CINXE.COM
Epigenetics - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Epigenetics - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"9ad3d4e5-41a6-4e3a-8ddd-7bff49de78f8","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Epigenetics","wgTitle":"Epigenetics","wgCurRevisionId":1260045662,"wgRevisionId":1260045662,"wgArticleId":49033,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Wikipedia articles needing page number citations from March 2024","Wikipedia articles needing page number citations from January 2020","Wikipedia articles needing page number citations from August 2013","Articles with short description","Short description is different from Wikidata","Use dmy dates from December 2019","Articles containing German-language text","All articles with unsourced statements","Articles with unsourced statements from April 2019", "Articles with unsourced statements from March 2023","Wikipedia articles needing factual verification from November 2020","Commons category link from Wikidata","Epigenetics","Genetic mapping","Lamarckism"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Epigenetics","wgRelevantArticleId":49033,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":200000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish": true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q26939","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges": "ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Epigenetic_mechanisms.png/1200px-Epigenetic_mechanisms.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="816"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Epigenetic_mechanisms.png/800px-Epigenetic_mechanisms.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="544"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Epigenetic_mechanisms.png/640px-Epigenetic_mechanisms.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="435"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Epigenetics - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Epigenetics"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Epigenetics&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Epigenetics"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Epigenetics rootpage-Epigenetics skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Epigenetics" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Epigenetics" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Epigenetics" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Epigenetics" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definitions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definitions"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definitions</span> </div> </a> <button aria-controls="toc-Definitions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definitions subsection</span> </button> <ul id="toc-Definitions-sublist" class="vector-toc-list"> <li id="toc-Waddington's_canalisation,_1940s" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Waddington's_canalisation,_1940s"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Waddington's canalisation, 1940s</span> </div> </a> <ul id="toc-Waddington's_canalisation,_1940s-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Contemporary" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Contemporary"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Contemporary</span> </div> </a> <ul id="toc-Contemporary-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Mechanisms" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Mechanisms"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Mechanisms</span> </div> </a> <button aria-controls="toc-Mechanisms-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Mechanisms subsection</span> </button> <ul id="toc-Mechanisms-sublist" class="vector-toc-list"> <li id="toc-DNA_methylation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#DNA_methylation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>DNA methylation</span> </div> </a> <ul id="toc-DNA_methylation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-RNA_methylation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#RNA_methylation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>RNA methylation</span> </div> </a> <ul id="toc-RNA_methylation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Histone_modifications" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Histone_modifications"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Histone modifications</span> </div> </a> <ul id="toc-Histone_modifications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-RNA_transcripts" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#RNA_transcripts"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>RNA transcripts</span> </div> </a> <ul id="toc-RNA_transcripts-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-MicroRNAs" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#MicroRNAs"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>MicroRNAs</span> </div> </a> <ul id="toc-MicroRNAs-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-mRNA" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#mRNA"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6</span> <span>mRNA</span> </div> </a> <ul id="toc-mRNA-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-sRNAs" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#sRNAs"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.7</span> <span>sRNAs</span> </div> </a> <ul id="toc-sRNAs-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Long_non-coding_RNAs" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Long_non-coding_RNAs"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.8</span> <span>Long non-coding RNAs</span> </div> </a> <ul id="toc-Long_non-coding_RNAs-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Prions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Prions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.9</span> <span>Prions</span> </div> </a> <ul id="toc-Prions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Molecular_basis" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Molecular_basis"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Molecular basis</span> </div> </a> <button aria-controls="toc-Molecular_basis-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Molecular basis subsection</span> </button> <ul id="toc-Molecular_basis-sublist" class="vector-toc-list"> <li id="toc-DNA_damage" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#DNA_damage"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>DNA damage</span> </div> </a> <ul id="toc-DNA_damage-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-DNA_repair" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#DNA_repair"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>DNA repair</span> </div> </a> <ul id="toc-DNA_repair-sublist" class="vector-toc-list"> <li id="toc-Repair_of_oxidative_DNA_damage_can_alter_epigenetic_markers" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Repair_of_oxidative_DNA_damage_can_alter_epigenetic_markers"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.1</span> <span>Repair of oxidative DNA damage can alter epigenetic markers</span> </div> </a> <ul id="toc-Repair_of_oxidative_DNA_damage_can_alter_epigenetic_markers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Homologous_recombinational_repair_alters_epigenetic_markers" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Homologous_recombinational_repair_alters_epigenetic_markers"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.2</span> <span>Homologous recombinational repair alters epigenetic markers</span> </div> </a> <ul id="toc-Homologous_recombinational_repair_alters_epigenetic_markers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Non-homologous_end_joining_can_cause_some_epigenetic_marker_alterations" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Non-homologous_end_joining_can_cause_some_epigenetic_marker_alterations"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.3</span> <span>Non-homologous end joining can cause some epigenetic marker alterations</span> </div> </a> <ul id="toc-Non-homologous_end_joining_can_cause_some_epigenetic_marker_alterations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Techniques_used_to_study_epigenetics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Techniques_used_to_study_epigenetics"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Techniques used to study epigenetics</span> </div> </a> <ul id="toc-Techniques_used_to_study_epigenetics-sublist" class="vector-toc-list"> <li id="toc-Chromatin_Immunoprecipitation" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Chromatin_Immunoprecipitation"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3.1</span> <span>Chromatin Immunoprecipitation</span> </div> </a> <ul id="toc-Chromatin_Immunoprecipitation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fluorescent_in_situ_hybridization" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Fluorescent_in_situ_hybridization"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3.2</span> <span>Fluorescent <i>in situ</i> hybridization</span> </div> </a> <ul id="toc-Fluorescent_in_situ_hybridization-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Methylation-sensitive_restriction_enzymes" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Methylation-sensitive_restriction_enzymes"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3.3</span> <span>Methylation-sensitive restriction enzymes</span> </div> </a> <ul id="toc-Methylation-sensitive_restriction_enzymes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bisulfite_sequencing" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Bisulfite_sequencing"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3.4</span> <span>Bisulfite sequencing</span> </div> </a> <ul id="toc-Bisulfite_sequencing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Nanopore_sequencing" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Nanopore_sequencing"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3.5</span> <span>Nanopore sequencing</span> </div> </a> <ul id="toc-Nanopore_sequencing-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Structural_inheritance" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Structural_inheritance"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Structural inheritance</span> </div> </a> <ul id="toc-Structural_inheritance-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Nucleosome_positioning" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Nucleosome_positioning"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>Nucleosome positioning</span> </div> </a> <ul id="toc-Nucleosome_positioning-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Histone_variants" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Histone_variants"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6</span> <span>Histone variants</span> </div> </a> <ul id="toc-Histone_variants-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Genomic_architecture" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Genomic_architecture"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.7</span> <span>Genomic architecture</span> </div> </a> <ul id="toc-Genomic_architecture-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Functions_and_consequences" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Functions_and_consequences"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Functions and consequences</span> </div> </a> <button aria-controls="toc-Functions_and_consequences-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Functions and consequences subsection</span> </button> <ul id="toc-Functions_and_consequences-sublist" class="vector-toc-list"> <li id="toc-In_the_brain" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#In_the_brain"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>In the brain</span> </div> </a> <ul id="toc-In_the_brain-sublist" class="vector-toc-list"> <li id="toc-Memory" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Memory"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.1</span> <span>Memory</span> </div> </a> <ul id="toc-Memory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Aging" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Aging"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.2</span> <span>Aging</span> </div> </a> <ul id="toc-Aging-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_and_general" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Other_and_general"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.3</span> <span>Other and general</span> </div> </a> <ul id="toc-Other_and_general-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Development" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Development"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Development</span> </div> </a> <ul id="toc-Development-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Transgenerational" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Transgenerational"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Transgenerational</span> </div> </a> <ul id="toc-Transgenerational-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Epigenetics_in_bacteria" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Epigenetics_in_bacteria"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Epigenetics in bacteria</span> </div> </a> <ul id="toc-Epigenetics_in_bacteria-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Medicine" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Medicine"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Medicine</span> </div> </a> <button aria-controls="toc-Medicine-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Medicine subsection</span> </button> <ul id="toc-Medicine-sublist" class="vector-toc-list"> <li id="toc-Twins" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Twins"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Twins</span> </div> </a> <ul id="toc-Twins-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Genomic_imprinting" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Genomic_imprinting"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Genomic imprinting</span> </div> </a> <ul id="toc-Genomic_imprinting-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples_of_drugs_altering_gene_expression_from_epigenetic_events" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Examples_of_drugs_altering_gene_expression_from_epigenetic_events"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Examples of drugs altering gene expression from epigenetic events</span> </div> </a> <ul id="toc-Examples_of_drugs_altering_gene_expression_from_epigenetic_events-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Addiction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Addiction"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Addiction</span> </div> </a> <ul id="toc-Addiction-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Research" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Research"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Research</span> </div> </a> <button aria-controls="toc-Research-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Research subsection</span> </button> <ul id="toc-Research-sublist" class="vector-toc-list"> <li id="toc-Epigenome_editing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Epigenome_editing"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Epigenome editing</span> </div> </a> <ul id="toc-Epigenome_editing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-CpG_sites,_SNPs_and_biological_traits" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#CpG_sites,_SNPs_and_biological_traits"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>CpG sites, SNPs and biological traits</span> </div> </a> <ul id="toc-CpG_sites,_SNPs_and_biological_traits-sublist" class="vector-toc-list"> <li id="toc-UBASH3B_locus" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#UBASH3B_locus"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2.1</span> <span><i>UBASH3B</i> locus</span> </div> </a> <ul id="toc-UBASH3B_locus-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-NFKBIE_locus" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#NFKBIE_locus"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2.2</span> <span><i>NFKBIE</i> locus</span> </div> </a> <ul id="toc-NFKBIE_locus-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-FADS1_locus" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#FADS1_locus"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2.3</span> <span><i>FADS1</i> locus</span> </div> </a> <ul id="toc-FADS1_locus-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Pseudoscience" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Pseudoscience"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Pseudoscience</span> </div> </a> <ul id="toc-Pseudoscience-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Epigenetics</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 54 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-54" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">54 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B9%D9%84%D9%85_%D8%A7%D9%84%D8%AA%D8%AE%D9%84%D9%82" title="علم التخلق – Arabic" lang="ar" hreflang="ar" data-title="علم التخلق" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Epigenetika" title="Epigenetika – Azerbaijani" lang="az" hreflang="az" data-title="Epigenetika" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%85%E0%A6%A7%E0%A6%BF%E0%A6%AC%E0%A6%82%E0%A6%B6%E0%A6%BE%E0%A6%A3%E0%A7%81%E0%A6%AC%E0%A6%BF%E0%A6%9C%E0%A7%8D%E0%A6%9E%E0%A6%BE%E0%A6%A8" title="অধিবংশাণুবিজ্ঞান – Bangla" lang="bn" hreflang="bn" data-title="অধিবংশাণুবিজ্ঞান" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%95%D0%BF%D0%B8%D0%B3%D0%B5%D0%BD%D0%B5%D1%82%D0%B8%D0%BA%D0%B0" title="Епигенетика – Bulgarian" lang="bg" hreflang="bg" data-title="Епигенетика" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Epigenetika" title="Epigenetika – Bosnian" lang="bs" hreflang="bs" data-title="Epigenetika" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Epigen%C3%A8tica" title="Epigenètica – Catalan" lang="ca" hreflang="ca" data-title="Epigenètica" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Epigenetika" title="Epigenetika – Czech" lang="cs" hreflang="cs" data-title="Epigenetika" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Epigenetik" title="Epigenetik – Danish" lang="da" hreflang="da" data-title="Epigenetik" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Epigenetik" title="Epigenetik – German" lang="de" hreflang="de" data-title="Epigenetik" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Epigeneetika" title="Epigeneetika – Estonian" lang="et" hreflang="et" data-title="Epigeneetika" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%95%CF%80%CE%B9%CE%B3%CE%B5%CE%BD%CE%B5%CF%84%CE%B9%CE%BA%CE%AE" title="Επιγενετική – Greek" lang="el" hreflang="el" data-title="Επιγενετική" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Epigen%C3%A9tica" title="Epigenética – Spanish" lang="es" hreflang="es" data-title="Epigenética" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Epigenetiko" title="Epigenetiko – Esperanto" lang="eo" hreflang="eo" data-title="Epigenetiko" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Epigenetika" title="Epigenetika – Basque" lang="eu" hreflang="eu" data-title="Epigenetika" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A7%D9%BE%DB%8C%E2%80%8C%DA%98%D9%86%D8%AA%DB%8C%DA%A9" title="اپیژنتیک – Persian" lang="fa" hreflang="fa" data-title="اپیژنتیک" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/%C3%89pig%C3%A9n%C3%A9tique" title="Épigénétique – French" lang="fr" hreflang="fr" data-title="Épigénétique" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Eipig%C3%A9ineola%C3%ADocht" title="Eipigéineolaíocht – Irish" lang="ga" hreflang="ga" data-title="Eipigéineolaíocht" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Epixen%C3%A9tica" title="Epixenética – Galician" lang="gl" hreflang="gl" data-title="Epixenética" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%9B%84%EC%84%B1%EC%9C%A0%EC%A0%84%ED%95%99" title="후성유전학 – Korean" lang="ko" hreflang="ko" data-title="후성유전학" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Epigenetika" title="Epigenetika – Croatian" lang="hr" hreflang="hr" data-title="Epigenetika" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Epigenetika" title="Epigenetika – Indonesian" lang="id" hreflang="id" data-title="Epigenetika" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Epigenetica" title="Epigenetica – Italian" lang="it" hreflang="it" data-title="Epigenetica" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%90%D7%A4%D7%99%D7%92%D7%A0%D7%98%D7%99%D7%A7%D7%94" title="אפיגנטיקה – Hebrew" lang="he" hreflang="he" data-title="אפיגנטיקה" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%8E%E0%B2%AA%E0%B2%BF%E0%B2%9C%E0%B3%86%E0%B2%A8%E0%B3%86%E0%B2%9F%E0%B2%BF%E0%B2%95%E0%B3%8D%E0%B2%B8%E0%B3%8D%E2%80%8C" title="ಎಪಿಜೆನೆಟಿಕ್ಸ್ – Kannada" lang="kn" hreflang="kn" data-title="ಎಪಿಜೆನೆಟಿಕ್ಸ್" data-language-autonym="ಕನ್ನಡ" data-language-local-name="Kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Epi%C4%A3en%C4%93tika" title="Epiģenētika – Latvian" lang="lv" hreflang="lv" data-title="Epiģenētika" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Epigenetika" title="Epigenetika – Hungarian" lang="hu" hreflang="hu" data-title="Epigenetika" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%95%D0%BF%D0%B8%D0%B3%D0%B5%D0%BD%D0%B5%D1%82%D0%B8%D0%BA%D0%B0" title="Епигенетика – Macedonian" lang="mk" hreflang="mk" data-title="Епигенетика" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%8E%E0%B4%AA%E0%B4%BF%E0%B4%9C%E0%B5%86%E0%B4%A8%E0%B5%86%E0%B4%B1%E0%B5%8D%E0%B4%B1%E0%B4%BF%E0%B4%95%E0%B5%8D%E0%B4%B8%E0%B5%8D" title="എപിജെനെറ്റിക്സ് – Malayalam" lang="ml" hreflang="ml" data-title="എപിജെനെറ്റിക്സ്" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%86%E0%A4%A8%E0%A5%81%E0%A4%B5%E0%A4%BE%E0%A4%82%E0%A4%B6%E0%A4%BF%E0%A4%95_%E0%A4%9C%E0%A4%A8%E0%A5%81%E0%A4%95%E0%A4%B6%E0%A4%BE%E0%A4%B8%E0%A5%8D%E0%A4%A4%E0%A5%8D%E0%A4%B0" title="आनुवांशिक जनुकशास्त्र – Marathi" lang="mr" hreflang="mr" data-title="आनुवांशिक जनुकशास्त्र" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Epigenetik" title="Epigenetik – Malay" lang="ms" hreflang="ms" data-title="Epigenetik" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%AD%D0%BF%D0%B8%D0%B3%D0%B5%D0%BD%D0%B5%D1%82%D0%B8%D0%BA" title="Эпигенетик – Mongolian" lang="mn" hreflang="mn" data-title="Эпигенетик" data-language-autonym="Монгол" data-language-local-name="Mongolian" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Epigenetica" title="Epigenetica – Dutch" lang="nl" hreflang="nl" data-title="Epigenetica" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%82%A8%E3%83%94%E3%82%B8%E3%82%A7%E3%83%8D%E3%83%86%E3%82%A3%E3%82%AF%E3%82%B9" title="エピジェネティクス – Japanese" lang="ja" hreflang="ja" data-title="エピジェネティクス" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Epigenetikk" title="Epigenetikk – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Epigenetikk" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-ps mw-list-item"><a href="https://ps.wikipedia.org/wiki/%D8%A7%D9%BE%D9%8A_%DA%98%D9%86%D9%BC%DB%8C%DA%A9" title="اپي ژنټیک – Pashto" lang="ps" hreflang="ps" data-title="اپي ژنټیک" data-language-autonym="پښتو" data-language-local-name="Pashto" class="interlanguage-link-target"><span>پښتو</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Epigenetyka" title="Epigenetyka – Polish" lang="pl" hreflang="pl" data-title="Epigenetyka" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Epigen%C3%A9tica" title="Epigenética – Portuguese" lang="pt" hreflang="pt" data-title="Epigenética" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Epigenetic%C4%83" title="Epigenetică – Romanian" lang="ro" hreflang="ro" data-title="Epigenetică" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%AD%D0%BF%D0%B8%D0%B3%D0%B5%D0%BD%D0%B5%D1%82%D0%B8%D0%BA%D0%B0" title="Эпигенетика – Russian" lang="ru" hreflang="ru" data-title="Эпигенетика" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Epigjenetika" title="Epigjenetika – Albanian" lang="sq" hreflang="sq" data-title="Epigjenetika" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Epigenetics" title="Epigenetics – Simple English" lang="en-simple" hreflang="en-simple" data-title="Epigenetics" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Epigenetika" title="Epigenetika – Slovenian" lang="sl" hreflang="sl" data-title="Epigenetika" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%95%D0%BF%D0%B8%D0%B3%D0%B5%D0%BD%D0%B5%D1%82%D0%B8%D0%BA%D0%B0" title="Епигенетика – Serbian" lang="sr" hreflang="sr" data-title="Епигенетика" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Epigenetika" title="Epigenetika – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Epigenetika" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Epigenetiikka" title="Epigenetiikka – Finnish" lang="fi" hreflang="fi" data-title="Epigenetiikka" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Epigenetik" title="Epigenetik – Swedish" lang="sv" hreflang="sv" data-title="Epigenetik" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AE%E0%AF%87%E0%AE%B2%E0%AF%8D%E0%AE%AE%E0%AE%B0%E0%AE%AA%E0%AE%BF%E0%AE%AF%E0%AE%B2%E0%AF%8D" title="மேல்மரபியல் – Tamil" lang="ta" hreflang="ta" data-title="மேல்மரபியல்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%AD%E0%B8%B5%E0%B8%9E%E0%B8%B5%E0%B9%80%E0%B8%88%E0%B9%80%E0%B8%99%E0%B8%95%E0%B8%B4%E0%B8%81%E0%B8%AA%E0%B9%8C" title="อีพีเจเนติกส์ – Thai" lang="th" hreflang="th" data-title="อีพีเจเนติกส์" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Epigenetik" title="Epigenetik – Turkish" lang="tr" hreflang="tr" data-title="Epigenetik" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%95%D0%BF%D1%96%D0%B3%D0%B5%D0%BD%D0%B5%D1%82%D0%B8%D0%BA%D0%B0" title="Епігенетика – Ukrainian" lang="uk" hreflang="uk" data-title="Епігенетика" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%A8%D8%A7%D9%84%D8%A7%D9%88%D8%B1%D8%A7%D8%AB%DB%8C%D8%A7%D8%AA" title="بالاوراثیات – Urdu" lang="ur" hreflang="ur" data-title="بالاوراثیات" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Di_truy%E1%BB%81n_h%E1%BB%8Dc_bi%E1%BB%83u_sinh" title="Di truyền học biểu sinh – Vietnamese" lang="vi" hreflang="vi" data-title="Di truyền học biểu sinh" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E8%A1%A8%E8%A7%80%E9%81%BA%E5%82%B3%E5%AD%B8" title="表觀遺傳學 – Cantonese" lang="yue" hreflang="yue" data-title="表觀遺傳學" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E8%A1%A8%E8%A7%80%E9%81%BA%E5%82%B3%E5%AD%B8" title="表觀遺傳學 – Chinese" lang="zh" hreflang="zh" data-title="表觀遺傳學" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q26939#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Epigenetics" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Epigenetics" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Epigenetics"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Epigenetics&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Epigenetics&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Epigenetics"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Epigenetics&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Epigenetics&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Epigenetics" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Epigenetics" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Epigenetics&oldid=1260045662" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Epigenetics&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Epigenetics&id=1260045662&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEpigenetics"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEpigenetics"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Epigenetics&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Epigenetics&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Epigenetics" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q26939" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Study of DNA modifications that do not change its sequence</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">For other uses, see <a href="/wiki/Epigenetic_(disambiguation)" class="mw-disambig" title="Epigenetic (disambiguation)">Epigenetic (disambiguation)</a>.</div> <p class="mw-empty-elt"> </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Epigenetic_mechanisms.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Epigenetic_mechanisms.png/449px-Epigenetic_mechanisms.png" decoding="async" width="449" height="305" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Epigenetic_mechanisms.png/674px-Epigenetic_mechanisms.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Epigenetic_mechanisms.png/898px-Epigenetic_mechanisms.png 2x" data-file-width="2187" data-file-height="1488" /></a><figcaption>Epigenetic mechanisms</figcaption></figure> <p>In <a href="/wiki/Biology" title="Biology">biology</a>, <b>epigenetics</b> is the study of <a href="/wiki/Heritability" title="Heritability">heritable traits</a>, or a stable change of cell function, that happen without changes to the <a href="/wiki/DNA_sequence" class="mw-redirect" title="DNA sequence">DNA sequence</a>.<sup id="cite_ref-Epigenetics_2009_review_1-0" class="reference"><a href="#cite_note-Epigenetics_2009_review-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> The <a href="/wiki/Ancient_Greek" title="Ancient Greek">Greek</a> prefix <i><a href="https://en.wiktionary.org/wiki/epi-" class="extiw" title="wikt:epi-">epi-</a></i> (<span lang="grc"><a href="https://en.wiktionary.org/wiki/%E1%BC%90%CF%80%CE%B9-#Ancient_Greek" class="extiw" title="wikt:ἐπι-">ἐπι-</a></span> "over, outside of, around") in <i>epigenetics</i> implies features that are "on top of" or "in addition to" the traditional (DNA sequence based) <a href="/wiki/Gene" title="Gene">genetic</a> mechanism of inheritance.<sup id="cite_ref-science_2-0" class="reference"><a href="#cite_note-science-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> Epigenetics usually involves a change that is not erased by cell division, and affects the <a href="/wiki/Regulation_of_gene_expression" title="Regulation of gene expression">regulation of gene expression</a>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> Such effects on <a href="/wiki/Cell_(biology)" title="Cell (biology)">cellular</a> and <a href="/wiki/Physiology" title="Physiology">physiological</a> <a href="/wiki/Phenotypic_trait" title="Phenotypic trait">phenotypic traits</a> may result from <a href="/wiki/Environment_(biophysical)" class="mw-redirect" title="Environment (biophysical)">environmental</a> factors, or be part of normal development. Epigenetic factors can also lead to cancer.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p><p>The term also refers to the mechanism of changes: functionally relevant alterations to the <a href="/wiki/Genome" title="Genome">genome</a> that do not involve mutation of the <a href="/wiki/Nucleotide_sequence" class="mw-redirect" title="Nucleotide sequence">nucleotide sequence</a>. Examples of mechanisms that produce such changes are <a href="/wiki/DNA_methylation" title="DNA methylation">DNA methylation</a> and <a href="/wiki/Histone_modification" class="mw-redirect" title="Histone modification">histone modification</a>, each of which alters how genes are expressed without altering the underlying <a href="/wiki/DNA" title="DNA">DNA</a> sequence.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> Further, non-coding RNA sequences have been shown to play a key role in the regulation of gene expression.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> Gene expression can be controlled through the action of <a href="/wiki/Repressor_protein" class="mw-redirect" title="Repressor protein">repressor proteins</a> that attach to <a href="/wiki/Silencer_(DNA)" class="mw-redirect" title="Silencer (DNA)">silencer</a> regions of the DNA. These epigenetic changes may last through <a href="/wiki/Cell_division" title="Cell division">cell divisions</a> for the duration of the cell's life, and may also last for multiple generations, even though they do not involve changes in the underlying DNA sequence of the organism;<sup id="cite_ref-pmid17522671_7-0" class="reference"><a href="#cite_note-pmid17522671-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> instead, non-genetic factors cause the organism's genes to behave (or "express themselves") differently.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p><p>One example of an epigenetic change in <a href="/wiki/Eukaryotic" class="mw-redirect" title="Eukaryotic">eukaryotic</a> biology is the process of <a href="/wiki/Cellular_differentiation" title="Cellular differentiation">cellular differentiation</a>. During <a href="/wiki/Morphogenesis" title="Morphogenesis">morphogenesis</a>, <a href="/wiki/Totipotent" class="mw-redirect" title="Totipotent">totipotent</a> <a href="/wiki/Stem_cells" class="mw-redirect" title="Stem cells">stem cells</a> become the various <a href="/wiki/Pluripotent" class="mw-redirect" title="Pluripotent">pluripotent</a> <a href="/wiki/Cell_line" class="mw-redirect" title="Cell line">cell lines</a> of the <a href="/wiki/Embryo" title="Embryo">embryo</a>, which in turn become fully differentiated cells. In other words, as a single fertilized <a href="/wiki/Egg_cell" title="Egg cell">egg cell</a> – the <a href="/wiki/Zygote" title="Zygote">zygote</a> – continues to <a href="/wiki/Mitosis" title="Mitosis">divide</a>, the resulting daughter cells change into all the different cell types in an organism, including <a href="/wiki/Neurons" class="mw-redirect" title="Neurons">neurons</a>, <a href="/wiki/Muscle_cells" class="mw-redirect" title="Muscle cells">muscle cells</a>, <a href="/wiki/Epithelium" title="Epithelium">epithelium</a>, <a href="/wiki/Endothelium" title="Endothelium">endothelium</a> of <a href="/wiki/Blood_vessels" class="mw-redirect" title="Blood vessels">blood vessels</a>, etc., by activating some genes while inhibiting the expression of others.<sup id="cite_ref-pmid17522676_9-0" class="reference"><a href="#cite_note-pmid17522676-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definitions">Definitions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=1" title="Edit section: Definitions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The term <i>epigenesis</i> has a generic meaning of "extra growth" that has been used in English since the 17th century.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> In scientific publications, the term <i>epigenetics</i> started to appear in the 1930s (see Fig. on the right). However, its contemporary meaning emerged only in the 1990s.<sup id="cite_ref-Moore_2015_11-0" class="reference"><a href="#cite_note-Moore_2015-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:EpigenByYear_1.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/EpigenByYear_1.png/220px-EpigenByYear_1.png" decoding="async" width="220" height="135" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/EpigenByYear_1.png/330px-EpigenByYear_1.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/64/EpigenByYear_1.png/440px-EpigenByYear_1.png 2x" data-file-width="3705" data-file-height="2272" /></a><figcaption>Number of patent families and non-patent documents with the term "epigenetic*" by publication year</figcaption></figure> <p>A definition of the concept of <i>epigenetic trait</i> as a "stably heritable phenotype resulting from changes in a chromosome without alterations in the DNA sequence" was formulated at a <a href="/wiki/Cold_Spring_Harbor_Laboratory" title="Cold Spring Harbor Laboratory">Cold Spring Harbor</a> meeting in 2008,<sup id="cite_ref-pmid19339683_12-0" class="reference"><a href="#cite_note-pmid19339683-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> although alternate definitions that include non-heritable traits are still being used widely.<sup id="cite_ref-NIH_13-0" class="reference"><a href="#cite_note-NIH-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Waddington's_canalisation,_1940s"><span id="Waddington.27s_canalisation.2C_1940s"></span>Waddington's canalisation, 1940s</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=2" title="Edit section: Waddington's canalisation, 1940s"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The hypothesis of epigenetic changes affecting the expression of <a href="/wiki/Chromosome" title="Chromosome">chromosomes</a> was put forth by the Russian biologist <a href="/wiki/Nikolai_Koltsov" title="Nikolai Koltsov">Nikolai Koltsov</a>.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> From the generic meaning, and the associated adjective <i>epigenetic</i>, British embryologist <a href="/wiki/C._H._Waddington" title="C. H. Waddington">C. H. Waddington</a> coined the term <i>epigenetics</i> in 1942 as pertaining to <i><a href="/wiki/Epigenesis_(biology)" title="Epigenesis (biology)">epigenesis</a></i>, in parallel to <a href="/wiki/Valentin_Haecker" title="Valentin Haecker">Valentin Haecker</a>'s 'phenogenetics' (<span title="German-language text"><i lang="de">Phänogenetik</i></span>).<sup id="cite_ref-waddington_15-0" class="reference"><a href="#cite_note-waddington-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> <i>Epigenesis</i> in the context of the biology of that period referred to the <a href="/wiki/Cellular_differentiation" title="Cellular differentiation">differentiation</a> of cells from their initial <a href="/wiki/Totipotent" class="mw-redirect" title="Totipotent">totipotent</a> state during <a href="/wiki/Embryonic_development" class="mw-redirect" title="Embryonic development">embryonic development</a>.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p><p>When Waddington coined the term, the physical nature of <a href="/wiki/Gene" title="Gene">genes</a> and their role in heredity was not known. He used it instead as a conceptual model of how genetic components might interact with their surroundings to produce a <a href="/wiki/Phenotype" title="Phenotype">phenotype</a>; he used the phrase "<a href="/wiki/Epigenetic_landscape" class="mw-redirect" title="Epigenetic landscape">epigenetic landscape</a>" as a metaphor for <a href="/wiki/Morphogenesis" title="Morphogenesis">biological development</a>. Waddington held that cell fates were established during development in a process he called <a href="/wiki/Canalisation_(genetics)" title="Canalisation (genetics)">canalisation</a> much as a marble rolls down to the point of <a href="/wiki/Local_optimum" class="mw-redirect" title="Local optimum">lowest local elevation</a>.<sup id="cite_ref-Waddington2014_17-0" class="reference"><a href="#cite_note-Waddington2014-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> Waddington suggested visualising increasing irreversibility of cell type differentiation as ridges rising between the valleys where the marbles (analogous to cells) are travelling.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> </p><p>In recent times, Waddington's notion of the epigenetic landscape has been rigorously formalized in the context of the <a href="/wiki/System_dynamics" title="System dynamics">systems dynamics</a> state approach to the study of cell-fate.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-sciencedirect.com_20-0" class="reference"><a href="#cite_note-sciencedirect.com-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> Cell-fate determination is predicted to exhibit certain dynamics, such as attractor-convergence (the attractor can be an equilibrium point, limit cycle or <a href="/wiki/Strange_attractor" class="mw-redirect" title="Strange attractor">strange attractor</a>) or oscillatory.<sup id="cite_ref-sciencedirect.com_20-1" class="reference"><a href="#cite_note-sciencedirect.com-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Contemporary">Contemporary</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=3" title="Edit section: Contemporary"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Robin_Holliday" title="Robin Holliday">Robin Holliday</a> defined in 1990 epigenetics as "the study of the mechanisms of temporal and spatial control of gene activity during the development of complex organisms."<sup id="cite_ref-pmid2265224_21-0" class="reference"><a href="#cite_note-pmid2265224-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> </p><p>More recent usage of the word in biology follows stricter definitions. As defined by <a href="/wiki/Arthur_Riggs_(geneticist)" title="Arthur Riggs (geneticist)">Arthur Riggs</a> and colleagues, it is "the study of <a href="/wiki/Mitosis" title="Mitosis">mitotically</a> and/or <a href="/wiki/Meiosis" title="Meiosis">meiotically</a> heritable changes in gene function that cannot be explained by changes in DNA sequence."<sup id="cite_ref-isbn0-87969-490-4_22-0" class="reference"><a href="#cite_note-isbn0-87969-490-4-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> </p><p>The term has also been used, however, to describe processes which have not been demonstrated to be heritable, such as some forms of histone modification. Consequently, there are attempts to redefine "epigenetics" in broader terms that would avoid the constraints of requiring <a href="/wiki/Heritability" title="Heritability">heritability</a>. For example, <a href="/wiki/Adrian_Peter_Bird" class="mw-redirect" title="Adrian Peter Bird">Adrian Bird</a> defined epigenetics as "the structural adaptation of chromosomal regions so as to register, signal or perpetuate altered activity states."<sup id="cite_ref-pmid17522671_7-1" class="reference"><a href="#cite_note-pmid17522671-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> This definition would be inclusive of transient modifications associated with <a href="/wiki/DNA_repair" title="DNA repair">DNA repair</a> or <a href="/wiki/Cell-cycle" class="mw-redirect" title="Cell-cycle">cell-cycle</a> phases as well as stable changes maintained across multiple cell generations, but exclude others such as templating of membrane architecture and <a href="/wiki/Prions" class="mw-redirect" title="Prions">prions</a> unless they impinge on chromosome function. Such redefinitions however are not universally accepted and are still subject to debate.<sup id="cite_ref-nature2008_23-0" class="reference"><a href="#cite_note-nature2008-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> The <a href="/wiki/National_Institutes_of_Health" title="National Institutes of Health">NIH</a> "Roadmap Epigenomics Project", which ran from 2008 to 2017, uses the following definition: "For purposes of this program, epigenetics refers to both heritable changes in gene activity and <a href="/wiki/Gene_expression" title="Gene expression">expression</a> (in the progeny of cells or of individuals) and also stable, long-term alterations in the transcriptional potential of a cell that are not necessarily heritable."<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> In 2008, a consensus definition of the epigenetic trait, a "stably heritable phenotype resulting from changes in a chromosome without alterations in the DNA sequence," was made at a <a href="/wiki/Cold_Spring_Harbor_Laboratory" title="Cold Spring Harbor Laboratory">Cold Spring Harbor</a> meeting.<sup id="cite_ref-pmid19339683_12-1" class="reference"><a href="#cite_note-pmid19339683-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p><p>The similarity of the word to "genetics" has generated many parallel usages. The "<a href="/wiki/Epigenome" title="Epigenome">epigenome</a>" is a parallel to the word "<a href="/wiki/Genome" title="Genome">genome</a>", referring to the overall epigenetic state of a cell, and <a href="/wiki/Epigenomics" title="Epigenomics">epigenomics</a> refers to global analyses of epigenetic changes across the entire genome.<sup id="cite_ref-NIH_13-1" class="reference"><a href="#cite_note-NIH-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> The phrase "<a href="/wiki/Genetic_code" title="Genetic code">genetic code</a>" has also been adapted – the "<a href="/wiki/Epigenetic_code" title="Epigenetic code">epigenetic code</a>" has been used to describe the set of epigenetic features that create different phenotypes in different cells from the same underlying DNA sequence. Taken to its extreme, the "epigenetic code" could represent the total state of the cell, with the position of each molecule accounted for in an <i>epigenomic map</i>, a diagrammatic representation of the gene expression, DNA methylation and histone modification status of a particular genomic region. More typically, the term is used in reference to systematic efforts to measure specific, relevant forms of epigenetic information such as the <a href="/wiki/Histone_code_hypothesis" class="mw-redirect" title="Histone code hypothesis">histone code</a> or <a href="/wiki/DNA_methylation" title="DNA methylation">DNA methylation</a> patterns.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (April 2019)">citation needed</span></a></i>]</sup> </p> <div class="mw-heading mw-heading2"><h2 id="Mechanisms">Mechanisms</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=4" title="Edit section: Mechanisms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Covalent" class="mw-redirect" title="Covalent">Covalent</a> modification of either DNA (e.g. cytosine methylation and hydroxymethylation) or of histone proteins (e.g. lysine acetylation, lysine and arginine methylation, serine and threonine phosphorylation, and lysine ubiquitination and sumoylation) play central roles in many types of epigenetic inheritance. Therefore, the word "epigenetics" is sometimes used as a synonym for these processes. However, this can be misleading. Chromatin remodeling is not always inherited, and not all epigenetic inheritance involves chromatin remodeling.<sup id="cite_ref-pmid17407749_25-0" class="reference"><a href="#cite_note-pmid17407749-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> In 2019, a further lysine modification appeared in the scientific literature linking epigenetics modification to cell metabolism, i.e. lactylation<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Nucleosome_1KX5_2.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/db/Nucleosome_1KX5_2.png/220px-Nucleosome_1KX5_2.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/db/Nucleosome_1KX5_2.png/330px-Nucleosome_1KX5_2.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/db/Nucleosome_1KX5_2.png/440px-Nucleosome_1KX5_2.png 2x" data-file-width="1024" data-file-height="1024" /></a><figcaption>DNA associates with histone proteins to form chromatin.</figcaption></figure> <p>Because the <a href="/wiki/Phenotype" title="Phenotype">phenotype</a> of a cell or individual is affected by which of its genes are transcribed, heritable <a href="/wiki/Transcription_(genetics)" class="mw-redirect" title="Transcription (genetics)">transcription states</a> can give rise to epigenetic effects. There are several layers of regulation of <a href="/wiki/Gene_expression" title="Gene expression">gene expression</a>. One way that genes are regulated is through the remodeling of chromatin. Chromatin is the complex of DNA and the <a href="/wiki/Histone" title="Histone">histone</a> proteins with which it associates. If the way that DNA is wrapped around the histones changes, gene expression can change as well. Chromatin remodeling is accomplished through two main mechanisms: </p> <ol><li>The first way is <a href="/wiki/Post_translational_modification" class="mw-redirect" title="Post translational modification">post translational modification</a> of the amino acids that make up histone proteins. Histone proteins are made up of long chains of amino acids. If the amino acids that are in the chain are changed, the shape of the histone might be modified. DNA is not completely unwound during replication. It is possible, then, that the modified histones may be carried into each new copy of the DNA. Once there, these histones may act as templates, initiating the surrounding new histones to be shaped in the new manner. By altering the shape of the histones around them, these modified histones would ensure that a lineage-specific transcription program is maintained after cell division.</li> <li>The second way is the addition of methyl groups to the DNA, mostly at <a href="/wiki/CpG_site" title="CpG site">CpG sites</a>, to convert <a href="/wiki/Cytosine" title="Cytosine">cytosine</a> to <a href="/wiki/5-methylcytosine" class="mw-redirect" title="5-methylcytosine">5-methylcytosine</a>. 5-Methylcytosine performs much like a regular cytosine, pairing with a guanine in double-stranded DNA. However, when methylated cytosines are present in <a href="/wiki/CpG_site" title="CpG site">CpG sites</a> in the <a href="/wiki/Promoter_(genetics)" title="Promoter (genetics)">promoter</a> and <a href="/wiki/Enhancer_(genetics)" title="Enhancer (genetics)">enhancer</a> regions of genes, the genes are often repressed.<sup id="cite_ref-pmid30619465_27-0" class="reference"><a href="#cite_note-pmid30619465-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-pmid31399642_28-0" class="reference"><a href="#cite_note-pmid31399642-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> When methylated cytosines are present in <a href="/wiki/CpG_site" title="CpG site">CpG sites</a> in the gene body (in the <a href="/wiki/Coding_region" title="Coding region">coding region</a> excluding the transcription start site) expression of the gene is often enhanced. Transcription of a gene usually depends on a <a href="/wiki/Transcription_factor" title="Transcription factor">transcription factor</a> binding to a (10 base or less) <a href="/wiki/Recognition_sequence" title="Recognition sequence">recognition sequence</a> at the enhancer that interacts with the promoter region of that gene (<a href="/wiki/Gene_expression#Enhancers,_transcription_factors,_mediator_complex_and_DNA_loops_in_mammalian_transcription" title="Gene expression">Gene expression#Enhancers, transcription factors, mediator complex and DNA loops in mammalian transcription</a>).<sup id="cite_ref-pmid22868264_29-0" class="reference"><a href="#cite_note-pmid22868264-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> About 22% of transcription factors are inhibited from binding when the recognition sequence has a methylated cytosine. In addition, presence of methylated cytosines at a promoter region can attract <a href="/wiki/Methyl-CpG-binding_domain" title="Methyl-CpG-binding domain">methyl-CpG-binding domain</a> (MBD) proteins. All MBDs interact with <a href="/wiki/Nucleosome" title="Nucleosome">nucleosome</a> remodeling and <a href="/wiki/Histone_deacetylase" title="Histone deacetylase">histone deacetylase</a> complexes, which leads to gene silencing. In addition, another covalent modification involving methylated cytosine is its <a href="/wiki/DNA_demethylation" title="DNA demethylation">demethylation</a> by <a href="/wiki/TET_enzymes" title="TET enzymes">TET enzymes</a>. Hundreds of such demethylations occur, for instance, during <a href="/wiki/DNA_demethylation#Learnking_and_memory" title="DNA demethylation">learning and memory</a> forming events in <a href="/wiki/Neuron" title="Neuron">neurons</a>.<sup id="cite_ref-pmid28620075_30-0" class="reference"><a href="#cite_note-pmid28620075-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Bernstein_31-0" class="reference"><a href="#cite_note-Bernstein-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup></li></ol> <p>There is frequently a reciprocal relationship between DNA methylation and histone lysine methylation.<sup id="cite_ref-Rose_32-0" class="reference"><a href="#cite_note-Rose-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> For instance, the <a href="/wiki/Methyl-CpG-binding_domain" title="Methyl-CpG-binding domain">methyl binding domain protein MBD1</a>, attracted to and associating with <a href="/wiki/5-Methylcytosine" title="5-Methylcytosine">methylated cytosine</a> in a DNA <a href="/wiki/CpG_site" title="CpG site">CpG site</a>, can also associate with H3K9 <a href="/wiki/DNA_methyltransferase" title="DNA methyltransferase">methyltransferase</a> activity to methylate histone 3 at lysine 9. On the other hand, DNA maintenance methylation by <a href="/wiki/DNMT1" title="DNMT1">DNMT1</a> appears to partly rely on recognition of histone methylation on the nucleosome present at the DNA site to carry out cytosine methylation on newly synthesized DNA.<sup id="cite_ref-Rose_32-1" class="reference"><a href="#cite_note-Rose-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> There is further crosstalk between DNA methylation carried out by <a href="/wiki/DNMT3A" class="mw-redirect" title="DNMT3A">DNMT3A</a> and <a href="/wiki/DNMT3B" title="DNMT3B">DNMT3B</a> and histone methylation so that there is a correlation between the genome-wide distribution of DNA methylation and histone methylation.<sup id="cite_ref-Li2021_33-0" class="reference"><a href="#cite_note-Li2021-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> </p><p>Mechanisms of heritability of histone state are not well understood; however, much is known about the mechanism of heritability of DNA methylation state during cell division and differentiation. Heritability of methylation state depends on certain enzymes (such as <a href="/wiki/DNA_methyltransferase" title="DNA methyltransferase">DNMT1</a>) that have a higher affinity for 5-methylcytosine than for cytosine. If this enzyme reaches a "hemimethylated" portion of DNA (where 5-methylcytosine is in only one of the two DNA strands) the enzyme will methylate the other half. However, it is now known that DNMT1 physically interacts with the protein <a href="/wiki/UHRF1" title="UHRF1">UHRF1</a>. UHRF1 has been recently recognized as essential for DNMT1-mediated maintenance of DNA methylation. UHRF1 is the protein that specifically recognizes hemi-methylated DNA, therefore bringing DNMT1 to its substrate to maintain DNA methylation.<sup id="cite_ref-Li2021_33-1" class="reference"><a href="#cite_note-Li2021-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Histone_tails_set_for_transcriptional_activation.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Histone_tails_set_for_transcriptional_activation.jpg/220px-Histone_tails_set_for_transcriptional_activation.jpg" decoding="async" width="220" height="195" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Histone_tails_set_for_transcriptional_activation.jpg/330px-Histone_tails_set_for_transcriptional_activation.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Histone_tails_set_for_transcriptional_activation.jpg/440px-Histone_tails_set_for_transcriptional_activation.jpg 2x" data-file-width="2346" data-file-height="2082" /></a><figcaption><b>Some acetylations and some methylations of lysines (symbol K) are activation signals for transcription when present on a <a href="/wiki/Nucleosome" title="Nucleosome">nucleosome</a>, as shown in the top figure.</b> <b>Some methylations on lysines or arginine (R) are repression signals for transcription when present on a <a href="/wiki/Nucleosome" title="Nucleosome">nucleosome</a>, as shown in the bottom figure.</b> <a href="/wiki/Nucleosome" title="Nucleosome">Nucleosomes</a> consist of four pairs of <a href="/wiki/Histone" title="Histone">histone</a> proteins in a tightly assembled core region plus up to 30% of each histone remaining in a loosely organized tail<sup id="cite_ref-pmid33133421_34-0" class="reference"><a href="#cite_note-pmid33133421-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> (only one tail of each pair is shown). DNA is wrapped around the histone core proteins in <a href="/wiki/Chromatin" title="Chromatin">chromatin</a>. The lysines (K) are designated with a number showing their position as, for instance (K4), indicating lysine as the 4th amino acid from the amino (N) end of the tail in the histone protein. <a href="/wiki/Methylation" title="Methylation">Methylations</a> [Me], and <a href="/wiki/Acetylation" title="Acetylation">acetylations</a> [Ac] are common <a href="/wiki/Post-translational_modification" title="Post-translational modification">post-translational modifications</a> on the lysines of the histone tails.</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Histone_tails_set_for_transcriptional_repression.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/42/Histone_tails_set_for_transcriptional_repression.jpg/220px-Histone_tails_set_for_transcriptional_repression.jpg" decoding="async" width="220" height="195" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/42/Histone_tails_set_for_transcriptional_repression.jpg/330px-Histone_tails_set_for_transcriptional_repression.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/42/Histone_tails_set_for_transcriptional_repression.jpg/440px-Histone_tails_set_for_transcriptional_repression.jpg 2x" data-file-width="2315" data-file-height="2048" /></a><figcaption></figcaption></figure> <p>Although histone modifications occur throughout the entire sequence, the unstructured N-termini of histones (called histone tails) are particularly highly modified. These modifications include <a href="/wiki/Acetylation" title="Acetylation">acetylation</a>, <a href="/wiki/Methylation" title="Methylation">methylation</a>, <a href="/wiki/Ubiquitylation" class="mw-redirect" title="Ubiquitylation">ubiquitylation</a>, <a href="/wiki/Phosphorylation" title="Phosphorylation">phosphorylation</a>, <a href="/wiki/Sumoylation" class="mw-redirect" title="Sumoylation">sumoylation</a>, ribosylation and citrullination. Acetylation is the most highly studied of these modifications. For example, acetylation of the K14 and K9 <a href="/wiki/Lysine" title="Lysine">lysines</a> of the tail of histone H3 by histone acetyltransferase enzymes (HATs) is generally related to transcriptional competence<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> (see Figure). </p><p>One mode of thinking is that this tendency of acetylation to be associated with "active" transcription is biophysical in nature. Because it normally has a positively charged nitrogen at its end, lysine can bind the negatively charged phosphates of the DNA backbone. The acetylation event converts the positively charged amine group on the side chain into a neutral amide linkage. This removes the positive charge, thus loosening the DNA from the histone. When this occurs, complexes like <a href="/wiki/SWI/SNF" title="SWI/SNF">SWI/SNF</a> and other transcriptional factors can bind to the DNA and allow transcription to occur. This is the "cis" model of the epigenetic function. In other words, changes to the histone tails have a direct effect on the DNA itself.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> </p><p>Another model of epigenetic function is the "trans" model. In this model, changes to the histone tails act indirectly on the DNA. For example, lysine acetylation may create a binding site for chromatin-modifying enzymes (or transcription machinery as well). This chromatin remodeler can then cause changes to the state of the chromatin. Indeed, a bromodomain – a protein domain that specifically binds acetyl-lysine – is found in many enzymes that help activate transcription, including the <a href="/wiki/SWI/SNF" title="SWI/SNF">SWI/SNF</a> complex. It may be that acetylation acts in this and the previous way to aid in transcriptional activation. </p><p>The idea that modifications act as docking modules for related factors is borne out by <a href="/wiki/Histone_methylation" title="Histone methylation">histone methylation</a> as well. Methylation of lysine 9 of histone H3 has long been associated with constitutively transcriptionally silent chromatin (constitutive <a href="/wiki/Heterochromatin" title="Heterochromatin">heterochromatin</a>) (see bottom Figure). It has been determined that a chromodomain (a domain that specifically binds methyl-lysine) in the transcriptionally repressive protein <a href="/wiki/Heterochromatin_Protein_1" class="mw-redirect" title="Heterochromatin Protein 1">HP1</a> recruits HP1 to K9 methylated regions. One example that seems to refute this biophysical model for methylation is that tri-methylation of histone H3 at lysine 4 is strongly associated with (and required for full) transcriptional activation (see top Figure). Tri-methylation, in this case, would introduce a fixed positive charge on the tail. </p><p>It has been shown that the histone lysine methyltransferase (KMT) is responsible for this methylation activity in the pattern of histones H3 & H4. This enzyme utilizes a catalytically active site called the SET domain (Suppressor of variegation, Enhancer of Zeste, Trithorax). The SET domain is a 130-amino acid sequence involved in modulating gene activities. This domain has been demonstrated to bind to the histone tail and causes the methylation of the histone.<sup id="cite_ref-pmid9487389_37-0" class="reference"><a href="#cite_note-pmid9487389-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> </p><p>Differing histone modifications are likely to function in differing ways; acetylation at one position is likely to function differently from acetylation at another position. Also, multiple modifications may occur at the same time, and these modifications may work together to change the behavior of the <a href="/wiki/Nucleosome" title="Nucleosome">nucleosome</a>. The idea that multiple dynamic modifications regulate gene transcription in a systematic and reproducible way is called the <a href="/wiki/Histone_code" title="Histone code">histone code</a>, although the idea that histone state can be read linearly as a digital information carrier has been largely debunked. One of the best-understood systems that orchestrate chromatin-based silencing is the <a href="/wiki/SIR_protein" class="mw-redirect" title="SIR protein">SIR protein</a> based silencing of the yeast hidden mating-type loci HML and HMR. </p> <div class="mw-heading mw-heading3"><h3 id="DNA_methylation">DNA methylation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=5" title="Edit section: DNA methylation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Methylation" title="Methylation">Methylation</a></div> <p><a href="/wiki/DNA_methylation" title="DNA methylation">DNA methylation</a> frequently occurs in repeated sequences, and helps to suppress the expression and mobility of '<a href="/wiki/Transposable_elements" class="mw-redirect" title="Transposable elements">transposable elements</a>':<sup id="cite_ref-slotkin2007_38-0" class="reference"><a href="#cite_note-slotkin2007-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> Because <a href="/wiki/5-methylcytosine" class="mw-redirect" title="5-methylcytosine">5-methylcytosine</a> can be spontaneously deaminated (replacing nitrogen by oxygen) to <a href="/wiki/Thymidine" title="Thymidine">thymidine</a>, CpG sites are frequently mutated and become rare in the genome, except at <a href="/wiki/CpG_islands" class="mw-redirect" title="CpG islands">CpG islands</a> where they remain unmethylated. Epigenetic changes of this type thus have the potential to direct increased frequencies of permanent genetic mutation. DNA methylation patterns are known to be established and modified in response to environmental factors by a complex interplay of at least three independent <a href="/wiki/DNA_methyltransferase" title="DNA methyltransferase">DNA methyltransferases</a>, DNMT1, DNMT3A, and DNMT3B, the loss of any of which is lethal in mice.<sup id="cite_ref-li92_39-0" class="reference"><a href="#cite_note-li92-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> DNMT1 is the most abundant methyltransferase in somatic cells,<sup id="cite_ref-robertson99_40-0" class="reference"><a href="#cite_note-robertson99-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> localizes to replication foci,<sup id="cite_ref-leonhardt92_41-0" class="reference"><a href="#cite_note-leonhardt92-41"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> has a 10–40-fold preference for hemimethylated DNA and interacts with the <a href="/wiki/Proliferating_cell_nuclear_antigen" title="Proliferating cell nuclear antigen">proliferating cell nuclear antigen</a> (PCNA).<sup id="cite_ref-chuang97_42-0" class="reference"><a href="#cite_note-chuang97-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> </p><p>By preferentially modifying hemimethylated DNA, DNMT1 transfers patterns of methylation to a newly synthesized strand after <a href="/wiki/DNA_replication" title="DNA replication">DNA replication</a>, and therefore is often referred to as the 'maintenance' methyltransferase.<sup id="cite_ref-robertson00_43-0" class="reference"><a href="#cite_note-robertson00-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> DNMT1 is essential for proper embryonic development, imprinting and X-inactivation.<sup id="cite_ref-li92_39-1" class="reference"><a href="#cite_note-li92-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-li93_44-0" class="reference"><a href="#cite_note-li93-44"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> To emphasize the difference of this molecular mechanism of inheritance from the canonical Watson-Crick base-pairing mechanism of transmission of genetic information, the term 'Epigenetic templating' was introduced.<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> Furthermore, in addition to the maintenance and transmission of methylated DNA states, the same principle could work in the maintenance and transmission of histone modifications and even cytoplasmic (<a href="/wiki/Structural_inheritance" title="Structural inheritance">structural</a>) heritable states.<sup id="cite_ref-pmid18419815_46-0" class="reference"><a href="#cite_note-pmid18419815-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="RNA_methylation">RNA methylation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=6" title="Edit section: RNA methylation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Methylation" title="Methylation">Methylation</a></div> <p>RNA methylation of N6-methyladenosine (m6A) as the most abundant eukaryotic RNA modification has recently been recognized as an important gene regulatory mechanism.<sup id="cite_ref-pmid32300195_47-0" class="reference"><a href="#cite_note-pmid32300195-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Histone_modifications">Histone modifications</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=7" title="Edit section: Histone modifications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Histones H3 and H4 can also be manipulated through demethylation using <a href="/wiki/Histone_lysine_demethylase" class="mw-redirect" title="Histone lysine demethylase">histone lysine demethylase</a> (KDM). This recently identified enzyme has a catalytically active site called the Jumonji domain (JmjC). The demethylation occurs when JmjC utilizes multiple cofactors to hydroxylate the methyl group, thereby removing it. JmjC is capable of demethylating mono-, di-, and tri-methylated substrates.<sup id="cite_ref-pmid19234061_48-0" class="reference"><a href="#cite_note-pmid19234061-48"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> </p><p>Chromosomal regions can adopt stable and heritable alternative states resulting in bistable gene expression without changes to the DNA sequence. Epigenetic control is often associated with alternative <a href="/wiki/Covalent_modification" class="mw-redirect" title="Covalent modification">covalent modifications</a> of histones.<sup id="cite_ref-Rosenfeld_2009_49-0" class="reference"><a href="#cite_note-Rosenfeld_2009-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> The stability and heritability of states of larger chromosomal regions are suggested to involve positive feedback where modified <a href="/wiki/Nucleosome" title="Nucleosome">nucleosomes</a> recruit enzymes that similarly modify nearby nucleosomes.<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> A simplified stochastic model for this type of epigenetics is found here.<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-pmid17512413_52-0" class="reference"><a href="#cite_note-pmid17512413-52"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup> </p><p>It has been suggested that chromatin-based transcriptional regulation could be mediated by the effect of small RNAs. <a href="/wiki/Small_interfering_RNA" title="Small interfering RNA">Small interfering RNAs</a> can modulate transcriptional gene expression via epigenetic modulation of targeted <a href="/wiki/Promoter_(biology)" class="mw-redirect" title="Promoter (biology)">promoters</a>.<sup id="cite_ref-Morris_53-0" class="reference"><a href="#cite_note-Morris-53"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="RNA_transcripts">RNA transcripts</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=8" title="Edit section: RNA transcripts"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Sometimes a gene, after being turned on, transcribes a product that (directly or indirectly) maintains the activity of that gene. For example, <a href="/wiki/Hnf4" class="mw-redirect" title="Hnf4">Hnf4</a> and <a href="/wiki/MyoD" title="MyoD">MyoD</a> enhance the transcription of many liver-specific and muscle-specific genes, respectively, including their own, through the <a href="/wiki/Transcription_factor" title="Transcription factor">transcription factor</a> activity of the <a href="/wiki/Proteins" class="mw-redirect" title="Proteins">proteins</a> they encode. RNA signalling includes differential recruitment of a hierarchy of generic chromatin modifying complexes and DNA methyltransferases to specific loci by RNAs during differentiation and development.<sup id="cite_ref-pmid19154003_54-0" class="reference"><a href="#cite_note-pmid19154003-54"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> Other epigenetic changes are mediated by the production of <a href="/wiki/Alternative_splicing" title="Alternative splicing">different splice forms</a> of <a href="/wiki/RNA" title="RNA">RNA</a>, or by formation of double-stranded RNA (<a href="/wiki/RNAi" class="mw-redirect" title="RNAi">RNAi</a>). Descendants of the cell in which the gene was turned on will inherit this activity, even if the original stimulus for gene-activation is no longer present. These genes are often turned on or off by <a href="/wiki/Signal_transduction" title="Signal transduction">signal transduction</a>, although in some systems where <a href="/wiki/Syncytia" class="mw-redirect" title="Syncytia">syncytia</a> or <a href="/wiki/Gap_junction" title="Gap junction">gap junctions</a> are important, RNA may spread directly to other cells or nuclei by <a href="/wiki/Diffusion" title="Diffusion">diffusion</a>. A large amount of RNA and protein is contributed to the <a href="/wiki/Zygote" title="Zygote">zygote</a> by the mother during <a href="/wiki/Oogenesis" title="Oogenesis">oogenesis</a> or via <a href="/wiki/Nurse_cell" title="Nurse cell">nurse cells</a>, resulting in <a href="/wiki/Maternal_effect" title="Maternal effect">maternal effect</a> phenotypes. A smaller quantity of sperm RNA is transmitted from the father, but there is recent evidence that this epigenetic information can lead to visible changes in several generations of offspring.<sup id="cite_ref-choi06_55-0" class="reference"><a href="#cite_note-choi06-55"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="MicroRNAs">MicroRNAs</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=9" title="Edit section: MicroRNAs"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/MicroRNA" title="MicroRNA">MicroRNAs</a> (miRNAs) are members of <a href="/wiki/Non-coding_RNA" title="Non-coding RNA">non-coding RNAs</a> that range in size from 17 to 25 nucleotides. miRNAs regulate a large variety of biological functions in plants and animals.<sup id="cite_ref-Wang_56-0" class="reference"><a href="#cite_note-Wang-56"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> So far, in 2013, about 2000 miRNAs have been discovered in humans and these can be found online in a miRNA database.<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> Each miRNA expressed in a cell may target about 100 to 200 messenger RNAs(mRNAs) that it downregulates.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup> Most of the downregulation of mRNAs occurs by causing the decay of the targeted mRNA, while some downregulation occurs at the level of translation into protein.<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup> </p><p>It appears that about 60% of human protein coding genes are regulated by miRNAs.<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> Many miRNAs are epigenetically regulated. About 50% of miRNA genes are associated with <a href="/wiki/CpG_island" class="mw-redirect" title="CpG island">CpG islands</a>,<sup id="cite_ref-Wang_56-1" class="reference"><a href="#cite_note-Wang-56"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> that may be repressed by epigenetic methylation. Transcription from methylated CpG islands is strongly and heritably repressed.<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> Other miRNAs are epigenetically regulated by either histone modifications or by combined DNA methylation and histone modification.<sup id="cite_ref-Wang_56-2" class="reference"><a href="#cite_note-Wang-56"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="mRNA">mRNA</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=10" title="Edit section: mRNA"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2011, it was demonstrated that the <a href="/wiki/Methylation" title="Methylation">methylation</a> of <a href="/wiki/Messenger_RNA" title="Messenger RNA">mRNA</a> plays a critical role in human <a href="/wiki/Energy_balance_(biology)" class="mw-redirect" title="Energy balance (biology)">energy homeostasis</a>. The obesity-associated <a href="/wiki/FTO_gene" title="FTO gene">FTO gene</a> is shown to be able to <a href="/wiki/Demethylate" class="mw-redirect" title="Demethylate">demethylate</a> <a href="/wiki/N6-methyladenosine" class="mw-redirect" title="N6-methyladenosine">N6-methyladenosine</a> in RNA.<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="sRNAs">sRNAs</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=11" title="Edit section: sRNAs"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Bacterial_small_RNA" title="Bacterial small RNA">sRNAs</a> are small (50–250 nucleotides), highly structured, non-coding RNA fragments found in bacteria. They control gene expression including <a href="/wiki/Virulence" title="Virulence">virulence</a> genes in pathogens and are viewed as new targets in the fight against drug-resistant bacteria.<sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> They play an important role in many biological processes, binding to mRNA and protein targets in prokaryotes. Their phylogenetic analyses, for example through sRNA–mRNA target interactions or protein <a href="/wiki/Hfq_binding_sRNA" title="Hfq binding sRNA">binding properties</a>, are used to build comprehensive databases.<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup> sRNA-<a href="/wiki/Gene_map" class="mw-redirect" title="Gene map">gene maps</a> based on their targets in microbial genomes are also constructed.<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Long_non-coding_RNAs">Long non-coding RNAs</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=12" title="Edit section: Long non-coding RNAs"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Numerous investigations have demonstrated the pivotal involvement of long non-coding RNAs (lncRNAs) in the regulation of gene expression and chromosomal modifications, thereby exerting significant control over cellular differentiation. These long non-coding RNAs also contribute to genomic imprinting and the inactivation of the X chromosome.<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup> In invertebrates such as social insects of honey bees, long non-coding RNAs are detected as a possible epigenetic mechanism via allele-specific genes underlying aggression via reciprocal crosses.<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Prions">Prions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=13" title="Edit section: Prions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Fungal_prions" class="mw-redirect" title="Fungal prions">Fungal prions</a></div> <p><a href="/wiki/Prion" title="Prion">Prions</a> are <a href="/wiki/Infection" title="Infection">infectious</a> forms of <a href="/wiki/Protein" title="Protein">proteins</a>. In general, proteins fold into discrete units that perform distinct cellular functions, but some proteins are also capable of forming an infectious conformational state known as a prion. Although often viewed in the context of <a href="/wiki/Transmissible_spongiform_encephalopathy" title="Transmissible spongiform encephalopathy">infectious disease</a>, prions are more loosely defined by their ability to catalytically convert other native state versions of the same protein to an infectious conformational state. It is in this latter sense that they can be viewed as epigenetic agents capable of inducing a phenotypic change without a modification of the genome.<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">[</span>69<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Fungal_prion" title="Fungal prion">Fungal prions</a> are considered by some to be epigenetic because the infectious phenotype caused by the prion can be inherited without modification of the genome. <a href="/wiki/PSI_(prion)" class="mw-redirect" title="PSI (prion)">PSI+</a> and URE3, discovered in <a href="/wiki/Saccharomyces_cerevisiae" title="Saccharomyces cerevisiae">yeast</a> in 1965 and 1971, are the two best studied of this type of prion.<sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-pmid5573734_71-0" class="reference"><a href="#cite_note-pmid5573734-71"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup> Prions can have a phenotypic effect through the sequestration of protein in aggregates, thereby reducing that protein's activity. In PSI+ cells, the loss of the Sup35 protein (which is involved in termination of translation) causes ribosomes to have a higher rate of read-through of stop <a href="/wiki/Codon" class="mw-redirect" title="Codon">codons</a>, an effect that results in suppression of <a href="/wiki/Nonsense_mutation" title="Nonsense mutation">nonsense mutations</a> in other genes.<sup id="cite_ref-pmid225301_72-0" class="reference"><a href="#cite_note-pmid225301-72"><span class="cite-bracket">[</span>72<span class="cite-bracket">]</span></a></sup> The ability of Sup35 to form prions may be a conserved trait. It could confer an adaptive advantage by giving cells the ability to <a href="/wiki/Evolutionary_capacitance" title="Evolutionary capacitance">switch into a PSI+ state</a> and express dormant genetic features normally terminated by stop codon mutations.<sup id="cite_ref-pmid11028992_73-0" class="reference"><a href="#cite_note-pmid11028992-73"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-pmid15931169_74-0" class="reference"><a href="#cite_note-pmid15931169-74"><span class="cite-bracket">[</span>74<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">[</span>75<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">[</span>76<span class="cite-bracket">]</span></a></sup> </p><p>Prion-based epigenetics has also been observed in <i><a href="/wiki/Saccharomyces_cerevisiae" title="Saccharomyces cerevisiae">Saccharomyces cerevisiae</a></i>.<sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">[</span>77<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Molecular_basis">Molecular basis</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=14" title="Edit section: Molecular basis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Epigenetic changes modify the activation of certain genes, but not the genetic code sequence of DNA.<sup id="cite_ref-Topart_78-0" class="reference"><a href="#cite_note-Topart-78"><span class="cite-bracket">[</span>78<span class="cite-bracket">]</span></a></sup> The microstructure (not code) of DNA itself or the associated <a href="/wiki/Chromatin" title="Chromatin">chromatin</a> proteins may be modified, causing activation or silencing. This mechanism enables differentiated cells in a multicellular organism to express only the genes that are necessary for their own activity. Epigenetic changes are preserved when cells divide. Most epigenetic changes only occur within the course of one individual organism's lifetime; however, these epigenetic changes can be transmitted to the organism's offspring through a process called <a href="/wiki/Transgenerational_epigenetic_inheritance" title="Transgenerational epigenetic inheritance">transgenerational epigenetic inheritance</a>. Moreover, if gene inactivation occurs in a sperm or egg cell that results in fertilization, this epigenetic modification may also be transferred to the next generation.<sup id="cite_ref-pmid17320501_79-0" class="reference"><a href="#cite_note-pmid17320501-79"><span class="cite-bracket">[</span>79<span class="cite-bracket">]</span></a></sup> </p><p>Specific epigenetic processes include <a href="/wiki/Paramutation" title="Paramutation">paramutation</a>, <a href="/wiki/Bookmarking" title="Bookmarking">bookmarking</a>, <a href="/wiki/Imprinting_(genetics)" class="mw-redirect" title="Imprinting (genetics)">imprinting</a>, <a href="/wiki/Gene_silencing" title="Gene silencing">gene silencing</a>, <a href="/wiki/X-inactivation" title="X-inactivation">X chromosome inactivation</a>, <a href="/wiki/Position_effect" title="Position effect">position effect</a>, <a href="/wiki/DNA_methylation_reprogramming" class="mw-redirect" title="DNA methylation reprogramming">DNA methylation reprogramming</a>, <a href="/wiki/Transvection_(genetics)" title="Transvection (genetics)">transvection</a>, <a href="/wiki/Maternal_effect" title="Maternal effect">maternal effects</a>, the progress of <a href="/wiki/Carcinogenesis" title="Carcinogenesis">carcinogenesis</a>, many effects of <a href="/wiki/Teratogen" class="mw-redirect" title="Teratogen">teratogens</a>, regulation of <a href="/wiki/Histone" title="Histone">histone</a> modifications and <a href="/wiki/Heterochromatin" title="Heterochromatin">heterochromatin</a>, and technical limitations affecting <a href="/wiki/Parthenogenesis" title="Parthenogenesis">parthenogenesis</a> and <a href="/wiki/Cloning" title="Cloning">cloning</a>.<sup id="cite_ref-80" class="reference"><a href="#cite_note-80"><span class="cite-bracket">[</span>80<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">[</span>81<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">[</span>82<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="DNA_damage">DNA damage</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=15" title="Edit section: DNA damage"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>DNA damage can also cause epigenetic changes.<sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">[</span>83<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">[</span>84<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-85" class="reference"><a href="#cite_note-85"><span class="cite-bracket">[</span>85<span class="cite-bracket">]</span></a></sup> DNA damage is very frequent, occurring on average about 60,000 times a day per cell of the human body (see <a href="/wiki/DNA_damage_(naturally_occurring)" title="DNA damage (naturally occurring)">DNA damage (naturally occurring)</a>). These damages are largely repaired, however, epigenetic changes can still remain at the site of DNA repair.<sup id="cite_ref-86" class="reference"><a href="#cite_note-86"><span class="cite-bracket">[</span>86<span class="cite-bracket">]</span></a></sup> In particular, a double strand break in DNA can initiate unprogrammed epigenetic gene silencing both by causing DNA methylation as well as by promoting silencing types of histone modifications (chromatin remodeling - see next section).<sup id="cite_ref-87" class="reference"><a href="#cite_note-87"><span class="cite-bracket">[</span>87<span class="cite-bracket">]</span></a></sup> In addition, the enzyme <a href="/wiki/Poly_ADP_ribose_polymerase" class="mw-redirect" title="Poly ADP ribose polymerase">Parp1 (poly(ADP)-ribose polymerase)</a> and its product poly(ADP)-ribose (PAR) accumulate at sites of DNA damage as part of the repair process.<sup id="cite_ref-88" class="reference"><a href="#cite_note-88"><span class="cite-bracket">[</span>88<span class="cite-bracket">]</span></a></sup> This accumulation, in turn, directs recruitment and activation of the chromatin remodeling protein, ALC1, that can cause <a href="/wiki/Nucleosome" title="Nucleosome">nucleosome</a> remodeling.<sup id="cite_ref-89" class="reference"><a href="#cite_note-89"><span class="cite-bracket">[</span>89<span class="cite-bracket">]</span></a></sup> Nucleosome remodeling has been found to cause, for instance, epigenetic silencing of DNA repair gene MLH1.<sup id="cite_ref-isbn0-87969-490-4_22-1" class="reference"><a href="#cite_note-isbn0-87969-490-4-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">[</span>90<span class="cite-bracket">]</span></a></sup> DNA damaging chemicals, such as <a href="/wiki/Benzene" title="Benzene">benzene</a>, <a href="/wiki/Hydroquinone" title="Hydroquinone">hydroquinone</a>, <a href="/wiki/Styrene" title="Styrene">styrene</a>, <a href="/wiki/Carbon_tetrachloride" title="Carbon tetrachloride">carbon tetrachloride</a> and <a href="/wiki/Trichloroethylene" title="Trichloroethylene">trichloroethylene</a>, cause considerable hypomethylation of DNA, some through the activation of oxidative stress pathways.<sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">[</span>91<span class="cite-bracket">]</span></a></sup> </p><p>Foods are known to alter the epigenetics of rats on different diets.<sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup> Some food components epigenetically increase the levels of DNA repair enzymes such as <a href="/wiki/O-6-methylguanine-DNA_methyltransferase" class="mw-redirect" title="O-6-methylguanine-DNA methyltransferase">MGMT</a> and <a href="/wiki/MLH1" title="MLH1">MLH1</a><sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">[</span>93<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/P53" title="P53">p53</a>.<sup id="cite_ref-94" class="reference"><a href="#cite_note-94"><span class="cite-bracket">[</span>94<span class="cite-bracket">]</span></a></sup> Other food components can reduce DNA damage, such as soy <a href="/wiki/Isoflavones" class="mw-redirect" title="Isoflavones">isoflavones</a>. In one study, markers for oxidative stress, such as modified nucleotides that can result from DNA damage, were decreased by a 3-week diet supplemented with soy.<sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">[</span>95<span class="cite-bracket">]</span></a></sup> A decrease in oxidative DNA damage was also observed 2 h after consumption of <a href="/wiki/Anthocyanin" title="Anthocyanin">anthocyanin</a>-rich <a href="/wiki/Bilberry" title="Bilberry">bilberry</a> (<i><a href="/wiki/Vaccinium_myrtillus" title="Vaccinium myrtillus">Vaccinium myrtillius</a></i> L.) <a href="/wiki/Pomace" title="Pomace">pomace</a> extract.<sup id="cite_ref-96" class="reference"><a href="#cite_note-96"><span class="cite-bracket">[</span>96<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="DNA_repair">DNA repair</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=16" title="Edit section: DNA repair"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Damage to DNA is very common and is constantly being repaired. Epigenetic alterations can accompany DNA repair of oxidative damage or double-strand breaks. In human cells, oxidative DNA damage occurs about 10,000 times a day and DNA double-strand breaks occur about 10 to 50 times a cell cycle in somatic replicating cells (see <a href="/wiki/DNA_damage_(naturally_occurring)" title="DNA damage (naturally occurring)">DNA damage (naturally occurring)</a>). The selective advantage of DNA repair is to allow the cell to survive in the face of DNA damage. The selective advantage of epigenetic alterations that occur with DNA repair is not clear.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (March 2023)">citation needed</span></a></i>]</sup> </p> <div class="mw-heading mw-heading4"><h4 id="Repair_of_oxidative_DNA_damage_can_alter_epigenetic_markers">Repair of oxidative DNA damage can alter epigenetic markers</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=17" title="Edit section: Repair of oxidative DNA damage can alter epigenetic markers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the steady state (with endogenous damages occurring and being repaired), there are about 2,400 oxidatively damaged guanines that form <a href="/wiki/8-oxo-2%27-deoxyguanosine" class="mw-redirect" title="8-oxo-2'-deoxyguanosine">8-oxo-2'-deoxyguanosine</a> (8-OHdG) in the average mammalian cell DNA.<sup id="cite_ref-pmid21163908_97-0" class="reference"><a href="#cite_note-pmid21163908-97"><span class="cite-bracket">[</span>97<span class="cite-bracket">]</span></a></sup> 8-OHdG constitutes about 5% of the oxidative damages commonly present in DNA.<sup id="cite_ref-Hamilton_98-0" class="reference"><a href="#cite_note-Hamilton-98"><span class="cite-bracket">[</span>98<span class="cite-bracket">]</span></a></sup> The oxidized guanines do not occur randomly among all guanines in DNA. There is a sequence preference for the guanine at a <a href="/wiki/DNA_methylation" title="DNA methylation">methylated</a> <a href="/wiki/CpG_site" title="CpG site">CpG site</a> (a cytosine followed by guanine along its <a href="/wiki/Directionality_(molecular_biology)" title="Directionality (molecular biology)">5' → 3' direction</a> and where the cytosine is methylated (5-mCpG)).<sup id="cite_ref-pmid24571128_99-0" class="reference"><a href="#cite_note-pmid24571128-99"><span class="cite-bracket">[</span>99<span class="cite-bracket">]</span></a></sup> A 5-mCpG site has the lowest ionization potential for guanine oxidation.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (March 2023)">citation needed</span></a></i>]</sup> </p> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Initiation_of_DNA_demethylation_at_a_CpG_site.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/07/Initiation_of_DNA_demethylation_at_a_CpG_site.svg/200px-Initiation_of_DNA_demethylation_at_a_CpG_site.svg.png" decoding="async" width="200" height="230" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/07/Initiation_of_DNA_demethylation_at_a_CpG_site.svg/300px-Initiation_of_DNA_demethylation_at_a_CpG_site.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/07/Initiation_of_DNA_demethylation_at_a_CpG_site.svg/400px-Initiation_of_DNA_demethylation_at_a_CpG_site.svg.png 2x" data-file-width="643" data-file-height="739" /></a><figcaption>Initiation of <a href="/wiki/DNA_demethylation" title="DNA demethylation">DNA demethylation</a> at a <a href="/wiki/CpG_site" title="CpG site">CpG site</a>. In adult somatic cells DNA methylation typically occurs in the context of CpG dinucleotides (<a href="/wiki/CpG_sites" class="mw-redirect" title="CpG sites">CpG sites</a>), forming <a href="/wiki/5-methylcytosine" class="mw-redirect" title="5-methylcytosine">5-methylcytosine</a>-pG, or 5mCpG. Reactive oxygen species (ROS) may attack guanine at the dinucleotide site, forming <a href="/wiki/8-oxo-2%27-deoxyguanosine" class="mw-redirect" title="8-oxo-2'-deoxyguanosine">8-hydroxy-2'-deoxyguanosine</a> (8-OHdG), and resulting in a 5mCp-8-OHdG dinucleotide site. The <a href="/wiki/Base_excision_repair" title="Base excision repair">base excision repair</a> enzyme <a href="/wiki/Oxoguanine_glycosylase" title="Oxoguanine glycosylase">OGG1</a> targets 8-OHdG and binds to the lesion without immediate excision. OGG1, present at a 5mCp-8-OHdG site recruits <a href="/wiki/Tet_methylcytosine_dioxygenase_1" title="Tet methylcytosine dioxygenase 1">TET1</a> and TET1 oxidizes the 5mC adjacent to the 8-OHdG. This initiates demethylation of 5mC.<sup id="cite_ref-Zhou_100-0" class="reference"><a href="#cite_note-Zhou-100"><span class="cite-bracket">[</span>100<span class="cite-bracket">]</span></a></sup></figcaption></figure> <p>Oxidized guanine has mispairing potential and is mutagenic.<sup id="cite_ref-pmid31993111_101-0" class="reference"><a href="#cite_note-pmid31993111-101"><span class="cite-bracket">[</span>101<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Oxoguanine_glycosylase" title="Oxoguanine glycosylase">Oxoguanine glycosylase</a> (OGG1) is the primary enzyme responsible for the excision of the oxidized guanine during DNA repair. OGG1 finds and binds to an 8-OHdG within a few seconds.<sup id="cite_ref-pmid33171795_102-0" class="reference"><a href="#cite_note-pmid33171795-102"><span class="cite-bracket">[</span>102<span class="cite-bracket">]</span></a></sup> However, OGG1 does not immediately excise 8-OHdG. In HeLa cells half maximum removal of 8-OHdG occurs in 30 minutes,<sup id="cite_ref-pmid15365186_103-0" class="reference"><a href="#cite_note-pmid15365186-103"><span class="cite-bracket">[</span>103<span class="cite-bracket">]</span></a></sup> and in irradiated mice, the 8-OHdGs induced in the mouse liver are removed with a half-life of 11 minutes.<sup id="cite_ref-Hamilton_98-1" class="reference"><a href="#cite_note-Hamilton-98"><span class="cite-bracket">[</span>98<span class="cite-bracket">]</span></a></sup> </p><p>When OGG1 is present at an oxidized guanine within a methylated <a href="/wiki/CpG_site" title="CpG site">CpG site</a> it recruits <a href="/wiki/TET_enzymes" title="TET enzymes">TET1</a> to the 8-OHdG lesion (see Figure). This allows TET1 to demethylate an adjacent methylated cytosine. Demethylation of cytosine is an epigenetic alteration.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (March 2023)">citation needed</span></a></i>]</sup> </p><p>As an example, when human mammary epithelial cells were treated with H<sub>2</sub>O<sub>2</sub> for six hours, 8-OHdG increased about 3.5-fold in DNA and this caused about 80% demethylation of the 5-methylcytosines in the genome.<sup id="cite_ref-Zhou_100-1" class="reference"><a href="#cite_note-Zhou-100"><span class="cite-bracket">[</span>100<span class="cite-bracket">]</span></a></sup> Demethylation of CpGs in a gene promoter by <a href="/wiki/TET_enzymes" title="TET enzymes">TET enzyme</a> activity increases transcription of the gene into messenger RNA.<sup id="cite_ref-pmid24108092_104-0" class="reference"><a href="#cite_note-pmid24108092-104"><span class="cite-bracket">[</span>104<span class="cite-bracket">]</span></a></sup> In cells treated with H<sub>2</sub>O<sub>2</sub>, one particular gene was examined, <a href="/wiki/Beta-secretase_1" title="Beta-secretase 1"><i>BACE1</i></a>.<sup id="cite_ref-Zhou_100-2" class="reference"><a href="#cite_note-Zhou-100"><span class="cite-bracket">[</span>100<span class="cite-bracket">]</span></a></sup> The methylation level of the <i>BACE1</i> <a href="/wiki/CpG_site#CpG_islands" title="CpG site">CpG island</a> was reduced (an epigenetic alteration) and this allowed about 6.5 fold increase of expression of <i>BACE1</i> messenger RNA.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (March 2023)">citation needed</span></a></i>]</sup> </p><p>While six-hour incubation with H<sub>2</sub>O<sub>2</sub> causes considerable demethylation of 5-mCpG sites, shorter times of H<sub>2</sub>O<sub>2</sub> incubation appear to promote other epigenetic alterations. Treatment of cells with H<sub>2</sub>O<sub>2</sub> for 30 minutes causes the mismatch repair protein heterodimer MSH2-MSH6 to recruit DNA methyltransferase 1 (<a href="/wiki/DNMT1" title="DNMT1">DNMT1</a>) to sites of some kinds of oxidative DNA damage.<sup id="cite_ref-pmid26186941_105-0" class="reference"><a href="#cite_note-pmid26186941-105"><span class="cite-bracket">[</span>105<span class="cite-bracket">]</span></a></sup> This could cause increased methylation of cytosines (epigenetic alterations) at these locations. </p><p>Jiang et al.<sup id="cite_ref-Jiang_106-0" class="reference"><a href="#cite_note-Jiang-106"><span class="cite-bracket">[</span>106<span class="cite-bracket">]</span></a></sup> treated <a href="/wiki/HEK_293_cells" title="HEK 293 cells">HEK 293 cells</a> with agents causing oxidative DNA damage, (<a href="/wiki/Potassium_bromate" title="Potassium bromate">potassium bromate</a> (KBrO3) or <a href="/wiki/Potassium_chromate" title="Potassium chromate">potassium chromate</a> (K2CrO4)). <a href="/wiki/Base_excision_repair" title="Base excision repair">Base excision repair</a> (BER) of oxidative damage occurred with the DNA repair enzyme <a href="/wiki/DNA_polymerase" title="DNA polymerase">polymerase beta</a> localizing to oxidized guanines. Polymerase beta is the main human polymerase in short-patch BER of oxidative DNA damage. Jiang et al.<sup id="cite_ref-Jiang_106-1" class="reference"><a href="#cite_note-Jiang-106"><span class="cite-bracket">[</span>106<span class="cite-bracket">]</span></a></sup> also found that polymerase beta recruited the <a href="/wiki/DNA_methyltransferase" title="DNA methyltransferase">DNA methyltransferase</a> protein DNMT3b to BER repair sites. They then evaluated the methylation pattern at the single nucleotide level in a small region of DNA including the <a href="/wiki/Promoter_(genetics)" title="Promoter (genetics)">promoter</a> region and the early transcription region of the <a href="/wiki/BRCA1" title="BRCA1">BRCA1</a> gene. Oxidative DNA damage from bromate modulated the DNA methylation pattern (caused epigenetic alterations) at CpG sites within the region of DNA studied. In untreated cells, CpGs located at −189, −134, −29, −19, +16, and +19 of the BRCA1 gene had methylated cytosines (where numbering is from the <a href="/wiki/Messenger_RNA" title="Messenger RNA">messenger RNA</a> transcription start site, and negative numbers indicate nucleotides in the upstream <a href="/wiki/Promoter_(genetics)" title="Promoter (genetics)">promoter</a> region). Bromate treatment-induced oxidation resulted in the loss of cytosine methylation at −189, −134, +16 and +19 while also leading to the formation of new methylation at the CpGs located at −80, −55, −21 and +8 after DNA repair was allowed. </p> <div class="mw-heading mw-heading4"><h4 id="Homologous_recombinational_repair_alters_epigenetic_markers">Homologous recombinational repair alters epigenetic markers</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=18" title="Edit section: Homologous recombinational repair alters epigenetic markers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>At least four articles report the recruitment of <a href="/wiki/DNA_methyltransferase" title="DNA methyltransferase">DNA methyltransferase 1 (DNMT1)</a> to sites of DNA double-strand breaks.<sup id="cite_ref-pmid15956212_107-0" class="reference"><a href="#cite_note-pmid15956212-107"><span class="cite-bracket">[</span>107<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Cuozzo_108-0" class="reference"><a href="#cite_note-Cuozzo-108"><span class="cite-bracket">[</span>108<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-pmid18704159_109-0" class="reference"><a href="#cite_note-pmid18704159-109"><span class="cite-bracket">[</span>109<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-pmid20940144_110-0" class="reference"><a href="#cite_note-pmid20940144-110"><span class="cite-bracket">[</span>110<span class="cite-bracket">]</span></a></sup> During <a href="/wiki/Homologous_recombination" title="Homologous recombination">homologous recombinational repair (HR)</a> of the double-strand break, the involvement of DNMT1 causes the two repaired strands of DNA to have different levels of methylated cytosines. One strand becomes frequently methylated at about 21 <a href="/wiki/CpG_site" title="CpG site">CpG sites</a> downstream of the repaired double-strand break. The other DNA strand loses methylation at about six CpG sites that were previously methylated downstream of the double-strand break, as well as losing methylation at about five CpG sites that were previously methylated upstream of the double-strand break. When the chromosome is replicated, this gives rise to one daughter chromosome that is heavily methylated downstream of the previous break site and one that is unmethylated in the region both upstream and downstream of the previous break site. With respect to the gene that was broken by the double-strand break, half of the progeny cells express that gene at a high level and in the other half of the progeny cells expression of that gene is repressed. When clones of these cells were maintained for three years, the new methylation patterns were maintained over that time period.<sup id="cite_ref-pmid27629060_111-0" class="reference"><a href="#cite_note-pmid27629060-111"><span class="cite-bracket">[</span>111<span class="cite-bracket">]</span></a></sup> </p><p>In mice with a CRISPR-mediated homology-directed recombination insertion in their genome there were a large number of increased methylations of CpG sites within the double-strand break-associated insertion.<sup id="cite_ref-pmid33267773_112-0" class="reference"><a href="#cite_note-pmid33267773-112"><span class="cite-bracket">[</span>112<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Non-homologous_end_joining_can_cause_some_epigenetic_marker_alterations">Non-homologous end joining can cause some epigenetic marker alterations</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=19" title="Edit section: Non-homologous end joining can cause some epigenetic marker alterations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Non-homologous_end_joining" title="Non-homologous end joining">Non-homologous end joining</a> (NHEJ) repair of a double-strand break can cause a small number of demethylations of pre-existing cytosine DNA methylations downstream of the repaired double-strand break.<sup id="cite_ref-Cuozzo_108-1" class="reference"><a href="#cite_note-Cuozzo-108"><span class="cite-bracket">[</span>108<span class="cite-bracket">]</span></a></sup> Further work by Allen et al.<sup id="cite_ref-pmid28423717_113-0" class="reference"><a href="#cite_note-pmid28423717-113"><span class="cite-bracket">[</span>113<span class="cite-bracket">]</span></a></sup> showed that NHEJ of a DNA double-strand break in a cell could give rise to some progeny cells having repressed expression of the gene harboring the initial double-strand break and some progeny having high expression of that gene due to epigenetic alterations associated with NHEJ repair. The frequency of epigenetic alterations causing repression of a gene after an NHEJ repair of a DNA double-strand break in that gene may be about 0.9%.<sup id="cite_ref-pmid18704159_109-1" class="reference"><a href="#cite_note-pmid18704159-109"><span class="cite-bracket">[</span>109<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Techniques_used_to_study_epigenetics">Techniques used to study epigenetics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=20" title="Edit section: Techniques used to study epigenetics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Epigenetic research uses a wide range of <a href="/wiki/Molecular_biology" title="Molecular biology">molecular biological</a> techniques to further understanding of epigenetic phenomena. These techniques include <a href="/wiki/Chromatin_immunoprecipitation" title="Chromatin immunoprecipitation">chromatin immunoprecipitation</a> (together with its large-scale variants <a href="/wiki/ChIP-on-chip" title="ChIP-on-chip">ChIP-on-chip</a> and <a href="/wiki/ChIP-Seq" class="mw-redirect" title="ChIP-Seq">ChIP-Seq</a>), <a href="/wiki/Fluorescent_in_situ_hybridization" class="mw-redirect" title="Fluorescent in situ hybridization">fluorescent in situ hybridization</a>, methylation-sensitive <a href="/wiki/Restriction_enzymes" class="mw-redirect" title="Restriction enzymes">restriction enzymes</a>, DNA adenine methyltransferase identification (<a href="/wiki/DamID" class="mw-redirect" title="DamID">DamID</a>) and <a href="/wiki/Bisulfite_sequencing" title="Bisulfite sequencing">bisulfite sequencing</a>.<sup id="cite_ref-verma_114-0" class="reference"><a href="#cite_note-verma-114"><span class="cite-bracket">[</span>114<span class="cite-bracket">]</span></a></sup> Furthermore, the use of <a href="/wiki/Bioinformatics" title="Bioinformatics">bioinformatics</a> methods has a role in <a href="/wiki/Computational_epigenetics" title="Computational epigenetics">computational epigenetics</a>.<sup id="cite_ref-verma_114-1" class="reference"><a href="#cite_note-verma-114"><span class="cite-bracket">[</span>114<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Chromatin_Immunoprecipitation">Chromatin Immunoprecipitation</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=21" title="Edit section: Chromatin Immunoprecipitation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Chromatin Immunoprecipitation (ChIP) has helped bridge the gap between DNA and epigenetic interactions.<sup id="cite_ref-Abcam_115-0" class="reference"><a href="#cite_note-Abcam-115"><span class="cite-bracket">[</span>115<span class="cite-bracket">]</span></a></sup> With the use of ChIP, researchers are able to make findings in regards to gene regulation, transcription mechanisms, and chromatin structure.<sup id="cite_ref-Abcam_115-1" class="reference"><a href="#cite_note-Abcam-115"><span class="cite-bracket">[</span>115<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Fluorescent_in_situ_hybridization">Fluorescent <i>in situ</i> hybridization</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=22" title="Edit section: Fluorescent in situ hybridization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Fluorescent <i>in situ</i> hybridization (FISH) is very important to understand epigenetic mechanisms.<sup id="cite_ref-Chaumeil_2008_116-0" class="reference"><a href="#cite_note-Chaumeil_2008-116"><span class="cite-bracket">[</span>116<span class="cite-bracket">]</span></a></sup> FISH can be used to find the location of genes on chromosomes, as well as finding noncoding RNAs.<sup id="cite_ref-Chaumeil_2008_116-1" class="reference"><a href="#cite_note-Chaumeil_2008-116"><span class="cite-bracket">[</span>116<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-O'Connor_2008_117-0" class="reference"><a href="#cite_note-O'Connor_2008-117"><span class="cite-bracket">[</span>117<span class="cite-bracket">]</span></a></sup> FISH is predominantly used for detecting chromosomal abnormalities in humans.<sup id="cite_ref-O'Connor_2008_117-1" class="reference"><a href="#cite_note-O'Connor_2008-117"><span class="cite-bracket">[</span>117<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Methylation-sensitive_restriction_enzymes">Methylation-sensitive restriction enzymes</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=23" title="Edit section: Methylation-sensitive restriction enzymes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Methylation sensitive restriction enzymes paired with PCR is a way to evaluate methylation in DNA - specifically the CpG sites.<sup id="cite_ref-Hashimoto_2007_118-0" class="reference"><a href="#cite_note-Hashimoto_2007-118"><span class="cite-bracket">[</span>118<span class="cite-bracket">]</span></a></sup> If DNA is methylated, the restriction enzymes will not cleave the strand.<sup id="cite_ref-Hashimoto_2007_118-1" class="reference"><a href="#cite_note-Hashimoto_2007-118"><span class="cite-bracket">[</span>118<span class="cite-bracket">]</span></a></sup> Contrarily, if the DNA is not methylated, the enzymes will cleave the strand and it will be amplified by PCR.<sup id="cite_ref-Hashimoto_2007_118-2" class="reference"><a href="#cite_note-Hashimoto_2007-118"><span class="cite-bracket">[</span>118<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Bisulfite_sequencing">Bisulfite sequencing</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=24" title="Edit section: Bisulfite sequencing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Bisulfite sequencing is another way to evaluate DNA methylation. Cytosine will be changed to uracil from being treated with sodium bisulfite, whereas methylated cytosines will not be affected.<sup id="cite_ref-Hashimoto_2007_118-3" class="reference"><a href="#cite_note-Hashimoto_2007-118"><span class="cite-bracket">[</span>118<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Li-Byarlay_et_al_2020_119-0" class="reference"><a href="#cite_note-Li-Byarlay_et_al_2020-119"><span class="cite-bracket">[</span>119<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-ReferenceC_120-0" class="reference"><a href="#cite_note-ReferenceC-120"><span class="cite-bracket">[</span>120<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Nanopore_sequencing">Nanopore sequencing</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=25" title="Edit section: Nanopore sequencing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Certain sequencing methods, such as <a href="/wiki/Nanopore_sequencing" title="Nanopore sequencing">nanopore sequencing</a>, allow sequencing of native DNA. Native (=unamplified) DNA retains the epigenetic modifications which would otherwise be lost during the amplification step. Nanopore basecaller models can distinguish between the signals obtained for epigenetically modified bases and unaltered based and provide an epigenetic profile in addition to the sequencing result.<sup id="cite_ref-121" class="reference"><a href="#cite_note-121"><span class="cite-bracket">[</span>121<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Structural_inheritance">Structural inheritance</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=26" title="Edit section: Structural inheritance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Structural_inheritance" title="Structural inheritance">Structural inheritance</a></div> <p>In <a href="/wiki/Ciliate" title="Ciliate">ciliates</a> such as <i><a href="/wiki/Tetrahymena" title="Tetrahymena">Tetrahymena</a></i> and <i><a href="/wiki/Paramecium" title="Paramecium">Paramecium</a></i>, genetically identical cells show heritable differences in the patterns of ciliary rows on their cell surface. Experimentally altered patterns can be transmitted to daughter cells. It seems existing structures act as templates for new structures. The mechanisms of such inheritance are unclear, but reasons exist to assume that multicellular organisms also use existing cell structures to assemble new ones.<sup id="cite_ref-pmid1804215_122-0" class="reference"><a href="#cite_note-pmid1804215-122"><span class="cite-bracket">[</span>122<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-isbn0-19-515619-6_123-0" class="reference"><a href="#cite_note-isbn0-19-515619-6-123"><span class="cite-bracket">[</span>123<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-isbn0-262-65063-0_124-0" class="reference"><a href="#cite_note-isbn0-262-65063-0-124"><span class="cite-bracket">[</span>124<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Nucleosome_positioning">Nucleosome positioning</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=27" title="Edit section: Nucleosome positioning"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Eukaryotic genomes have numerous <a href="/wiki/Nucleosomes" class="mw-redirect" title="Nucleosomes">nucleosomes</a>. Nucleosome position is not random, and determine the accessibility of DNA to regulatory proteins. Promoters active in different tissues have been shown to have different nucleosome positioning features.<sup id="cite_ref-125" class="reference"><a href="#cite_note-125"><span class="cite-bracket">[</span>125<span class="cite-bracket">]</span></a></sup> This determines differences in gene expression and cell differentiation. It has been shown that at least some nucleosomes are retained in sperm cells (where most but not all histones are replaced by <a href="/wiki/Protamines" class="mw-redirect" title="Protamines">protamines</a>). Thus nucleosome positioning is to some degree inheritable. Recent studies have uncovered connections between nucleosome positioning and other epigenetic factors, such as DNA methylation and hydroxymethylation.<sup id="cite_ref-Teif_2014_126-0" class="reference"><a href="#cite_note-Teif_2014-126"><span class="cite-bracket">[</span>126<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Histone_variants">Histone variants</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=28" title="Edit section: Histone variants"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Different <a href="/wiki/Histone_variants" title="Histone variants">histone variants</a> are incorporated into specific regions of the genome non-randomly. Their differential biochemical characteristics can affect genome functions via their roles in gene regulation,<sup id="cite_ref-127" class="reference"><a href="#cite_note-127"><span class="cite-bracket">[</span>127<span class="cite-bracket">]</span></a></sup> and maintenance of chromosome structures.<sup id="cite_ref-128" class="reference"><a href="#cite_note-128"><span class="cite-bracket">[</span>128<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Genomic_architecture">Genomic architecture</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=29" title="Edit section: Genomic architecture"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The three-dimensional configuration of the genome (the 3D genome) is complex, dynamic and crucial for regulating genomic function and nuclear processes such as DNA replication, transcription and DNA-damage repair.<sup id="cite_ref-129" class="reference"><a href="#cite_note-129"><span class="cite-bracket">[</span>129<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Functions_and_consequences">Functions and consequences</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=30" title="Edit section: Functions and consequences"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="In_the_brain">In the brain</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=31" title="Edit section: In the brain"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="#Addiction">§ Addiction</a>, and <a href="#Depression">§ Depression</a></div> <div class="mw-heading mw-heading4"><h4 id="Memory">Memory</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=32" title="Edit section: Memory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Epigenetics_in_learning_and_memory" title="Epigenetics in learning and memory">Epigenetics in learning and memory</a></div> <p><a href="/wiki/Encoding_(memory)" title="Encoding (memory)">Memory formation</a> and maintenance are due to epigenetic alterations that cause the required dynamic changes in <a href="/wiki/Gene_transcription" class="mw-redirect" title="Gene transcription">gene transcription</a> that create and renew memory in neurons.<sup id="cite_ref-Bernstein_31-1" class="reference"><a href="#cite_note-Bernstein-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> </p><p>An event can set off a chain of reactions that result in altered methylations of a large set of genes in neurons, which give a representation of the event, a memory.<sup id="cite_ref-Bernstein_31-2" class="reference"><a href="#cite_note-Bernstein-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> </p> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Brain_regions_in_memory_formation_updated.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/58/Brain_regions_in_memory_formation_updated.jpg/250px-Brain_regions_in_memory_formation_updated.jpg" decoding="async" width="250" height="173" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/58/Brain_regions_in_memory_formation_updated.jpg/375px-Brain_regions_in_memory_formation_updated.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/58/Brain_regions_in_memory_formation_updated.jpg/500px-Brain_regions_in_memory_formation_updated.jpg 2x" data-file-width="1284" data-file-height="889" /></a><figcaption>including medial prefrontal cortex (mPFC)</figcaption></figure> <p>Areas of the brain important in the formation of memories include the hippocampus, medial prefrontal cortex (mPFC), anterior cingulate cortex and amygdala, as shown in the diagram of the human brain in this section.<sup id="cite_ref-pmid28386011_130-0" class="reference"><a href="#cite_note-pmid28386011-130"><span class="cite-bracket">[</span>130<span class="cite-bracket">]</span></a></sup> </p><p>When a strong memory is created, as in a rat subjected to <a href="/wiki/Fear_conditioning" title="Fear conditioning">contextual fear conditioning</a> (CFC), one of the earliest events to occur is that more than 100 DNA double-strand breaks are formed by <a href="/wiki/Topoisomerase" title="Topoisomerase">topoisomerase IIB</a> in neurons of the hippocampus and the medial prefrontal cortex (mPFC).<sup id="cite_ref-Stott_131-0" class="reference"><a href="#cite_note-Stott-131"><span class="cite-bracket">[</span>131<span class="cite-bracket">]</span></a></sup> These double-strand breaks are at specific locations that allow activation of transcription of <a href="/wiki/Immediate_early_genes" class="mw-redirect" title="Immediate early genes">immediate early genes</a> (IEGs) that are important in memory formation, allowing their expression in <a href="/wiki/Messenger_RNA" title="Messenger RNA">mRNA</a>, with peak mRNA transcription at seven to ten minutes after CFC.<sup id="cite_ref-Stott_131-1" class="reference"><a href="#cite_note-Stott-131"><span class="cite-bracket">[</span>131<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-pmid35776545_132-0" class="reference"><a href="#cite_note-pmid35776545-132"><span class="cite-bracket">[</span>132<span class="cite-bracket">]</span></a></sup> </p><p>Two important IEGs in memory formation are <i><a href="/wiki/EGR1" title="EGR1">EGR1</a></i><sup id="cite_ref-pmid10357227_133-0" class="reference"><a href="#cite_note-pmid10357227-133"><span class="cite-bracket">[</span>133<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/DNA_methyltransferase" title="DNA methyltransferase">the alternative promoter variant of <i>DNMT3A</i>, <i>DNMT3A2</i></a>.<sup id="cite_ref-pmid22751036_134-0" class="reference"><a href="#cite_note-pmid22751036-134"><span class="cite-bracket">[</span>134<span class="cite-bracket">]</span></a></sup> EGR1 protein binds to DNA at its binding motifs, 5′-GCGTGGGCG-3′ or 5′-GCGGGGGCGG-3', and there are about 12,000 genome locations at which EGR1 protein can bind.<sup id="cite_ref-Sun_135-0" class="reference"><a href="#cite_note-Sun-135"><span class="cite-bracket">[</span>135<span class="cite-bracket">]</span></a></sup> EGR1 protein binds to DNA in gene <a href="/wiki/Promoter_(genetics)" title="Promoter (genetics)">promoter</a> and <a href="/wiki/Enhancer_(genetics)" title="Enhancer (genetics)">enhancer</a> regions. EGR1 recruits the demethylating enzyme <a href="/wiki/TET_enzymes" title="TET enzymes">TET1</a> to an association, and brings TET1 to about 600 locations on the genome where TET1 can then demethylate and activate the associated genes.<sup id="cite_ref-Sun_135-1" class="reference"><a href="#cite_note-Sun-135"><span class="cite-bracket">[</span>135<span class="cite-bracket">]</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Cytosine_and_5-methylcytosine.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Cytosine_and_5-methylcytosine.jpg/220px-Cytosine_and_5-methylcytosine.jpg" decoding="async" width="220" height="138" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Cytosine_and_5-methylcytosine.jpg/330px-Cytosine_and_5-methylcytosine.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Cytosine_and_5-methylcytosine.jpg/440px-Cytosine_and_5-methylcytosine.jpg 2x" data-file-width="1524" data-file-height="954" /></a><figcaption>Cytosine and 5-methylcytosine</figcaption></figure> <p>The DNA methyltransferases DNMT3A1, DNMT3A2 and DNMT3B can all methylate cytosines (see image this section) at <a href="/wiki/CpG_site" title="CpG site">CpG sites</a> in or near the promoters of genes. As shown by Manzo et al.,<sup id="cite_ref-pmid29074627_136-0" class="reference"><a href="#cite_note-pmid29074627-136"><span class="cite-bracket">[</span>136<span class="cite-bracket">]</span></a></sup> these three DNA methyltransferases differ in their genomic binding locations and DNA methylation activity at different regulatory sites. Manzo et al. located 3,970 genome regions exclusively enriched for DNMT3A1, 3,838 regions for DNMT3A2 and 3,432 regions for DNMT3B. When DNMT3A2 is newly induced as an IEG (when neurons are activated), many new cytosine methylations occur, presumably in the target regions of DNMT3A2. Oliviera et al.<sup id="cite_ref-pmid22751036_134-1" class="reference"><a href="#cite_note-pmid22751036-134"><span class="cite-bracket">[</span>134<span class="cite-bracket">]</span></a></sup> found that the neuronal activity-inducible IEG levels of Dnmt3a2 in the hippocampus determined the ability to form long-term memories. </p><p>Rats form long-term associative memories after <a href="/wiki/Fear_conditioning" title="Fear conditioning">contextual fear conditioning (CFC)</a>.<sup id="cite_ref-pmid25324744_137-0" class="reference"><a href="#cite_note-pmid25324744-137"><span class="cite-bracket">[</span>137<span class="cite-bracket">]</span></a></sup> Duke et al.<sup id="cite_ref-pmid28620075_30-1" class="reference"><a href="#cite_note-pmid28620075-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> found that 24 hours after CFC in rats, in hippocampus neurons, 2,097 genes (9.17% of the genes in the rat genome) had altered methylation. When newly methylated cytosines are present in <a href="/wiki/CpG_site" title="CpG site">CpG sites</a> in the promoter regions of genes, the genes are often repressed, and when newly demethylated cytosines are present the genes may be activated.<sup id="cite_ref-pmid22781841_138-0" class="reference"><a href="#cite_note-pmid22781841-138"><span class="cite-bracket">[</span>138<span class="cite-bracket">]</span></a></sup> After CFC, there were 1,048 genes with reduced mRNA expression and 564 genes with upregulated mRNA expression. Similarly, when mice undergo CFC, one hour later in the hippocampus region of the mouse brain there are 675 demethylated genes and 613 hypermethylated genes.<sup id="cite_ref-Halder_139-0" class="reference"><a href="#cite_note-Halder-139"><span class="cite-bracket">[</span>139<span class="cite-bracket">]</span></a></sup> However, memories do not remain in the hippocampus, but after four or five weeks the memories are stored in the anterior cingulate cortex.<sup id="cite_ref-pmid15131309_140-0" class="reference"><a href="#cite_note-pmid15131309-140"><span class="cite-bracket">[</span>140<span class="cite-bracket">]</span></a></sup> In the studies on mice after CFC, Halder et al.<sup id="cite_ref-Halder_139-1" class="reference"><a href="#cite_note-Halder-139"><span class="cite-bracket">[</span>139<span class="cite-bracket">]</span></a></sup> showed that four weeks after CFC there were at least 1,000 differentially methylated genes and more than 1,000 differentially expressed genes in the anterior cingulate cortex, while at the same time the altered methylations in the hippocampus were reversed. </p><p>The epigenetic alteration of methylation after a new memory is established creates a different pool of nuclear mRNAs. As reviewed by Bernstein,<sup id="cite_ref-Bernstein_31-3" class="reference"><a href="#cite_note-Bernstein-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> the epigenetically determined new mix of nuclear <a href="/wiki/Messenger_RNA" title="Messenger RNA">mRNAs</a> are often packaged into neuronal granules, or <a href="/wiki/Messenger_RNP" title="Messenger RNP">messenger RNP</a>, consisting of mRNA, <a href="/wiki/Ribosome" title="Ribosome">small and large ribosomal subunits</a>, translation initiation factors and RNA-binding proteins that regulate mRNA function. These neuronal granules are transported from the neuron nucleus and are directed, according to 3′ untranslated regions of the mRNA in the granules (their "zip codes"), to neuronal <a href="/wiki/Dendrite" title="Dendrite">dendrites</a>. Roughly 2,500 mRNAs may be localized to the dendrites of hippocampal pyramidal neurons and perhaps 450 transcripts are in excitatory presynaptic nerve terminals (dendritic spines). The altered assortments of transcripts (dependent on epigenetic alterations in the neuron nucleus) have different sensitivities in response to signals, which is the basis of altered synaptic plasticity. Altered synaptic plasticity is often considered the neurochemical foundation of learning and memory. </p> <div class="mw-heading mw-heading4"><h4 id="Aging">Aging</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=33" title="Edit section: Aging"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/DNA_methylation#In_aging" title="DNA methylation">DNA methylation § In aging</a>, and <a href="/wiki/Hallmarks_of_aging#Epigenomic_alterations" title="Hallmarks of aging">Hallmarks of aging § Epigenomic alterations</a></div> <p>Epigenetics play a major role in <a href="/wiki/Brain_aging" class="mw-redirect" title="Brain aging">brain aging</a> and age-related cognitive decline, with relevance to <a href="/wiki/Life_extension" title="Life extension">life extension</a>.<sup id="cite_ref-141" class="reference"><a href="#cite_note-141"><span class="cite-bracket">[</span>141<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-142" class="reference"><a href="#cite_note-142"><span class="cite-bracket">[</span>142<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-143" class="reference"><a href="#cite_note-143"><span class="cite-bracket">[</span>143<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-144" class="reference"><a href="#cite_note-144"><span class="cite-bracket">[</span>144<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-145" class="reference"><a href="#cite_note-145"><span class="cite-bracket">[</span>145<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Other_and_general">Other and general</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=34" title="Edit section: Other and general"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In adulthood, changes in the <a href="/wiki/Epigenome" title="Epigenome">epigenome</a> are important for various higher cognitive functions. Dysregulation of epigenetic mechanisms is implicated in <a href="/wiki/Neurodegenerative_disorders" class="mw-redirect" title="Neurodegenerative disorders">neurodegenerative disorders</a> and diseases. Epigenetic modifications in <a href="/wiki/Neuron" title="Neuron">neurons</a> are dynamic and reversible.<sup id="cite_ref-146" class="reference"><a href="#cite_note-146"><span class="cite-bracket">[</span>146<span class="cite-bracket">]</span></a></sup> Epigenetic regulation impacts neuronal action, affecting learning, memory, and other <a href="/wiki/Cognitive" class="mw-redirect" title="Cognitive">cognitive</a> processes.<sup id="cite_ref-147" class="reference"><a href="#cite_note-147"><span class="cite-bracket">[</span>147<span class="cite-bracket">]</span></a></sup> </p><p>Early events, including during <a href="/wiki/Embryonic_development" class="mw-redirect" title="Embryonic development">embryonic development</a>, can influence development, cognition, and health outcomes through <a href="/w/index.php?title=Epigenetic_mechanisms&action=edit&redlink=1" class="new" title="Epigenetic mechanisms (page does not exist)">epigenetic mechanisms</a>.<sup id="cite_ref-148" class="reference"><a href="#cite_note-148"><span class="cite-bracket">[</span>148<span class="cite-bracket">]</span></a></sup> </p><p>Epigenetic mechanisms have been proposed as "a potential molecular mechanism for effects of endogenous <a href="/wiki/Hormone" title="Hormone">hormones</a> on the organization of developing brain circuits".<sup id="cite_ref-149" class="reference"><a href="#cite_note-149"><span class="cite-bracket">[</span>149<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Nutrients" class="mw-redirect" title="Nutrients">Nutrients</a> could interact with the epigenome to "protect or boost cognitive processes across the lifespan".<sup id="cite_ref-150" class="reference"><a href="#cite_note-150"><span class="cite-bracket">[</span>150<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-151" class="reference"><a href="#cite_note-151"><span class="cite-bracket">[</span>151<span class="cite-bracket">]</span></a></sup> </p><p>A review suggests <a href="/wiki/Neurobiological_effects_of_physical_exercise" title="Neurobiological effects of physical exercise">neurobiological effects of physical exercise</a> via <a href="/wiki/Epigenetics_of_physical_exercise" title="Epigenetics of physical exercise">epigenetics</a> seem "central to building an 'epigenetic memory' to influence long-term brain function and behavior" and may even be heritable.<sup id="cite_ref-152" class="reference"><a href="#cite_note-152"><span class="cite-bracket">[</span>152<span class="cite-bracket">]</span></a></sup> </p><p>With the axo-ciliary <a href="/wiki/Synapse" title="Synapse">synapse</a>, there is communication between <a href="/wiki/Serotonin" title="Serotonin">serotonergic</a> <a href="/wiki/Axon" title="Axon">axons</a> and antenna-like <a href="/wiki/Primary_cilia" class="mw-redirect" title="Primary cilia">primary cilia</a> of <a href="/wiki/Hippocampus_anatomy#Basic_hippocampal_circuit" title="Hippocampus anatomy">CA1</a> <a href="/wiki/Pyramidal_cell" title="Pyramidal cell">pyramidal</a> <a href="/wiki/Neuron" title="Neuron">neurons</a> that alters the neuron's <a href="/wiki/Epigenetic" class="mw-redirect" title="Epigenetic">epigenetic</a> state in the <a href="/wiki/Cell_nucleus" title="Cell nucleus">nucleus</a> via the signalling distinct from that at the <a href="/wiki/Plasma_membrane" class="mw-redirect" title="Plasma membrane">plasma membrane</a> (and longer-term).<sup id="cite_ref-153" class="reference"><a href="#cite_note-153"><span class="cite-bracket">[</span>153<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-154" class="reference"><a href="#cite_note-154"><span class="cite-bracket">[</span>154<span class="cite-bracket">]</span></a></sup> </p><p>Epigenetics also play a major role in the <a href="/wiki/Evolution_of_the_brain#Genetic_factors_of_recent_evolution" title="Evolution of the brain">brain evolution in and to humans</a>.<sup id="cite_ref-155" class="reference"><a href="#cite_note-155"><span class="cite-bracket">[</span>155<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Development">Development</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=35" title="Edit section: Development"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Developmental epigenetics can be divided into predetermined and probabilistic epigenesis. Predetermined epigenesis is a unidirectional movement from structural development in DNA to the functional maturation of the protein. "Predetermined" here means that development is scripted and predictable. Probabilistic epigenesis on the other hand is a bidirectional structure-function development with experiences and external molding development.<sup id="cite_ref-Griesemer_2005_156-0" class="reference"><a href="#cite_note-Griesemer_2005-156"><span class="cite-bracket">[</span>156<span class="cite-bracket">]</span></a></sup> </p><p>Somatic epigenetic inheritance, particularly through DNA and histone covalent modifications and <a href="/wiki/Nucleosome" title="Nucleosome">nucleosome</a> repositioning, is very important in the development of multicellular eukaryotic organisms.<sup id="cite_ref-Teif_2014_126-1" class="reference"><a href="#cite_note-Teif_2014-126"><span class="cite-bracket">[</span>126<span class="cite-bracket">]</span></a></sup> The genome sequence is static (with some notable exceptions), but cells differentiate into many different types, which perform different functions, and respond differently to the environment and intercellular signaling. Thus, as individuals develop, <a href="/wiki/Morphogen" title="Morphogen">morphogens</a> activate or silence genes in an epigenetically heritable fashion, giving cells a memory. In mammals, most cells terminally differentiate, with only <a href="/wiki/Stem_cells" class="mw-redirect" title="Stem cells">stem cells</a> retaining the ability to differentiate into several cell types ("totipotency" and "multipotency"). In <a href="/wiki/Mammal" title="Mammal">mammals</a>, some stem cells continue producing newly differentiated cells throughout life, such as in <a href="/wiki/Epigenetic_Regulation_of_Neurogenesis" class="mw-redirect" title="Epigenetic Regulation of Neurogenesis">neurogenesis</a>, but mammals are not able to respond to loss of some tissues, for example, the inability to regenerate limbs, which some other animals are capable of. Epigenetic modifications regulate the transition from neural stem cells to glial progenitor cells (for example, differentiation into oligodendrocytes is regulated by the deacetylation and methylation of histones).<sup id="cite_ref-157" class="reference"><a href="#cite_note-157"><span class="cite-bracket">[</span>157<span class="cite-bracket">]</span></a></sup> Unlike animals, plant cells do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. While plants do utilize many of the same epigenetic mechanisms as animals, such as <a href="/wiki/Chromatin_remodeling" title="Chromatin remodeling">chromatin remodeling</a>, it has been hypothesized that some kinds of plant cells do not use or require "cellular memories", resetting their gene expression patterns using positional information from the environment and surrounding cells to determine their fate.<sup id="cite_ref-pmid17194589_158-0" class="reference"><a href="#cite_note-pmid17194589-158"><span class="cite-bracket">[</span>158<span class="cite-bracket">]</span></a></sup> </p><p>Epigenetic changes can occur in response to environmental exposure – for example, maternal dietary supplementation with <a href="/wiki/Genistein" title="Genistein">genistein</a> (250 mg/kg) have epigenetic changes affecting expression of the <a href="/wiki/Agouti_gene" class="mw-redirect" title="Agouti gene">agouti gene</a>, which affects their fur color, weight, and propensity to develop cancer.<sup id="cite_ref-pmid12163699_159-0" class="reference"><a href="#cite_note-pmid12163699-159"><span class="cite-bracket">[</span>159<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-waterland_160-0" class="reference"><a href="#cite_note-waterland-160"><span class="cite-bracket">[</span>160<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-161" class="reference"><a href="#cite_note-161"><span class="cite-bracket">[</span>161<span class="cite-bracket">]</span></a></sup> Ongoing research is focused on exploring the impact of other known <a href="/wiki/Teratogen" class="mw-redirect" title="Teratogen">teratogens</a>, such as <a href="/wiki/Diabetic_embryopathy" title="Diabetic embryopathy">diabetic embryopathy</a>, on <a href="/wiki/Methylation" title="Methylation">methylation</a> signatures.<sup id="cite_ref-162" class="reference"><a href="#cite_note-162"><span class="cite-bracket">[</span>162<span class="cite-bracket">]</span></a></sup> </p><p>Controversial results from one study suggested that traumatic experiences might produce an epigenetic signal that is capable of being passed to future generations. Mice were trained, using foot shocks, to fear a cherry blossom odor. The investigators reported that the mouse offspring had an increased aversion to this specific odor.<sup id="cite_ref-163" class="reference"><a href="#cite_note-163"><span class="cite-bracket">[</span>163<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-164" class="reference"><a href="#cite_note-164"><span class="cite-bracket">[</span>164<span class="cite-bracket">]</span></a></sup> They suggested epigenetic changes that increase gene expression, rather than in DNA itself, in a gene, M71, that governs the functioning of an odor receptor in the nose that responds specifically to this cherry blossom smell. There were physical changes that correlated with olfactory (smell) function in the brains of the trained mice and their descendants. Several criticisms were reported, including the study's low statistical power as evidence of some irregularity such as bias in reporting results.<sup id="cite_ref-Francis_2014_165-0" class="reference"><a href="#cite_note-Francis_2014-165"><span class="cite-bracket">[</span>165<span class="cite-bracket">]</span></a></sup> Due to limits of sample size, there is a probability that an effect will not be demonstrated to within statistical significance even if it exists. The criticism suggested that the probability that all the experiments reported would show positive results if an identical protocol was followed, assuming the claimed effects exist, is merely 0.4%. The authors also did not indicate which mice were siblings, and treated all of the mice as statistically independent.<sup id="cite_ref-166" class="reference"><a href="#cite_note-166"><span class="cite-bracket">[</span>166<span class="cite-bracket">]</span></a></sup> The original researchers pointed out negative results in the paper's appendix that the criticism omitted in its calculations, and undertook to track which mice were siblings in the future.<sup id="cite_ref-167" class="reference"><a href="#cite_note-167"><span class="cite-bracket">[</span>167<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Transgenerational">Transgenerational</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=36" title="Edit section: Transgenerational"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Transgenerational_epigenetic_inheritance" title="Transgenerational epigenetic inheritance">Transgenerational epigenetic inheritance</a></div> <p>Epigenetic mechanisms were a necessary part of the evolutionary origin of <a href="/wiki/Cell_differentiation" class="mw-redirect" title="Cell differentiation">cell differentiation</a>.<sup id="cite_ref-isbn0-19-854968-7_168-0" class="reference"><a href="#cite_note-isbn0-19-854968-7-168"><span class="cite-bracket">[</span>168<span class="cite-bracket">]</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability"><span title="Quotation needed from source to verify. (November 2020)">need quotation to verify</span></a></i>]</sup> Although epigenetics in multicellular organisms is generally thought to be a mechanism involved in differentiation, with epigenetic patterns "reset" when organisms reproduce, there have been some observations of transgenerational epigenetic inheritance (e.g., the phenomenon of <a href="/wiki/Paramutation" title="Paramutation">paramutation</a> observed in <a href="/wiki/Maize" title="Maize">maize</a>). Although most of these multigenerational epigenetic traits are gradually lost over several generations, the possibility remains that multigenerational epigenetics could be another aspect to <a href="/wiki/Evolution" title="Evolution">evolution</a> and adaptation. As mentioned above, some define epigenetics as heritable. </p><p>A sequestered germ line or <a href="/wiki/Weismann_barrier" title="Weismann barrier">Weismann barrier</a> is specific to animals, and epigenetic inheritance is more common in plants and microbes. <a href="/wiki/Eva_Jablonka" title="Eva Jablonka">Eva Jablonka</a>, <a href="/wiki/Marion_J._Lamb" title="Marion J. Lamb">Marion J. Lamb</a> and Étienne Danchin have argued that these effects may require enhancements to the standard conceptual framework of the <a href="/wiki/Modern_synthesis_(20th_century)" title="Modern synthesis (20th century)">modern synthesis</a> and have called for an <a href="/wiki/Extended_evolutionary_synthesis" title="Extended evolutionary synthesis">extended evolutionary synthesis</a>.<sup id="cite_ref-isbn0-262-10107-6_169-0" class="reference"><a href="#cite_note-isbn0-262-10107-6-169"><span class="cite-bracket">[</span>169<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-170" class="reference"><a href="#cite_note-170"><span class="cite-bracket">[</span>170<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-171" class="reference"><a href="#cite_note-171"><span class="cite-bracket">[</span>171<span class="cite-bracket">]</span></a></sup> Other evolutionary biologists, such as <a href="/wiki/John_Maynard_Smith" title="John Maynard Smith">John Maynard Smith</a>, have incorporated epigenetic inheritance into <a href="/wiki/Population_genetics" title="Population genetics">population-genetics</a> models<sup id="cite_ref-172" class="reference"><a href="#cite_note-172"><span class="cite-bracket">[</span>172<span class="cite-bracket">]</span></a></sup> or are openly skeptical of the extended evolutionary synthesis (<a href="/wiki/Michael_Lynch_(geneticist)" title="Michael Lynch (geneticist)">Michael Lynch</a>).<sup id="cite_ref-173" class="reference"><a href="#cite_note-173"><span class="cite-bracket">[</span>173<span class="cite-bracket">]</span></a></sup> Thomas Dickins and Qazi Rahman state that epigenetic mechanisms such as DNA methylation and histone modification are genetically inherited under the control of <a href="/wiki/Natural_selection" title="Natural selection">natural selection</a> and therefore fit under the earlier <a href="/wiki/Modern_synthesis_(20th_century)" title="Modern synthesis (20th century)">"modern synthesis"</a>.<sup id="cite_ref-174" class="reference"><a href="#cite_note-174"><span class="cite-bracket">[</span>174<span class="cite-bracket">]</span></a></sup> </p><p>Two important ways in which epigenetic inheritance can differ from traditional genetic inheritance, with important consequences for evolution, are: </p> <ul><li>rates of epimutation can be much faster than rates of mutation<sup id="cite_ref-rando_and_verstrepen_175-0" class="reference"><a href="#cite_note-rando_and_verstrepen-175"><span class="cite-bracket">[</span>175<span class="cite-bracket">]</span></a></sup></li> <li>the epimutations are more easily reversible<sup id="cite_ref-176" class="reference"><a href="#cite_note-176"><span class="cite-bracket">[</span>176<span class="cite-bracket">]</span></a></sup></li></ul> <p>In plants, heritable DNA methylation mutations are 100,000 times more likely to occur compared to DNA mutations.<sup id="cite_ref-van_der_Graaf_et_al_177-0" class="reference"><a href="#cite_note-van_der_Graaf_et_al-177"><span class="cite-bracket">[</span>177<span class="cite-bracket">]</span></a></sup> An epigenetically inherited element such as the <a href="/wiki/PSI_(prion)" class="mw-redirect" title="PSI (prion)">PSI+</a> system can act as a "stop-gap", good enough for short-term adaptation that allows the lineage to survive for long enough for mutation and/or recombination to <a href="/wiki/Genetic_assimilation" title="Genetic assimilation">genetically assimilate</a> the adaptive phenotypic change.<sup id="cite_ref-178" class="reference"><a href="#cite_note-178"><span class="cite-bracket">[</span>178<span class="cite-bracket">]</span></a></sup> The existence of this possibility increases the <a href="/wiki/Evolvability" title="Evolvability">evolvability</a> of a species. </p><p>More than 100 cases of <a href="/wiki/Transgenerational_epigenetic_inheritance" title="Transgenerational epigenetic inheritance">transgenerational epigenetic inheritance</a> phenomena have been reported in a wide range of organisms, including prokaryotes, plants, and animals.<sup id="cite_ref-Jablonka09_179-0" class="reference"><a href="#cite_note-Jablonka09-179"><span class="cite-bracket">[</span>179<span class="cite-bracket">]</span></a></sup> For instance, <a href="/wiki/Nymphalis_antiopa" title="Nymphalis antiopa">mourning-cloak butterflies</a> will change color through hormone changes in response to experimentation of varying temperatures.<sup id="cite_ref-180" class="reference"><a href="#cite_note-180"><span class="cite-bracket">[</span>180<span class="cite-bracket">]</span></a></sup> </p><p>The filamentous fungus <i>Neurospora crassa</i> is a prominent model system for understanding the control and function of cytosine methylation. In this organism, DNA methylation is associated with relics of a genome-defense system called RIP (repeat-induced point mutation) and silences gene expression by inhibiting transcription elongation.<sup id="cite_ref-pmid19092133_181-0" class="reference"><a href="#cite_note-pmid19092133-181"><span class="cite-bracket">[</span>181<span class="cite-bracket">]</span></a></sup> </p><p>The <a href="/wiki/Yeast_prion" class="mw-redirect" title="Yeast prion">yeast prion</a> PSI is generated by a conformational change of a translation termination factor, which is then inherited by daughter cells. This can provide a survival advantage under adverse conditions, exemplifying epigenetic regulation which enables unicellular organisms to respond rapidly to environmental stress. Prions can be viewed as epigenetic agents capable of inducing a phenotypic change without modification of the genome.<sup id="cite_ref-JorgTost_182-0" class="reference"><a href="#cite_note-JorgTost-182"><span class="cite-bracket">[</span>182<span class="cite-bracket">]</span></a></sup> </p><p>Direct detection of epigenetic marks in microorganisms is possible with <a href="/wiki/Single_molecule_real_time_sequencing" class="mw-redirect" title="Single molecule real time sequencing">single molecule real time sequencing</a>, in which polymerase sensitivity allows for measuring methylation and other modifications as a DNA molecule is being sequenced.<sup id="cite_ref-183" class="reference"><a href="#cite_note-183"><span class="cite-bracket">[</span>183<span class="cite-bracket">]</span></a></sup> Several projects have demonstrated the ability to collect genome-wide epigenetic data in bacteria.<sup id="cite_ref-184" class="reference"><a href="#cite_note-184"><span class="cite-bracket">[</span>184<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-185" class="reference"><a href="#cite_note-185"><span class="cite-bracket">[</span>185<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-186" class="reference"><a href="#cite_note-186"><span class="cite-bracket">[</span>186<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-187" class="reference"><a href="#cite_note-187"><span class="cite-bracket">[</span>187<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Epigenetics_in_bacteria">Epigenetics in bacteria</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=37" title="Edit section: Epigenetics in bacteria"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Escherichia_coli_flagella_TEM.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Escherichia_coli_flagella_TEM.png/150px-Escherichia_coli_flagella_TEM.png" decoding="async" width="150" height="224" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Escherichia_coli_flagella_TEM.png/225px-Escherichia_coli_flagella_TEM.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Escherichia_coli_flagella_TEM.png/300px-Escherichia_coli_flagella_TEM.png 2x" data-file-width="600" data-file-height="896" /></a><figcaption><i>Escherichia coli</i> bacteria</figcaption></figure> <p>While epigenetics is of fundamental importance in <a href="/wiki/Eukaryote" title="Eukaryote">eukaryotes</a>, especially <a href="/wiki/Multicellular_organism" title="Multicellular organism">metazoans</a>, it plays a different role in bacteria.<sup id="cite_ref-188" class="reference"><a href="#cite_note-188"><span class="cite-bracket">[</span>188<span class="cite-bracket">]</span></a></sup> Most importantly, eukaryotes use epigenetic mechanisms primarily to regulate gene expression which bacteria rarely do. However, bacteria make widespread use of postreplicative DNA methylation for the epigenetic control of DNA-protein interactions. Bacteria also use DNA <a href="/wiki/Adenine" title="Adenine">adenine</a> methylation (rather than DNA <a href="/wiki/Cytosine" title="Cytosine">cytosine</a> methylation) as an epigenetic signal. DNA adenine methylation is important in bacteria virulence in organisms such as <i><a href="/wiki/Escherichia_coli" title="Escherichia coli">Escherichia coli</a></i>, <i><a href="/wiki/Salmonella" title="Salmonella">Salmonella</a>, <a href="/wiki/Vibrio" title="Vibrio">Vibrio</a>, <a href="/wiki/Yersinia" title="Yersinia">Yersinia</a>, <a href="/wiki/Haemophilus" title="Haemophilus">Haemophilus</a></i>, and <i><a href="/wiki/Brucella" title="Brucella">Brucella</a></i>. In <i><a href="/wiki/Alphaproteobacteria" title="Alphaproteobacteria">Alphaproteobacteria</a></i>, methylation of adenine regulates the cell cycle and couples gene transcription to DNA replication. In <i><a href="/wiki/Gammaproteobacteria" title="Gammaproteobacteria">Gammaproteobacteria</a></i>, adenine methylation provides signals for DNA replication, chromosome segregation, mismatch repair, packaging of bacteriophage, transposase activity and regulation of gene expression.<sup id="cite_ref-JorgTost_182-1" class="reference"><a href="#cite_note-JorgTost-182"><span class="cite-bracket">[</span>182<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Casadesus_189-0" class="reference"><a href="#cite_note-Casadesus-189"><span class="cite-bracket">[</span>189<span class="cite-bracket">]</span></a></sup> There exists a genetic switch controlling <i><a href="/wiki/Streptococcus_pneumoniae" title="Streptococcus pneumoniae">Streptococcus pneumoniae</a></i> (the pneumococcus) that allows the bacterium to randomly change its characteristics into six alternative states that could pave the way to improved vaccines. Each form is randomly generated by a phase variable methylation system. The ability of the pneumococcus to cause deadly infections is different in each of these six states. Similar systems exist in other bacterial genera.<sup id="cite_ref-MansoOggioni2014_190-0" class="reference"><a href="#cite_note-MansoOggioni2014-190"><span class="cite-bracket">[</span>190<span class="cite-bracket">]</span></a></sup> In <a href="/wiki/Bacillota" title="Bacillota">Bacillota</a> such as <i><a href="/wiki/Clostridioides_difficile_(bacteria)" class="mw-redirect" title="Clostridioides difficile (bacteria)">Clostridioides difficile</a>,</i> adenine methylation regulates <a href="/wiki/Spore" title="Spore">sporulation</a>, <a href="/wiki/Biofilm" title="Biofilm">biofilm</a> formation and host-adaptation.<sup id="cite_ref-191" class="reference"><a href="#cite_note-191"><span class="cite-bracket">[</span>191<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Medicine">Medicine</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=38" title="Edit section: Medicine"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Epigenetics has many and varied potential medical applications.<sup id="cite_ref-pmid21447282_192-0" class="reference"><a href="#cite_note-pmid21447282-192"><span class="cite-bracket">[</span>192<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Twins">Twins</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=39" title="Edit section: Twins"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Direct comparisons of identical twins constitute an optimal model for interrogating <a href="/wiki/Environmental_epigenetics" title="Environmental epigenetics">environmental epigenetics</a>. In the case of humans with different environmental exposures, monozygotic (identical) twins were epigenetically indistinguishable during their early years, while older twins had remarkable differences in the overall content and genomic distribution of 5-methylcytosine DNA and histone acetylation.<sup id="cite_ref-Moore_2015_11-1" class="reference"><a href="#cite_note-Moore_2015-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> The twin pairs who had spent less of their lifetime together and/or had greater differences in their medical histories were those who showed the largest differences in their levels of <a href="/wiki/5-methylcytosine" class="mw-redirect" title="5-methylcytosine">5-methylcytosine</a> DNA and <a href="/wiki/Acetylation" title="Acetylation">acetylation</a> of <a href="/wiki/Histones" class="mw-redirect" title="Histones">histones</a> H3 and H4.<sup id="cite_ref-pmid16009939_193-0" class="reference"><a href="#cite_note-pmid16009939-193"><span class="cite-bracket">[</span>193<span class="cite-bracket">]</span></a></sup> </p><p>Dizygotic (fraternal) and monozygotic (identical) twins show evidence of epigenetic influence in humans.<sup id="cite_ref-pmid16009939_193-1" class="reference"><a href="#cite_note-pmid16009939-193"><span class="cite-bracket">[</span>193<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-pmid19151718_194-0" class="reference"><a href="#cite_note-pmid19151718-194"><span class="cite-bracket">[</span>194<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-195" class="reference"><a href="#cite_note-195"><span class="cite-bracket">[</span>195<span class="cite-bracket">]</span></a></sup> DNA sequence differences that would be abundant in a singleton-based study do not interfere with the analysis. Environmental differences can produce long-term epigenetic effects, and different developmental monozygotic twin subtypes may be different with respect to their susceptibility to be discordant from an epigenetic point of view.<sup id="cite_ref-pmid19653134_196-0" class="reference"><a href="#cite_note-pmid19653134-196"><span class="cite-bracket">[</span>196<span class="cite-bracket">]</span></a></sup> </p><p>A <a href="/wiki/High-throughput_screening" title="High-throughput screening">high-throughput</a> study, which denotes technology that looks at extensive genetic markers, focused on epigenetic differences between monozygotic twins to compare global and locus-specific changes in <a href="/wiki/DNA_methylation" title="DNA methylation">DNA methylation</a> and histone modifications in a sample of 40 monozygotic twin pairs.<sup id="cite_ref-pmid16009939_193-2" class="reference"><a href="#cite_note-pmid16009939-193"><span class="cite-bracket">[</span>193<span class="cite-bracket">]</span></a></sup> In this case, only healthy twin pairs were studied, but a wide range of ages was represented, between 3 and 74 years. One of the major conclusions from this study was that there is an age-dependent accumulation of epigenetic differences between the two siblings of twin pairs. This accumulation suggests the existence of epigenetic "drift". <i>Epigenetic drift</i> is the term given to epigenetic modifications as they occur as a direct function with age. While age is a known risk factor for many diseases, age-related methylation has been found to occur differentially at specific sites along the genome. Over time, this can result in measurable differences between biological and chronological age. Epigenetic changes have been found to be reflective of <a href="/wiki/Lifestyle_(social_sciences)" title="Lifestyle (social sciences)">lifestyle</a> and may act as functional <a href="/wiki/Biomarker" title="Biomarker">biomarkers</a> of disease before clinical <a href="/wiki/Reference_range" title="Reference range">threshold</a> is reached.<sup id="cite_ref-197" class="reference"><a href="#cite_note-197"><span class="cite-bracket">[</span>197<span class="cite-bracket">]</span></a></sup> </p><p>A more recent study, where 114 monozygotic twins and 80 dizygotic twins were analyzed for the DNA methylation status of around 6000 unique genomic regions, concluded that epigenetic similarity at the time of blastocyst splitting may also contribute to phenotypic similarities in monozygotic co-twins. This supports the notion that <a href="/wiki/Microenvironment_(biology)" class="mw-redirect" title="Microenvironment (biology)">microenvironment</a> at early stages of embryonic development can be quite important for the establishment of epigenetic marks.<sup id="cite_ref-pmid19151718_194-1" class="reference"><a href="#cite_note-pmid19151718-194"><span class="cite-bracket">[</span>194<span class="cite-bracket">]</span></a></sup> Congenital genetic disease is well understood and it is clear that epigenetics can play a role, for example, in the case of <a href="/wiki/Angelman_syndrome" title="Angelman syndrome">Angelman syndrome</a> and <a href="/wiki/Prader%E2%80%93Willi_syndrome" title="Prader–Willi syndrome">Prader–Willi syndrome</a>. These are normal genetic diseases caused by gene deletions or inactivation of the genes but are unusually common because individuals are essentially <a href="/wiki/Hemizygous" class="mw-redirect" title="Hemizygous">hemizygous</a> because of <a href="/wiki/Genomic_imprinting" title="Genomic imprinting">genomic imprinting</a>, and therefore a single gene knock out is sufficient to cause the disease, where most cases would require both copies to be knocked out.<sup id="cite_ref-198" class="reference"><a href="#cite_note-198"><span class="cite-bracket">[</span>198<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Genomic_imprinting">Genomic imprinting</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=40" title="Edit section: Genomic imprinting"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Genomic_imprinting" title="Genomic imprinting">Genomic imprinting</a></div> <p>Some human disorders are associated with genomic imprinting, a phenomenon in mammals where the father and mother contribute different epigenetic patterns for specific genomic loci in their <a href="/wiki/Germ_cells" class="mw-redirect" title="Germ cells">germ cells</a>.<sup id="cite_ref-pmid17121465_199-0" class="reference"><a href="#cite_note-pmid17121465-199"><span class="cite-bracket">[</span>199<span class="cite-bracket">]</span></a></sup> The best-known case of imprinting in human disorders is that of <a href="/wiki/Angelman_syndrome" title="Angelman syndrome">Angelman syndrome</a> and <a href="/wiki/Prader%E2%80%93Willi_syndrome" title="Prader–Willi syndrome">Prader–Willi syndrome</a> – both can be produced by the same genetic mutation, <a href="/wiki/Chromosome_15q_partial_deletion" title="Chromosome 15q partial deletion">chromosome 15q partial deletion</a>, and the particular syndrome that will develop depends on whether the mutation is inherited from the child's mother or from their father.<sup id="cite_ref-pmid2564739_200-0" class="reference"><a href="#cite_note-pmid2564739-200"><span class="cite-bracket">[</span>200<span class="cite-bracket">]</span></a></sup> </p><p>In the <a href="/wiki/%C3%96verkalix_study" title="Överkalix study">Överkalix study</a>, paternal (but not maternal) grandsons<sup id="cite_ref-paternal-grandson_201-0" class="reference"><a href="#cite_note-paternal-grandson-201"><span class="cite-bracket">[</span>201<span class="cite-bracket">]</span></a></sup> of Swedish men who were exposed during preadolescence to famine in the 19th century were less likely to die of cardiovascular disease. If food was plentiful, then <a href="/wiki/Diabetes" title="Diabetes">diabetes</a> mortality in the grandchildren increased, suggesting that this was a transgenerational epigenetic inheritance.<sup id="cite_ref-pmid16391557_202-0" class="reference"><a href="#cite_note-pmid16391557-202"><span class="cite-bracket">[</span>202<span class="cite-bracket">]</span></a></sup> The opposite effect was observed for females – the paternal (but not maternal) granddaughters of women who experienced famine while in the womb (and therefore while their eggs were being formed) lived shorter lives on average.<sup id="cite_ref-203" class="reference"><a href="#cite_note-203"><span class="cite-bracket">[</span>203<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Examples_of_drugs_altering_gene_expression_from_epigenetic_events">Examples of drugs altering gene expression from epigenetic events</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=41" title="Edit section: Examples of drugs altering gene expression from epigenetic events"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Epigenetic_Priming" class="mw-redirect" title="Epigenetic Priming">Epigenetic Priming</a></div> <p>The use of beta-lactam <a href="/wiki/Antibiotics" class="mw-redirect" title="Antibiotics">antibiotics</a> can alter glutamate receptor activity and the action of cyclosporine on multiple transcription factors. Additionally, <a href="/wiki/Lithium" title="Lithium">lithium</a> can impact autophagy of aberrant proteins, and <a href="/wiki/Opioid" title="Opioid">opioid</a> drugs via chronic use can increase the expression of genes associated with addictive phenotypes.<sup id="cite_ref-204" class="reference"><a href="#cite_note-204"><span class="cite-bracket">[</span>204<span class="cite-bracket">]</span></a></sup> </p><p>Parental <a href="/wiki/Nutrition" title="Nutrition">nutrition</a>, in utero exposure to stress or <a href="/wiki/Endocrine_disruptor" title="Endocrine disruptor">endocrine disrupting chemicals</a>,<sup id="cite_ref-205" class="reference"><a href="#cite_note-205"><span class="cite-bracket">[</span>205<span class="cite-bracket">]</span></a></sup> male-induced maternal effects such as the attraction of differential mate quality, and maternal as well as paternal age, and offspring gender could all possibly influence whether a germline epimutation is ultimately expressed in offspring and the degree to which intergenerational inheritance remains stable throughout posterity.<sup id="cite_ref-ReferenceB_206-0" class="reference"><a href="#cite_note-ReferenceB-206"><span class="cite-bracket">[</span>206<span class="cite-bracket">]</span></a></sup> However, whether and to what extent epigenetic effects can be transmitted across generations remains unclear, particularly in humans.<sup id="cite_ref-PlominDeFries2012_207-0" class="reference"><a href="#cite_note-PlominDeFries2012-207"><span class="cite-bracket">[</span>207<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-208" class="reference"><a href="#cite_note-208"><span class="cite-bracket">[</span>208<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Addiction">Addiction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=42" title="Edit section: Addiction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Addiction" title="Addiction">Addiction</a> is a disorder of the brain's <a href="/wiki/Reward_system" title="Reward system">reward system</a> which arises through <a href="/wiki/Transcriptional" class="mw-redirect" title="Transcriptional">transcriptional</a> and neuroepigenetic mechanisms and occurs over time from chronically high levels of exposure to an addictive stimulus (e.g., morphine, cocaine, sexual intercourse, gambling).<sup id="cite_ref-Nestler_209-0" class="reference"><a href="#cite_note-Nestler-209"><span class="cite-bracket">[</span>209<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Cheron2021_210-0" class="reference"><a href="#cite_note-Cheron2021-210"><span class="cite-bracket">[</span>210<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-G9a_reverses_ΔFosB_plasticity_211-0" class="reference"><a href="#cite_note-G9a_reverses_ΔFosB_plasticity-211"><span class="cite-bracket">[</span>211<span class="cite-bracket">]</span></a></sup> Transgenerational epigenetic inheritance of addictive <a href="/wiki/Phenotypes" class="mw-redirect" title="Phenotypes">phenotypes</a> has been noted to occur in preclinical studies.<sup id="cite_ref-pmid23920159_212-0" class="reference"><a href="#cite_note-pmid23920159-212"><span class="cite-bracket">[</span>212<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-pmid26572641_213-0" class="reference"><a href="#cite_note-pmid26572641-213"><span class="cite-bracket">[</span>213<span class="cite-bracket">]</span></a></sup> However, robust evidence in support of the persistence of epigenetic effects across multiple generations has yet to be established in humans; for example, an epigenetic effect of prenatal exposure to smoking that is observed in great-grandchildren who had not been exposed.<sup id="cite_ref-PlominDeFries2012_207-1" class="reference"><a href="#cite_note-PlominDeFries2012-207"><span class="cite-bracket">[</span>207<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Research">Research</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=43" title="Edit section: Research"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The two forms of heritable information, namely genetic and epigenetic, are collectively called dual inheritance. Members of the APOBEC/AID family of <a href="/wiki/Cytosine_deaminase" title="Cytosine deaminase">cytosine deaminases</a> may concurrently influence genetic and epigenetic inheritance using similar molecular mechanisms, and may be a point of crosstalk between these conceptually compartmentalized processes.<sup id="cite_ref-pmid20800313_214-0" class="reference"><a href="#cite_note-pmid20800313-214"><span class="cite-bracket">[</span>214<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Fluoroquinolone" class="mw-redirect" title="Fluoroquinolone">Fluoroquinolone</a> antibiotics induce epigenetic changes in <a href="/wiki/Mammalian" class="mw-redirect" title="Mammalian">mammalian</a> cells through iron <a href="/wiki/Chelation" title="Chelation">chelation</a>. This leads to epigenetic effects through inhibition of α-ketoglutarate-dependent <a href="/wiki/Dioxygenases" class="mw-redirect" title="Dioxygenases">dioxygenases</a> that require <a href="/wiki/Iron" title="Iron">iron</a> as a co-factor.<sup id="cite_ref-215" class="reference"><a href="#cite_note-215"><span class="cite-bracket">[</span>215<span class="cite-bracket">]</span></a></sup> </p><p>Various pharmacological agents are applied for the production of induced pluripotent stem cells (iPSC) or maintain the embryonic stem cell (ESC) phenotypic via epigenetic approach. Adult stem cells like bone marrow stem cells have also shown a potential to differentiate into cardiac competent cells when treated with G9a histone methyltransferase inhibitor BIX01294.<sup id="cite_ref-216" class="reference"><a href="#cite_note-216"><span class="cite-bracket">[</span>216<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-217" class="reference"><a href="#cite_note-217"><span class="cite-bracket">[</span>217<span class="cite-bracket">]</span></a></sup> </p><p>Cell plasticity, which is the adaptation of cells to stimuli without changes in their genetic code, requires epigenetic changes. These have been observed in cell plasticity in cancer cells during epithelial-to-mesenchymal transition<sup id="cite_ref-218" class="reference"><a href="#cite_note-218"><span class="cite-bracket">[</span>218<span class="cite-bracket">]</span></a></sup> and also in immune cells, such as macrophages.<sup id="cite_ref-219" class="reference"><a href="#cite_note-219"><span class="cite-bracket">[</span>219<span class="cite-bracket">]</span></a></sup> Interestingly, metabolic changes underly these adaptations, since various metabolites play crucial roles in the chemistry of epigenetic marks. This includes for instance alpha-ketoglutarate, which is required for histone demethylation, and acetyl-Coenzyme A, which is required for histone acetylation. </p> <div class="mw-heading mw-heading3"><h3 id="Epigenome_editing">Epigenome editing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=44" title="Edit section: Epigenome editing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Epigenome_editing" title="Epigenome editing">Epigenome editing</a></div> <p>Epigenetic regulation of gene expression that could be altered or used in <a href="/wiki/Epigenome_editing" title="Epigenome editing">epigenome editing</a> are or include <a href="/w/index.php?title=MRNA_modification&action=edit&redlink=1" class="new" title="MRNA modification (page does not exist)">mRNA/lncRNA modification</a>, <a href="/wiki/DNA_methylation" title="DNA methylation">DNA methylation</a> modification and <a href="/wiki/Histone_modification" class="mw-redirect" title="Histone modification">histone modification</a>.<sup id="cite_ref-220" class="reference"><a href="#cite_note-220"><span class="cite-bracket">[</span>220<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-221" class="reference"><a href="#cite_note-221"><span class="cite-bracket">[</span>221<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-222" class="reference"><a href="#cite_note-222"><span class="cite-bracket">[</span>222<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="CpG_sites,_SNPs_and_biological_traits"><span id="CpG_sites.2C_SNPs_and_biological_traits"></span>CpG sites, SNPs and biological traits</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=45" title="Edit section: CpG sites, SNPs and biological traits"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Methylation is a widely characterized mechanism of genetic regulation that can determine biological traits. However, strong experimental evidences correlate methylation patterns in SNPs as an important additional feature for the classical activation/inhibition epigenetic dogma. Molecular interaction data, supported by colocalization analyses, identify multiple nuclear regulatory pathways, linking sequence variation to disturbances in DNA methylation and molecular and phenotypic variation.<sup id="cite_ref-Hawe_2022_223-0" class="reference"><a href="#cite_note-Hawe_2022-223"><span class="cite-bracket">[</span>223<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="UBASH3B_locus"><i>UBASH3B</i> locus</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=46" title="Edit section: UBASH3B locus"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><i>UBASH3B</i> encodes a protein with tyrosine phosphatase activity, which has been previously linked to advanced neoplasia.<sup id="cite_ref-224" class="reference"><a href="#cite_note-224"><span class="cite-bracket">[</span>224<span class="cite-bracket">]</span></a></sup> SNP rs7115089 was identified as influencing DNA methylation and expression of this locus, as well as and Body Mass Index (BMI).<sup id="cite_ref-Hawe_2022_223-1" class="reference"><a href="#cite_note-Hawe_2022-223"><span class="cite-bracket">[</span>223<span class="cite-bracket">]</span></a></sup> In fact, SNP rs7115089 is strongly associated with BMI<sup id="cite_ref-225" class="reference"><a href="#cite_note-225"><span class="cite-bracket">[</span>225<span class="cite-bracket">]</span></a></sup> and with genetic variants linked to other cardiovascular and metabolic traits in GWASs.<sup id="cite_ref-226" class="reference"><a href="#cite_note-226"><span class="cite-bracket">[</span>226<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-227" class="reference"><a href="#cite_note-227"><span class="cite-bracket">[</span>227<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-228" class="reference"><a href="#cite_note-228"><span class="cite-bracket">[</span>228<span class="cite-bracket">]</span></a></sup> New studies suggesting <i>UBASH3B</i> as a potential mediator of adiposity and cardiometabolic disease.<sup id="cite_ref-Hawe_2022_223-2" class="reference"><a href="#cite_note-Hawe_2022-223"><span class="cite-bracket">[</span>223<span class="cite-bracket">]</span></a></sup> In addition, animal models demonstrated that <i>UBASH3B</i> expression is an indicator of caloric restriction that may drive programmed susceptibility to obesity and it is associated with other measures of adiposity in human peripherical blood.<sup id="cite_ref-229" class="reference"><a href="#cite_note-229"><span class="cite-bracket">[</span>229<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="NFKBIE_locus"><i>NFKBIE</i> locus</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=47" title="Edit section: NFKBIE locus"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>SNP rs730775 is located in the first intron of <i>NFKBIE</i> and is a <i>cis</i> eQTL for <i>NFKBIE</i> in whole blood.<sup id="cite_ref-Hawe_2022_223-3" class="reference"><a href="#cite_note-Hawe_2022-223"><span class="cite-bracket">[</span>223<span class="cite-bracket">]</span></a></sup> Nuclear factor (NF)-κB inhibitor ε (NFKBIE) directly inhibits NF-κB1 activity and is significantly co-expressed with NF-κB1, also, it is associated with rheumatoid arthritis.<sup id="cite_ref-230" class="reference"><a href="#cite_note-230"><span class="cite-bracket">[</span>230<span class="cite-bracket">]</span></a></sup> Colocalization analysis supports that variants for the majority of the CpG sites in SNP rs730775 cause genetic variation at the <i>NFKBIE</i> locus which is suggestible linked to rheumatoid arthritis through <i>trans</i> acting regulation of DNA methylation by NF-κB.<sup id="cite_ref-Hawe_2022_223-4" class="reference"><a href="#cite_note-Hawe_2022-223"><span class="cite-bracket">[</span>223<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="FADS1_locus"><i>FADS1</i> locus</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=48" title="Edit section: FADS1 locus"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Fatty acid desaturase 1 (FADS1) is a key enzyme in the metabolism of fatty acids.<sup id="cite_ref-231" class="reference"><a href="#cite_note-231"><span class="cite-bracket">[</span>231<span class="cite-bracket">]</span></a></sup> Moreover, rs174548 in the <i>FADS1</i> gene shows increased correlation with DNA methylation in people with high abundance of CD8+ T cells.<sup id="cite_ref-Hawe_2022_223-5" class="reference"><a href="#cite_note-Hawe_2022-223"><span class="cite-bracket">[</span>223<span class="cite-bracket">]</span></a></sup> SNP rs174548 is strongly associated with concentrations of arachidonic acid and other metabolites in fatty acid metabolism,<sup id="cite_ref-232" class="reference"><a href="#cite_note-232"><span class="cite-bracket">[</span>232<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-pmid24816252_233-0" class="reference"><a href="#cite_note-pmid24816252-233"><span class="cite-bracket">[</span>233<span class="cite-bracket">]</span></a></sup> blood eosinophil counts.<sup id="cite_ref-234" class="reference"><a href="#cite_note-234"><span class="cite-bracket">[</span>234<span class="cite-bracket">]</span></a></sup> and inflammatory diseases such as asthma.<sup id="cite_ref-235" class="reference"><a href="#cite_note-235"><span class="cite-bracket">[</span>235<span class="cite-bracket">]</span></a></sup> Interaction results indicated a correlation between rs174548 and asthma, providing new insights about fatty acid metabolism in CD8+ T cells with immune phenotypes.<sup id="cite_ref-Hawe_2022_223-6" class="reference"><a href="#cite_note-Hawe_2022-223"><span class="cite-bracket">[</span>223<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Pseudoscience">Pseudoscience</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=49" title="Edit section: Pseudoscience"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As epigenetics is in the early stages of development as a science and is surrounded by <a href="/wiki/Sensationalism" title="Sensationalism">sensationalism</a> in the public media, <a href="/wiki/David_Gorski" title="David Gorski">David Gorski</a> and geneticist <a href="/wiki/Adam_Rutherford" title="Adam Rutherford">Adam Rutherford</a> have advised caution against the proliferation of false and <a href="/wiki/Pseudoscience" title="Pseudoscience">pseudoscientific</a> conclusions by <a href="/wiki/New_age" class="mw-redirect" title="New age">new age</a> authors making unfounded suggestions that a person's genes and health can be manipulated by <a href="/wiki/Brainwashing" title="Brainwashing">mind control</a>. Misuse of the scientific term by <a href="/wiki/Quackery" title="Quackery">quack authors</a> has produced misinformation among the general public.<sup id="cite_ref-science_2-1" class="reference"><a href="#cite_note-science-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-236" class="reference"><a href="#cite_note-236"><span class="cite-bracket">[</span>236<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=50" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1259569809">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{clear:left;float:left;margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Issoria_lathonia.jpg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2d/Issoria_lathonia.jpg/32px-Issoria_lathonia.jpg" decoding="async" width="32" height="23" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2d/Issoria_lathonia.jpg/48px-Issoria_lathonia.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2d/Issoria_lathonia.jpg/64px-Issoria_lathonia.jpg 2x" data-file-width="629" data-file-height="445" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Biology" title="Portal:Biology">Biology portal</a></span></li><li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><span><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/WHO_Rod.svg/12px-WHO_Rod.svg.png" decoding="async" width="12" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/WHO_Rod.svg/18px-WHO_Rod.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d6/WHO_Rod.svg/24px-WHO_Rod.svg.png 2x" data-file-width="107" data-file-height="250" /></span></span></span><span class="portalbox-link"><a href="/wiki/Portal:Medicine" title="Portal:Medicine">Medicine portal</a></span></li></ul> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col"> <ul><li><a href="/wiki/Baldwin_effect" title="Baldwin effect">Baldwin effect</a></li> <li><a href="/wiki/Behavioral_epigenetics" title="Behavioral epigenetics">Behavioral epigenetics</a></li> <li><a href="/wiki/Biological_effects_of_radiation_on_the_epigenome" title="Biological effects of radiation on the epigenome">Biological effects of radiation on the epigenome</a></li> <li><a href="/wiki/Computational_epigenetics" title="Computational epigenetics">Computational epigenetics</a></li> <li><a href="/wiki/Contribution_of_epigenetic_modifications_to_evolution" title="Contribution of epigenetic modifications to evolution">Contribution of epigenetic modifications to evolution</a></li> <li><a href="/wiki/DAnCER_(database)" title="DAnCER (database)">DAnCER</a> database (2010)</li> <li><a href="/wiki/Epigenesis_(biology)" title="Epigenesis (biology)">Epigenesis (biology)</a></li> <li><a href="/wiki/Epigenetics_in_forensic_science" title="Epigenetics in forensic science">Epigenetics in forensic science</a></li> <li><a href="/wiki/Epigenetics_of_autoimmune_disorders" title="Epigenetics of autoimmune disorders">Epigenetics of autoimmune disorders</a></li> <li><a href="/wiki/Epiphenotyping" title="Epiphenotyping">Epiphenotyping</a></li> <li><a href="/wiki/Epigenetic_therapy" title="Epigenetic therapy">Epigenetic therapy</a></li> <li><a href="/wiki/Epigenetics_of_neurodegenerative_diseases" title="Epigenetics of neurodegenerative diseases">Epigenetics of neurodegenerative diseases</a></li> <li><a href="/wiki/Genetics" title="Genetics">Genetics</a></li> <li><a href="/wiki/Lamarckism" title="Lamarckism">Lamarckism</a></li> <li><a href="/wiki/Nutriepigenomics" title="Nutriepigenomics">Nutriepigenomics</a></li> <li><a href="/wiki/Position-effect_variegation" title="Position-effect variegation">Position-effect variegation</a></li> <li><a href="/wiki/Preformationism" title="Preformationism">Preformationism</a></li> <li><a href="/wiki/Somatic_epitype" title="Somatic epitype">Somatic epitype</a></li> <li><a href="/wiki/Synthetic_genetic_array" title="Synthetic genetic array">Synthetic genetic array</a></li> <li><a href="/wiki/Sleep_epigenetics" title="Sleep epigenetics">Sleep epigenetics</a></li> <li><a href="/wiki/Transcriptional_memory" title="Transcriptional memory">Transcriptional memory</a></li> <li><a href="/wiki/Transgenerational_epigenetic_inheritance" title="Transgenerational epigenetic inheritance">Transgenerational epigenetic inheritance</a></li></ul> </div> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=51" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-Epigenetics_2009_review-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-Epigenetics_2009_review_1-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFDupontArmantBrenner2009" class="citation journal cs1">Dupont C, Armant DR, Brenner CA (September 2009). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2791696">"Epigenetics: definition, mechanisms and clinical perspective"</a>. <i>Seminars in Reproductive Medicine</i>. <b>27</b> (5): 351–7. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1055%2Fs-0029-1237423">10.1055/s-0029-1237423</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2791696">2791696</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19711245">19711245</a>. <q>In the original sense of this definition, epigenetics referred to all molecular pathways modulating the expression of a genotype into a particular phenotype. Over the following years, with the rapid growth of genetics, the meaning of the word has gradually narrowed. Epigenetics has been defined and today is generally accepted as 'the study of changes in gene function that are mitotically and/or meiotically heritable and that do not entail a change in DNA sequence.'<span class="cs1-kern-right"></span></q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Seminars+in+Reproductive+Medicine&rft.atitle=Epigenetics%3A+definition%2C+mechanisms+and+clinical+perspective&rft.volume=27&rft.issue=5&rft.pages=351-7&rft.date=2009-09&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2791696%23id-name%3DPMC&rft_id=info%3Apmid%2F19711245&rft_id=info%3Adoi%2F10.1055%2Fs-0029-1237423&rft.aulast=Dupont&rft.aufirst=C&rft.au=Armant%2C+DR&rft.au=Brenner%2C+CA&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2791696&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-science-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-science_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-science_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRutherford2015" class="citation news cs1">Rutherford A (19 July 2015). <a rel="nofollow" class="external text" href="https://www.theguardian.com/science/2015/jul/19/epigenetics-dna--darwin-adam-rutherford">"Beware the pseudo gene genies"</a>. <i><a href="/wiki/The_Guardian" title="The Guardian">The Guardian</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Guardian&rft.atitle=Beware+the+pseudo+gene+genies&rft.date=2015-07-19&rft.aulast=Rutherford&rft.aufirst=A&rft_id=https%3A%2F%2Fwww.theguardian.com%2Fscience%2F2015%2Fjul%2F19%2Fepigenetics-dna--darwin-adam-rutherford&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDeansMaggert2015" class="citation journal cs1">Deans C, Maggert KA (April 2015). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391566">"What do you mean, "epigenetic"?"</a>. <i>Genetics</i>. <b>199</b> (4): 887–896. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1534%2Fgenetics.114.173492">10.1534/genetics.114.173492</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391566">4391566</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25855649">25855649</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Genetics&rft.atitle=What+do+you+mean%2C+%22epigenetic%22%3F&rft.volume=199&rft.issue=4&rft.pages=887-896&rft.date=2015-04&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4391566%23id-name%3DPMC&rft_id=info%3Apmid%2F25855649&rft_id=info%3Adoi%2F10.1534%2Fgenetics.114.173492&rft.aulast=Deans&rft.aufirst=C&rft.au=Maggert%2C+KA&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4391566&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSharmaKellyJones2010" class="citation journal cs1">Sharma S, Kelly TK, Jones PA (January 2010). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2802667">"Epigenetics in cancer"</a>. <i>Carcinogenesis</i>. <b>31</b> (1): 27–36. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fcarcin%2Fbgp220">10.1093/carcin/bgp220</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2802667">2802667</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19752007">19752007</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Carcinogenesis&rft.atitle=Epigenetics+in+cancer&rft.volume=31&rft.issue=1&rft.pages=27-36&rft.date=2010-01&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2802667%23id-name%3DPMC&rft_id=info%3Apmid%2F19752007&rft_id=info%3Adoi%2F10.1093%2Fcarcin%2Fbgp220&rft.aulast=Sharma&rft.aufirst=S&rft.au=Kelly%2C+TK&rft.au=Jones%2C+PA&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2802667&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKanwalGupta2012" class="citation journal cs1">Kanwal R, Gupta S (April 2012). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590802">"Epigenetic modifications in cancer"</a>. <i>Clinical Genetics</i>. <b>81</b> (4): 303–311. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1399-0004.2011.01809.x">10.1111/j.1399-0004.2011.01809.x</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590802">3590802</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22082348">22082348</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Clinical+Genetics&rft.atitle=Epigenetic+modifications+in+cancer&rft.volume=81&rft.issue=4&rft.pages=303-311&rft.date=2012-04&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3590802%23id-name%3DPMC&rft_id=info%3Apmid%2F22082348&rft_id=info%3Adoi%2F10.1111%2Fj.1399-0004.2011.01809.x&rft.aulast=Kanwal&rft.aufirst=R&rft.au=Gupta%2C+S&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3590802&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrías-LasserreVillagra2017" class="citation journal cs1">Frías-Lasserre D, Villagra CA (2017). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5744636">"The Importance of ncRNAs as Epigenetic Mechanisms in Phenotypic Variation and Organic Evolution"</a>. <i>Frontiers in Microbiology</i>. <b>8</b>: 2483. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3389%2Ffmicb.2017.02483">10.3389/fmicb.2017.02483</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5744636">5744636</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/29312192">29312192</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Frontiers+in+Microbiology&rft.atitle=The+Importance+of+ncRNAs+as+Epigenetic+Mechanisms+in+Phenotypic+Variation+and+Organic+Evolution&rft.volume=8&rft.pages=2483&rft.date=2017&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5744636%23id-name%3DPMC&rft_id=info%3Apmid%2F29312192&rft_id=info%3Adoi%2F10.3389%2Ffmicb.2017.02483&rft.aulast=Fr%C3%ADas-Lasserre&rft.aufirst=D&rft.au=Villagra%2C+CA&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5744636&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid17522671-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-pmid17522671_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pmid17522671_7-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBird2007" class="citation journal cs1">Bird A (May 2007). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature05913">"Perceptions of epigenetics"</a>. <i>Nature</i>. <b>447</b> (7143): 396–398. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007Natur.447..396B">2007Natur.447..396B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature05913">10.1038/nature05913</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17522671">17522671</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4357965">4357965</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Perceptions+of+epigenetics&rft.volume=447&rft.issue=7143&rft.pages=396-398&rft.date=2007-05&rft_id=info%3Adoi%2F10.1038%2Fnature05913&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4357965%23id-name%3DS2CID&rft_id=info%3Apmid%2F17522671&rft_id=info%3Abibcode%2F2007Natur.447..396B&rft.aulast=Bird&rft.aufirst=A&rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252Fnature05913&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHunter2008" class="citation web cs1">Hunter P (1 May 2008). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080501094940/http://www.prospect-magazine.co.uk/article_details.php?id=10140">"What genes remember"</a>. <i>Prospect Magazine</i>. Archived from <a rel="nofollow" class="external text" href="https://www.prospectmagazine.co.uk/magazine/whatgenesremember">the original</a> on 1 May 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">26 July</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Prospect+Magazine&rft.atitle=What+genes+remember&rft.date=2008-05-01&rft.aulast=Hunter&rft.aufirst=P&rft_id=https%3A%2F%2Fwww.prospectmagazine.co.uk%2Fmagazine%2Fwhatgenesremember&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid17522676-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid17522676_9-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReik2007" class="citation journal cs1">Reik W (May 2007). "Stability and flexibility of epigenetic gene regulation in mammalian development". <i>Nature</i>. <b>447</b> (7143): 425–32. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007Natur.447..425R">2007Natur.447..425R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature05918">10.1038/nature05918</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17522676">17522676</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:11794102">11794102</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Stability+and+flexibility+of+epigenetic+gene+regulation+in+mammalian+development&rft.volume=447&rft.issue=7143&rft.pages=425-32&rft.date=2007-05&rft_id=info%3Adoi%2F10.1038%2Fnature05918&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A11794102%23id-name%3DS2CID&rft_id=info%3Apmid%2F17522676&rft_id=info%3Abibcode%2F2007Natur.447..425R&rft.aulast=Reik&rft.aufirst=W&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><a href="/wiki/Oxford_English_Dictionary" title="Oxford English Dictionary">Oxford English Dictionary</a>: "The word is used by W. Harvey, <i>Exercitationes</i> 1651, p. 148, and in the <i>English Anatomical Exercitations</i> 1653, p. 272. It is explained to mean ‘partium super-exorientium additamentum’, ‘the additament of parts budding one out of another’."</span> </li> <li id="cite_note-Moore_2015-11"><span class="mw-cite-backlink">^ <a href="#cite_ref-Moore_2015_11-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Moore_2015_11-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoore2015" class="citation book cs1">Moore DS (2015). <i>The Developing Genome: An Introduction to Behavioral Epigenetics</i>. Oxford University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-992235-2" title="Special:BookSources/978-0-19-992235-2"><bdi>978-0-19-992235-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Developing+Genome%3A+An+Introduction+to+Behavioral+Epigenetics&rft.pub=Oxford+University+Press&rft.date=2015&rft.isbn=978-0-19-992235-2&rft.aulast=Moore&rft.aufirst=DS&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span><sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (March 2024)">page needed</span></a></i>]</sup></span> </li> <li id="cite_note-pmid19339683-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-pmid19339683_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pmid19339683_12-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBergerKouzaridesShiekhattarShilatifard2009" class="citation journal cs1">Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (April 2009). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959995">"An operational definition of epigenetics"</a>. <i>Genes & Development</i>. <b>23</b> (7): 781–3. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1101%2Fgad.1787609">10.1101/gad.1787609</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959995">3959995</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19339683">19339683</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Genes+%26+Development&rft.atitle=An+operational+definition+of+epigenetics&rft.volume=23&rft.issue=7&rft.pages=781-3&rft.date=2009-04&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3959995%23id-name%3DPMC&rft_id=info%3Apmid%2F19339683&rft_id=info%3Adoi%2F10.1101%2Fgad.1787609&rft.aulast=Berger&rft.aufirst=SL&rft.au=Kouzarides%2C+T&rft.au=Shiekhattar%2C+R&rft.au=Shilatifard%2C+A&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3959995&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-NIH-13"><span class="mw-cite-backlink">^ <a href="#cite_ref-NIH_13-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-NIH_13-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20191121014029/http://www.roadmapepigenomics.org/overview">"Overview"</a>. <i>NIH Roadmap Epigenomics Project</i>. Archived from <a rel="nofollow" class="external text" href="http://www.roadmapepigenomics.org/overview">the original</a> on 21 November 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">7 December</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=NIH+Roadmap+Epigenomics+Project&rft.atitle=Overview&rft_id=http%3A%2F%2Fwww.roadmapepigenomics.org%2Foverview&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text">Morange M. <i>La tentative de Nikolai Koltzoff (Koltsov) de lier génétique, embryologie et chimie physique</i>, J. Biosciences. 2011. V. 36. P. 211-214</span> </li> <li id="cite_note-waddington-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-waddington_15-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWaddington1942" class="citation journal cs1">Waddington CH (1942). "The epigenotype". <i>Endeavour</i>. <b>1</b>: 18–20.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Endeavour&rft.atitle=The+epigenotype&rft.volume=1&rft.pages=18-20&rft.date=1942&rft.aulast=Waddington&rft.aufirst=CH&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span> "For the purpose of a study of inheritance, the relation between phenotypes and genotypes [...] is, from a wider biological point of view, of crucial importance, since it is the kernel of the whole problem of development."</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text">See <i><a href="/wiki/Preformationism" title="Preformationism">preformationism</a></i> for historical background. <i><a href="/wiki/Oxford_English_Dictionary" title="Oxford English Dictionary">Oxford English Dictionary</a></i>: "the theory that the germ is brought into existence (by successive accretions), and not merely developed, in the process of reproduction. [...] The opposite theory was formerly known as the 'theory of evolution'; to avoid the ambiguity of this name, it is now spoken of chiefly as the 'theory of preformation', sometimes as that of 'encasement' or 'emboîtement'."</span> </li> <li id="cite_note-Waddington2014-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-Waddington2014_17-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWaddington2014" class="citation book cs1">Waddington CH (2014). <i>The Epigenetics of Birds</i>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-107-44047-0" title="Special:BookSources/978-1-107-44047-0"><bdi>978-1-107-44047-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Epigenetics+of+Birds&rft.pub=Cambridge+University+Press&rft.date=2014&rft.isbn=978-1-107-44047-0&rft.aulast=Waddington&rft.aufirst=CH&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span><sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (January 2020)">page needed</span></a></i>]</sup></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHall2004" class="citation journal cs1">Hall BK (January 2004). <a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fjez.b.20002">"In search of evolutionary developmental mechanisms: the 30-year gap between 1944 and 1974"</a>. <i>Journal of Experimental Zoology Part B: Molecular and Developmental Evolution</i>. <b>302</b> (1): 5–18. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004JEZ...302....5H">2004JEZ...302....5H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fjez.b.20002">10.1002/jez.b.20002</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/14760651">14760651</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Experimental+Zoology+Part+B%3A+Molecular+and+Developmental+Evolution&rft.atitle=In+search+of+evolutionary+developmental+mechanisms%3A+the+30-year+gap+between+1944+and+1974&rft.volume=302&rft.issue=1&rft.pages=5-18&rft.date=2004-01&rft_id=info%3Apmid%2F14760651&rft_id=info%3Adoi%2F10.1002%2Fjez.b.20002&rft_id=info%3Abibcode%2F2004JEZ...302....5H&rft.aulast=Hall&rft.aufirst=BK&rft_id=https%3A%2F%2Fdoi.org%2F10.1002%252Fjez.b.20002&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlvarez-BuyllaChaosAldanaBenítez2008" class="citation journal cs1">Alvarez-Buylla ER, Chaos A, Aldana M, Benítez M, Cortes-Poza Y, Espinosa-Soto C, et al. (3 November 2008). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2572848">"Floral morphogenesis: stochastic explorations of a gene network epigenetic landscape"</a>. <i>PLOS ONE</i>. <b>3</b> (11): e3626. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008PLoSO...3.3626A">2008PLoSO...3.3626A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1371%2Fjournal.pone.0003626">10.1371/journal.pone.0003626</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2572848">2572848</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18978941">18978941</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PLOS+ONE&rft.atitle=Floral+morphogenesis%3A+stochastic+explorations+of+a+gene+network+epigenetic+landscape&rft.volume=3&rft.issue=11&rft.pages=e3626&rft.date=2008-11-03&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2572848%23id-name%3DPMC&rft_id=info%3Apmid%2F18978941&rft_id=info%3Adoi%2F10.1371%2Fjournal.pone.0003626&rft_id=info%3Abibcode%2F2008PLoSO...3.3626A&rft.aulast=Alvarez-Buylla&rft.aufirst=ER&rft.au=Chaos%2C+A&rft.au=Aldana%2C+M&rft.au=Ben%C3%ADtez%2C+M&rft.au=Cortes-Poza%2C+Y&rft.au=Espinosa-Soto%2C+C&rft.au=Hartas%C3%A1nchez%2C+DA&rft.au=Lotto%2C+RB&rft.au=Malkin%2C+D&rft.au=Escalera+Santos%2C+GJ&rft.au=Padilla-Longoria%2C+P&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2572848&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-sciencedirect.com-20"><span class="mw-cite-backlink">^ <a href="#cite_ref-sciencedirect.com_20-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-sciencedirect.com_20-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRabajanteBabierra2015" class="citation journal cs1">Rabajante JF, Babierra AL (March 2015). "Branching and oscillations in the epigenetic landscape of cell-fate determination". <i>Progress in Biophysics and Molecular Biology</i>. <b>117</b> (2–3): 240–249. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.pbiomolbio.2015.01.006">10.1016/j.pbiomolbio.2015.01.006</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25641423">25641423</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2579314">2579314</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Progress+in+Biophysics+and+Molecular+Biology&rft.atitle=Branching+and+oscillations+in+the+epigenetic+landscape+of+cell-fate+determination&rft.volume=117&rft.issue=2%E2%80%933&rft.pages=240-249&rft.date=2015-03&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2579314%23id-name%3DS2CID&rft_id=info%3Apmid%2F25641423&rft_id=info%3Adoi%2F10.1016%2Fj.pbiomolbio.2015.01.006&rft.aulast=Rabajante&rft.aufirst=JF&rft.au=Babierra%2C+AL&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid2265224-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid2265224_21-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHolliday1990" class="citation journal cs1">Holliday R (January 1990). <a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frstb.1990.0015">"DNA methylation and epigenetic inheritance"</a>. <i>Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences</i>. <b>326</b> (1235): 329–38. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1990RSPTB.326..329H">1990RSPTB.326..329H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frstb.1990.0015">10.1098/rstb.1990.0015</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/1968668">1968668</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Philosophical+Transactions+of+the+Royal+Society+of+London.+Series+B%2C+Biological+Sciences&rft.atitle=DNA+methylation+and+epigenetic+inheritance&rft.volume=326&rft.issue=1235&rft.pages=329-38&rft.date=1990-01&rft_id=info%3Apmid%2F1968668&rft_id=info%3Adoi%2F10.1098%2Frstb.1990.0015&rft_id=info%3Abibcode%2F1990RSPTB.326..329H&rft.aulast=Holliday&rft.aufirst=R&rft_id=https%3A%2F%2Fdoi.org%2F10.1098%252Frstb.1990.0015&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-isbn0-87969-490-4-22"><span class="mw-cite-backlink">^ <a href="#cite_ref-isbn0-87969-490-4_22-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-isbn0-87969-490-4_22-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRiggsMartienssenRusso1996" class="citation book cs1">Riggs AD, Martienssen RA, Russo VE (1996). <i>Epigenetic mechanisms of gene regulation</i>. Plainview, NY: Cold Spring Harbor Laboratory Press. pp. 1–4. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-87969-490-6" title="Special:BookSources/978-0-87969-490-6"><bdi>978-0-87969-490-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Epigenetic+mechanisms+of+gene+regulation&rft.place=Plainview%2C+NY&rft.pages=1-4&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.date=1996&rft.isbn=978-0-87969-490-6&rft.aulast=Riggs&rft.aufirst=AD&rft.au=Martienssen%2C+RA&rft.au=Russo%2C+VE&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span><sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (August 2013)">page needed</span></a></i>]</sup></span> </li> <li id="cite_note-nature2008-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-nature2008_23-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLedford2008" class="citation journal cs1">Ledford H (October 2008). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F4551023a">"Language: Disputed definitions"</a>. <i>Nature</i>. <b>455</b> (7216): 1023–8. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F4551023a">10.1038/4551023a</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18948925">18948925</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Language%3A+Disputed+definitions&rft.volume=455&rft.issue=7216&rft.pages=1023-8&rft.date=2008-10&rft_id=info%3Adoi%2F10.1038%2F4551023a&rft_id=info%3Apmid%2F18948925&rft.aulast=Ledford&rft.aufirst=H&rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252F4551023a&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGibneyNolan2010" class="citation journal cs1">Gibney ER, Nolan CM (July 2010). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fhdy.2010.54">"Epigenetics and gene expression"</a>. <i>Heredity</i>. <b>105</b> (1): 4–13. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fhdy.2010.54">10.1038/hdy.2010.54</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20461105">20461105</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:31611763">31611763</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Heredity&rft.atitle=Epigenetics+and+gene+expression&rft.volume=105&rft.issue=1&rft.pages=4-13&rft.date=2010-07&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A31611763%23id-name%3DS2CID&rft_id=info%3Apmid%2F20461105&rft_id=info%3Adoi%2F10.1038%2Fhdy.2010.54&rft.aulast=Gibney&rft.aufirst=ER&rft.au=Nolan%2C+CM&rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252Fhdy.2010.54&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid17407749-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid17407749_25-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPtashne2007" class="citation journal cs1">Ptashne M (April 2007). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cub.2007.02.030">"On the use of the word 'epigenetic'<span class="cs1-kern-right"></span>"</a>. <i>Current Biology</i>. <b>17</b> (7): R233-6. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007CBio...17.R233P">2007CBio...17.R233P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cub.2007.02.030">10.1016/j.cub.2007.02.030</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17407749">17407749</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17490277">17490277</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Current+Biology&rft.atitle=On+the+use+of+the+word+%27epigenetic%27&rft.volume=17&rft.issue=7&rft.pages=R233-6&rft.date=2007-04&rft_id=info%3Adoi%2F10.1016%2Fj.cub.2007.02.030&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17490277%23id-name%3DS2CID&rft_id=info%3Apmid%2F17407749&rft_id=info%3Abibcode%2F2007CBio...17.R233P&rft.aulast=Ptashne&rft.aufirst=M&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.cub.2007.02.030&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhangTangHuangZhou2019" class="citation journal cs1">Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, et al. (October 2019). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6818755">"Metabolic regulation of gene expression by histone lactylation"</a>. <i>Nature</i>. <b>574</b> (7779): 575–580. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019Natur.574..575Z">2019Natur.574..575Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41586-019-1678-1">10.1038/s41586-019-1678-1</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6818755">6818755</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31645732">31645732</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Metabolic+regulation+of+gene+expression+by+histone+lactylation&rft.volume=574&rft.issue=7779&rft.pages=575-580&rft.date=2019-10&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6818755%23id-name%3DPMC&rft_id=info%3Apmid%2F31645732&rft_id=info%3Adoi%2F10.1038%2Fs41586-019-1678-1&rft_id=info%3Abibcode%2F2019Natur.574..575Z&rft.aulast=Zhang&rft.aufirst=D&rft.au=Tang%2C+Z&rft.au=Huang%2C+H&rft.au=Zhou%2C+G&rft.au=Cui%2C+C&rft.au=Weng%2C+Y&rft.au=Liu%2C+W&rft.au=Kim%2C+S&rft.au=Lee%2C+S&rft.au=Perez-Neut%2C+M&rft.au=Ding%2C+J&rft.au=Czyz%2C+D&rft.au=Hu%2C+R&rft.au=Ye%2C+Z&rft.au=He%2C+M&rft.au=Zheng%2C+YG&rft.au=Shuman%2C+HA&rft.au=Dai%2C+L&rft.au=Ren%2C+B&rft.au=Roeder%2C+RG&rft.au=Becker%2C+L&rft.au=Zhao%2C+Y&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6818755&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid30619465-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid30619465_27-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKumarChinnusamyMohapatra2018" class="citation journal cs1">Kumar S, Chinnusamy V, Mohapatra T (2018). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6305559">"Epigenetics of Modified DNA Bases: 5-Methylcytosine and Beyond"</a>. <i>Frontiers in Genetics</i>. <b>9</b>: 640. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3389%2Ffgene.2018.00640">10.3389/fgene.2018.00640</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6305559">6305559</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30619465">30619465</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Frontiers+in+Genetics&rft.atitle=Epigenetics+of+Modified+DNA+Bases%3A+5-Methylcytosine+and+Beyond&rft.volume=9&rft.pages=640&rft.date=2018&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6305559%23id-name%3DPMC&rft_id=info%3Apmid%2F30619465&rft_id=info%3Adoi%2F10.3389%2Ffgene.2018.00640&rft.aulast=Kumar&rft.aufirst=S&rft.au=Chinnusamy%2C+V&rft.au=Mohapatra%2C+T&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6305559&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid31399642-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid31399642_28-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGreenbergBourc'his2019" class="citation journal cs1">Greenberg MV, Bourc'his D (October 2019). "The diverse roles of DNA methylation in mammalian development and disease". <i>Nature Reviews. Molecular Cell Biology</i>. <b>20</b> (10): 590–607. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41580-019-0159-6">10.1038/s41580-019-0159-6</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31399642">31399642</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:199512037">199512037</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Reviews.+Molecular+Cell+Biology&rft.atitle=The+diverse+roles+of+DNA+methylation+in+mammalian+development+and+disease&rft.volume=20&rft.issue=10&rft.pages=590-607&rft.date=2019-10&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A199512037%23id-name%3DS2CID&rft_id=info%3Apmid%2F31399642&rft_id=info%3Adoi%2F10.1038%2Fs41580-019-0159-6&rft.aulast=Greenberg&rft.aufirst=MV&rft.au=Bourc%27his%2C+D&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid22868264-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid22868264_29-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSpitzFurlong2012" class="citation journal cs1">Spitz F, Furlong EE (September 2012). "Transcription factors: from enhancer binding to developmental control". <i>Nat Rev Genet</i>. <b>13</b> (9): 613–26. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnrg3207">10.1038/nrg3207</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22868264">22868264</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:205485256">205485256</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nat+Rev+Genet&rft.atitle=Transcription+factors%3A+from+enhancer+binding+to+developmental+control&rft.volume=13&rft.issue=9&rft.pages=613-26&rft.date=2012-09&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A205485256%23id-name%3DS2CID&rft_id=info%3Apmid%2F22868264&rft_id=info%3Adoi%2F10.1038%2Fnrg3207&rft.aulast=Spitz&rft.aufirst=F&rft.au=Furlong%2C+EE&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid28620075-30"><span class="mw-cite-backlink">^ <a href="#cite_ref-pmid28620075_30-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pmid28620075_30-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDukeKennedyGavinDay2017" class="citation journal cs1">Duke CG, Kennedy AJ, Gavin CF, Day JJ, Sweatt JD (July 2017). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473107">"Experience-dependent epigenomic reorganization in the hippocampus"</a>. <i>Learn Mem</i>. <b>24</b> (7): 278–288. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1101%2Flm.045112.117">10.1101/lm.045112.117</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473107">5473107</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28620075">28620075</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Learn+Mem&rft.atitle=Experience-dependent+epigenomic+reorganization+in+the+hippocampus&rft.volume=24&rft.issue=7&rft.pages=278-288&rft.date=2017-07&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5473107%23id-name%3DPMC&rft_id=info%3Apmid%2F28620075&rft_id=info%3Adoi%2F10.1101%2Flm.045112.117&rft.aulast=Duke&rft.aufirst=CG&rft.au=Kennedy%2C+AJ&rft.au=Gavin%2C+CF&rft.au=Day%2C+JJ&rft.au=Sweatt%2C+JD&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5473107&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-Bernstein-31"><span class="mw-cite-backlink">^ <a href="#cite_ref-Bernstein_31-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Bernstein_31-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Bernstein_31-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Bernstein_31-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernstein2022" class="citation journal cs1">Bernstein C (2022). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8793415">"DNA Methylation and Establishing Memory"</a>. <i>Epigenet Insights</i>. <b>15</b>: 25168657211072499. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1177%2F25168657211072499">10.1177/25168657211072499</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8793415">8793415</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/35098021">35098021</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Epigenet+Insights&rft.atitle=DNA+Methylation+and+Establishing+Memory&rft.volume=15&rft.pages=25168657211072499&rft.date=2022&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8793415%23id-name%3DPMC&rft_id=info%3Apmid%2F35098021&rft_id=info%3Adoi%2F10.1177%2F25168657211072499&rft.aulast=Bernstein&rft.aufirst=C&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8793415&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-Rose-32"><span class="mw-cite-backlink">^ <a href="#cite_ref-Rose_32-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Rose_32-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoseKlose2014" class="citation journal cs1">Rose NR, Klose RJ (December 2014). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4316174">"Understanding the relationship between DNA methylation and histone lysine methylation"</a>. <i>Biochim Biophys Acta</i>. <b>1839</b> (12): 1362–72. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.bbagrm.2014.02.007">10.1016/j.bbagrm.2014.02.007</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4316174">4316174</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24560929">24560929</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Biochim+Biophys+Acta&rft.atitle=Understanding+the+relationship+between+DNA+methylation+and+histone+lysine+methylation&rft.volume=1839&rft.issue=12&rft.pages=1362-72&rft.date=2014-12&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4316174%23id-name%3DPMC&rft_id=info%3Apmid%2F24560929&rft_id=info%3Adoi%2F10.1016%2Fj.bbagrm.2014.02.007&rft.aulast=Rose&rft.aufirst=NR&rft.au=Klose%2C+RJ&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4316174&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-Li2021-33"><span class="mw-cite-backlink">^ <a href="#cite_ref-Li2021_33-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Li2021_33-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiChenLu2021" class="citation journal cs1">Li Y, Chen X, Lu C (May 2021). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097341">"The interplay between DNA and histone methylation: molecular mechanisms and disease implications"</a>. <i>EMBO Rep</i>. <b>22</b> (5): e51803. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.15252%2Fembr.202051803">10.15252/embr.202051803</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097341">8097341</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33844406">33844406</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=EMBO+Rep&rft.atitle=The+interplay+between+DNA+and+histone+methylation%3A+molecular+mechanisms+and+disease+implications&rft.volume=22&rft.issue=5&rft.pages=e51803&rft.date=2021-05&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8097341%23id-name%3DPMC&rft_id=info%3Apmid%2F33844406&rft_id=info%3Adoi%2F10.15252%2Fembr.202051803&rft.aulast=Li&rft.aufirst=Y&rft.au=Chen%2C+X&rft.au=Lu%2C+C&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8097341&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid33133421-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid33133421_34-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBendandiPatelliDiasproRocchia2020" class="citation journal cs1">Bendandi A, Patelli AS, Diaspro A, Rocchia W (2020). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575852">"The role of histone tails in nucleosome stability: An electrostatic perspective"</a>. <i>Comput Struct Biotechnol J</i>. <b>18</b>: 2799–2809. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.csbj.2020.09.034">10.1016/j.csbj.2020.09.034</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575852">7575852</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33133421">33133421</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Comput+Struct+Biotechnol+J&rft.atitle=The+role+of+histone+tails+in+nucleosome+stability%3A+An+electrostatic+perspective&rft.volume=18&rft.pages=2799-2809&rft.date=2020&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7575852%23id-name%3DPMC&rft_id=info%3Apmid%2F33133421&rft_id=info%3Adoi%2F10.1016%2Fj.csbj.2020.09.034&rft.aulast=Bendandi&rft.aufirst=A&rft.au=Patelli%2C+AS&rft.au=Diaspro%2C+A&rft.au=Rocchia%2C+W&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7575852&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStewartLiWong2005" class="citation journal cs1">Stewart MD, Li J, Wong J (April 2005). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1061631">"Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment"</a>. <i>Molecular and Cellular Biology</i>. <b>25</b> (7): 2525–2538. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1128%2FMCB.25.7.2525-2538.2005">10.1128/MCB.25.7.2525-2538.2005</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1061631">1061631</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15767660">15767660</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Molecular+and+Cellular+Biology&rft.atitle=Relationship+between+histone+H3+lysine+9+methylation%2C+transcription+repression%2C+and+heterochromatin+protein+1+recruitment&rft.volume=25&rft.issue=7&rft.pages=2525-2538&rft.date=2005-04&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1061631%23id-name%3DPMC&rft_id=info%3Apmid%2F15767660&rft_id=info%3Adoi%2F10.1128%2FMCB.25.7.2525-2538.2005&rft.aulast=Stewart&rft.aufirst=MD&rft.au=Li%2C+J&rft.au=Wong%2C+J&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1061631&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKhan2014" class="citation book cs1">Khan FA (2014). "Genetic disorders and gene therapy". <i>Biotechnology in Medical Sciences</i>. pp. 264–289. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1201%2Fb16905-14">10.1201/b16905-14</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-429-17411-7" title="Special:BookSources/978-0-429-17411-7"><bdi>978-0-429-17411-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Genetic+disorders+and+gene+therapy&rft.btitle=Biotechnology+in+Medical+Sciences&rft.pages=264-289&rft.date=2014&rft_id=info%3Adoi%2F10.1201%2Fb16905-14&rft.isbn=978-0-429-17411-7&rft.aulast=Khan&rft.aufirst=FA&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid9487389-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid9487389_37-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJenuweinLaibleDornReuter1998" class="citation journal cs1">Jenuwein T, Laible G, Dorn R, Reuter G (January 1998). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11147257">"SET domain proteins modulate chromatin domains in eu- and heterochromatin"</a>. <i>Cellular and Molecular Life Sciences</i>. <b>54</b> (1): 80–93. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs000180050127">10.1007/s000180050127</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11147257">11147257</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/9487389">9487389</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:7769686">7769686</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cellular+and+Molecular+Life+Sciences&rft.atitle=SET+domain+proteins+modulate+chromatin+domains+in+eu-+and+heterochromatin&rft.volume=54&rft.issue=1&rft.pages=80-93&rft.date=1998-01&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC11147257%23id-name%3DPMC&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A7769686%23id-name%3DS2CID&rft_id=info%3Apmid%2F9487389&rft_id=info%3Adoi%2F10.1007%2Fs000180050127&rft.aulast=Jenuwein&rft.aufirst=T&rft.au=Laible%2C+G&rft.au=Dorn%2C+R&rft.au=Reuter%2C+G&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC11147257&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-slotkin2007-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-slotkin2007_38-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSlotkinMartienssen2007" class="citation journal cs1">Slotkin RK, Martienssen R (April 2007). "Transposable elements and the epigenetic regulation of the genome". <i>Nature Reviews. Genetics</i>. <b>8</b> (4): 272–85. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnrg2072">10.1038/nrg2072</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17363976">17363976</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9719784">9719784</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Reviews.+Genetics&rft.atitle=Transposable+elements+and+the+epigenetic+regulation+of+the+genome&rft.volume=8&rft.issue=4&rft.pages=272-85&rft.date=2007-04&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9719784%23id-name%3DS2CID&rft_id=info%3Apmid%2F17363976&rft_id=info%3Adoi%2F10.1038%2Fnrg2072&rft.aulast=Slotkin&rft.aufirst=RK&rft.au=Martienssen%2C+R&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-li92-39"><span class="mw-cite-backlink">^ <a href="#cite_ref-li92_39-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-li92_39-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiBestorJaenisch1992" class="citation journal cs1">Li E, Bestor TH, Jaenisch R (June 1992). "Targeted mutation of the DNA methyltransferase gene results in embryonic lethality". <i>Cell</i>. <b>69</b> (6): 915–26. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0092-8674%2892%2990611-F">10.1016/0092-8674(92)90611-F</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/1606615">1606615</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:19879601">19879601</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cell&rft.atitle=Targeted+mutation+of+the+DNA+methyltransferase+gene+results+in+embryonic+lethality&rft.volume=69&rft.issue=6&rft.pages=915-26&rft.date=1992-06&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A19879601%23id-name%3DS2CID&rft_id=info%3Apmid%2F1606615&rft_id=info%3Adoi%2F10.1016%2F0092-8674%2892%2990611-F&rft.aulast=Li&rft.aufirst=E&rft.au=Bestor%2C+TH&rft.au=Jaenisch%2C+R&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-robertson99-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-robertson99_40-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobertsonUzvolgyiLiangTalmadge1999" class="citation journal cs1">Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA, et al. (June 1999). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC148793">"The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors"</a>. <i>Nucleic Acids Research</i>. <b>27</b> (11): 2291–8. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fnar%2F27.11.2291">10.1093/nar/27.11.2291</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC148793">148793</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10325416">10325416</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nucleic+Acids+Research&rft.atitle=The+human+DNA+methyltransferases+%28DNMTs%29+1%2C+3a+and+3b%3A+coordinate+mRNA+expression+in+normal+tissues+and+overexpression+in+tumors&rft.volume=27&rft.issue=11&rft.pages=2291-8&rft.date=1999-06&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC148793%23id-name%3DPMC&rft_id=info%3Apmid%2F10325416&rft_id=info%3Adoi%2F10.1093%2Fnar%2F27.11.2291&rft.aulast=Robertson&rft.aufirst=KD&rft.au=Uzvolgyi%2C+E&rft.au=Liang%2C+G&rft.au=Talmadge%2C+C&rft.au=Sumegi%2C+J&rft.au=Gonzales%2C+FA&rft.au=Jones%2C+PA&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC148793&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-leonhardt92-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-leonhardt92_41-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeonhardtPageWeierBestor1992" class="citation journal cs1">Leonhardt H, Page AW, Weier HU, Bestor TH (November 1992). <a rel="nofollow" class="external text" href="https://epub.ub.uni-muenchen.de/5003/1/003.pdf">"A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei"</a> <span class="cs1-format">(PDF)</span>. <i>Cell</i>. <b>71</b> (5): 865–73. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0092-8674%2892%2990561-P">10.1016/0092-8674(92)90561-P</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/1423634">1423634</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:5995820">5995820</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cell&rft.atitle=A+targeting+sequence+directs+DNA+methyltransferase+to+sites+of+DNA+replication+in+mammalian+nuclei&rft.volume=71&rft.issue=5&rft.pages=865-73&rft.date=1992-11&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A5995820%23id-name%3DS2CID&rft_id=info%3Apmid%2F1423634&rft_id=info%3Adoi%2F10.1016%2F0092-8674%2892%2990561-P&rft.aulast=Leonhardt&rft.aufirst=H&rft.au=Page%2C+AW&rft.au=Weier%2C+HU&rft.au=Bestor%2C+TH&rft_id=https%3A%2F%2Fepub.ub.uni-muenchen.de%2F5003%2F1%2F003.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-chuang97-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-chuang97_42-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChuangIanKohNg1997" class="citation journal cs1">Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, Li BF (September 1997). "Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1". <i>Science</i>. <b>277</b> (5334): 1996–2000. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.277.5334.1996">10.1126/science.277.5334.1996</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/9302295">9302295</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Human+DNA-%28cytosine-5%29+methyltransferase-PCNA+complex+as+a+target+for+p21WAF1&rft.volume=277&rft.issue=5334&rft.pages=1996-2000&rft.date=1997-09&rft_id=info%3Adoi%2F10.1126%2Fscience.277.5334.1996&rft_id=info%3Apmid%2F9302295&rft.aulast=Chuang&rft.aufirst=LS&rft.au=Ian%2C+HI&rft.au=Koh%2C+TW&rft.au=Ng%2C+HH&rft.au=Xu%2C+G&rft.au=Li%2C+BF&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-robertson00-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-robertson00_43-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobertsonWolffe2000" class="citation journal cs1">Robertson KD, Wolffe AP (October 2000). "DNA methylation in health and disease". <i>Nature Reviews. Genetics</i>. <b>1</b> (1): 11–9. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F35049533">10.1038/35049533</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11262868">11262868</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1915808">1915808</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Reviews.+Genetics&rft.atitle=DNA+methylation+in+health+and+disease&rft.volume=1&rft.issue=1&rft.pages=11-9&rft.date=2000-10&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1915808%23id-name%3DS2CID&rft_id=info%3Apmid%2F11262868&rft_id=info%3Adoi%2F10.1038%2F35049533&rft.aulast=Robertson&rft.aufirst=KD&rft.au=Wolffe%2C+AP&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-li93-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-li93_44-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiBeardJaenisch1993" class="citation journal cs1">Li E, Beard C, Jaenisch R (November 1993). "Role for DNA methylation in genomic imprinting". <i>Nature</i>. <b>366</b> (6453): 362–5. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1993Natur.366..362L">1993Natur.366..362L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F366362a0">10.1038/366362a0</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/8247133">8247133</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4311091">4311091</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Role+for+DNA+methylation+in+genomic+imprinting&rft.volume=366&rft.issue=6453&rft.pages=362-5&rft.date=1993-11&rft_id=info%3Adoi%2F10.1038%2F366362a0&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4311091%23id-name%3DS2CID&rft_id=info%3Apmid%2F8247133&rft_id=info%3Abibcode%2F1993Natur.366..362L&rft.aulast=Li&rft.aufirst=E&rft.au=Beard%2C+C&rft.au=Jaenisch%2C+R&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFViensMecholdBrouillardGilbert2006" class="citation journal cs1">Viens A, Mechold U, Brouillard F, Gilbert C, Leclerc P, Ogryzko V (July 2006). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1592707">"Analysis of human histone H2AZ deposition in vivo argues against its direct role in epigenetic templating mechanisms"</a>. <i>Molecular and Cellular Biology</i>. <b>26</b> (14): 5325–35. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1128%2FMCB.00584-06">10.1128/MCB.00584-06</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1592707">1592707</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16809769">16809769</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Molecular+and+Cellular+Biology&rft.atitle=Analysis+of+human+histone+H2AZ+deposition+in+vivo+argues+against+its+direct+role+in+epigenetic+templating+mechanisms&rft.volume=26&rft.issue=14&rft.pages=5325-35&rft.date=2006-07&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1592707%23id-name%3DPMC&rft_id=info%3Apmid%2F16809769&rft_id=info%3Adoi%2F10.1128%2FMCB.00584-06&rft.aulast=Viens&rft.aufirst=A&rft.au=Mechold%2C+U&rft.au=Brouillard%2C+F&rft.au=Gilbert%2C+C&rft.au=Leclerc%2C+P&rft.au=Ogryzko%2C+V&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1592707&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid18419815-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid18419815_46-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOgryzko2008" class="citation journal cs1">Ogryzko VV (April 2008). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2413215">"Erwin Schroedinger, Francis Crick and epigenetic stability"</a>. <i>Biology Direct</i>. <b>3</b>: 15. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1186%2F1745-6150-3-15">10.1186/1745-6150-3-15</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2413215">2413215</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18419815">18419815</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Biology+Direct&rft.atitle=Erwin+Schroedinger%2C+Francis+Crick+and+epigenetic+stability&rft.volume=3&rft.pages=15&rft.date=2008-04&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2413215%23id-name%3DPMC&rft_id=info%3Apmid%2F18419815&rft_id=info%3Adoi%2F10.1186%2F1745-6150-3-15&rft.aulast=Ogryzko&rft.aufirst=VV&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2413215&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid32300195-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid32300195_47-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarbieriKouzarides2020" class="citation journal cs1">Barbieri I, Kouzarides T (June 2020). "Role of RNA modifications in cancer". <i>Nature Reviews. Cancer</i>. <b>20</b> (6): 303–322. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41568-020-0253-2">10.1038/s41568-020-0253-2</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32300195">32300195</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Reviews.+Cancer&rft.atitle=Role+of+RNA+modifications+in+cancer&rft.volume=20&rft.issue=6&rft.pages=303-322&rft.date=2020-06&rft_id=info%3Adoi%2F10.1038%2Fs41568-020-0253-2&rft_id=info%3Apmid%2F32300195&rft.aulast=Barbieri&rft.aufirst=I&rft.au=Kouzarides%2C+T&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid19234061-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid19234061_48-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNottkeColaiácovoShi2009" class="citation journal cs1">Nottke A, Colaiácovo MP, Shi Y (March 2009). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2692332">"Developmental roles of the histone lysine demethylases"</a>. <i>Development</i>. <b>136</b> (6): 879–89. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1242%2Fdev.020966">10.1242/dev.020966</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2692332">2692332</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19234061">19234061</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Development&rft.atitle=Developmental+roles+of+the+histone+lysine+demethylases&rft.volume=136&rft.issue=6&rft.pages=879-89&rft.date=2009-03&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2692332%23id-name%3DPMC&rft_id=info%3Apmid%2F19234061&rft_id=info%3Adoi%2F10.1242%2Fdev.020966&rft.aulast=Nottke&rft.aufirst=A&rft.au=Colai%C3%A1covo%2C+MP&rft.au=Shi%2C+Y&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2692332&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-Rosenfeld_2009-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-Rosenfeld_2009_49-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRosenfeldWangSchonesZhao2009" class="citation journal cs1">Rosenfeld JA, Wang Z, Schones DE, Zhao K, DeSalle R, Zhang MQ (March 2009). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2667539">"Determination of enriched histone modifications in non-genic portions of the human genome"</a>. <i>BMC Genomics</i>. <b>10</b>: 143. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1186%2F1471-2164-10-143">10.1186/1471-2164-10-143</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2667539">2667539</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19335899">19335899</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=BMC+Genomics&rft.atitle=Determination+of+enriched+histone+modifications+in+non-genic+portions+of+the+human+genome&rft.volume=10&rft.pages=143&rft.date=2009-03&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2667539%23id-name%3DPMC&rft_id=info%3Apmid%2F19335899&rft_id=info%3Adoi%2F10.1186%2F1471-2164-10-143&rft.aulast=Rosenfeld&rft.aufirst=JA&rft.au=Wang%2C+Z&rft.au=Schones%2C+DE&rft.au=Zhao%2C+K&rft.au=DeSalle%2C+R&rft.au=Zhang%2C+MQ&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2667539&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSneppenMicheelsenDodd2008" class="citation journal cs1">Sneppen K, Micheelsen MA, Dodd IB (15 April 2008). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2387233">"Ultrasensitive gene regulation by positive feedback loops in nucleosome modification"</a>. <i>Molecular Systems Biology</i>. <b>4</b> (1): 182. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fmsb.2008.21">10.1038/msb.2008.21</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2387233">2387233</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18414483">18414483</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Molecular+Systems+Biology&rft.atitle=Ultrasensitive+gene+regulation+by+positive+feedback+loops+in+nucleosome+modification&rft.volume=4&rft.issue=1&rft.pages=182&rft.date=2008-04-15&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2387233%23id-name%3DPMC&rft_id=info%3Apmid%2F18414483&rft_id=info%3Adoi%2F10.1038%2Fmsb.2008.21&rft.aulast=Sneppen&rft.aufirst=K&rft.au=Micheelsen%2C+MA&rft.au=Dodd%2C+IB&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2387233&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20110930093915/http://cmol.nbi.dk/models/epigen/Epigen.html">"Epigenetic cell memory"</a>. Cmol.nbi.dk. Archived from <a rel="nofollow" class="external text" href="http://cmol.nbi.dk/models/epigen/Epigen.html">the original</a> on 30 September 2011<span class="reference-accessdate">. Retrieved <span class="nowrap">26 July</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Epigenetic+cell+memory&rft.pub=Cmol.nbi.dk&rft_id=http%3A%2F%2Fcmol.nbi.dk%2Fmodels%2Fepigen%2FEpigen.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid17512413-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid17512413_52-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDoddMicheelsenSneppenThon2007" class="citation journal cs1">Dodd IB, Micheelsen MA, Sneppen K, Thon G (May 2007). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cell.2007.02.053">"Theoretical analysis of epigenetic cell memory by nucleosome modification"</a>. <i>Cell</i>. <b>129</b> (4): 813–22. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cell.2007.02.053">10.1016/j.cell.2007.02.053</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17512413">17512413</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16091877">16091877</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cell&rft.atitle=Theoretical+analysis+of+epigenetic+cell+memory+by+nucleosome+modification&rft.volume=129&rft.issue=4&rft.pages=813-22&rft.date=2007-05&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16091877%23id-name%3DS2CID&rft_id=info%3Apmid%2F17512413&rft_id=info%3Adoi%2F10.1016%2Fj.cell.2007.02.053&rft.aulast=Dodd&rft.aufirst=IB&rft.au=Micheelsen%2C+MA&rft.au=Sneppen%2C+K&rft.au=Thon%2C+G&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.cell.2007.02.053&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-Morris-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-Morris_53-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMorris2008" class="citation book cs1">Morris KL (2008). "Epigenetic Regulation of Gene Expression". <i>RNA and the Regulation of Gene Expression: A Hidden Layer of Complexity</i>. Norfolk, England: Caister Academic Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-904455-25-7" title="Special:BookSources/978-1-904455-25-7"><bdi>978-1-904455-25-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Epigenetic+Regulation+of+Gene+Expression&rft.btitle=RNA+and+the+Regulation+of+Gene+Expression%3A+A+Hidden+Layer+of+Complexity&rft.place=Norfolk%2C+England&rft.pub=Caister+Academic+Press&rft.date=2008&rft.isbn=978-1-904455-25-7&rft.aulast=Morris&rft.aufirst=KL&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span><sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (August 2013)">page needed</span></a></i>]</sup></span> </li> <li id="cite_note-pmid19154003-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid19154003_54-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMattickAmaralDingerMercer2009" class="citation journal cs1">Mattick JS, Amaral PP, Dinger ME, Mercer TR, Mehler MF (January 2009). <a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fbies.080099">"RNA regulation of epigenetic processes"</a>. <i>BioEssays</i>. <b>31</b> (1): 51–9. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fbies.080099">10.1002/bies.080099</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19154003">19154003</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:19293469">19293469</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=BioEssays&rft.atitle=RNA+regulation+of+epigenetic+processes&rft.volume=31&rft.issue=1&rft.pages=51-9&rft.date=2009-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A19293469%23id-name%3DS2CID&rft_id=info%3Apmid%2F19154003&rft_id=info%3Adoi%2F10.1002%2Fbies.080099&rft.aulast=Mattick&rft.aufirst=JS&rft.au=Amaral%2C+PP&rft.au=Dinger%2C+ME&rft.au=Mercer%2C+TR&rft.au=Mehler%2C+MF&rft_id=https%3A%2F%2Fdoi.org%2F10.1002%252Fbies.080099&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-choi06-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-choi06_55-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChoi2006" class="citation web cs1">Choi CQ (25 May 2006). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20070208182915/http://www.the-scientist.com/news/display/23494/">"RNA can be hereditary molecule"</a>. <i>The Scientist</i>. Archived from <a rel="nofollow" class="external text" href="http://www.the-scientist.com/news/display/23494/">the original</a> on 8 February 2007.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+Scientist&rft.atitle=RNA+can+be+hereditary+molecule&rft.date=2006-05-25&rft.aulast=Choi&rft.aufirst=CQ&rft_id=http%3A%2F%2Fwww.the-scientist.com%2Fnews%2Fdisplay%2F23494%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-Wang-56"><span class="mw-cite-backlink">^ <a href="#cite_ref-Wang_56-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Wang_56-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Wang_56-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWangYaoLinZhu2013" class="citation journal cs1">Wang Z, Yao H, Lin S, Zhu X, Shen Z, Lu G, et al. (April 2013). "Transcriptional and epigenetic regulation of human microRNAs". <i>Cancer Letters</i>. <b>331</b> (1): 1–10. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.canlet.2012.12.006">10.1016/j.canlet.2012.12.006</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23246373">23246373</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cancer+Letters&rft.atitle=Transcriptional+and+epigenetic+regulation+of+human+microRNAs&rft.volume=331&rft.issue=1&rft.pages=1-10&rft.date=2013-04&rft_id=info%3Adoi%2F10.1016%2Fj.canlet.2012.12.006&rft_id=info%3Apmid%2F23246373&rft.aulast=Wang&rft.aufirst=Z&rft.au=Yao%2C+H&rft.au=Lin%2C+S&rft.au=Zhu%2C+X&rft.au=Shen%2C+Z&rft.au=Lu%2C+G&rft.au=Poon%2C+WS&rft.au=Xie%2C+D&rft.au=Lin%2C+MC&rft.au=Kung%2C+HF&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.mirbase.org/cgi-bin/browse.pl">"Browse miRBase by species"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Browse+miRBase+by+species&rft_id=http%3A%2F%2Fwww.mirbase.org%2Fcgi-bin%2Fbrowse.pl&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLimLauGarrett-EngeleGrimson2005" class="citation journal cs1">Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, et al. (February 2005). "Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs". <i>Nature</i>. <b>433</b> (7027): 769–73. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005Natur.433..769L">2005Natur.433..769L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature03315">10.1038/nature03315</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15685193">15685193</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4430576">4430576</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Microarray+analysis+shows+that+some+microRNAs+downregulate+large+numbers+of+target+mRNAs&rft.volume=433&rft.issue=7027&rft.pages=769-73&rft.date=2005-02&rft_id=info%3Adoi%2F10.1038%2Fnature03315&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4430576%23id-name%3DS2CID&rft_id=info%3Apmid%2F15685193&rft_id=info%3Abibcode%2F2005Natur.433..769L&rft.aulast=Lim&rft.aufirst=LP&rft.au=Lau%2C+NC&rft.au=Garrett-Engele%2C+P&rft.au=Grimson%2C+A&rft.au=Schelter%2C+JM&rft.au=Castle%2C+J&rft.au=Bartel%2C+DP&rft.au=Linsley%2C+PS&rft.au=Johnson%2C+JM&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeeShin2012" class="citation journal cs1">Lee D, Shin C (October 2012). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3499661">"MicroRNA-target interactions: new insights from genome-wide approaches"</a>. <i>Annals of the New York Academy of Sciences</i>. <b>1271</b> (1): 118–28. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012NYASA1271..118L">2012NYASA1271..118L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1749-6632.2012.06745.x">10.1111/j.1749-6632.2012.06745.x</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3499661">3499661</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23050973">23050973</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.atitle=MicroRNA-target+interactions%3A+new+insights+from+genome-wide+approaches&rft.volume=1271&rft.issue=1&rft.pages=118-28&rft.date=2012-10&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3499661%23id-name%3DPMC&rft_id=info%3Apmid%2F23050973&rft_id=info%3Adoi%2F10.1111%2Fj.1749-6632.2012.06745.x&rft_id=info%3Abibcode%2F2012NYASA1271..118L&rft.aulast=Lee&rft.aufirst=D&rft.au=Shin%2C+C&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3499661&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFriedmanFarhBurgeBartel2009" class="citation journal cs1">Friedman RC, Farh KK, Burge CB, Bartel DP (January 2009). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2612969">"Most mammalian mRNAs are conserved targets of microRNAs"</a>. <i>Genome Research</i>. <b>19</b> (1): 92–105. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1101%2Fgr.082701.108">10.1101/gr.082701.108</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2612969">2612969</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18955434">18955434</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Genome+Research&rft.atitle=Most+mammalian+mRNAs+are+conserved+targets+of+microRNAs&rft.volume=19&rft.issue=1&rft.pages=92-105&rft.date=2009-01&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2612969%23id-name%3DPMC&rft_id=info%3Apmid%2F18955434&rft_id=info%3Adoi%2F10.1101%2Fgr.082701.108&rft.aulast=Friedman&rft.aufirst=RC&rft.au=Farh%2C+KK&rft.au=Burge%2C+CB&rft.au=Bartel%2C+DP&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2612969&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGollBestor2005" class="citation journal cs1">Goll MG, Bestor TH (2005). "Eukaryotic cytosine methyltransferases". <i>Annual Review of Biochemistry</i>. <b>74</b>: 481–514. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1146%2Fannurev.biochem.74.010904.153721">10.1146/annurev.biochem.74.010904.153721</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15952895">15952895</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:32123961">32123961</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annual+Review+of+Biochemistry&rft.atitle=Eukaryotic+cytosine+methyltransferases&rft.volume=74&rft.pages=481-514&rft.date=2005&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A32123961%23id-name%3DS2CID&rft_id=info%3Apmid%2F15952895&rft_id=info%3Adoi%2F10.1146%2Fannurev.biochem.74.010904.153721&rft.aulast=Goll&rft.aufirst=MG&rft.au=Bestor%2C+TH&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJiaFuZhaoDai2011" class="citation journal cs1">Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, et al. (October 2011). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218240">"N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO"</a>. <i>Nature Chemical Biology</i>. <b>7</b> (12): 885–7. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnchembio.687">10.1038/nchembio.687</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218240">3218240</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22002720">22002720</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Chemical+Biology&rft.atitle=N6-methyladenosine+in+nuclear+RNA+is+a+major+substrate+of+the+obesity-associated+FTO&rft.volume=7&rft.issue=12&rft.pages=885-7&rft.date=2011-10&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3218240%23id-name%3DPMC&rft_id=info%3Apmid%2F22002720&rft_id=info%3Adoi%2F10.1038%2Fnchembio.687&rft.aulast=Jia&rft.aufirst=G&rft.au=Fu%2C+Y&rft.au=Zhao%2C+X&rft.au=Dai%2C+Q&rft.au=Zheng%2C+G&rft.au=Yang%2C+Y&rft.au=Yi%2C+C&rft.au=Lindahl%2C+T&rft.au=Pan%2C+T&rft.au=Yang%2C+YG&rft.au=He%2C+C&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3218240&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.physorg.com/news/2011-10-links-common-rna-modification-obesity.html">"New research links common RNA modification to obesity"</a>. Physorg.com<span class="reference-accessdate">. Retrieved <span class="nowrap">26 July</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=New+research+links+common+RNA+modification+to+obesity&rft.pub=Physorg.com&rft_id=http%3A%2F%2Fwww.physorg.com%2Fnews%2F2011-10-links-common-rna-modification-obesity.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHowdenBeaumeHarrisonHernandez2013" class="citation journal cs1">Howden BP, Beaume M, Harrison PF, Hernandez D, Schrenzel J, Seemann T, et al. (August 2013). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3719707">"Analysis of the small RNA transcriptional response in multidrug-resistant Staphylococcus aureus after antimicrobial exposure"</a>. <i>Antimicrobial Agents and Chemotherapy</i>. <b>57</b> (8): 3864–74. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1128%2FAAC.00263-13">10.1128/AAC.00263-13</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3719707">3719707</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23733475">23733475</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Antimicrobial+Agents+and+Chemotherapy&rft.atitle=Analysis+of+the+small+RNA+transcriptional+response+in+multidrug-resistant+Staphylococcus+aureus+after+antimicrobial+exposure&rft.volume=57&rft.issue=8&rft.pages=3864-74&rft.date=2013-08&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3719707%23id-name%3DPMC&rft_id=info%3Apmid%2F23733475&rft_id=info%3Adoi%2F10.1128%2FAAC.00263-13&rft.aulast=Howden&rft.aufirst=BP&rft.au=Beaume%2C+M&rft.au=Harrison%2C+PF&rft.au=Hernandez%2C+D&rft.au=Schrenzel%2C+J&rft.au=Seemann%2C+T&rft.au=Francois%2C+P&rft.au=Stinear%2C+TP&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3719707&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20130926215123/http://ccb.bmi.ac.cn/srnatarbase/">"sRNATarBase 2.0 A comprehensive database of bacterial SRNA targets verified by experiments"</a>. Archived from <a rel="nofollow" class="external text" href="http://ccb.bmi.ac.cn/srnatarbase/">the original</a> on 26 September 2013.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=sRNATarBase+2.0+A+comprehensive+database+of+bacterial+SRNA+targets+verified+by+experiments&rft_id=http%3A%2F%2Fccb.bmi.ac.cn%2Fsrnatarbase%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20170608145627/http://srnamap.mbc.nctu.edu.tw/">"Genomics maps for small non-coding RNA's and their targets in microbial genomes"</a>. Archived from <a rel="nofollow" class="external text" href="http://srnamap.mbc.nctu.edu.tw/">the original</a> on 8 June 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">13 August</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Genomics+maps+for+small+non-coding+RNA%27s+and+their+targets+in+microbial+genomes&rft_id=http%3A%2F%2Fsrnamap.mbc.nctu.edu.tw%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text">Ruffo, Paola, et al. "Long-noncoding RNAs as epigenetic regulators in neurodegenerative diseases." Neural Regeneration Research 18.6 (2023): 1243.</span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBresnahanLeeClarkMa2023" class="citation journal cs1">Bresnahan ST, Lee E, Clark L, Ma R, Rangel J, Grozinger CM, et al. (June 2023). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258952">"Examining parent-of-origin effects on transcription and RNA methylation in mediating aggressive behavior in honey bees (Apis mellifera)"</a>. <i>BMC Genomics</i>. <b>24</b> (1): 315. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1186%2Fs12864-023-09411-4">10.1186/s12864-023-09411-4</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258952">10258952</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/37308882">37308882</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=BMC+Genomics&rft.atitle=Examining+parent-of-origin+effects+on+transcription+and+RNA+methylation+in+mediating+aggressive+behavior+in+honey+bees+%28Apis+mellifera%29&rft.volume=24&rft.issue=1&rft.pages=315&rft.date=2023-06&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC10258952%23id-name%3DPMC&rft_id=info%3Apmid%2F37308882&rft_id=info%3Adoi%2F10.1186%2Fs12864-023-09411-4&rft.aulast=Bresnahan&rft.aufirst=ST&rft.au=Lee%2C+E&rft.au=Clark%2C+L&rft.au=Ma%2C+R&rft.au=Rangel%2C+J&rft.au=Grozinger%2C+CM&rft.au=Li-Byarlay%2C+H&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC10258952&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYoolEdmunds1998" class="citation journal cs1">Yool A, Edmunds WJ (1998). "Epigenetic inheritance and prions". <i>Journal of Evolutionary Biology</i>. <b>11</b> (2): 241–42. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs000360050085">10.1007/s000360050085</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Evolutionary+Biology&rft.atitle=Epigenetic+inheritance+and+prions&rft.volume=11&rft.issue=2&rft.pages=241-42&rft.date=1998&rft_id=info%3Adoi%2F10.1007%2Fs000360050085&rft.aulast=Yool&rft.aufirst=A&rft.au=Edmunds%2C+WJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCox1965" class="citation journal cs1">Cox BS (1965). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fhdy.1965.65">"[PSI], a cytoplasmic suppressor of super-suppression in yeast"</a>. <i>Heredity</i>. <b>20</b> (4): 505–21. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fhdy.1965.65">10.1038/hdy.1965.65</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Heredity&rft.atitle=%5BPSI%5D%2C+a+cytoplasmic+suppressor+of+super-suppression+in+yeast&rft.volume=20&rft.issue=4&rft.pages=505-21&rft.date=1965&rft_id=info%3Adoi%2F10.1038%2Fhdy.1965.65&rft.aulast=Cox&rft.aufirst=BS&rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252Fhdy.1965.65&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid5573734-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid5573734_71-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLacroute1971" class="citation journal cs1">Lacroute F (May 1971). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC285125">"Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast"</a>. <i>Journal of Bacteriology</i>. <b>106</b> (2): 519–22. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1128%2FJB.106.2.519-522.1971">10.1128/JB.106.2.519-522.1971</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC285125">285125</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/5573734">5573734</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Bacteriology&rft.atitle=Non-Mendelian+mutation+allowing+ureidosuccinic+acid+uptake+in+yeast&rft.volume=106&rft.issue=2&rft.pages=519-22&rft.date=1971-05&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC285125%23id-name%3DPMC&rft_id=info%3Apmid%2F5573734&rft_id=info%3Adoi%2F10.1128%2FJB.106.2.519-522.1971&rft.aulast=Lacroute&rft.aufirst=F&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC285125&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid225301-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid225301_72-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiebmanSherman1979" class="citation journal cs1">Liebman SW, Sherman F (September 1979). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC218059">"Extrachromosomal psi+ determinant suppresses nonsense mutations in yeast"</a>. <i>Journal of Bacteriology</i>. <b>139</b> (3): 1068–71. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1128%2FJB.139.3.1068-1071.1979">10.1128/JB.139.3.1068-1071.1979</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC218059">218059</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/225301">225301</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Bacteriology&rft.atitle=Extrachromosomal+psi%2B+determinant+suppresses+nonsense+mutations+in+yeast&rft.volume=139&rft.issue=3&rft.pages=1068-71&rft.date=1979-09&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC218059%23id-name%3DPMC&rft_id=info%3Apmid%2F225301&rft_id=info%3Adoi%2F10.1128%2FJB.139.3.1068-1071.1979&rft.aulast=Liebman&rft.aufirst=SW&rft.au=Sherman%2C+F&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC218059&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid11028992-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid11028992_73-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTrueLindquist2000" class="citation journal cs1">True HL, Lindquist SL (September 2000). "A yeast prion provides a mechanism for genetic variation and phenotypic diversity". <i>Nature</i>. <b>407</b> (6803): 477–83. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000Natur.407..477T">2000Natur.407..477T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F35035005">10.1038/35035005</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11028992">11028992</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4411231">4411231</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=A+yeast+prion+provides+a+mechanism+for+genetic+variation+and+phenotypic+diversity&rft.volume=407&rft.issue=6803&rft.pages=477-83&rft.date=2000-09&rft_id=info%3Adoi%2F10.1038%2F35035005&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4411231%23id-name%3DS2CID&rft_id=info%3Apmid%2F11028992&rft_id=info%3Abibcode%2F2000Natur.407..477T&rft.aulast=True&rft.aufirst=HL&rft.au=Lindquist%2C+SL&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid15931169-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid15931169_74-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShorterLindquist2005" class="citation journal cs1">Shorter J, Lindquist S (June 2005). "Prions as adaptive conduits of memory and inheritance". <i>Nature Reviews. Genetics</i>. <b>6</b> (6): 435–50. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnrg1616">10.1038/nrg1616</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15931169">15931169</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:5575951">5575951</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Reviews.+Genetics&rft.atitle=Prions+as+adaptive+conduits+of+memory+and+inheritance&rft.volume=6&rft.issue=6&rft.pages=435-50&rft.date=2005-06&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A5575951%23id-name%3DS2CID&rft_id=info%3Apmid%2F15931169&rft_id=info%3Adoi%2F10.1038%2Fnrg1616&rft.aulast=Shorter&rft.aufirst=J&rft.au=Lindquist%2C+S&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGiacomelliHancockMasel2007" class="citation journal cs1">Giacomelli MG, Hancock AS, <a href="/wiki/Joanna_Masel" title="Joanna Masel">Masel J</a> (February 2007). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1808353">"The conversion of 3' UTRs into coding regions"</a>. <i>Molecular Biology and Evolution</i>. <b>24</b> (2): 457–64. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fmolbev%2Fmsl172">10.1093/molbev/msl172</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1808353">1808353</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17099057">17099057</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Molecular+Biology+and+Evolution&rft.atitle=The+conversion+of+3%27+UTRs+into+coding+regions&rft.volume=24&rft.issue=2&rft.pages=457-64&rft.date=2007-02&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1808353%23id-name%3DPMC&rft_id=info%3Apmid%2F17099057&rft_id=info%3Adoi%2F10.1093%2Fmolbev%2Fmsl172&rft.aulast=Giacomelli&rft.aufirst=MG&rft.au=Hancock%2C+AS&rft.au=Masel%2C+J&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1808353&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLancasterBardillTrueMasel2010" class="citation journal cs1">Lancaster AK, Bardill JP, True HL, Masel J (February 2010). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828720">"The spontaneous appearance rate of the yeast prion [PSI+] and its implications for the evolution of the evolvability properties of the [PSI+] system"</a>. <i>Genetics</i>. <b>184</b> (2): 393–400. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1534%2Fgenetics.109.110213">10.1534/genetics.109.110213</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828720">2828720</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19917766">19917766</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Genetics&rft.atitle=The+spontaneous+appearance+rate+of+the+yeast+prion+%5BPSI%2B%5D+and+its+implications+for+the+evolution+of+the+evolvability+properties+of+the+%5BPSI%2B%5D+system&rft.volume=184&rft.issue=2&rft.pages=393-400&rft.date=2010-02&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2828720%23id-name%3DPMC&rft_id=info%3Apmid%2F19917766&rft_id=info%3Adoi%2F10.1534%2Fgenetics.109.110213&rft.aulast=Lancaster&rft.aufirst=AK&rft.au=Bardill%2C+JP&rft.au=True%2C+HL&rft.au=Masel%2C+J&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2828720&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGarciaCampbellJakobsonTsuchiya2021" class="citation journal cs1">Garcia DM, Campbell EA, Jakobson CM, Tsuchiya M, Shaw EA, DiNardo AL, et al. (September 2021). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455135">"A prion accelerates proliferation at the expense of lifespan"</a>. <i>eLife</i>. <b>10</b>: e60917. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.7554%2FeLife.60917">10.7554/eLife.60917</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455135">8455135</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/34545808">34545808</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=eLife&rft.atitle=A+prion+accelerates+proliferation+at+the+expense+of+lifespan&rft.volume=10&rft.pages=e60917&rft.date=2021-09&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8455135%23id-name%3DPMC&rft_id=info%3Apmid%2F34545808&rft_id=info%3Adoi%2F10.7554%2FeLife.60917&rft.aulast=Garcia&rft.aufirst=DM&rft.au=Campbell%2C+EA&rft.au=Jakobson%2C+CM&rft.au=Tsuchiya%2C+M&rft.au=Shaw%2C+EA&rft.au=DiNardo%2C+AL&rft.au=Kaeberlein%2C+M&rft.au=Jarosz%2C+DF&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8455135&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-Topart-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-Topart_78-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTopartWernerArimondo2020" class="citation journal cs1">Topart C, Werner E, Arimondo PB (July 2020). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7330981">"Wandering along the epigenetic timeline"</a>. <i>Clin Epigenetics</i>. <b>12</b> (1): 97. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1186%2Fs13148-020-00893-7">10.1186/s13148-020-00893-7</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7330981">7330981</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32616071">32616071</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Clin+Epigenetics&rft.atitle=Wandering+along+the+epigenetic+timeline&rft.volume=12&rft.issue=1&rft.pages=97&rft.date=2020-07&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7330981%23id-name%3DPMC&rft_id=info%3Apmid%2F32616071&rft_id=info%3Adoi%2F10.1186%2Fs13148-020-00893-7&rft.aulast=Topart&rft.aufirst=C&rft.au=Werner%2C+E&rft.au=Arimondo%2C+PB&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7330981&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid17320501-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid17320501_79-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChandler2007" class="citation journal cs1">Chandler VL (February 2007). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cell.2007.02.007">"Paramutation: from maize to mice"</a>. <i>Cell</i>. <b>128</b> (4): 641–5. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cell.2007.02.007">10.1016/j.cell.2007.02.007</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17320501">17320501</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6928707">6928707</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cell&rft.atitle=Paramutation%3A+from+maize+to+mice&rft.volume=128&rft.issue=4&rft.pages=641-5&rft.date=2007-02&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6928707%23id-name%3DS2CID&rft_id=info%3Apmid%2F17320501&rft_id=info%3Adoi%2F10.1016%2Fj.cell.2007.02.007&rft.aulast=Chandler&rft.aufirst=VL&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.cell.2007.02.007&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-80">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZaidiLianvan_WijnenStein2017" class="citation book cs1">Zaidi SK, Lian JB, van Wijnen A, Stein JL, Stein GS (2017). "Mitotic Gene Bookmarking: An Epigenetic Mechanism for Coordination of Lineage Commitment, Cell Identity and Cell Growth". <i>RUNX Proteins in Development and Cancer</i>. Advances in Experimental Medicine and Biology. Vol. 962. pp. 95–102. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-981-10-3233-2_7">10.1007/978-981-10-3233-2_7</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-981-10-3231-8" title="Special:BookSources/978-981-10-3231-8"><bdi>978-981-10-3231-8</bdi></a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7233416">7233416</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28299653">28299653</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Mitotic+Gene+Bookmarking%3A+An+Epigenetic+Mechanism+for+Coordination+of+Lineage+Commitment%2C+Cell+Identity+and+Cell+Growth&rft.btitle=RUNX+Proteins+in+Development+and+Cancer&rft.series=Advances+in+Experimental+Medicine+and+Biology&rft.pages=95-102&rft.date=2017&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7233416%23id-name%3DPMC&rft_id=info%3Apmid%2F28299653&rft_id=info%3Adoi%2F10.1007%2F978-981-10-3233-2_7&rft.isbn=978-981-10-3231-8&rft.aulast=Zaidi&rft.aufirst=SK&rft.au=Lian%2C+JB&rft.au=van+Wijnen%2C+A&rft.au=Stein%2C+JL&rft.au=Stein%2C+GS&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSuterMartin2010" class="citation journal cs1">Suter CM, Martin DI (January 2010). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3137459">"Paramutation: the tip of an epigenetic iceberg?"</a>. <i>Trends in Genetics</i>. <b>26</b> (1): 9–14. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.tig.2009.11.003">10.1016/j.tig.2009.11.003</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3137459">3137459</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19945764">19945764</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Trends+in+Genetics&rft.atitle=Paramutation%3A+the+tip+of+an+epigenetic+iceberg%3F&rft.volume=26&rft.issue=1&rft.pages=9-14&rft.date=2010-01&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3137459%23id-name%3DPMC&rft_id=info%3Apmid%2F19945764&rft_id=info%3Adoi%2F10.1016%2Fj.tig.2009.11.003&rft.aulast=Suter&rft.aufirst=CM&rft.au=Martin%2C+DI&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3137459&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-82">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFerguson-Smith2011" class="citation journal cs1">Ferguson-Smith AC (July 2011). "Genomic imprinting: the emergence of an epigenetic paradigm". <i>Nature Reviews. Genetics</i>. <b>12</b> (8): 565–575. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnrg3032">10.1038/nrg3032</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21765458">21765458</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:23630392">23630392</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Reviews.+Genetics&rft.atitle=Genomic+imprinting%3A+the+emergence+of+an+epigenetic+paradigm&rft.volume=12&rft.issue=8&rft.pages=565-575&rft.date=2011-07&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A23630392%23id-name%3DS2CID&rft_id=info%3Apmid%2F21765458&rft_id=info%3Adoi%2F10.1038%2Fnrg3032&rft.aulast=Ferguson-Smith&rft.aufirst=AC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKovalchukBaulch2008" class="citation journal cs1">Kovalchuk O, Baulch JE (January 2008). <a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fem.20361">"Epigenetic changes and nontargeted radiation effects--is there a link?"</a>. <i>Environmental and Molecular Mutagenesis</i>. <b>49</b> (1): 16–25. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008EnvMM..49...16K">2008EnvMM..49...16K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fem.20361">10.1002/em.20361</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18172877">18172877</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:38705208">38705208</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Environmental+and+Molecular+Mutagenesis&rft.atitle=Epigenetic+changes+and+nontargeted+radiation+effects--is+there+a+link%3F&rft.volume=49&rft.issue=1&rft.pages=16-25&rft.date=2008-01&rft_id=info%3Adoi%2F10.1002%2Fem.20361&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A38705208%23id-name%3DS2CID&rft_id=info%3Apmid%2F18172877&rft_id=info%3Abibcode%2F2008EnvMM..49...16K&rft.aulast=Kovalchuk&rft.aufirst=O&rft.au=Baulch%2C+JE&rft_id=https%3A%2F%2Fdoi.org%2F10.1002%252Fem.20361&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-84">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIlnytskyyKovalchuk2011" class="citation journal cs1">Ilnytskyy Y, Kovalchuk O (September 2011). "Non-targeted radiation effects-an epigenetic connection". <i>Mutation Research</i>. <b>714</b> (1–2): 113–25. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011MRFMM.714..113I">2011MRFMM.714..113I</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.mrfmmm.2011.06.014">10.1016/j.mrfmmm.2011.06.014</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21784089">21784089</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mutation+Research&rft.atitle=Non-targeted+radiation+effects-an+epigenetic+connection&rft.volume=714&rft.issue=1%E2%80%932&rft.pages=113-25&rft.date=2011-09&rft_id=info%3Apmid%2F21784089&rft_id=info%3Adoi%2F10.1016%2Fj.mrfmmm.2011.06.014&rft_id=info%3Abibcode%2F2011MRFMM.714..113I&rft.aulast=Ilnytskyy&rft.aufirst=Y&rft.au=Kovalchuk%2C+O&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-85">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFriedlMazurekSeiler2012" class="citation journal cs1">Friedl AA, Mazurek B, Seiler DM (2012). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3445916">"Radiation-induced alterations in histone modification patterns and their potential impact on short-term radiation effects"</a>. <i>Frontiers in Oncology</i>. <b>2</b>: 117. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3389%2Ffonc.2012.00117">10.3389/fonc.2012.00117</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3445916">3445916</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23050241">23050241</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Frontiers+in+Oncology&rft.atitle=Radiation-induced+alterations+in+histone+modification+patterns+and+their+potential+impact+on+short-term+radiation+effects&rft.volume=2&rft.pages=117&rft.date=2012&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3445916%23id-name%3DPMC&rft_id=info%3Apmid%2F23050241&rft_id=info%3Adoi%2F10.3389%2Ffonc.2012.00117&rft.aulast=Friedl&rft.aufirst=AA&rft.au=Mazurek%2C+B&rft.au=Seiler%2C+DM&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3445916&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-86">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCuozzoPorcelliniAngrisanoMorano2007" class="citation journal cs1">Cuozzo C, Porcellini A, Angrisano T, Morano A, Lee B, Di Pardo A, et al. (July 2007). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1913100">"DNA damage, homology-directed repair, and DNA methylation"</a>. <i>PLOS Genetics</i>. <b>3</b> (7): e110. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1371%2Fjournal.pgen.0030110">10.1371/journal.pgen.0030110</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1913100">1913100</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17616978">17616978</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PLOS+Genetics&rft.atitle=DNA+damage%2C+homology-directed+repair%2C+and+DNA+methylation&rft.volume=3&rft.issue=7&rft.pages=e110&rft.date=2007-07&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1913100%23id-name%3DPMC&rft_id=info%3Apmid%2F17616978&rft_id=info%3Adoi%2F10.1371%2Fjournal.pgen.0030110&rft.aulast=Cuozzo&rft.aufirst=C&rft.au=Porcellini%2C+A&rft.au=Angrisano%2C+T&rft.au=Morano%2C+A&rft.au=Lee%2C+B&rft.au=Di+Pardo%2C+A&rft.au=Messina%2C+S&rft.au=Iuliano%2C+R&rft.au=Fusco%2C+A&rft.au=Santillo%2C+MR&rft.au=Muller%2C+MT&rft.au=Chiariotti%2C+L&rft.au=Gottesman%2C+ME&rft.au=Avvedimento%2C+EV&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1913100&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-87">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO'HaganMohammadBaylin2008" class="citation journal cs1">O'Hagan HM, Mohammad HP, Baylin SB (August 2008). Lee JT (ed.). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2491723">"Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island"</a>. <i>PLOS Genetics</i>. <b>4</b> (8): e1000155. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1371%2Fjournal.pgen.1000155">10.1371/journal.pgen.1000155</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2491723">2491723</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18704159">18704159</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PLOS+Genetics&rft.atitle=Double+strand+breaks+can+initiate+gene+silencing+and+SIRT1-dependent+onset+of+DNA+methylation+in+an+exogenous+promoter+CpG+island&rft.volume=4&rft.issue=8&rft.pages=e1000155&rft.date=2008-08&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2491723%23id-name%3DPMC&rft_id=info%3Apmid%2F18704159&rft_id=info%3Adoi%2F10.1371%2Fjournal.pgen.1000155&rft.aulast=O%27Hagan&rft.aufirst=HM&rft.au=Mohammad%2C+HP&rft.au=Baylin%2C+SB&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2491723&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-88">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMalangaAlthaus2005" class="citation journal cs1">Malanga M, Althaus FR (June 2005). <a rel="nofollow" class="external text" href="https://www.zora.uzh.ch/id/eprint/5838/1/RPViewDoc.pdf">"The role of poly(ADP-ribose) in the DNA damage signaling network"</a> <span class="cs1-format">(PDF)</span>. <i>Biochemistry and Cell Biology</i>. <b>83</b> (3): 354–64. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1139%2Fo05-038">10.1139/o05-038</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15959561">15959561</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Biochemistry+and+Cell+Biology&rft.atitle=The+role+of+poly%28ADP-ribose%29+in+the+DNA+damage+signaling+network&rft.volume=83&rft.issue=3&rft.pages=354-64&rft.date=2005-06&rft_id=info%3Adoi%2F10.1139%2Fo05-038&rft_id=info%3Apmid%2F15959561&rft.aulast=Malanga&rft.aufirst=M&rft.au=Althaus%2C+FR&rft_id=https%3A%2F%2Fwww.zora.uzh.ch%2Fid%2Feprint%2F5838%2F1%2FRPViewDoc.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-89">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGottschalkTiminszkyKongJin2009" class="citation journal cs1">Gottschalk AJ, Timinszky G, Kong SE, Jin J, Cai Y, Swanson SK, et al. (August 2009). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2722505">"Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler"</a>. <i>Proceedings of the National Academy of Sciences of the United States of America</i>. <b>106</b> (33): 13770–4. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009PNAS..10613770G">2009PNAS..10613770G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.0906920106">10.1073/pnas.0906920106</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2722505">2722505</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19666485">19666485</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+of+the+United+States+of+America&rft.atitle=Poly%28ADP-ribosyl%29ation+directs+recruitment+and+activation+of+an+ATP-dependent+chromatin+remodeler&rft.volume=106&rft.issue=33&rft.pages=13770-4&rft.date=2009-08&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2722505%23id-name%3DPMC&rft_id=info%3Apmid%2F19666485&rft_id=info%3Adoi%2F10.1073%2Fpnas.0906920106&rft_id=info%3Abibcode%2F2009PNAS..10613770G&rft.aulast=Gottschalk&rft.aufirst=AJ&rft.au=Timinszky%2C+G&rft.au=Kong%2C+SE&rft.au=Jin%2C+J&rft.au=Cai%2C+Y&rft.au=Swanson%2C+SK&rft.au=Washburn%2C+MP&rft.au=Florens%2C+L&rft.au=Ladurner%2C+AG&rft.au=Conaway%2C+JW&rft.au=Conaway%2C+RC&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2722505&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLinJeongLiangTakai2007" class="citation journal cs1">Lin JC, Jeong S, Liang G, Takai D, Fatemi M, Tsai YC, et al. (November 2007). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4657456">"Role of nucleosomal occupancy in the epigenetic silencing of the MLH1 CpG island"</a>. <i>Cancer Cell</i>. <b>12</b> (5): 432–44. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ccr.2007.10.014">10.1016/j.ccr.2007.10.014</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4657456">4657456</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17996647">17996647</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cancer+Cell&rft.atitle=Role+of+nucleosomal+occupancy+in+the+epigenetic+silencing+of+the+MLH1+CpG+island&rft.volume=12&rft.issue=5&rft.pages=432-44&rft.date=2007-11&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4657456%23id-name%3DPMC&rft_id=info%3Apmid%2F17996647&rft_id=info%3Adoi%2F10.1016%2Fj.ccr.2007.10.014&rft.aulast=Lin&rft.aufirst=JC&rft.au=Jeong%2C+S&rft.au=Liang%2C+G&rft.au=Takai%2C+D&rft.au=Fatemi%2C+M&rft.au=Tsai%2C+YC&rft.au=Egger%2C+G&rft.au=Gal-Yam%2C+EN&rft.au=Jones%2C+PA&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4657456&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-91">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTabishPoelsHoetGodderis2012" class="citation journal cs1">Tabish AM, Poels K, Hoet P, Godderis L (2012). Chiariotti L (ed.). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324488">"Epigenetic factors in cancer risk: effect of chemical carcinogens on global DNA methylation pattern in human TK6 cells"</a>. <i>PLOS ONE</i>. <b>7</b> (4): e34674. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012PLoSO...734674T">2012PLoSO...734674T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1371%2Fjournal.pone.0034674">10.1371/journal.pone.0034674</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324488">3324488</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22509344">22509344</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PLOS+ONE&rft.atitle=Epigenetic+factors+in+cancer+risk%3A+effect+of+chemical+carcinogens+on+global+DNA+methylation+pattern+in+human+TK6+cells&rft.volume=7&rft.issue=4&rft.pages=e34674&rft.date=2012&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3324488%23id-name%3DPMC&rft_id=info%3Apmid%2F22509344&rft_id=info%3Adoi%2F10.1371%2Fjournal.pone.0034674&rft_id=info%3Abibcode%2F2012PLoSO...734674T&rft.aulast=Tabish&rft.aufirst=AM&rft.au=Poels%2C+K&rft.au=Hoet%2C+P&rft.au=Godderis%2C+L&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3324488&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-92">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBurdgeHoileUllerThomas2011" class="citation journal cs1">Burdge GC, Hoile SP, Uller T, Thomas NA, Gluckman PD, Hanson MA, et al. (2011). Imhof A (ed.). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227644">"Progressive, transgenerational changes in offspring phenotype and epigenotype following nutritional transition"</a>. <i>PLOS ONE</i>. <b>6</b> (11): e28282. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011PLoSO...628282B">2011PLoSO...628282B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1371%2Fjournal.pone.0028282">10.1371/journal.pone.0028282</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227644">3227644</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22140567">22140567</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PLOS+ONE&rft.atitle=Progressive%2C+transgenerational+changes+in+offspring+phenotype+and+epigenotype+following+nutritional+transition&rft.volume=6&rft.issue=11&rft.pages=e28282&rft.date=2011&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3227644%23id-name%3DPMC&rft_id=info%3Apmid%2F22140567&rft_id=info%3Adoi%2F10.1371%2Fjournal.pone.0028282&rft_id=info%3Abibcode%2F2011PLoSO...628282B&rft.aulast=Burdge&rft.aufirst=GC&rft.au=Hoile%2C+SP&rft.au=Uller%2C+T&rft.au=Thomas%2C+NA&rft.au=Gluckman%2C+PD&rft.au=Hanson%2C+MA&rft.au=Lillycrop%2C+KA&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3227644&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-93">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFangChenYang2007" class="citation journal cs1">Fang M, Chen D, Yang CS (January 2007). <a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fjn%2F137.1.223S">"Dietary polyphenols may affect DNA methylation"</a>. <i>The Journal of Nutrition</i>. <b>137</b> (1 Suppl): 223S–228S. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fjn%2F137.1.223S">10.1093/jn/137.1.223S</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17182830">17182830</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Journal+of+Nutrition&rft.atitle=Dietary+polyphenols+may+affect+DNA+methylation&rft.volume=137&rft.issue=1+Suppl&rft.pages=223S-228S&rft.date=2007-01&rft_id=info%3Adoi%2F10.1093%2Fjn%2F137.1.223S&rft_id=info%3Apmid%2F17182830&rft.aulast=Fang&rft.aufirst=M&rft.au=Chen%2C+D&rft.au=Yang%2C+CS&rft_id=https%3A%2F%2Fdoi.org%2F10.1093%252Fjn%252F137.1.223S&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-94">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOlaharskiRineMarshallBabiarz2005" class="citation journal cs1">Olaharski AJ, Rine J, Marshall BL, Babiarz J, Zhang L, Verdin E, et al. (December 2005). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1315280">"The flavoring agent dihydrocoumarin reverses epigenetic silencing and inhibits sirtuin deacetylases"</a>. <i>PLOS Genetics</i>. <b>1</b> (6): e77. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1371%2Fjournal.pgen.0010077">10.1371/journal.pgen.0010077</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1315280">1315280</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16362078">16362078</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PLOS+Genetics&rft.atitle=The+flavoring+agent+dihydrocoumarin+reverses+epigenetic+silencing+and+inhibits+sirtuin+deacetylases&rft.volume=1&rft.issue=6&rft.pages=e77&rft.date=2005-12&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1315280%23id-name%3DPMC&rft_id=info%3Apmid%2F16362078&rft_id=info%3Adoi%2F10.1371%2Fjournal.pgen.0010077&rft.aulast=Olaharski&rft.aufirst=AJ&rft.au=Rine%2C+J&rft.au=Marshall%2C+BL&rft.au=Babiarz%2C+J&rft.au=Zhang%2C+L&rft.au=Verdin%2C+E&rft.au=Smith%2C+MT&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1315280&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-95">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDjuricChenDoergeHeilbrun2001" class="citation journal cs1">Djuric Z, Chen G, Doerge DR, Heilbrun LK, Kucuk O (October 2001). "Effect of soy isoflavone supplementation on markers of oxidative stress in men and women". <i>Cancer Letters</i>. <b>172</b> (1): 1–6. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0304-3835%2801%2900627-9">10.1016/S0304-3835(01)00627-9</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11595123">11595123</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cancer+Letters&rft.atitle=Effect+of+soy+isoflavone+supplementation+on+markers+of+oxidative+stress+in+men+and+women&rft.volume=172&rft.issue=1&rft.pages=1-6&rft.date=2001-10&rft_id=info%3Adoi%2F10.1016%2FS0304-3835%2801%2900627-9&rft_id=info%3Apmid%2F11595123&rft.aulast=Djuric&rft.aufirst=Z&rft.au=Chen%2C+G&rft.au=Doerge%2C+DR&rft.au=Heilbrun%2C+LK&rft.au=Kucuk%2C+O&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-96">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKropatMuellerBoettlerZimmermann2013" class="citation journal cs1">Kropat C, Mueller D, Boettler U, Zimmermann K, Heiss EH, Dirsch VM, et al. (March 2013). "Modulation of Nrf2-dependent gene transcription by bilberry anthocyanins in vivo". <i>Molecular Nutrition & Food Research</i>. <b>57</b> (3): 545–50. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fmnfr.201200504">10.1002/mnfr.201200504</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23349102">23349102</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Molecular+Nutrition+%26+Food+Research&rft.atitle=Modulation+of+Nrf2-dependent+gene+transcription+by+bilberry+anthocyanins+in+vivo&rft.volume=57&rft.issue=3&rft.pages=545-50&rft.date=2013-03&rft_id=info%3Adoi%2F10.1002%2Fmnfr.201200504&rft_id=info%3Apmid%2F23349102&rft.aulast=Kropat&rft.aufirst=C&rft.au=Mueller%2C+D&rft.au=Boettler%2C+U&rft.au=Zimmermann%2C+K&rft.au=Heiss%2C+EH&rft.au=Dirsch%2C+VM&rft.au=Rogoll%2C+D&rft.au=Melcher%2C+R&rft.au=Richling%2C+E&rft.au=Marko%2C+D&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid21163908-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid21163908_97-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSwenbergLuMoellerGao2011" class="citation journal cs1">Swenberg JA, Lu K, Moeller BC, Gao L, Upton PB, Nakamura J, et al. (March 2011). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3043087">"Endogenous versus exogenous DNA adducts: their role in carcinogenesis, epidemiology, and risk assessment"</a>. <i>Toxicol Sci</i>. <b>120</b> (Suppl 1): S130–45. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Ftoxsci%2Fkfq371">10.1093/toxsci/kfq371</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3043087">3043087</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21163908">21163908</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Toxicol+Sci&rft.atitle=Endogenous+versus+exogenous+DNA+adducts%3A+their+role+in+carcinogenesis%2C+epidemiology%2C+and+risk+assessment&rft.volume=120&rft.issue=Suppl+1&rft.pages=S130-45&rft.date=2011-03&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3043087%23id-name%3DPMC&rft_id=info%3Apmid%2F21163908&rft_id=info%3Adoi%2F10.1093%2Ftoxsci%2Fkfq371&rft.aulast=Swenberg&rft.aufirst=JA&rft.au=Lu%2C+K&rft.au=Moeller%2C+BC&rft.au=Gao%2C+L&rft.au=Upton%2C+PB&rft.au=Nakamura%2C+J&rft.au=Starr%2C+TB&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3043087&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-Hamilton-98"><span class="mw-cite-backlink">^ <a href="#cite_ref-Hamilton_98-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Hamilton_98-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHamiltonGuoFullerVan_Remmen2001" class="citation journal cs1">Hamilton ML, Guo Z, Fuller CD, Van Remmen H, Ward WF, Austad SN, et al. (May 2001). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC55450">"A reliable assessment of 8-oxo-2-deoxyguanosine levels in nuclear and mitochondrial DNA using the sodium iodide method to isolate DNA"</a>. <i>Nucleic Acids Res</i>. <b>29</b> (10): 2117–26. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fnar%2F29.10.2117">10.1093/nar/29.10.2117</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC55450">55450</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11353081">11353081</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nucleic+Acids+Res&rft.atitle=A+reliable+assessment+of+8-oxo-2-deoxyguanosine+levels+in+nuclear+and+mitochondrial+DNA+using+the+sodium+iodide+method+to+isolate+DNA&rft.volume=29&rft.issue=10&rft.pages=2117-26&rft.date=2001-05&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC55450%23id-name%3DPMC&rft_id=info%3Apmid%2F11353081&rft_id=info%3Adoi%2F10.1093%2Fnar%2F29.10.2117&rft.aulast=Hamilton&rft.aufirst=ML&rft.au=Guo%2C+Z&rft.au=Fuller%2C+CD&rft.au=Van+Remmen%2C+H&rft.au=Ward%2C+WF&rft.au=Austad%2C+SN&rft.au=Troyer%2C+DA&rft.au=Thompson%2C+I&rft.au=Richardson%2C+A&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC55450&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid24571128-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid24571128_99-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMingMatterSongVeliath2014" class="citation journal cs1">Ming X, Matter B, Song M, Veliath E, Shanley R, Jones R, et al. (March 2014). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985951">"Mapping structurally defined guanine oxidation products along DNA duplexes: influence of local sequence context and endogenous cytosine methylation"</a>. <i>J Am Chem Soc</i>. <b>136</b> (11): 4223–35. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014JAChS.136.4223M">2014JAChS.136.4223M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fja411636j">10.1021/ja411636j</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985951">3985951</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24571128">24571128</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=J+Am+Chem+Soc&rft.atitle=Mapping+structurally+defined+guanine+oxidation+products+along+DNA+duplexes%3A+influence+of+local+sequence+context+and+endogenous+cytosine+methylation&rft.volume=136&rft.issue=11&rft.pages=4223-35&rft.date=2014-03&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3985951%23id-name%3DPMC&rft_id=info%3Apmid%2F24571128&rft_id=info%3Adoi%2F10.1021%2Fja411636j&rft_id=info%3Abibcode%2F2014JAChS.136.4223M&rft.aulast=Ming&rft.aufirst=X&rft.au=Matter%2C+B&rft.au=Song%2C+M&rft.au=Veliath%2C+E&rft.au=Shanley%2C+R&rft.au=Jones%2C+R&rft.au=Tretyakova%2C+N&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3985951&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-Zhou-100"><span class="mw-cite-backlink">^ <a href="#cite_ref-Zhou_100-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Zhou_100-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Zhou_100-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhouZhuangWangHe2016" class="citation journal cs1">Zhou X, Zhuang Z, Wang W, He L, Wu H, Cao Y, et al. (September 2016). "OGG1 is essential in oxidative stress-induced DNA demethylation". <i>Cell Signal</i>. <b>28</b> (9): 1163–1171. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cellsig.2016.05.021">10.1016/j.cellsig.2016.05.021</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27251462">27251462</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cell+Signal&rft.atitle=OGG1+is+essential+in+oxidative+stress-induced+DNA+demethylation&rft.volume=28&rft.issue=9&rft.pages=1163-1171&rft.date=2016-09&rft_id=info%3Adoi%2F10.1016%2Fj.cellsig.2016.05.021&rft_id=info%3Apmid%2F27251462&rft.aulast=Zhou&rft.aufirst=X&rft.au=Zhuang%2C+Z&rft.au=Wang%2C+W&rft.au=He%2C+L&rft.au=Wu%2C+H&rft.au=Cao%2C+Y&rft.au=Pan%2C+F&rft.au=Zhao%2C+J&rft.au=Hu%2C+Z&rft.au=Sekhar%2C+C&rft.au=Guo%2C+Z&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid31993111-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid31993111_101-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPoetsch2020" class="citation journal cs1">Poetsch AR (2020). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974700">"The genomics of oxidative DNA damage, repair, and resulting mutagenesis"</a>. <i>Comput Struct Biotechnol J</i>. <b>18</b>: 207–219. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.csbj.2019.12.013">10.1016/j.csbj.2019.12.013</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974700">6974700</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31993111">31993111</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Comput+Struct+Biotechnol+J&rft.atitle=The+genomics+of+oxidative+DNA+damage%2C+repair%2C+and+resulting+mutagenesis&rft.volume=18&rft.pages=207-219&rft.date=2020&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6974700%23id-name%3DPMC&rft_id=info%3Apmid%2F31993111&rft_id=info%3Adoi%2F10.1016%2Fj.csbj.2019.12.013&rft.aulast=Poetsch&rft.aufirst=AR&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6974700&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid33171795-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid33171795_102-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFD'AugustinHuetCampalansRadicella2020" class="citation journal cs1">D'Augustin O, Huet S, Campalans A, Radicella JP (November 2020). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664663">"Lost in the Crowd: How Does Human 8-Oxoguanine DNA Glycosylase 1 (OGG1) Find 8-Oxoguanine in the Genome?"</a>. <i>Int J Mol Sci</i>. <b>21</b> (21): 8360. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fijms21218360">10.3390/ijms21218360</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664663">7664663</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33171795">33171795</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Int+J+Mol+Sci&rft.atitle=Lost+in+the+Crowd%3A+How+Does+Human+8-Oxoguanine+DNA+Glycosylase+1+%28OGG1%29+Find+8-Oxoguanine+in+the+Genome%3F&rft.volume=21&rft.issue=21&rft.pages=8360&rft.date=2020-11&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7664663%23id-name%3DPMC&rft_id=info%3Apmid%2F33171795&rft_id=info%3Adoi%2F10.3390%2Fijms21218360&rft.aulast=D%27Augustin&rft.aufirst=O&rft.au=Huet%2C+S&rft.au=Campalans%2C+A&rft.au=Radicella%2C+JP&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7664663&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid15365186-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid15365186_103-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLanNakajimaOohataTakao2004" class="citation journal cs1">Lan L, Nakajima S, Oohata Y, Takao M, Okano S, Masutani M, et al. (September 2004). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC518826">"In situ analysis of repair processes for oxidative DNA damage in mammalian cells"</a>. <i>Proc Natl Acad Sci U S A</i>. <b>101</b> (38): 13738–43. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004PNAS..10113738L">2004PNAS..10113738L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.0406048101">10.1073/pnas.0406048101</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC518826">518826</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15365186">15365186</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proc+Natl+Acad+Sci+U+S+A&rft.atitle=In+situ+analysis+of+repair+processes+for+oxidative+DNA+damage+in+mammalian+cells&rft.volume=101&rft.issue=38&rft.pages=13738-43&rft.date=2004-09&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC518826%23id-name%3DPMC&rft_id=info%3Apmid%2F15365186&rft_id=info%3Adoi%2F10.1073%2Fpnas.0406048101&rft_id=info%3Abibcode%2F2004PNAS..10113738L&rft.aulast=Lan&rft.aufirst=L&rft.au=Nakajima%2C+S&rft.au=Oohata%2C+Y&rft.au=Takao%2C+M&rft.au=Okano%2C+S&rft.au=Masutani%2C+M&rft.au=Wilson%2C+SH&rft.au=Yasui%2C+A&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC518826&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid24108092-104"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid24108092_104-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaederAngstmanRichardsonLinder2013" class="citation journal cs1">Maeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM, Tsai SQ, et al. (December 2013). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858462">"Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins"</a>. <i>Nat. Biotechnol</i>. <b>31</b> (12): 1137–42. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnbt.2726">10.1038/nbt.2726</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858462">3858462</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24108092">24108092</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nat.+Biotechnol.&rft.atitle=Targeted+DNA+demethylation+and+activation+of+endogenous+genes+using+programmable+TALE-TET1+fusion+proteins&rft.volume=31&rft.issue=12&rft.pages=1137-42&rft.date=2013-12&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3858462%23id-name%3DPMC&rft_id=info%3Apmid%2F24108092&rft_id=info%3Adoi%2F10.1038%2Fnbt.2726&rft.aulast=Maeder&rft.aufirst=ML&rft.au=Angstman%2C+JF&rft.au=Richardson%2C+ME&rft.au=Linder%2C+SJ&rft.au=Cascio%2C+VM&rft.au=Tsai%2C+SQ&rft.au=Ho%2C+QH&rft.au=Sander%2C+JD&rft.au=Reyon%2C+D&rft.au=Bernstein%2C+BE&rft.au=Costello%2C+JF&rft.au=Wilkinson%2C+MF&rft.au=Joung%2C+JK&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3858462&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid26186941-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid26186941_105-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDingBonhamHannonAmick2016" class="citation journal cs1">Ding N, Bonham EM, Hannon BE, Amick TR, Baylin SB, O'Hagan HM (June 2016). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937888">"Mismatch repair proteins recruit DNA methyltransferase 1 to sites of oxidative DNA damage"</a>. <i>J Mol Cell Biol</i>. <b>8</b> (3): 244–54. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fjmcb%2Fmjv050">10.1093/jmcb/mjv050</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937888">4937888</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26186941">26186941</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=J+Mol+Cell+Biol&rft.atitle=Mismatch+repair+proteins+recruit+DNA+methyltransferase+1+to+sites+of+oxidative+DNA+damage&rft.volume=8&rft.issue=3&rft.pages=244-54&rft.date=2016-06&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4937888%23id-name%3DPMC&rft_id=info%3Apmid%2F26186941&rft_id=info%3Adoi%2F10.1093%2Fjmcb%2Fmjv050&rft.aulast=Ding&rft.aufirst=N&rft.au=Bonham%2C+EM&rft.au=Hannon%2C+BE&rft.au=Amick%2C+TR&rft.au=Baylin%2C+SB&rft.au=O%27Hagan%2C+HM&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4937888&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-Jiang-106"><span class="mw-cite-backlink">^ <a href="#cite_ref-Jiang_106-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Jiang_106-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJiangLaiBeaverTsegay2020" class="citation journal cs1">Jiang Z, Lai Y, Beaver JM, Tsegay PS, Zhao ML, Horton JK, et al. (January 2020). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7016758">"Oxidative DNA Damage Modulates DNA Methylation Pattern in Human Breast Cancer 1 (BRCA1) Gene via the Crosstalk between DNA Polymerase β and a de novo DNA Methyltransferase"</a>. <i>Cells</i>. <b>9</b> (1): 225. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fcells9010225">10.3390/cells9010225</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7016758">7016758</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31963223">31963223</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cells&rft.atitle=Oxidative+DNA+Damage+Modulates+DNA+Methylation+Pattern+in+Human+Breast+Cancer+1+%28BRCA1%29+Gene+via+the+Crosstalk+between+DNA+Polymerase+%CE%B2+and+a+de+novo+DNA+Methyltransferase&rft.volume=9&rft.issue=1&rft.pages=225&rft.date=2020-01&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7016758%23id-name%3DPMC&rft_id=info%3Apmid%2F31963223&rft_id=info%3Adoi%2F10.3390%2Fcells9010225&rft.aulast=Jiang&rft.aufirst=Z&rft.au=Lai%2C+Y&rft.au=Beaver%2C+JM&rft.au=Tsegay%2C+PS&rft.au=Zhao%2C+ML&rft.au=Horton%2C+JK&rft.au=Zamora%2C+M&rft.au=Rein%2C+HL&rft.au=Miralles%2C+F&rft.au=Shaver%2C+M&rft.au=Hutcheson%2C+JD&rft.au=Agoulnik%2C+I&rft.au=Wilson%2C+SH&rft.au=Liu%2C+Y&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7016758&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid15956212-107"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid15956212_107-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMortusewiczSchermellehWalterCardoso2005" class="citation journal cs1">Mortusewicz O, Schermelleh L, Walter J, Cardoso MC, Leonhardt H (June 2005). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1157029">"Recruitment of DNA methyltransferase I to DNA repair sites"</a>. <i>Proc Natl Acad Sci U S A</i>. <b>102</b> (25): 8905–9. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005PNAS..102.8905M">2005PNAS..102.8905M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.0501034102">10.1073/pnas.0501034102</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1157029">1157029</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15956212">15956212</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proc+Natl+Acad+Sci+U+S+A&rft.atitle=Recruitment+of+DNA+methyltransferase+I+to+DNA+repair+sites&rft.volume=102&rft.issue=25&rft.pages=8905-9&rft.date=2005-06&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1157029%23id-name%3DPMC&rft_id=info%3Apmid%2F15956212&rft_id=info%3Adoi%2F10.1073%2Fpnas.0501034102&rft_id=info%3Abibcode%2F2005PNAS..102.8905M&rft.aulast=Mortusewicz&rft.aufirst=O&rft.au=Schermelleh%2C+L&rft.au=Walter%2C+J&rft.au=Cardoso%2C+MC&rft.au=Leonhardt%2C+H&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1157029&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-Cuozzo-108"><span class="mw-cite-backlink">^ <a href="#cite_ref-Cuozzo_108-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Cuozzo_108-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCuozzoPorcelliniAngrisanoMorano2007" class="citation journal cs1">Cuozzo C, Porcellini A, Angrisano T, Morano A, Lee B, Di Pardo A, et al. (July 2007). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1913100">"DNA damage, homology-directed repair, and DNA methylation"</a>. <i>PLOS Genet</i>. <b>3</b> (7): e110. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1371%2Fjournal.pgen.0030110">10.1371/journal.pgen.0030110</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1913100">1913100</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17616978">17616978</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PLOS+Genet&rft.atitle=DNA+damage%2C+homology-directed+repair%2C+and+DNA+methylation&rft.volume=3&rft.issue=7&rft.pages=e110&rft.date=2007-07&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1913100%23id-name%3DPMC&rft_id=info%3Apmid%2F17616978&rft_id=info%3Adoi%2F10.1371%2Fjournal.pgen.0030110&rft.aulast=Cuozzo&rft.aufirst=C&rft.au=Porcellini%2C+A&rft.au=Angrisano%2C+T&rft.au=Morano%2C+A&rft.au=Lee%2C+B&rft.au=Di+Pardo%2C+A&rft.au=Messina%2C+S&rft.au=Iuliano%2C+R&rft.au=Fusco%2C+A&rft.au=Santillo%2C+MR&rft.au=Muller%2C+MT&rft.au=Chiariotti%2C+L&rft.au=Gottesman%2C+ME&rft.au=Avvedimento%2C+EV&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1913100&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid18704159-109"><span class="mw-cite-backlink">^ <a href="#cite_ref-pmid18704159_109-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pmid18704159_109-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO'HaganMohammadBaylin2008" class="citation journal cs1">O'Hagan HM, Mohammad HP, Baylin SB (August 2008). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2491723">"Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island"</a>. <i>PLOS Genet</i>. <b>4</b> (8): e1000155. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1371%2Fjournal.pgen.1000155">10.1371/journal.pgen.1000155</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2491723">2491723</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18704159">18704159</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PLOS+Genet&rft.atitle=Double+strand+breaks+can+initiate+gene+silencing+and+SIRT1-dependent+onset+of+DNA+methylation+in+an+exogenous+promoter+CpG+island&rft.volume=4&rft.issue=8&rft.pages=e1000155&rft.date=2008-08&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2491723%23id-name%3DPMC&rft_id=info%3Apmid%2F18704159&rft_id=info%3Adoi%2F10.1371%2Fjournal.pgen.1000155&rft.aulast=O%27Hagan&rft.aufirst=HM&rft.au=Mohammad%2C+HP&rft.au=Baylin%2C+SB&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2491723&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid20940144-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid20940144_110-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHaLeePaliiBrown2011" class="citation journal cs1">Ha K, Lee GE, Palii SS, Brown KD, Takeda Y, Liu K, et al. (January 2011). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3000680">"Rapid and transient recruitment of DNMT1 to DNA double-strand breaks is mediated by its interaction with multiple components of the DNA damage response machinery"</a>. <i>Hum Mol Genet</i>. <b>20</b> (1): 126–40. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fhmg%2Fddq451">10.1093/hmg/ddq451</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3000680">3000680</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20940144">20940144</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Hum+Mol+Genet&rft.atitle=Rapid+and+transient+recruitment+of+DNMT1+to+DNA+double-strand+breaks+is+mediated+by+its+interaction+with+multiple+components+of+the+DNA+damage+response+machinery&rft.volume=20&rft.issue=1&rft.pages=126-40&rft.date=2011-01&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3000680%23id-name%3DPMC&rft_id=info%3Apmid%2F20940144&rft_id=info%3Adoi%2F10.1093%2Fhmg%2Fddq451&rft.aulast=Ha&rft.aufirst=K&rft.au=Lee%2C+GE&rft.au=Palii%2C+SS&rft.au=Brown%2C+KD&rft.au=Takeda%2C+Y&rft.au=Liu%2C+K&rft.au=Bhalla%2C+KN&rft.au=Robertson%2C+KD&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3000680&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid27629060-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid27629060_111-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRussoLandiPezoneMorano2016" class="citation journal cs1">Russo G, Landi R, Pezone A, Morano A, Zuchegna C, Romano A, et al. (September 2016). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5024116">"DNA damage and Repair Modify DNA methylation and Chromatin Domain of the Targeted Locus: Mechanism of allele methylation polymorphism"</a>. <i>Sci Rep</i>. <b>6</b>: 33222. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016NatSR...633222R">2016NatSR...633222R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fsrep33222">10.1038/srep33222</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5024116">5024116</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27629060">27629060</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Sci+Rep&rft.atitle=DNA+damage+and+Repair+Modify+DNA+methylation+and+Chromatin+Domain+of+the+Targeted+Locus%3A+Mechanism+of+allele+methylation+polymorphism&rft.volume=6&rft.pages=33222&rft.date=2016-09&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5024116%23id-name%3DPMC&rft_id=info%3Apmid%2F27629060&rft_id=info%3Adoi%2F10.1038%2Fsrep33222&rft_id=info%3Abibcode%2F2016NatSR...633222R&rft.aulast=Russo&rft.aufirst=G&rft.au=Landi%2C+R&rft.au=Pezone%2C+A&rft.au=Morano%2C+A&rft.au=Zuchegna%2C+C&rft.au=Romano%2C+A&rft.au=Muller%2C+MT&rft.au=Gottesman%2C+ME&rft.au=Porcellini%2C+A&rft.au=Avvedimento%2C+EV&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5024116&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid33267773-112"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid33267773_112-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFarrisTexterMoraWiles2020" class="citation journal cs1">Farris MH, Texter PA, Mora AA, Wiles MV, Mac Garrigle EF, Klaus SA, et al. (December 2020). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7709351">"Detection of CRISPR-mediated genome modifications through altered methylation patterns of CpG islands"</a>. <i>BMC Genomics</i>. <b>21</b> (1): 856. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1186%2Fs12864-020-07233-2">10.1186/s12864-020-07233-2</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7709351">7709351</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33267773">33267773</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=BMC+Genomics&rft.atitle=Detection+of+CRISPR-mediated+genome+modifications+through+altered+methylation+patterns+of+CpG+islands&rft.volume=21&rft.issue=1&rft.pages=856&rft.date=2020-12&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7709351%23id-name%3DPMC&rft_id=info%3Apmid%2F33267773&rft_id=info%3Adoi%2F10.1186%2Fs12864-020-07233-2&rft.aulast=Farris&rft.aufirst=MH&rft.au=Texter%2C+PA&rft.au=Mora%2C+AA&rft.au=Wiles%2C+MV&rft.au=Mac+Garrigle%2C+EF&rft.au=Klaus%2C+SA&rft.au=Rosfjord%2C+K&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7709351&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid28423717-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid28423717_113-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAllenPezonePorcelliniMuller2017" class="citation journal cs1">Allen B, Pezone A, Porcellini A, Muller MT, Masternak MM (June 2017). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5522286">"Non-homologous end joining induced alterations in DNA methylation: A source of permanent epigenetic change"</a>. <i>Oncotarget</i>. <b>8</b> (25): 40359–40372. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.18632%2Foncotarget.16122">10.18632/oncotarget.16122</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5522286">5522286</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28423717">28423717</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Oncotarget&rft.atitle=Non-homologous+end+joining+induced+alterations+in+DNA+methylation%3A+A+source+of+permanent+epigenetic+change&rft.volume=8&rft.issue=25&rft.pages=40359-40372&rft.date=2017-06&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5522286%23id-name%3DPMC&rft_id=info%3Apmid%2F28423717&rft_id=info%3Adoi%2F10.18632%2Foncotarget.16122&rft.aulast=Allen&rft.aufirst=B&rft.au=Pezone%2C+A&rft.au=Porcellini%2C+A&rft.au=Muller%2C+MT&rft.au=Masternak%2C+MM&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5522286&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-verma-114"><span class="mw-cite-backlink">^ <a href="#cite_ref-verma_114-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-verma_114-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVermaRogersDiviSchully2014" class="citation journal cs1">Verma M, Rogers S, Divi RL, Schully SD, Nelson S, Joseph Su L, et al. (February 2014). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3925982">"Epigenetic research in cancer epidemiology: trends, opportunities, and challenges"</a>. <i>Cancer Epidemiology, Biomarkers & Prevention</i>. <b>23</b> (2): 223–33. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1158%2F1055-9965.EPI-13-0573">10.1158/1055-9965.EPI-13-0573</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3925982">3925982</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24326628">24326628</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cancer+Epidemiology%2C+Biomarkers+%26+Prevention&rft.atitle=Epigenetic+research+in+cancer+epidemiology%3A+trends%2C+opportunities%2C+and+challenges&rft.volume=23&rft.issue=2&rft.pages=223-33&rft.date=2014-02&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3925982%23id-name%3DPMC&rft_id=info%3Apmid%2F24326628&rft_id=info%3Adoi%2F10.1158%2F1055-9965.EPI-13-0573&rft.aulast=Verma&rft.aufirst=M&rft.au=Rogers%2C+S&rft.au=Divi%2C+RL&rft.au=Schully%2C+SD&rft.au=Nelson%2C+S&rft.au=Joseph+Su%2C+L&rft.au=Ross%2C+SA&rft.au=Pilch%2C+S&rft.au=Winn%2C+DM&rft.au=Khoury%2C+MJ&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3925982&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-Abcam-115"><span class="mw-cite-backlink">^ <a href="#cite_ref-Abcam_115-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Abcam_115-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.abcam.com/epigenetics/studying-epigenetics-using-chip">"Studying epigenetics using ChIP"</a>. <i>Abcam</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Abcam&rft.atitle=Studying+epigenetics+using+ChIP&rft_id=https%3A%2F%2Fwww.abcam.com%2Fepigenetics%2Fstudying-epigenetics-using-chip&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-Chaumeil_2008-116"><span class="mw-cite-backlink">^ <a href="#cite_ref-Chaumeil_2008_116-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Chaumeil_2008_116-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChaumeilAuguiChowHeard2008" class="citation book cs1">Chaumeil J, Augui S, Chow JC, Heard E (2008). "Combined Immunofluorescence, RNA Fluorescent in Situ Hybridization, and DNA Fluorescent in Situ Hybridization to Study Chromatin Changes, Transcriptional Activity, Nuclear Organization, and X-Chromosome Inactivation". <i>The Nucleus</i>. Methods in Molecular Biology. Vol. 463. Clifton, N.J.: Springer. pp. 297–308. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-59745-406-3_18">10.1007/978-1-59745-406-3_18</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-58829-977-2" title="Special:BookSources/978-1-58829-977-2"><bdi>978-1-58829-977-2</bdi></a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18951174">18951174</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Combined+Immunofluorescence%2C+RNA+Fluorescent+in+Situ+Hybridization%2C+and+DNA+Fluorescent+in+Situ+Hybridization+to+Study+Chromatin+Changes%2C+Transcriptional+Activity%2C+Nuclear+Organization%2C+and+X-Chromosome+Inactivation&rft.btitle=The+Nucleus&rft.place=Clifton%2C+N.J.&rft.series=Methods+in+Molecular+Biology&rft.pages=297-308&rft.pub=Springer&rft.date=2008&rft_id=info%3Apmid%2F18951174&rft_id=info%3Adoi%2F10.1007%2F978-1-59745-406-3_18&rft.isbn=978-1-58829-977-2&rft.aulast=Chaumeil&rft.aufirst=J&rft.au=Augui%2C+S&rft.au=Chow%2C+JC&rft.au=Heard%2C+E&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-O'Connor_2008-117"><span class="mw-cite-backlink">^ <a href="#cite_ref-O'Connor_2008_117-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-O'Connor_2008_117-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO'Connor2008" class="citation journal cs1">O'Connor C (2008). <a rel="nofollow" class="external text" href="https://www.nature.com/scitable/topicpage/fluorescence-in-situ-hybridization-fish-327/">"Fluorescence in situ hybridization (FISH)"</a>. <i>Nature Education</i>. <b>1</b> (1): 171.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Education&rft.atitle=Fluorescence+in+situ+hybridization+%28FISH%29.&rft.volume=1&rft.issue=1&rft.pages=171&rft.date=2008&rft.aulast=O%27Connor&rft.aufirst=C&rft_id=https%3A%2F%2Fwww.nature.com%2Fscitable%2Ftopicpage%2Ffluorescence-in-situ-hybridization-fish-327%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-Hashimoto_2007-118"><span class="mw-cite-backlink">^ <a href="#cite_ref-Hashimoto_2007_118-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Hashimoto_2007_118-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Hashimoto_2007_118-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Hashimoto_2007_118-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHashimotoKokubunItoiRoach2007" class="citation journal cs1">Hashimoto K, Kokubun S, Itoi E, Roach HI (2007). <a rel="nofollow" class="external text" href="https://doi.org/10.4161%2Fepi.2.2.4203">"Improved quantification of DNA methylation using methylation-sensitive restriction enzymes and real-time PCR"</a>. <i>Epigenetics</i>. <b>2</b> (2): 86–91. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4161%2Fepi.2.2.4203">10.4161/epi.2.2.4203</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17965602">17965602</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:26728480">26728480</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Epigenetics&rft.atitle=Improved+quantification+of+DNA+methylation+using+methylation-sensitive+restriction+enzymes+and+real-time+PCR&rft.volume=2&rft.issue=2&rft.pages=86-91&rft.date=2007&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A26728480%23id-name%3DS2CID&rft_id=info%3Apmid%2F17965602&rft_id=info%3Adoi%2F10.4161%2Fepi.2.2.4203&rft.aulast=Hashimoto&rft.aufirst=K&rft.au=Kokubun%2C+S&rft.au=Itoi%2C+E&rft.au=Roach%2C+HI&rft_id=https%3A%2F%2Fdoi.org%2F10.4161%252Fepi.2.2.4203&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-Li-Byarlay_et_al_2020-119"><span class="mw-cite-backlink"><b><a href="#cite_ref-Li-Byarlay_et_al_2020_119-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLi-ByarlayBoncristianiHowellHerman2020" class="citation journal cs1">Li-Byarlay H, Boncristiani H, Howell G, Herman J, Clark L, Strand MK, et al. (24 September 2020). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7546774">"Transcriptomic and Epigenomic Dynamics of Honey Bees in Response to Lethal Viral Infection"</a>. <i>Frontiers in Genetics</i>. <b>11</b>: 566320. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3389%2Ffgene.2020.566320">10.3389/fgene.2020.566320</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7546774">7546774</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33101388">33101388</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Frontiers+in+Genetics&rft.atitle=Transcriptomic+and+Epigenomic+Dynamics+of+Honey+Bees+in+Response+to+Lethal+Viral+Infection&rft.volume=11&rft.pages=566320&rft.date=2020-09-24&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7546774%23id-name%3DPMC&rft_id=info%3Apmid%2F33101388&rft_id=info%3Adoi%2F10.3389%2Ffgene.2020.566320&rft.aulast=Li-Byarlay&rft.aufirst=H&rft.au=Boncristiani%2C+H&rft.au=Howell%2C+G&rft.au=Herman%2C+J&rft.au=Clark%2C+L&rft.au=Strand%2C+MK&rft.au=Tarpy%2C+D&rft.au=Rueppell%2C+O&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7546774&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-ReferenceC-120"><span class="mw-cite-backlink"><b><a href="#cite_ref-ReferenceC_120-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLi-ByarlayLiStroudFeng2013" class="citation journal cs1">Li-Byarlay H, Li Y, Stroud H, Feng S, Newman TC, Kaneda M, et al. (July 2013). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732956">"RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee"</a>. <i>Proceedings of the National Academy of Sciences of the United States of America</i>. <b>110</b> (31): 12750–12755. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013PNAS..11012750L">2013PNAS..11012750L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.1310735110">10.1073/pnas.1310735110</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732956">3732956</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23852726">23852726</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+of+the+United+States+of+America&rft.atitle=RNA+interference+knockdown+of+DNA+methyl-transferase+3+affects+gene+alternative+splicing+in+the+honey+bee&rft.volume=110&rft.issue=31&rft.pages=12750-12755&rft.date=2013-07&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3732956%23id-name%3DPMC&rft_id=info%3Apmid%2F23852726&rft_id=info%3Adoi%2F10.1073%2Fpnas.1310735110&rft_id=info%3Abibcode%2F2013PNAS..11012750L&rft.aulast=Li-Byarlay&rft.aufirst=H&rft.au=Li%2C+Y&rft.au=Stroud%2C+H&rft.au=Feng%2C+S&rft.au=Newman%2C+TC&rft.au=Kaneda%2C+M&rft.au=Hou%2C+KK&rft.au=Worley%2C+KC&rft.au=Elsik%2C+CG&rft.au=Wickline%2C+SA&rft.au=Jacobsen%2C+SE&rft.au=Ma%2C+J&rft.au=Robinson%2C+GE&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3732956&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-121"><span class="mw-cite-backlink"><b><a href="#cite_ref-121">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSimpsonWorkmanZuzarteDavid2017" class="citation journal cs1">Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ, Timp W (April 2017). "Detecting DNA cytosine methylation using nanopore sequencing". <i>Nature Methods</i>. <b>14</b> (4): 407–410. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnmeth.4184">10.1038/nmeth.4184</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28218898">28218898</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16152628">16152628</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Methods&rft.atitle=Detecting+DNA+cytosine+methylation+using+nanopore+sequencing&rft.volume=14&rft.issue=4&rft.pages=407-410&rft.date=2017-04&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16152628%23id-name%3DS2CID&rft_id=info%3Apmid%2F28218898&rft_id=info%3Adoi%2F10.1038%2Fnmeth.4184&rft.aulast=Simpson&rft.aufirst=JT&rft.au=Workman%2C+RE&rft.au=Zuzarte%2C+PC&rft.au=David%2C+M&rft.au=Dursi%2C+LJ&rft.au=Timp%2C+W&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid1804215-122"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid1804215_122-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSapp1991" class="citation book cs1">Sapp J (1991). "Concepts of Organization the Leverage of Ciliate Protozoa". <i>A Conceptual History of Modern Embryology</i>. Developmental Biology. Vol. 7. pp. 229–258. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4615-6823-0_11">10.1007/978-1-4615-6823-0_11</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4615-6825-4" title="Special:BookSources/978-1-4615-6825-4"><bdi>978-1-4615-6825-4</bdi></a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/1804215">1804215</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Concepts+of+Organization+the+Leverage+of+Ciliate+Protozoa&rft.btitle=A+Conceptual+History+of+Modern+Embryology&rft.series=Developmental+Biology&rft.pages=229-258&rft.date=1991&rft_id=info%3Apmid%2F1804215&rft_id=info%3Adoi%2F10.1007%2F978-1-4615-6823-0_11&rft.isbn=978-1-4615-6825-4&rft.aulast=Sapp&rft.aufirst=J&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-isbn0-19-515619-6-123"><span class="mw-cite-backlink"><b><a href="#cite_ref-isbn0-19-515619-6_123-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSapp2003" class="citation book cs1">Sapp J (2003). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/genesisevolution00sapp"><i>Genesis: the evolution of biology</i></a></span>. Oxford: Oxford University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-515619-5" title="Special:BookSources/978-0-19-515619-5"><bdi>978-0-19-515619-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Genesis%3A+the+evolution+of+biology&rft.place=Oxford&rft.pub=Oxford+University+Press&rft.date=2003&rft.isbn=978-0-19-515619-5&rft.aulast=Sapp&rft.aufirst=J&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgenesisevolution00sapp&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-isbn0-262-65063-0-124"><span class="mw-cite-backlink"><b><a href="#cite_ref-isbn0-262-65063-0_124-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrayOyamaGriffiths2003" class="citation book cs1">Gray RD, Oyama S, Griffiths PE (2003). <i>Cycles of Contingency: Developmental Systems and Evolution (Life and Mind: Philosophical Issues in Biology and Psychology)</i>. Cambridge, Massachusetts: The MIT Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-262-65063-2" title="Special:BookSources/978-0-262-65063-2"><bdi>978-0-262-65063-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Cycles+of+Contingency%3A+Developmental+Systems+and+Evolution+%28Life+and+Mind%3A+Philosophical+Issues+in+Biology+and+Psychology%29&rft.place=Cambridge%2C+Massachusetts&rft.pub=The+MIT+Press&rft.date=2003&rft.isbn=978-0-262-65063-2&rft.aulast=Gray&rft.aufirst=RD&rft.au=Oyama%2C+S&rft.au=Griffiths%2C+PE&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-125"><span class="mw-cite-backlink"><b><a href="#cite_ref-125">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSerizayDongJänesChesney2020" class="citation journal cs1">Serizay J, Dong Y, Jänes J, Chesney M, Cerrato C, Ahringer J (20 February 2020). <a rel="nofollow" class="external text" href="https://doi.org/10.1101%2F2020.02.20.958579">"Tissue-specific profiling reveals distinctive regulatory architectures for ubiquitous, germline and somatic genes"</a>. <i>bioRxiv</i>: 2020.02.20.958579. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1101%2F2020.02.20.958579">10.1101/2020.02.20.958579</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:212943176">212943176</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=bioRxiv&rft.atitle=Tissue-specific+profiling+reveals+distinctive+regulatory+architectures+for+ubiquitous%2C+germline+and+somatic+genes&rft.pages=2020.02.20.958579&rft.date=2020-02-20&rft_id=info%3Adoi%2F10.1101%2F2020.02.20.958579&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A212943176%23id-name%3DS2CID&rft.aulast=Serizay&rft.aufirst=J&rft.au=Dong%2C+Y&rft.au=J%C3%A4nes%2C+J&rft.au=Chesney%2C+M&rft.au=Cerrato%2C+C&rft.au=Ahringer%2C+J&rft_id=https%3A%2F%2Fdoi.org%2F10.1101%252F2020.02.20.958579&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-Teif_2014-126"><span class="mw-cite-backlink">^ <a href="#cite_ref-Teif_2014_126-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Teif_2014_126-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTeifBeshnovaVainshteinMarth2014" class="citation journal cs1">Teif VB, Beshnova DA, Vainshtein Y, Marth C, Mallm JP, Höfer T, et al. (August 2014). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4120082">"Nucleosome repositioning links DNA (de)methylation and differential CTCF binding during stem cell development"</a>. <i>Genome Research</i>. <b>24</b> (8): 1285–95. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1101%2Fgr.164418.113">10.1101/gr.164418.113</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4120082">4120082</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24812327">24812327</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Genome+Research&rft.atitle=Nucleosome+repositioning+links+DNA+%28de%29methylation+and+differential+CTCF+binding+during+stem+cell+development&rft.volume=24&rft.issue=8&rft.pages=1285-95&rft.date=2014-08&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4120082%23id-name%3DPMC&rft_id=info%3Apmid%2F24812327&rft_id=info%3Adoi%2F10.1101%2Fgr.164418.113&rft.aulast=Teif&rft.aufirst=VB&rft.au=Beshnova%2C+DA&rft.au=Vainshtein%2C+Y&rft.au=Marth%2C+C&rft.au=Mallm%2C+JP&rft.au=H%C3%B6fer%2C+T&rft.au=Rippe%2C+K&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4120082&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-127"><span class="mw-cite-backlink"><b><a href="#cite_ref-127">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBuschbeckHake2017" class="citation journal cs1">Buschbeck M, Hake SB (May 2017). <a rel="nofollow" class="external text" href="https://www.nature.com/articles/nrm.2016.166">"Variants of core histones and their roles in cell fate decisions, development and cancer"</a>. <i>Nature Reviews. Molecular Cell Biology</i>. <b>18</b> (5): 299–314. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnrm.2016.166">10.1038/nrm.2016.166</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28144029">28144029</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:3307731">3307731</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Reviews.+Molecular+Cell+Biology&rft.atitle=Variants+of+core+histones+and+their+roles+in+cell+fate+decisions%2C+development+and+cancer&rft.volume=18&rft.issue=5&rft.pages=299-314&rft.date=2017-05&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A3307731%23id-name%3DS2CID&rft_id=info%3Apmid%2F28144029&rft_id=info%3Adoi%2F10.1038%2Fnrm.2016.166&rft.aulast=Buschbeck&rft.aufirst=M&rft.au=Hake%2C+SB&rft_id=https%3A%2F%2Fwww.nature.com%2Farticles%2Fnrm.2016.166&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-128"><span class="mw-cite-backlink"><b><a href="#cite_ref-128">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJangShibataStarmerYee2015" class="citation journal cs1">Jang CW, Shibata Y, Starmer J, Yee D, Magnuson T (July 2015). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4511213">"Histone H3.3 maintains genome integrity during mammalian development"</a>. <i>Genes & Development</i>. <b>29</b> (13): 1377–92. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1101%2Fgad.264150.115">10.1101/gad.264150.115</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4511213">4511213</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26159997">26159997</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Genes+%26+Development&rft.atitle=Histone+H3.3+maintains+genome+integrity+during+mammalian+development&rft.volume=29&rft.issue=13&rft.pages=1377-92&rft.date=2015-07&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4511213%23id-name%3DPMC&rft_id=info%3Apmid%2F26159997&rft_id=info%3Adoi%2F10.1101%2Fgad.264150.115&rft.aulast=Jang&rft.aufirst=CW&rft.au=Shibata%2C+Y&rft.au=Starmer%2C+J&rft.au=Yee%2C+D&rft.au=Magnuson%2C+T&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4511213&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-129"><span class="mw-cite-backlink"><b><a href="#cite_ref-129">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.nature.com/collections/rsxlmsyslk/">"The 3D genome"</a>. <i>www.nature.com</i>. 2 September 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">26 September</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.nature.com&rft.atitle=The+3D+genome&rft.date=2019-09-02&rft_id=https%3A%2F%2Fwww.nature.com%2Fcollections%2Frsxlmsyslk%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid28386011-130"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid28386011_130-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKitamuraOgawaRoyOkuyama2017" class="citation journal cs1">Kitamura T, Ogawa SK, Roy DS, Okuyama T, Morrissey MD, Smith LM, et al. (April 2017). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5493329">"Engrams and circuits crucial for systems consolidation of a memory"</a>. <i>Science</i>. <b>356</b> (6333): 73–78. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017Sci...356...73K">2017Sci...356...73K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.aam6808">10.1126/science.aam6808</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5493329">5493329</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28386011">28386011</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Engrams+and+circuits+crucial+for+systems+consolidation+of+a+memory&rft.volume=356&rft.issue=6333&rft.pages=73-78&rft.date=2017-04&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5493329%23id-name%3DPMC&rft_id=info%3Apmid%2F28386011&rft_id=info%3Adoi%2F10.1126%2Fscience.aam6808&rft_id=info%3Abibcode%2F2017Sci...356...73K&rft.aulast=Kitamura&rft.aufirst=T&rft.au=Ogawa%2C+SK&rft.au=Roy%2C+DS&rft.au=Okuyama%2C+T&rft.au=Morrissey%2C+MD&rft.au=Smith%2C+LM&rft.au=Redondo%2C+RL&rft.au=Tonegawa%2C+S&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5493329&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-Stott-131"><span class="mw-cite-backlink">^ <a href="#cite_ref-Stott_131-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Stott_131-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStottKritskyTsai2021" class="citation journal cs1">Stott RT, Kritsky O, Tsai LH (2021). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8248687">"Profiling DNA break sites and transcriptional changes in response to contextual fear learning"</a>. <i>PLOS ONE</i>. <b>16</b> (7): e0249691. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021PLoSO..1649691S">2021PLoSO..1649691S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1371%2Fjournal.pone.0249691">10.1371/journal.pone.0249691</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8248687">8248687</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/34197463">34197463</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PLOS+ONE&rft.atitle=Profiling+DNA+break+sites+and+transcriptional+changes+in+response+to+contextual+fear+learning&rft.volume=16&rft.issue=7&rft.pages=e0249691&rft.date=2021&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8248687%23id-name%3DPMC&rft_id=info%3Apmid%2F34197463&rft_id=info%3Adoi%2F10.1371%2Fjournal.pone.0249691&rft_id=info%3Abibcode%2F2021PLoSO..1649691S&rft.aulast=Stott&rft.aufirst=RT&rft.au=Kritsky%2C+O&rft.au=Tsai%2C+LH&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8248687&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid35776545-132"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid35776545_132-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeeShimMoonKim2022" class="citation journal cs1">Lee BH, Shim JY, Moon HC, Kim DW, Kim J, Yook JS, et al. (July 2022). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271212">"Real-time visualization of mRNA synthesis during memory formation in live mice"</a>. <i>Proc Natl Acad Sci U S A</i>. <b>119</b> (27): e2117076119. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022PNAS..11917076L">2022PNAS..11917076L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.2117076119">10.1073/pnas.2117076119</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271212">9271212</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/35776545">35776545</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proc+Natl+Acad+Sci+U+S+A&rft.atitle=Real-time+visualization+of+mRNA+synthesis+during+memory+formation+in+live+mice&rft.volume=119&rft.issue=27&rft.pages=e2117076119&rft.date=2022-07&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC9271212%23id-name%3DPMC&rft_id=info%3Apmid%2F35776545&rft_id=info%3Adoi%2F10.1073%2Fpnas.2117076119&rft_id=info%3Abibcode%2F2022PNAS..11917076L&rft.aulast=Lee&rft.aufirst=BH&rft.au=Shim%2C+JY&rft.au=Moon%2C+HC&rft.au=Kim%2C+DW&rft.au=Kim%2C+J&rft.au=Yook%2C+JS&rft.au=Kim%2C+J&rft.au=Park%2C+HY&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC9271212&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid10357227-133"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid10357227_133-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTischmeyerGrimm1999" class="citation journal cs1">Tischmeyer W, Grimm R (April 1999). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11146814">"Activation of immediate early genes and memory formation"</a>. <i>Cell Mol Life Sci</i>. <b>55</b> (4): 564–74. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs000180050315">10.1007/s000180050315</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11146814">11146814</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10357227">10357227</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6923522">6923522</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cell+Mol+Life+Sci&rft.atitle=Activation+of+immediate+early+genes+and+memory+formation&rft.volume=55&rft.issue=4&rft.pages=564-74&rft.date=1999-04&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC11146814%23id-name%3DPMC&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6923522%23id-name%3DS2CID&rft_id=info%3Apmid%2F10357227&rft_id=info%3Adoi%2F10.1007%2Fs000180050315&rft.aulast=Tischmeyer&rft.aufirst=W&rft.au=Grimm%2C+R&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC11146814&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid22751036-134"><span class="mw-cite-backlink">^ <a href="#cite_ref-pmid22751036_134-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pmid22751036_134-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOliveiraHemstedtBading2012" class="citation journal cs1">Oliveira AM, Hemstedt TJ, Bading H (July 2012). "Rescue of aging-associated decline in Dnmt3a2 expression restores cognitive abilities". <i>Nat Neurosci</i>. <b>15</b> (8): 1111–3. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnn.3151">10.1038/nn.3151</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22751036">22751036</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:10590208">10590208</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nat+Neurosci&rft.atitle=Rescue+of+aging-associated+decline+in+Dnmt3a2+expression+restores+cognitive+abilities&rft.volume=15&rft.issue=8&rft.pages=1111-3&rft.date=2012-07&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A10590208%23id-name%3DS2CID&rft_id=info%3Apmid%2F22751036&rft_id=info%3Adoi%2F10.1038%2Fnn.3151&rft.aulast=Oliveira&rft.aufirst=AM&rft.au=Hemstedt%2C+TJ&rft.au=Bading%2C+H&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-Sun-135"><span class="mw-cite-backlink">^ <a href="#cite_ref-Sun_135-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Sun_135-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSunXuHeMurray2019" class="citation journal cs1">Sun Z, Xu X, He J, Murray A, Sun MA, Wei X, et al. (August 2019). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715719">"EGR1 recruits TET1 to shape the brain methylome during development and upon neuronal activity"</a>. <i>Nat Commun</i>. <b>10</b> (1): 3892. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019NatCo..10.3892S">2019NatCo..10.3892S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41467-019-11905-3">10.1038/s41467-019-11905-3</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715719">6715719</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31467272">31467272</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nat+Commun&rft.atitle=EGR1+recruits+TET1+to+shape+the+brain+methylome+during+development+and+upon+neuronal+activity&rft.volume=10&rft.issue=1&rft.pages=3892&rft.date=2019-08&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6715719%23id-name%3DPMC&rft_id=info%3Apmid%2F31467272&rft_id=info%3Adoi%2F10.1038%2Fs41467-019-11905-3&rft_id=info%3Abibcode%2F2019NatCo..10.3892S&rft.aulast=Sun&rft.aufirst=Z&rft.au=Xu%2C+X&rft.au=He%2C+J&rft.au=Murray%2C+A&rft.au=Sun%2C+MA&rft.au=Wei%2C+X&rft.au=Wang%2C+X&rft.au=McCoig%2C+E&rft.au=Xie%2C+E&rft.au=Jiang%2C+X&rft.au=Li%2C+L&rft.au=Zhu%2C+J&rft.au=Chen%2C+J&rft.au=Morozov%2C+A&rft.au=Pickrell%2C+AM&rft.au=Theus%2C+MH&rft.au=Xie%2C+H&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6715719&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid29074627-136"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid29074627_136-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFManzoWirzAmbrosiVillaseñor2017" class="citation journal cs1">Manzo M, Wirz J, Ambrosi C, Villaseñor R, Roschitzki B, Baubec T (December 2017). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5709737">"Isoform-specific localization of DNMT3A regulates DNA methylation fidelity at bivalent CpG islands"</a>. <i>EMBO J</i>. <b>36</b> (23): 3421–3434. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.15252%2Fembj.201797038">10.15252/embj.201797038</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5709737">5709737</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/29074627">29074627</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=EMBO+J&rft.atitle=Isoform-specific+localization+of+DNMT3A+regulates+DNA+methylation+fidelity+at+bivalent+CpG+islands&rft.volume=36&rft.issue=23&rft.pages=3421-3434&rft.date=2017-12&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5709737%23id-name%3DPMC&rft_id=info%3Apmid%2F29074627&rft_id=info%3Adoi%2F10.15252%2Fembj.201797038&rft.aulast=Manzo&rft.aufirst=M&rft.au=Wirz%2C+J&rft.au=Ambrosi%2C+C&rft.au=Villase%C3%B1or%2C+R&rft.au=Roschitzki%2C+B&rft.au=Baubec%2C+T&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5709737&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid25324744-137"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid25324744_137-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJoelsLamprecht2014" class="citation journal cs1">Joels G, Lamprecht R (2014). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4179742">"Fear memory formation can affect a different memory: fear conditioning affects the extinction, but not retrieval, of conditioned taste aversion (CTA) memory"</a>. <i>Front Behav Neurosci</i>. <b>8</b>: 324. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3389%2Ffnbeh.2014.00324">10.3389/fnbeh.2014.00324</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4179742">4179742</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25324744">25324744</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Front+Behav+Neurosci&rft.atitle=Fear+memory+formation+can+affect+a+different+memory%3A+fear+conditioning+affects+the+extinction%2C+but+not+retrieval%2C+of+conditioned+taste+aversion+%28CTA%29+memory&rft.volume=8&rft.pages=324&rft.date=2014&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4179742%23id-name%3DPMC&rft_id=info%3Apmid%2F25324744&rft_id=info%3Adoi%2F10.3389%2Ffnbeh.2014.00324&rft.aulast=Joels&rft.aufirst=G&rft.au=Lamprecht%2C+R&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4179742&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid22781841-138"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid22781841_138-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMooreLeFan2013" class="citation journal cs1">Moore LD, Le T, Fan G (January 2013). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521964">"DNA methylation and its basic function"</a>. <i>Neuropsychopharmacology</i>. <b>38</b> (1): 23–38. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnpp.2012.112">10.1038/npp.2012.112</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521964">3521964</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22781841">22781841</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Neuropsychopharmacology&rft.atitle=DNA+methylation+and+its+basic+function&rft.volume=38&rft.issue=1&rft.pages=23-38&rft.date=2013-01&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3521964%23id-name%3DPMC&rft_id=info%3Apmid%2F22781841&rft_id=info%3Adoi%2F10.1038%2Fnpp.2012.112&rft.aulast=Moore&rft.aufirst=LD&rft.au=Le%2C+T&rft.au=Fan%2C+G&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3521964&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-Halder-139"><span class="mw-cite-backlink">^ <a href="#cite_ref-Halder_139-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Halder_139-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalderHennionVidalShomroni2016" class="citation journal cs1">Halder R, Hennion M, Vidal RO, Shomroni O, Rahman RU, Rajput A, et al. (January 2016). "DNA methylation changes in plasticity genes accompany the formation and maintenance of memory". <i>Nat Neurosci</i>. <b>19</b> (1): 102–10. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnn.4194">10.1038/nn.4194</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26656643">26656643</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1173959">1173959</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nat+Neurosci&rft.atitle=DNA+methylation+changes+in+plasticity+genes+accompany+the+formation+and+maintenance+of+memory&rft.volume=19&rft.issue=1&rft.pages=102-10&rft.date=2016-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1173959%23id-name%3DS2CID&rft_id=info%3Apmid%2F26656643&rft_id=info%3Adoi%2F10.1038%2Fnn.4194&rft.aulast=Halder&rft.aufirst=R&rft.au=Hennion%2C+M&rft.au=Vidal%2C+RO&rft.au=Shomroni%2C+O&rft.au=Rahman%2C+RU&rft.au=Rajput%2C+A&rft.au=Centeno%2C+TP&rft.au=van+Bebber%2C+F&rft.au=Capece%2C+V&rft.au=Garcia+Vizcaino%2C+JC&rft.au=Schuetz%2C+AL&rft.au=Burkhardt%2C+S&rft.au=Benito%2C+E&rft.au=Navarro+Sala%2C+M&rft.au=Javan%2C+SB&rft.au=Haass%2C+C&rft.au=Schmid%2C+B&rft.au=Fischer%2C+A&rft.au=Bonn%2C+S&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid15131309-140"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid15131309_140-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFranklandBontempiTaltonKaczmarek2004" class="citation journal cs1">Frankland PW, Bontempi B, Talton LE, Kaczmarek L, Silva AJ (May 2004). "The involvement of the anterior cingulate cortex in remote contextual fear memory". <i>Science</i>. <b>304</b> (5672): 881–3. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004Sci...304..881F">2004Sci...304..881F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1094804">10.1126/science.1094804</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15131309">15131309</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15893863">15893863</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=The+involvement+of+the+anterior+cingulate+cortex+in+remote+contextual+fear+memory&rft.volume=304&rft.issue=5672&rft.pages=881-3&rft.date=2004-05&rft_id=info%3Adoi%2F10.1126%2Fscience.1094804&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15893863%23id-name%3DS2CID&rft_id=info%3Apmid%2F15131309&rft_id=info%3Abibcode%2F2004Sci...304..881F&rft.aulast=Frankland&rft.aufirst=PW&rft.au=Bontempi%2C+B&rft.au=Talton%2C+LE&rft.au=Kaczmarek%2C+L&rft.au=Silva%2C+AJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-141"><span class="mw-cite-backlink"><b><a href="#cite_ref-141">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarterFoster2018" class="citation journal cs1">Barter JD, Foster TC (October 2018). "Aging in the Brain: New Roles of Epigenetics in Cognitive Decline". <i>The Neuroscientist</i>. <b>24</b> (5): 516–525. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1177%2F1073858418780971">10.1177/1073858418780971</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/29877135">29877135</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:46965080">46965080</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Neuroscientist&rft.atitle=Aging+in+the+Brain%3A+New+Roles+of+Epigenetics+in+Cognitive+Decline&rft.volume=24&rft.issue=5&rft.pages=516-525&rft.date=2018-10&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A46965080%23id-name%3DS2CID&rft_id=info%3Apmid%2F29877135&rft_id=info%3Adoi%2F10.1177%2F1073858418780971&rft.aulast=Barter&rft.aufirst=JD&rft.au=Foster%2C+TC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-142"><span class="mw-cite-backlink"><b><a href="#cite_ref-142">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHarmanMartín2020" class="citation journal cs1">Harman MF, Martín MG (February 2020). "Epigenetic mechanisms related to cognitive decline during aging". <i>Journal of Neuroscience Research</i>. <b>98</b> (2): 234–246. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fjnr.24436">10.1002/jnr.24436</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31045277">31045277</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:143423862">143423862</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Neuroscience+Research&rft.atitle=Epigenetic+mechanisms+related+to+cognitive+decline+during+aging&rft.volume=98&rft.issue=2&rft.pages=234-246&rft.date=2020-02&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A143423862%23id-name%3DS2CID&rft_id=info%3Apmid%2F31045277&rft_id=info%3Adoi%2F10.1002%2Fjnr.24436&rft.aulast=Harman&rft.aufirst=MF&rft.au=Mart%C3%ADn%2C+MG&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-143"><span class="mw-cite-backlink"><b><a href="#cite_ref-143">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBragaMousovich-NetoTonon-da-SilvaSalgueiro2020" class="citation journal cs1">Braga DL, Mousovich-Neto F, Tonon-da-Silva G, Salgueiro WG, Mori MA (August 2020). "Epigenetic changes during ageing and their underlying mechanisms". <i>Biogerontology</i>. <b>21</b> (4): 423–443. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10522-020-09874-y">10.1007/s10522-020-09874-y</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32356238">32356238</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:254292058">254292058</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Biogerontology&rft.atitle=Epigenetic+changes+during+ageing+and+their+underlying+mechanisms&rft.volume=21&rft.issue=4&rft.pages=423-443&rft.date=2020-08&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A254292058%23id-name%3DS2CID&rft_id=info%3Apmid%2F32356238&rft_id=info%3Adoi%2F10.1007%2Fs10522-020-09874-y&rft.aulast=Braga&rft.aufirst=DL&rft.au=Mousovich-Neto%2C+F&rft.au=Tonon-da-Silva%2C+G&rft.au=Salgueiro%2C+WG&rft.au=Mori%2C+MA&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-144"><span class="mw-cite-backlink"><b><a href="#cite_ref-144">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhangQuLiuBelmonte2020" class="citation journal cs1">Zhang W, Qu J, Liu GH, Belmonte JC (March 2020). "The ageing epigenome and its rejuvenation". <i>Nature Reviews. Molecular Cell Biology</i>. <b>21</b> (3): 137–150. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41580-019-0204-5">10.1038/s41580-019-0204-5</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32020082">32020082</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:211028527">211028527</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Reviews.+Molecular+Cell+Biology&rft.atitle=The+ageing+epigenome+and+its+rejuvenation&rft.volume=21&rft.issue=3&rft.pages=137-150&rft.date=2020-03&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A211028527%23id-name%3DS2CID&rft_id=info%3Apmid%2F32020082&rft_id=info%3Adoi%2F10.1038%2Fs41580-019-0204-5&rft.aulast=Zhang&rft.aufirst=W&rft.au=Qu%2C+J&rft.au=Liu%2C+GH&rft.au=Belmonte%2C+JC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-145"><span class="mw-cite-backlink"><b><a href="#cite_ref-145">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSimpsonOlovaChandra2021" class="citation journal cs1">Simpson DJ, Olova NN, Chandra T (September 2021). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8419998">"Cellular reprogramming and epigenetic rejuvenation"</a>. <i>Clinical Epigenetics</i>. <b>13</b> (1): 170. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1186%2Fs13148-021-01158-7">10.1186/s13148-021-01158-7</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8419998">8419998</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/34488874">34488874</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Clinical+Epigenetics&rft.atitle=Cellular+reprogramming+and+epigenetic+rejuvenation&rft.volume=13&rft.issue=1&rft.pages=170&rft.date=2021-09&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8419998%23id-name%3DPMC&rft_id=info%3Apmid%2F34488874&rft_id=info%3Adoi%2F10.1186%2Fs13148-021-01158-7&rft.aulast=Simpson&rft.aufirst=DJ&rft.au=Olova%2C+NN&rft.au=Chandra%2C+T&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8419998&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-146"><span class="mw-cite-backlink"><b><a href="#cite_ref-146">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHwangAromolaranZukin2017" class="citation journal cs1">Hwang JY, Aromolaran KA, Zukin RS (May 2017). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6380351">"The emerging field of epigenetics in neurodegeneration and neuroprotection"</a>. <i>Nature Reviews. Neuroscience</i>. <b>18</b> (6): 347–361. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnrn.2017.46">10.1038/nrn.2017.46</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6380351">6380351</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28515491">28515491</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Reviews.+Neuroscience&rft.atitle=The+emerging+field+of+epigenetics+in+neurodegeneration+and+neuroprotection&rft.volume=18&rft.issue=6&rft.pages=347-361&rft.date=2017-05&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6380351%23id-name%3DPMC&rft_id=info%3Apmid%2F28515491&rft_id=info%3Adoi%2F10.1038%2Fnrn.2017.46&rft.aulast=Hwang&rft.aufirst=JY&rft.au=Aromolaran%2C+KA&rft.au=Zukin%2C+RS&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6380351&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-147"><span class="mw-cite-backlink"><b><a href="#cite_ref-147">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrigorenkoKornilovNaumova2016" class="citation journal cs1">Grigorenko EL, Kornilov SA, Naumova OY (November 2016). "Epigenetic regulation of cognition: A circumscribed review of the field". <i>Development and Psychopathology</i>. <b>28</b> (4pt2): 1285–1304. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0954579416000857">10.1017/S0954579416000857</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27691982">27691982</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:21422752">21422752</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Development+and+Psychopathology&rft.atitle=Epigenetic+regulation+of+cognition%3A+A+circumscribed+review+of+the+field&rft.volume=28&rft.issue=4pt2&rft.pages=1285-1304&rft.date=2016-11&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A21422752%23id-name%3DS2CID&rft_id=info%3Apmid%2F27691982&rft_id=info%3Adoi%2F10.1017%2FS0954579416000857&rft.aulast=Grigorenko&rft.aufirst=EL&rft.au=Kornilov%2C+SA&rft.au=Naumova%2C+OY&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-148"><span class="mw-cite-backlink"><b><a href="#cite_ref-148">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBaconBrinton2021" class="citation journal cs1">Bacon ER, Brinton RD (June 2021). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8989071">"Epigenetics of the developing and aging brain: Mechanisms that regulate onset and outcomes of brain reorganization"</a>. <i>Neuroscience and Biobehavioral Reviews</i>. <b>125</b>: 503–516. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.neubiorev.2021.02.040">10.1016/j.neubiorev.2021.02.040</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8989071">8989071</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33657435">33657435</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Neuroscience+and+Biobehavioral+Reviews&rft.atitle=Epigenetics+of+the+developing+and+aging+brain%3A+Mechanisms+that+regulate+onset+and+outcomes+of+brain+reorganization&rft.volume=125&rft.pages=503-516&rft.date=2021-06&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8989071%23id-name%3DPMC&rft_id=info%3Apmid%2F33657435&rft_id=info%3Adoi%2F10.1016%2Fj.neubiorev.2021.02.040&rft.aulast=Bacon&rft.aufirst=ER&rft.au=Brinton%2C+RD&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8989071&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-149"><span class="mw-cite-backlink"><b><a href="#cite_ref-149">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStreiferGore2021" class="citation book cs1">Streifer M, Gore AC (2021). "Epigenetics, estrogenic endocrine-disrupting chemicals (EDCs), and the brain". <i>Endocrine-Disrupting Chemicals</i>. Advances in Pharmacology. Vol. 92. pp. 73–99. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fbs.apha.2021.03.006">10.1016/bs.apha.2021.03.006</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780128234662" title="Special:BookSources/9780128234662"><bdi>9780128234662</bdi></a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/34452697">34452697</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:237339845">237339845</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Epigenetics%2C+estrogenic+endocrine-disrupting+chemicals+%28EDCs%29%2C+and+the+brain&rft.btitle=Endocrine-Disrupting+Chemicals&rft.series=Advances+in+Pharmacology&rft.pages=73-99&rft.date=2021&rft_id=info%3Adoi%2F10.1016%2Fbs.apha.2021.03.006&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A237339845%23id-name%3DS2CID&rft_id=info%3Apmid%2F34452697&rft.isbn=9780128234662&rft.aulast=Streifer&rft.aufirst=M&rft.au=Gore%2C+AC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-150"><span class="mw-cite-backlink"><b><a href="#cite_ref-150">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBekdash2018" class="citation journal cs1">Bekdash RA (January 2018). "Choline, the brain and neurodegeneration: insights from epigenetics". <i>Frontiers in Bioscience</i>. <b>23</b> (6): 1113–1143. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2741%2F4636">10.2741/4636</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28930592">28930592</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Frontiers+in+Bioscience&rft.atitle=Choline%2C+the+brain+and+neurodegeneration%3A+insights+from+epigenetics&rft.volume=23&rft.issue=6&rft.pages=1113-1143&rft.date=2018-01&rft_id=info%3Adoi%2F10.2741%2F4636&rft_id=info%3Apmid%2F28930592&rft.aulast=Bekdash&rft.aufirst=RA&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-151"><span class="mw-cite-backlink"><b><a href="#cite_ref-151">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEkstrandScheersRasmussenYoung2021" class="citation journal cs1">Ekstrand B, Scheers N, Rasmussen MK, Young JF, Ross AB, Landberg R (May 2021). "Brain foods - the role of diet in brain performance and health". <i>Nutrition Reviews</i>. <b>79</b> (6): 693–708. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fnutrit%2Fnuaa091">10.1093/nutrit/nuaa091</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32989449">32989449</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nutrition+Reviews&rft.atitle=Brain+foods+-+the+role+of+diet+in+brain+performance+and+health&rft.volume=79&rft.issue=6&rft.pages=693-708&rft.date=2021-05&rft_id=info%3Adoi%2F10.1093%2Fnutrit%2Fnuaa091&rft_id=info%3Apmid%2F32989449&rft.aulast=Ekstrand&rft.aufirst=B&rft.au=Scheers%2C+N&rft.au=Rasmussen%2C+MK&rft.au=Young%2C+JF&rft.au=Ross%2C+AB&rft.au=Landberg%2C+R&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-152"><span class="mw-cite-backlink"><b><a href="#cite_ref-152">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFernandesAridaGomez-Pinilla2017" class="citation journal cs1">Fernandes J, Arida RM, Gomez-Pinilla F (September 2017). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5705447">"Physical exercise as an epigenetic modulator of brain plasticity and cognition"</a>. <i>Neuroscience and Biobehavioral Reviews</i>. <b>80</b>: 443–456. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.neubiorev.2017.06.012">10.1016/j.neubiorev.2017.06.012</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5705447">5705447</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28666827">28666827</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Neuroscience+and+Biobehavioral+Reviews&rft.atitle=Physical+exercise+as+an+epigenetic+modulator+of+brain+plasticity+and+cognition&rft.volume=80&rft.pages=443-456&rft.date=2017-09&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5705447%23id-name%3DPMC&rft_id=info%3Apmid%2F28666827&rft_id=info%3Adoi%2F10.1016%2Fj.neubiorev.2017.06.012&rft.aulast=Fernandes&rft.aufirst=J&rft.au=Arida%2C+RM&rft.au=Gomez-Pinilla%2C+F&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5705447&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-153"><span class="mw-cite-backlink"><b><a href="#cite_ref-153">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTamim2022" class="citation news cs1">Tamim B (4 September 2022). <a rel="nofollow" class="external text" href="https://interestingengineering.com/science/new-discovery-synapse-hiding-in-mice-brain">"New discovery: Synapse hiding in the mice brain may advance our understanding of neuronal communication"</a>. <i>interestingengineering.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">19 October</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=interestingengineering.com&rft.atitle=New+discovery%3A+Synapse+hiding+in+the+mice+brain+may+advance+our+understanding+of+neuronal+communication&rft.date=2022-09-04&rft.aulast=Tamim&rft.aufirst=B&rft_id=https%3A%2F%2Finterestingengineering.com%2Fscience%2Fnew-discovery-synapse-hiding-in-mice-brain&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-154"><span class="mw-cite-backlink"><b><a href="#cite_ref-154">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSheuUpadhyayulaDupuyPang2022" class="citation journal cs1">Sheu SH, Upadhyayula S, Dupuy V, Pang S, Deng F, Wan J, et al. (September 2022). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9789380">"A serotonergic axon-cilium synapse drives nuclear signaling to alter chromatin accessibility"</a>. <i>Cell</i>. <b>185</b> (18): 3390–3407.e18. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cell.2022.07.026">10.1016/j.cell.2022.07.026</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9789380">9789380</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/36055200">36055200</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:251958800">251958800</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cell&rft.atitle=A+serotonergic+axon-cilium+synapse+drives+nuclear+signaling+to+alter+chromatin+accessibility&rft.volume=185&rft.issue=18&rft.pages=3390-3407.e18&rft.date=2022-09&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC9789380%23id-name%3DPMC&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A251958800%23id-name%3DS2CID&rft_id=info%3Apmid%2F36055200&rft_id=info%3Adoi%2F10.1016%2Fj.cell.2022.07.026&rft.aulast=Sheu&rft.aufirst=SH&rft.au=Upadhyayula%2C+S&rft.au=Dupuy%2C+V&rft.au=Pang%2C+S&rft.au=Deng%2C+F&rft.au=Wan%2C+J&rft.au=Walpita%2C+D&rft.au=Pasolli%2C+HA&rft.au=Houser%2C+J&rft.au=Sanchez-Martinez%2C+S&rft.au=Brauchi%2C+SE&rft.au=Banala%2C+S&rft.au=Freeman%2C+M&rft.au=Xu%2C+CS&rft.au=Kirchhausen%2C+T&rft.au=Hess%2C+HF&rft.au=Lavis%2C+L&rft.au=Li%2C+Y&rft.au=Chaumont-Dubel%2C+S&rft.au=Clapham%2C+DE&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC9789380&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span> <ul><li>University press release: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2022-09-scientists-kind-synapse-neurons-tiny.html">"Scientists discover new kind of synapse in neurons' tiny hairs"</a>. <i>Howard Hughes Medical Institute via phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">19 October</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Howard+Hughes+Medical+Institute+via+phys.org&rft.atitle=Scientists+discover+new+kind+of+synapse+in+neurons%27+tiny+hairs&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2022-09-scientists-kind-synapse-neurons-tiny.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></li></ul> </span></li> <li id="cite_note-155"><span class="mw-cite-backlink"><b><a href="#cite_ref-155">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKeverne2011" class="citation journal cs1">Keverne EB (April 2011). "Epigenetics and brain evolution". <i>Epigenomics</i>. <b>3</b> (2): 183–191. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2217%2Fepi.11.10">10.2217/epi.11.10</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22122280">22122280</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Epigenomics&rft.atitle=Epigenetics+and+brain+evolution&rft.volume=3&rft.issue=2&rft.pages=183-191&rft.date=2011-04&rft_id=info%3Adoi%2F10.2217%2Fepi.11.10&rft_id=info%3Apmid%2F22122280&rft.aulast=Keverne&rft.aufirst=EB&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-Griesemer_2005-156"><span class="mw-cite-backlink"><b><a href="#cite_ref-Griesemer_2005_156-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGriesemerHaberYamashitaGannett2005" class="citation journal cs1">Griesemer J, Haber MH, Yamashita G, Gannett L (March 2005). "Critical Notice: Cycles of Contingency – Developmental Systems and Evolution". <i>Biology & Philosophy</i>. <b>20</b> (2–3): 517–44. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10539-004-0836-4">10.1007/s10539-004-0836-4</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2995306">2995306</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Biology+%26+Philosophy&rft.atitle=Critical+Notice%3A+Cycles+of+Contingency+%E2%80%93+Developmental+Systems+and+Evolution&rft.volume=20&rft.issue=2%E2%80%933&rft.pages=517-44&rft.date=2005-03&rft_id=info%3Adoi%2F10.1007%2Fs10539-004-0836-4&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2995306%23id-name%3DS2CID&rft.aulast=Griesemer&rft.aufirst=J&rft.au=Haber%2C+MH&rft.au=Yamashita%2C+G&rft.au=Gannett%2C+L&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-157"><span class="mw-cite-backlink"><b><a href="#cite_ref-157">^</a></b></span> <span class="reference-text">Chapter: "Nervous System Development" in "Epigenetics," by Benedikt Hallgrimsson and Brian Hall</span> </li> <li id="cite_note-pmid17194589-158"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid17194589_158-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCostaShaw2007" class="citation journal cs1">Costa S, Shaw P (March 2007). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131215042638/http://cromatina.icb.ufmg.br/biomol/seminarios/outros/grupo_open.pdf">"<span class="cs1-kern-left"></span>'Open minded' cells: how cells can change fate"</a> <span class="cs1-format">(PDF)</span>. <i>Trends in Cell Biology</i>. <b>17</b> (3): 101–6. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.tcb.2006.12.005">10.1016/j.tcb.2006.12.005</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17194589">17194589</a>. Archived from <a rel="nofollow" class="external text" href="http://cromatina.icb.ufmg.br/biomol/seminarios/outros/grupo_open.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 15 December 2013. <q>This might suggest that plant cells do not use or require a cellular memory mechanism and just respond to positional information. However, it has been shown that plants do use cellular memory mechanisms mediated by PcG proteins in several processes, ... (p. 104)</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Trends+in+Cell+Biology&rft.atitle=%27Open+minded%27+cells%3A+how+cells+can+change+fate&rft.volume=17&rft.issue=3&rft.pages=101-6&rft.date=2007-03&rft_id=info%3Adoi%2F10.1016%2Fj.tcb.2006.12.005&rft_id=info%3Apmid%2F17194589&rft.aulast=Costa&rft.aufirst=S&rft.au=Shaw%2C+P&rft_id=http%3A%2F%2Fcromatina.icb.ufmg.br%2Fbiomol%2Fseminarios%2Foutros%2Fgrupo_open.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid12163699-159"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid12163699_159-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCooneyDaveWolff2002" class="citation journal cs1">Cooney CA, Dave AA, Wolff GL (August 2002). <a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fjn%2F132.8.2393S">"Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring"</a>. <i>The Journal of Nutrition</i>. <b>132</b> (8 Suppl): 2393S–2400S. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fjn%2F132.8.2393S">10.1093/jn/132.8.2393S</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12163699">12163699</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Journal+of+Nutrition&rft.atitle=Maternal+methyl+supplements+in+mice+affect+epigenetic+variation+and+DNA+methylation+of+offspring&rft.volume=132&rft.issue=8+Suppl&rft.pages=2393S-2400S&rft.date=2002-08&rft_id=info%3Adoi%2F10.1093%2Fjn%2F132.8.2393S&rft_id=info%3Apmid%2F12163699&rft.aulast=Cooney&rft.aufirst=CA&rft.au=Dave%2C+AA&rft.au=Wolff%2C+GL&rft_id=https%3A%2F%2Fdoi.org%2F10.1093%252Fjn%252F132.8.2393S&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-waterland-160"><span class="mw-cite-backlink"><b><a href="#cite_ref-waterland_160-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWaterlandJirtle2003" class="citation journal cs1">Waterland RA, Jirtle RL (August 2003). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC165709">"Transposable elements: targets for early nutritional effects on epigenetic gene regulation"</a>. <i>Molecular and Cellular Biology</i>. <b>23</b> (15): 5293–300. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1128%2FMCB.23.15.5293-5300.2003">10.1128/MCB.23.15.5293-5300.2003</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC165709">165709</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12861015">12861015</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Molecular+and+Cellular+Biology&rft.atitle=Transposable+elements%3A+targets+for+early+nutritional+effects+on+epigenetic+gene+regulation&rft.volume=23&rft.issue=15&rft.pages=5293-300&rft.date=2003-08&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC165709%23id-name%3DPMC&rft_id=info%3Apmid%2F12861015&rft_id=info%3Adoi%2F10.1128%2FMCB.23.15.5293-5300.2003&rft.aulast=Waterland&rft.aufirst=RA&rft.au=Jirtle%2C+RL&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC165709&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-161"><span class="mw-cite-backlink"><b><a href="#cite_ref-161">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDolinoy2008" class="citation journal cs1">Dolinoy DC (August 2008). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2822875">"The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome"</a>. <i>Nutrition Reviews</i>. <b>66</b> (Suppl 1): S7-11. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1753-4887.2008.00056.x">10.1111/j.1753-4887.2008.00056.x</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2822875">2822875</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18673496">18673496</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nutrition+Reviews&rft.atitle=The+agouti+mouse+model%3A+an+epigenetic+biosensor+for+nutritional+and+environmental+alterations+on+the+fetal+epigenome&rft.volume=66&rft.issue=Suppl+1&rft.pages=S7-11&rft.date=2008-08&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2822875%23id-name%3DPMC&rft_id=info%3Apmid%2F18673496&rft_id=info%3Adoi%2F10.1111%2Fj.1753-4887.2008.00056.x&rft.aulast=Dolinoy&rft.aufirst=DC&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2822875&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-162"><span class="mw-cite-backlink"><b><a href="#cite_ref-162">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchulzeBhattAzamianSundgren2019" class="citation journal cs1">Schulze KV, Bhatt A, Azamian MS, Sundgren NC, Zapata GE, Hernandez P, et al. (November 2019). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41436-019-0516-z">"Aberrant DNA methylation as a diagnostic biomarker of diabetic embryopathy"</a>. <i>Genetics in Medicine</i>. <b>21</b> (11): 2453–2461. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41436-019-0516-z">10.1038/s41436-019-0516-z</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30992551">30992551</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:116880337">116880337</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Genetics+in+Medicine&rft.atitle=Aberrant+DNA+methylation+as+a+diagnostic+biomarker+of+diabetic+embryopathy&rft.volume=21&rft.issue=11&rft.pages=2453-2461&rft.date=2019-11&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A116880337%23id-name%3DS2CID&rft_id=info%3Apmid%2F30992551&rft_id=info%3Adoi%2F10.1038%2Fs41436-019-0516-z&rft.aulast=Schulze&rft.aufirst=KV&rft.au=Bhatt%2C+A&rft.au=Azamian%2C+MS&rft.au=Sundgren%2C+NC&rft.au=Zapata%2C+GE&rft.au=Hernandez%2C+P&rft.au=Fox%2C+K&rft.au=Kaiser%2C+JR&rft.au=Belmont%2C+JW&rft.au=Hanchard%2C+NA&rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252Fs41436-019-0516-z&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-163"><span class="mw-cite-backlink"><b><a href="#cite_ref-163">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCallaway2013" class="citation web cs1">Callaway E (1 December 2013). <a rel="nofollow" class="external text" href="https://www.scientificamerican.com/article/fearful-memories-passed-down/">"Fearful Memories Passed Down to Mouse Descendants: Genetic imprint from traumatic experiences carries through at least two generations"</a>. <i>Nature Magazine</i> – via Scientific American.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Nature+Magazine&rft.atitle=Fearful+Memories+Passed+Down+to+Mouse+Descendants%3A+Genetic+imprint+from+traumatic+experiences+carries+through+at+least+two+generations&rft.date=2013-12-01&rft.aulast=Callaway&rft.aufirst=E&rft_id=https%3A%2F%2Fwww.scientificamerican.com%2Farticle%2Ffearful-memories-passed-down%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-164"><span class="mw-cite-backlink"><b><a href="#cite_ref-164">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLe_Roux2013" class="citation web cs1">Le Roux M (13 December 2013). <a rel="nofollow" class="external text" href="http://medicalxpress.com/news/2013-12-mice-sons-grandsons-dangers-sperm.html#ajTabs">"Mice can 'warn' sons, grandsons of dangers via sperm"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Mice+can+%27warn%27+sons%2C+grandsons+of+dangers+via+sperm&rft.date=2013-12-13&rft.aulast=Le+Roux&rft.aufirst=M&rft_id=http%3A%2F%2Fmedicalxpress.com%2Fnews%2F2013-12-mice-sons-grandsons-dangers-sperm.html%23ajTabs&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-Francis_2014-165"><span class="mw-cite-backlink"><b><a href="#cite_ref-Francis_2014_165-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrancis2014" class="citation journal cs1">Francis G (October 2014). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196602">"Too much success for recent groundbreaking epigenetic experiments"</a>. <i>Genetics</i>. <b>198</b> (2): 449–451. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1534%2Fgenetics.114.163998">10.1534/genetics.114.163998</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196602">4196602</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25316784">25316784</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Genetics&rft.atitle=Too+much+success+for+recent+groundbreaking+epigenetic+experiments&rft.volume=198&rft.issue=2&rft.pages=449-451&rft.date=2014-10&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4196602%23id-name%3DPMC&rft_id=info%3Apmid%2F25316784&rft_id=info%3Adoi%2F10.1534%2Fgenetics.114.163998&rft.aulast=Francis&rft.aufirst=G&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4196602&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-166"><span class="mw-cite-backlink"><b><a href="#cite_ref-166">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDiasRessler2014" class="citation journal cs1">Dias BG, Ressler KJ (January 2014). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3923835">"Parental olfactory experience influences behavior and neural structure in subsequent generations"</a>. <i>Nature Neuroscience</i>. <b>17</b> (1): 89–96. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnn.3594">10.1038/nn.3594</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3923835">3923835</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24292232">24292232</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Neuroscience&rft.atitle=Parental+olfactory+experience+influences+behavior+and+neural+structure+in+subsequent+generations&rft.volume=17&rft.issue=1&rft.pages=89-96&rft.date=2014-01&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3923835%23id-name%3DPMC&rft_id=info%3Apmid%2F24292232&rft_id=info%3Adoi%2F10.1038%2Fnn.3594&rft.aulast=Dias&rft.aufirst=BG&rft.au=Ressler%2C+KJ&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3923835&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span> (see comment by Gonzalo Otazu)</span> </li> <li id="cite_note-167"><span class="mw-cite-backlink"><b><a href="#cite_ref-167">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.the-scientist.com/?articles.view/articleNo/41239/title/Epigenetics-Paper-Raises-Questions/">"Epigenetics Paper Raises Questions"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Epigenetics+Paper+Raises+Questions&rft_id=http%3A%2F%2Fwww.the-scientist.com%2F%3Farticles.view%2FarticleNo%2F41239%2Ftitle%2FEpigenetics-Paper-Raises-Questions%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-isbn0-19-854968-7-168"><span class="mw-cite-backlink"><b><a href="#cite_ref-isbn0-19-854968-7_168-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHoekstra2000" class="citation book cs1">Hoekstra RF (2000). <i>Evolution: an introduction</i>. Oxford: Oxford University Press. p. 285. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-854968-0" title="Special:BookSources/978-0-19-854968-0"><bdi>978-0-19-854968-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Evolution%3A+an+introduction&rft.place=Oxford&rft.pages=285&rft.pub=Oxford+University+Press&rft.date=2000&rft.isbn=978-0-19-854968-0&rft.aulast=Hoekstra&rft.aufirst=RF&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-isbn0-262-10107-6-169"><span class="mw-cite-backlink"><b><a href="#cite_ref-isbn0-262-10107-6_169-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLambJablonka2005" class="citation book cs1">Lamb MJ, Jablonka E (2005). <i>Evolution in four dimensions: genetic, epigenetic, behavioral, and symbolic variation in the history of life</i>. Cambridge, Massachusetts: MIT Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-262-10107-3" title="Special:BookSources/978-0-262-10107-3"><bdi>978-0-262-10107-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Evolution+in+four+dimensions%3A+genetic%2C+epigenetic%2C+behavioral%2C+and+symbolic+variation+in+the+history+of+life&rft.place=Cambridge%2C+Massachusetts&rft.pub=MIT+Press&rft.date=2005&rft.isbn=978-0-262-10107-3&rft.aulast=Lamb&rft.aufirst=MJ&rft.au=Jablonka%2C+E&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-170"><span class="mw-cite-backlink"><b><a href="#cite_ref-170">^</a></b></span> <span class="reference-text">See also <a href="/wiki/Denis_Noble" title="Denis Noble">Denis Noble</a>: <i>The Music of Life</i>, esp pp. 93–98 and p. 48, where he cites Jablonka & Lamb and <a href="/wiki/Massimo_Pigliucci" title="Massimo Pigliucci">Massimo Pigliucci</a>'s review of Jablonka and Lamb in <a href="/wiki/Nature_(journal)" title="Nature (journal)"><i>Nature</i></a> <b>435</b>, 565–566 (2 June 2005)</span> </li> <li id="cite_note-171"><span class="mw-cite-backlink"><b><a href="#cite_ref-171">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDanchinCharmantierChampagneMesoudi2011" class="citation journal cs1">Danchin É, Charmantier A, Champagne FA, Mesoudi A, Pujol B, Blanchet S (June 2011). "Beyond DNA: integrating inclusive inheritance into an extended theory of evolution". <i>Nature Reviews. Genetics</i>. <b>12</b> (7): 475–86. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnrg3028">10.1038/nrg3028</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21681209">21681209</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8837202">8837202</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Reviews.+Genetics&rft.atitle=Beyond+DNA%3A+integrating+inclusive+inheritance+into+an+extended+theory+of+evolution&rft.volume=12&rft.issue=7&rft.pages=475-86&rft.date=2011-06&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8837202%23id-name%3DS2CID&rft_id=info%3Apmid%2F21681209&rft_id=info%3Adoi%2F10.1038%2Fnrg3028&rft.aulast=Danchin&rft.aufirst=%C3%89&rft.au=Charmantier%2C+A&rft.au=Champagne%2C+FA&rft.au=Mesoudi%2C+A&rft.au=Pujol%2C+B&rft.au=Blanchet%2C+S&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-172"><span class="mw-cite-backlink"><b><a href="#cite_ref-172">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaynard_Smith1990" class="citation journal cs1">Maynard Smith J (March 1990). "Models of a dual inheritance system". <i>Journal of Theoretical Biology</i>. <b>143</b> (1): 41–53. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1990JThBi.143...41M">1990JThBi.143...41M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0022-5193%2805%2980287-5">10.1016/S0022-5193(05)80287-5</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/2359317">2359317</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Theoretical+Biology&rft.atitle=Models+of+a+dual+inheritance+system&rft.volume=143&rft.issue=1&rft.pages=41-53&rft.date=1990-03&rft_id=info%3Apmid%2F2359317&rft_id=info%3Adoi%2F10.1016%2FS0022-5193%2805%2980287-5&rft_id=info%3Abibcode%2F1990JThBi.143...41M&rft.aulast=Maynard+Smith&rft.aufirst=J&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-173"><span class="mw-cite-backlink"><b><a href="#cite_ref-173">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLynch2007" class="citation journal cs1">Lynch M (May 2007). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1876435">"The frailty of adaptive hypotheses for the origins of organismal complexity"</a>. <i>Proceedings of the National Academy of Sciences of the United States of America</i>. <b>104</b> (Suppl 1): 8597–604. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007PNAS..104.8597L">2007PNAS..104.8597L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.0702207104">10.1073/pnas.0702207104</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1876435">1876435</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17494740">17494740</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+of+the+United+States+of+America&rft.atitle=The+frailty+of+adaptive+hypotheses+for+the+origins+of+organismal+complexity&rft.volume=104&rft.issue=Suppl+1&rft.pages=8597-604&rft.date=2007-05&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1876435%23id-name%3DPMC&rft_id=info%3Apmid%2F17494740&rft_id=info%3Adoi%2F10.1073%2Fpnas.0702207104&rft_id=info%3Abibcode%2F2007PNAS..104.8597L&rft.aulast=Lynch&rft.aufirst=M&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1876435&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-174"><span class="mw-cite-backlink"><b><a href="#cite_ref-174">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDickinsRahman2012" class="citation journal cs1">Dickins TE, Rahman Q (August 2012). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385474">"The extended evolutionary synthesis and the role of soft inheritance in evolution"</a>. <i>Proceedings. Biological Sciences</i>. <b>279</b> (1740): 2913–21. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspb.2012.0273">10.1098/rspb.2012.0273</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385474">3385474</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22593110">22593110</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings.+Biological+Sciences&rft.atitle=The+extended+evolutionary+synthesis+and+the+role+of+soft+inheritance+in+evolution&rft.volume=279&rft.issue=1740&rft.pages=2913-21&rft.date=2012-08&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3385474%23id-name%3DPMC&rft_id=info%3Apmid%2F22593110&rft_id=info%3Adoi%2F10.1098%2Frspb.2012.0273&rft.aulast=Dickins&rft.aufirst=TE&rft.au=Rahman%2C+Q&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3385474&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-rando_and_verstrepen-175"><span class="mw-cite-backlink"><b><a href="#cite_ref-rando_and_verstrepen_175-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRandoVerstrepen2007" class="citation journal cs1">Rando OJ, Verstrepen KJ (February 2007). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cell.2007.01.023">"Timescales of genetic and epigenetic inheritance"</a>. <i>Cell</i>. <b>128</b> (4): 655–68. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cell.2007.01.023">10.1016/j.cell.2007.01.023</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17320504">17320504</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17964015">17964015</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cell&rft.atitle=Timescales+of+genetic+and+epigenetic+inheritance&rft.volume=128&rft.issue=4&rft.pages=655-68&rft.date=2007-02&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17964015%23id-name%3DS2CID&rft_id=info%3Apmid%2F17320504&rft_id=info%3Adoi%2F10.1016%2Fj.cell.2007.01.023&rft.aulast=Rando&rft.aufirst=OJ&rft.au=Verstrepen%2C+KJ&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.cell.2007.01.023&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-176"><span class="mw-cite-backlink"><b><a href="#cite_ref-176">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLancasterMasel2009" class="citation journal cs1">Lancaster AK, Masel J (September 2009). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2770902">"The evolution of reversible switches in the presence of irreversible mimics"</a>. <i>Evolution; International Journal of Organic Evolution</i>. <b>63</b> (9): 2350–62. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1558-5646.2009.00729.x">10.1111/j.1558-5646.2009.00729.x</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2770902">2770902</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19486147">19486147</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Evolution%3B+International+Journal+of+Organic+Evolution&rft.atitle=The+evolution+of+reversible+switches+in+the+presence+of+irreversible+mimics&rft.volume=63&rft.issue=9&rft.pages=2350-62&rft.date=2009-09&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2770902%23id-name%3DPMC&rft_id=info%3Apmid%2F19486147&rft_id=info%3Adoi%2F10.1111%2Fj.1558-5646.2009.00729.x&rft.aulast=Lancaster&rft.aufirst=AK&rft.au=Masel%2C+J&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2770902&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-van_der_Graaf_et_al-177"><span class="mw-cite-backlink"><b><a href="#cite_ref-van_der_Graaf_et_al_177-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvan_der_GraafWardenaarNeumannTaudt2015" class="citation journal cs1">van der Graaf A, Wardenaar R, Neumann DA, Taudt A, Shaw RG, Jansen RC, et al. (May 2015). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450394">"Rate, spectrum, and evolutionary dynamics of spontaneous epimutations"</a>. <i>Proceedings of the National Academy of Sciences of the United States of America</i>. <b>112</b> (21): 6676–81. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015PNAS..112.6676V">2015PNAS..112.6676V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.1424254112">10.1073/pnas.1424254112</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450394">4450394</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25964364">25964364</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+of+the+United+States+of+America&rft.atitle=Rate%2C+spectrum%2C+and+evolutionary+dynamics+of+spontaneous+epimutations&rft.volume=112&rft.issue=21&rft.pages=6676-81&rft.date=2015-05&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4450394%23id-name%3DPMC&rft_id=info%3Apmid%2F25964364&rft_id=info%3Adoi%2F10.1073%2Fpnas.1424254112&rft_id=info%3Abibcode%2F2015PNAS..112.6676V&rft.aulast=van+der+Graaf&rft.aufirst=A&rft.au=Wardenaar%2C+R&rft.au=Neumann%2C+DA&rft.au=Taudt%2C+A&rft.au=Shaw%2C+RG&rft.au=Jansen%2C+RC&rft.au=Schmitz%2C+RJ&rft.au=Colom%C3%A9-Tatch%C3%A9%2C+M&rft.au=Johannes%2C+F&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4450394&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-178"><span class="mw-cite-backlink"><b><a href="#cite_ref-178">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGriswoldMasel2009" class="citation journal cs1">Griswold CK, Masel J (June 2009). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2686163">"Complex adaptations can drive the evolution of the capacitor [PSI], even with realistic rates of yeast sex"</a>. <i>PLOS Genetics</i>. <b>5</b> (6): e1000517. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1371%2Fjournal.pgen.1000517">10.1371/journal.pgen.1000517</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2686163">2686163</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19521499">19521499</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PLOS+Genetics&rft.atitle=Complex+adaptations+can+drive+the+evolution+of+the+capacitor+%5BPSI%5D%2C+even+with+realistic+rates+of+yeast+sex&rft.volume=5&rft.issue=6&rft.pages=e1000517&rft.date=2009-06&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2686163%23id-name%3DPMC&rft_id=info%3Apmid%2F19521499&rft_id=info%3Adoi%2F10.1371%2Fjournal.pgen.1000517&rft.aulast=Griswold&rft.aufirst=CK&rft.au=Masel%2C+J&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2686163&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-Jablonka09-179"><span class="mw-cite-backlink"><b><a href="#cite_ref-Jablonka09_179-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJablonkaRaz2009" class="citation journal cs1">Jablonka E, Raz G (June 2009). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110715111243/http://compgen.unc.edu/wiki/images/d/df/JablonkaQtrRevBio2009.pdf">"Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution"</a> <span class="cs1-format">(PDF)</span>. <i>The Quarterly Review of Biology</i>. <b>84</b> (2): 131–76. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.617.6333">10.1.1.617.6333</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F598822">10.1086/598822</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19606595">19606595</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:7233550">7233550</a>. Archived from <a rel="nofollow" class="external text" href="http://compgen.unc.edu/wiki/images/d/df/JablonkaQtrRevBio2009.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 15 July 2011<span class="reference-accessdate">. Retrieved <span class="nowrap">1 November</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Quarterly+Review+of+Biology&rft.atitle=Transgenerational+epigenetic+inheritance%3A+prevalence%2C+mechanisms%2C+and+implications+for+the+study+of+heredity+and+evolution&rft.volume=84&rft.issue=2&rft.pages=131-76&rft.date=2009-06&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.617.6333%23id-name%3DCiteSeerX&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A7233550%23id-name%3DS2CID&rft_id=info%3Apmid%2F19606595&rft_id=info%3Adoi%2F10.1086%2F598822&rft.aulast=Jablonka&rft.aufirst=E&rft.au=Raz%2C+G&rft_id=http%3A%2F%2Fcompgen.unc.edu%2Fwiki%2Fimages%2Fd%2Fdf%2FJablonkaQtrRevBio2009.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-180"><span class="mw-cite-backlink"><b><a href="#cite_ref-180">^</a></b></span> <span class="reference-text">Davies, Hazel (2008). Do Butterflies Bite?: Fascinating Answers to Questions about Butterflies and Moths (Animals Q&A). Rutgers University Press.</span> </li> <li id="cite_note-pmid19092133-181"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid19092133_181-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLewisHondaKhlafallahJeffress2009" class="citation journal cs1">Lewis ZA, Honda S, Khlafallah TK, Jeffress JK, Freitag M, Mohn F, et al. (March 2009). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2661801">"Relics of repeat-induced point mutation direct heterochromatin formation in Neurospora crassa"</a>. <i>Genome Research</i>. <b>19</b> (3): 427–37. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1101%2Fgr.086231.108">10.1101/gr.086231.108</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2661801">2661801</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19092133">19092133</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Genome+Research&rft.atitle=Relics+of+repeat-induced+point+mutation+direct+heterochromatin+formation+in+Neurospora+crassa&rft.volume=19&rft.issue=3&rft.pages=427-37&rft.date=2009-03&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2661801%23id-name%3DPMC&rft_id=info%3Apmid%2F19092133&rft_id=info%3Adoi%2F10.1101%2Fgr.086231.108&rft.aulast=Lewis&rft.aufirst=ZA&rft.au=Honda%2C+S&rft.au=Khlafallah%2C+TK&rft.au=Jeffress%2C+JK&rft.au=Freitag%2C+M&rft.au=Mohn%2C+F&rft.au=Sch%C3%BCbeler%2C+D&rft.au=Selker%2C+EU&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2661801&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-JorgTost-182"><span class="mw-cite-backlink">^ <a href="#cite_ref-JorgTost_182-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-JorgTost_182-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTost2008" class="citation book cs1">Tost J (2008). <i>Epigenetics</i>. Norfolk, England: Caister Academic Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-904455-23-3" title="Special:BookSources/978-1-904455-23-3"><bdi>978-1-904455-23-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Epigenetics&rft.place=Norfolk%2C+England&rft.pub=Caister+Academic+Press&rft.date=2008&rft.isbn=978-1-904455-23-3&rft.aulast=Tost&rft.aufirst=J&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-183"><span class="mw-cite-backlink"><b><a href="#cite_ref-183">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchadtBanerjeeFangFeng2013" class="citation journal cs1">Schadt EE, Banerjee O, Fang G, Feng Z, Wong WH, Zhang X, et al. (January 2013). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530673">"Modeling kinetic rate variation in third generation DNA sequencing data to detect putative modifications to DNA bases"</a>. <i>Genome Research</i>. <b>23</b> (1): 129–41. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1101%2Fgr.136739.111">10.1101/gr.136739.111</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530673">3530673</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23093720">23093720</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Genome+Research&rft.atitle=Modeling+kinetic+rate+variation+in+third+generation+DNA+sequencing+data+to+detect+putative+modifications+to+DNA+bases&rft.volume=23&rft.issue=1&rft.pages=129-41&rft.date=2013-01&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3530673%23id-name%3DPMC&rft_id=info%3Apmid%2F23093720&rft_id=info%3Adoi%2F10.1101%2Fgr.136739.111&rft.aulast=Schadt&rft.aufirst=EE&rft.au=Banerjee%2C+O&rft.au=Fang%2C+G&rft.au=Feng%2C+Z&rft.au=Wong%2C+WH&rft.au=Zhang%2C+X&rft.au=Kislyuk%2C+A&rft.au=Clark%2C+TA&rft.au=Luong%2C+K&rft.au=Keren-Paz%2C+A&rft.au=Chess%2C+A&rft.au=Kumar%2C+V&rft.au=Chen-Plotkin%2C+A&rft.au=Sondheimer%2C+N&rft.au=Korlach%2C+J&rft.au=Kasarskis%2C+A&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3530673&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-184"><span class="mw-cite-backlink"><b><a href="#cite_ref-184">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavisChaoWaldor2013" class="citation journal cs1">Davis BM, Chao MC, Waldor MK (April 2013). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646917">"Entering the era of bacterial epigenomics with single molecule real time DNA sequencing"</a>. <i>Current Opinion in Microbiology</i>. <b>16</b> (2): 192–8. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.mib.2013.01.011">10.1016/j.mib.2013.01.011</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646917">3646917</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23434113">23434113</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Current+Opinion+in+Microbiology&rft.atitle=Entering+the+era+of+bacterial+epigenomics+with+single+molecule+real+time+DNA+sequencing&rft.volume=16&rft.issue=2&rft.pages=192-8&rft.date=2013-04&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3646917%23id-name%3DPMC&rft_id=info%3Apmid%2F23434113&rft_id=info%3Adoi%2F10.1016%2Fj.mib.2013.01.011&rft.aulast=Davis&rft.aufirst=BM&rft.au=Chao%2C+MC&rft.au=Waldor%2C+MK&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3646917&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-185"><span class="mw-cite-backlink"><b><a href="#cite_ref-185">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLluch-SenarLuongLloréns-RicoDelgado2013" class="citation journal cs1">Lluch-Senar M, Luong K, Lloréns-Rico V, Delgado J, Fang G, Spittle K, et al. (2013). Richardson PM (ed.). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536716">"Comprehensive methylome characterization of Mycoplasma genitalium and Mycoplasma pneumoniae at single-base resolution"</a>. <i>PLOS Genetics</i>. <b>9</b> (1): e1003191. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1371%2Fjournal.pgen.1003191">10.1371/journal.pgen.1003191</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536716">3536716</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23300489">23300489</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PLOS+Genetics&rft.atitle=Comprehensive+methylome+characterization+of+Mycoplasma+genitalium+and+Mycoplasma+pneumoniae+at+single-base+resolution&rft.volume=9&rft.issue=1&rft.pages=e1003191&rft.date=2013&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3536716%23id-name%3DPMC&rft_id=info%3Apmid%2F23300489&rft_id=info%3Adoi%2F10.1371%2Fjournal.pgen.1003191&rft.aulast=Lluch-Senar&rft.aufirst=M&rft.au=Luong%2C+K&rft.au=Llor%C3%A9ns-Rico%2C+V&rft.au=Delgado%2C+J&rft.au=Fang%2C+G&rft.au=Spittle%2C+K&rft.au=Clark%2C+TA&rft.au=Schadt%2C+E&rft.au=Turner%2C+SW&rft.au=Korlach%2C+J&rft.au=Serrano%2C+L&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3536716&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-186"><span class="mw-cite-backlink"><b><a href="#cite_ref-186">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMurrayClarkMorganBoitano2012" class="citation journal cs1">Murray IA, Clark TA, Morgan RD, Boitano M, Anton BP, Luong K, et al. (December 2012). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3526280">"The methylomes of six bacteria"</a>. <i>Nucleic Acids Research</i>. <b>40</b> (22): 11450–62. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fnar%2Fgks891">10.1093/nar/gks891</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3526280">3526280</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23034806">23034806</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nucleic+Acids+Research&rft.atitle=The+methylomes+of+six+bacteria&rft.volume=40&rft.issue=22&rft.pages=11450-62&rft.date=2012-12&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3526280%23id-name%3DPMC&rft_id=info%3Apmid%2F23034806&rft_id=info%3Adoi%2F10.1093%2Fnar%2Fgks891&rft.aulast=Murray&rft.aufirst=IA&rft.au=Clark%2C+TA&rft.au=Morgan%2C+RD&rft.au=Boitano%2C+M&rft.au=Anton%2C+BP&rft.au=Luong%2C+K&rft.au=Fomenkov%2C+A&rft.au=Turner%2C+SW&rft.au=Korlach%2C+J&rft.au=Roberts%2C+RJ&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3526280&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-187"><span class="mw-cite-backlink"><b><a href="#cite_ref-187">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFangMuneraFriedmanMandlik2012" class="citation journal cs1">Fang G, Munera D, Friedman DI, Mandlik A, Chao MC, Banerjee O, et al. (December 2012). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3879109">"Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing"</a>. <i>Nature Biotechnology</i>. <b>30</b> (12): 1232–9. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnbt.2432">10.1038/nbt.2432</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3879109">3879109</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23138224">23138224</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Biotechnology&rft.atitle=Genome-wide+mapping+of+methylated+adenine+residues+in+pathogenic+Escherichia+coli+using+single-molecule+real-time+sequencing&rft.volume=30&rft.issue=12&rft.pages=1232-9&rft.date=2012-12&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3879109%23id-name%3DPMC&rft_id=info%3Apmid%2F23138224&rft_id=info%3Adoi%2F10.1038%2Fnbt.2432&rft.aulast=Fang&rft.aufirst=G&rft.au=Munera%2C+D&rft.au=Friedman%2C+DI&rft.au=Mandlik%2C+A&rft.au=Chao%2C+MC&rft.au=Banerjee%2C+O&rft.au=Feng%2C+Z&rft.au=Losic%2C+B&rft.au=Mahajan%2C+MC&rft.au=Jabado%2C+OJ&rft.au=Deikus%2C+G&rft.au=Clark%2C+TA&rft.au=Luong%2C+K&rft.au=Murray%2C+IA&rft.au=Davis%2C+BM&rft.au=Keren-Paz%2C+A&rft.au=Chess%2C+A&rft.au=Roberts%2C+RJ&rft.au=Korlach%2C+J&rft.au=Turner%2C+SW&rft.au=Kumar%2C+V&rft.au=Waldor%2C+MK&rft.au=Schadt%2C+EE&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3879109&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-188"><span class="mw-cite-backlink"><b><a href="#cite_ref-188">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOliveira2021" class="citation journal cs1">Oliveira PH (August 2021). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8407109">"Bacterial Epigenomics: Coming of Age"</a>. <i>mSystems</i>. <b>6</b> (4): e0074721. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1128%2FmSystems.00747-21">10.1128/mSystems.00747-21</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8407109">8407109</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/34402642">34402642</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:237149441">237149441</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=mSystems&rft.atitle=Bacterial+Epigenomics%3A+Coming+of+Age&rft.volume=6&rft.issue=4&rft.pages=e0074721&rft.date=2021-08&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8407109%23id-name%3DPMC&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A237149441%23id-name%3DS2CID&rft_id=info%3Apmid%2F34402642&rft_id=info%3Adoi%2F10.1128%2FmSystems.00747-21&rft.aulast=Oliveira&rft.aufirst=PH&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8407109&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-Casadesus-189"><span class="mw-cite-backlink"><b><a href="#cite_ref-Casadesus_189-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCasadesúsLow2006" class="citation journal cs1">Casadesús J, Low D (September 2006). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1594586">"Epigenetic gene regulation in the bacterial world"</a>. <i>Microbiology and Molecular Biology Reviews</i>. <b>70</b> (3): 830–56. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1128%2FMMBR.00016-06">10.1128/MMBR.00016-06</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1594586">1594586</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16959970">16959970</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Microbiology+and+Molecular+Biology+Reviews&rft.atitle=Epigenetic+gene+regulation+in+the+bacterial+world&rft.volume=70&rft.issue=3&rft.pages=830-56&rft.date=2006-09&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1594586%23id-name%3DPMC&rft_id=info%3Apmid%2F16959970&rft_id=info%3Adoi%2F10.1128%2FMMBR.00016-06&rft.aulast=Casades%C3%BAs&rft.aufirst=J&rft.au=Low%2C+D&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1594586&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-MansoOggioni2014-190"><span class="mw-cite-backlink"><b><a href="#cite_ref-MansoOggioni2014_190-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMansoChaiAtackFuri2014" class="citation journal cs1">Manso AS, Chai MH, Atack JM, Furi L, De Ste Croix M, Haigh R, et al. (September 2014). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190663">"A random six-phase switch regulates pneumococcal virulence via global epigenetic changes"</a>. <i>Nature Communications</i>. <b>5</b>: 5055. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014NatCo...5.5055M">2014NatCo...5.5055M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fncomms6055">10.1038/ncomms6055</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190663">4190663</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25268848">25268848</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Communications&rft.atitle=A+random+six-phase+switch+regulates+pneumococcal+virulence+via+global+epigenetic+changes&rft.volume=5&rft.pages=5055&rft.date=2014-09&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4190663%23id-name%3DPMC&rft_id=info%3Apmid%2F25268848&rft_id=info%3Adoi%2F10.1038%2Fncomms6055&rft_id=info%3Abibcode%2F2014NatCo...5.5055M&rft.aulast=Manso&rft.aufirst=AS&rft.au=Chai%2C+MH&rft.au=Atack%2C+JM&rft.au=Furi%2C+L&rft.au=De+Ste+Croix%2C+M&rft.au=Haigh%2C+R&rft.au=Trappetti%2C+C&rft.au=Ogunniyi%2C+AD&rft.au=Shewell%2C+LK&rft.au=Boitano%2C+M&rft.au=Clark%2C+TA&rft.au=Korlach%2C+J&rft.au=Blades%2C+M&rft.au=Mirkes%2C+E&rft.au=Gorban%2C+AN&rft.au=Paton%2C+JC&rft.au=Jennings%2C+MP&rft.au=Oggioni%2C+MR&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4190663&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-191"><span class="mw-cite-backlink"><b><a href="#cite_ref-191">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOliveiraRibisGarrettTrzilova2020" class="citation journal cs1">Oliveira PH, Ribis JW, Garrett EM, Trzilova D, Kim A, Sekulovic O, et al. (January 2020). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925328">"Epigenomic characterization of Clostridioides difficile finds a conserved DNA methyltransferase that mediates sporulation and pathogenesis"</a>. <i>Nature Microbiology</i>. <b>5</b> (1): 166–180. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41564-019-0613-4">10.1038/s41564-019-0613-4</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925328">6925328</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31768029">31768029</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Microbiology&rft.atitle=Epigenomic+characterization+of+Clostridioides+difficile+finds+a+conserved+DNA+methyltransferase+that+mediates+sporulation+and+pathogenesis&rft.volume=5&rft.issue=1&rft.pages=166-180&rft.date=2020-01&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6925328%23id-name%3DPMC&rft_id=info%3Apmid%2F31768029&rft_id=info%3Adoi%2F10.1038%2Fs41564-019-0613-4&rft.aulast=Oliveira&rft.aufirst=PH&rft.au=Ribis%2C+JW&rft.au=Garrett%2C+EM&rft.au=Trzilova%2C+D&rft.au=Kim%2C+A&rft.au=Sekulovic%2C+O&rft.au=Mead%2C+EA&rft.au=Pak%2C+T&rft.au=Zhu%2C+S&rft.au=Deikus%2C+G&rft.au=Touchon%2C+M&rft.au=Lewis-Sandari%2C+M&rft.au=Beckford%2C+C&rft.au=Zeitouni%2C+NE&rft.au=Altman%2C+DR&rft.au=Webster%2C+E&rft.au=Oussenko%2C+I&rft.au=Bunyavanich%2C+S&rft.au=Aggarwal%2C+AK&rft.au=Bashir%2C+A&rft.au=Patel%2C+G&rft.au=Wallach%2C+F&rft.au=Hamula%2C+C&rft.au=Huprikar%2C+S&rft.au=Schadt%2C+EE&rft.au=Sebra%2C+R&rft.au=van+Bakel%2C+H&rft.au=Kasarskis%2C+A&rft.au=Tamayo%2C+R&rft.au=Shen%2C+A&rft.au=Fang%2C+G&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6925328&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid21447282-192"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid21447282_192-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChahwanWontakalRoa2011" class="citation journal cs1">Chahwan R, Wontakal SN, Roa S (March 2011). "The multidimensional nature of epigenetic information and its role in disease". <i>Discovery Medicine</i>. <b>11</b> (58): 233–43. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21447282">21447282</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Discovery+Medicine&rft.atitle=The+multidimensional+nature+of+epigenetic+information+and+its+role+in+disease&rft.volume=11&rft.issue=58&rft.pages=233-43&rft.date=2011-03&rft_id=info%3Apmid%2F21447282&rft.aulast=Chahwan&rft.aufirst=R&rft.au=Wontakal%2C+SN&rft.au=Roa%2C+S&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid16009939-193"><span class="mw-cite-backlink">^ <a href="#cite_ref-pmid16009939_193-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pmid16009939_193-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-pmid16009939_193-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFragaBallestarPazRopero2005" class="citation journal cs1">Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, et al. (July 2005). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1174919">"Epigenetic differences arise during the lifetime of monozygotic twins"</a>. <i>Proceedings of the National Academy of Sciences of the United States of America</i>. <b>102</b> (30): 10604–9. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005PNAS..10210604F">2005PNAS..10210604F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.0500398102">10.1073/pnas.0500398102</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1174919">1174919</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16009939">16009939</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+of+the+United+States+of+America&rft.atitle=Epigenetic+differences+arise+during+the+lifetime+of+monozygotic+twins&rft.volume=102&rft.issue=30&rft.pages=10604-9&rft.date=2005-07&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1174919%23id-name%3DPMC&rft_id=info%3Apmid%2F16009939&rft_id=info%3Adoi%2F10.1073%2Fpnas.0500398102&rft_id=info%3Abibcode%2F2005PNAS..10210604F&rft.aulast=Fraga&rft.aufirst=MF&rft.au=Ballestar%2C+E&rft.au=Paz%2C+MF&rft.au=Ropero%2C+S&rft.au=Setien%2C+F&rft.au=Ballestar%2C+ML&rft.au=Heine-Su%C3%B1er%2C+D&rft.au=Cigudosa%2C+JC&rft.au=Urioste%2C+M&rft.au=Benitez%2C+J&rft.au=Boix-Chornet%2C+M&rft.au=Sanchez-Aguilera%2C+A&rft.au=Ling%2C+C&rft.au=Carlsson%2C+E&rft.au=Poulsen%2C+P&rft.au=Vaag%2C+A&rft.au=Stephan%2C+Z&rft.au=Spector%2C+TD&rft.au=Wu%2C+YZ&rft.au=Plass%2C+C&rft.au=Esteller%2C+M&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1174919&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid19151718-194"><span class="mw-cite-backlink">^ <a href="#cite_ref-pmid19151718_194-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pmid19151718_194-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaminskyTangWangPtak2009" class="citation journal cs1">Kaminsky ZA, Tang T, Wang SC, Ptak C, Oh GH, Wong AH, et al. (February 2009). "DNA methylation profiles in monozygotic and dizygotic twins". <i>Nature Genetics</i>. <b>41</b> (2): 240–5. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fng.286">10.1038/ng.286</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19151718">19151718</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:12688031">12688031</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Genetics&rft.atitle=DNA+methylation+profiles+in+monozygotic+and+dizygotic+twins&rft.volume=41&rft.issue=2&rft.pages=240-5&rft.date=2009-02&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A12688031%23id-name%3DS2CID&rft_id=info%3Apmid%2F19151718&rft_id=info%3Adoi%2F10.1038%2Fng.286&rft.aulast=Kaminsky&rft.aufirst=ZA&rft.au=Tang%2C+T&rft.au=Wang%2C+SC&rft.au=Ptak%2C+C&rft.au=Oh%2C+GH&rft.au=Wong%2C+AH&rft.au=Feldcamp%2C+LA&rft.au=Virtanen%2C+C&rft.au=Halfvarson%2C+J&rft.au=Tysk%2C+C&rft.au=McRae%2C+AF&rft.au=Visscher%2C+PM&rft.au=Montgomery%2C+GW&rft.au=Gottesman%2C+II&rft.au=Martin%2C+NG&rft.au=Petronis%2C+A&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-195"><span class="mw-cite-backlink"><b><a href="#cite_ref-195">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO'Connor2008" class="citation news cs1">O'Connor A (11 March 2008). <a rel="nofollow" class="external text" href="https://www.nytimes.com/2008/03/11/health/11real.html">"The Claim: Identical Twins Have Identical DNA"</a>. <i>New York Times</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2 May</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+York+Times&rft.atitle=The+Claim%3A+Identical+Twins+Have+Identical+DNA&rft.date=2008-03-11&rft.aulast=O%27Connor&rft.aufirst=A&rft_id=https%3A%2F%2Fwww.nytimes.com%2F2008%2F03%2F11%2Fhealth%2F11real.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid19653134-196"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid19653134_196-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBallestar2010" class="citation journal cs1">Ballestar E (August 2010). "Epigenetics lessons from twins: prospects for autoimmune disease". <i>Clinical Reviews in Allergy & Immunology</i>. <b>39</b> (1): 30–41. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs12016-009-8168-4">10.1007/s12016-009-8168-4</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19653134">19653134</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:25040280">25040280</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Clinical+Reviews+in+Allergy+%26+Immunology&rft.atitle=Epigenetics+lessons+from+twins%3A+prospects+for+autoimmune+disease&rft.volume=39&rft.issue=1&rft.pages=30-41&rft.date=2010-08&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A25040280%23id-name%3DS2CID&rft_id=info%3Apmid%2F19653134&rft_id=info%3Adoi%2F10.1007%2Fs12016-009-8168-4&rft.aulast=Ballestar&rft.aufirst=E&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-197"><span class="mw-cite-backlink"><b><a href="#cite_ref-197">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWallaceTwomeyCustaudMoyna2016" class="citation journal cs1">Wallace RG, Twomey LC, Custaud MA, Moyna N, Cummins PM, Mangone M, et al. (2016). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4749768">"Potential Diagnostic and Prognostic Biomarkers of Epigenetic Drift within the Cardiovascular Compartment"</a>. <i>BioMed Research International</i>. <b>2016</b>: 2465763. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2016%2F2465763">10.1155/2016/2465763</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4749768">4749768</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26942189">26942189</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=BioMed+Research+International&rft.atitle=Potential+Diagnostic+and+Prognostic+Biomarkers+of+Epigenetic+Drift+within+the+Cardiovascular+Compartment&rft.volume=2016&rft.pages=2465763&rft.date=2016&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4749768%23id-name%3DPMC&rft_id=info%3Apmid%2F26942189&rft_id=info%3Adoi%2F10.1155%2F2016%2F2465763&rft.aulast=Wallace&rft.aufirst=RG&rft.au=Twomey%2C+LC&rft.au=Custaud%2C+MA&rft.au=Moyna%2C+N&rft.au=Cummins%2C+PM&rft.au=Mangone%2C+M&rft.au=Murphy%2C+RP&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4749768&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-198"><span class="mw-cite-backlink"><b><a href="#cite_ref-198">^</a></b></span> <span class="reference-text"><a href="/wiki/Online_Mendelian_Inheritance_in_Man" title="Online Mendelian Inheritance in Man">Online Mendelian Inheritance in Man</a> (OMIM): <a rel="nofollow" class="external text" href="https://omim.org/entry/105830">105830</a></span> </li> <li id="cite_note-pmid17121465-199"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid17121465_199-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWoodOakey2006" class="citation journal cs1">Wood AJ, Oakey RJ (November 2006). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1657038">"Genomic imprinting in mammals: emerging themes and established theories"</a>. <i>PLOS Genetics</i>. <b>2</b> (11): e147. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1371%2Fjournal.pgen.0020147">10.1371/journal.pgen.0020147</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1657038">1657038</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17121465">17121465</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PLOS+Genetics&rft.atitle=Genomic+imprinting+in+mammals%3A+emerging+themes+and+established+theories&rft.volume=2&rft.issue=11&rft.pages=e147&rft.date=2006-11&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1657038%23id-name%3DPMC&rft_id=info%3Apmid%2F17121465&rft_id=info%3Adoi%2F10.1371%2Fjournal.pgen.0020147&rft.aulast=Wood&rft.aufirst=AJ&rft.au=Oakey%2C+RJ&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1657038&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid2564739-200"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid2564739_200-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnollNichollsMagenisGraham1989" class="citation journal cs1">Knoll JH, Nicholls RD, Magenis RE, Graham JM, Lalande M, Latt SA (February 1989). "Angelman and Prader–Willi syndromes share a common chromosome 15 deletion but differ in parental origin of the deletion". <i>American Journal of Medical Genetics</i>. <b>32</b> (2): 285–90. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fajmg.1320320235">10.1002/ajmg.1320320235</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/2564739">2564739</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Journal+of+Medical+Genetics&rft.atitle=Angelman+and+Prader%E2%80%93Willi+syndromes+share+a+common+chromosome+15+deletion+but+differ+in+parental+origin+of+the+deletion&rft.volume=32&rft.issue=2&rft.pages=285-90&rft.date=1989-02&rft_id=info%3Adoi%2F10.1002%2Fajmg.1320320235&rft_id=info%3Apmid%2F2564739&rft.aulast=Knoll&rft.aufirst=JH&rft.au=Nicholls%2C+RD&rft.au=Magenis%2C+RE&rft.au=Graham%2C+JM&rft.au=Lalande%2C+M&rft.au=Latt%2C+SA&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-paternal-grandson-201"><span class="mw-cite-backlink"><b><a href="#cite_ref-paternal-grandson_201-0">^</a></b></span> <span class="reference-text">A person's paternal grandson is the son of a son of that person; a maternal grandson is the son of a daughter.</span> </li> <li id="cite_note-pmid16391557-202"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid16391557_202-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPembreyBygrenKaatiEdvinsson2006" class="citation journal cs1">Pembrey ME, Bygren LO, Kaati G, Edvinsson S, Northstone K, Sjöström M, et al. (February 2006). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fsj.ejhg.5201538">"Sex-specific, male-line transgenerational responses in humans"</a>. <i>European Journal of Human Genetics</i>. <b>14</b> (2): 159–66. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fsj.ejhg.5201538">10.1038/sj.ejhg.5201538</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16391557">16391557</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=European+Journal+of+Human+Genetics&rft.atitle=Sex-specific%2C+male-line+transgenerational+responses+in+humans&rft.volume=14&rft.issue=2&rft.pages=159-66&rft.date=2006-02&rft_id=info%3Adoi%2F10.1038%2Fsj.ejhg.5201538&rft_id=info%3Apmid%2F16391557&rft.aulast=Pembrey&rft.aufirst=ME&rft.au=Bygren%2C+LO&rft.au=Kaati%2C+G&rft.au=Edvinsson%2C+S&rft.au=Northstone%2C+K&rft.au=Sj%C3%B6str%C3%B6m%2C+M&rft.au=Golding%2C+J&rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252Fsj.ejhg.5201538&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span> <a href="/wiki/Robert_Winston" class="mw-redirect" title="Robert Winston">Robert Winston</a> refers to this study in a <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20070523074254/http://www.dundee.ac.uk/externalrelations/events/lectures.html">"Lecture"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.dundee.ac.uk/externalrelations/events/lectures.html">the original</a> on 23 May 2007.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Lecture&rft_id=http%3A%2F%2Fwww.dundee.ac.uk%2Fexternalrelations%2Fevents%2Flectures.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-203"><span class="mw-cite-backlink"><b><a href="#cite_ref-203">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.pbs.org/wgbh/nova/transcripts/3413_genes.html">"NOVA | Transcripts | Ghost in Your Genes"</a>. PBS. 16 October 2007<span class="reference-accessdate">. Retrieved <span class="nowrap">26 July</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=NOVA+%26%23124%3B+Transcripts+%26%23124%3B+Ghost+in+Your+Genes&rft.pub=PBS&rft.date=2007-10-16&rft_id=https%3A%2F%2Fwww.pbs.org%2Fwgbh%2Fnova%2Ftranscripts%2F3413_genes.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-204"><span class="mw-cite-backlink"><b><a href="#cite_ref-204">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAndersonFeyeSchmidt-McCormackMalovic2016" class="citation journal cs1">Anderson SJ, Feye KM, Schmidt-McCormack GR, Malovic E, Mlynarczyk GS, Izbicki P, et al. (May 2016). "Off-Target drug effects resulting in altered gene expression events with epigenetic and "Quasi-Epigenetic" origins". <i>Pharmacological Research</i>. <b>107</b>: 229–233. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.phrs.2016.03.028">10.1016/j.phrs.2016.03.028</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27025785">27025785</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Pharmacological+Research&rft.atitle=Off-Target+drug+effects+resulting+in+altered+gene+expression+events+with+epigenetic+and+%22Quasi-Epigenetic%22+origins&rft.volume=107&rft.pages=229-233&rft.date=2016-05&rft_id=info%3Adoi%2F10.1016%2Fj.phrs.2016.03.028&rft_id=info%3Apmid%2F27025785&rft.aulast=Anderson&rft.aufirst=SJ&rft.au=Feye%2C+KM&rft.au=Schmidt-McCormack%2C+GR&rft.au=Malovic%2C+E&rft.au=Mlynarczyk%2C+GS&rft.au=Izbicki%2C+P&rft.au=Arnold%2C+LF&rft.au=Jefferson%2C+MA&rft.au=de+la+Rosa%2C+BM&rft.au=Wehrman%2C+RF&rft.au=Luna%2C+KC&rft.au=Hu%2C+HZ&rft.au=Kondru%2C+NC&rft.au=Kleinhenz%2C+MD&rft.au=Smith%2C+JS&rft.au=Manne%2C+S&rft.au=Putra%2C+MR&rft.au=Choudhary%2C+S&rft.au=Massey%2C+N&rft.au=Luo%2C+D&rft.au=Berg%2C+CA&rft.au=Acharya%2C+S&rft.au=Sharma%2C+S&rft.au=Kanuri%2C+SH&rft.au=Lange%2C+JK&rft.au=Carlson%2C+SA&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-205"><span class="mw-cite-backlink"><b><a href="#cite_ref-205">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlavian-GhavaniniRüegg2018" class="citation journal cs1">Alavian-Ghavanini A, Rüegg J (January 2018). <a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fbcpt.12878">"Understanding Epigenetic Effects of Endocrine Disrupting Chemicals: From Mechanisms to Novel Test Methods"</a>. <i>Basic & Clinical Pharmacology & Toxicology</i>. <b>122</b> (1): 38–45. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fbcpt.12878">10.1111/bcpt.12878</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28842957">28842957</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Basic+%26+Clinical+Pharmacology+%26+Toxicology&rft.atitle=Understanding+Epigenetic+Effects+of+Endocrine+Disrupting+Chemicals%3A+From+Mechanisms+to+Novel+Test+Methods&rft.volume=122&rft.issue=1&rft.pages=38-45&rft.date=2018-01&rft_id=info%3Adoi%2F10.1111%2Fbcpt.12878&rft_id=info%3Apmid%2F28842957&rft.aulast=Alavian-Ghavanini&rft.aufirst=A&rft.au=R%C3%BCegg%2C+J&rft_id=https%3A%2F%2Fdoi.org%2F10.1111%252Fbcpt.12878&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-ReferenceB-206"><span class="mw-cite-backlink"><b><a href="#cite_ref-ReferenceB_206-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCoplanChanatryRosenblum2017" class="citation book cs1">Coplan J, Chanatry ST, Rosenblum LA (2017). "Persistence of Early-Life Stress on the Epigenome: Nonhuman Primate Observations☆". <i>Reference Module in Neuroscience and Biobehavioral Psychology</i>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FB978-0-12-809324-5.02862-5">10.1016/B978-0-12-809324-5.02862-5</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780128093245" title="Special:BookSources/9780128093245"><bdi>9780128093245</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Persistence+of+Early-Life+Stress+on+the+Epigenome%3A+Nonhuman+Primate+Observations%E2%98%86&rft.btitle=Reference+Module+in+Neuroscience+and+Biobehavioral+Psychology&rft.date=2017&rft_id=info%3Adoi%2F10.1016%2FB978-0-12-809324-5.02862-5&rft.isbn=9780128093245&rft.aulast=Coplan&rft.aufirst=J&rft.au=Chanatry%2C+ST&rft.au=Rosenblum%2C+LA&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-PlominDeFries2012-207"><span class="mw-cite-backlink">^ <a href="#cite_ref-PlominDeFries2012_207-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-PlominDeFries2012_207-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPlominDeFriesKnopikNeiderhiser2017" class="citation book cs1">Plomin R, DeFries JC, Knopik VS, Neiderhiser JM (2017). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=OytMMAEACAAJ"><i>Behavioral Genetics</i></a> (Seventh ed.). Worth Publishers. pp. 152–153. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4292-4215-8" title="Special:BookSources/978-1-4292-4215-8"><bdi>978-1-4292-4215-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Behavioral+Genetics&rft.pages=152-153&rft.edition=Seventh&rft.pub=Worth+Publishers&rft.date=2017&rft.isbn=978-1-4292-4215-8&rft.aulast=Plomin&rft.aufirst=R&rft.au=DeFries%2C+JC&rft.au=Knopik%2C+VS&rft.au=Neiderhiser%2C+JM&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DOytMMAEACAAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-208"><span class="mw-cite-backlink"><b><a href="#cite_ref-208">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeardMartienssen2014" class="citation journal cs1">Heard E, Martienssen RA (March 2014). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020004">"Transgenerational epigenetic inheritance: myths and mechanisms"</a>. <i>Cell</i>. <b>157</b> (1): 95–109. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cell.2014.02.045">10.1016/j.cell.2014.02.045</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020004">4020004</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24679529">24679529</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cell&rft.atitle=Transgenerational+epigenetic+inheritance%3A+myths+and+mechanisms&rft.volume=157&rft.issue=1&rft.pages=95-109&rft.date=2014-03&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4020004%23id-name%3DPMC&rft_id=info%3Apmid%2F24679529&rft_id=info%3Adoi%2F10.1016%2Fj.cell.2014.02.045&rft.aulast=Heard&rft.aufirst=E&rft.au=Martienssen%2C+RA&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4020004&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-Nestler-209"><span class="mw-cite-backlink"><b><a href="#cite_ref-Nestler_209-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobisonNestler2011" class="citation journal cs1">Robison AJ, Nestler EJ (October 2011). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272277">"Transcriptional and epigenetic mechanisms of addiction"</a>. <i>Nature Reviews. Neuroscience</i>. <b>12</b> (11): 623–637. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnrn3111">10.1038/nrn3111</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272277">3272277</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21989194">21989194</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Reviews.+Neuroscience&rft.atitle=Transcriptional+and+epigenetic+mechanisms+of+addiction&rft.volume=12&rft.issue=11&rft.pages=623-637&rft.date=2011-10&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3272277%23id-name%3DPMC&rft_id=info%3Apmid%2F21989194&rft_id=info%3Adoi%2F10.1038%2Fnrn3111&rft.aulast=Robison&rft.aufirst=AJ&rft.au=Nestler%2C+EJ&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3272277&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-Cheron2021-210"><span class="mw-cite-backlink"><b><a href="#cite_ref-Cheron2021_210-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCheronKerchove_d'Exaerde2021" class="citation journal cs1">Cheron J, Kerchove d'Exaerde A (August 2021). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8361217">"Drug addiction: from bench to bedside"</a>. <i>Translational Psychiatry</i>. <b>11</b> (1): 424. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41398-021-01542-0">10.1038/s41398-021-01542-0</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8361217">8361217</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/34385417">34385417</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Translational+Psychiatry&rft.atitle=Drug+addiction%3A+from+bench+to+bedside&rft.volume=11&rft.issue=1&rft.pages=424&rft.date=2021-08&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8361217%23id-name%3DPMC&rft_id=info%3Apmid%2F34385417&rft_id=info%3Adoi%2F10.1038%2Fs41398-021-01542-0&rft.aulast=Cheron&rft.aufirst=J&rft.au=Kerchove+d%27Exaerde%2C+A&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8361217&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-G9a_reverses_ΔFosB_plasticity-211"><span class="mw-cite-backlink"><b><a href="#cite_ref-G9a_reverses_ΔFosB_plasticity_211-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBilińskiWojtyłaKapka-SkrzypczakChwedorowicz2012" class="citation journal cs1">Biliński P, Wojtyła A, Kapka-Skrzypczak L, Chwedorowicz R, Cyranka M, Studziński T (2012). "Epigenetic regulation in drug addiction". <i>Annals of Agricultural and Environmental Medicine</i>. <b>19</b> (3): 491–496. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23020045">23020045</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Agricultural+and+Environmental+Medicine&rft.atitle=Epigenetic+regulation+in+drug+addiction&rft.volume=19&rft.issue=3&rft.pages=491-496&rft.date=2012&rft_id=info%3Apmid%2F23020045&rft.aulast=Bili%C5%84ski&rft.aufirst=P&rft.au=Wojty%C5%82a%2C+A&rft.au=Kapka-Skrzypczak%2C+L&rft.au=Chwedorowicz%2C+R&rft.au=Cyranka%2C+M&rft.au=Studzi%C5%84ski%2C+T&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid23920159-212"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid23920159_212-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVassolerSadri-Vakili2014" class="citation journal cs1">Vassoler FM, Sadri-Vakili G (April 2014). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3872494">"Mechanisms of transgenerational inheritance of addictive-like behaviors"</a>. <i>Neuroscience</i>. <b>264</b>: 198–206. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.neuroscience.2013.07.064">10.1016/j.neuroscience.2013.07.064</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3872494">3872494</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23920159">23920159</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Neuroscience&rft.atitle=Mechanisms+of+transgenerational+inheritance+of+addictive-like+behaviors&rft.volume=264&rft.pages=198-206&rft.date=2014-04&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3872494%23id-name%3DPMC&rft_id=info%3Apmid%2F23920159&rft_id=info%3Adoi%2F10.1016%2Fj.neuroscience.2013.07.064&rft.aulast=Vassoler&rft.aufirst=FM&rft.au=Sadri-Vakili%2C+G&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3872494&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid26572641-213"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid26572641_213-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYuanLiSunOuyang2016" class="citation journal cs1">Yuan TF, Li A, Sun X, Ouyang H, Campos C, Rocha NB, et al. (November 2016). "Transgenerational Inheritance of Paternal Neurobehavioral Phenotypes: Stress, Addiction, Ageing and Metabolism". <i>Molecular Neurobiology</i>. <b>53</b> (9): 6367–6376. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs12035-015-9526-2">10.1007/s12035-015-9526-2</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10400.22%2F7331">10400.22/7331</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26572641">26572641</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:25694221">25694221</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Molecular+Neurobiology&rft.atitle=Transgenerational+Inheritance+of+Paternal+Neurobehavioral+Phenotypes%3A+Stress%2C+Addiction%2C+Ageing+and+Metabolism&rft.volume=53&rft.issue=9&rft.pages=6367-6376&rft.date=2016-11&rft_id=info%3Ahdl%2F10400.22%2F7331&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A25694221%23id-name%3DS2CID&rft_id=info%3Apmid%2F26572641&rft_id=info%3Adoi%2F10.1007%2Fs12035-015-9526-2&rft.aulast=Yuan&rft.aufirst=TF&rft.au=Li%2C+A&rft.au=Sun%2C+X&rft.au=Ouyang%2C+H&rft.au=Campos%2C+C&rft.au=Rocha%2C+NB&rft.au=Arias-Carri%C3%B3n%2C+O&rft.au=Machado%2C+S&rft.au=Hou%2C+G&rft.au=So%2C+KF&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid20800313-214"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid20800313_214-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChahwanWontakalRoa2010" class="citation journal cs1">Chahwan R, Wontakal SN, Roa S (October 2010). "Crosstalk between genetic and epigenetic information through cytosine deamination". <i>Trends in Genetics</i>. <b>26</b> (10): 443–8. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.tig.2010.07.005">10.1016/j.tig.2010.07.005</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20800313">20800313</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Trends+in+Genetics&rft.atitle=Crosstalk+between+genetic+and+epigenetic+information+through+cytosine+deamination&rft.volume=26&rft.issue=10&rft.pages=443-8&rft.date=2010-10&rft_id=info%3Adoi%2F10.1016%2Fj.tig.2010.07.005&rft_id=info%3Apmid%2F20800313&rft.aulast=Chahwan&rft.aufirst=R&rft.au=Wontakal%2C+SN&rft.au=Roa%2C+S&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-215"><span class="mw-cite-backlink"><b><a href="#cite_ref-215">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBadalHerMaher2015" class="citation journal cs1">Badal S, Her YF, Maher LJ (September 2015). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4571980">"Nonantibiotic Effects of Fluoroquinolones in Mammalian Cells"</a>. <i>The Journal of Biological Chemistry</i>. <b>290</b> (36): 22287–97. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1074%2Fjbc.M115.671222">10.1074/jbc.M115.671222</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4571980">4571980</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26205818">26205818</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Journal+of+Biological+Chemistry&rft.atitle=Nonantibiotic+Effects+of+Fluoroquinolones+in+Mammalian+Cells&rft.volume=290&rft.issue=36&rft.pages=22287-97&rft.date=2015-09&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4571980%23id-name%3DPMC&rft_id=info%3Apmid%2F26205818&rft_id=info%3Adoi%2F10.1074%2Fjbc.M115.671222&rft.aulast=Badal&rft.aufirst=S&rft.au=Her%2C+YF&rft.au=Maher%2C+LJ&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4571980&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-216"><span class="mw-cite-backlink"><b><a href="#cite_ref-216">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMezentsevaYangKaurIaffaldano2013" class="citation journal cs1">Mezentseva NV, Yang J, Kaur K, Iaffaldano G, Rémond MC, Eisenberg CA, et al. (February 2013). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564468">"The histone methyltransferase inhibitor BIX01294 enhances the cardiac potential of bone marrow cells"</a>. <i>Stem Cells and Development</i>. <b>22</b> (4): 654–67. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1089%2Fscd.2012.0181">10.1089/scd.2012.0181</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564468">3564468</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22994322">22994322</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Stem+Cells+and+Development&rft.atitle=The+histone+methyltransferase+inhibitor+BIX01294+enhances+the+cardiac+potential+of+bone+marrow+cells&rft.volume=22&rft.issue=4&rft.pages=654-67&rft.date=2013-02&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3564468%23id-name%3DPMC&rft_id=info%3Apmid%2F22994322&rft_id=info%3Adoi%2F10.1089%2Fscd.2012.0181&rft.aulast=Mezentseva&rft.aufirst=NV&rft.au=Yang%2C+J&rft.au=Kaur%2C+K&rft.au=Iaffaldano%2C+G&rft.au=R%C3%A9mond%2C+MC&rft.au=Eisenberg%2C+CA&rft.au=Eisenberg%2C+LM&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3564468&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-217"><span class="mw-cite-backlink"><b><a href="#cite_ref-217">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYangKaurOngEisenberg2015" class="citation journal cs1">Yang J, Kaur K, Ong LL, Eisenberg CA, Eisenberg LM (2015). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4454756">"Inhibition of G9a Histone Methyltransferase Converts Bone Marrow Mesenchymal Stem Cells to Cardiac Competent Progenitors"</a>. <i>Stem Cells International</i>. <b>2015</b>: 270428. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2015%2F270428">10.1155/2015/270428</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4454756">4454756</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26089912">26089912</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Stem+Cells+International&rft.atitle=Inhibition+of+G9a+Histone+Methyltransferase+Converts+Bone+Marrow+Mesenchymal+Stem+Cells+to+Cardiac+Competent+Progenitors&rft.volume=2015&rft.pages=270428&rft.date=2015&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4454756%23id-name%3DPMC&rft_id=info%3Apmid%2F26089912&rft_id=info%3Adoi%2F10.1155%2F2015%2F270428&rft.aulast=Yang&rft.aufirst=J&rft.au=Kaur%2C+K&rft.au=Ong%2C+LL&rft.au=Eisenberg%2C+CA&rft.au=Eisenberg%2C+LM&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4454756&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-218"><span class="mw-cite-backlink"><b><a href="#cite_ref-218">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMüllerSindikubwaboCañequeLafon2020" class="citation journal cs1">Müller S, Sindikubwabo F, Cañeque T, Lafon A, Versini A, Lombard B, et al. (October 2020). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612580">"CD44 regulates epigenetic plasticity by mediating iron endocytosis"</a>. <i>Nature Chemistry</i>. <b>12</b> (10): 929–938. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020NatCh..12..929M">2020NatCh..12..929M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41557-020-0513-5">10.1038/s41557-020-0513-5</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612580">7612580</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32747755">32747755</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Chemistry&rft.atitle=CD44+regulates+epigenetic+plasticity+by+mediating+iron+endocytosis&rft.volume=12&rft.issue=10&rft.pages=929-938&rft.date=2020-10&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7612580%23id-name%3DPMC&rft_id=info%3Apmid%2F32747755&rft_id=info%3Adoi%2F10.1038%2Fs41557-020-0513-5&rft_id=info%3Abibcode%2F2020NatCh..12..929M&rft.aulast=M%C3%BCller&rft.aufirst=S&rft.au=Sindikubwabo%2C+F&rft.au=Ca%C3%B1eque%2C+T&rft.au=Lafon%2C+A&rft.au=Versini%2C+A&rft.au=Lombard%2C+B&rft.au=Loew%2C+D&rft.au=Wu%2C+TD&rft.au=Ginestier%2C+C&rft.au=Charafe-Jauffret%2C+E&rft.au=Durand%2C+A&rft.au=Vallot%2C+C&rft.au=Baulande%2C+S&rft.au=Servant%2C+N&rft.au=Rodriguez%2C+R&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7612580&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-219"><span class="mw-cite-backlink"><b><a href="#cite_ref-219">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSolierMüllerCañequeVersini2023" class="citation journal cs1">Solier S, Müller S, Cañeque T, Versini A, Mansart A, Sindikubwabo F, et al. (May 2023). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131557">"A druggable copper-signalling pathway that drives inflammation"</a>. <i>Nature</i>. <b>617</b> (7960): 386–394. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2023Natur.617..386S">2023Natur.617..386S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41586-023-06017-4">10.1038/s41586-023-06017-4</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131557">10131557</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/37100912">37100912</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=A+druggable+copper-signalling+pathway+that+drives+inflammation&rft.volume=617&rft.issue=7960&rft.pages=386-394&rft.date=2023-05&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC10131557%23id-name%3DPMC&rft_id=info%3Apmid%2F37100912&rft_id=info%3Adoi%2F10.1038%2Fs41586-023-06017-4&rft_id=info%3Abibcode%2F2023Natur.617..386S&rft.aulast=Solier&rft.aufirst=S&rft.au=M%C3%BCller%2C+S&rft.au=Ca%C3%B1eque%2C+T&rft.au=Versini%2C+A&rft.au=Mansart%2C+A&rft.au=Sindikubwabo%2C+F&rft.au=Baron%2C+L&rft.au=Emam%2C+L&rft.au=Gestraud%2C+P&rft.au=Panto%C8%99%2C+GD&rft.au=Gandon%2C+V&rft.au=Gaillet%2C+C&rft.au=Wu%2C+TD&rft.au=Dingli%2C+F&rft.au=Loew%2C+D&rft.au=Baulande%2C+S&rft.au=Durand%2C+S&rft.au=Sencio%2C+V&rft.au=Robil%2C+C&rft.au=Trottein%2C+F&rft.au=P%C3%A9ricat%2C+D&rft.au=N%C3%A4ser%2C+E&rft.au=Cougoule%2C+C&rft.au=Meunier%2C+E&rft.au=B%C3%A8gue%2C+AL&rft.au=Salmon%2C+H&rft.au=Manel%2C+N&rft.au=Puisieux%2C+A&rft.au=Watson%2C+S&rft.au=Dawson%2C+MA&rft.au=Servant%2C+N&rft.au=Kroemer%2C+G&rft.au=Annane%2C+D&rft.au=Rodriguez%2C+R&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC10131557&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-220"><span class="mw-cite-backlink"><b><a href="#cite_ref-220">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiuPan2015" class="citation journal cs1">Liu N, Pan T (January 2015). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190089">"RNA epigenetics"</a>. <i>Translational Research</i>. <b>165</b> (1): 28–35. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.trsl.2014.04.003">10.1016/j.trsl.2014.04.003</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190089">4190089</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24768686">24768686</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Translational+Research&rft.atitle=RNA+epigenetics&rft.volume=165&rft.issue=1&rft.pages=28-35&rft.date=2015-01&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4190089%23id-name%3DPMC&rft_id=info%3Apmid%2F24768686&rft_id=info%3Adoi%2F10.1016%2Fj.trsl.2014.04.003&rft.aulast=Liu&rft.aufirst=N&rft.au=Pan%2C+T&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4190089&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-221"><span class="mw-cite-backlink"><b><a href="#cite_ref-221">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRongSunWuCheng2021" class="citation journal cs1">Rong D, Sun G, Wu F, Cheng Y, Sun G, Jiang W, et al. (September 2021). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8217334">"Epigenetics: Roles and therapeutic implications of non-coding RNA modifications in human cancers"</a>. <i>Molecular Therapy. Nucleic Acids</i>. <b>25</b>: 67–82. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.omtn.2021.04.021">10.1016/j.omtn.2021.04.021</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8217334">8217334</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/34188972">34188972</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:235558945">235558945</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Molecular+Therapy.+Nucleic+Acids&rft.atitle=Epigenetics%3A+Roles+and+therapeutic+implications+of+non-coding+RNA+modifications+in+human+cancers&rft.volume=25&rft.pages=67-82&rft.date=2021-09&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8217334%23id-name%3DPMC&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A235558945%23id-name%3DS2CID&rft_id=info%3Apmid%2F34188972&rft_id=info%3Adoi%2F10.1016%2Fj.omtn.2021.04.021&rft.aulast=Rong&rft.aufirst=D&rft.au=Sun%2C+G&rft.au=Wu%2C+F&rft.au=Cheng%2C+Y&rft.au=Sun%2C+G&rft.au=Jiang%2C+W&rft.au=Li%2C+X&rft.au=Zhong%2C+Y&rft.au=Wu%2C+L&rft.au=Zhang%2C+C&rft.au=Tang%2C+W&rft.au=Wang%2C+X&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8217334&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-222"><span class="mw-cite-backlink"><b><a href="#cite_ref-222">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShinChoiLimHuh2022" class="citation journal cs1">Shin H, Choi WL, Lim JY, Huh JH (March 2022). "Epigenome editing: targeted manipulation of epigenetic modifications in plants". <i>Genes & Genomics</i>. <b>44</b> (3): 307–315. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs13258-021-01199-5">10.1007/s13258-021-01199-5</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/35000141">35000141</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:245848779">245848779</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Genes+%26+Genomics&rft.atitle=Epigenome+editing%3A+targeted+manipulation+of+epigenetic+modifications+in+plants&rft.volume=44&rft.issue=3&rft.pages=307-315&rft.date=2022-03&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A245848779%23id-name%3DS2CID&rft_id=info%3Apmid%2F35000141&rft_id=info%3Adoi%2F10.1007%2Fs13258-021-01199-5&rft.aulast=Shin&rft.aufirst=H&rft.au=Choi%2C+WL&rft.au=Lim%2C+JY&rft.au=Huh%2C+JH&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-Hawe_2022-223"><span class="mw-cite-backlink">^ <a href="#cite_ref-Hawe_2022_223-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Hawe_2022_223-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Hawe_2022_223-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Hawe_2022_223-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Hawe_2022_223-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Hawe_2022_223-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Hawe_2022_223-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHaweWilsonSchmidZhou2022" class="citation journal cs1">Hawe JS, Wilson R, Schmid KT, Zhou L, Lakshmanan LN, Lehne BC, et al. (January 2022). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221029233638/https://push-zb.helmholtz-muenchen.de/frontdoor.php?source_opus=64018">"Genetic variation influencing DNA methylation provides insights into molecular mechanisms regulating genomic function"</a>. <i>Nature Genetics</i>. <b>54</b> (1): 18–29. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41588-021-00969-x">10.1038/s41588-021-00969-x</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/34980917">34980917</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:245654240">245654240</a>. Archived from <a rel="nofollow" class="external text" href="https://push-zb.helmholtz-muenchen.de/frontdoor.php?source_opus=64018">the original</a> on 29 October 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">20 January</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Genetics&rft.atitle=Genetic+variation+influencing+DNA+methylation+provides+insights+into+molecular+mechanisms+regulating+genomic+function&rft.volume=54&rft.issue=1&rft.pages=18-29&rft.date=2022-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A245654240%23id-name%3DS2CID&rft_id=info%3Apmid%2F34980917&rft_id=info%3Adoi%2F10.1038%2Fs41588-021-00969-x&rft.aulast=Hawe&rft.aufirst=JS&rft.au=Wilson%2C+R&rft.au=Schmid%2C+KT&rft.au=Zhou%2C+L&rft.au=Lakshmanan%2C+LN&rft.au=Lehne%2C+BC&rft.au=K%C3%BChnel%2C+B&rft.au=Scott%2C+WR&rft.au=Wielscher%2C+M&rft.au=Yew%2C+YW&rft.au=Baumbach%2C+C&rft.au=Lee%2C+DP&rft.au=Marouli%2C+E&rft.au=Bernard%2C+M&rft.au=Pfeiffer%2C+L&rft.au=Mat%C3%ADas-Garc%C3%ADa%2C+PR&rft.au=Autio%2C+MI&rft.au=Bourgeois%2C+S&rft.au=Herder%2C+C&rft.au=Karhunen%2C+V&rft.au=Meitinger%2C+T&rft.au=Prokisch%2C+H&rft.au=Rathmann%2C+W&rft.au=Roden%2C+M&rft.au=Sebert%2C+S&rft.au=Shin%2C+J&rft.au=Strauch%2C+K&rft.au=Zhang%2C+W&rft.au=Tan%2C+WL&rft.au=Hauck%2C+SM&rft.au=Merl-Pham%2C+J&rft.au=Grallert%2C+H&rft.au=Barbosa%2C+EG&rft.au=Illig%2C+T&rft.au=Peters%2C+A&rft.au=Paus%2C+T&rft.au=Pausova%2C+Z&rft.au=Deloukas%2C+P&rft.au=Foo%2C+RS&rft.au=Jarvelin%2C+MR&rft.au=Kooner%2C+JS&rft.au=Loh%2C+M&rft.au=Heinig%2C+M&rft.au=Gieger%2C+C&rft.au=Waldenberger%2C+M&rft.au=Chambers%2C+JC&rft_id=https%3A%2F%2Fpush-zb.helmholtz-muenchen.de%2Ffrontdoor.php%3Fsource_opus%3D64018&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-224"><span class="mw-cite-backlink"><b><a href="#cite_ref-224">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeeFengWeiLi2013" class="citation journal cs1">Lee ST, Feng M, Wei Y, Li Z, Qiao Y, Guan P, et al. (July 2013). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3704014">"Protein tyrosine phosphatase UBASH3B is overexpressed in triple-negative breast cancer and promotes invasion and metastasis"</a>. <i>Proceedings of the National Academy of Sciences of the United States of America</i>. <b>110</b> (27): 11121–11126. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013PNAS..11011121L">2013PNAS..11011121L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.1300873110">10.1073/pnas.1300873110</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3704014">3704014</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23784775">23784775</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+of+the+United+States+of+America&rft.atitle=Protein+tyrosine+phosphatase+UBASH3B+is+overexpressed+in+triple-negative+breast+cancer+and+promotes+invasion+and+metastasis&rft.volume=110&rft.issue=27&rft.pages=11121-11126&rft.date=2013-07&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3704014%23id-name%3DPMC&rft_id=info%3Apmid%2F23784775&rft_id=info%3Adoi%2F10.1073%2Fpnas.1300873110&rft_id=info%3Abibcode%2F2013PNAS..11011121L&rft.aulast=Lee&rft.aufirst=ST&rft.au=Feng%2C+M&rft.au=Wei%2C+Y&rft.au=Li%2C+Z&rft.au=Qiao%2C+Y&rft.au=Guan%2C+P&rft.au=Jiang%2C+X&rft.au=Wong%2C+CH&rft.au=Huynh%2C+K&rft.au=Wang%2C+J&rft.au=Li%2C+J&rft.au=Karuturi%2C+KM&rft.au=Tan%2C+EY&rft.au=Hoon%2C+DS&rft.au=Kang%2C+Y&rft.au=Yu%2C+Q&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3704014&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-225"><span class="mw-cite-backlink"><b><a href="#cite_ref-225">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYengoSidorenkoKemperZheng2018" class="citation journal cs1">Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. (October 2018). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6488973">"Meta-analysis of genome-wide association studies for height and body mass index in ~700000 individuals of European ancestry"</a>. <i>Human Molecular Genetics</i>. <b>27</b> (20): 3641–3649. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fhmg%2Fddy271">10.1093/hmg/ddy271</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6488973">6488973</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30124842">30124842</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Human+Molecular+Genetics&rft.atitle=Meta-analysis+of+genome-wide+association+studies+for+height+and+body+mass+index+in+~700000+individuals+of+European+ancestry&rft.volume=27&rft.issue=20&rft.pages=3641-3649&rft.date=2018-10&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6488973%23id-name%3DPMC&rft_id=info%3Apmid%2F30124842&rft_id=info%3Adoi%2F10.1093%2Fhmg%2Fddy271&rft.aulast=Yengo&rft.aufirst=L&rft.au=Sidorenko%2C+J&rft.au=Kemper%2C+KE&rft.au=Zheng%2C+Z&rft.au=Wood%2C+AR&rft.au=Weedon%2C+MN&rft.au=Frayling%2C+TM&rft.au=Hirschhorn%2C+J&rft.au=Yang%2C+J&rft.au=Visscher%2C+PM&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6488973&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-226"><span class="mw-cite-backlink"><b><a href="#cite_ref-226">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPulitStonemanMorrisWood2019" class="citation journal cs1">Pulit SL, Stoneman C, Morris AP, Wood AR, Glastonbury CA, Tyrrell J, et al. (January 2019). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6298238">"Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry"</a>. <i>Human Molecular Genetics</i>. <b>28</b> (1): 166–174. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fhmg%2Fddy327">10.1093/hmg/ddy327</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6298238">6298238</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30239722">30239722</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Human+Molecular+Genetics&rft.atitle=Meta-analysis+of+genome-wide+association+studies+for+body+fat+distribution+in+694+649+individuals+of+European+ancestry&rft.volume=28&rft.issue=1&rft.pages=166-174&rft.date=2019-01&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6298238%23id-name%3DPMC&rft_id=info%3Apmid%2F30239722&rft_id=info%3Adoi%2F10.1093%2Fhmg%2Fddy327&rft.aulast=Pulit&rft.aufirst=SL&rft.au=Stoneman%2C+C&rft.au=Morris%2C+AP&rft.au=Wood%2C+AR&rft.au=Glastonbury%2C+CA&rft.au=Tyrrell%2C+J&rft.au=Yengo%2C+L&rft.au=Ferreira%2C+T&rft.au=Marouli%2C+E&rft.au=Ji%2C+Y&rft.au=Yang%2C+J&rft.au=Jones%2C+S&rft.au=Beaumont%2C+R&rft.au=Croteau-Chonka%2C+DC&rft.au=Winkler%2C+TW&rft.au=Hattersley%2C+AT&rft.au=Loos%2C+RJ&rft.au=Hirschhorn%2C+JN&rft.au=Visscher%2C+PM&rft.au=Frayling%2C+TM&rft.au=Yaghootkar%2C+H&rft.au=Lindgren%2C+CM&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6298238&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-227"><span class="mw-cite-backlink"><b><a href="#cite_ref-227">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhuGuoShiLiu2020" class="citation journal cs1">Zhu Z, Guo Y, Shi H, Liu CL, Panganiban RA, Chung W, et al. (February 2020). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7010560">"Shared genetic and experimental links between obesity-related traits and asthma subtypes in UK Biobank"</a>. <i>The Journal of Allergy and Clinical Immunology</i>. <b>145</b> (2): 537–549. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jaci.2019.09.035">10.1016/j.jaci.2019.09.035</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7010560">7010560</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31669095">31669095</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Journal+of+Allergy+and+Clinical+Immunology&rft.atitle=Shared+genetic+and+experimental+links+between+obesity-related+traits+and+asthma+subtypes+in+UK+Biobank&rft.volume=145&rft.issue=2&rft.pages=537-549&rft.date=2020-02&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7010560%23id-name%3DPMC&rft_id=info%3Apmid%2F31669095&rft_id=info%3Adoi%2F10.1016%2Fj.jaci.2019.09.035&rft.aulast=Zhu&rft.aufirst=Z&rft.au=Guo%2C+Y&rft.au=Shi%2C+H&rft.au=Liu%2C+CL&rft.au=Panganiban%2C+RA&rft.au=Chung%2C+W&rft.au=O%27Connor%2C+LJ&rft.au=Himes%2C+BE&rft.au=Gazal%2C+S&rft.au=Hasegawa%2C+K&rft.au=Camargo%2C+CA&rft.au=Qi%2C+L&rft.au=Moffatt%2C+MF&rft.au=Hu%2C+FB&rft.au=Lu%2C+Q&rft.au=Cookson%2C+WO&rft.au=Liang%2C+L&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7010560&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-228"><span class="mw-cite-backlink"><b><a href="#cite_ref-228">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRichardsonSandersonPalmerAla-Korpela2020" class="citation journal cs1">Richardson TG, Sanderson E, Palmer TM, Ala-Korpela M, Ference BA, Davey Smith G, et al. (March 2020). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7089422">"Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: A multivariable Mendelian randomisation analysis"</a>. <i>PLOS Medicine</i>. <b>17</b> (3): e1003062. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1371%2Fjournal.pmed.1003062">10.1371/journal.pmed.1003062</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7089422">7089422</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32203549">32203549</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=PLOS+Medicine&rft.atitle=Evaluating+the+relationship+between+circulating+lipoprotein+lipids+and+apolipoproteins+with+risk+of+coronary+heart+disease%3A+A+multivariable+Mendelian+randomisation+analysis&rft.volume=17&rft.issue=3&rft.pages=e1003062&rft.date=2020-03&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7089422%23id-name%3DPMC&rft_id=info%3Apmid%2F32203549&rft_id=info%3Adoi%2F10.1371%2Fjournal.pmed.1003062&rft.aulast=Richardson&rft.aufirst=TG&rft.au=Sanderson%2C+E&rft.au=Palmer%2C+TM&rft.au=Ala-Korpela%2C+M&rft.au=Ference%2C+BA&rft.au=Davey+Smith%2C+G&rft.au=Holmes%2C+MV&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7089422&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-229"><span class="mw-cite-backlink"><b><a href="#cite_ref-229">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKoniecznaSánchezPalouPicó2015" class="citation journal cs1">Konieczna J, Sánchez J, Palou M, Picó C, Palou A (March 2015). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357898">"Blood cell transcriptomic-based early biomarkers of adverse programming effects of gestational calorie restriction and their reversibility by leptin supplementation"</a>. <i>Scientific Reports</i>. <b>5</b> (1): 9088. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015NatSR...5.9088K">2015NatSR...5.9088K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fsrep09088">10.1038/srep09088</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357898">4357898</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25766068">25766068</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Scientific+Reports&rft.atitle=Blood+cell+transcriptomic-based+early+biomarkers+of+adverse+programming+effects+of+gestational+calorie+restriction+and+their+reversibility+by+leptin+supplementation&rft.volume=5&rft.issue=1&rft.pages=9088&rft.date=2015-03&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4357898%23id-name%3DPMC&rft_id=info%3Apmid%2F25766068&rft_id=info%3Adoi%2F10.1038%2Fsrep09088&rft_id=info%3Abibcode%2F2015NatSR...5.9088K&rft.aulast=Konieczna&rft.aufirst=J&rft.au=S%C3%A1nchez%2C+J&rft.au=Palou%2C+M&rft.au=Pic%C3%B3%2C+C&rft.au=Palou%2C+A&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4357898&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-230"><span class="mw-cite-backlink"><b><a href="#cite_ref-230">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOkada2014" class="citation journal cs1">Okada Y (November 2014). "From the era of genome analysis to the era of genomic drug discovery: a pioneering example of rheumatoid arthritis". <i>Clinical Genetics</i>. <b>86</b> (5): 432–440. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fcge.12465">10.1111/cge.12465</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25060537">25060537</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8499325">8499325</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Clinical+Genetics&rft.atitle=From+the+era+of+genome+analysis+to+the+era+of+genomic+drug+discovery%3A+a+pioneering+example+of+rheumatoid+arthritis&rft.volume=86&rft.issue=5&rft.pages=432-440&rft.date=2014-11&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8499325%23id-name%3DS2CID&rft_id=info%3Apmid%2F25060537&rft_id=info%3Adoi%2F10.1111%2Fcge.12465&rft.aulast=Okada&rft.aufirst=Y&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-231"><span class="mw-cite-backlink"><b><a href="#cite_ref-231">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeZhangJiangZhang2018" class="citation journal cs1">He Z, Zhang R, Jiang F, Zhang H, Zhao A, Xu B, et al. (August 2018). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6114248">"FADS1-FADS2 genetic polymorphisms are associated with fatty acid metabolism through changes in DNA methylation and gene expression"</a>. <i>Clinical Epigenetics</i>. <b>10</b> (1): 113. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1186%2Fs13148-018-0545-5">10.1186/s13148-018-0545-5</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6114248">6114248</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30157936">30157936</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Clinical+Epigenetics&rft.atitle=FADS1-FADS2+genetic+polymorphisms+are+associated+with+fatty+acid+metabolism+through+changes+in+DNA+methylation+and+gene+expression&rft.volume=10&rft.issue=1&rft.pages=113&rft.date=2018-08&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6114248%23id-name%3DPMC&rft_id=info%3Apmid%2F30157936&rft_id=info%3Adoi%2F10.1186%2Fs13148-018-0545-5&rft.aulast=He&rft.aufirst=Z&rft.au=Zhang%2C+R&rft.au=Jiang%2C+F&rft.au=Zhang%2C+H&rft.au=Zhao%2C+A&rft.au=Xu%2C+B&rft.au=Jin%2C+L&rft.au=Wang%2C+T&rft.au=Jia%2C+W&rft.au=Jia%2C+W&rft.au=Hu%2C+C&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6114248&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-232"><span class="mw-cite-backlink"><b><a href="#cite_ref-232">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuanSteffenLemaitreWu2014" class="citation journal cs1">Guan W, Steffen BT, Lemaitre RN, Wu JH, Tanaka T, Manichaikul A, et al. (June 2014). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4123862">"Genome-wide association study of plasma N6 polyunsaturated fatty acids within the cohorts for heart and aging research in genomic epidemiology consortium"</a>. <i>Circulation: Cardiovascular Genetics</i>. <b>7</b> (3): 321–331. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1161%2Fcircgenetics.113.000208">10.1161/circgenetics.113.000208</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4123862">4123862</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24823311">24823311</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Circulation%3A+Cardiovascular+Genetics&rft.atitle=Genome-wide+association+study+of+plasma+N6+polyunsaturated+fatty+acids+within+the+cohorts+for+heart+and+aging+research+in+genomic+epidemiology+consortium&rft.volume=7&rft.issue=3&rft.pages=321-331&rft.date=2014-06&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4123862%23id-name%3DPMC&rft_id=info%3Apmid%2F24823311&rft_id=info%3Adoi%2F10.1161%2Fcircgenetics.113.000208&rft.aulast=Guan&rft.aufirst=W&rft.au=Steffen%2C+BT&rft.au=Lemaitre%2C+RN&rft.au=Wu%2C+JH&rft.au=Tanaka%2C+T&rft.au=Manichaikul%2C+A&rft.au=Foy%2C+M&rft.au=Rich%2C+SS&rft.au=Wang%2C+L&rft.au=Nettleton%2C+JA&rft.au=Tang%2C+W&rft.au=Gu%2C+X&rft.au=Bandinelli%2C+S&rft.au=King%2C+IB&rft.au=McKnight%2C+B&rft.au=Psaty%2C+BM&rft.au=Siscovick%2C+D&rft.au=Djousse%2C+L&rft.au=Chen%2C+YI&rft.au=Ferrucci%2C+L&rft.au=Fornage%2C+M&rft.au=Mozafarrian%2C+D&rft.au=Tsai%2C+MY&rft.au=Steffen%2C+LM&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4123862&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-pmid24816252-233"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid24816252_233-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShinFaumanPetersenKrumsiek2014" class="citation journal cs1">Shin SY, Fauman EB, Petersen AK, Krumsiek J, Santos R, Huang J, et al. (June 2014). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064254">"An atlas of genetic influences on human blood metabolites"</a>. <i>Nature Genetics</i>. <b>46</b> (6): 543–550. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fng.2982">10.1038/ng.2982</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064254">4064254</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24816252">24816252</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Genetics&rft.atitle=An+atlas+of+genetic+influences+on+human+blood+metabolites&rft.volume=46&rft.issue=6&rft.pages=543-550&rft.date=2014-06&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4064254%23id-name%3DPMC&rft_id=info%3Apmid%2F24816252&rft_id=info%3Adoi%2F10.1038%2Fng.2982&rft.aulast=Shin&rft.aufirst=SY&rft.au=Fauman%2C+EB&rft.au=Petersen%2C+AK&rft.au=Krumsiek%2C+J&rft.au=Santos%2C+R&rft.au=Huang%2C+J&rft.au=Arnold%2C+M&rft.au=Erte%2C+I&rft.au=Forgetta%2C+V&rft.au=Yang%2C+TP&rft.au=Walter%2C+K&rft.au=Menni%2C+C&rft.au=Chen%2C+L&rft.au=Vasquez%2C+L&rft.au=Valdes%2C+AM&rft.au=Hyde%2C+CL&rft.au=Wang%2C+V&rft.au=Ziemek%2C+D&rft.au=Roberts%2C+P&rft.au=Xi%2C+L&rft.au=Grundberg%2C+E&rft.au=Waldenberger%2C+M&rft.au=Richards%2C+JB&rft.au=Mohney%2C+RP&rft.au=Milburn%2C+MV&rft.au=John%2C+SL&rft.au=Trimmer%2C+J&rft.au=Theis%2C+FJ&rft.au=Overington%2C+JP&rft.au=Suhre%2C+K&rft.au=Brosnan%2C+MJ&rft.au=Gieger%2C+C&rft.au=Kastenm%C3%BCller%2C+G&rft.au=Spector%2C+TD&rft.au=Soranzo%2C+N&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4064254&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-234"><span class="mw-cite-backlink"><b><a href="#cite_ref-234">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAstleUK_Blood_Trait_GWAS_TeamCambridge_BLUEPRINT_epigenome2016" class="citation journal cs1">Astle WJ, UK Blood Trait GWAS Team, Cambridge BLUEPRINT epigenome (2 December 2016). "A GWAS of 170,000 Individuals Identifies Thousands of Alleles Perturbing Blood Cell Traits, Many of Which Are in Super Enhancers Setting Cell Identity". <i>Blood</i>. <b>128</b> (22): 2652. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1182%2Fblood.v128.22.2652.2652">10.1182/blood.v128.22.2652.2652</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0006-4971">0006-4971</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Blood&rft.atitle=A+GWAS+of+170%2C000+Individuals+Identifies+Thousands+of+Alleles+Perturbing+Blood+Cell+Traits%2C+Many+of+Which+Are+in+Super+Enhancers+Setting+Cell+Identity&rft.volume=128&rft.issue=22&rft.pages=2652&rft.date=2016-12-02&rft_id=info%3Adoi%2F10.1182%2Fblood.v128.22.2652.2652&rft.issn=0006-4971&rft.aulast=Astle&rft.aufirst=WJ&rft.au=UK+Blood+Trait+GWAS+Team&rft.au=Cambridge+BLUEPRINT+epigenome&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-235"><span class="mw-cite-backlink"><b><a href="#cite_ref-235">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKamatBlackshawYoungSurendran2019" class="citation journal cs1">Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J, et al. (November 2019). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6853652">"PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations"</a>. <i>Bioinformatics</i>. <b>35</b> (22): 4851–4853. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fbioinformatics%2Fbtz469">10.1093/bioinformatics/btz469</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6853652">6853652</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31233103">31233103</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Bioinformatics&rft.atitle=PhenoScanner+V2%3A+an+expanded+tool+for+searching+human+genotype-phenotype+associations&rft.volume=35&rft.issue=22&rft.pages=4851-4853&rft.date=2019-11&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6853652%23id-name%3DPMC&rft_id=info%3Apmid%2F31233103&rft_id=info%3Adoi%2F10.1093%2Fbioinformatics%2Fbtz469&rft.aulast=Kamat&rft.aufirst=MA&rft.au=Blackshaw%2C+JA&rft.au=Young%2C+R&rft.au=Surendran%2C+P&rft.au=Burgess%2C+S&rft.au=Danesh%2C+J&rft.au=Butterworth%2C+AS&rft.au=Staley%2C+JR&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6853652&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> <li id="cite_note-236"><span class="mw-cite-backlink"><b><a href="#cite_ref-236">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGorski2013" class="citation web cs1">Gorski D (4 February 2013). <a rel="nofollow" class="external text" href="https://www.sciencebasedmedicine.org/epigenetics-it-doesnt-mean-what-quacks-think-it-means/">"Epigenetics: It doesn't mean what quacks think it means"</a>. <i>Science-Based Medicine</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Science-Based+Medicine&rft.atitle=Epigenetics%3A+It+doesn%27t+mean+what+quacks+think+it+means&rft.date=2013-02-04&rft.aulast=Gorski&rft.aufirst=D&rft_id=https%3A%2F%2Fwww.sciencebasedmedicine.org%2Fepigenetics-it-doesnt-mean-what-quacks-think-it-means%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=52" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHaqueGottesmanWong2009" class="citation journal cs1">Haque FN, Gottesman II, Wong AH (May 2009). "Not really identical: epigenetic differences in monozygotic twins and implications for twin studies in psychiatry". <i>American Journal of Medical Genetics. Part C, Seminars in Medical Genetics</i>. <b>151C</b> (2): 136–41. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fajmg.c.30206">10.1002/ajmg.c.30206</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19378334">19378334</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:205327825">205327825</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Journal+of+Medical+Genetics.+Part+C%2C+Seminars+in+Medical+Genetics&rft.atitle=Not+really+identical%3A+epigenetic+differences+in+monozygotic+twins+and+implications+for+twin+studies+in+psychiatry&rft.volume=151C&rft.issue=2&rft.pages=136-41&rft.date=2009-05&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A205327825%23id-name%3DS2CID&rft_id=info%3Apmid%2F19378334&rft_id=info%3Adoi%2F10.1002%2Fajmg.c.30206&rft.aulast=Haque&rft.aufirst=FN&rft.au=Gottesman%2C+II&rft.au=Wong%2C+AH&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.cdc.gov/genomics/disease/epigenetics.htm">"What is Epigenetics?"</a>. <i>Centers for Disease Control and Prevention</i>. 15 August 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">11 September</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Centers+for+Disease+Control+and+Prevention&rft.atitle=What+is+Epigenetics%3F&rft.date=2022-08-15&rft_id=https%3A%2F%2Fwww.cdc.gov%2Fgenomics%2Fdisease%2Fepigenetics.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Epigenetics&action=edit&section=53" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/40px-Wiktionary-logo-en-v2.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/60px-Wiktionary-logo-en-v2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/80px-Wiktionary-logo-en-v2.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span></div> <div class="side-box-text plainlist">Look up <i><b><a href="https://en.wiktionary.org/wiki/Special:Search/epigenetics" class="extiw" title="wiktionary:Special:Search/epigenetics">epigenetics</a></b></i> in Wiktionary, the free dictionary.</div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <a href="https://commons.wikimedia.org/wiki/Category:Epigenetics" class="extiw" title="commons:Category:Epigenetics"><span style="font-style:italic; font-weight:bold;">Epigenetics</span></a>.</div></div> </div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://learn.genetics.utah.edu/content/epigenetics/inheritance/">"Epigenetics & Inheritance"</a>. <i>learn.genetics.utah.edu</i><span class="reference-accessdate">. Retrieved <span class="nowrap">17 April</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=learn.genetics.utah.edu&rft.atitle=Epigenetics+%26+Inheritance&rft_id=https%3A%2F%2Flearn.genetics.utah.edu%2Fcontent%2Fepigenetics%2Finheritance%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEpigenetics" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="http://www.epigenome.org/">The Human Epigenome Project (HEP)</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20100503172418/http://www.epigenome-noe.net/index.php">The Epigenome Network of Excellence (NoE)</a></li> <li><a rel="nofollow" class="external text" href="http://www.epigenomes.ca/">Canadian Epigenetics, Environment and Health Research Consortium (CEEHRC)</a></li> <li><a rel="nofollow" class="external text" href="http://www.epigenome.eu/">The Epigenome Network of Excellence (NoE) – public international site</a></li> <li><a rel="nofollow" class="external text" href="http://discovermagazine.com/2006/nov/cover">"DNA Is Not Destiny"</a> – <i>Discover</i> magazine cover story</li> <li><a rel="nofollow" class="external text" href="https://www.bbc.co.uk/sn/tvradio/programmes/horizon/ghostgenes.shtml">"The Ghost In Your Genes"</a>, <i>Horizon</i> (2005), BBC</li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20080509124439/http://www.hopkinsmedicine.org/press/2002/November/epigenetics.htm">Epigenetics article</a> at Hopkins Medicine</li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20110721032750/http://genome.wellcome.ac.uk/doc_WTX036556.html">Towards a global map of epigenetic variation </a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Genetics" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Genetics" title="Template:Genetics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Genetics" title="Template talk:Genetics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Genetics" title="Special:EditPage/Template:Genetics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Genetics" style="font-size:114%;margin:0 4em"><a href="/wiki/Genetics" title="Genetics">Genetics</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><a href="/wiki/Introduction_to_genetics" title="Introduction to genetics">Introduction</a></li> <li><a href="/wiki/Outline_of_genetics" title="Outline of genetics">Outline</a></li> <li><a href="/wiki/History_of_genetics" title="History of genetics">History</a></li> <li><a href="/wiki/Timeline_of_the_history_of_genetics" title="Timeline of the history of genetics">Timeline</a></li> <li><a href="/wiki/Index_of_genetics_articles" title="Index of genetics articles">Index</a></li> <li><a href="/wiki/Glossary_of_genetics" class="mw-redirect" title="Glossary of genetics">Glossary</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Key components</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chromosome" title="Chromosome">Chromosome</a></li> <li><a href="/wiki/DNA" title="DNA">DNA</a></li> <li><a href="/wiki/RNA" title="RNA">RNA</a></li> <li><a href="/wiki/Genome" title="Genome">Genome</a></li> <li><a href="/wiki/Heredity" title="Heredity">Heredity</a></li> <li><a href="/wiki/Nucleotide" title="Nucleotide">Nucleotide</a></li> <li><a href="/wiki/Mutation" title="Mutation">Mutation</a></li> <li><a href="/wiki/Genetic_variation" title="Genetic variation">Genetic variation</a></li> <li><a href="/wiki/Allele" title="Allele">Allele</a></li> <li><a href="/wiki/Amino_acid" title="Amino acid">Amino acid</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Fields</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Classical_genetics" title="Classical genetics">Classical</a></li> <li><a href="/wiki/Conservation_genetics" title="Conservation genetics">Conservation</a></li> <li><a href="/wiki/Cytogenetics" title="Cytogenetics">Cytogenetics</a></li> <li><a href="/wiki/Ecological_genetics" title="Ecological genetics">Ecological</a></li> <li><a href="/wiki/Immunogenetics" title="Immunogenetics">Immunogenetics</a></li> <li><a href="/wiki/Microbial_genetics" title="Microbial genetics">Microbial</a></li> <li><a href="/wiki/Molecular_genetics" title="Molecular genetics">Molecular</a></li> <li><a href="/wiki/Population_genetics" title="Population genetics">Population</a></li> <li><a href="/wiki/Quantitative_genetics" title="Quantitative genetics">Quantitative</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Archaeogenetics" title="Archaeogenetics">Archaeogenetics</a> of</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Genetic_history_of_Africa" title="Genetic history of Africa">Africa</a></li> <li><a href="/wiki/Genetic_history_of_indigenous_peoples_of_the_Americas" class="mw-redirect" title="Genetic history of indigenous peoples of the Americas">the Americas</a></li> <li><a href="/wiki/Genetic_history_of_the_British_Isles" title="Genetic history of the British Isles">the British Isles</a></li> <li><a href="/wiki/Genetic_history_of_Europe" title="Genetic history of Europe">Europe</a></li> <li><a href="/wiki/Genetic_history_of_Italy" title="Genetic history of Italy">Italy</a></li> <li><a href="/wiki/Genetic_history_of_the_Middle_East" title="Genetic history of the Middle East">the Middle East</a></li> <li><a href="/wiki/Genetics_and_archaeogenetics_of_South_Asia" title="Genetics and archaeogenetics of South Asia">South Asia</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related topics</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Behavioural_genetics" title="Behavioural genetics">Behavioural genetics</a></li> <li><a class="mw-selflink selflink">Epigenetics</a></li> <li><a href="/wiki/Geneticist" title="Geneticist">Geneticist</a></li> <li><a href="/wiki/Genome_editing" title="Genome editing">Genome editing</a></li> <li><a href="/wiki/Genomics" title="Genomics">Genomics</a></li> <li><a href="/wiki/Genetic_code" title="Genetic code">Genetic code</a></li> <li><a href="/wiki/Genetic_engineering" title="Genetic engineering">Genetic engineering</a></li> <li><a href="/wiki/Genetic_diversity" title="Genetic diversity">Genetic diversity</a></li> <li><a href="/wiki/Genetic_monitoring" title="Genetic monitoring">Genetic monitoring</a></li> <li><a href="/wiki/Genetic_genealogy" title="Genetic genealogy">Genetic genealogy</a></li> <li><a href="/wiki/Heredity" title="Heredity">Heredity</a></li> <li><a href="/wiki/He_Jiankui_affair" title="He Jiankui affair">He Jiankui affair</a></li> <li><a href="/wiki/Medical_genetics" title="Medical genetics">Medical genetics</a></li> <li><a href="/wiki/Missing_heritability_problem" title="Missing heritability problem">Missing heritability problem</a></li> <li><a href="/wiki/Molecular_evolution" title="Molecular evolution">Molecular evolution</a></li> <li><a href="/wiki/Plant_genetics" title="Plant genetics">Plant genetics</a></li> <li><a href="/wiki/Population_genomics" title="Population genomics">Population genomics</a></li> <li><a href="/wiki/Reverse_genetics" title="Reverse genetics">Reverse genetics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Lists</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_genetic_codes" title="List of genetic codes">List of genetic codes</a></li> <li><a href="/wiki/List_of_genetics_research_organizations" title="List of genetics research organizations">List of genetics research organizations</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Genetics" title="Category:Genetics">Category</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Gene_expression" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Gene_expression" title="Template:Gene expression"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Gene_expression" title="Template talk:Gene expression"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Gene_expression" title="Special:EditPage/Template:Gene expression"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Gene_expression" style="font-size:114%;margin:0 4em"><a href="/wiki/Gene_expression" title="Gene expression">Gene expression</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Introduction_to_genetics" title="Introduction to genetics">Introduction<br />to genetics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Genetic_code" title="Genetic code">Genetic code</a></li> <li><a href="/wiki/Central_dogma_of_molecular_biology" title="Central dogma of molecular biology">Central dogma</a> <ul><li><a href="/wiki/DNA" title="DNA">DNA</a> → <a href="/wiki/Messenger_RNA" title="Messenger RNA">RNA</a> → <a href="/wiki/Protein" title="Protein">Protein</a></li></ul></li> <li><a href="/wiki/Central_dogma_of_molecular_biology#Special_transfers_of_biological_sequential_information" title="Central dogma of molecular biology">Special transfers</a> <ul><li><a href="/wiki/RNA-dependent_RNA_polymerase" title="RNA-dependent RNA polymerase">RNA→RNA</a></li> <li><a href="/wiki/Reverse_transcription" class="mw-redirect" title="Reverse transcription">RNA→DNA</a></li> <li><a href="/wiki/Prion" title="Prion">Protein→Protein</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Transcription_(biology)" title="Transcription (biology)">Transcription</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:8.0em;font-weight: normal;">Types</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bacterial_transcription" title="Bacterial transcription">Bacterial</a></li> <li><a href="/wiki/Archaeal_transcription" title="Archaeal transcription">Archaeal</a></li> <li><a href="/wiki/Eukaryotic_transcription" title="Eukaryotic transcription">Eukaryotic</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:8.0em;font-weight: normal;">Key elements</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Transcription_factor" title="Transcription factor">Transcription factor</a></li> <li><a href="/wiki/RNA_polymerase" title="RNA polymerase">RNA polymerase</a></li> <li><a href="/wiki/Promoter_(genetics)" title="Promoter (genetics)">Promoter</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:8.0em;font-weight: normal;"><a href="/wiki/Post-transcriptional_modification" title="Post-transcriptional modification">Post-transcription</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Primary_transcript" title="Primary transcript">Precursor mRNA (pre-mRNA / hnRNA)</a></li> <li><a href="/wiki/Five-prime_cap" title="Five-prime cap">5' capping</a></li> <li><a href="/wiki/RNA_splicing" title="RNA splicing">Splicing</a></li> <li><a href="/wiki/Polyadenylation" title="Polyadenylation">Polyadenylation</a></li> <li><a href="/wiki/Histone_acetylation_and_deacetylation" title="Histone acetylation and deacetylation">Histone acetylation and deacetylation</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Translation_(biology)" title="Translation (biology)">Translation</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:8.0em;font-weight: normal;">Types</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bacterial_translation" title="Bacterial translation">Bacterial</a></li> <li><a href="/wiki/Archaeal_translation" title="Archaeal translation">Archaeal</a></li> <li><a href="/wiki/Eukaryotic_translation" title="Eukaryotic translation">Eukaryotic</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:8.0em;font-weight: normal;">Key elements</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0;white-space:nowrap;"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Ribosome" title="Ribosome">Ribosome</a></li> <li><a href="/wiki/Transfer_RNA" title="Transfer RNA">Transfer RNA (tRNA)</a></li> <li><a href="/wiki/Ribosome-nascent_chain_complex" title="Ribosome-nascent chain complex">Ribosome-nascent chain complex (RNC)</a></li> <li><a href="/wiki/Post-translational_modification" title="Post-translational modification">Post-translational modification</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Regulation_of_gene_expression" title="Regulation of gene expression">Regulation</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">Epigenetic</a> <ul><li><a href="/wiki/Genomic_imprinting" title="Genomic imprinting">imprinting</a></li></ul></li> <li><a href="/wiki/Transcriptional_regulation" title="Transcriptional regulation">Transcriptional</a> <ul><li><a href="/wiki/Gene_regulatory_network" title="Gene regulatory network">Gene regulatory network</a></li> <li><a href="/wiki/Cis-regulatory_element" title="Cis-regulatory element">cis-regulatory element</a></li></ul></li> <li><a href="/wiki/Lac_operon" title="Lac operon">lac operon</a></li> <li><a href="/wiki/Post-transcriptional_regulation" title="Post-transcriptional regulation">Post-transcriptional</a> <ul><li><a href="/wiki/P-bodies" title="P-bodies">sequestration (P-bodies)</a></li> <li><a href="/wiki/Alternative_splicing" title="Alternative splicing">alternative splicing</a></li> <li><a href="/wiki/MicroRNA" title="MicroRNA">microRNA</a></li></ul></li> <li><a href="/wiki/Translational_regulation" title="Translational regulation">Translational</a></li> <li><a href="/wiki/Post-translational_regulation" title="Post-translational regulation">Post-translational</a> <ul><li><a href="/wiki/Phosphorylation" title="Phosphorylation">reversible</a></li> <li><a href="/wiki/Proteolysis" title="Proteolysis">irreversible</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Influential people</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Fran%C3%A7ois_Jacob" title="François Jacob">François Jacob</a></li> <li><a href="/wiki/Jacques_Monod" title="Jacques Monod">Jacques Monod</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="The_development_of_phenotype" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Genarch" title="Template:Genarch"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Genarch" title="Template talk:Genarch"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Genarch" title="Special:EditPage/Template:Genarch"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="The_development_of_phenotype" style="font-size:114%;margin:0 4em">The <a href="/wiki/Morphogenesis" title="Morphogenesis">development</a> of <a href="/wiki/Phenotype" title="Phenotype">phenotype</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Key concepts</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Genotype%E2%80%93phenotype_distinction" title="Genotype–phenotype distinction">Genotype–phenotype distinction</a></li> <li><a href="/wiki/Reaction_norm" title="Reaction norm">Reaction norm</a></li> <li><a href="/wiki/Gene%E2%80%93environment_interaction" title="Gene–environment interaction">Gene–environment interaction</a></li> <li><a href="/wiki/Gene%E2%80%93environment_correlation" title="Gene–environment correlation">Gene–environment correlation</a></li> <li><a href="/wiki/Operon" title="Operon">Operon</a></li> <li><a href="/wiki/Heritability" title="Heritability">Heritability</a></li> <li><a href="/wiki/Quantitative_genetics" title="Quantitative genetics">Quantitative genetics</a></li> <li><a href="/wiki/Heterochrony" title="Heterochrony">Heterochrony</a> <ul><li><a href="/wiki/Neoteny" title="Neoteny">Neoteny</a></li></ul></li> <li><a href="/wiki/Heterotopy" title="Heterotopy">Heterotopy</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Genetic_architecture" title="Genetic architecture">Genetic architecture</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Canalisation_(genetics)" title="Canalisation (genetics)">Canalisation</a></li> <li><a href="/wiki/Genetic_assimilation" title="Genetic assimilation">Genetic assimilation</a></li> <li><a href="/wiki/Dominance_(genetics)" title="Dominance (genetics)">Dominance</a></li> <li><a href="/wiki/Epistasis" title="Epistasis">Epistasis</a></li> <li><a href="/wiki/Fitness_landscape" title="Fitness landscape">Fitness landscape</a>/<a href="/wiki/Evolutionary_landscape" title="Evolutionary landscape">evolutionary landscape</a></li> <li><a href="/wiki/Pleiotropy" title="Pleiotropy">Pleiotropy</a></li> <li><a href="/wiki/Phenotypic_plasticity" title="Phenotypic plasticity">Plasticity</a></li> <li><a href="/wiki/Polygenic_inheritance" class="mw-redirect" title="Polygenic inheritance">Polygenic inheritance</a></li> <li><a href="/wiki/Transgressive_segregation" title="Transgressive segregation">Transgressive segregation</a></li> <li><a href="/wiki/Sequence_space_(evolution)" title="Sequence space (evolution)">Sequence space</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Non-genetic influences</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">Epigenetics</a></li> <li><a href="/wiki/Maternal_effect" title="Maternal effect">Maternal effect</a></li> <li><a href="/wiki/Genomic_imprinting" title="Genomic imprinting">Genomic imprinting</a></li> <li><a href="/wiki/Dual_inheritance_theory" title="Dual inheritance theory">Dual inheritance theory</a></li> <li><a href="/wiki/Polyphenism" title="Polyphenism">Polyphenism</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Developmental architecture</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Developmental_biology" title="Developmental biology">Developmental biology</a></li> <li><a href="/wiki/Morphogenesis" title="Morphogenesis">Morphogenesis</a> <ul><li><a href="/wiki/Eyespot_(mimicry)" title="Eyespot (mimicry)">Eyespot</a></li> <li><a href="/wiki/Pattern_formation" title="Pattern formation">Pattern formation</a></li></ul></li> <li><a href="/wiki/Segmentation_(biology)" title="Segmentation (biology)">Segmentation</a></li> <li><a href="/wiki/Metamerism_(biology)" title="Metamerism (biology)">Metamerism</a></li> <li><a href="/wiki/Modularity_(biology)" title="Modularity (biology)">Modularity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Evolution of genetic systems</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Evolvability" title="Evolvability">Evolvability</a></li> <li><a href="/wiki/Robustness_(evolution)" title="Robustness (evolution)">Robustness</a></li> <li><a href="/wiki/Neutral_network_(evolution)" title="Neutral network (evolution)">Neutral networks</a></li> <li><a href="/wiki/Evolution_of_sexual_reproduction" title="Evolution of sexual reproduction">Evolution of sexual reproduction</a></li> <li><a href="/wiki/Evolutionary_tinkering" title="Evolutionary tinkering">Tinkering</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Control of development</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Systems</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Regulation_of_gene_expression" title="Regulation of gene expression">Regulation of gene expression</a></li> <li><a href="/wiki/Gene_regulatory_network" title="Gene regulatory network">Gene regulatory network</a></li> <li><a href="/wiki/Evo-devo_gene_toolkit" title="Evo-devo gene toolkit">Evo-devo gene toolkit</a></li> <li><a href="/wiki/Evolutionary_developmental_biology" title="Evolutionary developmental biology">Evolutionary developmental biology</a></li> <li><a href="/wiki/Homeobox" title="Homeobox">Homeobox</a></li> <li><a href="/wiki/Hedgehog_signaling_pathway" title="Hedgehog signaling pathway">Hedgehog signaling pathway</a></li> <li><a href="/wiki/Notch_signaling_pathway" title="Notch signaling pathway">Notch signaling pathway</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Elements</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Homeotic_gene" title="Homeotic gene">Homeotic gene</a></li> <li><a href="/wiki/Hox_gene" title="Hox gene">Hox gene</a></li> <li><a href="/wiki/Pax_genes" title="Pax genes">Pax genes</a> <ul><li><a href="/wiki/PAX6" title="PAX6">eyeless gene</a></li></ul></li> <li><a href="/wiki/DLX_gene_family" title="DLX gene family">Distal-less</a></li> <li><a href="/wiki/Engrailed_(gene)" title="Engrailed (gene)">Engrailed</a></li> <li><a href="/wiki/Cis-regulatory_element" title="Cis-regulatory element">cis-regulatory element</a></li> <li><a href="/wiki/Ligand_(biochemistry)" title="Ligand (biochemistry)">Ligand</a></li> <li><a href="/wiki/Morphogen" title="Morphogen">Morphogen</a></li> <li><a href="/wiki/Receptor_(biochemistry)" title="Receptor (biochemistry)">Cell surface receptor</a></li> <li><a href="/wiki/Transcription_factor" title="Transcription factor">Transcription factor</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Influential figures</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/C._H._Waddington" title="C. H. Waddington">C. H. Waddington</a></li> <li><a href="/wiki/Richard_Lewontin" title="Richard Lewontin">Richard Lewontin</a></li> <li><a href="/wiki/Fran%C3%A7ois_Jacob" title="François Jacob">François Jacob</a> + <a href="/wiki/Jacques_Monod" title="Jacques Monod">Jacques Monod</a> <ul><li><a href="/wiki/Lac_operon" title="Lac operon">Lac operon</a></li></ul></li> <li><a href="/wiki/Eric_F._Wieschaus" title="Eric F. Wieschaus">Eric F. Wieschaus</a></li> <li><a href="/wiki/Christiane_N%C3%BCsslein-Volhard" title="Christiane Nüsslein-Volhard">Christiane Nüsslein-Volhard</a></li> <li><a href="/wiki/William_McGinnis" title="William McGinnis">William McGinnis</a></li> <li><a href="/wiki/Michael_Levine_(biologist)" title="Michael Levine (biologist)">Mike Levine</a></li> <li><a href="/wiki/Sean_B._Carroll" title="Sean B. Carroll">Sean B. Carroll</a> <ul><li><i><a href="/wiki/Endless_Forms_Most_Beautiful_(book)" title="Endless Forms Most Beautiful (book)">Endless Forms Most Beautiful</a></i></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Debates</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Nature_versus_nurture" title="Nature versus nurture">Nature versus nurture</a></li> <li><a href="/wiki/Morphogenetic_field" title="Morphogenetic field">Morphogenetic field</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div><a href="/wiki/Index_of_evolutionary_biology_articles" title="Index of evolutionary biology articles">Index of evolutionary biology articles</a></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Molecular_biology" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Molecular_biology" title="Template:Molecular biology"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Molecular_biology" title="Template talk:Molecular biology"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Molecular_biology" title="Special:EditPage/Template:Molecular biology"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Molecular_biology" style="font-size:114%;margin:0 4em"><a href="/wiki/Molecular_biology" title="Molecular biology">Molecular biology</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><a href="/wiki/History_of_molecular_biology" title="History of molecular biology">History</a></li> <li><a href="/wiki/Index_of_molecular_biology_articles" title="Index of molecular biology articles">Index</a></li> <li><a href="/wiki/Glossary_of_genetics" class="mw-redirect" title="Glossary of genetics">Glossary</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Overview</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Central_dogma_of_molecular_biology" title="Central dogma of molecular biology">Central dogma</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/DNA_replication" title="DNA replication">DNA replication</a> (<a href="/wiki/DNA" title="DNA">DNA</a>)</li> <li><a href="/wiki/Transcription_(biology)" title="Transcription (biology)">Transcription</a> (<a href="/wiki/RNA" title="RNA">RNA</a>)</li> <li><a href="/wiki/Translation_(biology)" title="Translation (biology)">Translation</a> (<a href="/wiki/Protein" title="Protein">protein</a>)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Element</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li> <ul><li><span style="font-size:85%;">Genetic</span></li> <li><span style="font-size:85%;">Heredity</span></li></ul></li></ul> <ul><li><a href="/wiki/Promoter_(genetics)" title="Promoter (genetics)">Promoter</a> <ul><li><a href="/wiki/Pribnow_box" title="Pribnow box">Pribnow box</a></li> <li><a href="/wiki/TATA_box" title="TATA box">TATA box</a></li></ul></li> <li><a href="/wiki/Operon" title="Operon">Operon</a> <ul><li><a href="/wiki/Gal_operon" title="Gal operon">gal operon</a></li> <li><a href="/wiki/Lac_operon" title="Lac operon">lac operon</a></li> <li><a href="/wiki/Trp_operon" title="Trp operon">trp operon</a></li></ul></li> <li><a href="/wiki/Intron" title="Intron">Intron</a></li> <li><a href="/wiki/Exon" title="Exon">Exon</a></li> <li><a href="/wiki/Terminator_(genetics)" title="Terminator (genetics)">Terminator</a></li> <li><a href="/wiki/Enhancer_(genetics)" title="Enhancer (genetics)">Enhancer</a></li> <li><a href="/wiki/Repressor" title="Repressor">Repressor</a> <ul><li><a href="/wiki/Lac_repressor" title="Lac repressor">lac repressor</a></li> <li><a href="/wiki/Tryptophan_repressor" title="Tryptophan repressor">trp repressor</a></li></ul></li> <li><a href="/wiki/Silencer_(genetics)" title="Silencer (genetics)">Silencer</a></li> <li><a href="/wiki/Histone_methylation" title="Histone methylation">Histone methylation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Linked life</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cell_biology" title="Cell biology">Cell biology</a></li> <li><a href="/wiki/Biochemistry" title="Biochemistry">Biochemistry</a></li> <li><a href="/wiki/Computational_biology" title="Computational biology">Computational biology</a></li> <li><a href="/wiki/Developmental_biology" title="Developmental biology">Developmental biology</a></li> <li><a href="/wiki/Medicine" title="Medicine">Functional biology/medicine</a></li> <li><a href="/wiki/Genetics" title="Genetics">Genetics</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Engineering</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Concepts</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cultured_meat" title="Cultured meat">Cultured meat</a></li> <li><a href="/wiki/Mitosis" title="Mitosis">Mitosis</a></li> <li><a href="/wiki/Cell_signaling" title="Cell signaling">Cell signalling</a></li> <li><a href="/wiki/Post-transcriptional_modification" title="Post-transcriptional modification">Post-transcriptional modification</a></li> <li><a href="/wiki/Post-translational_modification" title="Post-translational modification">Post-translational modification</a></li> <li><a href="/wiki/Dry_lab" title="Dry lab">Dry lab</a> / <a href="/wiki/Wet_lab" title="Wet lab">Wet lab</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Techniques</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cell_culture" title="Cell culture">Cell culture</a></li> <li><a href="/wiki/Model_organism" title="Model organism">Model organisms</a> (such as <a href="/wiki/C57BL/6" title="C57BL/6">C57BL/6 mice</a>)</li> <li>Methods <ul><li><a href="/wiki/Nucleic_acid_methods" title="Nucleic acid methods">Nucleic acid</a></li> <li><a href="/wiki/Protein_methods" title="Protein methods">Protein</a></li></ul></li> <li><a href="/wiki/Fluorescence_in_the_life_sciences" title="Fluorescence in the life sciences">Fluorescence</a>, <a href="/wiki/Pigment" title="Pigment">Pigment</a> & <a href="/wiki/Radioactivity_in_the_life_sciences" title="Radioactivity in the life sciences">Radioactivity</a></li></ul> <dl><dt><span class="nobold">High-throughput technique ("<a href="/wiki/Omics" title="Omics">-omics</a>")</span></dt> <dd><a href="/wiki/DNA_microarray" title="DNA microarray">DNA microarray</a></dd> <dd><a href="/wiki/Mass_spectrometry" title="Mass spectrometry">Mass spectrometry</a></dd> <dd><a href="/wiki/Lab-on-a-chip" title="Lab-on-a-chip">Lab-on-a-chip</a></dd></dl> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Regulation_of_gene_expression" title="Regulation of gene expression">Gene regulation</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">Epigenetic</a></li> <li><a href="/wiki/Regulation_of_gene_expression" title="Regulation of gene expression">Genetic</a></li> <li><a href="/wiki/Post-transcriptional_regulation" title="Post-transcriptional regulation">Post-transcriptional</a></li> <li><a href="/wiki/Post-translational_regulation" title="Post-translational regulation">Post-translational regulation</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><b><a href="/wiki/Category:Molecular_biology" title="Category:Molecular biology">Molecular biology</a></b></li> <li><span class="noviewer" typeof="mw:File"><span title="WikiProject"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/People_icon.svg/16px-People_icon.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/People_icon.svg/24px-People_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/37/People_icon.svg/32px-People_icon.svg.png 2x" data-file-width="100" data-file-height="100" /></span></span> <b><a href="/wiki/Wikipedia:WikiProject_Molecular_Biology/Molecular_and_Cell_Biology" title="Wikipedia:WikiProject Molecular Biology/Molecular and Cell Biology">WikiProject</a></b></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Branches_of_biology" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Branches_of_biology" title="Template:Branches of biology"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Branches_of_biology" title="Template talk:Branches of biology"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Branches_of_biology" title="Special:EditPage/Template:Branches of biology"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Branches_of_biology" style="font-size:114%;margin:0 4em"><a href="/wiki/Outline_of_biology#Branches" title="Outline of biology">Branches of biology</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abiogenesis" title="Abiogenesis">Abiogenesis</a></li> <li><a href="/wiki/Aerobiology" title="Aerobiology">Aerobiology</a></li> <li><a href="/wiki/Agronomy" title="Agronomy">Agronomy</a></li> <li><a href="/wiki/Agrostology" title="Agrostology">Agrostology</a></li> <li><a href="/wiki/Anatomy" title="Anatomy">Anatomy</a></li> <li><a href="/wiki/Astrobiology" title="Astrobiology">Astrobiology</a></li> <li><a href="/wiki/Bacteriology" title="Bacteriology">Bacteriology</a></li> <li><a href="/wiki/Biochemistry" title="Biochemistry">Biochemistry</a></li> <li><a href="/wiki/Biogeography" title="Biogeography">Biogeography</a></li> <li><a href="/wiki/Biogeology" title="Biogeology">Biogeology</a></li> <li><a href="/wiki/Bioinformatics" title="Bioinformatics">Bioinformatics</a></li> <li><a href="/wiki/Biological_engineering" title="Biological engineering">Biological engineering</a></li> <li><a href="/wiki/Biomechanics" title="Biomechanics">Biomechanics</a></li> <li><a href="/wiki/Biophysics" title="Biophysics">Biophysics</a></li> <li><a href="/wiki/Biosemiotics" title="Biosemiotics">Biosemiotics</a></li> <li><a href="/wiki/Biostatistics" title="Biostatistics">Biostatistics</a></li> <li><a href="/wiki/Biotechnology" title="Biotechnology">Biotechnology</a></li> <li><a href="/wiki/Botany" title="Botany">Botany</a></li> <li><a href="/wiki/Cell_biology" title="Cell biology">Cell biology</a></li> <li><a href="/wiki/Cellular_microbiology" title="Cellular microbiology">Cellular microbiology</a></li> <li><a href="/wiki/Chemical_biology" title="Chemical biology">Chemical biology</a></li> <li><a href="/wiki/Chronobiology" title="Chronobiology">Chronobiology</a></li> <li><a href="/wiki/Cognitive_biology" title="Cognitive biology">Cognitive biology</a></li> <li><a href="/wiki/Computational_biology" title="Computational biology">Computational biology</a></li> <li><a href="/wiki/Conservation_biology" title="Conservation biology">Conservation biology</a></li> <li><a href="/wiki/Cryobiology" title="Cryobiology">Cryobiology</a></li> <li><a href="/wiki/Cytogenetics" title="Cytogenetics">Cytogenetics</a></li> <li><a href="/wiki/Dendrology" title="Dendrology">Dendrology</a></li> <li><a href="/wiki/Developmental_biology" title="Developmental biology">Developmental biology</a></li> <li><a href="/wiki/Ecological_genetics" title="Ecological genetics">Ecological genetics</a></li> <li><a href="/wiki/Ecology" title="Ecology">Ecology</a></li> <li><a href="/wiki/Embryology" title="Embryology">Embryology</a></li> <li><a href="/wiki/Epidemiology" title="Epidemiology">Epidemiology</a></li> <li><a class="mw-selflink selflink">Epigenetics</a></li> <li><a href="/wiki/Evolutionary_biology" title="Evolutionary biology">Evolutionary biology</a></li> <li><a href="/wiki/Freshwater_biology" title="Freshwater biology">Freshwater biology</a></li> <li><a href="/wiki/Generative_biology" class="mw-redirect" title="Generative biology">Generative biology</a></li> <li><a href="/wiki/Genetics" title="Genetics">Genetics</a></li> <li><a href="/wiki/Genomics" title="Genomics">Genomics</a></li> <li><a href="/wiki/Geobiology" title="Geobiology">Geobiology</a></li> <li><a href="/wiki/Gerontology" title="Gerontology">Gerontology</a></li> <li><a href="/wiki/Herpetology" title="Herpetology">Herpetology</a></li> <li><a href="/wiki/Histology" title="Histology">Histology</a></li> <li><a href="/wiki/Human_biology" title="Human biology">Human biology</a></li> <li><a href="/wiki/Ichthyology" title="Ichthyology">Ichthyology</a></li> <li><a href="/wiki/Immunology" title="Immunology">Immunology</a></li> <li><a href="/wiki/Lipidology" title="Lipidology">Lipidology</a></li> <li><a href="/wiki/Mammalogy" title="Mammalogy">Mammalogy</a></li> <li><a href="/wiki/Marine_biology" title="Marine biology">Marine biology</a></li> <li><a href="/wiki/Mathematical_and_theoretical_biology" title="Mathematical and theoretical biology">Mathematical biology</a></li> <li><a href="/wiki/Microbiology" title="Microbiology">Microbiology</a></li> <li><a href="/wiki/Molecular_biology" title="Molecular biology">Molecular biology</a></li> <li><a href="/wiki/Mycology" title="Mycology">Mycology</a></li> <li><a href="/wiki/Neontology" title="Neontology">Neontology</a></li> <li><a href="/wiki/Neuroscience" title="Neuroscience">Neuroscience</a></li> <li><a href="/wiki/Nutritional_science" title="Nutritional science">Nutrition</a></li> <li><a href="/wiki/Ornithology" title="Ornithology">Ornithology</a></li> <li><a href="/wiki/Osteology" title="Osteology">Osteology</a></li> <li><a href="/wiki/Paleontology" title="Paleontology">Paleontology</a></li> <li><a href="/wiki/Parasitology" title="Parasitology">Parasitology</a></li> <li><a href="/wiki/Pathology" title="Pathology">Pathology</a></li> <li><a href="/wiki/Pharmacology" title="Pharmacology">Pharmacology</a></li> <li><a href="/wiki/Photobiology" title="Photobiology">Photobiology</a></li> <li><a href="/wiki/Phycology" title="Phycology">Phycology</a></li> <li><a href="/wiki/Phylogenetics" title="Phylogenetics">Phylogenetics</a></li> <li><a href="/wiki/Physiology" title="Physiology">Physiology</a></li> <li><a href="/wiki/Pomology" title="Pomology">Pomology</a></li> <li><a href="/wiki/Primatology" title="Primatology">Primatology</a></li> <li><a href="/wiki/Proteomics" title="Proteomics">Proteomics</a></li> <li><a href="/wiki/Protistology" title="Protistology">Protistology</a></li> <li><a href="/wiki/Quantum_biology" title="Quantum biology">Quantum biology</a></li> <li><a href="/wiki/Relational_biology" class="mw-redirect" title="Relational biology">Relational biology</a></li> <li><a href="/wiki/Reproductive_biology" title="Reproductive biology">Reproductive biology</a></li> <li><a href="/wiki/Sociobiology" title="Sociobiology">Sociobiology</a></li> <li><a href="/wiki/Structural_biology" title="Structural biology">Structural biology</a></li> <li><a href="/wiki/Synthetic_biology" title="Synthetic biology">Synthetic biology</a></li> <li><a href="/wiki/Systematics" title="Systematics">Systematics</a></li> <li><a href="/wiki/Systems_biology" title="Systems biology">Systems biology</a></li> <li><a href="/wiki/Taxonomy_(biology)" title="Taxonomy (biology)">Taxonomy</a></li> <li><a href="/wiki/Teratology" title="Teratology">Teratology</a></li> <li><a href="/wiki/Toxicology" title="Toxicology">Toxicology</a></li> <li><a href="/wiki/Virology" title="Virology">Virology</a></li> <li><a href="/wiki/Virophysics" title="Virophysics">Virophysics</a></li> <li><a href="/wiki/Xenobiology" title="Xenobiology">Xenobiology</a></li> <li><a href="/wiki/Zoology" title="Zoology">Zoology</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">See also</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/History_of_biology" title="History of biology">History of biology</a></li> <li><a href="/wiki/Nobel_Prize_in_Physiology_or_Medicine" title="Nobel Prize in Physiology or Medicine">Nobel Prize in Physiology or Medicine</a></li> <li><a href="/wiki/Timeline_of_biology_and_organic_chemistry" title="Timeline of biology and organic chemistry">Timeline of biology and organic chemistry</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-labelledby="Authority_control_databases_frameless&#124;text-top&#124;10px&#124;alt=Edit_this_at_Wikidata&#124;link=https&#58;//www.wikidata.org/wiki/Q26939#identifiers&#124;class=noprint&#124;Edit_this_at_Wikidata" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Authority_control_databases_frameless&#124;text-top&#124;10px&#124;alt=Edit_this_at_Wikidata&#124;link=https&#58;//www.wikidata.org/wiki/Q26939#identifiers&#124;class=noprint&#124;Edit_this_at_Wikidata" style="font-size:114%;margin:0 4em"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q26939#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">International</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="http://id.worldcat.org/fast/1893642/">FAST</a></span></li></ul></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">National</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Epigenetik"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/7566079-9">Germany</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Epigenetics"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh2011005133">United States</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="エピジェネティクス"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/01203421">Japan</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="epigenetika"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ph943439&CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007572841305171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐5c59558b9d‐2bk5z Cached time: 20241130145305 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 2.277 seconds Real time usage: 2.508 seconds Preprocessor visited node count: 15388/1000000 Post‐expand include size: 726348/2097152 bytes Template argument size: 7741/2097152 bytes Highest expansion depth: 19/100 Expensive parser function count: 21/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 1012515/5000000 bytes Lua time usage: 1.425/10.000 seconds Lua memory usage: 21513107/52428800 bytes Lua Profile: ? 280 ms 19.4% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::gsub 200 ms 13.9% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 140 ms 9.7% dataWrapper <mw.lua:672> 120 ms 8.3% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::anchorEncode 80 ms 5.6% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::match 80 ms 5.6% (for generator) 60 ms 4.2% recursiveClone <mwInit.lua:45> 60 ms 4.2% type 60 ms 4.2% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::find 40 ms 2.8% [others] 320 ms 22.2% Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 2117.072 1 -total 64.52% 1365.959 1 Template:Reflist 46.44% 983.140 194 Template:Cite_journal 5.64% 119.327 7 Template:Navbox 5.16% 109.163 10 Template:Fix 4.49% 95.004 1 Template:Wikt-lang 4.22% 89.358 1 Template:Genetics 3.92% 82.992 18 Template:Cite_web 3.69% 78.096 1 Template:Short_description 3.24% 68.615 14 Template:Delink --> <!-- Saved in parser cache with key enwiki:pcache:idhash:49033-0!canonical and timestamp 20241130145305 and revision id 1260045662. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Epigenetics&oldid=1260045662">https://en.wikipedia.org/w/index.php?title=Epigenetics&oldid=1260045662</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Epigenetics" title="Category:Epigenetics">Epigenetics</a></li><li><a href="/wiki/Category:Genetic_mapping" title="Category:Genetic mapping">Genetic mapping</a></li><li><a href="/wiki/Category:Lamarckism" title="Category:Lamarckism">Lamarckism</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Wikipedia_articles_needing_page_number_citations_from_March_2024" title="Category:Wikipedia articles needing page number citations from March 2024">Wikipedia articles needing page number citations from March 2024</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_page_number_citations_from_January_2020" title="Category:Wikipedia articles needing page number citations from January 2020">Wikipedia articles needing page number citations from January 2020</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_page_number_citations_from_August_2013" title="Category:Wikipedia articles needing page number citations from August 2013">Wikipedia articles needing page number citations from August 2013</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_December_2019" title="Category:Use dmy dates from December 2019">Use dmy dates from December 2019</a></li><li><a href="/wiki/Category:Articles_containing_German-language_text" title="Category:Articles containing German-language text">Articles containing German-language text</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_April_2019" title="Category:Articles with unsourced statements from April 2019">Articles with unsourced statements from April 2019</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_March_2023" title="Category:Articles with unsourced statements from March 2023">Articles with unsourced statements from March 2023</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_factual_verification_from_November_2020" title="Category:Wikipedia articles needing factual verification from November 2020">Wikipedia articles needing factual verification from November 2020</a></li><li><a href="/wiki/Category:Commons_category_link_from_Wikidata" title="Category:Commons category link from Wikidata">Commons category link from Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 28 November 2024, at 15:05<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Epigenetics&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5c59558b9d-9689t","wgBackendResponseTime":194,"wgPageParseReport":{"limitreport":{"cputime":"2.277","walltime":"2.508","ppvisitednodes":{"value":15388,"limit":1000000},"postexpandincludesize":{"value":726348,"limit":2097152},"templateargumentsize":{"value":7741,"limit":2097152},"expansiondepth":{"value":19,"limit":100},"expensivefunctioncount":{"value":21,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":1012515,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 2117.072 1 -total"," 64.52% 1365.959 1 Template:Reflist"," 46.44% 983.140 194 Template:Cite_journal"," 5.64% 119.327 7 Template:Navbox"," 5.16% 109.163 10 Template:Fix"," 4.49% 95.004 1 Template:Wikt-lang"," 4.22% 89.358 1 Template:Genetics"," 3.92% 82.992 18 Template:Cite_web"," 3.69% 78.096 1 Template:Short_description"," 3.24% 68.615 14 Template:Delink"]},"scribunto":{"limitreport-timeusage":{"value":"1.425","limit":"10.000"},"limitreport-memusage":{"value":21513107,"limit":52428800},"limitreport-profile":[["?","280","19.4"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::gsub","200","13.9"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","140","9.7"],["dataWrapper \u003Cmw.lua:672\u003E","120","8.3"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::anchorEncode","80","5.6"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::match","80","5.6"],["(for generator)","60","4.2"],["recursiveClone \u003CmwInit.lua:45\u003E","60","4.2"],["type","60","4.2"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::find","40","2.8"],["[others]","320","22.2"]]},"cachereport":{"origin":"mw-web.codfw.main-5c59558b9d-2bk5z","timestamp":"20241130145305","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Epigenetics","url":"https:\/\/en.wikipedia.org\/wiki\/Epigenetics","sameAs":"http:\/\/www.wikidata.org\/entity\/Q26939","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q26939","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-04-14T02:23:06Z","dateModified":"2024-11-28T15:05:07Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/f\/fc\/Epigenetic_mechanisms.png","headline":"study of changes in gene expression or cellular phenotype"}</script> </body> </html>