal">Diego Luján Villarreal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Retinal prosthetic devices aim to repair some vision in visual impairment patients by stimulating electrically neural cells in the visual system. In this study, the 3D linear electrode carrier is presented. A simulation framework was developed by placing the 3D carrier 1 mm away from the fovea center at the highest-density cell. Cell stimulation is verified in COMSOL Multiphysics by developing a 3D computational model which includes the relevant retinal interface elements and dynamics of the voltage-gated ionic channels. Current distribution resulting from low threshold amplitudes produces a small volume equivalent to the volume confined by individual cells at the highest-density cell using small-sized electrodes. Delicate retinal tissue is protected by excessive charge density <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retinal%20prosthetic%20devices" title="retinal prosthetic devices">retinal prosthetic devices</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20devices" title=" visual devices"> visual devices</a>, <a href="https://publications.waset.org/abstracts/search?q=retinal%20implants." title=" retinal implants."> retinal implants.</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20prosthetic%20devices" title=" visual prosthetic devices"> visual prosthetic devices</a> </p> <a href="https://publications.waset.org/abstracts/162033/3d-electrode-carrier-and-its-implications-on-retinal-implants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2595</span> Comparison of Vessel Detection in Standard vs Ultra-WideField Retinal Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maher%20un%20Nisa">Maher un Nisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahsan%20Khawaja"> Ahsan Khawaja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Retinal imaging with Ultra-WideField (UWF) view technology has opened up new avenues in the field of retinal pathology detection. Recent developments in retinal imaging such as Optos California Imaging Device helps in acquiring high resolution images of the retina to help the Ophthalmologists in diagnosing and analyzing eye related pathologies more accurately. This paper investigates the acquired retinal details by comparing vessel detection in standard 450 color fundus images with the state of the art 2000 UWF retinal images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color%20fundus" title="color fundus">color fundus</a>, <a href="https://publications.waset.org/abstracts/search?q=retinal%20images" title=" retinal images"> retinal images</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-widefield" title=" ultra-widefield"> ultra-widefield</a>, <a href="https://publications.waset.org/abstracts/search?q=vessel%20detection" title=" vessel detection"> vessel detection</a> </p> <a href="https://publications.waset.org/abstracts/33520/comparison-of-vessel-detection-in-standard-vs-ultra-widefield-retinal-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2594</span> Modeling and Analysis of a Cycling Prosthetic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Tolentino">John Tolentino</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Seok%20Park"> Yong Seok Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are currently many people living with limb loss in the USA. The main causes for amputation can range from vascular disease, to trauma, or cancer. This number is expected increase over the next decade. Many patients have a single prosthetic for the first year but end up getting a second one to accommodate their changing physique. Afterwards, the prosthesis gets replaced every three to five years depending on how often it is used. This could cost the patient up to $500,000 throughout their lifetime. Complications do not end there, however. Due to the absence of nerves, it becomes more difficult to traverse terrain with a prosthetic. Moving on an incline or decline becomes difficult, thus curbs and stairs can be a challenge. Certain physical activities, such as cycling, could be even more strenuous. It will need to be relearned to accommodate for the change in weight, center of gravity, and transfer of energy from the leg to the pedal. The purpose of this research project is to develop a new, alternate below-knee cycling prosthetic using Dieter & Schmidt’s design process approach. It will be subjected to fatigue analysis under dynamic loading to observe the limitations as well as the strengths and weaknesses of the prosthetic. Benchmark comparisons will be made between existing prosthetics and the proposed one, examining the benefits and disadvantages. The resulting prosthetic will be 3D printed using acrylonitrile butadiene styrene (ABS) or polycarbonate (PC) plastic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20Printing" title="3D Printing">3D Printing</a>, <a href="https://publications.waset.org/abstracts/search?q=Cycling" title=" Cycling"> Cycling</a>, <a href="https://publications.waset.org/abstracts/search?q=Prosthetic%20design" title=" Prosthetic design"> Prosthetic design</a>, <a href="https://publications.waset.org/abstracts/search?q=Synthetic%20design." title=" Synthetic design."> Synthetic design.</a> </p> <a href="https://publications.waset.org/abstracts/123679/modeling-and-analysis-of-a-cycling-prosthetic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2593</span> Qualitative Needs Assessment for Development of a Smart Thumb Prosthetic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syena%20Moltaji">Syena Moltaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20Posa"> Stephanie Posa</a>, <a href="https://publications.waset.org/abstracts/search?q=Sander%20Hitzig"> Sander Hitzig</a>, <a href="https://publications.waset.org/abstracts/search?q=Amanda%20Mayo"> Amanda Mayo</a>, <a href="https://publications.waset.org/abstracts/search?q=Heather%20Baltzer"> Heather Baltzer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: To critically assess deficits following thumb amputation and delineate elements of an ideal thumb prosthesis from the end-user perspective. Methods: This was a qualitative study based on grounded theory. End-user stakeholder groups of thumb amputees and prosthetists were interviewed. Transcripts were reviewed whole first for familiarity. Data coding was then performed by two individual authors. Coded units were grouped by similarity and reviewed to reach a consensus. Codes were then analyzed for emergent themes by each author. A consensus meeting was held with all authors to finalize themes. Results: Three patients with traumatic thumb amputation and eight prosthetists were interviewed. Seven themes emerged. First was the significant impact of losing a thumb, in which codes of functional impact, mental impact, and occupational impact were included. The second theme was the unique nature of each thumb amputee, including goals, readiness for prosthesis, nature of the injury, and insurance. The third emergent theme was cost, surrounding government funding, insurability, and prosthetic pricing. The fourth theme was patient frustration, which included mismatches of prosthetic expectations and realities, activity limitations, and causes of devices abandonment. Themes five and six surrounded the strengths and weaknesses of current prosthetics, respectively. Theme seven was the ideal design for a thumb prosthetic, including abilities, suspension, and materials. Conclusions: Representative data from stakeholders mapped the current status of thumb prosthetics. Preferences for an ideal thumb prosthetic emerged, with suggestions for a simple, durable design. The ability to oppose, grasp and sense pressure was reported as functional priorities. Feasible cost and easy fitting emerged as systemic objectives. This data will be utilized in the development of a sensate thumb prosthetic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20thumb" title="smart thumb">smart thumb</a>, <a href="https://publications.waset.org/abstracts/search?q=thumb%20prosthetic" title=" thumb prosthetic"> thumb prosthetic</a>, <a href="https://publications.waset.org/abstracts/search?q=sensate%20prosthetic" title=" sensate prosthetic"> sensate prosthetic</a>, <a href="https://publications.waset.org/abstracts/search?q=amputation" title=" amputation"> amputation</a> </p> <a href="https://publications.waset.org/abstracts/148325/qualitative-needs-assessment-for-development-of-a-smart-thumb-prosthetic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2592</span> Retinal Vascular Tortuosity in Obstructive Sleep Apnea-COPD Overlap Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabab%20A.%20El%20Wahsh">Rabab A. El Wahsh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatem%20M.%20Marey"> Hatem M. Marey</a>, <a href="https://publications.waset.org/abstracts/search?q=Maha%20Yousif"> Maha Yousif</a>, <a href="https://publications.waset.org/abstracts/search?q=Asmaa%20M.%20Ibrahim"> Asmaa M. Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: OSA and COPD are associated with microvascular changes. Retinal microvasculature can be directly and non-invasively examined. Aim: to evaluate retinal vascular tortuosity in patients with COPD, OSA, and overlap syndrome. Subjects and method: Sixty subjects were included; 15 OSA patients, 15 COPD patients, 15 COPD-OSA overlap patients, and 15 matched controls. They underwent digital retinal photography, polysomnography, arterial blood gases, spirometry, ESS, and stop-bang questionnaires. Results: Tortuosity of most retinal vessels was higher in all patient groups compared to the control group; tortuosity was more marked in overlap syndrome. There was a negative correlation between tortuosity of retinal vessels and PO2, O2 saturation, and minimum O2 desaturation, and a positive correlation with PCO2, AHI, O2 desaturation index, BMI and smoking index. Conclusion: Retinal vascular tortuosity occurs in OSA, COPD and overlap syndrome. Retinal vascular tortuosity is correlated with arterial blood gases parameters, polysomnographic findings, smoking index and BMI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OSA" title="OSA">OSA</a>, <a href="https://publications.waset.org/abstracts/search?q=COPD" title=" COPD"> COPD</a>, <a href="https://publications.waset.org/abstracts/search?q=overlap%20syndrome" title=" overlap syndrome"> overlap syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=retinal%20vascular%20tortuosity" title=" retinal vascular tortuosity"> retinal vascular tortuosity</a> </p> <a href="https://publications.waset.org/abstracts/168040/retinal-vascular-tortuosity-in-obstructive-sleep-apnea-copd-overlap-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2591</span> Digital Retinal Images: Background and Damaged Areas Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20A.%20Gani">Eman A. Gani</a>, <a href="https://publications.waset.org/abstracts/search?q=Loay%20E.%20George"> Loay E. George</a>, <a href="https://publications.waset.org/abstracts/search?q=Faisel%20G.%20Mohammed"> Faisel G. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamal%20H.%20Sager"> Kamal H. Sager</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital retinal images are more appropriate for automatic screening of diabetic retinopathy systems. Unfortunately, a significant percentage of these images are poor quality that hinders further analysis due to many factors (such as patient movement, inadequate or non-uniform illumination, acquisition angle and retinal pigmentation). The retinal images of poor quality need to be enhanced before the extraction of features and abnormalities. So, the segmentation of retinal image is essential for this purpose, the segmentation is employed to smooth and strengthen image by separating the background and damaged areas from the overall image thus resulting in retinal image enhancement and less processing time. In this paper, methods for segmenting colored retinal image are proposed to improve the quality of retinal image diagnosis. The methods generate two segmentation masks; i.e., background segmentation mask for extracting the background area and poor quality mask for removing the noisy areas from the retinal image. The standard retinal image databases DIARETDB0, DIARETDB1, STARE, DRIVE and some images obtained from ophthalmologists have been used to test the validation of the proposed segmentation technique. Experimental results indicate the introduced methods are effective and can lead to high segmentation accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retinal%20images" title="retinal images">retinal images</a>, <a href="https://publications.waset.org/abstracts/search?q=fundus%20images" title=" fundus images"> fundus images</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetic%20retinopathy" title=" diabetic retinopathy"> diabetic retinopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=background%20segmentation" title=" background segmentation"> background segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=damaged%20areas%20segmentation" title=" damaged areas segmentation"> damaged areas segmentation</a> </p> <a href="https://publications.waset.org/abstracts/12289/digital-retinal-images-background-and-damaged-areas-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2590</span> Medical Diagnosis of Retinal Diseases Using Artificial Intelligence Deep Learning Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ethan%20James">Ethan James</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over one billion people worldwide suffer from some level of vision loss or blindness as a result of progressive retinal diseases. Many patients, particularly in developing areas, are incorrectly diagnosed or undiagnosed whatsoever due to unconventional diagnostic tools and screening methods. Artificial intelligence (AI) based on deep learning (DL) convolutional neural networks (CNN) have recently gained a high interest in ophthalmology for its computer-imaging diagnosis, disease prognosis, and risk assessment. Optical coherence tomography (OCT) is a popular imaging technique used to capture high-resolution cross-sections of retinas. In ophthalmology, DL has been applied to fundus photographs, optical coherence tomography, and visual fields, achieving robust classification performance in the detection of various retinal diseases including macular degeneration, diabetic retinopathy, and retinitis pigmentosa. However, there is no complete diagnostic model to analyze these retinal images that provide a diagnostic accuracy above 90%. Thus, the purpose of this project was to develop an AI model that utilizes machine learning techniques to automatically diagnose specific retinal diseases from OCT scans. The algorithm consists of neural network architecture that was trained from a dataset of over 20,000 real-world OCT images to train the robust model to utilize residual neural networks with cyclic pooling. This DL model can ultimately aid ophthalmologists in diagnosing patients with these retinal diseases more quickly and more accurately, therefore facilitating earlier treatment, which results in improved post-treatment outcomes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging"> imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20devices" title=" medical devices"> medical devices</a>, <a href="https://publications.waset.org/abstracts/search?q=ophthalmic%20devices" title=" ophthalmic devices"> ophthalmic devices</a>, <a href="https://publications.waset.org/abstracts/search?q=ophthalmology" title=" ophthalmology"> ophthalmology</a>, <a href="https://publications.waset.org/abstracts/search?q=retina" title=" retina"> retina</a> </p> <a href="https://publications.waset.org/abstracts/127742/medical-diagnosis-of-retinal-diseases-using-artificial-intelligence-deep-learning-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2589</span> Clinical Characteristics of Retinal Detachment Associated with Atopic Dermatitis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyoung%20Seok%20Kim">Hyoung Seok Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: To evaluate the clinical characteristics and surgical outcomes of retinal detachment associated with atopic dermatitis. Methods: A retrospective investigation of clinical notes of 37 patients with retinal detachment associated with atopic dermatitis was conducted from January 2019 to December 2023. Initial visual acuity, medical history, type of retinal detachment, number of tears, types of treatment, success rate of treatment, and presence of cataract were investigated. To evaluate the relationship with cataract, the patients were classified into three groups according to lens status: group A (eyes with clear lens), group B (eyes with cataract), and group C (pseudophakic eyes). Results: Of the 37 patients, 29 were male and 8 were female; 10 patients had bilateral retinal detachment (27.0%). The retinal breaks were often located temporally (89.4%), with only 5 cases (10.6%) involving nasal-side retinal breaks. No significant differ ences were noted in the ratio of males to females, age distribution, visual acuity before and after treatments, axial length, and lo cation of retina breaks among the three groups. After primary surgery, retinal detachment recurred in 12 patients (14 eyes), 5 of whom were initially diagnosed with bilateral retinal detachment. In addition, 12 of 14 eyes underwent a second operation, in which detachment recurred in 3 eyes. Conclusions: Incidence of bilateral retinal detachment was high in patients with atopic dermatitis, and the retinal breaks were of ten found on the temporal side. Retinal re-detachment was statistically high in patients with cataract or pseudophakic eyes com pared to patients with clear lens (p = 0.024). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retinal%20detachment" title="retinal detachment">retinal detachment</a>, <a href="https://publications.waset.org/abstracts/search?q=atopic%20dermatitis" title=" atopic dermatitis"> atopic dermatitis</a>, <a href="https://publications.waset.org/abstracts/search?q=cataract" title=" cataract"> cataract</a>, <a href="https://publications.waset.org/abstracts/search?q=retina%20surgery" title=" retina surgery"> retina surgery</a> </p> <a href="https://publications.waset.org/abstracts/191109/clinical-characteristics-of-retinal-detachment-associated-with-atopic-dermatitis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">19</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2588</span> In Vitro Evaluation of an Artificial Venous Valve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joon%20Hock%20Yeo">Joon Hock Yeo</a>, <a href="https://publications.waset.org/abstracts/search?q=Munirah%20Ismail"> Munirah Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chronic venous insufficiency is a condition where the venous wall or venous valves fail to operate properly. As such, it is difficult for the blood to return from the lower extremities back to the heart. Chronic venous insufficiency affects many people worldwide. In last decade, there have been many new and innovative designs of prosthetic venous valves to replace the malfunction native venous valves. However, thus far, to the authors’ knowledge, there is no successful prosthetic venous valve. In this project, we have developed a venous valve which could operate under low pressure. While further testing is warranted, this unique valve could potentially alleviate problems associated with chronic venous insufficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prosthetic%20venous%20valve" title="prosthetic venous valve">prosthetic venous valve</a>, <a href="https://publications.waset.org/abstracts/search?q=bi-leaflet%20valve" title=" bi-leaflet valve"> bi-leaflet valve</a>, <a href="https://publications.waset.org/abstracts/search?q=chronic%20venous%20insufficiency" title=" chronic venous insufficiency"> chronic venous insufficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=valve%20hemodynamics" title=" valve hemodynamics"> valve hemodynamics</a> </p> <a href="https://publications.waset.org/abstracts/86146/in-vitro-evaluation-of-an-artificial-venous-valve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2587</span> Computational Simulations and Assessment of the Application of Non-Circular TAVI Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jonathon%20Bailey">Jonathon Bailey</a>, <a href="https://publications.waset.org/abstracts/search?q=Neil%20Bressloff"> Neil Bressloff</a>, <a href="https://publications.waset.org/abstracts/search?q=Nick%20Curzen"> Nick Curzen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transcatheter Aortic Valve Implantation (TAVI) devices are stent-like frames with prosthetic leaflets on the inside, which are percutaneously implanted. The device in a crimped state is fed through the arteries to the aortic root, where the device frame is opened through either self-expansion or balloon expansion, which reveals the prosthetic valve within. The frequency at which TAVI is being used to treat aortic stenosis is rapidly increasing. In time, TAVI is likely to become the favoured treatment over Surgical Valve Replacement (SVR). Mortality after TAVI has been associated with severe Paravalvular Aortic Regurgitation (PAR). PAR occurs when the frame of the TAVI device does not make an effective seal against the internal surface of the aortic root, allowing blood to flow backwards about the valve. PAR is common in patients and has been reported to some degree in as much as 76% of cases. Severe PAR (grade 3 or 4) has been reported in approximately 17% of TAVI patients resulting in post-procedural mortality increases from 6.7% to 16.5%. TAVI devices, like SVR devices, are circular in cross-section as the aortic root is often considered to be approximately circular in shape. In reality, however, the aortic root is often non-circular. The ascending aorta, aortic sino tubular junction, aortic annulus and left ventricular outflow tract have an average ellipticity ratio of 1.07, 1.09, 1.29, and 1.49 respectively. An elliptical aortic root does not severely affect SVR, as the leaflets are completely removed during the surgical procedure. However, an elliptical aortic root can inhibit the ability of the circular Balloon-Expandable (BE) TAVI devices to conform to the interior of the aortic root wall, which increases the risk of PAR. Self-Expanding (SE) TAVI devices are considered better at conforming to elliptical aortic roots, however the valve leaflets were not designed for elliptical function, furthermore the incidence of PAR is greater in SE devices than BE devices (19.8% vs. 12.2% respectively). If a patient’s aortic root is too severely elliptical, they will not be suitable for TAVI, narrowing the treatment options to SVR. It therefore follows that in order to increase the population who can undergo TAVI, and reduce the risk associated with TAVI, non-circular devices should be developed. Computational simulations were employed to further advance our understanding of non-circular TAVI devices. Radial stiffness of the TAVI devices in multiple directions, frame bending stiffness and resistance to balloon induced expansion are all computationally simulated. Finally, a simulation has been developed that demonstrates the expansion of TAVI devices into a non-circular patient specific aortic root model in order to assess the alterations in deployment dynamics, PAR and the stresses induced in the aortic root. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tavi" title="tavi">tavi</a>, <a href="https://publications.waset.org/abstracts/search?q=tavr" title=" tavr"> tavr</a>, <a href="https://publications.waset.org/abstracts/search?q=fea" title=" fea"> fea</a>, <a href="https://publications.waset.org/abstracts/search?q=par" title=" par"> par</a>, <a href="https://publications.waset.org/abstracts/search?q=fem" title=" fem"> fem</a> </p> <a href="https://publications.waset.org/abstracts/30631/computational-simulations-and-assessment-of-the-application-of-non-circular-tavi-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2586</span> Stable Diffusion, Context-to-Motion Model to Augmenting Dexterity of Prosthetic Limbs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20Augusto%20Ceballos%20Melo">André Augusto Ceballos Melo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Design to facilitate the recognition of congruent prosthetic movements, context-to-motion translations guided by image, verbal prompt, users nonverbal communication such as facial expressions, gestures, paralinguistics, scene context, and object recognition contributes to this process though it can also be applied to other tasks, such as walking, Prosthetic limbs as assistive technology through gestures, sound codes, signs, facial, body expressions, and scene context The context-to-motion model is a machine learning approach that is designed to improve the control and dexterity of prosthetic limbs. It works by using sensory input from the prosthetic limb to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. This can help to improve the performance of the prosthetic limb and make it easier for the user to perform a wide range of tasks. There are several key benefits to using the context-to-motion model for prosthetic limb control. First, it can help to improve the naturalness and smoothness of prosthetic limb movements, which can make them more comfortable and easier to use for the user. Second, it can help to improve the accuracy and precision of prosthetic limb movements, which can be particularly useful for tasks that require fine motor control. Finally, the context-to-motion model can be trained using a variety of different sensory inputs, which makes it adaptable to a wide range of prosthetic limb designs and environments. Stable diffusion is a machine learning method that can be used to improve the control and stability of movements in robotic and prosthetic systems. It works by using sensory feedback to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. One key aspect of stable diffusion is that it is designed to be robust to noise and uncertainty in the sensory feedback. This means that it can continue to produce stable, smooth movements even when the sensory data is noisy or unreliable. To implement stable diffusion in a robotic or prosthetic system, it is typically necessary to first collect a dataset of examples of the desired movements. This dataset can then be used to train a machine learning model to predict the appropriate control inputs for a given set of sensory observations. Once the model has been trained, it can be used to control the robotic or prosthetic system in real-time. The model receives sensory input from the system and uses it to generate control signals that drive the motors or actuators responsible for moving the system. Overall, the use of the context-to-motion model has the potential to significantly improve the dexterity and performance of prosthetic limbs, making them more useful and effective for a wide range of users Hand Gesture Body Language Influence Communication to social interaction, offering a possibility for users to maximize their quality of life, social interaction, and gesture communication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stable%20diffusion" title="stable diffusion">stable diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20interface" title=" neural interface"> neural interface</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20prosthetic" title=" smart prosthetic"> smart prosthetic</a>, <a href="https://publications.waset.org/abstracts/search?q=augmenting" title=" augmenting"> augmenting</a> </p> <a href="https://publications.waset.org/abstracts/161374/stable-diffusion-context-to-motion-model-to-augmenting-dexterity-of-prosthetic-limbs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2585</span> Retina Registration for Biometrics Based on Characterization of Retinal Feature Points</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nougrara%20Zineb">Nougrara Zineb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The unique structure of the blood vessels in the retina has been used for biometric identification. The retina blood vessel pattern is a unique pattern in each individual and it is almost impossible to forge that pattern in a false individual. The retina biometrics’ advantages include high distinctiveness, universality, and stability overtime of the blood vessel pattern. Once the creases have been extracted from the images, a registration stage is necessary, since the position of the retinal vessel structure could change between acquisitions due to the movements of the eye. Image registration consists of following steps: Feature detection, feature matching, transform model estimation and image resembling and transformation. In this paper, we present an algorithm of registration; it is based on the characterization of retinal feature points. For experiments, retinal images from the DRIVE database have been tested. The proposed methodology achieves good results for registration in general. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fovea" title="fovea">fovea</a>, <a href="https://publications.waset.org/abstracts/search?q=optic%20disc" title=" optic disc"> optic disc</a>, <a href="https://publications.waset.org/abstracts/search?q=registration" title=" registration"> registration</a>, <a href="https://publications.waset.org/abstracts/search?q=retinal%20images" title=" retinal images"> retinal images</a> </p> <a href="https://publications.waset.org/abstracts/72438/retina-registration-for-biometrics-based-on-characterization-of-retinal-feature-points" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2584</span> Visual Outcome After 360-Degree Retinectomy in Total Rhegmatogenous Retinal Detachment with Advanced Proliferative Vitreoretinopathy: A Case Series</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andriati%20Nadhilah%20Widyarini">Andriati Nadhilah Widyarini</a>, <a href="https://publications.waset.org/abstracts/search?q=Ezra%20Margareth"> Ezra Margareth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Rhegmatogenous retinal detachment is a condition where there’s a break in the retina, which allows the vitreous to directly enter the subretinal space. Proliferative vitreoretinopathy (PVR) may develop due to this condition and can result in a new break, which could cause traction on the previously detached retina. Various methods of therapy can be done to treat this complication. Case: This case series involved 2 eyes of 2 patients who had total retinal detachment with advanced PVR. Pars plana vitrectomy was performed, and a 360-degree retinectomy procedure with perfluorocarbon liquid usage was done. This was followed by endo laser retinopexy to surround the border of retinectomy. 5000 cs silicone oil was used in 1 eye, whereas 12% of perfluoropropane gas was used in the other eye as a tamponade. These procedures were performed with meticulous attention to prevent any fluid from entering the subretinal space. Postoperative examination showed attachment of the retina and improvement of the patient’s visual acuity. Both eyes’ intraocular pressure was in the normal range. One eye developed retinal displacement, but no other complications occurred. Discussion: Rhegmatogenous retinal detachment with advanced PVR is a complex situation for vitreoretinal surgeons. PVR is characterized by the growth and migration of preretinal or subretinal membranes. PVR is the most common cause of retinal reattachment failure. A 360-degree retinectomy is an alternative surgical method to overcome this condition. Objectives of this procedure are releasing retinal traction caused by PVR, reducing the recurrence rate of PVR, and reattaching the retina to the pigment epithelial surface. Conclusion: 360-degree retinectomy provides satisfactory retinal reattachment and visual outcome improvement in rhegmatogenous retinal detachment with advanced PVR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RRD" title="RRD">RRD</a>, <a href="https://publications.waset.org/abstracts/search?q=retinectomy" title=" retinectomy"> retinectomy</a>, <a href="https://publications.waset.org/abstracts/search?q=pars%20plana" title=" pars plana"> pars plana</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20PVR" title=" advanced PVR"> advanced PVR</a> </p> <a href="https://publications.waset.org/abstracts/181173/visual-outcome-after-360-degree-retinectomy-in-total-rhegmatogenous-retinal-detachment-with-advanced-proliferative-vitreoretinopathy-a-case-series" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">47</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2583</span> Design Development, Fabrication, and Preliminary Specifications of Multi-Fingered Prosthetic Hand </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mogeeb%20A.%20El-Sheikh">Mogeeb A. El-Sheikh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study has developed the previous design of an artificial anthropomorphic humanoid hand and accustomed it as a prosthetic hand. The main specifications of this design are determined. The development of our previous design involves the main artificial hand’s parts and subassemblies, palm, fingers, and thumb. In addition, the study presents an adaptable socket design for a transradial amputee. This hand has 3 fingers and thumb. It is more reliable, cosmetics, modularity, and ease of assembly. Its size and weight are almost as a natural hand. The socket cavity has the capability for different sizes of a transradial amputee. The study implements the developed design by using rapid prototype and specifies its main specifications by using a data glove and finite element method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptable%20socket" title="adaptable socket">adaptable socket</a>, <a href="https://publications.waset.org/abstracts/search?q=prosthetic%20hand" title=" prosthetic hand"> prosthetic hand</a>, <a href="https://publications.waset.org/abstracts/search?q=transradial%20amputee" title=" transradial amputee"> transradial amputee</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20glove" title=" data glove"> data glove</a> </p> <a href="https://publications.waset.org/abstracts/56702/design-development-fabrication-and-preliminary-specifications-of-multi-fingered-prosthetic-hand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2582</span> Comparison of Central Light Reflex Width-to-Retinal Vessel Diameter Ratio between Glaucoma and Normal Eyes by Using Edge Detection Technique </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Siriarchawatana">P. Siriarchawatana</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Leungchavaphongse"> K. Leungchavaphongse</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Covavisaruch"> N. Covavisaruch</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Rojananuangnit"> K. Rojananuangnit</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Boondaeng"> P. Boondaeng</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Panyayingyong"> N. Panyayingyong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glaucoma is a disease that causes visual loss in adults. Glaucoma causes damage to the optic nerve and its overall pathophysiology is still not fully understood. Vasculopathy may be one of the possible causes of nerve damage. Photographic imaging of retinal vessels by fundus camera during eye examination may complement clinical management. This paper presents an innovation for measuring central light reflex width-to-retinal vessel diameter ratio (CRR) from digital retinal photographs. Using our edge detection technique, CRRs from glaucoma and normal eyes were compared to examine differences and associations. CRRs were evaluated on fundus photographs of participants from Mettapracharak (Wat Raikhing) Hospital in Nakhon Pathom, Thailand. Fifty-five photographs from normal eyes and twenty-one photographs from glaucoma eyes were included. Participants with hypertension were excluded. In each photograph, CRRs from four retinal vessels, including arteries and veins in the inferotemporal and superotemporal regions, were quantified using edge detection technique. From our finding, mean CRRs of all four retinal arteries and veins were significantly higher in persons with glaucoma than in those without glaucoma (0.34 <em>vs</em>. 0.32, <em>p</em> < 0.05 for inferotemporal vein, 0.33 <em>vs</em>. 0.30, <em>p</em> < 0.01 for inferotemporal artery, 0.34 <em>vs</em>. 0.31, <em>p </em>< 0.01 for superotemporal vein, and 0.33 <em>vs</em>. 0.30, <em>p</em> < 0.05 for superotemporal artery). From these results, an increase in CRRs of retinal vessels, as quantitatively measured from fundus photographs, could be associated with glaucoma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glaucoma" title="glaucoma">glaucoma</a>, <a href="https://publications.waset.org/abstracts/search?q=retinal%20vessel" title=" retinal vessel"> retinal vessel</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20light%20reflex" title=" central light reflex"> central light reflex</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=fundus%20photograph" title=" fundus photograph"> fundus photograph</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20detection" title=" edge detection"> edge detection</a> </p> <a href="https://publications.waset.org/abstracts/54545/comparison-of-central-light-reflex-width-to-retinal-vessel-diameter-ratio-between-glaucoma-and-normal-eyes-by-using-edge-detection-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2581</span> Retinal Changes in Patients with Idiopathic Inflammatory Myopathies: A Case-Control Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachna%20Agarwal">Rachna Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Naveen"> R. Naveen</a>, <a href="https://publications.waset.org/abstracts/search?q=Darpan%20Thakre"> Darpan Thakre</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Shahi"> Rohit Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Abbasi"> Maryam Abbasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Upendra%20Rathore"> Upendra Rathore</a>, <a href="https://publications.waset.org/abstracts/search?q=Latika%20Gupta"> Latika Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: Retinal changes are the window to systemic vasculature. Therefore, we explored retinal changes in patients with idiopathic inflammatory myopathies (IIM) as a surrogate for vascular health. Methods: Adult and juvenile IIM patients visiting a tertiary care centre in 2021 satisfying the International Myositis Classification Criteria were enrolled for detailed ophthalmic examination in comparison with healthy controls (HC). Patients with conditions that precluded thorough posterior chamber examination were excluded. Scale variables are expressed as median (IQR). Multivariate analysis (binary logistic regression-BLR) was conducted, adjusting for age, gender, and comorbidities besides factors significant in univariate analysis. Results: 43 patients with IIM [31 females; age 36 (23-45) years; disease duration 5.5 (2-12) months] were enrolled for participation. DM (44%) was the most common diagnosis. IIM patients exhibited frequent attenuation of retinal vessels (32.6% vs. 4.3%, p <0.001), AV nicking (14% vs. 2.2%, p=0.053), and vascular tortuosity (18.6% vs. 2.2%, p=0.012), besides decreased visual acuity (53.5% vs. 10.9%, p<0.001) and immature cataracts (34.9% vs. 2.2%, p<0.001). Attenuation of vessels [OR 10.9 (1.7-71), p=0.004] emerged as significantly different from HC after adjusting for covariates in BLR. Notably, adults with IIM were more predisposed to retinal abnormalities [21 (57%) vs. 1 (16%), p=0.068], especially attenuation of vessels [14(38%) vs. 0(0), p=0.067] than jIIM. However, no difference was found in retinal features amongst the subtypes of adult IIM, nor did they correlate with MDAAT, MDI, or HAQ-DI. Conclusion: Retinal microvasculopathy and diminution of vision occur in nearly one-third to half of the patients with IIM. Microvasculopathy occurs across subtypes of IIM, and more so in adults, calling for further investigation as a surrogate for damage assessment and potentially even systemic vascular health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=idiopathic%20inflammatory%20myopathies" title="idiopathic inflammatory myopathies">idiopathic inflammatory myopathies</a>, <a href="https://publications.waset.org/abstracts/search?q=vascular%20health" title=" vascular health"> vascular health</a>, <a href="https://publications.waset.org/abstracts/search?q=retinal%20microvasculopathy" title=" retinal microvasculopathy"> retinal microvasculopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=arterial%20attenuation" title=" arterial attenuation"> arterial attenuation</a> </p> <a href="https://publications.waset.org/abstracts/159817/retinal-changes-in-patients-with-idiopathic-inflammatory-myopathies-a-case-control-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2580</span> Development of Electromyography (EMG) Signal Acquisition System by Simple Electronic Circuits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Divya%20Pradip%20Roy">Divya Pradip Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Zahirul%20Alam%20%20Chowdhury"> Md. Zahirul Alam Chowdhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electromyography (EMG) sensors are generally used to record the electrical activity produced by skeletal muscles. The conventional EMG sensors available in the market are expensive. This research suggests a low cost EMG sensor design which can be built with simple devices within our reach. In this research, one instrumentation amplifier, two high pass filters, two low pass filters and an inverting amplifier is connected sequentially. The output from the circuit exhibits electrical potential generated by the muscle cells when they are neurologically activated. This electromyography signal is used to control prosthetic devices, identifying neuromuscular diseases and for various other purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMG" title="EMG">EMG</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pass%20filter" title=" high pass filter"> high pass filter</a>, <a href="https://publications.waset.org/abstracts/search?q=instrumentation%20amplifier" title=" instrumentation amplifier"> instrumentation amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=inverting%20amplifier" title=" inverting amplifier"> inverting amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20pass%20filter" title=" low pass filter"> low pass filter</a>, <a href="https://publications.waset.org/abstracts/search?q=neuromuscular" title=" neuromuscular"> neuromuscular</a> </p> <a href="https://publications.waset.org/abstracts/123161/development-of-electromyography-emg-signal-acquisition-system-by-simple-electronic-circuits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2579</span> Surgical Outcome of Heavy Silicone Oil in Rhegmatogenous Retinal Detachment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pheeraphat%20Ussadamongkol">Pheeraphat Ussadamongkol</a>, <a href="https://publications.waset.org/abstracts/search?q=Suthasinee%20Sinawat"> Suthasinee Sinawat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The purpose of this study is to evaluate the anatomical and visual outcomes associated with the use of heavy silicone oil (HSO) during pars plana vitrectomy (PPV) in patients with rhegmatogenous retinal detachment (RRD). Materials and methods: A Total of 66 eyes of 66 patients with RRD patients who underwent PPV with HSO from 2018-2023 were included in this retrospective study. Risk factors of surgical outcomes were also investigated. Results: The mean age of the recruited patients was 55.26 ± 13.05 years. The most common diagnosis was recurrent RRD, with 43 patients (65.15%), and the majority of these patients (81.39%) had a history of multiple vitreoretinal surgeries. Inferior breaks and PVR grade ≧ C were present in 65.15% and 42.42% of cases, respectively. The mean duration of HSO tamponade was 7.77+5.19 months. The retinal attachment rate after surgery was 71.21%, with a final attachment rate of 87.88%. The mean final VA was 1.62 ± 1.11 logMAR. 54.54% of patients could achieve a final visual acuity (VA) 6/60. Multivariate analysis revealed that proliferative vitreoretinopathy (PVR) and multiple breaks were significantly associated with retinal redetachment, while initial good VA ( 6/60) was associated with good visual outcome ( 6/60). The most common complications were glaucoma (30.3%) and epimacular membrane (7.58%). Conclusion: The use of heavy silicone oil in pars plana vitrectomy for rhegmatogenous retinal detachment yields favorable anatomical and visual outcomes. Factors associated with retinal redetachment are proliferative vitreoretinopathy and multiple breaks. Good initial VA can predict good visual outcomes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rhegmatogenous%20retinal%20detachment" title="rhegmatogenous retinal detachment">rhegmatogenous retinal detachment</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20silicone%20oil" title=" heavy silicone oil"> heavy silicone oil</a>, <a href="https://publications.waset.org/abstracts/search?q=surgical%20outcome" title=" surgical outcome"> surgical outcome</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20outcome" title=" visual outcome"> visual outcome</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20factors" title=" risk factors"> risk factors</a> </p> <a href="https://publications.waset.org/abstracts/194417/surgical-outcome-of-heavy-silicone-oil-in-rhegmatogenous-retinal-detachment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">7</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2578</span> Morphology Operation and Discrete Wavelet Transform for Blood Vessels Segmentation in Retina Fundus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rita%20Magdalena">Rita Magdalena</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20K.%20Caecar%20Pratiwi"> N. K. Caecar Pratiwi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yunendah%20Nur%20Fuadah"> Yunendah Nur Fuadah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20Saidah"> Sofia Saidah</a>, <a href="https://publications.waset.org/abstracts/search?q=Bima%20Sakti"> Bima Sakti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vessel segmentation of retinal fundus is important for biomedical sciences in diagnosing ailments related to the eye. Segmentation can simplify medical experts in diagnosing retinal fundus image state. Therefore, in this study, we designed a software using MATLAB which enables the segmentation of the retinal blood vessels on retinal fundus images. There are two main steps in the process of segmentation. The first step is image preprocessing that aims to improve the quality of the image to be optimum segmented. The second step is the image segmentation in order to perform the extraction process to retrieve the retina’s blood vessel from the eye fundus image. The image segmentation methods that will be analyzed in this study are Morphology Operation, Discrete Wavelet Transform and combination of both. The amount of data that used in this project is 40 for the retinal image and 40 for manually segmentation image. After doing some testing scenarios, the average accuracy for Morphology Operation method is 88.46 % while for Discrete Wavelet Transform is 89.28 %. By combining the two methods mentioned in later, the average accuracy was increased to 89.53 %. The result of this study is an image processing system that can segment the blood vessels in retinal fundus with high accuracy and low computation time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20wavelet%20transform" title="discrete wavelet transform">discrete wavelet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=fundus%20retina" title=" fundus retina"> fundus retina</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology%20operation" title=" morphology operation"> morphology operation</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=vessel" title=" vessel"> vessel</a> </p> <a href="https://publications.waset.org/abstracts/105620/morphology-operation-and-discrete-wavelet-transform-for-blood-vessels-segmentation-in-retina-fundus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2577</span> Dental Management Particularities of Werner Syndrome: A Report of Two Cases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emna%20Abid">Emna Abid</a>, <a href="https://publications.waset.org/abstracts/search?q=Linda%20Chebbi"> Linda Chebbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yosra%20Mabrouk"> Yosra Mabrouk</a>, <a href="https://publications.waset.org/abstracts/search?q=Amel%20Labidi"> Amel Labidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamia%20Mansour"> Lamia Mansour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Werner syndrome (WS) is a rare genetic disorder inherited in an autosomal recessive pattern characterized by accelerated aging. While extensive research has been conducted on its systemic manifestations, the specific dental implications of WS remain poorly understood. The medical history and the oral health status of two patients diagnosed with WS were detailed. Our findings revealed a high prevalence of dental problems in both patients, including periodontitis, xerostomia, and temporomandibular joint disorders. This article aims to investigate the dental challenges faced by individuals with WS as well as the prosthetic options envisaged through two clinical cases contributing to a deeper understanding of the dental implications of WS and to choose the appropriate prosthetic solution in this population. Future research should focus on larger scale studies and clinical trials to validate these proposed strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adult%20progeria" title="adult progeria">adult progeria</a>, <a href="https://publications.waset.org/abstracts/search?q=clinical%20symptoms" title=" clinical symptoms"> clinical symptoms</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20manifestations" title=" oral manifestations"> oral manifestations</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20care" title=" dental care"> dental care</a>, <a href="https://publications.waset.org/abstracts/search?q=prosthetic%20management" title=" prosthetic management"> prosthetic management</a> </p> <a href="https://publications.waset.org/abstracts/186691/dental-management-particularities-of-werner-syndrome-a-report-of-two-cases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2576</span> A Multilevel Approach for Stroke Prediction Combining Risk Factors and Retinal Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeena%20R.%20S.">Jeena R. S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukesh%20Kumar%20A."> Sukesh Kumar A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stroke is one of the major reasons of adult disability and morbidity in many of the developing countries like India. Early diagnosis of stroke is essential for timely prevention and cure. Various conventional statistical methods and computational intelligent models have been developed for predicting the risk and outcome of stroke. This research work focuses on a multilevel approach for predicting the occurrence of stroke based on various risk factors and invasive techniques like retinal imaging. This risk prediction model can aid in clinical decision making and help patients to have an improved and reliable risk prediction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prediction" title="prediction">prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=retinal%20imaging" title=" retinal imaging"> retinal imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20factors" title=" risk factors"> risk factors</a>, <a href="https://publications.waset.org/abstracts/search?q=stroke" title=" stroke"> stroke</a> </p> <a href="https://publications.waset.org/abstracts/91133/a-multilevel-approach-for-stroke-prediction-combining-risk-factors-and-retinal-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2575</span> The Retinoprotective Effects and Mechanisms of Fungal Ingredient 3,4-Dihydroxybenzalacetone through Inhibition of Retinal Müller and Microglial Activation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Wen%20Cheng">Yu-Wen Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jau-Der%20Ho"> Jau-Der Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang-Huan%20Wu"> Liang-Huan Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Fan-Li%20Lin"> Fan-Li Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Huei%20Chen"> Li-Huei Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Ming%20Chang"> Hung-Ming Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yueh-Hsiung%20Kuo"> Yueh-Hsiung Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Hsiao"> George Hsiao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Retina glial activation and neuroinflammation have been confirmed to cause devastating responses in retinodegenerative diseases. The expression and activation of matrix metalloproteinase (MMP)-9 and inducible nitric oxide synthase (iNOS) could be exerted as the crucial pathological factors in glaucoma- and blue light-induced retinal injuries. The present study aimed to investigate the retinoprotective effects and mechanisms of fungal ingredient 3,4-dihydroxybenzalacetone (DBL) isolated from Phellinus linteus in the retinal glial activation and retinodegenerative animal models. According to the cellular studies, DBL significantly and concentration-dependently abrogated MMP-9 activation and expression in TNFα-stimulated retinal Müller (rMC-1) cells. We found the inhibitory activities of DBL were strongly through the STAT- and ERK-dependent pathways. Furthermore, DBL dramatically attenuated MMP-9 activation in the stimulated Müller cells exposed to conditioned media from LPS-stimulated microglia BV-2 cells. On the other hand, DBL strongly suppressed LPS-induced production of NO and ROS and expression of iNOS in microglia BV-2 cells. Consistently, the phosphorylation of STAT was substantially blocked by DBL in LPS-stimulated microglia BV-2 cells. In the evaluation of retinoprotective functions, the high IOP-induced scotopic electroretinographic (ERG) deficit and blue light-induced abnormal pupillary light response (PLR) were assessed. The deficit scotopic ERG responses markedly recovered by DBL in a rat model of glaucoma-like ischemia/reperfusion (I/R)-injury. DBL also reduced the aqueous gelatinolytic activity and retinal MMP-9 expression in high IOP-injured conditions. Additionally, DBL could restore the abnormal PLR and reduce retinal MMP-9 activation. In summary, DBL could ameliorate retinal neuroinflammation and MMP-9 activation by predominantly inhibiting STAT3 activation in the retinal Müller cells and microglia, which exhibits therapeutic potential for glaucoma and other retinal degenerative diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glaucoma" title="glaucoma">glaucoma</a>, <a href="https://publications.waset.org/abstracts/search?q=blue%20light" title=" blue light"> blue light</a>, <a href="https://publications.waset.org/abstracts/search?q=DBL" title=" DBL"> DBL</a>, <a href="https://publications.waset.org/abstracts/search?q=retinal%20M%C3%BCller%20cell" title=" retinal Müller cell"> retinal Müller cell</a>, <a href="https://publications.waset.org/abstracts/search?q=MMP-9" title=" MMP-9"> MMP-9</a>, <a href="https://publications.waset.org/abstracts/search?q=STAT" title=" STAT"> STAT</a>, <a href="https://publications.waset.org/abstracts/search?q=Microglia" title=" Microglia"> Microglia</a>, <a href="https://publications.waset.org/abstracts/search?q=iNOS" title=" iNOS"> iNOS</a>, <a href="https://publications.waset.org/abstracts/search?q=ERG" title=" ERG"> ERG</a>, <a href="https://publications.waset.org/abstracts/search?q=PLR" title=" PLR"> PLR</a> </p> <a href="https://publications.waset.org/abstracts/136717/the-retinoprotective-effects-and-mechanisms-of-fungal-ingredient-34-dihydroxybenzalacetone-through-inhibition-of-retinal-muller-and-microglial-activation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2574</span> A Virtual Electrode through Summation of Time Offset Pulses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isaac%20Cassar">Isaac Cassar</a>, <a href="https://publications.waset.org/abstracts/search?q=Trevor%20Davis"> Trevor Davis</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Kai%20Lo"> Yi-Kai Lo</a>, <a href="https://publications.waset.org/abstracts/search?q=Wentai%20Liu"> Wentai Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Retinal prostheses have been successful in eliciting visual responses in implanted subjects. As these prostheses progress, one of their major limitations is the need for increased resolution. As an alternative to increasing the number of electrodes, virtual electrodes may be used to increase the effective resolution of current electrode arrays. This paper presents a virtual electrode technique based upon time-offsets between stimuli. Two adjacent electrodes are stimulated with identical pulses with too short of pulse widths to activate a neuron, but one has a time offset of one pulse width. A virtual electrode of twice the pulse width was then shown to appear in the center, with a total width capable of activating a neuron. This can be used in retinal implants by stimulating electrodes with pulse widths short enough to not elicit responses in neurons, but with their combined pulse width adequate to activate a neuron in between them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20stimulation" title="electrical stimulation">electrical stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroprosthesis" title=" neuroprosthesis"> neuroprosthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=retinal%20implant" title=" retinal implant"> retinal implant</a>, <a href="https://publications.waset.org/abstracts/search?q=retinal%20prosthesis" title=" retinal prosthesis"> retinal prosthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20electrode" title=" virtual electrode"> virtual electrode</a> </p> <a href="https://publications.waset.org/abstracts/14443/a-virtual-electrode-through-summation-of-time-offset-pulses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2573</span> Organism Profile Causing Prosthetic Joint Infection Continues to Evolve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahaa%20Eldin%20Kornah">Bahaa Eldin Kornah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The organism profile for peri-prosthetic joint infection caused by hematogenous seeding or direct inoculations is changing. The organisms that cause prosthetic joint infections range from normal skin colonizers to highly virulent pathogens. The pathogens continue to evolve. While Staphylococcus aureus continues to be the leading organism, gram-negative bacilli account for approximately 7% of cases and that incidence is increasing. Methicillin-resistant S. aureus(MRSA) accounts for approximately 10% of all infections occurring in the community setting and 20% of those in the health care setting. The list of organisms causing PJI has expanded in recent years. It is important to have an understanding of which organisms may be causing a periprosthetic joint infection based on where the patient contracted it and their recent medical history. Also, recent technology has expanded rapidly and new methods to detect the pathogen and why we failed in detecting it. There are a number of explanations for the latter finding, perhaps the most important reason being the liberal use of antibiotics that interferes with the isolation of the infective organism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infection" title="infection">infection</a>, <a href="https://publications.waset.org/abstracts/search?q=periprosthetic" title=" periprosthetic"> periprosthetic</a>, <a href="https://publications.waset.org/abstracts/search?q=hip" title=" hip"> hip</a>, <a href="https://publications.waset.org/abstracts/search?q=organism%20profile" title=" organism profile"> organism profile</a>, <a href="https://publications.waset.org/abstracts/search?q=joint%20infection" title=" joint infection"> joint infection</a>, <a href="https://publications.waset.org/abstracts/search?q=joint%20infection" title=" joint infection"> joint infection</a> </p> <a href="https://publications.waset.org/abstracts/159166/organism-profile-causing-prosthetic-joint-infection-continues-to-evolve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2572</span> Automatic Detection and Classification of Diabetic Retinopathy Using Retinal Fundus Images </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Biran">A. Biran</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Sobhe%20Bidari"> P. Sobhe Bidari</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Almazroe"> A. Almazroe</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Lakshminarayanan"> V. Lakshminarayanan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Raahemifar"> K. Raahemifar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetic Retinopathy (DR) is a severe retinal disease which is caused by diabetes mellitus. It leads to blindness when it progress to proliferative level. Early indications of DR are the appearance of microaneurysms, hemorrhages and hard exudates. In this paper, an automatic algorithm for detection of DR has been proposed. The algorithm is based on combination of several image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Also, Support Vector Machine (SVM) Classifier is used to classify retinal images to normal or abnormal cases including non-proliferative or proliferative DR. The proposed method has been tested on images selected from Structured Analysis of the Retinal (STARE) database using MATLAB code. The method is perfectly able to detect DR. The sensitivity specificity and accuracy of this approach are 90%, 87.5%, and 91.4% respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetic%20retinopathy" title="diabetic retinopathy">diabetic retinopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=fundus%20images" title=" fundus images"> fundus images</a>, <a href="https://publications.waset.org/abstracts/search?q=STARE" title=" STARE"> STARE</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabor%20filter" title=" Gabor filter"> Gabor filter</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/49824/automatic-detection-and-classification-of-diabetic-retinopathy-using-retinal-fundus-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2571</span> Pressure Relief in Prosthetic Sockets through Hole Implementation Using Different Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabi%20N.%20Nehme">Gabi N. Nehme</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Below-knee amputees commonly experience asymmetrical gait patterns. It is generally believed that ischemia is related to the formation of pressure sores due to uneven distribution of forces. Micro-vascular responses can reveal local malnutrition. Changes in local skin blood supply under various external loading conditions have been studied for a number of years. Radionuclide clearance, photo-plethysmography, trans-cutaneous oxygen tension along with other studies showed that the blood supply would be influenced by the epidermal forces, and the rate and the amount of blood supply would decrease with increased epidermal loads being shear forces or normal forces. Several cases of socket designs were investigated using Finite Element Model (FEM) and Design of Experiment (DOE) to increase flexibility and minimize the pressure at the limb/socket interface using ultra high molecular weight polyethylene (UHMWPE) and polyamide 6 (PA6) or Duraform. The pressure reliefs at designated areas where reducing thickness is involved are seen to be critical in determination of amputees’ comfort and are very important to clinical applications. Implementing a hole between the Patellar Tendon (PT) and Distal Tibia (DT) would decrease stiffness and increase prosthesis range of motion where flexibility is needed. In addition, displacement and prosthetic energy storage increased without compromising mechanical efficiency and prosthetic design integrity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=patellar%20tendon" title="patellar tendon">patellar tendon</a>, <a href="https://publications.waset.org/abstracts/search?q=distal%20tibia" title=" distal tibia"> distal tibia</a>, <a href="https://publications.waset.org/abstracts/search?q=prosthetic%20socket%20relief%20areas" title=" prosthetic socket relief areas"> prosthetic socket relief areas</a>, <a href="https://publications.waset.org/abstracts/search?q=hole%20implementation" title=" hole implementation"> hole implementation</a> </p> <a href="https://publications.waset.org/abstracts/34876/pressure-relief-in-prosthetic-sockets-through-hole-implementation-using-different-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2570</span> Excited State Structural Dynamics of Retinal Isomerization Revealed by a Femtosecond X-Ray Laser </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Przemyslaw%20Nogly">Przemyslaw Nogly</a>, <a href="https://publications.waset.org/abstracts/search?q=Tobias%20Weinert"> Tobias Weinert</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20James"> Daniel James</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Carbajo"> Sergio Carbajo</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20Ozerov"> Dmitry Ozerov</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonia%20Furrer"> Antonia Furrer</a>, <a href="https://publications.waset.org/abstracts/search?q=Dardan%20Gashi"> Dardan Gashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Veniamin%20Borin"> Veniamin Borin</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20Skopintsev"> Petr Skopintsev</a>, <a href="https://publications.waset.org/abstracts/search?q=Kathrin%20Jaeger"> Kathrin Jaeger</a>, <a href="https://publications.waset.org/abstracts/search?q=Karol%20Nass"> Karol Nass</a>, <a href="https://publications.waset.org/abstracts/search?q=Petra%20Bath"> Petra Bath</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Bosman"> Robert Bosman</a>, <a href="https://publications.waset.org/abstracts/search?q=Jason%20Koglin"> Jason Koglin</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Seaberg"> Matthew Seaberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Lane"> Thomas Lane</a>, <a href="https://publications.waset.org/abstracts/search?q=Demet%20Kekilli"> Demet Kekilli</a>, <a href="https://publications.waset.org/abstracts/search?q=Steffen%20Br%C3%BCnle"> Steffen Brünle</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomoyuki%20Tanaka"> Tomoyuki Tanaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenting%20Wu"> Wenting Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Milne"> Christopher Milne</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20A.%20White"> Thomas A. White</a>, <a href="https://publications.waset.org/abstracts/search?q=Anton%20Barty"> Anton Barty</a>, <a href="https://publications.waset.org/abstracts/search?q=Uwe%20Weierstall"> Uwe Weierstall</a>, <a href="https://publications.waset.org/abstracts/search?q=Valerie%20Panneels"> Valerie Panneels</a>, <a href="https://publications.waset.org/abstracts/search?q=Eriko%20Nango"> Eriko Nango</a>, <a href="https://publications.waset.org/abstracts/search?q=So%20Iwata"> So Iwata</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Hunter"> Mark Hunter</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20Schapiro"> Igor Schapiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Gebhard%20Schertler"> Gebhard Schertler</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Neutze"> Richard Neutze</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%B6rg%20Standfuss"> Jörg Standfuss</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultrafast isomerization of retinal is the primary step in a range of photoresponsive biological functions including vision in humans and ion-transport across bacterial membranes. We studied the sub-picosecond structural dynamics of retinal isomerization in the light-driven proton pump bacteriorhodopsin using an X-ray laser. Twenty snapshots with near-atomic spatial and temporal resolution in the femtosecond regime show how the excited all-trans retinal samples conformational states within the protein binding pocket prior to passing through a highly-twisted geometry and emerging in the 13-cis conformation. The aspartic acid residues and functional water molecules in proximity of the retinal Schiff base respond collectively to formation and decay of the initial excited state and retinal isomerization. These observations reveal how the protein scaffold guides this remarkably efficient photochemical reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteriorhodopsin" title="bacteriorhodopsin">bacteriorhodopsin</a>, <a href="https://publications.waset.org/abstracts/search?q=free-electron%20laser" title=" free-electron laser"> free-electron laser</a>, <a href="https://publications.waset.org/abstracts/search?q=retinal%20isomerization%20mechanism" title=" retinal isomerization mechanism"> retinal isomerization mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=time-resolved%20crystallography" title=" time-resolved crystallography"> time-resolved crystallography</a> </p> <a href="https://publications.waset.org/abstracts/90555/excited-state-structural-dynamics-of-retinal-isomerization-revealed-by-a-femtosecond-x-ray-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2569</span> Generative Adversarial Network for Bidirectional Mappings between Retinal Fundus Images and Vessel Segmented Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haoqi%20Gao">Haoqi Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Koichi%20Ogawara"> Koichi Ogawara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Retinal vascular segmentation of color fundus is the basis of ophthalmic computer-aided diagnosis and large-scale disease screening systems. Early screening of fundus diseases has great value for clinical medical diagnosis. The traditional methods depend on the experience of the doctor, which is time-consuming, labor-intensive, and inefficient. Furthermore, medical images are scarce and fraught with legal concerns regarding patient privacy. In this paper, we propose a new Generative Adversarial Network based on CycleGAN for retinal fundus images. This method can generate not only synthetic fundus images but also generate corresponding segmentation masks, which has certain application value and challenge in computer vision and computer graphics. In the results, we evaluate our proposed method from both quantitative and qualitative. For generated segmented images, our method achieves dice coefficient of 0.81 and PR of 0.89 on DRIVE dataset. For generated synthetic fundus images, we use ”Toy Experiment” to verify the state-of-the-art performance of our method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retinal%20vascular%20segmentations" title="retinal vascular segmentations">retinal vascular segmentations</a>, <a href="https://publications.waset.org/abstracts/search?q=generative%20ad-versarial%20network" title=" generative ad-versarial network"> generative ad-versarial network</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclegan" title=" cyclegan"> cyclegan</a>, <a href="https://publications.waset.org/abstracts/search?q=fundus%20images" title=" fundus images"> fundus images</a> </p> <a href="https://publications.waset.org/abstracts/110591/generative-adversarial-network-for-bidirectional-mappings-between-retinal-fundus-images-and-vessel-segmented-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2568</span> Enhancing the Bionic Eye: A Real-time Image Optimization Framework to Encode Color and Spatial Information Into Retinal Prostheses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=William%20Huang">William Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Retinal prostheses are currently limited to low resolution grayscale images that lack color and spatial information. This study develops a novel real-time image optimization framework and tools to encode maximum information to the prostheses which are constrained by the number of electrodes. One key idea is to localize main objects in images while reducing unnecessary background noise through region-contrast saliency maps. A novel color depth mapping technique was developed through MiniBatchKmeans clustering and color space selection. The resulting image was downsampled using bicubic interpolation to reduce image size while preserving color quality. In comparison to current schemes, the proposed framework demonstrated better visual quality in tested images. The use of the region-contrast saliency map showed improvements in efficacy up to 30%. Finally, the computational speed of this algorithm is less than 380 ms on tested cases, making real-time retinal prostheses feasible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retinal%20implants" title="retinal implants">retinal implants</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20processing%20unit" title=" virtual processing unit"> virtual processing unit</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=saliency%20maps" title=" saliency maps"> saliency maps</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20quantization" title=" color quantization"> color quantization</a> </p> <a href="https://publications.waset.org/abstracts/147972/enhancing-the-bionic-eye-a-real-time-image-optimization-framework-to-encode-color-and-spatial-information-into-retinal-prostheses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2567</span> Large-Capacity Image Information Reduction Based on Single-Cue Saliency Map for Retinal Prosthesis System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yili%20Chen">Yili Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaokun%20Liang"> Xiaokun Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhicheng%20Zhang"> Zhicheng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaoqin%20Xie"> Yaoqin Xie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In an effort to restore visual perception in retinal diseases, an electronic retinal prosthesis with thousands of electrodes has been developed. The image processing strategies of retinal prosthesis system converts the original images from the camera to the stimulus pattern which can be interpreted by the brain. Practically, the original images are with more high resolution (256x256) than that of the stimulus pattern (such as 25x25), which causes a technical image processing challenge to do large-capacity image information reduction. In this paper, we focus on developing an efficient image processing stimulus pattern extraction algorithm by using a single cue saliency map for extracting salient objects in the image with an optimal trimming threshold. Experimental results showed that the proposed stimulus pattern extraction algorithm performs quite well for different scenes in terms of the stimulus pattern. In the algorithm performance experiment, our proposed SCSPE algorithm have almost five times of the score compared with Boyle’s algorithm. Through experiment s we suggested that when there are salient objects in the scene (such as the blind meet people or talking with people), the trimming threshold should be set around 0.4max, in other situations, the trimming threshold values can be set between 0.2max-0.4max to give the satisfied stimulus pattern. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retinal%20prosthesis" title="retinal prosthesis">retinal prosthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=region%20of%20interest" title=" region of interest"> region of interest</a>, <a href="https://publications.waset.org/abstracts/search?q=saliency%20map" title=" saliency map"> saliency map</a>, <a href="https://publications.waset.org/abstracts/search?q=trimming%20threshold%20selection" title=" trimming threshold selection"> trimming threshold selection</a> </p> <a href="https://publications.waset.org/abstracts/36987/large-capacity-image-information-reduction-based-on-single-cue-saliency-map-for-retinal-prosthesis-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=retinal%20prosthetic%20devices&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=retinal%20prosthetic%20devices&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=retinal%20prosthetic%20devices&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=retinal%20prosthetic%20devices&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=retinal%20prosthetic%20devices&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=retinal%20prosthetic%20devices&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=retinal%20prosthetic%20devices&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=retinal%20prosthetic%20devices&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=retinal%20prosthetic%20devices&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=retinal%20prosthetic%20devices&page=86">86</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=retinal%20prosthetic%20devices&page=87">87</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=retinal%20prosthetic%20devices&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>