CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 421 results for author: <span class="mathjax">Kim, D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Kim%2C+D">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Kim, D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Kim%2C+D&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Kim, D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Kim%2C+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+D&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+D&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+D&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16092">arXiv:2411.16092</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.16092">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Electronic Trap Detection with Carrier-Resolved Photo-Hall Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gunawan%2C+O">Oki Gunawan</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+C">Chaeyoun Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Nainggolan%2C+B">Bonfilio Nainggolan</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+M">Minyeul Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Shin%2C+J">Jonghwa Shin</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D+S">Dong Suk Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Jo%2C+Y">Yimhyun Jo</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+M">Minjin Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Euvrard%2C+J">Julie Euvrard</a>, <a href="/search/physics?searchtype=author&amp;query=Bishop%2C+D">Douglas Bishop</a>, <a href="/search/physics?searchtype=author&amp;query=Libsch%2C+F">Frank Libsch</a>, <a href="/search/physics?searchtype=author&amp;query=Todorov%2C+T">Teodor Todorov</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+Y">Yunna Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Shin%2C+B">Byungha Shin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16092v1-abstract-short" style="display: inline;"> Electronic trap states are a critical yet unavoidable aspect of semiconductor devices, impacting performance of various electronic devices such as transistors, memory devices, solar cells, and LEDs. The density, energy level, and position of these trap states often enable or constrain device functionality, making their measurement crucial in materials science and device fabrication. Most methods f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16092v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16092v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16092v1-abstract-full" style="display: none;"> Electronic trap states are a critical yet unavoidable aspect of semiconductor devices, impacting performance of various electronic devices such as transistors, memory devices, solar cells, and LEDs. The density, energy level, and position of these trap states often enable or constrain device functionality, making their measurement crucial in materials science and device fabrication. Most methods for measuring trap states involve fabricating a junction, which can inadvertently introduce or alter traps, highlighting the need for alternative, less-invasive techniques. Here, we present a unique photo-Hall-based method to detect and characterize trap density and energy level while concurrently extracting key carrier properties, including mobility, photocarrier density, recombination lifetime, and diffusion length. This technique relies on analyzing the photo-Hall data in terms of &#34;photo-Hall conductivity&#34; vs. electrical conductivity under varying light intensities and temperatures. We show that the photo-Hall effect, in the presence of traps, follows an $\textit{astonishingly simple}$ relationship - $\textit{a hyperbola equation}$ - that reveals detailed insights into charge transport and trap occupation. We have successfully applied this technique to P and N-type silicon as a benchmark and to high-performance halide perovskite photovoltaic films. This technique substantially expands the capability of Hall effect-based measurements by integrating the effects of the four most common excitations in nature - electric field, magnetic field, photon, and phonon in solids - into a single equation and enabling unparalleled extraction of charge carrier and trap properties in semiconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16092v1-abstract-full').style.display = 'none'; document.getElementById('2411.16092v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main manuscript (15 pages, 3 figures) and Supplementary information (27 pages, 7 figures, 4 tables)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09713">arXiv:2411.09713</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09713">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Wafer-scale Semiconductor Grafting: Enabling High-Performance, Lattice-Mismatched Heterojunctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+J">Jie Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Q">Qiming Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+J">Jiarui Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Y">Yi Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Abbasi%2C+H">Haris Abbasi</a>, <a href="/search/physics?searchtype=author&amp;query=Qiu%2C+H">Haining Qiu</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+J">Jisoo Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+W">Wei Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D">Donghyeok Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yiran Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ng%2C+T+K">Tien Khee Ng</a>, <a href="/search/physics?searchtype=author&amp;query=Jang%2C+H">Hokyung Jang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Haiyan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ooi%2C+B+S">Boon S. Ooi</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Z">Zhenqiang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09713v1-abstract-short" style="display: inline;"> Semiconductor heterojunctions are foundational to many advanced electronic and optoelectronic devices. However, achieving high-quality, lattice-mismatched interfaces remains challenging, limiting both scalability and device performance. Semiconductor grafting offers a promising solution by directly forming electrically active, lattice-mismatched heterojunctions between dissimilar materials. Howeve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09713v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09713v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09713v1-abstract-full" style="display: none;"> Semiconductor heterojunctions are foundational to many advanced electronic and optoelectronic devices. However, achieving high-quality, lattice-mismatched interfaces remains challenging, limiting both scalability and device performance. Semiconductor grafting offers a promising solution by directly forming electrically active, lattice-mismatched heterojunctions between dissimilar materials. However, its scalability and uniformity at the wafer level have yet to be demonstrated. This work demonstrates the achievement of highly uniform, reproducible results across silicon, sapphire, and gallium nitride (GaN) substrates using wafer-scale semiconductor grafting. To illustrate this scalability, we conducted an in-depth study of a grafted Si/GaN heterojunction, examining band alignment through X-ray photoelectron spectroscopy and confirming crystallinity and interfacial integrity with scanning transmission electron microscopy. The resulting p-n diodes exhibit significantly enhanced electrical performance and wafer-scale uniformity compared to conventional approaches. This work establishes wafer-scale semiconductor grafting as a versatile and scalable technology, bridging the gap between laboratory-scale research and industrial manufacturing for heterogeneous semiconductor integration, and paving the way for novel, high-performance electronic and optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09713v1-abstract-full').style.display = 'none'; document.getElementById('2411.09713v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05256">arXiv:2411.05256</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.05256">pdf</a>, <a href="https://arxiv.org/format/2411.05256">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Radiopurity measurements of liquid scintillator for the COSINE-100 Upgrade </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kim%2C+J">J. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Ha%2C+C">C. Ha</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+S+H">S. H. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+W+K">W. K. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+Y+D">Y. D. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Ko%2C+Y+J">Y. J. Ko</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+E+K">E. K. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+H">H. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+H+S">H. S. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+I+S">I. S. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+J">J. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+S+H">S. H. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+S+M">S. M. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+Y+J">Y. J. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+G+H">G. H. Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05256v1-abstract-short" style="display: inline;"> A new 2,400 L liquid scintillator has been produced for the COSINE-100 Upgrade, which is under construction at Yemilab for the next COSINE dark matter experiment phase. The linear-alkyl-benzene-based scintillator is designed to serve as a veto for NaI(Tl) crystal targets and a separate platform for rare event searches. We measured using a sample consisting of a custom-made 445 mL cylindrical Teflo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05256v1-abstract-full').style.display = 'inline'; document.getElementById('2411.05256v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05256v1-abstract-full" style="display: none;"> A new 2,400 L liquid scintillator has been produced for the COSINE-100 Upgrade, which is under construction at Yemilab for the next COSINE dark matter experiment phase. The linear-alkyl-benzene-based scintillator is designed to serve as a veto for NaI(Tl) crystal targets and a separate platform for rare event searches. We measured using a sample consisting of a custom-made 445 mL cylindrical Teflon container equipped with two 3-inch photomultiplier tubes. Analyses show activity levels of $0.091 \pm 0.042$ mBq/kg for $^{238}$U and $0.012 \pm 0.007$ mBq/kg for $^{232}$Th. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05256v1-abstract-full').style.display = 'none'; document.getElementById('2411.05256v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03718">arXiv:2411.03718</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.03718">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Tuning One Dimensional Plasmonic Gap at Nanometer Scale for Advanced SERS Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Moghaddam%2C+M+H">Mahsa Haddadi Moghaddam</a>, <a href="/search/physics?searchtype=author&amp;query=Sharma%2C+S">Sobhagyam Sharma</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+D">Daehwan Park</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D+S">Dai Sik Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03718v1-abstract-short" style="display: inline;"> The hotspots, which are typically found in nanogaps between metal structures, are critical for the enhancement of the electromagnetic field. Surface-enhanced Raman scattering (SERS), a technique known for its exceptional sensitivity and molecular detection capability, relies on the creation of these hotspots within nanostructures, where localized surface plasmon resonance (LSPR) amplifies Raman si&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03718v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03718v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03718v1-abstract-full" style="display: none;"> The hotspots, which are typically found in nanogaps between metal structures, are critical for the enhancement of the electromagnetic field. Surface-enhanced Raman scattering (SERS), a technique known for its exceptional sensitivity and molecular detection capability, relies on the creation of these hotspots within nanostructures, where localized surface plasmon resonance (LSPR) amplifies Raman signals. However, creating adjustable nanogaps on a large scale remains challenging, particularly for applications involving biomacromolecules of various sizes. The development of tunable plasmonic nanostructures on flexible substrates represents a significant advance in the creation and precise control of these hotspots. Our work introduces tunable nanogaps on flexible substrates, utilizing thermally responsive materials to allow real-time control of gap width for different molecule sizes. Through advanced nanofabrication techniques, we have achieved uniform, tunable nanogaps over large areas wafer scale, enabling dynamic modulation of SERS signals. This approach resulted in an enhancement factor of over 10^7, sufficient for single-molecule detection, with a detection limit as low as 10^-12 M. Our thermally tunable nanogaps provide a powerful tool for precise detection of molecules and offer significant advantages for a wide range of sensing and analytical applications <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03718v1-abstract-full').style.display = 'none'; document.getElementById('2411.03718v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 Figures, under review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22593">arXiv:2410.22593</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.22593">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Highly tunable moir茅 superlattice potentials in twisted hexagonal boron nitrides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Han%2C+K">Kwanghee Han</a>, <a href="/search/physics?searchtype=author&amp;query=Cho%2C+M">Minhyun Cho</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+T">Taehyung Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+S+T">Seung Tae Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+S+H">Suk Hyun Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+S+H">Sang Hwa Park</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S+M">Sang Mo Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/physics?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/physics?searchtype=author&amp;query=Menon%2C+V">Vinod Menon</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+Y+D">Young Duck Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22593v1-abstract-short" style="display: inline;"> Moir茅 superlattice of twisted hexagonal boron nitride (hBN) has emerged as an advanced atomically thin van der Waals interfacial ferroelectricity platform. Nanoscale periodic ferroelectric moir茅 domains with out-of-plane potentials in twisted hBN allow the hosting of remote Coulomb superlattice potentials to adjacent two-dimensional materials for tailoring strongly correlated properties. Therefore&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22593v1-abstract-full').style.display = 'inline'; document.getElementById('2410.22593v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22593v1-abstract-full" style="display: none;"> Moir茅 superlattice of twisted hexagonal boron nitride (hBN) has emerged as an advanced atomically thin van der Waals interfacial ferroelectricity platform. Nanoscale periodic ferroelectric moir茅 domains with out-of-plane potentials in twisted hBN allow the hosting of remote Coulomb superlattice potentials to adjacent two-dimensional materials for tailoring strongly correlated properties. Therefore, the new strategies for engineering moir茅 length, angle, and potential strength are essential for developing programmable quantum materials and advanced twistronics applications devices. Here, we demonstrate the realization of twisted hBN-based moir茅 superlattice platforms and visualize the moir茅 domains and ferroelectric properties using Kelvin probe force microscopy. Also, we report the KPFM result of regular moir茅 superlattice in the large area. It offers the possibility to reproduce uniform moir茅 structures with precise control piezo stage stacking and heat annealing. We demonstrate the high tunability of twisted hBN moir茅 platforms and achieve cumulative multi-ferroelectric polarization and multi-level domains with multiple angle mismatched interfaces. Additionally, we observe the quasi-1D anisotropic moir茅 domains and show the highest resolution analysis of the local built-in strain between adjacent hBN layers compared to the conventional methods. Furthermore, we demonstrate in-situ manipulation of moir茅 superlattice potential strength using femtosecond pulse laser irradiation, which results in the optical phonon-induced atomic displacement at the hBN moir茅 interfaces. Our results pave the way to develop precisely programmable moir茅 superlattice platforms and investigate strongly correlated physics in van der Waals heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22593v1-abstract-full').style.display = 'none'; document.getElementById('2410.22593v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00298">arXiv:2410.00298</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.00298">pdf</a>, <a href="https://arxiv.org/format/2410.00298">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Spatio-Spectral Quantum State Estimation of Photon Pairs from Optical Fiber Using Stimulated Emission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D+B">Dong Beom Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+X">Xiye Hu</a>, <a href="/search/physics?searchtype=author&amp;query=U%27Ren%2C+A+B">Alfred B. U&#39;Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Garay-Palmett%2C+K">Karina Garay-Palmett</a>, <a href="/search/physics?searchtype=author&amp;query=Lorenz%2C+V+O">Virginia O. Lorenz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00298v1-abstract-short" style="display: inline;"> Developing a quantum light source that carries more than one bit per photon is pivotal for expanding quantum information applications. Characterizing a high-dimensional multiple-degree-of-freedom source at the single-photon level is challenging due to the large parameter space as well as limited emission rates and detection efficiencies. Here, we characterize photon pairs generated in optical fibe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00298v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00298v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00298v1-abstract-full" style="display: none;"> Developing a quantum light source that carries more than one bit per photon is pivotal for expanding quantum information applications. Characterizing a high-dimensional multiple-degree-of-freedom source at the single-photon level is challenging due to the large parameter space as well as limited emission rates and detection efficiencies. Here, we characterize photon pairs generated in optical fiber in the transverse-mode and frequency degrees of freedom by applying stimulated emission in both degrees of freedom while detecting in one of them at a time. This method may be useful in the quantum state estimation and optimization of various photon-pair source platforms in which complicated correlations across multiple degrees of freedom may be present. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00298v1-abstract-full').style.display = 'none'; document.getElementById('2410.00298v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18288">arXiv:2409.18288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18288">pdf</a>, <a href="https://arxiv.org/format/2409.18288">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The hypothetical track-length fitting algorithm for energy measurement in liquid argon TPCs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Alex%2C+N+S">N. S. Alex</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a> , et al. (1348 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18288v2-abstract-short" style="display: inline;"> This paper introduces the hypothetical track-length fitting algorithm, a novel method for measuring the kinetic energies of ionizing particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18288v2-abstract-full').style.display = 'inline'; document.getElementById('2409.18288v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18288v2-abstract-full" style="display: none;"> This paper introduces the hypothetical track-length fitting algorithm, a novel method for measuring the kinetic energies of ionizing particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss as a function of the energy, including models of electron recombination and detector response. The algorithm can be used to measure the energies of particles that interact before they stop, such as charged pions that are absorbed by argon nuclei. The algorithm&#39;s energy measurement resolutions and fractional biases are presented as functions of particle kinetic energy and number of track hits using samples of stopping secondary charged pions in data collected by the ProtoDUNE-SP detector, and also in a detailed simulation. Additional studies describe impact of the dE/dx model on energy measurement performance. The method described in this paper to characterize the energy measurement performance can be repeated in any LArTPC experiment using stopping secondary charged pions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18288v2-abstract-full').style.display = 'none'; document.getElementById('2409.18288v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0561-LBNF-PPD, CERN-EP-2024-256 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.15748">arXiv:2409.15748</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.15748">pdf</a>, <a href="https://arxiv.org/format/2409.15748">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> COSINE-100U: Upgrading the COSINE-100 Experiment for Enhanced Sensitivity to Low-Mass Dark Matter Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lee%2C+D+H">D. H. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Cho%2C+J+Y">J. Y. Cho</a>, <a href="/search/physics?searchtype=author&amp;query=Ha%2C+C">C. Ha</a>, <a href="/search/physics?searchtype=author&amp;query=Jeon%2C+E+J">E. J. Jeon</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+H+J">H. J. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+J">J. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+K+W">K. W. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+S+H">S. H. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+S+K">S. K. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+W+K">W. K. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+Y+D">Y. D. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Ko%2C+Y+J">Y. J. Ko</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+H">H. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+H+S">H. S. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+I+S">I. S. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+J">J. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+S+H">S. H. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+S+M">S. M. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Maruyama%2C+R+H">R. H. Maruyama</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+J+C">J. C. Park</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+K+S">K. S. Park</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+K">K. Park</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+S+D">S. D. Park</a>, <a href="/search/physics?searchtype=author&amp;query=Seo%2C+K+M">K. M. Seo</a>, <a href="/search/physics?searchtype=author&amp;query=Son%2C+M+K">M. K. Son</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.15748v1-abstract-short" style="display: inline;"> An upgrade of the COSINE-100 experiment, COSINE-100U, has been prepared for installation at Yemilab, a new underground laboratory in Korea, following 6.4 years of operation at the Yangyang Underground Laboratory. The COSINE-100 experiment aimed to investigate the annual modulation signals reported by the DAMA/LIBRA but observed a null result, revealing a more than 3$蟽$ discrepancy. COSINE-100U see&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15748v1-abstract-full').style.display = 'inline'; document.getElementById('2409.15748v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.15748v1-abstract-full" style="display: none;"> An upgrade of the COSINE-100 experiment, COSINE-100U, has been prepared for installation at Yemilab, a new underground laboratory in Korea, following 6.4 years of operation at the Yangyang Underground Laboratory. The COSINE-100 experiment aimed to investigate the annual modulation signals reported by the DAMA/LIBRA but observed a null result, revealing a more than 3$蟽$ discrepancy. COSINE-100U seeks to explore new parameter spaces for dark matter detection using NaI(Tl) detectors. All eight NaI(Tl) crystals, with a total mass of 99.1 kg, have been upgraded to improve light collection efficiency, significantly enhancing dark matter detection sensitivity. This paper describes the detector upgrades, performance improvements, and the enhanced sensitivity to low-mass dark matter detection in the COSINE-100U experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15748v1-abstract-full').style.display = 'none'; document.getElementById('2409.15748v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 17 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.10454">arXiv:2409.10454</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.10454">pdf</a>, <a href="https://arxiv.org/format/2409.10454">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Shaping space-time wavepackets beyond the paraxial limit using a dispersion magnifier </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D">Dongha Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+C">Cheng Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Catrysse%2C+P+B">Peter B. Catrysse</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+S">Shanhui Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.10454v2-abstract-short" style="display: inline;"> Space-time wavepackets (STWPs) have received significant attention since they can propagate in free space at arbitrary group velocity without dispersion and diffraction. However, at present, the generation of STWPs has been limited to the paraxial regime. Here we show that conventional optical elements can be used to extend STWPs beyond the paraxial regime. A dispersion magnifier, consisting of tw&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10454v2-abstract-full').style.display = 'inline'; document.getElementById('2409.10454v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.10454v2-abstract-full" style="display: none;"> Space-time wavepackets (STWPs) have received significant attention since they can propagate in free space at arbitrary group velocity without dispersion and diffraction. However, at present, the generation of STWPs has been limited to the paraxial regime. Here we show that conventional optical elements can be used to extend STWPs beyond the paraxial regime. A dispersion magnifier, consisting of two lenses and a beam expander, applies spatiotemporal shaping to paraxial STWPs to create nonparaxial STWPs. The control of the magnification ratio results in versatile engineering capabilities on group velocity, beam diameter, and propagation distance. As an example, we numerically demonstrated long-distance propagation or slow group velocity of the output wavepacket with subwavelength cross-sections. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10454v2-abstract-full').style.display = 'none'; document.getElementById('2409.10454v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08460">arXiv:2409.08460</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.08460">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/nano13162344">10.3390/nano13162344 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Color Centers in Hexagonal Boron Nitride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kim%2C+S+H">Suk Hyun Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+K+H">Kyeong Ho Park</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+Y+G">Young Gie Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+S+J">Seong Jun Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+Y">Yongsup Park</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+Y+D">Young Duck Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08460v1-abstract-short" style="display: inline;"> Atomically thin two-dimensional (2D) hexagonal boron nitride (hBN) has emerged as an essential material for the encapsulation layer in van der Waals heterostructures and efficient deep ultra-violet optoelectronics. This is primarily due to its remarkable physical properties and ultrawide bandgap (close to 6 eV, and even larger in some cases) properties. Color centers in hBN refer to intrinsic vaca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08460v1-abstract-full').style.display = 'inline'; document.getElementById('2409.08460v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08460v1-abstract-full" style="display: none;"> Atomically thin two-dimensional (2D) hexagonal boron nitride (hBN) has emerged as an essential material for the encapsulation layer in van der Waals heterostructures and efficient deep ultra-violet optoelectronics. This is primarily due to its remarkable physical properties and ultrawide bandgap (close to 6 eV, and even larger in some cases) properties. Color centers in hBN refer to intrinsic vacancies and extrinsic impurities within the 2D crystal lattice, which result in distinct optical properties in the ultraviolet (UV) to near-infrared (IR) range. Furthermore, each color center in hBN exhibits a unique emission spectrum and possesses various spin properties. These characteristics open up possibilities for the development of next-generation optoelectronics and quantum information applications, including room-temperature single-photon sources and quantum sensors. Here, we provide a comprehensive overview of the atomic configuration, optical and quantum properties, and different techniques employed for the formation of color centers in hBN. A deep understanding of color centers in hBN allows for advances in the development of next-generation UV optoelectronic applications, solid-state quantum technologies, and nanophotonics by harnessing the exceptional capabilities offered by hBN color centers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08460v1-abstract-full').style.display = 'none'; document.getElementById('2409.08460v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nanomaterials 13, 2344 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06999">arXiv:2409.06999</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.06999">pdf</a>, <a href="https://arxiv.org/format/2409.06999">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Moir茅 exciton polaron engineering via twisted hBN </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cho%2C+M">Minhyun Cho</a>, <a href="/search/physics?searchtype=author&amp;query=Datta%2C+B">Biswajit Datta</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+K">Kwanghee Han</a>, <a href="/search/physics?searchtype=author&amp;query=Chand%2C+S+B">Saroj B. Chand</a>, <a href="/search/physics?searchtype=author&amp;query=Adak%2C+P+C">Pratap Chandra Adak</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+S">Sichao Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+F">Fengping Li</a>, <a href="/search/physics?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/physics?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/physics?searchtype=author&amp;query=Hone%2C+J">James Hone</a>, <a href="/search/physics?searchtype=author&amp;query=Jung%2C+J">Jeil Jung</a>, <a href="/search/physics?searchtype=author&amp;query=Grosso%2C+G">Gabriele Grosso</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+Y+D">Young Duck Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Menon%2C+V+M">Vinod M. Menon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06999v1-abstract-short" style="display: inline;"> Twisted hexagonal boron nitride (thBN) exhibits emergent ferroelectricity due to the formation of moir茅 superlattices with alternating AB and BA domains. These domains possess electric dipoles, leading to a periodic electrostatic potential that can be imprinted onto other 2D materials placed in its proximity. Here we demonstrate the remote imprinting of moir茅 patterns from twisted hexagonal boron&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06999v1-abstract-full').style.display = 'inline'; document.getElementById('2409.06999v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06999v1-abstract-full" style="display: none;"> Twisted hexagonal boron nitride (thBN) exhibits emergent ferroelectricity due to the formation of moir茅 superlattices with alternating AB and BA domains. These domains possess electric dipoles, leading to a periodic electrostatic potential that can be imprinted onto other 2D materials placed in its proximity. Here we demonstrate the remote imprinting of moir茅 patterns from twisted hexagonal boron nitride (thBN) onto monolayer MoSe2 and investigate the resulting changes in the exciton properties. We confirm the imprinting of moir茅 patterns on monolayer MoSe2 via proximity using Kelvin probe force microscopy (KPFM) and hyperspectral photoluminescence (PL) mapping. By developing a technique to create large ferroelectric domain sizes ranging from 1 渭m to 8.7 渭m, we achieve unprecedented potential modulation of 387 +- 52 meV. We observe the formation of exciton polarons due to charge redistribution caused by the antiferroelectric moir茅 domains and investigate the optical property changes induced by the moir茅 pattern in monolayer MoSe2 by varying the moir茅 pattern size down to 110 nm. Our findings highlight the potential of twisted hBN as a platform for controlling the optical and electronic properties of 2D materials for optoelectronic and valleytronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06999v1-abstract-full').style.display = 'none'; document.getElementById('2409.06999v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.17391">arXiv:2408.17391</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.17391">pdf</a>, <a href="https://arxiv.org/format/2408.17391">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Two-neutrino double electron capture of $^{124}$Xe in the first LUX-ZEPLIN exposure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&amp;query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/physics?searchtype=author&amp;query=Alder%2C+F">F. Alder</a>, <a href="/search/physics?searchtype=author&amp;query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/physics?searchtype=author&amp;query=Ames%2C+A">A. Ames</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Angelides%2C+N">N. Angelides</a>, <a href="/search/physics?searchtype=author&amp;query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&amp;query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/physics?searchtype=author&amp;query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/physics?searchtype=author&amp;query=Baker%2C+A">A. Baker</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+S">S. Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Bang%2C+J">J. Bang</a>, <a href="/search/physics?searchtype=author&amp;query=Bargemann%2C+J+W">J. W. Bargemann</a>, <a href="/search/physics?searchtype=author&amp;query=Barillier%2C+E+E">E. E. Barillier</a>, <a href="/search/physics?searchtype=author&amp;query=Beattie%2C+K">K. Beattie</a>, <a href="/search/physics?searchtype=author&amp;query=Bhatti%2C+A">A. Bhatti</a>, <a href="/search/physics?searchtype=author&amp;query=Biekert%2C+A">A. Biekert</a>, <a href="/search/physics?searchtype=author&amp;query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&amp;query=Birch%2C+H+J">H. J. Birch</a>, <a href="/search/physics?searchtype=author&amp;query=Bishop%2C+E">E. Bishop</a>, <a href="/search/physics?searchtype=author&amp;query=Blockinger%2C+G+M">G. M. Blockinger</a>, <a href="/search/physics?searchtype=author&amp;query=Boxer%2C+B">B. Boxer</a>, <a href="/search/physics?searchtype=author&amp;query=Brew%2C+C+A+J">C. A. J. Brew</a> , et al. (180 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.17391v1-abstract-short" style="display: inline;"> The broad physics reach of the LUX-ZEPLIN (LZ) experiment covers rare phenomena beyond the direct detection of dark matter. We report precise measurements of the extremely rare decay of $^{124}$Xe through the process of two-neutrino double electron capture (2$谓$2EC), utilizing a $1.39\,\mathrm{kg} \times \mathrm{yr}$ isotopic exposure from the first LZ science run. A half-life of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.17391v1-abstract-full').style.display = 'inline'; document.getElementById('2408.17391v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.17391v1-abstract-full" style="display: none;"> The broad physics reach of the LUX-ZEPLIN (LZ) experiment covers rare phenomena beyond the direct detection of dark matter. We report precise measurements of the extremely rare decay of $^{124}$Xe through the process of two-neutrino double electron capture (2$谓$2EC), utilizing a $1.39\,\mathrm{kg} \times \mathrm{yr}$ isotopic exposure from the first LZ science run. A half-life of $T_{1/2}^{2\nu2\mathrm{EC}} = (1.09 \pm 0.14_{\text{stat}} \pm 0.05_{\text{sys}}) \times 10^{22}\,\mathrm{yr}$ is observed with a statistical significance of $8.3\,蟽$, in agreement with literature. First empirical measurements of the KK capture fraction relative to other K-shell modes were conducted, and demonstrate consistency with respect to recent signal models at the $1.4\,蟽$ level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.17391v1-abstract-full').style.display = 'none'; document.getElementById('2408.17391v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14688">arXiv:2408.14688</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.14688">pdf</a>, <a href="https://arxiv.org/format/2408.14688">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Lowering threshold of NaI(Tl) scintillator to 0.7 keV in the COSINE-100 experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yu%2C+G+H">G. H. Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Carlin%2C+N">N. Carlin</a>, <a href="/search/physics?searchtype=author&amp;query=Cho%2C+J+Y">J. Y. Cho</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+J+J">J. J. Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+S">S. Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Ezeribe%2C+A+C">A. C. Ezeribe</a>, <a href="/search/physics?searchtype=author&amp;query=Fran%C3%A7a%2C+L+E">L. E. Fran莽a</a>, <a href="/search/physics?searchtype=author&amp;query=Ha%2C+C">C. Ha</a>, <a href="/search/physics?searchtype=author&amp;query=Hahn%2C+I+S">I. S. Hahn</a>, <a href="/search/physics?searchtype=author&amp;query=Hollick%2C+S+J">S. J. Hollick</a>, <a href="/search/physics?searchtype=author&amp;query=Jeon%2C+E+J">E. J. Jeon</a>, <a href="/search/physics?searchtype=author&amp;query=Joo%2C+H+W">H. W. Joo</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+W+G">W. G. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Kauer%2C+M">M. Kauer</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+B+H">B. H. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+H+J">H. J. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+J">J. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+K+W">K. W. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+S+H">S. H. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+S+K">S. K. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+W+K">W. K. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+Y+D">Y. D. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+Y+H">Y. H. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Ko%2C+Y+J">Y. J. Ko</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+D+H">D. H. Lee</a> , et al. (34 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14688v1-abstract-short" style="display: inline;"> COSINE-100 is a direct dark matter search experiment, with the primary goal of testing the annual modulation signal observed by DAMA/LIBRA, using the same target material, NaI(Tl). In previous analyses, we achieved the same 1 keV energy threshold used in the DAMA/LIBRA&#39;s analysis that reported an annual modulation signal with 11.6$蟽$ significance. In this article, we report an improved analysis th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14688v1-abstract-full').style.display = 'inline'; document.getElementById('2408.14688v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14688v1-abstract-full" style="display: none;"> COSINE-100 is a direct dark matter search experiment, with the primary goal of testing the annual modulation signal observed by DAMA/LIBRA, using the same target material, NaI(Tl). In previous analyses, we achieved the same 1 keV energy threshold used in the DAMA/LIBRA&#39;s analysis that reported an annual modulation signal with 11.6$蟽$ significance. In this article, we report an improved analysis that lowered the threshold to 0.7 keV, thanks to the application of Multi-Layer Perception network and a new likelihood parameter with waveforms in the frequency domain. The lower threshold would enable a better comparison of COSINE-100 with new DAMA results with a 0.75 keV threshold and account for differences in quenching factors. Furthermore the lower threshold can enhance COSINE-100&#39;s sensitivity to sub-GeV dark matter searches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14688v1-abstract-full').style.display = 'none'; document.getElementById('2408.14688v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.13731">arXiv:2408.13731</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.13731">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Verification of Fast Ion Effects on Turbulence through Comparison of GENE and CGYRO with L-mode Plasmas in KSTAR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D">Donguk Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Moon%2C+T">Taeuk Moon</a>, <a href="/search/physics?searchtype=author&amp;query=Sung%2C+C">Choongki Sung</a>, <a href="/search/physics?searchtype=author&amp;query=Yoon%2C+E">Eisung Yoon</a>, <a href="/search/physics?searchtype=author&amp;query=Yi%2C+S">Sumin Yi</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+J">Jisung Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Kwon%2C+J">Jae-Min Kwon</a>, <a href="/search/physics?searchtype=author&amp;query=G%C3%B6rler%2C+T">Tobias G枚rler</a>, <a href="/search/physics?searchtype=author&amp;query=Belli%2C+E">Emily Belli</a>, <a href="/search/physics?searchtype=author&amp;query=Candy%2C+J">Jeff Candy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.13731v2-abstract-short" style="display: inline;"> This study presents a cross-verification of fast ion effects on turbulence through a systematic comparison of two leading gyrokinetic codes, GENE [T.Gorler et al., J. Comput. Phys. 230 7053-7071 (2011)] and CGYRO [J.Candy et al, J. Comput. Phys. 324 73-93 (2016)], using L-mode plasma profiles from KSTAR for local linear and nonlinear electromagnetic simulations. The focus is on the impact of fast&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13731v2-abstract-full').style.display = 'inline'; document.getElementById('2408.13731v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.13731v2-abstract-full" style="display: none;"> This study presents a cross-verification of fast ion effects on turbulence through a systematic comparison of two leading gyrokinetic codes, GENE [T.Gorler et al., J. Comput. Phys. 230 7053-7071 (2011)] and CGYRO [J.Candy et al, J. Comput. Phys. 324 73-93 (2016)], using L-mode plasma profiles from KSTAR for local linear and nonlinear electromagnetic simulations. The focus is on the impact of fast ions and rotation effects on energy flux, aiming to identify the similarities and differences between these codes in the context of turbulence transport research. The analysis shows consistency in linear stability results, fractional changes in energy flux, and zonal shearing between the codes. However, discrepancies arise in absolute thermal energy levels, phase angle distribution, and rotation effects on energy transport, especially in the presence of fast ions. The study underscores the critical importance of phase angle analysis in gyrokinetic code verification, particularly when assessing fast ion effects on turbulence. Additionally, it highlights the need to examine quantities at lower levels of the primacy hierarchy, as discrepancies at higher levels can lead to divergent results at lower levels. These findings indicate the necessity for further investigation into these discrepancies and the novel phase angle structures observed, contributing to the advancement of accurate transport predictions in fusion plasmas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13731v2-abstract-full').style.display = 'none'; document.getElementById('2408.13731v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12725">arXiv:2408.12725</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.12725">pdf</a>, <a href="https://arxiv.org/format/2408.12725">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> DUNE Phase II: Scientific Opportunities, Detector Concepts, Technological Solutions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andreotti%2C+M">M. Andreotti</a> , et al. (1347 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12725v1-abstract-short" style="display: inline;"> The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12725v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12725v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12725v1-abstract-full" style="display: none;"> The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a &#34;Module of Opportunity&#34;, aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R&amp;D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE&#39;s Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12725v1-abstract-full').style.display = 'none'; document.getElementById('2408.12725v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-TM-2833-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09806">arXiv:2408.09806</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.09806">pdf</a>, <a href="https://arxiv.org/format/2408.09806">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Improved background modeling for dark matter search with COSINE-100 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yu%2C+G+H">G. H. Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Carlin%2C+N">N. Carlin</a>, <a href="/search/physics?searchtype=author&amp;query=Cho%2C+J+Y">J. Y. Cho</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+J+J">J. J. Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+S">S. Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Ezeribe%2C+A+C">A. C. Ezeribe</a>, <a href="/search/physics?searchtype=author&amp;query=Franca%2C+L+E">L. E. Franca</a>, <a href="/search/physics?searchtype=author&amp;query=Ha%2C+C">C. Ha</a>, <a href="/search/physics?searchtype=author&amp;query=Hahn%2C+I+S">I. S. Hahn</a>, <a href="/search/physics?searchtype=author&amp;query=Hollick%2C+S+J">S. J. Hollick</a>, <a href="/search/physics?searchtype=author&amp;query=Jeon%2C+E+J">E. J. Jeon</a>, <a href="/search/physics?searchtype=author&amp;query=Joo%2C+H+W">H. W. Joo</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+W+G">W. G. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Kauer%2C+M">M. Kauer</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+B+H">B. H. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+H+J">H. J. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+J">J. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+K+W">K. W. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+S+H">S. H. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+S+K">S. K. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+W+K">W. K. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+Y+D">Y. D. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+Y+H">Y. H. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Ko%2C+Y+J">Y. J. Ko</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+D+H">D. H. Lee</a> , et al. (33 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09806v1-abstract-short" style="display: inline;"> COSINE-100 aims to conclusively test the claimed dark matter annual modulation signal detected by DAMA/LIBRA collaboration. DAMA/LIBRA has released updated analysis results by lowering the energy threshold to 0.75 keV through various upgrades. They have consistently claimed to have observed the annual modulation. In COSINE-100, it is crucial to lower the energy threshold for a direct comparison wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09806v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09806v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09806v1-abstract-full" style="display: none;"> COSINE-100 aims to conclusively test the claimed dark matter annual modulation signal detected by DAMA/LIBRA collaboration. DAMA/LIBRA has released updated analysis results by lowering the energy threshold to 0.75 keV through various upgrades. They have consistently claimed to have observed the annual modulation. In COSINE-100, it is crucial to lower the energy threshold for a direct comparison with DAMA/LIBRA, which also enhances the sensitivity of the search for low-mass dark matter, enabling COSINE-100 to explore this area. Therefore, it is essential to have a precise and quantitative understanding of the background spectrum across all energy ranges. This study expands the background modeling from 0.7 to 4000 keV using 2.82 years of COSINE-100 data. The modeling has been improved to describe the background spectrum across all energy ranges accurately. Assessments of the background spectrum are presented, considering the nonproportionality of NaI(Tl) crystals at both low and high energies and the characteristic X-rays produced by the interaction of external backgrounds with materials such as copper. Additionally, constraints on the fit parameters obtained from the alpha spectrum modeling fit are integrated into this model. These improvements are detailed in the paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09806v1-abstract-full').style.display = 'none'; document.getElementById('2408.09806v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07207">arXiv:2408.07207</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.07207">pdf</a>, <a href="https://arxiv.org/format/2408.07207">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Lightning declines over shipping lanes following regulation of fuel sulfur emissions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wright%2C+C+J">Chris J. Wright</a>, <a href="/search/physics?searchtype=author&amp;query=Thornton%2C+J+A">Joel A. Thornton</a>, <a href="/search/physics?searchtype=author&amp;query=Jaegl%C3%A9%2C+L">Lyatt Jaegl茅</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Y">Yang Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yannian Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jihu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Jones%2C+R">Randall Jones II</a>, <a href="/search/physics?searchtype=author&amp;query=Holzworth%2C+R+H">Robert H Holzworth</a>, <a href="/search/physics?searchtype=author&amp;query=Rosenfeld%2C+D">Daniel Rosenfeld</a>, <a href="/search/physics?searchtype=author&amp;query=Wood%2C+R">Robert Wood</a>, <a href="/search/physics?searchtype=author&amp;query=Blossey%2C+P">Peter Blossey</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D">Daehyun Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07207v4-abstract-short" style="display: inline;"> Aerosol interactions with clouds represent a significant uncertainty in our understanding of the Earth system. Deep convective clouds may respond to aerosol perturbations in several ways that have proven difficult to elucidate with observations. Here, we leverage the two busiest maritime shipping lanes in the world, which emit aerosol particles and their precursors into an otherwise relatively cle&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07207v4-abstract-full').style.display = 'inline'; document.getElementById('2408.07207v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07207v4-abstract-full" style="display: none;"> Aerosol interactions with clouds represent a significant uncertainty in our understanding of the Earth system. Deep convective clouds may respond to aerosol perturbations in several ways that have proven difficult to elucidate with observations. Here, we leverage the two busiest maritime shipping lanes in the world, which emit aerosol particles and their precursors into an otherwise relatively clean tropical marine boundary layer, to make headway on the influence of aerosol on deep convective clouds. The recent seven-fold change in allowable fuel sulfur by the International Maritime Organization allows us to test the sensitivity of the lightning to changes in ship plume aerosol size distributions. We find that, across a range of atmospheric thermodynamic conditions, the previously documented enhancement of lightning over the shipping lanes has fallen by over 40%. The enhancement is therefore at least partially aerosol-mediated, a conclusion that is supported by observations of droplet number at cloud base, which show a similar decline over the shipping lane. These results have fundamental implications for our understanding of aerosol-cloud interactions, suggesting that deep convective clouds are impacted by the aerosol number distribution in the remote marine environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07207v4-abstract-full').style.display = 'none'; document.getElementById('2408.07207v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02176">arXiv:2408.02176</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02176">pdf</a>, <a href="https://arxiv.org/format/2408.02176">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Field-Tunable Valley Coupling and Localization in a Dodecagonal Semiconductor Quasicrystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhida Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yanxing Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiaohui Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D+S">Dong Seob Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Ni%2C+Y">Yue Ni</a>, <a href="/search/physics?searchtype=author&amp;query=Mackenzie%2C+M">Miles Mackenzie</a>, <a href="/search/physics?searchtype=author&amp;query=Abudayyeh%2C+H">Hamza Abudayyeh</a>, <a href="/search/physics?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/physics?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/physics?searchtype=author&amp;query=Shih%2C+C">Chih-Kang Shih</a>, <a href="/search/physics?searchtype=author&amp;query=Khalaf%2C+E">Eslam Khalaf</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiaoqin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02176v1-abstract-short" style="display: inline;"> Quasicrystals are characterized by atomic arrangements possessing long-range order without periodicity. Van der Waals (vdW) bilayers provide a unique opportunity to controllably vary atomic alignment between two layers from a periodic moir茅 crystal to an aperiodic quasicrystal. Here, we reveal a remarkable consequence of the unique atomic arrangement in a dodecagonal WSe2 quasicrystal: the K and Q&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02176v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02176v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02176v1-abstract-full" style="display: none;"> Quasicrystals are characterized by atomic arrangements possessing long-range order without periodicity. Van der Waals (vdW) bilayers provide a unique opportunity to controllably vary atomic alignment between two layers from a periodic moir茅 crystal to an aperiodic quasicrystal. Here, we reveal a remarkable consequence of the unique atomic arrangement in a dodecagonal WSe2 quasicrystal: the K and Q valleys in separate layers are brought arbitrarily close in momentum space via higher-order Umklapp scatterings. A modest perpendicular electric field is sufficient to induce strong interlayer K-Q hybridization, manifested as a new hybrid excitonic doublet. Concurrently, we observe the disappearance of the trion resonance and attribute it to quasicrystal potential driven localization. Our findings highlight the remarkable attribute of incommensurate systems to bring any pair of momenta into close proximity, thereby introducing a novel aspect to valley engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02176v1-abstract-full').style.display = 'none'; document.getElementById('2408.02176v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00582">arXiv:2408.00582</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00582">pdf</a>, <a href="https://arxiv.org/format/2408.00582">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.092011">10.1103/PhysRevD.110.092011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andreotti%2C+M">M. Andreotti</a> , et al. (1341 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00582v1-abstract-short" style="display: inline;"> ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00582v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00582v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00582v1-abstract-full" style="display: none;"> ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380$\pm$26 mbarns for the 6 GeV/$c$ setting and 379$\pm$35 mbarns for the 7 GeV/$c$ setting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00582v1-abstract-full').style.display = 'none'; document.getElementById('2408.00582v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-2024-211, FERMILAB-PUB-24-0216-V </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 110, (2024) 092011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16586">arXiv:2407.16586</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16586">pdf</a>, <a href="https://arxiv.org/format/2407.16586">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Very-Large-Scale GPU-Accelerated Nuclear Gradient of Time-Dependent Density Functional Theory with Tamm-Dancoff Approximation and Range-Separated Hybrid Functionals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kim%2C+I">Inkoo Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Jeong%2C+D">Daun Jeong</a>, <a href="/search/physics?searchtype=author&amp;query=Weisburn%2C+L">Leah Weisburn</a>, <a href="/search/physics?searchtype=author&amp;query=Alexiu%2C+A">Alexandra Alexiu</a>, <a href="/search/physics?searchtype=author&amp;query=Van+Voorhis%2C+T">Troy Van Voorhis</a>, <a href="/search/physics?searchtype=author&amp;query=Rhee%2C+Y+M">Young Min Rhee</a>, <a href="/search/physics?searchtype=author&amp;query=Son%2C+W">Won-Joon Son</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+H">Hyung-Jin Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Yim%2C+J">Jinkyu Yim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+S">Sungmin Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Cho%2C+Y">Yeonchoo Cho</a>, <a href="/search/physics?searchtype=author&amp;query=Jang%2C+I">Inkook Jang</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+S">Seungmin Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D+S">Dae Sin Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16586v1-abstract-short" style="display: inline;"> Modern graphics processing units (GPUs) provide an unprecedented level of computing power. In this study, we present a high-performance, multi-GPU implementation of the analytical nuclear gradient for Kohn-Sham time-dependent density functional theory (TDDFT), employing the Tamm-Dancoff approximation (TDA) and Gaussian-type atomic orbitals as basis functions. We discuss GPU-efficient algorithms fo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16586v1-abstract-full').style.display = 'inline'; document.getElementById('2407.16586v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16586v1-abstract-full" style="display: none;"> Modern graphics processing units (GPUs) provide an unprecedented level of computing power. In this study, we present a high-performance, multi-GPU implementation of the analytical nuclear gradient for Kohn-Sham time-dependent density functional theory (TDDFT), employing the Tamm-Dancoff approximation (TDA) and Gaussian-type atomic orbitals as basis functions. We discuss GPU-efficient algorithms for the derivatives of electron repulsion integrals and exchange-correlation functionals within the range-separated scheme. As an illustrative example, we calculated the TDA-TDDFT gradient of the S1 state of a full-scale green fluorescent protein with explicit water solvent molecules, totaling 4353 atoms, at the wB97X/def2-SVP level of theory. Our algorithm demonstrates favorable parallel efficiencies on a high-speed distributed system equipped with 256 Nvidia A100 GPUs, achieving &gt;70% with up to 64 GPUs and 31% with 256 GPUs, effectively leveraging the capabilities of modern high-performance computing systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16586v1-abstract-full').style.display = 'none'; document.getElementById('2407.16586v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15391">arXiv:2407.15391</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.15391">pdf</a>, <a href="https://arxiv.org/format/2407.15391">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Optical alignment of contamination-sensitive Far-Ultraviolet spectrographs for Aspera SmallSat mission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Khan%2C+A+R">Aafaque R. Khan</a>, <a href="/search/physics?searchtype=author&amp;query=Hamden%2C+E">Erika Hamden</a>, <a href="/search/physics?searchtype=author&amp;query=Chung%2C+H">Haeun Chung</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+H">Heejoo Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D">Daewook Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Melso%2C+N">Nicole Melso</a>, <a href="/search/physics?searchtype=author&amp;query=Hoadley%2C+K">Keri Hoadley</a>, <a href="/search/physics?searchtype=author&amp;query=Vargas%2C+C+J">Carlos J. Vargas</a>, <a href="/search/physics?searchtype=author&amp;query=Truong%2C+D">Daniel Truong</a>, <a href="/search/physics?searchtype=author&amp;query=Garcia%2C+E">Elijah Garcia</a>, <a href="/search/physics?searchtype=author&amp;query=Verts%2C+B">Bill Verts</a>, <a href="/search/physics?searchtype=author&amp;query=Coronado%2C+F">Fernando Coronado</a>, <a href="/search/physics?searchtype=author&amp;query=Noenickx%2C+J">Jamison Noenickx</a>, <a href="/search/physics?searchtype=author&amp;query=Corliss%2C+J">Jason Corliss</a>, <a href="/search/physics?searchtype=author&amp;query=Tanquary%2C+H">Hannah Tanquary</a>, <a href="/search/physics?searchtype=author&amp;query=Mcmahon%2C+T">Tom Mcmahon</a>, <a href="/search/physics?searchtype=author&amp;query=Hamara%2C+D">Dave Hamara</a>, <a href="/search/physics?searchtype=author&amp;query=Agarwal%2C+S">Simran Agarwal</a>, <a href="/search/physics?searchtype=author&amp;query=Augustin%2C+R">Ramona Augustin</a>, <a href="/search/physics?searchtype=author&amp;query=Behroozi%2C+P">Peter Behroozi</a>, <a href="/search/physics?searchtype=author&amp;query=Bradley%2C+H">Harrison Bradley</a>, <a href="/search/physics?searchtype=author&amp;query=Brendel%2C+T">Trenton Brendel</a>, <a href="/search/physics?searchtype=author&amp;query=Burchett%2C+J">Joe Burchett</a>, <a href="/search/physics?searchtype=author&amp;query=Castillo%2C+J+M">Jasmine Martinez Castillo</a>, <a href="/search/physics?searchtype=author&amp;query=Chambers%2C+J">Jacob Chambers</a> , et al. (26 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15391v1-abstract-short" style="display: inline;"> Aspera is a NASA Astrophysics Pioneers SmallSat mission designed to study diffuse OVI emission from the warm-hot phase gas in the halos of nearby galaxies. Its payload consists of two identical Rowland Circle-type long-slit spectrographs, sharing a single MicroChannel plate detector. Each spectrograph channel consists of an off-axis parabola primary mirror and a toroidal diffraction grating optimi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15391v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15391v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15391v1-abstract-full" style="display: none;"> Aspera is a NASA Astrophysics Pioneers SmallSat mission designed to study diffuse OVI emission from the warm-hot phase gas in the halos of nearby galaxies. Its payload consists of two identical Rowland Circle-type long-slit spectrographs, sharing a single MicroChannel plate detector. Each spectrograph channel consists of an off-axis parabola primary mirror and a toroidal diffraction grating optimized for the 1013-1057 Angstroms bandpass. Despite the simple configuration, the optical alignment/integration process for Aspera is challenging due to tight optical alignment tolerances, driven by the compact form factor, and the contamination sensitivity of the Far-Ultraviolet optics and detectors. In this paper, we discuss implementing a novel multi-phase approach to meet these requirements using state-of-the-art optical metrology tools. For coarsely positioning the optics we use a blue-laser 3D scanner while the fine alignment is done with a Zygo interferometer and a custom computer-generated hologram. The detector focus requires iterative in-vacuum alignment using a Vacuum UV collimator. The alignment is done in a controlled cleanroom facility at the University of Arizona. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15391v1-abstract-full').style.display = 'none'; document.getElementById('2407.15391v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript submitted for Proceedings of Astronomical Telescopes + Instrumentation 2024, Paper no. 13093-9</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13919">arXiv:2407.13919</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13919">pdf</a>, <a href="https://arxiv.org/format/2407.13919">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A Multi-Messenger Search for Exotic Field Emission with a Global Magnetometer Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Khamis%2C+S+S">Sami S. Khamis</a>, <a href="/search/physics?searchtype=author&amp;query=Sulai%2C+I+A">Ibrahim A. Sulai</a>, <a href="/search/physics?searchtype=author&amp;query=Hamilton%2C+P">Paul Hamilton</a>, <a href="/search/physics?searchtype=author&amp;query=Afach%2C+S">S. Afach</a>, <a href="/search/physics?searchtype=author&amp;query=Buchler%2C+B+C">B. C. Buchler</a>, <a href="/search/physics?searchtype=author&amp;query=Budker%2C+D">D. Budker</a>, <a href="/search/physics?searchtype=author&amp;query=Figueroa%2C+N+L">N. L. Figueroa</a>, <a href="/search/physics?searchtype=author&amp;query=Folman%2C+R">R. Folman</a>, <a href="/search/physics?searchtype=author&amp;query=Gavil%C3%A1n-Mart%C3%ADn%2C+D">D. Gavil谩n-Mart铆n</a>, <a href="/search/physics?searchtype=author&amp;query=Givon%2C+M">M. Givon</a>, <a href="/search/physics?searchtype=author&amp;query=Gruji%C4%87%2C+Z+D">Z. D. Gruji膰</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+H">H. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Hedges%2C+M+P">M. P. Hedges</a>, <a href="/search/physics?searchtype=author&amp;query=Kimball%2C+D+F+J">D. F. Jackson Kimball</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D">D. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Klinger%2C+E">E. Klinger</a>, <a href="/search/physics?searchtype=author&amp;query=Kornack%2C+T">T. Kornack</a>, <a href="/search/physics?searchtype=author&amp;query=Kryemadhi%2C+A">A. Kryemadhi</a>, <a href="/search/physics?searchtype=author&amp;query=Kukowski%2C+N">N. Kukowski</a>, <a href="/search/physics?searchtype=author&amp;query=Lukasiewicz%2C+G">G. Lukasiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Masia-Roig%2C+H">H. Masia-Roig</a>, <a href="/search/physics?searchtype=author&amp;query=Padniuk%2C+M">M. Padniuk</a>, <a href="/search/physics?searchtype=author&amp;query=Palm%2C+C+A">C. A. Palm</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+S+Y">S. Y. Park</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+X">X. Peng</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13919v1-abstract-short" style="display: inline;"> We present an analysis method to search for exotic low-mass field (ELF) bursts generated during large energy astrophysical events such as supernovae, binary black hole or binary neutron star mergers, and fast radio bursts using the Global Network of Optical Magnetometers for Exotic physics searches (GNOME). In our model, the associated gravitational waves or electromagnetic signals herald the arri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13919v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13919v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13919v1-abstract-full" style="display: none;"> We present an analysis method to search for exotic low-mass field (ELF) bursts generated during large energy astrophysical events such as supernovae, binary black hole or binary neutron star mergers, and fast radio bursts using the Global Network of Optical Magnetometers for Exotic physics searches (GNOME). In our model, the associated gravitational waves or electromagnetic signals herald the arrival of the ELF burst that interacts via coupling to the spin of fermions in the magnetometers. This enables GNOME to serve as a tool for multi-messenger astronomy. The algorithm employs a model-agnostic excess-power method to identify network-wide candidate events to be subjected to a model-dependent generalized likelihood-ratio test to determine their statistical significance. We perform the first search with this technique on GNOME data coincident with the binary black hole merger S200311bg detected by LIGO/Virgo on the 11th of March 2020 and find no significant events. We place the first lab-based limits on combinations of ELF production and coupling parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13919v1-abstract-full').style.display = 'none'; document.getElementById('2407.13919v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12227">arXiv:2407.12227</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.12227">pdf</a>, <a href="https://arxiv.org/format/2407.12227">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Development of MMC-based lithium molybdate cryogenic calorimeters for AMoRE-II </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Agrawal%2C+A">A. Agrawal</a>, <a href="/search/physics?searchtype=author&amp;query=Alenkov%2C+V+V">V. V. Alenkov</a>, <a href="/search/physics?searchtype=author&amp;query=Aryal%2C+P">P. Aryal</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%2C+H">H. Bae</a>, <a href="/search/physics?searchtype=author&amp;query=Beyer%2C+J">J. Beyer</a>, <a href="/search/physics?searchtype=author&amp;query=Bhandari%2C+B">B. Bhandari</a>, <a href="/search/physics?searchtype=author&amp;query=Boiko%2C+R+S">R. S. Boiko</a>, <a href="/search/physics?searchtype=author&amp;query=Boonin%2C+K">K. Boonin</a>, <a href="/search/physics?searchtype=author&amp;query=Buzanov%2C+O">O. Buzanov</a>, <a href="/search/physics?searchtype=author&amp;query=Byeon%2C+C+R">C. R. Byeon</a>, <a href="/search/physics?searchtype=author&amp;query=Chanthima%2C+N">N. Chanthima</a>, <a href="/search/physics?searchtype=author&amp;query=Cheoun%2C+M+K">M. K. Cheoun</a>, <a href="/search/physics?searchtype=author&amp;query=Choe%2C+J+S">J. S. Choe</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+S">S. Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Choudhury%2C+S">S. Choudhury</a>, <a href="/search/physics?searchtype=author&amp;query=Chung%2C+J+S">J. S. Chung</a>, <a href="/search/physics?searchtype=author&amp;query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/physics?searchtype=author&amp;query=Djamal%2C+M">M. Djamal</a>, <a href="/search/physics?searchtype=author&amp;query=Drung%2C+D">D. Drung</a>, <a href="/search/physics?searchtype=author&amp;query=Enss%2C+C">C. Enss</a>, <a href="/search/physics?searchtype=author&amp;query=Fleischmann%2C+A">A. Fleischmann</a>, <a href="/search/physics?searchtype=author&amp;query=Gangapshev%2C+A+M">A. M. Gangapshev</a>, <a href="/search/physics?searchtype=author&amp;query=Gastaldo%2C+L">L. Gastaldo</a>, <a href="/search/physics?searchtype=author&amp;query=Gavrilyuk%2C+Y+M">Y. M. Gavrilyuk</a>, <a href="/search/physics?searchtype=author&amp;query=Gezhaev%2C+A+M">A. M. Gezhaev</a> , et al. (84 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12227v1-abstract-short" style="display: inline;"> The AMoRE collaboration searches for neutrinoless double beta decay of $^{100}$Mo using molybdate scintillating crystals via low temperature thermal calorimetric detection. The early phases of the experiment, AMoRE-pilot and AMoRE-I, have demonstrated competitive discovery potential. Presently, the AMoRE-II experiment, featuring a large detector array with about 90 kg of $^{100}$Mo isotope, is und&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12227v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12227v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12227v1-abstract-full" style="display: none;"> The AMoRE collaboration searches for neutrinoless double beta decay of $^{100}$Mo using molybdate scintillating crystals via low temperature thermal calorimetric detection. The early phases of the experiment, AMoRE-pilot and AMoRE-I, have demonstrated competitive discovery potential. Presently, the AMoRE-II experiment, featuring a large detector array with about 90 kg of $^{100}$Mo isotope, is under construction.This paper discusses the baseline design and characterization of the lithium molybdate cryogenic calorimeters to be used in the AMoRE-II detector modules. The results from prototype setups that incorporate new housing structures and two different crystal masses (316 g and 517 - 521 g), operated at 10 mK temperature, show energy resolutions (FWHM) of 7.55 - 8.82 keV at the 2.615 MeV $^{208}$Tl $纬$ line, and effective light detection of 0.79 - 0.96 keV/MeV. The simultaneous heat and light detection enables clear separation of alpha particles with a discrimination power of 12.37 - 19.50 at the energy region around $^6$Li(n, $伪$)$^3$H with Q-value = 4.785 MeV. Promising detector performances were demonstrated at temperatures as high as 30 mK, which relaxes the temperature constraints for operating the large AMoRE-II array. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12227v1-abstract-full').style.display = 'none'; document.getElementById('2407.12227v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10339">arXiv:2407.10339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.10339">pdf</a>, <a href="https://arxiv.org/format/2407.10339">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Supernova Pointing Capabilities of DUNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andrade%2C+D+A">D. A. Andrade</a> , et al. (1340 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10339v1-abstract-short" style="display: inline;"> The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10339v1-abstract-full').style.display = 'inline'; document.getElementById('2407.10339v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10339v1-abstract-full" style="display: none;"> The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on $^{40}$Ar and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called ``brems flipping&#39;&#39;, as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE&#39;s burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10339v1-abstract-full').style.display = 'none'; document.getElementById('2407.10339v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0319-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.04624">arXiv:2407.04624</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.04624">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Median Mishaps between Chirality and Spin-Orbit Torques via Asymmetric Hysteresis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kim%2C+M">Minhwan Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D">Duck-Ho Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.04624v1-abstract-short" style="display: inline;"> Averaged observations of physical phenomena have been utilized for comprehending specific occurrences in nature; however, these may overlook the crucial characteristics of individual events, thereby leading to diverse conclusions. For example, individual wave occurrences such as superposition and interference yield markedly divergent outcomes when viewed in detail. Similarly, this study enhances t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04624v1-abstract-full').style.display = 'inline'; document.getElementById('2407.04624v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.04624v1-abstract-full" style="display: none;"> Averaged observations of physical phenomena have been utilized for comprehending specific occurrences in nature; however, these may overlook the crucial characteristics of individual events, thereby leading to diverse conclusions. For example, individual wave occurrences such as superposition and interference yield markedly divergent outcomes when viewed in detail. Similarly, this study enhances the comprehensive framework of spin-orbit torque (SOT) within the hysteresis loop shift measurement by employing the average of effective magnetic fields arising from two distinct magnetic reversals. This approach facilitates the presentation of a physically descriptive SOT model, previously characterized only by single chirality qualitatively. By integrating this model with established measurement methodologies and theoretical paradigms, we advance a theoretical framework based on the magnetic domain-wall chirality of individual polarizations and aim to elucidate the phenomena of SOT with clarity. The anticipated outcomes include the rectification of inaccuracies in widely employed measurement methodologies and the enhancement of our comprehension of the fundamental physics, which are expected to propel advancements in next-generation spintronics materials and devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04624v1-abstract-full').style.display = 'none'; document.getElementById('2407.04624v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.14433">arXiv:2406.14433</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.14433">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Structural and Electrical Properties of Grafted Si/GaAsSb Heterojunction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abbasi%2C+H+N">Haris Naeem Abbasi</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+S">Seunghyun Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Jung%2C+H">Hyemin Jung</a>, <a href="/search/physics?searchtype=author&amp;query=Gajowski%2C+N">Nathan Gajowski</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Y">Yi Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Linus Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D">Donghyeok Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+J">Jie Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+J">Jiarui Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Chae%2C+C">Chris Chae</a>, <a href="/search/physics?searchtype=author&amp;query=Hwang%2C+J">Jinwoo Hwang</a>, <a href="/search/physics?searchtype=author&amp;query=Muduli%2C+M">Manisha Muduli</a>, <a href="/search/physics?searchtype=author&amp;query=Nookala%2C+S">Subramanya Nookala</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Z">Zhenqiang Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Krishna%2C+S">Sanjay Krishna</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.14433v2-abstract-short" style="display: inline;"> The short-wave infrared (SWIR) wavelength, especially 1.55 um, has attracted significant attention in various areas such as high-speed optical communication and LiDAR systems. Avalanche photodiodes (APDs) are a critical component as a receiver in these systems due to their internal gain which enhances the system performance. Silicon-based APDs are promising since they are CMOS compatible, but they&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14433v2-abstract-full').style.display = 'inline'; document.getElementById('2406.14433v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.14433v2-abstract-full" style="display: none;"> The short-wave infrared (SWIR) wavelength, especially 1.55 um, has attracted significant attention in various areas such as high-speed optical communication and LiDAR systems. Avalanche photodiodes (APDs) are a critical component as a receiver in these systems due to their internal gain which enhances the system performance. Silicon-based APDs are promising since they are CMOS compatible, but they are limited in detecting 1.55 um light detection. This study proposes a p-type Si on n-type GaAs0.51Sb0.49 (GaAsSb) lattice matched to InP substrates heterojunction formed using a grafting technique for future GaAsSb/Si APD technology. A p+Si nanomembrane is transferred onto the GaAsSb/AlInAs/InP substrate, with an ultrathin ALD-Al2O3 oxide at the interface, which behaves as both double-side passivation and quantum tunneling layers. The devices exhibit excellent surface morphology and interface quality, confirmed by atomic force microscope (AFM) and transmission electron microscope (TEM). Also, the current-voltage (I-V) of the p+Si/n-GaAsSb heterojunction shows ideal rectifying characteristics with an ideality factor of 1.15. The I-V tests across multiple devices confirm high consistency and yield. Furthermore, the X-ray photoelectron spectroscopy (XPS) measurement reveals that GaAsSb and Si are found to have type-II band alignment with a conduction band offset of 50 meV which is favorable for the high-bandwidth APD application. The demonstration of the GaAsSb/Si heterojunction highlights the potential to advance current SWIR PD technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14433v2-abstract-full').style.display = 'none'; document.getElementById('2406.14433v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12874">arXiv:2406.12874</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.12874">pdf</a>, <a href="https://arxiv.org/format/2406.12874">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/19/08/P08027">10.1088/1748-0221/19/08/P08027 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Design, Implementation, and Performance of the LZ Calibration Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&amp;query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/physics?searchtype=author&amp;query=Alder%2C+F">F. Alder</a>, <a href="/search/physics?searchtype=author&amp;query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/physics?searchtype=author&amp;query=Ames%2C+A">A. Ames</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Angelides%2C+N">N. Angelides</a>, <a href="/search/physics?searchtype=author&amp;query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&amp;query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/physics?searchtype=author&amp;query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/physics?searchtype=author&amp;query=Baker%2C+A">A. Baker</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+S">S. Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Bang%2C+J">J. Bang</a>, <a href="/search/physics?searchtype=author&amp;query=Barillier%2C+E+E">E. E. Barillier</a>, <a href="/search/physics?searchtype=author&amp;query=Bargemann%2C+J+W">J. W. Bargemann</a>, <a href="/search/physics?searchtype=author&amp;query=Beattie%2C+K">K. Beattie</a>, <a href="/search/physics?searchtype=author&amp;query=Benson%2C+T">T. Benson</a>, <a href="/search/physics?searchtype=author&amp;query=Bhatti%2C+A">A. Bhatti</a>, <a href="/search/physics?searchtype=author&amp;query=Biekert%2C+A">A. Biekert</a>, <a href="/search/physics?searchtype=author&amp;query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&amp;query=Birch%2C+H+J">H. J. Birch</a>, <a href="/search/physics?searchtype=author&amp;query=Bishop%2C+E">E. Bishop</a>, <a href="/search/physics?searchtype=author&amp;query=Blockinger%2C+G+M">G. M. Blockinger</a>, <a href="/search/physics?searchtype=author&amp;query=Boxer%2C+B">B. Boxer</a> , et al. (179 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12874v3-abstract-short" style="display: inline;"> LUX-ZEPLIN (LZ) is a tonne-scale experiment searching for direct dark matter interactions and other rare events. It is located at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. The core of the LZ detector is a dual-phase xenon time projection chamber (TPC), designed with the primary goal of detecting Weakly Interacting Massive Particles (WIMPs) via their induced low e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12874v3-abstract-full').style.display = 'inline'; document.getElementById('2406.12874v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12874v3-abstract-full" style="display: none;"> LUX-ZEPLIN (LZ) is a tonne-scale experiment searching for direct dark matter interactions and other rare events. It is located at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. The core of the LZ detector is a dual-phase xenon time projection chamber (TPC), designed with the primary goal of detecting Weakly Interacting Massive Particles (WIMPs) via their induced low energy nuclear recoils. Surrounding the TPC, two veto detectors immersed in an ultra-pure water tank enable reducing background events to enhance the discovery potential. Intricate calibration systems are purposely designed to precisely understand the responses of these three detector volumes to various types of particle interactions and to demonstrate LZ&#39;s ability to discriminate between signals and backgrounds. In this paper, we present a comprehensive discussion of the key features, requirements, and performance of the LZ calibration systems, which play a crucial role in enabling LZ&#39;s WIMP-search and its broad science program. The thorough description of these calibration systems, with an emphasis on their novel aspects, is valuable for future calibration efforts in direct dark matter and other rare-event search experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12874v3-abstract-full').style.display = 'none'; document.getElementById('2406.12874v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 19 P08027 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.09698">arXiv:2406.09698</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.09698">pdf</a>, <a href="https://arxiv.org/format/2406.09698">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Projected background and sensitivity of AMoRE-II </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Agrawal%2C+A">A. Agrawal</a>, <a href="/search/physics?searchtype=author&amp;query=Alenkov%2C+V+V">V. V. Alenkov</a>, <a href="/search/physics?searchtype=author&amp;query=Aryal%2C+P">P. Aryal</a>, <a href="/search/physics?searchtype=author&amp;query=Beyer%2C+J">J. Beyer</a>, <a href="/search/physics?searchtype=author&amp;query=Bhandari%2C+B">B. Bhandari</a>, <a href="/search/physics?searchtype=author&amp;query=Boiko%2C+R+S">R. S. Boiko</a>, <a href="/search/physics?searchtype=author&amp;query=Boonin%2C+K">K. Boonin</a>, <a href="/search/physics?searchtype=author&amp;query=Buzanov%2C+O">O. Buzanov</a>, <a href="/search/physics?searchtype=author&amp;query=Byeon%2C+C+R">C. R. Byeon</a>, <a href="/search/physics?searchtype=author&amp;query=Chanthima%2C+N">N. Chanthima</a>, <a href="/search/physics?searchtype=author&amp;query=Cheoun%2C+M+K">M. K. Cheoun</a>, <a href="/search/physics?searchtype=author&amp;query=Choe%2C+J+S">J. S. Choe</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+S">Seonho Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Choudhury%2C+S">S. Choudhury</a>, <a href="/search/physics?searchtype=author&amp;query=Chung%2C+J+S">J. S. Chung</a>, <a href="/search/physics?searchtype=author&amp;query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/physics?searchtype=author&amp;query=Djamal%2C+M">M. Djamal</a>, <a href="/search/physics?searchtype=author&amp;query=Drung%2C+D">D. Drung</a>, <a href="/search/physics?searchtype=author&amp;query=Enss%2C+C">C. Enss</a>, <a href="/search/physics?searchtype=author&amp;query=Fleischmann%2C+A">A. Fleischmann</a>, <a href="/search/physics?searchtype=author&amp;query=Gangapshev%2C+A+M">A. M. Gangapshev</a>, <a href="/search/physics?searchtype=author&amp;query=Gastaldo%2C+L">L. Gastaldo</a>, <a href="/search/physics?searchtype=author&amp;query=Gavrilyuk%2C+Y+M">Y. M. Gavrilyuk</a>, <a href="/search/physics?searchtype=author&amp;query=Gezhaev%2C+A+M">A. M. Gezhaev</a>, <a href="/search/physics?searchtype=author&amp;query=Gileva%2C+O">O. Gileva</a> , et al. (81 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.09698v2-abstract-short" style="display: inline;"> AMoRE-II aims to search for neutrinoless double beta decay with an array of 423 Li$_2$$^{100}$MoO$_4$ crystals operating in the cryogenic system as the main phase of the Advanced Molybdenum-based Rare process Experiment (AMoRE). AMoRE has been planned to operate in three phases: AMoRE-pilot, AMoRE-I, and AMoRE-II. AMoRE-II is currently being installed at the Yemi Underground Laboratory, located ap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09698v2-abstract-full').style.display = 'inline'; document.getElementById('2406.09698v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.09698v2-abstract-full" style="display: none;"> AMoRE-II aims to search for neutrinoless double beta decay with an array of 423 Li$_2$$^{100}$MoO$_4$ crystals operating in the cryogenic system as the main phase of the Advanced Molybdenum-based Rare process Experiment (AMoRE). AMoRE has been planned to operate in three phases: AMoRE-pilot, AMoRE-I, and AMoRE-II. AMoRE-II is currently being installed at the Yemi Underground Laboratory, located approximately 1000 meters deep in Jeongseon, Korea. The goal of AMoRE-II is to reach up to $T^{0谓尾尾}_{1/2}$ $\sim$ 6 $\times$ 10$^{26}$ years, corresponding to an effective Majorana mass of 15 - 29 meV, covering all the inverted mass hierarchy regions. To achieve this, the background level of the experimental configurations and possible background sources of gamma and beta events should be well understood. We have intensively performed Monte Carlo simulations using the GEANT4 toolkit in all the experimental configurations with potential sources. We report the estimated background level that meets the 10$^{-4}$counts/(keV$\cdot$kg$\cdot$yr) requirement for AMoRE-II in the region of interest (ROI) and show the projected half-life sensitivity based on the simulation study. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09698v2-abstract-full').style.display = 'none'; document.getElementById('2406.09698v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.14732">arXiv:2405.14732</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.14732">pdf</a>, <a href="https://arxiv.org/format/2405.14732">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The Data Acquisition System of the LZ Dark Matter Detector: FADR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&amp;query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/physics?searchtype=author&amp;query=Alder%2C+F">F. Alder</a>, <a href="/search/physics?searchtype=author&amp;query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/physics?searchtype=author&amp;query=Ames%2C+A">A. Ames</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Angelides%2C+N">N. Angelides</a>, <a href="/search/physics?searchtype=author&amp;query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&amp;query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/physics?searchtype=author&amp;query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/physics?searchtype=author&amp;query=Baker%2C+A">A. Baker</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+S">S. Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Bang%2C+J">J. Bang</a>, <a href="/search/physics?searchtype=author&amp;query=Barillier%2C+E+E">E. E. Barillier</a>, <a href="/search/physics?searchtype=author&amp;query=Bargemann%2C+J+W">J. W. Bargemann</a>, <a href="/search/physics?searchtype=author&amp;query=Beattie%2C+K">K. Beattie</a>, <a href="/search/physics?searchtype=author&amp;query=Benson%2C+T">T. Benson</a>, <a href="/search/physics?searchtype=author&amp;query=Bhatti%2C+A">A. Bhatti</a>, <a href="/search/physics?searchtype=author&amp;query=Biekert%2C+A">A. Biekert</a>, <a href="/search/physics?searchtype=author&amp;query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/physics?searchtype=author&amp;query=Birch%2C+H+J">H. J. Birch</a>, <a href="/search/physics?searchtype=author&amp;query=Bishop%2C+E">E. Bishop</a>, <a href="/search/physics?searchtype=author&amp;query=Blockinger%2C+G+M">G. M. Blockinger</a>, <a href="/search/physics?searchtype=author&amp;query=Boxer%2C+B">B. Boxer</a> , et al. (191 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.14732v3-abstract-short" style="display: inline;"> The Data Acquisition System (DAQ) for the LUX-ZEPLIN (LZ) dark matter detector is described. The signals from 745 PMTs, distributed across three subsystems, are sampled with 100-MHz 32-channel digitizers (DDC-32s). A basic waveform analysis is carried out on the on-board Field Programmable Gate Arrays (FPGAs) to extract information about the observed scintillation and electroluminescence signals.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14732v3-abstract-full').style.display = 'inline'; document.getElementById('2405.14732v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.14732v3-abstract-full" style="display: none;"> The Data Acquisition System (DAQ) for the LUX-ZEPLIN (LZ) dark matter detector is described. The signals from 745 PMTs, distributed across three subsystems, are sampled with 100-MHz 32-channel digitizers (DDC-32s). A basic waveform analysis is carried out on the on-board Field Programmable Gate Arrays (FPGAs) to extract information about the observed scintillation and electroluminescence signals. This information is used to determine if the digitized waveforms should be preserved for offline analysis. The system is designed around the Kintex-7 FPGA. In addition to digitizing the PMT signals and providing basic event selection in real time, the flexibility provided by the use of FPGAs allows us to monitor the performance of the detector and the DAQ in parallel to normal data acquisition. The hardware and software/firmware of this FPGA-based Architecture for Data acquisition and Realtime monitoring (FADR) are discussed and performance measurements are described. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14732v3-abstract-full').style.display = 'none'; document.getElementById('2405.14732v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 24 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.14207">arXiv:2404.14207</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.14207">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> ETROC1: The First Full Chain Precision Timing Prototype ASIC for CMS MTD Endcap Timing Layer Upgrade </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+X">Xing Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+Q">Quan Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+D">Datao Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Gwak%2C+P">Piljun Gwak</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D">Doyeong Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+J">Jongho Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Chonghan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tiankuan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tiehui Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Los%2C+S">Sergey Los</a>, <a href="/search/physics?searchtype=author&amp;query=Miryala%2C+S">Sandeep Miryala</a>, <a href="/search/physics?searchtype=author&amp;query=Nanda%2C+S">Shirsendu Nanda</a>, <a href="/search/physics?searchtype=author&amp;query=Olsen%2C+J">Jamieson Olsen</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+H">Hanhan Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+J">Jinyuan Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+J">Jingbo Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+Z">Zhenyu Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Li Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Wei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.14207v3-abstract-short" style="display: inline;"> We present the design and characterization of the first full chain precision timing prototype ASIC, named ETL Readout Chip version 1 (ETROC1) for the CMS MTD endcap timing layer (ETL) upgrade. The ETL utilizes Low Gain Avalanche Diode (LGAD) sensors to detect charged particles, with the goal to achieve a time resolution of 40 - 50 ps per hit, and 30 - 40 ps per track with hits from two detector la&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14207v3-abstract-full').style.display = 'inline'; document.getElementById('2404.14207v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.14207v3-abstract-full" style="display: none;"> We present the design and characterization of the first full chain precision timing prototype ASIC, named ETL Readout Chip version 1 (ETROC1) for the CMS MTD endcap timing layer (ETL) upgrade. The ETL utilizes Low Gain Avalanche Diode (LGAD) sensors to detect charged particles, with the goal to achieve a time resolution of 40 - 50 ps per hit, and 30 - 40 ps per track with hits from two detector layers. The ETROC1 is composed of a 5 x 5 pixel array and peripheral circuits. The pixel array includes a 4 x 4 active pixel array with an H-tree shaped network delivering clock and charge injection signals. Each active pixel is composed of various components, including a bump pad, a charge injection circuit, a pre-amplifier, a discriminator, a digital-to-analog converter, and a time-to-digital converter. These components play essential roles as the front-end link in processing LGAD signals and measuring timing-related information. The peripheral circuits provide clock signals and readout functionalities. The size of the ETROC1 chip is 7 mm x 9 mm. ETROC1 has been fabricated in a 65 nm CMOS process, and extensively tested under stimuli of charge injection, infrared laser, and proton beam. The time resolution of bump-bonded ETROC1 + LGAD chipsets reaches 42 - 46 ps per hit in the beam test. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14207v3-abstract-full').style.display = 'none'; document.getElementById('2404.14207v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0131-CMS-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13127">arXiv:2404.13127</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.13127">pdf</a>, <a href="https://arxiv.org/format/2404.13127">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Uncovering large inconsistencies between machine learning derived gridded settlement datasets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sekara%2C+V">Vedran Sekara</a>, <a href="/search/physics?searchtype=author&amp;query=Martini%2C+A">Andrea Martini</a>, <a href="/search/physics?searchtype=author&amp;query=Garcia-Herranz%2C+M">Manuel Garcia-Herranz</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D">Do-Hyung Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13127v1-abstract-short" style="display: inline;"> High-resolution human settlement maps provide detailed delineations of where people live and are vital for scientific and practical purposes, such as rapid disaster response, allocation of humanitarian resources, and international development. The increased availability of high-resolution satellite imagery, combined with powerful techniques from machine learning and artificial intelligence, has sp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13127v1-abstract-full').style.display = 'inline'; document.getElementById('2404.13127v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13127v1-abstract-full" style="display: none;"> High-resolution human settlement maps provide detailed delineations of where people live and are vital for scientific and practical purposes, such as rapid disaster response, allocation of humanitarian resources, and international development. The increased availability of high-resolution satellite imagery, combined with powerful techniques from machine learning and artificial intelligence, has spurred the creation of a wealth of settlement datasets. However, the precise agreement and alignment between these datasets is not known. Here we quantify the overlap of high-resolution settlement map for 42 African countries developed by Google (Open Buildings), Meta (High Resolution Population Maps) and GRID3 (Geo-Referenced Infrastructure and Demographic Data for Development). Across all studied countries we find large disagreement between datasets on how much area is considered settled. We demonstrate that there are considerable geographic and socio-economic factors at play and build a machine learning model to predict for which areas datasets disagree. It it vital to understand the shortcomings of AI derived high-resolution settlement layers as international organizations, governments, and NGOs are already experimenting with incorporating these into programmatic work. As such, we anticipate our work to be a starting point for more critical and detailed analyses of AI derived datasets for humanitarian, planning, policy, and scientific purposes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13127v1-abstract-full').style.display = 'none'; document.getElementById('2404.13127v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.12454">arXiv:2404.12454</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.12454">pdf</a>, <a href="https://arxiv.org/format/2404.12454">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> A Generalized Expression for Accelerating Beamlet Decomposition Simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ashcraft%2C+J+N">Jaren N. Ashcraft</a>, <a href="/search/physics?searchtype=author&amp;query=Douglas%2C+E+S">Ewan S. Douglas</a>, <a href="/search/physics?searchtype=author&amp;query=Anche%2C+R">Ramya Anche</a>, <a href="/search/physics?searchtype=author&amp;query=Dube%2C+B+D">Brandon D. Dube</a>, <a href="/search/physics?searchtype=author&amp;query=Derby%2C+K+Z">Kevin Z. Derby</a>, <a href="/search/physics?searchtype=author&amp;query=Furenlid%2C+L">Lars Furenlid</a>, <a href="/search/physics?searchtype=author&amp;query=Kautz%2C+M">Maggie Kautz</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D">Daewook Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Milani%2C+K">Kian Milani</a>, <a href="/search/physics?searchtype=author&amp;query=Riggs%2C+A+J+E">A. J. Eldorado Riggs</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.12454v1-abstract-short" style="display: inline;"> Paraxial diffraction modeling based on the Fourier transform has seen widespread implementation for simulating the response of a diffraction-limited optical system. For systems where the paraxial assumption is not sufficient, a class of algorithms has been developed that employs hybrid propagation physics to compute the propagation of an elementary beamlet along geometric ray paths. These &#34;beamlet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12454v1-abstract-full').style.display = 'inline'; document.getElementById('2404.12454v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.12454v1-abstract-full" style="display: none;"> Paraxial diffraction modeling based on the Fourier transform has seen widespread implementation for simulating the response of a diffraction-limited optical system. For systems where the paraxial assumption is not sufficient, a class of algorithms has been developed that employs hybrid propagation physics to compute the propagation of an elementary beamlet along geometric ray paths. These &#34;beamlet decomposition&#34; algorithms include the well-known Gaussian Beamlet Decomposition (GBD) algorithm, of which several variants have been created. To increase the computational efficiency of the GBD algorithm, we derive an alternative expression of the technique that utilizes the analytical propagation of beamlets to tilted planes. We then use this accelerated algorithm to conduct a parameter-space search to find the optimal combination of free parameters in GBD to construct the analytical Airy function. The experiment is conducted on a consumer-grade CPU, and a high-performance GPU, where the new algorithm is 34 times faster than the previously published algorithm on CPUs, and 67,513 times faster on GPUs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12454v1-abstract-full').style.display = 'none'; document.getElementById('2404.12454v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 10 figures, Accepted to Optics Express on April 18 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.06764">arXiv:2404.06764</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.06764">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> A mid-infrared Brillouin laser using ultra-high-Q on-chip resonators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ko%2C+K">Kiyoung Ko</a>, <a href="/search/physics?searchtype=author&amp;query=Suk%2C+D">Daewon Suk</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D">Dohyeong Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+S">Soobong Park</a>, <a href="/search/physics?searchtype=author&amp;query=Sen%2C+B">Betul Sen</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D">Dae-Gon Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yingying Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+S">Shixun Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xunsi Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+R">Rongping Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chun%2C+B+J">Byung Jae Chun</a>, <a href="/search/physics?searchtype=author&amp;query=Ko%2C+K">Kwang-Hoon Ko</a>, <a href="/search/physics?searchtype=author&amp;query=Rakich%2C+P+T">Peter T. Rakich</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+D">Duk-Yong Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+H">Hansuek Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.06764v1-abstract-short" style="display: inline;"> Ultra-high-Q optical resonators have facilitated recent advancements in on-chip photonics by effectively harnessing nonlinear phenomena providing useful functionalities. While these breakthroughs, primarily focused on the near-infrared region, have extended interest to longer wavelengths holding importance for monitoring and manipulating molecules, the absence of ultra-high-Q resonators in this re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06764v1-abstract-full').style.display = 'inline'; document.getElementById('2404.06764v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.06764v1-abstract-full" style="display: none;"> Ultra-high-Q optical resonators have facilitated recent advancements in on-chip photonics by effectively harnessing nonlinear phenomena providing useful functionalities. While these breakthroughs, primarily focused on the near-infrared region, have extended interest to longer wavelengths holding importance for monitoring and manipulating molecules, the absence of ultra-high-Q resonators in this region remains a significant challenge. Here, we have developed on-chip microresonators with a remarkable Q-factor of 38 million, surpassing previous mid-infrared records by over 30 times. Employing innovative fabrication techniques, including the spontaneous formation of light-guiding geometries during material deposition, resonators with internal multilayer structures have been seamlessly created and passivated with chalcogenide glasses within a single chamber. Major loss factors, especially airborne-chemical absorption, were thoroughly investigated and mitigated by extensive optimization of resonator geometries and fabrication procedures. This allowed us to access the fundamental loss performance offered by doubly purified chalcogenide glass sources, as demonstrated in their fiber form. Exploiting this ultra-high-Q resonator, we successfully demonstrated Brillouin lasing on a chip for the first time in the mid-infrared, with a threshold power of 91.9 渭W and a theoretical Schawlow-Townes linewidth of 83.45 Hz, far surpassing carrier phase noise. Our results showcase the effective integration of cavity-enhanced optical nonlinearities into on-chip mid-infrared photonics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06764v1-abstract-full').style.display = 'none'; document.getElementById('2404.06764v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures in main script, and 1 figure in methods</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.03691">arXiv:2404.03691</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.03691">pdf</a>, <a href="https://arxiv.org/format/2404.03691">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Upgrade of NaI(Tl) crystal encapsulation for the NEON experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Choi%2C+J+J">J. J. Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Jeon%2C+E+J">E. J. Jeon</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+J+Y">J. Y. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+K+W">K. W. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+S+H">S. H. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+S+K">S. K. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+Y+D">Y. D. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Ko%2C+Y+J">Y. J. Ko</a>, <a href="/search/physics?searchtype=author&amp;query=Koh%2C+B+C">B. C. Koh</a>, <a href="/search/physics?searchtype=author&amp;query=Ha%2C+C">C. Ha</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+B+J">B. J. Park</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+S+H">S. H. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+I+S">I. S. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+H">H. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+H+S">H. S. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+J">J. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Oh%2C+Y+M">Y. M. Oh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.03691v2-abstract-short" style="display: inline;"> The Neutrino Elastic-scattering Observation with NaI(Tl) experiment (NEON) aims to detect coherent elastic neutrino-nucleus scattering~(\cenns) in a NaI(Tl) crystal using reactor anti-electron neutrinos at the Hanbit nuclear power plant complex. A total of 13.3 kg of NaI(Tl) crystals were initially installed in December 2020 at the tendon gallery, 23.7$\pm$0.3\,m away from the reactor core, which&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03691v2-abstract-full').style.display = 'inline'; document.getElementById('2404.03691v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.03691v2-abstract-full" style="display: none;"> The Neutrino Elastic-scattering Observation with NaI(Tl) experiment (NEON) aims to detect coherent elastic neutrino-nucleus scattering~(\cenns) in a NaI(Tl) crystal using reactor anti-electron neutrinos at the Hanbit nuclear power plant complex. A total of 13.3 kg of NaI(Tl) crystals were initially installed in December 2020 at the tendon gallery, 23.7$\pm$0.3\,m away from the reactor core, which operates at a thermal power of 2.8\,GW. Initial engineering operation was performed from May 2021 to March 2022 and observed unexpected photomultiplier-induced noise and a decreased light yield that were caused by leakage of liquid scintillator into the detector due to weakness of detector encapsulation. We upgraded the detector encapsulation design to prevent the leakage of the liquid scintillator. Meanwhile two small-sized detectors were replaced with larger ones resulting in a total mass of 16.7\,kg. With this new design implementation, the detector system has been operating stably since April 2022 for over a year without detector gain drop. In this paper, we present an improved crystal encapsulation design and stability of the NEON experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03691v2-abstract-full').style.display = 'none'; document.getElementById('2404.03691v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.15606">arXiv:2403.15606</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.15606">pdf</a>, <a href="https://arxiv.org/format/2403.15606">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Technologies for Modulation of Visible Light and their Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Park%2C+S">Sanghyo Park</a>, <a href="/search/physics?searchtype=author&amp;query=Notaros%2C+M">Milica Notaros</a>, <a href="/search/physics?searchtype=author&amp;query=Mohanty%2C+A">Aseema Mohanty</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D">Donggyu Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Notaros%2C+J">Jelena Notaros</a>, <a href="/search/physics?searchtype=author&amp;query=Mouradian%2C+S">Sara Mouradian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.15606v2-abstract-short" style="display: inline;"> Control over the amplitude, phase, and spatial distribution of visible-spectrum light underlies many technologies, but commercial solutions remain bulky, require high control power, and are often too slow. Active integrated photonics for visible light promises a solution, especially with recent materials and fabrication advances. In this review, we discuss three growing application spaces which re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15606v2-abstract-full').style.display = 'inline'; document.getElementById('2403.15606v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.15606v2-abstract-full" style="display: none;"> Control over the amplitude, phase, and spatial distribution of visible-spectrum light underlies many technologies, but commercial solutions remain bulky, require high control power, and are often too slow. Active integrated photonics for visible light promises a solution, especially with recent materials and fabrication advances. In this review, we discuss three growing application spaces which rely on control of visible light: control and measurement of atomic quantum technologies, augmented-reality displays, and measurement and control of biological systems. We then review the commercial dynamic surfaces and bulk systems which currently provide visible-light modulation and the current state-of-the-art integrated solutions. Throughout the review we focus on speed, control power, size, optical bandwidth, and technological maturity when comparing technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15606v2-abstract-full').style.display = 'none'; document.getElementById('2403.15606v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09099">arXiv:2403.09099</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.09099">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum emitters in van der Waals 伪-MoO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lee%2C+J">Jeonghan Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Haiyuan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+K">Keun-Yeol Park</a>, <a href="/search/physics?searchtype=author&amp;query=Huh%2C+S">Soonsang Huh</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D">Donghan Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+M">Mihyang Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+C">Changyoung Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Thygesen%2C+K+S">Kristian Sommer Thygesen</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+J">Jieun Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09099v1-abstract-short" style="display: inline;"> Quantum emitters in solid-state materials are highly promising building blocks for quantum information processing and communication science. Recently, single-photon emission from van der Waals materials has been reported in transition metal dichalcogenides and hexagonal boron nitride, exhibiting the potential to realize photonic quantum technologies in two-dimensional materials. Here, we report th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09099v1-abstract-full').style.display = 'inline'; document.getElementById('2403.09099v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09099v1-abstract-full" style="display: none;"> Quantum emitters in solid-state materials are highly promising building blocks for quantum information processing and communication science. Recently, single-photon emission from van der Waals materials has been reported in transition metal dichalcogenides and hexagonal boron nitride, exhibiting the potential to realize photonic quantum technologies in two-dimensional materials. Here, we report the observation of single-photon generation from exfoliated and thermally annealed single crystals of van der Waals 伪-MoO3. The second-order correlation function measurement displays a clear photon antibunching, while the luminescence intensity exceeds 100 kcounts/s and remains stable under laser excitation. Also, the zero-phonon lines of these emitters are distributed in a spectrally narrow energy range. The theoretical calculation suggests that an oxygen vacancy defect is a possible candidate for the observed emitters. Together with photostability and brightness, quantum emitters in 伪-MoO3 provide a new avenue to realize photon-based quantum information science in van der Waals materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09099v1-abstract-full').style.display = 'none'; document.getElementById('2403.09099v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.08914">arXiv:2403.08914</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.08914">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Robust Chemiresistive Behavior in Conductive Polymer/MOF Composites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Roh%2C+H">Heejung Roh</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D">Dong-Ha Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Cho%2C+Y">Yeongsu Cho</a>, <a href="/search/physics?searchtype=author&amp;query=Jo%2C+Y">Young-Moo Jo</a>, <a href="/search/physics?searchtype=author&amp;query=del+Alamo%2C+J+A">Jes煤s A. del Alamo</a>, <a href="/search/physics?searchtype=author&amp;query=Kulik%2C+H+J">Heather J. Kulik</a>, <a href="/search/physics?searchtype=author&amp;query=Dinc%C4%83%2C+M">Mircea Dinc膬</a>, <a href="/search/physics?searchtype=author&amp;query=Gumyusenge%2C+A">Aristide Gumyusenge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.08914v1-abstract-short" style="display: inline;"> Metal-organic frameworks (MOFs) are promising materials for gas sensing but are often limited to single-use detection. We demonstrate a hybridization strategy synergistically deploying conductive MOFs (cMOFs) and conductive polymers (cPs) as two complementary mixed ionic-electronic conductors in high-performing stand-alone chemiresistors. Our work presents significant improvement in i) sensor reco&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08914v1-abstract-full').style.display = 'inline'; document.getElementById('2403.08914v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.08914v1-abstract-full" style="display: none;"> Metal-organic frameworks (MOFs) are promising materials for gas sensing but are often limited to single-use detection. We demonstrate a hybridization strategy synergistically deploying conductive MOFs (cMOFs) and conductive polymers (cPs) as two complementary mixed ionic-electronic conductors in high-performing stand-alone chemiresistors. Our work presents significant improvement in i) sensor recovery kinetics, ii) cycling stability, and iii) dynamic range at room temperature. We demonstrate the effect of hybridization across well-studied cMOFs based on 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) and 2,3,6,7,10,11-hexaiminotripphenylene (HITP) ligands with varied metal nodes (Co, Cu, Ni). We conduct a comprehensive mechanistic study to relate energy band alignments at the heterojunctions between the MOFs and the polymer with sensing thermodynamics and binding kinetics. Our findings reveal that hole enrichment of the cMOF component upon hybridization leads to selective enhancement in desorption kinetics, enabling significantly improved sensor recovery at room temperature, and thus long-term response retention. This mechanism was further supported by density functional theory calculations on sorbate-analyte interactions. We also find that alloying cPs and cMOFs enables facile thin film co-processing and device integration, potentially unlocking the use of these hybrid conductors in diverse electronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08914v1-abstract-full').style.display = 'none'; document.getElementById('2403.08914v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.08288">arXiv:2403.08288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.08288">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsphotonics.4c00627">10.1021/acsphotonics.4c00627 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lithographically Defined Zerogap Strain Sensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Moghaddam%2C+M+H">Mahsa Haddadi Moghaddam</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhihao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Dalayoan%2C+D+J+C">Daryll J. C Dalayoan</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+D">Daehwan Park</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+H">Hwanhee Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Im%2C+S">Sunghoon Im</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+K">Kyungbin Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+D">Daeshik Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Das%2C+B">Bamadev Das</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D+S">Dai Sik Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.08288v1-abstract-short" style="display: inline;"> Metal thin films on soft polymers provide a unique opportunity for resistance-based strain sensors. A mechanical mismatch between the conductive film and the flexible substrate causes cracks to open and close, changing the electrical resistance as a function of strain. However, the very randomness of the formation, shape, length, orientation, and distance between adjacent cracks limits the sensing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08288v1-abstract-full').style.display = 'inline'; document.getElementById('2403.08288v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.08288v1-abstract-full" style="display: none;"> Metal thin films on soft polymers provide a unique opportunity for resistance-based strain sensors. A mechanical mismatch between the conductive film and the flexible substrate causes cracks to open and close, changing the electrical resistance as a function of strain. However, the very randomness of the formation, shape, length, orientation, and distance between adjacent cracks limits the sensing range as well as repeatability. Herein, we present a breakthrough: the Zerogap Strain Sensor, whereby lithography eliminates randomness and violent tearing process inherent in conventional crack sensors and allows for short periodicity between gaps with gentle sidewall contacts, critical in high strain sensing enabling operation over an unprecedently wide range. Our sensor achieves a gauge factor of over 15,000 at 蔚ext=18%, the highest known value. With the uniform gaps of three-to-ten thousand nanometer widths characterized by periodicity and strain, this approach has far reaching implications for future strain sensors whose range is limited only by that of the flexible substrate, with non-violent operations that always remain below the tensile limit of the metal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08288v1-abstract-full').style.display = 'none'; document.getElementById('2403.08288v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Photonics 2024 11 (8), 3239-3249 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03212">arXiv:2403.03212</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.03212">pdf</a>, <a href="https://arxiv.org/format/2403.03212">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Performance of a modular ton-scale pixel-readout liquid argon time projection chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&amp;query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andrade%2C+D+A">D. A. Andrade</a> , et al. (1340 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03212v1-abstract-short" style="display: inline;"> The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03212v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03212v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03212v1-abstract-full" style="display: none;"> The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements, and provide comparisons to detector simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03212v1-abstract-full').style.display = 'none'; document.getElementById('2403.03212v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">47 pages, 41 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0073-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03019">arXiv:2403.03019</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.03019">pdf</a>, <a href="https://arxiv.org/format/2403.03019">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Pushing single atoms near an optical cavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lee%2C+D">Dowon Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Ha%2C+T">Taegyu Ha</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D">Donggeon Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+K">Keumhyun Kim</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+K">Kyungwon An</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+M">Moonjoo Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03019v2-abstract-short" style="display: inline;"> Optical scattering force is used to reduce the loading time of single atoms to a cavity mode. Releasing a cold atomic ensemble above the resonator, we apply a push beam along the direction of gravity, offering fast atomic transport with narrow velocity distribution. We also observe in real time that, when the push beam is illuminated against gravity, single atoms slow down and even turn around in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03019v2-abstract-full').style.display = 'inline'; document.getElementById('2403.03019v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03019v2-abstract-full" style="display: none;"> Optical scattering force is used to reduce the loading time of single atoms to a cavity mode. Releasing a cold atomic ensemble above the resonator, we apply a push beam along the direction of gravity, offering fast atomic transport with narrow velocity distribution. We also observe in real time that, when the push beam is illuminated against gravity, single atoms slow down and even turn around in the mode, through the cavity-transmission measurement. Our method can be employed to make atom-cavity experiments more efficient. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03019v2-abstract-full').style.display = 'none'; document.getElementById('2403.03019v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.17125">arXiv:2402.17125</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.17125">pdf</a>, <a href="https://arxiv.org/format/2402.17125">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2024.169489">10.1016/j.nima.2024.169489 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Waveform Simulation for Scintillation Characteristics of NaI(Tl) Crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Choi%2C+J+J">J. J. Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Ha%2C+C">C. Ha</a>, <a href="/search/physics?searchtype=author&amp;query=Jeon%2C+E+J">E. J. Jeon</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+K+W">K. W. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+S+K">S. K. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+Y+D">Y. D. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Ko%2C+Y+J">Y. J. Ko</a>, <a href="/search/physics?searchtype=author&amp;query=Koh%2C+B+C">B. C. Koh</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+H+S">H. S. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+S+H">S. H. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+S+M">S. M. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+B+J">B. J. Park</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+G+H">G. H. Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.17125v2-abstract-short" style="display: inline;"> The lowering of the energy threshold in the NaI detector is crucial not only for comprehensive validation of DAMA/LIBRA but also for exploring new possibilities in the search for low-mass dark matter and observing coherent elastic scattering between neutrino and nucleus. Alongside hardware enhancements, extensive efforts have focused on refining event selection to discern noise, achieved through p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17125v2-abstract-full').style.display = 'inline'; document.getElementById('2402.17125v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.17125v2-abstract-full" style="display: none;"> The lowering of the energy threshold in the NaI detector is crucial not only for comprehensive validation of DAMA/LIBRA but also for exploring new possibilities in the search for low-mass dark matter and observing coherent elastic scattering between neutrino and nucleus. Alongside hardware enhancements, extensive efforts have focused on refining event selection to discern noise, achieved through parameter development and the application of machine learning. Acquiring pure, unbiased datasets is crucial in this endeavor, for which a waveform simulation was developed. The simulation data were compared with the experimental data using several pulse shape discrimination parameters to test its performance in describing the experimental data. Additionally, we present the outcomes of multi-variable machine learning trained with simulation data as a scintillation signal sample. The distributions of outcomes for experimental and simulation data show a good agreement. As an application of the waveform simulation, we validate the trigger efficiency alongside estimations derived from the minimally biased measurement data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17125v2-abstract-full').style.display = 'none'; document.getElementById('2402.17125v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> NIM A 1065, 169489 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.15122">arXiv:2402.15122</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.15122">pdf</a>, <a href="https://arxiv.org/format/2402.15122">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Measurements of low-energy nuclear recoil quenching factors for Na and I recoils in the NaI(Tl) scintillator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lee%2C+S+H">S. H. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Joo%2C+H+W">H. W. Joo</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+H+J">H. J. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+K+W">K. W. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+S+K">S. K. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+Y+D">Y. D. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Ko%2C+Y+J">Y. J. Ko</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+H+S">H. S. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+J+Y">J. Y. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+H+S">H. S. Park</a>, <a href="/search/physics?searchtype=author&amp;query=Yoon%2C+Y+S">Y. S. Yoon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.15122v3-abstract-short" style="display: inline;"> Elastic scattering off nuclei in target detectors, involving interactions with dark matter and coherent elastic neutrino nuclear recoil (CE$谓$NS), results in the deposition of low energy within the nuclei, dissipating rapidly through a combination of heat and ionization. The primary energy loss mechanism for nuclear recoil is heat, leading to consistently smaller measurable scintillation signals c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.15122v3-abstract-full').style.display = 'inline'; document.getElementById('2402.15122v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.15122v3-abstract-full" style="display: none;"> Elastic scattering off nuclei in target detectors, involving interactions with dark matter and coherent elastic neutrino nuclear recoil (CE$谓$NS), results in the deposition of low energy within the nuclei, dissipating rapidly through a combination of heat and ionization. The primary energy loss mechanism for nuclear recoil is heat, leading to consistently smaller measurable scintillation signals compared to electron recoils of the same energy. The nuclear recoil quenching factor (QF), representing the ratio of scintillation light yield produced by nuclear recoil to that of electron recoil at the same energy, is a critical parameter for understanding dark matter and neutrino interactions with nuclei. The low energy QF of NaI(Tl) crystals, commonly employed in dark matter searches and CE$谓$NS measurements, is of substantial importance. Previous low energy QF measurements were constrained by contamination from photomultiplier tube (PMT)-induced noise, resulting in an observed light yield of approximately 15 photoelectrons per keVee (kilo-electron-volt electron-equivalent energy) and nuclear recoil energy above 5 keVnr (kilo-electron-volt nuclear recoil energy). Through enhanced crystal encapsulation, an increased light yield of around 26 photoelectrons per keVee is achieved. This improvement enables the measurement of the nuclear recoil QF for sodium nuclei at an energy of 3.8 $\pm$ 0.6 keVnr with a QF of 11.2 $\pm$ 1.7%. Furthermore, a reevaluation of previously reported QF results is conducted, incorporating enhancements in low energy events based on waveform simulation. The outcomes are generally consistent with various recent QF measurements for sodium and iodine. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.15122v3-abstract-full').style.display = 'none'; document.getElementById('2402.15122v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.13708">arXiv:2402.13708</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.13708">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3389/fphy.2024.1323991">10.3389/fphy.2024.1323991 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Construction of Yemilab </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Park%2C+K+S">K. S. Park</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+Y+D">Y. D. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Bang%2C+K+M">K. M. Bang</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+H+K">H. K Park</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+M+H">M. H. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Jang%2C+J+H">J. H. Jang</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+J+H">J. H. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=So%2C+J">J. So</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+S+H">S. H. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+S+B">S. B. Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.13708v1-abstract-short" style="display: inline;"> The Center for Underground Physics of the Institute for Basic Science (IBS) in Korea has been planning the construction of a deep underground laboratory since 2013 to search for extremely rare interactions such as dark matter and neutrinos. In September 2022, a new underground laboratory, Yemilab, was finally completed in Jeongseon, Gangwon Province, with a depth of 1,000 m and an exclusive experi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13708v1-abstract-full').style.display = 'inline'; document.getElementById('2402.13708v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.13708v1-abstract-full" style="display: none;"> The Center for Underground Physics of the Institute for Basic Science (IBS) in Korea has been planning the construction of a deep underground laboratory since 2013 to search for extremely rare interactions such as dark matter and neutrinos. In September 2022, a new underground laboratory, Yemilab, was finally completed in Jeongseon, Gangwon Province, with a depth of 1,000 m and an exclusive experimental area spanning 3,000 m$^3$. The tunnel is encased in limestone and accommodates 17 independent experimental spaces. Over two years, from 2023 to 2024, the Yangyang Underground Laboratory facilities will be relocated to Yemilab. Preparations are underway for the AMoRE-II, a neutrinoless double beta decay experiment, scheduled to begin in Q2 2024 at Yemilab. Additionally, Yemilab includes a cylindrical pit with a volume of approximately 6,300 m$^3$, designed as a multipurpose laboratory for next-generation experiments involving neutrinos, dark matter, and related research. This article provides a focused overview of the construction and structure of Yemilab. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13708v1-abstract-full').style.display = 'none'; document.getElementById('2402.13708v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Frontiers in Physics, vol. 12, 1323991 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.08728">arXiv:2402.08728</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.08728">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsphotonics.4c00297">10.1021/acsphotonics.4c00297 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scaling behavior of the degree of circular polarization of surface plasmon polariton </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D">Dongha Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D">Donghyeong Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+S">Sanghyeok Park</a>, <a href="/search/physics?searchtype=author&amp;query=Mortensen%2C+N+A">N. Asger Mortensen</a>, <a href="/search/physics?searchtype=author&amp;query=Seo%2C+M">Min-Kyo Seo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.08728v1-abstract-short" style="display: inline;"> Surface plasmon polaritons (SPPs) carry transverse optical spin within the evanescent field, which has enabled the demonstration of various chiral light-matter interactions in classical and quantum systems. To achieve high spin selectivity in the interactions, the elliptical polarization of the evanescent field should be made circular, but the engineering principle of the degree of circular polari&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08728v1-abstract-full').style.display = 'inline'; document.getElementById('2402.08728v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.08728v1-abstract-full" style="display: none;"> Surface plasmon polaritons (SPPs) carry transverse optical spin within the evanescent field, which has enabled the demonstration of various chiral light-matter interactions in classical and quantum systems. To achieve high spin selectivity in the interactions, the elliptical polarization of the evanescent field should be made circular, but the engineering principle of the degree of circular polarization (DOCP) of SPPs has been lacking. In this study, we theoretically and numerically investigate the scaling behavior of the DOCP of the SPP field with respect to the modal effective refractive index (neff). The DOCP of the SPP field exhibits power-law scalability to the effective refractive index in the 1D layered system, regardless of the material, structural geometry, and excitation wavelength. The power-law scalability is also confirmed in 2D waveguide structures for in-plane and out-of-plane SPP fields, but the scaling exponents vary depending on the distance from the waveguide boundaries by the reduced symmetry of the given system. Due to Lorentz reciprocity, the power-law scalability can be extended to the coupling directionality of chiral emitters towards the plasmonic waveguide. To this end, we propose a chiral photonic platform for enhanced light-valley interaction, which utilizes simultaneous enhancement of the DOCP and coupling directionality. An incident SPP can excite a chiral emitter with high spin selectivity that unidirectionally couples the emitted light into the plasmonic waveguide depending on the valley polarization of excitons in 2D material. Our work provides a ground rule for designing chiral nanophotonic systems and paves the way for the exploration of scale-free phenomena of electromagnetic waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08728v1-abstract-full').style.display = 'none'; document.getElementById('2402.08728v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Photonics 11, 2379 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.01568">arXiv:2402.01568</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.01568">pdf</a>, <a href="https://arxiv.org/format/2402.01568">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Doping Liquid Argon with Xenon in ProtoDUNE Single-Phase: Effects on Scintillation Light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Es-sghir%2C+H+A">H. Amar Es-sghir</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andrade%2C+D+A">D. A. Andrade</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a> , et al. (1297 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.01568v3-abstract-short" style="display: inline;"> Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUN&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01568v3-abstract-full').style.display = 'inline'; document.getElementById('2402.01568v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.01568v3-abstract-full" style="display: none;"> Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 720 t of total liquid argon mass with 410 t of fiducial mass. A 5.4 ppm nitrogen contamination was present during the xenon doping campaign. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of non-uniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS. We also show that xenon doping can substantially recover light losses due to contamination of the liquid argon by nitrogen. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01568v3-abstract-full').style.display = 'none'; document.getElementById('2402.01568v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 20 figures. Corrected author list; corrected typos across paper and polished text</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-2024-024; FERMILAB-PUB-23-0819-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.15413">arXiv:2401.15413</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.15413">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/cbmi.4c00016">10.1021/cbmi.4c00016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hyperphosphorylation-Induced Phase Transition in Vesicle Delivery Dynamics of Motor Proteins in Neuronal Cells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lee%2C+E">Eunsang Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D">Donghee Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+Y+H">Yo Han Song</a>, <a href="/search/physics?searchtype=author&amp;query=Shin%2C+K">Kyujin Shin</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+S">Sanggeun Song</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+M">Minho Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Goh%2C+Y">Yeongchang Goh</a>, <a href="/search/physics?searchtype=author&amp;query=Lim%2C+M+H">Mi Hee Lim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+J">Ji-Hyun Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Sung%2C+J">Jaeyoung Sung</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+K+T">Kang Taek Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.15413v2-abstract-short" style="display: inline;"> Synaptic vesicle transport by motor proteins along microtubules is a crucial active process underlying neuronal communication. It is known that microtubules are destabilized by tau-hyperphosphorylation, which causes tau proteins to detach from microtubules and form neurofibril tangles. However, how tau-phosphorylation affects transport dynamics of motor proteins on the microtubule remains unknown.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15413v2-abstract-full').style.display = 'inline'; document.getElementById('2401.15413v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.15413v2-abstract-full" style="display: none;"> Synaptic vesicle transport by motor proteins along microtubules is a crucial active process underlying neuronal communication. It is known that microtubules are destabilized by tau-hyperphosphorylation, which causes tau proteins to detach from microtubules and form neurofibril tangles. However, how tau-phosphorylation affects transport dynamics of motor proteins on the microtubule remains unknown. Here, we discover that long-distance unidirectional motion of vesicle-motor protein multiplexes (VMPMs) in living cells is suppressed under tau-hyperphosphorylation, with the consequent loss of fast vesicle-transport along the microtubule. The VMPMs in hyperphosphorylated cells exhibit seemingly bidirectional random motion, with dynamic properties far different from VMPM motion in normal cells. We establish a parsimonious physicochemical model of VMPM&#39;s active motion that provides a unified, quantitative explanation and predictions for our experimental results. Our analysis reveals that, under hyperphosphorylation conditions, motor-protein-multiplexes have both static and dynamic motility fluctuations. The loss of the fast vesicle-transport along the microtubule can be a mechanism of neurodegenerative disorders associated with tau-hyperphosphorylation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15413v2-abstract-full').style.display = 'none'; document.getElementById('2401.15413v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.14677">arXiv:2401.14677</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.14677">pdf</a>, <a href="https://arxiv.org/format/2401.14677">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.165415">10.1103/PhysRevB.109.165415 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Maximum plasmon thermal conductivity of a thin metal film </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yun%2C+K+H">Kuk Hyun Yun</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D">Dong-min Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+B+J">Bong Jae Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.14677v1-abstract-short" style="display: inline;"> Due to their extremely long propagation lengths compared to the wavelengths, surface plasmon polaritons (SPPs) have been considered as a key in enhancing thermal conductivity in thin metal films. This study explores the conditions at which the plasmon thermal conductivity is maximized, considering the thickness-dependent metal permittivity. We derived the analytical solutions for the plasmon therm&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14677v1-abstract-full').style.display = 'inline'; document.getElementById('2401.14677v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.14677v1-abstract-full" style="display: none;"> Due to their extremely long propagation lengths compared to the wavelengths, surface plasmon polaritons (SPPs) have been considered as a key in enhancing thermal conductivity in thin metal films. This study explores the conditions at which the plasmon thermal conductivity is maximized, considering the thickness-dependent metal permittivity. We derived the analytical solutions for the plasmon thermal conductivity in both the thin-film and thick-film limits to analyze the effect of the permittivities of metals and substrates. From the analytical solutions of plasmon thermal conductivity, we deduced that the plasmon thermal conductivity is proportional to the electron thermal conductivity based on the Wiedemann-Franz law. Additionally, we analyzed the conditions where the enhancement ratio of the thermal conductivity via SPPs is maximized. Metals with high plasma frequency and low damping coefficient are desirable for achieving the maximum plasmon thermal conductivity as well as the maximum enhancement ratio of thermal conductivity among metals. Significantly, 10-cm-long and 14-nm-thick Al film demonstrates most superior in-plane heat transfer via SPPs, showing a 53.5\% enhancement in thermal conductivity compared to its electron thermal counterpart on a lossless glass substrate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14677v1-abstract-full').style.display = 'none'; document.getElementById('2401.14677v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 165415, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.09734">arXiv:2401.09734</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.09734">pdf</a>, <a href="https://arxiv.org/format/2401.09734">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ad5eaf">10.1088/1367-2630/ad5eaf <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimal multiple-phase estimation with multi-mode NOON states against photon loss </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Namkung%2C+M">Min Namkung</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D">Dong-Hyun Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Hong%2C+S">Seongjin Hong</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+Y">Yong-Su Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+C">Changhyoup Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Lim%2C+H">Hyang-Tag Lim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.09734v2-abstract-short" style="display: inline;"> Multi-mode NOON states can quantum-enhance multiple-phase estimation in the absence of photon loss. However, a multi-mode NOON state is known to be vulnerable to photon loss, and its quantum-enhancement can be dissipated by lossy environment. In this work, we demonstrate that a quantum advantage in estimate precision can still be achieved in the presence of photon loss. This is accomplished by opt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09734v2-abstract-full').style.display = 'inline'; document.getElementById('2401.09734v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.09734v2-abstract-full" style="display: none;"> Multi-mode NOON states can quantum-enhance multiple-phase estimation in the absence of photon loss. However, a multi-mode NOON state is known to be vulnerable to photon loss, and its quantum-enhancement can be dissipated by lossy environment. In this work, we demonstrate that a quantum advantage in estimate precision can still be achieved in the presence of photon loss. This is accomplished by optimizing the weights of the multi-mode NOON states according to photon loss rates in the multiple modes, including the reference mode which defines the other phases. For practical relevance, we also show that photon-number counting via a multi-mode beam-splitter achieves the useful, albeit sub-optimal, quantum advantage. We expect this work to provide valuable guidance for developing quantum-enhanced multiple-phase estimation techniques in lossy environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09734v2-abstract-full').style.display = 'none'; document.getElementById('2401.09734v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New Journal of Physics 26, 073028 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.07462">arXiv:2401.07462</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.07462">pdf</a>, <a href="https://arxiv.org/format/2401.07462">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-024-12770-1">10.1140/epjc/s10052-024-12770-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonproportionality of NaI(Tl) Scintillation Detector for Dark Matter Search Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lee%2C+S+M">S. M. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+G">G. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Carlin%2C+N">N. Carlin</a>, <a href="/search/physics?searchtype=author&amp;query=Cho%2C+J+Y">J. Y. Cho</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+J+J">J. J. Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+S">S. Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Ezeribe%2C+A+C">A. C. Ezeribe</a>, <a href="/search/physics?searchtype=author&amp;query=a%2C+L+E+F">L. E. Fran. a</a>, <a href="/search/physics?searchtype=author&amp;query=Ha%2C+C">C. Ha</a>, <a href="/search/physics?searchtype=author&amp;query=Hahn%2C+I+S">I. S. Hahn</a>, <a href="/search/physics?searchtype=author&amp;query=Hollick%2C+S+J">S. J. Hollick</a>, <a href="/search/physics?searchtype=author&amp;query=Jeon%2C+E+J">E. J. Jeon</a>, <a href="/search/physics?searchtype=author&amp;query=Joo%2C+H+W">H. W. Joo</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+W+G">W. G. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Kauer%2C+M">M. Kauer</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+B+H">B. H. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+H+J">H. J. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+J">J. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+K+W">K. W. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+S+H">S. H. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+S+K">S. K. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+S+W">S. W. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+W+K">W. K. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+Y+D">Y. D. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+Y+H">Y. H. Kim</a> , et al. (37 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.07462v2-abstract-short" style="display: inline;"> We present a comprehensive study of the nonproportionality of NaI(Tl) scintillation detectors within the context of dark matter search experiments. Our investigation, which integrates COSINE-100 data with supplementary $纬$ spectroscopy, measures light yields across diverse energy levels from full-energy $纬$ peaks produced by the decays of various isotopes. These $纬$ peaks of interest were produced&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07462v2-abstract-full').style.display = 'inline'; document.getElementById('2401.07462v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.07462v2-abstract-full" style="display: none;"> We present a comprehensive study of the nonproportionality of NaI(Tl) scintillation detectors within the context of dark matter search experiments. Our investigation, which integrates COSINE-100 data with supplementary $纬$ spectroscopy, measures light yields across diverse energy levels from full-energy $纬$ peaks produced by the decays of various isotopes. These $纬$ peaks of interest were produced by decays supported by both long and short-lived isotopes. Analyzing peaks from decays supported only by short-lived isotopes presented a unique challenge due to their limited statistics and overlapping energies, which was overcome by long-term data collection and a time-dependent analysis. A key achievement is the direct measurement of the 0.87 keV light yield, resulting from the cascade following electron capture decay of $^{22}$Na from internal contamination. This measurement, previously accessible only indirectly, deepens our understanding of NaI(Tl) scintillator behavior in the region of interest for dark matter searches. This study holds substantial implications for background modeling and the interpretation of dark matter signals in NaI(Tl) experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07462v2-abstract-full').style.display = 'none'; document.getElementById('2401.07462v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 84 (2024) 484 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01873">arXiv:2401.01873</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.01873">pdf</a>, <a href="https://arxiv.org/format/2401.01873">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Observation of the Magnonic Dicke Superradiant Phase Transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D">Dasom Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Dasgupta%2C+S">Sohail Dasgupta</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+X">Xiaoxuan Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+J">Joong-Mok Park</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+H">Hao-Tian Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+L">Liang Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Doumani%2C+J">Jacques Doumani</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xinwei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+W">Wanting Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+D">Di Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+R+H+J">Richard H. J. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Everitt%2C+H+O">Henry O. Everitt</a>, <a href="/search/physics?searchtype=author&amp;query=Kimura%2C+S">Shojiro Kimura</a>, <a href="/search/physics?searchtype=author&amp;query=Nojiri%2C+H">Hiroyuki Nojiri</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jigang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+S">Shixun Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Bamba%2C+M">Motoaki Bamba</a>, <a href="/search/physics?searchtype=author&amp;query=Hazzard%2C+K+R+A">Kaden R. A. Hazzard</a>, <a href="/search/physics?searchtype=author&amp;query=Kono%2C+J">Junichiro Kono</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01873v1-abstract-short" style="display: inline;"> Two-level atoms coupled with single-mode cavity photons are predicted to exhibit a quantum phase transition when the coupling strength exceeds a critical value, entering a phase in which atomic polarization and photonic field are finite even at zero temperature and without external driving. However, this phenomenon, the superradiant phase transition (SRPT), is forbidden by a no-go theorem due to t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01873v1-abstract-full').style.display = 'inline'; document.getElementById('2401.01873v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01873v1-abstract-full" style="display: none;"> Two-level atoms coupled with single-mode cavity photons are predicted to exhibit a quantum phase transition when the coupling strength exceeds a critical value, entering a phase in which atomic polarization and photonic field are finite even at zero temperature and without external driving. However, this phenomenon, the superradiant phase transition (SRPT), is forbidden by a no-go theorem due to the existence of the diamagnetic term in the Hamiltonian. Here, we present spectroscopic evidence for a magnonic SRPT in ErFeO$_3$, where the role of the photonic mode (two-level atoms) in the photonic SRPT is played by an Fe$^{3+}$ magnon mode (Er$^{3+}$ spins). The absence of the diamagnetic term in the Fe$^{3+}$-Er$^{3+}$ exchange coupling ensures that the no-go theorem does not apply. Terahertz and gigahertz magnetospectroscopy experiments revealed the signatures of the SRPT -- a kink and a softening, respectively, of two spin-magnon hybridized modes at the critical point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01873v1-abstract-full').style.display = 'none'; document.getElementById('2401.01873v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Kim%2C+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+D&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+D&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+D&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10