CINXE.COM
Suncica Elezovic-Hadzic | University of Belgrade - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Suncica Elezovic-Hadzic | University of Belgrade - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="qBfFG2Ms4HZOLilyMdgddZay0E3TeNcBqGa4GCEB0NWNxY5S21XBQnVC912PIIyHbGc6GvvGBMiBVUAWp8c7bQ==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="suncica elezovic-hadzic" /> <meta name="description" content="Suncica Elezovic-Hadzic, University of Belgrade: 6 Followers, 7 Following, 32 Research papers. Research interests: Learning and Teaching, ICT in Education, and…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'ca4e910d46e38122317a3848288563fbc11da57e'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15272,"monthly_visitors":"113 million","monthly_visitor_count":113784677,"monthly_visitor_count_in_millions":113,"user_count":277489891,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732748449000); window.Aedu.timeDifference = new Date().getTime() - 1732748449000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-7734a8b54dedb8fefe75ef934203d0ef41d066c1c5cfa6ba2a13dd7ec8bce449.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-9eaa790b1139e2d88eb4ac931dcbc6d7cea4403a763db5cc5a695dd2eaa34151.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://bg.academia.edu/SuncicaElezovicHadzic" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-533ab26e53b28997c1064a839643ef40d866d497c665279ed26b743aacb62042.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic","photo":"https://0.academia-photos.com/15510184/7344608/8258770/s65_suncica.elezovic-hadzic.jpg","has_photo":true,"department":{"id":9607,"name":"Faculty of Physics","url":"https://bg.academia.edu/Departments/Faculty_of_Physics/Documents","university":{"id":1445,"name":"University of Belgrade","url":"https://bg.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":3457,"name":"Learning and Teaching","url":"https://www.academia.edu/Documents/in/Learning_and_Teaching"},{"id":7585,"name":"ICT in Education","url":"https://www.academia.edu/Documents/in/ICT_in_Education"},{"id":9491,"name":"Pedagogy","url":"https://www.academia.edu/Documents/in/Pedagogy"},{"id":15869,"name":"Online Learning","url":"https://www.academia.edu/Documents/in/Online_Learning"},{"id":17871,"name":"Physics Education","url":"https://www.academia.edu/Documents/in/Physics_Education"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":502,"name":"Biophysics","url":"https://www.academia.edu/Documents/in/Biophysics"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://bg.academia.edu/SuncicaElezovicHadzic","location":"/SuncicaElezovicHadzic","scheme":"https","host":"bg.academia.edu","port":null,"pathname":"/SuncicaElezovicHadzic","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-83c73802-e031-4e84-bd0c-a43efac4caa7"></div> <div id="ProfileCheckPaperUpdate-react-component-83c73802-e031-4e84-bd0c-a43efac4caa7"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Suncica Elezovic-Hadzic" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/15510184/7344608/8258770/s200_suncica.elezovic-hadzic.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Suncica Elezovic-Hadzic</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://bg.academia.edu/">University of Belgrade</a>, <a class="u-tcGrayDarker" href="https://bg.academia.edu/Departments/Faculty_of_Physics/Documents">Faculty of Physics</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Suncica" data-follow-user-id="15510184" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="15510184"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">6</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">7</p></div></a><a href="/SuncicaElezovicHadzic/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="15510184">View All (7)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="15510184" href="https://www.academia.edu/Documents/in/Learning_and_Teaching"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://bg.academia.edu/SuncicaElezovicHadzic","location":"/SuncicaElezovicHadzic","scheme":"https","host":"bg.academia.edu","port":null,"pathname":"/SuncicaElezovicHadzic","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Learning and Teaching"]}" data-trace="false" data-dom-id="Pill-react-component-97453def-8c23-4603-a9d5-2309ef400978"></div> <div id="Pill-react-component-97453def-8c23-4603-a9d5-2309ef400978"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="15510184" href="https://www.academia.edu/Documents/in/ICT_in_Education"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["ICT in Education"]}" data-trace="false" data-dom-id="Pill-react-component-5c058aef-03b4-4997-bbdc-6e7ea457536f"></div> <div id="Pill-react-component-5c058aef-03b4-4997-bbdc-6e7ea457536f"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="15510184" href="https://www.academia.edu/Documents/in/Pedagogy"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Pedagogy"]}" data-trace="false" data-dom-id="Pill-react-component-07dc931a-6853-4744-a4f2-f615bbb30541"></div> <div id="Pill-react-component-07dc931a-6853-4744-a4f2-f615bbb30541"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="15510184" href="https://www.academia.edu/Documents/in/Online_Learning"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Online Learning"]}" data-trace="false" data-dom-id="Pill-react-component-f58a1ee9-5678-4518-9731-1dec7d81ddbf"></div> <div id="Pill-react-component-f58a1ee9-5678-4518-9731-1dec7d81ddbf"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="15510184" href="https://www.academia.edu/Documents/in/Physics_Education"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Physics Education"]}" data-trace="false" data-dom-id="Pill-react-component-223a939f-d3d6-4b7c-b99e-b5df78ae4ce1"></div> <div id="Pill-react-component-223a939f-d3d6-4b7c-b99e-b5df78ae4ce1"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Suncica Elezovic-Hadzic</h3></div><div class="js-work-strip profile--work_container" data-work-id="82302085"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/82302085/Semiflexible_Polymer_Chains_on_Plane_filling_Fractals"><img alt="Research paper thumbnail of Semiflexible Polymer Chains on Plane-filling Fractals" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/82302085/Semiflexible_Polymer_Chains_on_Plane_filling_Fractals">Semiflexible Polymer Chains on Plane-filling Fractals</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="82302085"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="82302085"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 82302085; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=82302085]").text(description); $(".js-view-count[data-work-id=82302085]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 82302085; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='82302085']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 82302085, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=82302085]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":82302085,"title":"Semiflexible Polymer Chains on Plane-filling Fractals","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2011,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/82302085/Semiflexible_Polymer_Chains_on_Plane_filling_Fractals","translated_internal_url":"","created_at":"2022-06-28T10:21:30.240-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Semiflexible_Polymer_Chains_on_Plane_filling_Fractals","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="82302072"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/82302072/Hamiltonian_Walks_on_Modified_Rectangular_Lattice"><img alt="Research paper thumbnail of Hamiltonian Walks on Modified Rectangular Lattice" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/82302072/Hamiltonian_Walks_on_Modified_Rectangular_Lattice">Hamiltonian Walks on Modified Rectangular Lattice</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="82302072"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="82302072"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 82302072; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=82302072]").text(description); $(".js-view-count[data-work-id=82302072]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 82302072; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='82302072']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 82302072, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=82302072]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":82302072,"title":"Hamiltonian Walks on Modified Rectangular Lattice","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2011,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/82302072/Hamiltonian_Walks_on_Modified_Rectangular_Lattice","translated_internal_url":"","created_at":"2022-06-28T10:20:56.281-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Hamiltonian_Walks_on_Modified_Rectangular_Lattice","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="82302064"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/82302064/Semi_flexible_Hamiltonian_Walks_on_3_and_4_simplex_Fractal_Lattices"><img alt="Research paper thumbnail of Semi-flexible Hamiltonian Walks on 3- and 4-simplex Fractal Lattices" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/82302064/Semi_flexible_Hamiltonian_Walks_on_3_and_4_simplex_Fractal_Lattices">Semi-flexible Hamiltonian Walks on 3- and 4-simplex Fractal Lattices</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="82302064"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="82302064"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 82302064; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=82302064]").text(description); $(".js-view-count[data-work-id=82302064]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 82302064; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='82302064']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 82302064, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=82302064]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":82302064,"title":"Semi-flexible Hamiltonian Walks on 3- and 4-simplex Fractal Lattices","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2011,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/82302064/Semi_flexible_Hamiltonian_Walks_on_3_and_4_simplex_Fractal_Lattices","translated_internal_url":"","created_at":"2022-06-28T10:20:22.965-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Semi_flexible_Hamiltonian_Walks_on_3_and_4_simplex_Fractal_Lattices","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="82302039"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/82302039/Semi_flexible_compact_polymers_in_two_dimensional_nonhomogeneous_confinement"><img alt="Research paper thumbnail of Semi-flexible compact polymers in two dimensional nonhomogeneous confinement" class="work-thumbnail" src="https://attachments.academia-assets.com/88055182/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/82302039/Semi_flexible_compact_polymers_in_two_dimensional_nonhomogeneous_confinement">Semi-flexible compact polymers in two dimensional nonhomogeneous confinement</a></div><div class="wp-workCard_item"><span>Journal of Physics A: Mathematical and Theoretical</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="895d96bc7ed7219f83780606d17f03c8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":88055182,"asset_id":82302039,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/88055182/download_file?st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="82302039"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="82302039"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 82302039; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=82302039]").text(description); $(".js-view-count[data-work-id=82302039]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 82302039; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='82302039']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 82302039, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "895d96bc7ed7219f83780606d17f03c8" } } $('.js-work-strip[data-work-id=82302039]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":82302039,"title":"Semi-flexible compact polymers in two dimensional nonhomogeneous confinement","translated_title":"","metadata":{"publisher":"IOP Publishing","grobid_abstract":"We have studied the compact phase conformations of semi-flexible polymer chains confined in two dimensional nonhomogeneous media, modelled by fractals that belong to the family of modified rectangular (MR) lattices. Members of the MR family are enumerated by an integer p (2 ≤ p \u003c ∞) and fractal dimension of each member of the family is equal to 2. The polymer flexibility is described by the stiffness parameter s, while the polymer conformations are modelled by weighted Hamiltonian walks (HWs). Applying an exact method of recurrence equations we have found that partition function Z N for closed HWs consisting of N steps scales as ω N µ √ N , where constants ω and µ depend on both p and s. We have calculated numerically the stiffness dependence of the polymer persistence length, as well as various thermodynamic quantities (such as free and internal energy, specific heat and entropy) for a large set of members of MR family. Analysis of these quantities has shown that semi-flexible compact polymers on MR lattices can exist only in the liquidlike (disordered) phase, whereas the crystal (ordered) phase has not appeared. Finally, behavior of the examined system at zero temperature has been discussed.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Journal of Physics A: Mathematical and Theoretical","grobid_abstract_attachment_id":88055182},"translated_abstract":null,"internal_url":"https://www.academia.edu/82302039/Semi_flexible_compact_polymers_in_two_dimensional_nonhomogeneous_confinement","translated_internal_url":"","created_at":"2022-06-28T10:19:28.799-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":88055182,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88055182/thumbnails/1.jpg","file_name":"1805.pdf","download_url":"https://www.academia.edu/attachments/88055182/download_file?st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Semi_flexible_compact_polymers_in_two_di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88055182/1805-libre.pdf?1656437875=\u0026response-content-disposition=attachment%3B+filename%3DSemi_flexible_compact_polymers_in_two_di.pdf\u0026Expires=1732752048\u0026Signature=DwjeWqQ97rJqEuhsHQ3hCT~bFVYAXd5fQlG~4wfGguKO5Gf1ZADvNDgb~lWDFP9FYVODD-xOCB7fIC7WZFzF~ZAXC40YhfxSnesw5VF8Di17OaFq54F~lYkKgLl~OvapWgYO8phZLtDeQPNL7RtkWX42n0Surcr77O-tVYlOJXU8~yJqJ2bxThHLTEUJh6SzHxtMFZvTildAYtf~lRK7f5sSBYrpZjBNxUPPunWQKbag~LQ5URpRJK8gPlzatmg25tql5V4NVX5NYhCTq0Fjqf7oosCA1PosViIwojQvSCkJMeQy7q6jK2Wl2i2T6hbnKl68dg39obRoGLim7ke74A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Semi_flexible_compact_polymers_in_two_dimensional_nonhomogeneous_confinement","translated_slug":"","page_count":21,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[{"id":88055182,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88055182/thumbnails/1.jpg","file_name":"1805.pdf","download_url":"https://www.academia.edu/attachments/88055182/download_file?st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Semi_flexible_compact_polymers_in_two_di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88055182/1805-libre.pdf?1656437875=\u0026response-content-disposition=attachment%3B+filename%3DSemi_flexible_compact_polymers_in_two_di.pdf\u0026Expires=1732752048\u0026Signature=DwjeWqQ97rJqEuhsHQ3hCT~bFVYAXd5fQlG~4wfGguKO5Gf1ZADvNDgb~lWDFP9FYVODD-xOCB7fIC7WZFzF~ZAXC40YhfxSnesw5VF8Di17OaFq54F~lYkKgLl~OvapWgYO8phZLtDeQPNL7RtkWX42n0Surcr77O-tVYlOJXU8~yJqJ2bxThHLTEUJh6SzHxtMFZvTildAYtf~lRK7f5sSBYrpZjBNxUPPunWQKbag~LQ5URpRJK8gPlzatmg25tql5V4NVX5NYhCTq0Fjqf7oosCA1PosViIwojQvSCkJMeQy7q6jK2Wl2i2T6hbnKl68dg39obRoGLim7ke74A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[{"id":21783608,"url":"http://stacks.iop.org/1751-8121/52/i=12/a=125001?key=crossref.7ca21b637b75b66cf039bfe89e3381eb"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="82302033"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/82302033/Compact_Polymers_on_Fractal_Lattices"><img alt="Research paper thumbnail of Compact Polymers on Fractal Lattices" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/82302033/Compact_Polymers_on_Fractal_Lattices">Compact Polymers on Fractal Lattices</a></div><div class="wp-workCard_item"><span>AIP Conference Proceedings</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study compact polymers, modelled by Hamiltonian walks (HWs), i.e. self‐avoiding walks that vis...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study compact polymers, modelled by Hamiltonian walks (HWs), i.e. self‐avoiding walks that visit every site of the lattice, on various fractal lattices: Sierpinski gasket (SG), Given‐Mandelbrot family of fractals, modified SG fractals, and n‐simplex fractals. Self‐similarity of these lattices enables establishing exact recursion relations for the numbers of HWs conveniently divided into several classes. Via analytical and numerical analysis of these relations, we find the asymptotic behaviour of the number of HWs and calculate connectivity constants, as well as critical exponents corresponding to the overall number of open and closed HWs. The nonuniversality of the HW critical exponents, obtained for some homogeneous lattices is confirmed by our results, whereas the scaling relations for the number of HWs, obtained here, are in general different from the relations expected for homogeneous lattices.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="82302033"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="82302033"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 82302033; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=82302033]").text(description); $(".js-view-count[data-work-id=82302033]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 82302033; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='82302033']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 82302033, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=82302033]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":82302033,"title":"Compact Polymers on Fractal Lattices","translated_title":"","metadata":{"abstract":"We study compact polymers, modelled by Hamiltonian walks (HWs), i.e. self‐avoiding walks that visit every site of the lattice, on various fractal lattices: Sierpinski gasket (SG), Given‐Mandelbrot family of fractals, modified SG fractals, and n‐simplex fractals. Self‐similarity of these lattices enables establishing exact recursion relations for the numbers of HWs conveniently divided into several classes. Via analytical and numerical analysis of these relations, we find the asymptotic behaviour of the number of HWs and calculate connectivity constants, as well as critical exponents corresponding to the overall number of open and closed HWs. The nonuniversality of the HW critical exponents, obtained for some homogeneous lattices is confirmed by our results, whereas the scaling relations for the number of HWs, obtained here, are in general different from the relations expected for homogeneous lattices.","publisher":"AIP","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"AIP Conference Proceedings"},"translated_abstract":"We study compact polymers, modelled by Hamiltonian walks (HWs), i.e. self‐avoiding walks that visit every site of the lattice, on various fractal lattices: Sierpinski gasket (SG), Given‐Mandelbrot family of fractals, modified SG fractals, and n‐simplex fractals. Self‐similarity of these lattices enables establishing exact recursion relations for the numbers of HWs conveniently divided into several classes. Via analytical and numerical analysis of these relations, we find the asymptotic behaviour of the number of HWs and calculate connectivity constants, as well as critical exponents corresponding to the overall number of open and closed HWs. The nonuniversality of the HW critical exponents, obtained for some homogeneous lattices is confirmed by our results, whereas the scaling relations for the number of HWs, obtained here, are in general different from the relations expected for homogeneous lattices.","internal_url":"https://www.academia.edu/82302033/Compact_Polymers_on_Fractal_Lattices","translated_internal_url":"","created_at":"2022-06-28T10:18:57.173-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Compact_Polymers_on_Fractal_Lattices","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":172625,"name":"Fractal","url":"https://www.academia.edu/Documents/in/Fractal"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="82302025"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/82302025/Semi_flexible_compact_polymers_on_fractal_lattices"><img alt="Research paper thumbnail of Semi-flexible compact polymers on fractal lattices" class="work-thumbnail" src="https://attachments.academia-assets.com/88055171/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/82302025/Semi_flexible_compact_polymers_on_fractal_lattices">Semi-flexible compact polymers on fractal lattices</a></div><div class="wp-workCard_item"><span>Physica A: Statistical Mechanics and its Applications</span><span>, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="71e62b02832be125bbfa744771a9acae" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":88055171,"asset_id":82302025,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/88055171/download_file?st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="82302025"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="82302025"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 82302025; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=82302025]").text(description); $(".js-view-count[data-work-id=82302025]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 82302025; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='82302025']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 82302025, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "71e62b02832be125bbfa744771a9acae" } } $('.js-work-strip[data-work-id=82302025]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":82302025,"title":"Semi-flexible compact polymers on fractal lattices","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Hamiltonian cycles with bending rigidity are studied on the first three members of the fractal family obtained by generalization of the modified rectangular (MR) fractal lattice. This model is proposed to describe conformational and thermodynamic properties of a single semi-flexible ring polymer confined in a poor and disordered (e.g. crowded) solvent. Due to the competition between temperature and polymer stiffness, there is a possibility for the phase transition between molten globule and crystal phase of a polymer to occur. The partition function of the model in the thermodynamic limit is obtained and analyzed as a function of polymer stiffness parameter s (Boltzmann weight), which for semi-flexible polymers can take on values over the interval (0,1). Other quantities, such as persistence length, specific heat and entropy, are obtained numerically and presented graphically as functions of stiffness parameter s.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Physica A: Statistical Mechanics and its Applications","grobid_abstract_attachment_id":88055171},"translated_abstract":null,"internal_url":"https://www.academia.edu/82302025/Semi_flexible_compact_polymers_on_fractal_lattices","translated_internal_url":"","created_at":"2022-06-28T10:18:13.247-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":88055171,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88055171/thumbnails/1.jpg","file_name":"4059.pdf","download_url":"https://www.academia.edu/attachments/88055171/download_file?st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Semi_flexible_compact_polymers_on_fracta.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88055171/4059-libre.pdf?1656437872=\u0026response-content-disposition=attachment%3B+filename%3DSemi_flexible_compact_polymers_on_fracta.pdf\u0026Expires=1732752048\u0026Signature=bZK2-zDNmz9i1Tqbwn4y1Q~ylWTKTyGeIN9qKMjMyl52PvFps4zEH~9U7rQR~ZNs1Cy9sX-TrXHMIhl0e8iCNUDrUXKXuQ5i6YS6XfhlEqIRFoBejBXQM~P17pc9QBliR1-cObEUZVUqpbsHsvdwWQMsZY4iyb~MFuQDfJvsdnIsk3ZLauzeSxis-pkQlqQKE5JCY0FgPHp9He4mO-ovUQR2AvsGvz9BGyvU4uXTqvzGaj57b55bSBD0SjPPIzf4vG5BajfXmd76k65nQEyQn3t6IwONm6fC0IIQWt5ZV4ln6St2L89O-fYUxHUPWw0rjgfrQws4yUBRKHq-O8GgvQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Semi_flexible_compact_polymers_on_fractal_lattices","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[{"id":88055171,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88055171/thumbnails/1.jpg","file_name":"4059.pdf","download_url":"https://www.academia.edu/attachments/88055171/download_file?st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Semi_flexible_compact_polymers_on_fracta.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88055171/4059-libre.pdf?1656437872=\u0026response-content-disposition=attachment%3B+filename%3DSemi_flexible_compact_polymers_on_fracta.pdf\u0026Expires=1732752048\u0026Signature=bZK2-zDNmz9i1Tqbwn4y1Q~ylWTKTyGeIN9qKMjMyl52PvFps4zEH~9U7rQR~ZNs1Cy9sX-TrXHMIhl0e8iCNUDrUXKXuQ5i6YS6XfhlEqIRFoBejBXQM~P17pc9QBliR1-cObEUZVUqpbsHsvdwWQMsZY4iyb~MFuQDfJvsdnIsk3ZLauzeSxis-pkQlqQKE5JCY0FgPHp9He4mO-ovUQR2AvsGvz9BGyvU4uXTqvzGaj57b55bSBD0SjPPIzf4vG5BajfXmd76k65nQEyQn3t6IwONm6fC0IIQWt5ZV4ln6St2L89O-fYUxHUPWw0rjgfrQws4yUBRKHq-O8GgvQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":317,"name":"Fractal Geometry","url":"https://www.academia.edu/Documents/in/Fractal_Geometry"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":172625,"name":"Fractal","url":"https://www.academia.edu/Documents/in/Fractal"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":230901,"name":"Molten Globule","url":"https://www.academia.edu/Documents/in/Molten_Globule"},{"id":247487,"name":"Temperature Dependence","url":"https://www.academia.edu/Documents/in/Temperature_Dependence"},{"id":556555,"name":"Partition Function","url":"https://www.academia.edu/Documents/in/Partition_Function"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="82302015"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/82302015/Critical_exponents_of_surface_interacting_self_avoiding_walks_on_a_family_of_truncated_n_simplex_lattices"><img alt="Research paper thumbnail of Critical exponents of surface-interacting self-avoiding walks on a family of truncated n-simplex lattices" class="work-thumbnail" src="https://attachments.academia-assets.com/88055164/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/82302015/Critical_exponents_of_surface_interacting_self_avoiding_walks_on_a_family_of_truncated_n_simplex_lattices">Critical exponents of surface-interacting self-avoiding walks on a family of truncated n-simplex lattices</a></div><div class="wp-workCard_item"><span>Physica A: Statistical Mechanics and its Applications</span><span>, 1996</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b36f2f50148c0738a2d5c87ae4d85945" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":88055164,"asset_id":82302015,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/88055164/download_file?st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="82302015"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="82302015"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 82302015; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=82302015]").text(description); $(".js-view-count[data-work-id=82302015]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 82302015; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='82302015']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 82302015, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b36f2f50148c0738a2d5c87ae4d85945" } } $('.js-work-strip[data-work-id=82302015]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":82302015,"title":"Critical exponents of surface-interacting self-avoiding walks on a family of truncated n-simplex lattices","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"We study the critical behavior of surface-interacting self-avoiding random walks on a class of truncated simplex lattices, which can be labeled by an integer n ≥ 3. Using the exact renormalization group method we have been able to obtain the exact values of various critical exponents for all values of n up to n = 6. We also derived simple formulas which describe the asymptotic behavior of these exponents in the limit of large n (n → ∞). In spite of the fact that the coordination number of the lattice tends to infinity in this limit, we found that the most of the studied critical exponents approach certain finite values, which differ from corresponding values for simple random walks (without self-avoiding walk constraint).","publication_date":{"day":null,"month":null,"year":1996,"errors":{}},"publication_name":"Physica A: Statistical Mechanics and its Applications","grobid_abstract_attachment_id":88055164},"translated_abstract":null,"internal_url":"https://www.academia.edu/82302015/Critical_exponents_of_surface_interacting_self_avoiding_walks_on_a_family_of_truncated_n_simplex_lattices","translated_internal_url":"","created_at":"2022-06-28T10:17:45.013-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":88055164,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88055164/thumbnails/1.jpg","file_name":"9612233.pdf","download_url":"https://www.academia.edu/attachments/88055164/download_file?st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Critical_exponents_of_surface_interactin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88055164/9612233-libre.pdf?1656437875=\u0026response-content-disposition=attachment%3B+filename%3DCritical_exponents_of_surface_interactin.pdf\u0026Expires=1732752048\u0026Signature=GwifIbODGPqinA8a5T4adn1r~rqFK9MdNNg9mpwX7CyIj3aO10uDodMjh5NlK02EfKInEb0wLsWn2u6tl~K6-5wpQbrR6ZYSYB9CbaL5Z~dEwWvvtun42kGbrhOwCy2ztI62TR89s8jtgy8HqtNrVlxJ53uHuDYQ7SIG9PawYpoHoxUJzWpOt42~en1HnRZmsjJOTG1Oly2quTXWZgW3JHxe3O6WavXkxJkhvDO~MZUHDI6YFOXUlvZKSoYfok7OuYHQsf8Ml86R2udPBJFVOus8xpHzbqIjtQBzy8eG6-3VkL5STFN8Mg4L35KKErUYb3GStS06ywcczUmcPy3RiA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Critical_exponents_of_surface_interacting_self_avoiding_walks_on_a_family_of_truncated_n_simplex_lattices","translated_slug":"","page_count":33,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[{"id":88055164,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88055164/thumbnails/1.jpg","file_name":"9612233.pdf","download_url":"https://www.academia.edu/attachments/88055164/download_file?st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Critical_exponents_of_surface_interactin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88055164/9612233-libre.pdf?1656437875=\u0026response-content-disposition=attachment%3B+filename%3DCritical_exponents_of_surface_interactin.pdf\u0026Expires=1732752048\u0026Signature=GwifIbODGPqinA8a5T4adn1r~rqFK9MdNNg9mpwX7CyIj3aO10uDodMjh5NlK02EfKInEb0wLsWn2u6tl~K6-5wpQbrR6ZYSYB9CbaL5Z~dEwWvvtun42kGbrhOwCy2ztI62TR89s8jtgy8HqtNrVlxJ53uHuDYQ7SIG9PawYpoHoxUJzWpOt42~en1HnRZmsjJOTG1Oly2quTXWZgW3JHxe3O6WavXkxJkhvDO~MZUHDI6YFOXUlvZKSoYfok7OuYHQsf8Ml86R2udPBJFVOus8xpHzbqIjtQBzy8eG6-3VkL5STFN8Mg4L35KKErUYb3GStS06ywcczUmcPy3RiA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"},{"id":112234,"name":"Exact Renormalization Group","url":"https://www.academia.edu/Documents/in/Exact_Renormalization_Group"},{"id":494966,"name":"Renormalization Group","url":"https://www.academia.edu/Documents/in/Renormalization_Group"},{"id":721120,"name":"Coordination number","url":"https://www.academia.edu/Documents/in/Coordination_number"},{"id":1278668,"name":"Self Avoiding Walk","url":"https://www.academia.edu/Documents/in/Self_Avoiding_Walk"},{"id":3599123,"name":"critical behavior","url":"https://www.academia.edu/Documents/in/critical_behavior"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="82301995"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/82301995/Pulling_self_interacting_linear_polymers_on_a_family_of_fractal_lattices_embedded_in_three_dimensional_space"><img alt="Research paper thumbnail of Pulling self-interacting linear polymers on a family of fractal lattices embedded in three-dimensional space" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/82301995/Pulling_self_interacting_linear_polymers_on_a_family_of_fractal_lattices_embedded_in_three_dimensional_space">Pulling self-interacting linear polymers on a family of fractal lattices embedded in three-dimensional space</a></div><div class="wp-workCard_item"><span>Journal of Statistical Mechanics: Theory and Experiment</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT We have studied the problem of force pulling self-interacting linear polymers situated i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT We have studied the problem of force pulling self-interacting linear polymers situated in fractal containers that belong to the Sierpinski gasket (SG) family of fractals embedded in three-dimensional (3D) space. Each member of this family is labeled with an integer b (2 ≤ b ≤ ∞). The polymer chain is modeled by a self-avoiding walk (SAW) with one end anchored to one of the four boundary walls of the lattice, while the other (floating in the bulk of the fractal) is the position at which the force is acting. By applying an exact renormalization group (RG) method we have established the phase diagrams, including the critical force–temperature dependence, for fractals with b = 2,3 and 4. Also, for the same fractals, in all polymer phases, we examined the generating function G1 for the numbers of all possible SAWs with one end anchored to the boundary wall. We found that besides the usual power-law singularity of G1, governed by the critical exponent γ1, whose specific values are worked out for all cases studied, in some regimes the function G1 displays an essential singularity in its behavior.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="82301995"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="82301995"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 82301995; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=82301995]").text(description); $(".js-view-count[data-work-id=82301995]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 82301995; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='82301995']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 82301995, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=82301995]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":82301995,"title":"Pulling self-interacting linear polymers on a family of fractal lattices embedded in three-dimensional space","translated_title":"","metadata":{"abstract":"ABSTRACT We have studied the problem of force pulling self-interacting linear polymers situated in fractal containers that belong to the Sierpinski gasket (SG) family of fractals embedded in three-dimensional (3D) space. Each member of this family is labeled with an integer b (2 ≤ b ≤ ∞). The polymer chain is modeled by a self-avoiding walk (SAW) with one end anchored to one of the four boundary walls of the lattice, while the other (floating in the bulk of the fractal) is the position at which the force is acting. By applying an exact renormalization group (RG) method we have established the phase diagrams, including the critical force–temperature dependence, for fractals with b = 2,3 and 4. Also, for the same fractals, in all polymer phases, we examined the generating function G1 for the numbers of all possible SAWs with one end anchored to the boundary wall. We found that besides the usual power-law singularity of G1, governed by the critical exponent γ1, whose specific values are worked out for all cases studied, in some regimes the function G1 displays an essential singularity in its behavior.","publisher":"IOP Publishing","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Journal of Statistical Mechanics: Theory and Experiment"},"translated_abstract":"ABSTRACT We have studied the problem of force pulling self-interacting linear polymers situated in fractal containers that belong to the Sierpinski gasket (SG) family of fractals embedded in three-dimensional (3D) space. Each member of this family is labeled with an integer b (2 ≤ b ≤ ∞). The polymer chain is modeled by a self-avoiding walk (SAW) with one end anchored to one of the four boundary walls of the lattice, while the other (floating in the bulk of the fractal) is the position at which the force is acting. By applying an exact renormalization group (RG) method we have established the phase diagrams, including the critical force–temperature dependence, for fractals with b = 2,3 and 4. Also, for the same fractals, in all polymer phases, we examined the generating function G1 for the numbers of all possible SAWs with one end anchored to the boundary wall. We found that besides the usual power-law singularity of G1, governed by the critical exponent γ1, whose specific values are worked out for all cases studied, in some regimes the function G1 displays an essential singularity in its behavior.","internal_url":"https://www.academia.edu/82301995/Pulling_self_interacting_linear_polymers_on_a_family_of_fractal_lattices_embedded_in_three_dimensional_space","translated_internal_url":"","created_at":"2022-06-28T10:17:29.340-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Pulling_self_interacting_linear_polymers_on_a_family_of_fractal_lattices_embedded_in_three_dimensional_space","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":172625,"name":"Fractal","url":"https://www.academia.edu/Documents/in/Fractal"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="82301735"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/82301735/Can_Collapsed_Polymer_Globule_Exist_on_n_simplex_Lattice_with_Odd_n"><img alt="Research paper thumbnail of Can Collapsed Polymer Globule Exist on n-simplex Lattice with Odd n?" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/82301735/Can_Collapsed_Polymer_Globule_Exist_on_n_simplex_Lattice_with_Odd_n">Can Collapsed Polymer Globule Exist on n-simplex Lattice with Odd n?</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="82301735"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="82301735"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 82301735; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=82301735]").text(description); $(".js-view-count[data-work-id=82301735]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 82301735; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='82301735']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 82301735, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=82301735]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":82301735,"title":"Can Collapsed Polymer Globule Exist on n-simplex Lattice with Odd n?","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2007,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/82301735/Can_Collapsed_Polymer_Globule_Exist_on_n_simplex_Lattice_with_Odd_n","translated_internal_url":"","created_at":"2022-06-28T10:12:50.836-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Can_Collapsed_Polymer_Globule_Exist_on_n_simplex_Lattice_with_Odd_n","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="68591699"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/68591699/Interacting_linear_polymers_on_three_dimensional_Sierpinski_fractals"><img alt="Research paper thumbnail of Interacting linear polymers on three-dimensional Sierpinski fractals" class="work-thumbnail" src="https://attachments.academia-assets.com/79018156/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/68591699/Interacting_linear_polymers_on_three_dimensional_Sierpinski_fractals">Interacting linear polymers on three-dimensional Sierpinski fractals</a></div><div class="wp-workCard_item"><span>arXiv: Statistical Mechanics</span><span>, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Using self-avoiding walk model on three-dimensional Sierpinski fractals (3d SF) we have studied c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Using self-avoiding walk model on three-dimensional Sierpinski fractals (3d SF) we have studied critical properties of self-interacting linear polymers in porous environment, via exact real-space renormalization group (RG) method. We have found that RG equations for 3d SF with base b=4 are much more complicated than for the previously studied b=2 and b=3 3d SFs. Numerical analysis of these equations shows that for all considered cases there are three fixed points, corresponding to the high-temperature extended polymer state, collapse transition, and the low-temperature state, which is compact or semi-compact, depending on the value of the fractal base b. We discuss the reasons for such different low--temperature behavior, as well as the possibility of establishing the RG equations beyond b=4.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a2cbc8bb6efceba11a636e7657ba8dfe" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":79018156,"asset_id":68591699,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/79018156/download_file?st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="68591699"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="68591699"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 68591699; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=68591699]").text(description); $(".js-view-count[data-work-id=68591699]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 68591699; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='68591699']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 68591699, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a2cbc8bb6efceba11a636e7657ba8dfe" } } $('.js-work-strip[data-work-id=68591699]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":68591699,"title":"Interacting linear polymers on three-dimensional Sierpinski fractals","translated_title":"","metadata":{"abstract":"Using self-avoiding walk model on three-dimensional Sierpinski fractals (3d SF) we have studied critical properties of self-interacting linear polymers in porous environment, via exact real-space renormalization group (RG) method. We have found that RG equations for 3d SF with base b=4 are much more complicated than for the previously studied b=2 and b=3 3d SFs. Numerical analysis of these equations shows that for all considered cases there are three fixed points, corresponding to the high-temperature extended polymer state, collapse transition, and the low-temperature state, which is compact or semi-compact, depending on the value of the fractal base b. We discuss the reasons for such different low--temperature behavior, as well as the possibility of establishing the RG equations beyond b=4.","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"arXiv: Statistical Mechanics"},"translated_abstract":"Using self-avoiding walk model on three-dimensional Sierpinski fractals (3d SF) we have studied critical properties of self-interacting linear polymers in porous environment, via exact real-space renormalization group (RG) method. We have found that RG equations for 3d SF with base b=4 are much more complicated than for the previously studied b=2 and b=3 3d SFs. Numerical analysis of these equations shows that for all considered cases there are three fixed points, corresponding to the high-temperature extended polymer state, collapse transition, and the low-temperature state, which is compact or semi-compact, depending on the value of the fractal base b. We discuss the reasons for such different low--temperature behavior, as well as the possibility of establishing the RG equations beyond b=4.","internal_url":"https://www.academia.edu/68591699/Interacting_linear_polymers_on_three_dimensional_Sierpinski_fractals","translated_internal_url":"","created_at":"2022-01-18T02:14:40.359-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79018156,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79018156/thumbnails/1.jpg","file_name":"0205509v1.pdf","download_url":"https://www.academia.edu/attachments/79018156/download_file?st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interacting_linear_polymers_on_three_dim.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79018156/0205509v1-libre.pdf?1642504367=\u0026response-content-disposition=attachment%3B+filename%3DInteracting_linear_polymers_on_three_dim.pdf\u0026Expires=1732752048\u0026Signature=QVLJaFDUkaoI~SgplBO1HIKgrKPDVph7vDB3whyMXYW~UyCK~T7skuKJTMY3q44UQCT-u8vXk3eQAqsUQRhoo82jMDdkpxInokRIKp3cAvm371rrJAWijg5qwjrEqOV-QQ6Ymqd6KA-bXzvP~ySoUHXiQ~x1P6ODaBk3omH7esEnuEhwsTgbmfttKtTNdyMKa-FQPXbg2o7XJxUsEUuYfmfw2-3iok~OTWuVF5wtTBw8ZI5hiaD3lBwKsOTyvCYUHZ6lmm5ySlS9zUg4VNdgl53lRYW2m--NlgoIwqtAmq9QU8xiKdOBMnnX4tfRGITSKS4VFGqcXN2YxbsMq0bdLw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Interacting_linear_polymers_on_three_dimensional_Sierpinski_fractals","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[{"id":79018156,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79018156/thumbnails/1.jpg","file_name":"0205509v1.pdf","download_url":"https://www.academia.edu/attachments/79018156/download_file?st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interacting_linear_polymers_on_three_dim.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79018156/0205509v1-libre.pdf?1642504367=\u0026response-content-disposition=attachment%3B+filename%3DInteracting_linear_polymers_on_three_dim.pdf\u0026Expires=1732752048\u0026Signature=QVLJaFDUkaoI~SgplBO1HIKgrKPDVph7vDB3whyMXYW~UyCK~T7skuKJTMY3q44UQCT-u8vXk3eQAqsUQRhoo82jMDdkpxInokRIKp3cAvm371rrJAWijg5qwjrEqOV-QQ6Ymqd6KA-bXzvP~ySoUHXiQ~x1P6ODaBk3omH7esEnuEhwsTgbmfttKtTNdyMKa-FQPXbg2o7XJxUsEUuYfmfw2-3iok~OTWuVF5wtTBw8ZI5hiaD3lBwKsOTyvCYUHZ6lmm5ySlS9zUg4VNdgl53lRYW2m--NlgoIwqtAmq9QU8xiKdOBMnnX4tfRGITSKS4VFGqcXN2YxbsMq0bdLw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":12022,"name":"Numerical Analysis","url":"https://www.academia.edu/Documents/in/Numerical_Analysis"},{"id":494966,"name":"Renormalization Group","url":"https://www.academia.edu/Documents/in/Renormalization_Group"}],"urls":[{"id":16581791,"url":"https://arxiv.org/pdf/cond-mat/0205509v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="52032363"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/52032363/Exact_study_of_surface_critical_exponents_of_polymer_chains_grafted_to_adsorbing_boundary_of_fractal_lattices_embedded_in_three_dimensional_space"><img alt="Research paper thumbnail of Exact study of surface critical exponents of polymer chains grafted to adsorbing boundary of fractal lattices embedded in three-dimensional space" class="work-thumbnail" src="https://attachments.academia-assets.com/69484120/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/52032363/Exact_study_of_surface_critical_exponents_of_polymer_chains_grafted_to_adsorbing_boundary_of_fractal_lattices_embedded_in_three_dimensional_space">Exact study of surface critical exponents of polymer chains grafted to adsorbing boundary of fractal lattices embedded in three-dimensional space</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study the adsorption problem of linear polymers, when the container of the polymer--solvent sy...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study the adsorption problem of linear polymers, when the container of the polymer--solvent system is taken to be a member of the three dimensional Sierpinski gasket (SG) family of fractals. Members of the SG family are enumerated by an integer $b$ ($2\le b\le\infty$), and it is assumed that one side of each SG fractal is impenetrable adsorbing boundary. We calculate the critical exponents $\gamma_1, \gamma_{11}$, and $\gamma_s$ which, within the self--avoiding walk model (SAW) of polymer chain, are associated with the numbers of all possible SAWs with one, both, and no ends grafted on the adsorbing impenetrable boundary, respectively. By applying the exact renormalization group (RG) method, for $2\le b\le 4$, we have obtained specific values for these exponents, for various type of polymer conformations. We discuss their mutual relations and their relations with other critical exponents pertinent to SAWs on the SG fractals.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e04e410f0c9d6c971afaae23f22b003f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":69484120,"asset_id":52032363,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/69484120/download_file?st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="52032363"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="52032363"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 52032363; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=52032363]").text(description); $(".js-view-count[data-work-id=52032363]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 52032363; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='52032363']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 52032363, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e04e410f0c9d6c971afaae23f22b003f" } } $('.js-work-strip[data-work-id=52032363]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":52032363,"title":"Exact study of surface critical exponents of polymer chains grafted to adsorbing boundary of fractal lattices embedded in three-dimensional space","translated_title":"","metadata":{"abstract":"We study the adsorption problem of linear polymers, when the container of the polymer--solvent system is taken to be a member of the three dimensional Sierpinski gasket (SG) family of fractals. Members of the SG family are enumerated by an integer $b$ ($2\\le b\\le\\infty$), and it is assumed that one side of each SG fractal is impenetrable adsorbing boundary. We calculate the critical exponents $\\gamma_1, \\gamma_{11}$, and $\\gamma_s$ which, within the self--avoiding walk model (SAW) of polymer chain, are associated with the numbers of all possible SAWs with one, both, and no ends grafted on the adsorbing impenetrable boundary, respectively. By applying the exact renormalization group (RG) method, for $2\\le b\\le 4$, we have obtained specific values for these exponents, for various type of polymer conformations. We discuss their mutual relations and their relations with other critical exponents pertinent to SAWs on the SG fractals."},"translated_abstract":"We study the adsorption problem of linear polymers, when the container of the polymer--solvent system is taken to be a member of the three dimensional Sierpinski gasket (SG) family of fractals. Members of the SG family are enumerated by an integer $b$ ($2\\le b\\le\\infty$), and it is assumed that one side of each SG fractal is impenetrable adsorbing boundary. We calculate the critical exponents $\\gamma_1, \\gamma_{11}$, and $\\gamma_s$ which, within the self--avoiding walk model (SAW) of polymer chain, are associated with the numbers of all possible SAWs with one, both, and no ends grafted on the adsorbing impenetrable boundary, respectively. By applying the exact renormalization group (RG) method, for $2\\le b\\le 4$, we have obtained specific values for these exponents, for various type of polymer conformations. We discuss their mutual relations and their relations with other critical exponents pertinent to SAWs on the SG fractals.","internal_url":"https://www.academia.edu/52032363/Exact_study_of_surface_critical_exponents_of_polymer_chains_grafted_to_adsorbing_boundary_of_fractal_lattices_embedded_in_three_dimensional_space","translated_internal_url":"","created_at":"2021-09-12T13:56:15.203-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":69484120,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/69484120/thumbnails/1.jpg","file_name":"Exact_study_of_surface_critical_exponent20210912-18346-17rm7f.pdf","download_url":"https://www.academia.edu/attachments/69484120/download_file?st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Exact_study_of_surface_critical_exponent.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/69484120/Exact_study_of_surface_critical_exponent20210912-18346-17rm7f.pdf?1631480240=\u0026response-content-disposition=attachment%3B+filename%3DExact_study_of_surface_critical_exponent.pdf\u0026Expires=1732752048\u0026Signature=cmc4bffLao0L-UsB7VdoqadabmWXAcv1y72wv7-7DgGQ~n7IMNup3pI8MvrLpnumKfG2BXpFBRg9H7c6ZaQpmWF2fx0g098pfzxjLNmqYoFmcTXJ7YTvKKlHCpC3XovD2Nx-oeG47IV0m6eP08JNe~l5l~ZsziHOs83wOOinMbg3wKQ5voJbeWT2IMG8HvIQ3z~myBiJZz6qEYpzj2ND~BPguuaCUBo1SpuDFmVCoNeQ2-NaJwiSS~6atAhT2ajadoF6KeTo~zA~8MsFlMMqu4dQ1cGGB4hSvGJTtup~llJCPv7NFinzErO2UhzjsRLoARclbDTOoGdf-OJY0rDtEQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Exact_study_of_surface_critical_exponents_of_polymer_chains_grafted_to_adsorbing_boundary_of_fractal_lattices_embedded_in_three_dimensional_space","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[{"id":69484120,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/69484120/thumbnails/1.jpg","file_name":"Exact_study_of_surface_critical_exponent20210912-18346-17rm7f.pdf","download_url":"https://www.academia.edu/attachments/69484120/download_file?st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Exact_study_of_surface_critical_exponent.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/69484120/Exact_study_of_surface_critical_exponent20210912-18346-17rm7f.pdf?1631480240=\u0026response-content-disposition=attachment%3B+filename%3DExact_study_of_surface_critical_exponent.pdf\u0026Expires=1732752048\u0026Signature=cmc4bffLao0L-UsB7VdoqadabmWXAcv1y72wv7-7DgGQ~n7IMNup3pI8MvrLpnumKfG2BXpFBRg9H7c6ZaQpmWF2fx0g098pfzxjLNmqYoFmcTXJ7YTvKKlHCpC3XovD2Nx-oeG47IV0m6eP08JNe~l5l~ZsziHOs83wOOinMbg3wKQ5voJbeWT2IMG8HvIQ3z~myBiJZz6qEYpzj2ND~BPguuaCUBo1SpuDFmVCoNeQ2-NaJwiSS~6atAhT2ajadoF6KeTo~zA~8MsFlMMqu4dQ1cGGB4hSvGJTtup~llJCPv7NFinzErO2UhzjsRLoARclbDTOoGdf-OJY0rDtEQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="8051739"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/8051739/Interacting_linear_polymers_on_three_dimensional_Sierpinski_fractals"><img alt="Research paper thumbnail of Interacting linear polymers on three-dimensional Sierpinski fractals" class="work-thumbnail" src="https://attachments.academia-assets.com/34509343/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/8051739/Interacting_linear_polymers_on_three_dimensional_Sierpinski_fractals">Interacting linear polymers on three-dimensional Sierpinski fractals</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Using self-avoiding walk model on three-dimensional Sierpinski fractals (3d SF) we have studied c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Using self-avoiding walk model on three-dimensional Sierpinski fractals (3d SF) we have studied critical properties of self-interacting linear polymers in porous environment, via exact real-space renormalization group (RG) method. We have found that RG equations for 3d SF with base b=4 are much more complicated than for the previously studied b=2 and b=3 3d SFs. Numerical analysis of these equations shows that for all considered cases there are three fixed points, corresponding to the high-temperature extended polymer state, collapse transition, and the low-temperature state, which is compact or semi-compact, depending on the value of the fractal base b. We discuss the reasons for such different low--temperature behavior, as well as the possibility of establishing the RG equations beyond b=4.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="57a751f82bf7357d7b4c4910ecacb618" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":34509343,"asset_id":8051739,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/34509343/download_file?st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="8051739"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="8051739"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8051739; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8051739]").text(description); $(".js-view-count[data-work-id=8051739]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8051739; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='8051739']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 8051739, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "57a751f82bf7357d7b4c4910ecacb618" } } $('.js-work-strip[data-work-id=8051739]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":8051739,"title":"Interacting linear polymers on three-dimensional Sierpinski fractals","translated_title":"","metadata":{"abstract":"Using self-avoiding walk model on three-dimensional Sierpinski fractals (3d SF) we have studied critical properties of self-interacting linear polymers in porous environment, via exact real-space renormalization group (RG) method. We have found that RG equations for 3d SF with base b=4 are much more complicated than for the previously studied b=2 and b=3 3d SFs. Numerical analysis of these equations shows that for all considered cases there are three fixed points, corresponding to the high-temperature extended polymer state, collapse transition, and the low-temperature state, which is compact or semi-compact, depending on the value of the fractal base b. We discuss the reasons for such different low--temperature behavior, as well as the possibility of establishing the RG equations beyond b=4.","publication_date":{"day":null,"month":null,"year":2002,"errors":{}}},"translated_abstract":"Using self-avoiding walk model on three-dimensional Sierpinski fractals (3d SF) we have studied critical properties of self-interacting linear polymers in porous environment, via exact real-space renormalization group (RG) method. We have found that RG equations for 3d SF with base b=4 are much more complicated than for the previously studied b=2 and b=3 3d SFs. Numerical analysis of these equations shows that for all considered cases there are three fixed points, corresponding to the high-temperature extended polymer state, collapse transition, and the low-temperature state, which is compact or semi-compact, depending on the value of the fractal base b. We discuss the reasons for such different low--temperature behavior, as well as the possibility of establishing the RG equations beyond b=4.","internal_url":"https://www.academia.edu/8051739/Interacting_linear_polymers_on_three_dimensional_Sierpinski_fractals","translated_internal_url":"","created_at":"2014-08-22T06:19:56.820-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34509343,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34509343/thumbnails/1.jpg","file_name":"0205509.pdf","download_url":"https://www.academia.edu/attachments/34509343/download_file?st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interacting_linear_polymers_on_three_dim.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34509343/0205509-libre.pdf?1408713611=\u0026response-content-disposition=attachment%3B+filename%3DInteracting_linear_polymers_on_three_dim.pdf\u0026Expires=1732752048\u0026Signature=UOCnDuzipYTEGvmaYE1K-LOPb6kF~XMfvkHM2IR7I7hayVpptUDo4p7WrJdD~Y~O~zzwx519imQ4MRjbndwTM4frtW7RJsbGfgKrnRorMJgngCxK7ihQkq6hNCExYR1mG0KUA75Wa~S1ZE3K8QGjLrmyXO16JPpfOr3LtsYXKUh6nxEiFSui29-zZN8BhzMOD1kxkkVncknCWp1GzZDmYD2ToXWziiOur1drrcigBLWT75BMsR5xisx~HJojDqnhxXbiXVm~UTPNO8irHBRicjHIXwsKiNzJNjX~iZiH2PPfFabN0Z6zJBOUo~qxhcr1ZMNjjDaGfvqdtg2cZ56CKA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Interacting_linear_polymers_on_three_dimensional_Sierpinski_fractals","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[{"id":34509343,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34509343/thumbnails/1.jpg","file_name":"0205509.pdf","download_url":"https://www.academia.edu/attachments/34509343/download_file?st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interacting_linear_polymers_on_three_dim.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34509343/0205509-libre.pdf?1408713611=\u0026response-content-disposition=attachment%3B+filename%3DInteracting_linear_polymers_on_three_dim.pdf\u0026Expires=1732752048\u0026Signature=UOCnDuzipYTEGvmaYE1K-LOPb6kF~XMfvkHM2IR7I7hayVpptUDo4p7WrJdD~Y~O~zzwx519imQ4MRjbndwTM4frtW7RJsbGfgKrnRorMJgngCxK7ihQkq6hNCExYR1mG0KUA75Wa~S1ZE3K8QGjLrmyXO16JPpfOr3LtsYXKUh6nxEiFSui29-zZN8BhzMOD1kxkkVncknCWp1GzZDmYD2ToXWziiOur1drrcigBLWT75BMsR5xisx~HJojDqnhxXbiXVm~UTPNO8irHBRicjHIXwsKiNzJNjX~iZiH2PPfFabN0Z6zJBOUo~qxhcr1ZMNjjDaGfvqdtg2cZ56CKA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":12022,"name":"Numerical Analysis","url":"https://www.academia.edu/Documents/in/Numerical_Analysis"},{"id":494966,"name":"Renormalization Group","url":"https://www.academia.edu/Documents/in/Renormalization_Group"}],"urls":[{"id":3371017,"url":"http://arxiv.org/abs/cond-mat/0205509"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="8051738"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/8051738/Crossover_exponent_for_piecewise_directed_walk_adsorption_on_Sierpinski_fractals"><img alt="Research paper thumbnail of Crossover exponent for piecewise directed walk adsorption on Sierpinski fractals" class="work-thumbnail" src="https://attachments.academia-assets.com/34509341/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/8051738/Crossover_exponent_for_piecewise_directed_walk_adsorption_on_Sierpinski_fractals">Crossover exponent for piecewise directed walk adsorption on Sierpinski fractals</a></div><div class="wp-workCard_item"><span>Journal of Physics A-mathematical and General</span><span>, 1999</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study the problem of critical adsorption of piecewise directed random walks on a boundary of f...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study the problem of critical adsorption of piecewise directed random walks on a boundary of fractal lattices that belong to the Sierpinski gasket family. By applying the exact real space renormalization group method, we calculate the crossover exponent $\phi$, associated with the number of adsorbed steps, for the complete fractal family. We demonstrate that our results are very close to the results obtained for ordinary self-avoiding walk, and discuss the asymptotic behaviour of $\phi$ at the fractal to Euclidean lattice crossover.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d7efdb2948bc67f60e651e40d539649e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":34509341,"asset_id":8051738,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/34509341/download_file?st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="8051738"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="8051738"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8051738; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8051738]").text(description); $(".js-view-count[data-work-id=8051738]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8051738; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='8051738']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 8051738, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d7efdb2948bc67f60e651e40d539649e" } } $('.js-work-strip[data-work-id=8051738]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":8051738,"title":"Crossover exponent for piecewise directed walk adsorption on Sierpinski fractals","translated_title":"","metadata":{"abstract":"We study the problem of critical adsorption of piecewise directed random walks on a boundary of fractal lattices that belong to the Sierpinski gasket family. By applying the exact real space renormalization group method, we calculate the crossover exponent $\\phi$, associated with the number of adsorbed steps, for the complete fractal family. We demonstrate that our results are very close to the results obtained for ordinary self-avoiding walk, and discuss the asymptotic behaviour of $\\phi$ at the fractal to Euclidean lattice crossover.","publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"publication_name":"Journal of Physics A-mathematical and General"},"translated_abstract":"We study the problem of critical adsorption of piecewise directed random walks on a boundary of fractal lattices that belong to the Sierpinski gasket family. By applying the exact real space renormalization group method, we calculate the crossover exponent $\\phi$, associated with the number of adsorbed steps, for the complete fractal family. We demonstrate that our results are very close to the results obtained for ordinary self-avoiding walk, and discuss the asymptotic behaviour of $\\phi$ at the fractal to Euclidean lattice crossover.","internal_url":"https://www.academia.edu/8051738/Crossover_exponent_for_piecewise_directed_walk_adsorption_on_Sierpinski_fractals","translated_internal_url":"","created_at":"2014-08-22T06:19:50.513-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34509341,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34509341/thumbnails/1.jpg","file_name":"9812112.pdf","download_url":"https://www.academia.edu/attachments/34509341/download_file?st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Crossover_exponent_for_piecewise_directe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34509341/9812112-libre.pdf?1408713606=\u0026response-content-disposition=attachment%3B+filename%3DCrossover_exponent_for_piecewise_directe.pdf\u0026Expires=1732752048\u0026Signature=fCC7KcYz-8SxGGn-oHPKv7PpTkcaacQzJCh8VKMYrBah4Px1f0WkwCAla3~euVBeYLHVpP1KRw~Q-Gn0RMmBLdfg5RE18xEKNeKiXN-6pNbyvkMs-gwxlFTmo-Ob87wyTc9sGn4uj9gld9I4pzzSSDPq7mJxMrdJYy1PkQoY4fBNd3gZdhpCOIi2j9Kn8Xgx8J4psUURvxW~B4ZwRjwBj-UsLXSogF8FjTSbFy7Sr8IhfYLjfmSMFMwEew9RH-hO8PsJFUlwPMQ4~5iZUMvRT4r2UeqZSNQH-XxgpLEZ1MDAhoLuSYNz~U3OpKhthF-xOrRWWbsDUjcGGGF0h-lK5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Crossover_exponent_for_piecewise_directed_walk_adsorption_on_Sierpinski_fractals","translated_slug":"","page_count":29,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[{"id":34509341,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34509341/thumbnails/1.jpg","file_name":"9812112.pdf","download_url":"https://www.academia.edu/attachments/34509341/download_file?st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Crossover_exponent_for_piecewise_directe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34509341/9812112-libre.pdf?1408713606=\u0026response-content-disposition=attachment%3B+filename%3DCrossover_exponent_for_piecewise_directe.pdf\u0026Expires=1732752048\u0026Signature=fCC7KcYz-8SxGGn-oHPKv7PpTkcaacQzJCh8VKMYrBah4Px1f0WkwCAla3~euVBeYLHVpP1KRw~Q-Gn0RMmBLdfg5RE18xEKNeKiXN-6pNbyvkMs-gwxlFTmo-Ob87wyTc9sGn4uj9gld9I4pzzSSDPq7mJxMrdJYy1PkQoY4fBNd3gZdhpCOIi2j9Kn8Xgx8J4psUURvxW~B4ZwRjwBj-UsLXSogF8FjTSbFy7Sr8IhfYLjfmSMFMwEew9RH-hO8PsJFUlwPMQ4~5iZUMvRT4r2UeqZSNQH-XxgpLEZ1MDAhoLuSYNz~U3OpKhthF-xOrRWWbsDUjcGGGF0h-lK5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":34509340,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34509340/thumbnails/1.jpg","file_name":"9812112.pdf","download_url":"https://www.academia.edu/attachments/34509340/download_file","bulk_download_file_name":"Crossover_exponent_for_piecewise_directe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34509340/9812112-libre.pdf?1408713605=\u0026response-content-disposition=attachment%3B+filename%3DCrossover_exponent_for_piecewise_directe.pdf\u0026Expires=1732752048\u0026Signature=O0elLP~5Sm65EaRkdin8HrdO9Ug3wIkM3nXAqaNFUkWkEjjF9cd1g5~3obpVmHqrSxeGKZfAcQu~ApO6LL7deXRyYjAZaXmqEGGLpK3qCpqmnIrNVT8ZQ6-ZSyXaQ~sgkYfBK22b5m4XEv5eJWb1eG7hsc5PkA45D52ig0POXepE~Lu6cbxrIjgWDSqKXe39zSwRi8kvKGoDaDy9u0VpYP9jS-bMWigXcgsdb6ulqdAyqbt3ypofcFc1nWcZqbs-OKDnrpQNERq1vQz175h0mCPdIdFx1Oyur7QY9xTi5fFl2mkCtfZUPmNz0U1cHXTnTYELb2Dxdcnv-YYb77AraQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[{"id":3371016,"url":"http://arxiv.org/abs/cond-mat/9812112"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="8051737"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/8051737/Critical_behavior_of_the_system_of_two_crossing_self_avoiding_walks_on_a_family_of_three_dimensional_fractal_lattices"><img alt="Research paper thumbnail of Critical behavior of the system of two crossing self-avoiding walks on a family of three-dimensional fractal lattices" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/8051737/Critical_behavior_of_the_system_of_two_crossing_self_avoiding_walks_on_a_family_of_three_dimensional_fractal_lattices">Critical behavior of the system of two crossing self-avoiding walks on a family of three-dimensional fractal lattices</a></div><div class="wp-workCard_item"><span>Chaos Solitons & Fractals</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT We study the polymer system consisting of two-polymer chains situated in a fractal conta...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT We study the polymer system consisting of two-polymer chains situated in a fractal container that belongs to the three-dimensional Sierpinski Gasket (3D SG) family of fractals. The two-polymer system is modeled by two interacting self-avoiding walks (SAW) immersed in a good solvent. To conceive the inter-chain interactions we apply the model of two crossing self-avoiding walks (CSAW) in which the chains can cross each other. By applying renormalization group (RG) method, we establish the relevant phase diagrams for b=2 and b=3 members of the 3D SG fractal family. Also, at the appropriate transition fixed points we calculate the contact critical exponents φ, associated with the number of contacts between monomers of different chains. For larger b(2⩽b⩽30) we apply Monte Carlo renormalization group (MCRG) method, and compare the obtained results for φ with phenomenological proposals for the contact critical exponent, as well as with results obtained for other similar models of two-polymer system.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="8051737"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="8051737"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8051737; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8051737]").text(description); $(".js-view-count[data-work-id=8051737]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8051737; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='8051737']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 8051737, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=8051737]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":8051737,"title":"Critical behavior of the system of two crossing self-avoiding walks on a family of three-dimensional fractal lattices","translated_title":"","metadata":{"abstract":"ABSTRACT We study the polymer system consisting of two-polymer chains situated in a fractal container that belongs to the three-dimensional Sierpinski Gasket (3D SG) family of fractals. The two-polymer system is modeled by two interacting self-avoiding walks (SAW) immersed in a good solvent. To conceive the inter-chain interactions we apply the model of two crossing self-avoiding walks (CSAW) in which the chains can cross each other. By applying renormalization group (RG) method, we establish the relevant phase diagrams for b=2 and b=3 members of the 3D SG fractal family. Also, at the appropriate transition fixed points we calculate the contact critical exponents φ, associated with the number of contacts between monomers of different chains. For larger b(2⩽b⩽30) we apply Monte Carlo renormalization group (MCRG) method, and compare the obtained results for φ with phenomenological proposals for the contact critical exponent, as well as with results obtained for other similar models of two-polymer system.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Chaos Solitons \u0026 Fractals"},"translated_abstract":"ABSTRACT We study the polymer system consisting of two-polymer chains situated in a fractal container that belongs to the three-dimensional Sierpinski Gasket (3D SG) family of fractals. The two-polymer system is modeled by two interacting self-avoiding walks (SAW) immersed in a good solvent. To conceive the inter-chain interactions we apply the model of two crossing self-avoiding walks (CSAW) in which the chains can cross each other. By applying renormalization group (RG) method, we establish the relevant phase diagrams for b=2 and b=3 members of the 3D SG fractal family. Also, at the appropriate transition fixed points we calculate the contact critical exponents φ, associated with the number of contacts between monomers of different chains. For larger b(2⩽b⩽30) we apply Monte Carlo renormalization group (MCRG) method, and compare the obtained results for φ with phenomenological proposals for the contact critical exponent, as well as with results obtained for other similar models of two-polymer system.","internal_url":"https://www.academia.edu/8051737/Critical_behavior_of_the_system_of_two_crossing_self_avoiding_walks_on_a_family_of_three_dimensional_fractal_lattices","translated_internal_url":"","created_at":"2014-08-22T06:19:43.146-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Critical_behavior_of_the_system_of_two_crossing_self_avoiding_walks_on_a_family_of_three_dimensional_fractal_lattices","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"}],"urls":[{"id":3371015,"url":"http://www.sciencedirect.com/science/article/pii/S096007790800502X"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="8051736"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/8051736/Comment_on_Critical_behavior_of_the_chain_generating_function_of_self_avoiding_walks_on_the_Sierpinski_gasket_family_The_Euclidean_limit"><img alt="Research paper thumbnail of Comment on ``Critical behavior of the chain--generating function of self--avoiding walks on the Sierpinski gasket family: The Euclidean limit" class="work-thumbnail" src="https://attachments.academia-assets.com/34509338/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/8051736/Comment_on_Critical_behavior_of_the_chain_generating_function_of_self_avoiding_walks_on_the_Sierpinski_gasket_family_The_Euclidean_limit">Comment on ``Critical behavior of the chain--generating function of self--avoiding walks on the Sierpinski gasket family: The Euclidean limit</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We refute the claims made by Riera and Chalub [Phys.Rev.E {\bf 58}, 4001 (1998)] by demonstrating...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We refute the claims made by Riera and Chalub [Phys.Rev.E {\bf 58}, 4001 (1998)] by demonstrating that they have not provided enough data (requisite in their series expansion method) to draw reliable conclusions about criticality of self-avoiding walks on the Sierpinski gasket family of fractals.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1a9b2a20af8fa0e47151675aa83908a8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":34509338,"asset_id":8051736,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/34509338/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="8051736"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="8051736"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8051736; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8051736]").text(description); $(".js-view-count[data-work-id=8051736]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8051736; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='8051736']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 8051736, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1a9b2a20af8fa0e47151675aa83908a8" } } $('.js-work-strip[data-work-id=8051736]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":8051736,"title":"Comment on ``Critical behavior of the chain--generating function of self--avoiding walks on the Sierpinski gasket family: The Euclidean limit","translated_title":"","metadata":{"abstract":"We refute the claims made by Riera and Chalub [Phys.Rev.E {\\bf 58}, 4001 (1998)] by demonstrating that they have not provided enough data (requisite in their series expansion method) to draw reliable conclusions about criticality of self-avoiding walks on the Sierpinski gasket family of fractals.","publication_date":{"day":null,"month":null,"year":1998,"errors":{}}},"translated_abstract":"We refute the claims made by Riera and Chalub [Phys.Rev.E {\\bf 58}, 4001 (1998)] by demonstrating that they have not provided enough data (requisite in their series expansion method) to draw reliable conclusions about criticality of self-avoiding walks on the Sierpinski gasket family of fractals.","internal_url":"https://www.academia.edu/8051736/Comment_on_Critical_behavior_of_the_chain_generating_function_of_self_avoiding_walks_on_the_Sierpinski_gasket_family_The_Euclidean_limit","translated_internal_url":"","created_at":"2014-08-22T06:19:43.035-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34509338,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34509338/thumbnails/1.jpg","file_name":"9812399.pdf","download_url":"https://www.academia.edu/attachments/34509338/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comment_on_Critical_behavior_of_the_chai.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34509338/9812399-libre.pdf?1408713605=\u0026response-content-disposition=attachment%3B+filename%3DComment_on_Critical_behavior_of_the_chai.pdf\u0026Expires=1732752049\u0026Signature=JkLUhs2K-F6-84OdK57EeVMVwlHWEr88F30RgP8lceoi~f0A9jREvfoLD3qr8lHWyz4I9pP74No6G-pnR5s7fR~uX6owBOgAFTc0xdp1kr5qn095UjI~zm4qtE9A-0eOiEEnmx-TuMtasaxKDaBPHlgc1FhQwWTp8yPM-K9TQjd5x2yiF2K98p3kqnS3shtd1U93YffgmjekuzycDajF25iVBSXLL5h8kJ9UzPSOdXQdC125Vsy93WTaxKeJIM7Oa6nlp9zL~yETmZuDi4F4TktfT7JHjP21Ct2DI-qzZMqBJTqUzvI04KEcww3zb03UbflSmqwVlbnffTcYnDavRQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Comment_on_Critical_behavior_of_the_chain_generating_function_of_self_avoiding_walks_on_the_Sierpinski_gasket_family_The_Euclidean_limit","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[{"id":34509338,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34509338/thumbnails/1.jpg","file_name":"9812399.pdf","download_url":"https://www.academia.edu/attachments/34509338/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comment_on_Critical_behavior_of_the_chai.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34509338/9812399-libre.pdf?1408713605=\u0026response-content-disposition=attachment%3B+filename%3DComment_on_Critical_behavior_of_the_chai.pdf\u0026Expires=1732752049\u0026Signature=JkLUhs2K-F6-84OdK57EeVMVwlHWEr88F30RgP8lceoi~f0A9jREvfoLD3qr8lHWyz4I9pP74No6G-pnR5s7fR~uX6owBOgAFTc0xdp1kr5qn095UjI~zm4qtE9A-0eOiEEnmx-TuMtasaxKDaBPHlgc1FhQwWTp8yPM-K9TQjd5x2yiF2K98p3kqnS3shtd1U93YffgmjekuzycDajF25iVBSXLL5h8kJ9UzPSOdXQdC125Vsy93WTaxKeJIM7Oa6nlp9zL~yETmZuDi4F4TktfT7JHjP21Ct2DI-qzZMqBJTqUzvI04KEcww3zb03UbflSmqwVlbnffTcYnDavRQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":34509339,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34509339/thumbnails/1.jpg","file_name":"9812399.pdf","download_url":"https://www.academia.edu/attachments/34509339/download_file","bulk_download_file_name":"Comment_on_Critical_behavior_of_the_chai.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34509339/9812399-libre.pdf?1408713604=\u0026response-content-disposition=attachment%3B+filename%3DComment_on_Critical_behavior_of_the_chai.pdf\u0026Expires=1732752049\u0026Signature=Noa0NxZ1nYGVVXoT9Lkn2p8aKj7Dee3yLKMT8jBG1BCyHhvF~ZrzA8uRXvR6uvFVOZlO5swtSDA5B4X0Jzto5nY4MgLmtmON2Dx98AeUNyts43MwQOVicXxqy2PQ1bFSvmvN6a9bdafctH2o0EUgxe1ktYz4MkjTqo~6KcwdROk4jodmegKc4Fn59pYZCJMknetM0RfeDpNRRNsVoviUCBODP7f43fgGBOuuWWeR0A2iE6ReJexQfsrhKeE3KQwjEUnk9oXyHc3VgEAcGu7KHVoa7INfXA3vxyg2Jhy6S-xkCCGDZu2l601fokWiAy9fUJYbMc3g6lU2EhTJnTR4kg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1278668,"name":"Self Avoiding Walk","url":"https://www.academia.edu/Documents/in/Self_Avoiding_Walk"},{"id":1627143,"name":"Sierpinski gasket","url":"https://www.academia.edu/Documents/in/Sierpinski_gasket"},{"id":2516454,"name":"Generating Function","url":"https://www.academia.edu/Documents/in/Generating_Function"}],"urls":[{"id":3371014,"url":"http://arxiv.org/abs/cond-mat/9812399"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="8051735"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/8051735/Stiffness_dependence_of_critical_exponents_of_semiflexible_polymer_chains_situated_on_two_dimensional_compact_fractals"><img alt="Research paper thumbnail of Stiffness dependence of critical exponents of semiflexible polymer chains situated on two-dimensional compact fractals" class="work-thumbnail" src="https://attachments.academia-assets.com/48239490/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/8051735/Stiffness_dependence_of_critical_exponents_of_semiflexible_polymer_chains_situated_on_two_dimensional_compact_fractals">Stiffness dependence of critical exponents of semiflexible polymer chains situated on two-dimensional compact fractals</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present an exact and Monte Carlo renormalization group (MCRG) study of semiflexible polymer ch...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present an exact and Monte Carlo renormalization group (MCRG) study of semiflexible polymer chains on an infinite family of the plane-filling (PF) fractals. The fractals are compact, that is, their fractal dimension df is equal to 2 for all members of the fractal family enumerated by the odd integer b(3≤b<∞) . For various values of stiffness parameter s of the chain, on the PF fractals (for 3≤b≤9 ), we calculate exactly the critical exponents ν (associated with the mean squared end-to-end distances of polymer chain) and γ (associated with the total number of different polymer chains). In addition, we calculate ν and γ through the MCRG approach for b up to 201. Our results show that for each particular b , critical exponents are stiffness dependent functions, in such a way that the stiffer polymer chains (with smaller values of s ) display enlarged values of ν , and diminished values of γ . On the other hand, for any specific s , the critical exponent ν monotonically decreases, whereas the critical exponent γ monotonically increases, with the scaling parameter b . We reflect on a possible relevance of the criticality of semiflexible polymer chains on the PF family of fractals to the same problem on the regular Euclidean lattices.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e3864ca8557ace01c8c76f4c5bfb6637" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":48239490,"asset_id":8051735,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/48239490/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="8051735"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="8051735"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8051735; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8051735]").text(description); $(".js-view-count[data-work-id=8051735]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8051735; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='8051735']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 8051735, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e3864ca8557ace01c8c76f4c5bfb6637" } } $('.js-work-strip[data-work-id=8051735]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":8051735,"title":"Stiffness dependence of critical exponents of semiflexible polymer chains situated on two-dimensional compact fractals","translated_title":"","metadata":{"abstract":"We present an exact and Monte Carlo renormalization group (MCRG) study of semiflexible polymer chains on an infinite family of the plane-filling (PF) fractals. The fractals are compact, that is, their fractal dimension df is equal to 2 for all members of the fractal family enumerated by the odd integer b(3≤b\u003c∞) . For various values of stiffness parameter s of the chain, on the PF fractals (for 3≤b≤9 ), we calculate exactly the critical exponents ν (associated with the mean squared end-to-end distances of polymer chain) and γ (associated with the total number of different polymer chains). In addition, we calculate ν and γ through the MCRG approach for b up to 201. Our results show that for each particular b , critical exponents are stiffness dependent functions, in such a way that the stiffer polymer chains (with smaller values of s ) display enlarged values of ν , and diminished values of γ . On the other hand, for any specific s , the critical exponent ν monotonically decreases, whereas the critical exponent γ monotonically increases, with the scaling parameter b . We reflect on a possible relevance of the criticality of semiflexible polymer chains on the PF family of fractals to the same problem on the regular Euclidean lattices.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Physical Review E"},"translated_abstract":"We present an exact and Monte Carlo renormalization group (MCRG) study of semiflexible polymer chains on an infinite family of the plane-filling (PF) fractals. The fractals are compact, that is, their fractal dimension df is equal to 2 for all members of the fractal family enumerated by the odd integer b(3≤b\u003c∞) . For various values of stiffness parameter s of the chain, on the PF fractals (for 3≤b≤9 ), we calculate exactly the critical exponents ν (associated with the mean squared end-to-end distances of polymer chain) and γ (associated with the total number of different polymer chains). In addition, we calculate ν and γ through the MCRG approach for b up to 201. Our results show that for each particular b , critical exponents are stiffness dependent functions, in such a way that the stiffer polymer chains (with smaller values of s ) display enlarged values of ν , and diminished values of γ . On the other hand, for any specific s , the critical exponent ν monotonically decreases, whereas the critical exponent γ monotonically increases, with the scaling parameter b . We reflect on a possible relevance of the criticality of semiflexible polymer chains on the PF family of fractals to the same problem on the regular Euclidean lattices.","internal_url":"https://www.academia.edu/8051735/Stiffness_dependence_of_critical_exponents_of_semiflexible_polymer_chains_situated_on_two_dimensional_compact_fractals","translated_internal_url":"","created_at":"2014-08-22T06:19:42.892-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":48239490,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48239490/thumbnails/1.jpg","file_name":"0907.3107.pdf","download_url":"https://www.academia.edu/attachments/48239490/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Stiffness_dependence_of_critical_exponen.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48239490/0907.3107-libre.pdf?1471905490=\u0026response-content-disposition=attachment%3B+filename%3DStiffness_dependence_of_critical_exponen.pdf\u0026Expires=1732752049\u0026Signature=SvqNL1f6-7rSji3WCuQpNYKOTEcMZZde3X7siUG3y4KbwvJbfvuYpBJZSJlwkg08GoNyv6Lmu-j3zQSSlINx43ei14PlootuS3t6guOKUgE9iBmbCEvozYXI41zeXzJ23P0yporDpnfVv3D4G~H89suQtUEZEeZdAQwqXLMbbcwpTAJa7BD3csD6rrt9x9WkAdhada0FjWXiXOkLLNREdroH0S2VEt2vGVoolZb7Ea3A~JhIOkbeIIc~pyI8awi7RupzRMN8JLcHTgFbG36h5UkPO2Mg~GXFt6spoor5bg~Tnn~3nwqpzTruGPYvARiDRg2YrR6ykefO7-YcJsAaaQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Stiffness_dependence_of_critical_exponents_of_semiflexible_polymer_chains_situated_on_two_dimensional_compact_fractals","translated_slug":"","page_count":22,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[{"id":48239490,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48239490/thumbnails/1.jpg","file_name":"0907.3107.pdf","download_url":"https://www.academia.edu/attachments/48239490/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Stiffness_dependence_of_critical_exponen.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48239490/0907.3107-libre.pdf?1471905490=\u0026response-content-disposition=attachment%3B+filename%3DStiffness_dependence_of_critical_exponen.pdf\u0026Expires=1732752049\u0026Signature=SvqNL1f6-7rSji3WCuQpNYKOTEcMZZde3X7siUG3y4KbwvJbfvuYpBJZSJlwkg08GoNyv6Lmu-j3zQSSlINx43ei14PlootuS3t6guOKUgE9iBmbCEvozYXI41zeXzJ23P0yporDpnfVv3D4G~H89suQtUEZEeZdAQwqXLMbbcwpTAJa7BD3csD6rrt9x9WkAdhada0FjWXiXOkLLNREdroH0S2VEt2vGVoolZb7Ea3A~JhIOkbeIIc~pyI8awi7RupzRMN8JLcHTgFbG36h5UkPO2Mg~GXFt6spoor5bg~Tnn~3nwqpzTruGPYvARiDRg2YrR6ykefO7-YcJsAaaQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":21466,"name":"Polymers","url":"https://www.academia.edu/Documents/in/Polymers"},{"id":24831,"name":"Fractals","url":"https://www.academia.edu/Documents/in/Fractals"},{"id":69542,"name":"Computer Simulation","url":"https://www.academia.edu/Documents/in/Computer_Simulation"},{"id":78086,"name":"Random Walk","url":"https://www.academia.edu/Documents/in/Random_Walk"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":494966,"name":"Renormalization Group","url":"https://www.academia.edu/Documents/in/Renormalization_Group"},{"id":586110,"name":"Elastic Modulus","url":"https://www.academia.edu/Documents/in/Elastic_Modulus"},{"id":890611,"name":"Fractal Dimension","url":"https://www.academia.edu/Documents/in/Fractal_Dimension"},{"id":954642,"name":"Levy Flight","url":"https://www.academia.edu/Documents/in/Levy_Flight"},{"id":1333436,"name":"Monte Carlo Method","url":"https://www.academia.edu/Documents/in/Monte_Carlo_Method"}],"urls":[{"id":3371013,"url":"http://adsabs.harvard.edu/abs/2009PhRvE..80f1131Z"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="8051734"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/8051734/Comment_on_Critical_behavior_of_the_chain_generating_function_of_self_avoiding_walks_on_the_Sierpinski_gasket_family_The_Euclidean_limit"><img alt="Research paper thumbnail of Comment on ``Critical behavior of the chain-generating function of self-avoiding walks on the Sierpinski gasket family: The Euclidean limit" class="work-thumbnail" src="https://attachments.academia-assets.com/48239509/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/8051734/Comment_on_Critical_behavior_of_the_chain_generating_function_of_self_avoiding_walks_on_the_Sierpinski_gasket_family_The_Euclidean_limit">Comment on ``Critical behavior of the chain-generating function of self-avoiding walks on the Sierpinski gasket family: The Euclidean limit</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We refute the claims made by Riera and Chalub [Phys. Rev. E 58, 4001 (1998)] by demonstrating tha...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We refute the claims made by Riera and Chalub [Phys. Rev. E 58, 4001 (1998)] by demonstrating that they have not provided enough data (requisite in their series expansion method) to draw reliable conclusions about criticality of self-avoiding walks on the Sierpinski gasket family of fractals.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5e1cac5f7c2da8c673e7819168f5f5d9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":48239509,"asset_id":8051734,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/48239509/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="8051734"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="8051734"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8051734; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8051734]").text(description); $(".js-view-count[data-work-id=8051734]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8051734; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='8051734']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 8051734, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5e1cac5f7c2da8c673e7819168f5f5d9" } } $('.js-work-strip[data-work-id=8051734]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":8051734,"title":"Comment on ``Critical behavior of the chain-generating function of self-avoiding walks on the Sierpinski gasket family: The Euclidean limit","translated_title":"","metadata":{"abstract":"We refute the claims made by Riera and Chalub [Phys. Rev. E 58, 4001 (1998)] by demonstrating that they have not provided enough data (requisite in their series expansion method) to draw reliable conclusions about criticality of self-avoiding walks on the Sierpinski gasket family of fractals.","ai_title_tag":"Refuting Claims on Self-Avoiding Walks on Sierpinski Gaskets","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Physical Review E"},"translated_abstract":"We refute the claims made by Riera and Chalub [Phys. Rev. E 58, 4001 (1998)] by demonstrating that they have not provided enough data (requisite in their series expansion method) to draw reliable conclusions about criticality of self-avoiding walks on the Sierpinski gasket family of fractals.","internal_url":"https://www.academia.edu/8051734/Comment_on_Critical_behavior_of_the_chain_generating_function_of_self_avoiding_walks_on_the_Sierpinski_gasket_family_The_Euclidean_limit","translated_internal_url":"","created_at":"2014-08-22T06:19:42.764-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":48239509,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48239509/thumbnails/1.jpg","file_name":"Comment_on_Critical_behavior_of_the_chai20160822-7464-ac1h8m.pdf","download_url":"https://www.academia.edu/attachments/48239509/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comment_on_Critical_behavior_of_the_chai.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48239509/Comment_on_Critical_behavior_of_the_chai20160822-7464-ac1h8m-libre.pdf?1471905488=\u0026response-content-disposition=attachment%3B+filename%3DComment_on_Critical_behavior_of_the_chai.pdf\u0026Expires=1732752049\u0026Signature=XQZlDOGjfX6XZIwl1~h0~~Fah-iYM-ZTQRD-X4p5xkrV7JWsDZpb3mQXdd57PCnCEuVteFWPYxdf1zdfyV8ruddMUktGpOdd6wCEp99gs4vygdzT4HT587vVCgTAJYeKI7gQzLc9FX3fzrmsaSRwRbDidLjsrpMgLLs40tiNqmwynfLPWbIO6PQXXYrOlER8ljDtjX~mHRkk-gWESnqUiroLx0qwwRUy3rORQyaxC3h6uXxUy1cxN2ZkjgPjolnDobrs1ZxpGmMritCxbChNNBBgkDiFXtFMNbaMKrryb8TwAujDY~N4GL~fbefDS0IJjjt46Qm1lL-glEplzG~Iog__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Comment_on_Critical_behavior_of_the_chain_generating_function_of_self_avoiding_walks_on_the_Sierpinski_gasket_family_The_Euclidean_limit","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[{"id":48239509,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48239509/thumbnails/1.jpg","file_name":"Comment_on_Critical_behavior_of_the_chai20160822-7464-ac1h8m.pdf","download_url":"https://www.academia.edu/attachments/48239509/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comment_on_Critical_behavior_of_the_chai.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48239509/Comment_on_Critical_behavior_of_the_chai20160822-7464-ac1h8m-libre.pdf?1471905488=\u0026response-content-disposition=attachment%3B+filename%3DComment_on_Critical_behavior_of_the_chai.pdf\u0026Expires=1732752049\u0026Signature=XQZlDOGjfX6XZIwl1~h0~~Fah-iYM-ZTQRD-X4p5xkrV7JWsDZpb3mQXdd57PCnCEuVteFWPYxdf1zdfyV8ruddMUktGpOdd6wCEp99gs4vygdzT4HT587vVCgTAJYeKI7gQzLc9FX3fzrmsaSRwRbDidLjsrpMgLLs40tiNqmwynfLPWbIO6PQXXYrOlER8ljDtjX~mHRkk-gWESnqUiroLx0qwwRUy3rORQyaxC3h6uXxUy1cxN2ZkjgPjolnDobrs1ZxpGmMritCxbChNNBBgkDiFXtFMNbaMKrryb8TwAujDY~N4GL~fbefDS0IJjjt46Qm1lL-glEplzG~Iog__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1278668,"name":"Self Avoiding Walk","url":"https://www.academia.edu/Documents/in/Self_Avoiding_Walk"},{"id":1627143,"name":"Sierpinski gasket","url":"https://www.academia.edu/Documents/in/Sierpinski_gasket"},{"id":2516454,"name":"Generating Function","url":"https://www.academia.edu/Documents/in/Generating_Function"}],"urls":[{"id":3371012,"url":"http://adsabs.harvard.edu/abs/2000PhRvE..61.2141M"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="8051733"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/8051733/Exact_renormalization_group_treatment_of_the_piecewise_directed_random_walks_on_fractals"><img alt="Research paper thumbnail of Exact renormalization group treatment of the piecewise directed random walks on fractals" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/8051733/Exact_renormalization_group_treatment_of_the_piecewise_directed_random_walks_on_fractals">Exact renormalization group treatment of the piecewise directed random walks on fractals</a></div><div class="wp-workCard_item"><span>Physica A-statistical Mechanics and Its Applications</span><span>, 1988</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">An exact evaluation of the critical exponent v associated with the mean squared end-to-end distan...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">An exact evaluation of the critical exponent v associated with the mean squared end-to-end distance of the piecewise directed random walks is presented in the case of the complete family of the Sierpinski gasket type of fractals.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="8051733"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="8051733"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8051733; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8051733]").text(description); $(".js-view-count[data-work-id=8051733]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8051733; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='8051733']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 8051733, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=8051733]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":8051733,"title":"Exact renormalization group treatment of the piecewise directed random walks on fractals","translated_title":"","metadata":{"abstract":"An exact evaluation of the critical exponent v associated with the mean squared end-to-end distance of the piecewise directed random walks is presented in the case of the complete family of the Sierpinski gasket type of fractals.","publication_date":{"day":null,"month":null,"year":1988,"errors":{}},"publication_name":"Physica A-statistical Mechanics and Its Applications"},"translated_abstract":"An exact evaluation of the critical exponent v associated with the mean squared end-to-end distance of the piecewise directed random walks is presented in the case of the complete family of the Sierpinski gasket type of fractals.","internal_url":"https://www.academia.edu/8051733/Exact_renormalization_group_treatment_of_the_piecewise_directed_random_walks_on_fractals","translated_internal_url":"","created_at":"2014-08-22T06:19:42.639-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Exact_renormalization_group_treatment_of_the_piecewise_directed_random_walks_on_fractals","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"},{"id":78086,"name":"Random Walk","url":"https://www.academia.edu/Documents/in/Random_Walk"},{"id":112234,"name":"Exact Renormalization Group","url":"https://www.academia.edu/Documents/in/Exact_Renormalization_Group"},{"id":1627143,"name":"Sierpinski gasket","url":"https://www.academia.edu/Documents/in/Sierpinski_gasket"}],"urls":[{"id":3371011,"url":"http://adsabs.harvard.edu/abs/1988PhyA..150..402E"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="8051732"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/8051732/Piecewise_directed_random_walk_on_the_Sierpinski_gasket_family_of_fractals"><img alt="Research paper thumbnail of Piecewise directed random walk on the Sierpinski gasket family of fractals" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/8051732/Piecewise_directed_random_walk_on_the_Sierpinski_gasket_family_of_fractals">Piecewise directed random walk on the Sierpinski gasket family of fractals</a></div><div class="wp-workCard_item"><span>Physics Letters A</span><span>, 1989</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="8051732"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="8051732"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8051732; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8051732]").text(description); $(".js-view-count[data-work-id=8051732]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8051732; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='8051732']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 8051732, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=8051732]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":8051732,"title":"Piecewise directed random walk on the Sierpinski gasket family of fractals","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1989,"errors":{}},"publication_name":"Physics Letters A"},"translated_abstract":null,"internal_url":"https://www.academia.edu/8051732/Piecewise_directed_random_walk_on_the_Sierpinski_gasket_family_of_fractals","translated_internal_url":"","created_at":"2014-08-22T06:19:42.513-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Piecewise_directed_random_walk_on_the_Sierpinski_gasket_family_of_fractals","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[],"research_interests":[{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[{"id":3371010,"url":"http://linkinghub.elsevier.com/retrieve/pii/0375960189907494"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="8051731"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/8051731/Statistics_of_semiflexible_self_avoiding_trails_on_a_family_of_two_dimensional_compact_fractals"><img alt="Research paper thumbnail of Statistics of semiflexible self-avoiding trails on a family of two-dimensional compact fractals" class="work-thumbnail" src="https://attachments.academia-assets.com/48239516/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/8051731/Statistics_of_semiflexible_self_avoiding_trails_on_a_family_of_two_dimensional_compact_fractals">Statistics of semiflexible self-avoiding trails on a family of two-dimensional compact fractals</a></div><div class="wp-workCard_item"><span>Journal of Statistical Mechanics-theory and Experiment</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We have applied the exact and Monte Carlo renormalization group (MCRG) method to study the statis...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We have applied the exact and Monte Carlo renormalization group (MCRG) method to study the statistics of semiflexible self-avoiding trails (SATs) on the family of plane-filling (PF) fractals. Each fractal of the family is compact, that is, the fractal dimension df is equal to 2 for all members of the PF family, which are enumerated by an odd integer b, 3\le b\lt \infty . Varying values of the stiffness parameter s of trails from 1 to 0 (so that when s decreases the trail stiffness increases) we calculate exactly (for 3 <= b <= 7) and through the MCRG approach (for b <= 201) the sets of the critical exponents ν (associated with the mean squared end-to-end distances of SATs) and γ (associated with the total number of different SATs). Our results show that critical exponents are stiffness dependent functions, so that ν(s) is a monotonically decreasing function of s, for each studied b, whereas γ(s) displays a non-monotonic behavior for some values of b. On the other hand, by fixing the stiffness parameter s, our results show clearly that for highly flexible trails (with s = 1 and 0.9) ν is a non-monotonic function of b, while for stiffer SATs (with s <= 0.7) ν monotonically decreases with b. We also show that γ(b) increases with increasing b, independently of s. Finally, we compare the obtained SAT data with those obtained for the semiflexible self-avoiding walk (SAW) model on the same fractal family, and for both models we discuss behavior of the studied exponents in the fractal-to-Euclidean crossover region b\to \infty .</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="86b6a79b4b212a056935ca696d6560b8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":48239516,"asset_id":8051731,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/48239516/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="8051731"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="8051731"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8051731; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8051731]").text(description); $(".js-view-count[data-work-id=8051731]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8051731; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='8051731']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 8051731, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "86b6a79b4b212a056935ca696d6560b8" } } $('.js-work-strip[data-work-id=8051731]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":8051731,"title":"Statistics of semiflexible self-avoiding trails on a family of two-dimensional compact fractals","translated_title":"","metadata":{"abstract":"We have applied the exact and Monte Carlo renormalization group (MCRG) method to study the statistics of semiflexible self-avoiding trails (SATs) on the family of plane-filling (PF) fractals. Each fractal of the family is compact, that is, the fractal dimension df is equal to 2 for all members of the PF family, which are enumerated by an odd integer b, 3\\le b\\lt \\infty . Varying values of the stiffness parameter s of trails from 1 to 0 (so that when s decreases the trail stiffness increases) we calculate exactly (for 3 \u003c= b \u003c= 7) and through the MCRG approach (for b \u003c= 201) the sets of the critical exponents ν (associated with the mean squared end-to-end distances of SATs) and γ (associated with the total number of different SATs). Our results show that critical exponents are stiffness dependent functions, so that ν(s) is a monotonically decreasing function of s, for each studied b, whereas γ(s) displays a non-monotonic behavior for some values of b. On the other hand, by fixing the stiffness parameter s, our results show clearly that for highly flexible trails (with s = 1 and 0.9) ν is a non-monotonic function of b, while for stiffer SATs (with s \u003c= 0.7) ν monotonically decreases with b. We also show that γ(b) increases with increasing b, independently of s. Finally, we compare the obtained SAT data with those obtained for the semiflexible self-avoiding walk (SAW) model on the same fractal family, and for both models we discuss behavior of the studied exponents in the fractal-to-Euclidean crossover region b\\to \\infty .","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Journal of Statistical Mechanics-theory and Experiment"},"translated_abstract":"We have applied the exact and Monte Carlo renormalization group (MCRG) method to study the statistics of semiflexible self-avoiding trails (SATs) on the family of plane-filling (PF) fractals. Each fractal of the family is compact, that is, the fractal dimension df is equal to 2 for all members of the PF family, which are enumerated by an odd integer b, 3\\le b\\lt \\infty . Varying values of the stiffness parameter s of trails from 1 to 0 (so that when s decreases the trail stiffness increases) we calculate exactly (for 3 \u003c= b \u003c= 7) and through the MCRG approach (for b \u003c= 201) the sets of the critical exponents ν (associated with the mean squared end-to-end distances of SATs) and γ (associated with the total number of different SATs). Our results show that critical exponents are stiffness dependent functions, so that ν(s) is a monotonically decreasing function of s, for each studied b, whereas γ(s) displays a non-monotonic behavior for some values of b. On the other hand, by fixing the stiffness parameter s, our results show clearly that for highly flexible trails (with s = 1 and 0.9) ν is a non-monotonic function of b, while for stiffer SATs (with s \u003c= 0.7) ν monotonically decreases with b. We also show that γ(b) increases with increasing b, independently of s. Finally, we compare the obtained SAT data with those obtained for the semiflexible self-avoiding walk (SAW) model on the same fractal family, and for both models we discuss behavior of the studied exponents in the fractal-to-Euclidean crossover region b\\to \\infty .","internal_url":"https://www.academia.edu/8051731/Statistics_of_semiflexible_self_avoiding_trails_on_a_family_of_two_dimensional_compact_fractals","translated_internal_url":"","created_at":"2014-08-22T06:19:42.394-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":48239516,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48239516/thumbnails/1.jpg","file_name":"Statistics_of_semiflexible_self-avoiding20160822-12910-5815w4.pdf","download_url":"https://www.academia.edu/attachments/48239516/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Statistics_of_semiflexible_self_avoiding.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48239516/Statistics_of_semiflexible_self-avoiding20160822-12910-5815w4-libre.pdf?1471905491=\u0026response-content-disposition=attachment%3B+filename%3DStatistics_of_semiflexible_self_avoiding.pdf\u0026Expires=1732752049\u0026Signature=MWN3U2X6phlsh8HD3L0c8h47wImZ0vNRzWN6Zf7ByQmYO548KPabK42UqoexWDEkLOJcnpDbfhrt74yrk5zry0knYhUw-rQQW1GkzjnkZmNE4J1qwF0dfIRQFCOWUhqBK8oGQRv0Eie6gQV8QiZurMmg-2x8Vxq93SAGVLx51g82IzXiGrMGeOrAd35A7-adQouR5q0IzBHR7qrmG1ZrvD6~rv~sUQjUbjVMJVrka4jNwhotSyMVzD8yl0b~nkQOyaamlsVwlh2qKgXKPLUfCB3ADcx4b~PtRlf6pNYUpgbd~Q07s-0WD2dYUl064Rv-2qd1cO~fSaeTXybqY3XeFQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Statistics_of_semiflexible_self_avoiding_trails_on_a_family_of_two_dimensional_compact_fractals","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[{"id":48239516,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48239516/thumbnails/1.jpg","file_name":"Statistics_of_semiflexible_self-avoiding20160822-12910-5815w4.pdf","download_url":"https://www.academia.edu/attachments/48239516/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Statistics_of_semiflexible_self_avoiding.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48239516/Statistics_of_semiflexible_self-avoiding20160822-12910-5815w4-libre.pdf?1471905491=\u0026response-content-disposition=attachment%3B+filename%3DStatistics_of_semiflexible_self_avoiding.pdf\u0026Expires=1732752049\u0026Signature=MWN3U2X6phlsh8HD3L0c8h47wImZ0vNRzWN6Zf7ByQmYO548KPabK42UqoexWDEkLOJcnpDbfhrt74yrk5zry0knYhUw-rQQW1GkzjnkZmNE4J1qwF0dfIRQFCOWUhqBK8oGQRv0Eie6gQV8QiZurMmg-2x8Vxq93SAGVLx51g82IzXiGrMGeOrAd35A7-adQouR5q0IzBHR7qrmG1ZrvD6~rv~sUQjUbjVMJVrka4jNwhotSyMVzD8yl0b~nkQOyaamlsVwlh2qKgXKPLUfCB3ADcx4b~PtRlf6pNYUpgbd~Q07s-0WD2dYUl064Rv-2qd1cO~fSaeTXybqY3XeFQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"}],"urls":[{"id":3371009,"url":"http://adsabs.harvard.edu/abs/2011JSMTE..10..015Z"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="1731682" id="papers"><div class="js-work-strip profile--work_container" data-work-id="82302085"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/82302085/Semiflexible_Polymer_Chains_on_Plane_filling_Fractals"><img alt="Research paper thumbnail of Semiflexible Polymer Chains on Plane-filling Fractals" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/82302085/Semiflexible_Polymer_Chains_on_Plane_filling_Fractals">Semiflexible Polymer Chains on Plane-filling Fractals</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="82302085"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="82302085"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 82302085; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=82302085]").text(description); $(".js-view-count[data-work-id=82302085]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 82302085; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='82302085']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 82302085, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=82302085]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":82302085,"title":"Semiflexible Polymer Chains on Plane-filling Fractals","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2011,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/82302085/Semiflexible_Polymer_Chains_on_Plane_filling_Fractals","translated_internal_url":"","created_at":"2022-06-28T10:21:30.240-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Semiflexible_Polymer_Chains_on_Plane_filling_Fractals","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="82302072"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/82302072/Hamiltonian_Walks_on_Modified_Rectangular_Lattice"><img alt="Research paper thumbnail of Hamiltonian Walks on Modified Rectangular Lattice" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/82302072/Hamiltonian_Walks_on_Modified_Rectangular_Lattice">Hamiltonian Walks on Modified Rectangular Lattice</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="82302072"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="82302072"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 82302072; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=82302072]").text(description); $(".js-view-count[data-work-id=82302072]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 82302072; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='82302072']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 82302072, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=82302072]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":82302072,"title":"Hamiltonian Walks on Modified Rectangular Lattice","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2011,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/82302072/Hamiltonian_Walks_on_Modified_Rectangular_Lattice","translated_internal_url":"","created_at":"2022-06-28T10:20:56.281-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Hamiltonian_Walks_on_Modified_Rectangular_Lattice","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="82302064"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/82302064/Semi_flexible_Hamiltonian_Walks_on_3_and_4_simplex_Fractal_Lattices"><img alt="Research paper thumbnail of Semi-flexible Hamiltonian Walks on 3- and 4-simplex Fractal Lattices" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/82302064/Semi_flexible_Hamiltonian_Walks_on_3_and_4_simplex_Fractal_Lattices">Semi-flexible Hamiltonian Walks on 3- and 4-simplex Fractal Lattices</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="82302064"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="82302064"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 82302064; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=82302064]").text(description); $(".js-view-count[data-work-id=82302064]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 82302064; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='82302064']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 82302064, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=82302064]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":82302064,"title":"Semi-flexible Hamiltonian Walks on 3- and 4-simplex Fractal Lattices","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2011,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/82302064/Semi_flexible_Hamiltonian_Walks_on_3_and_4_simplex_Fractal_Lattices","translated_internal_url":"","created_at":"2022-06-28T10:20:22.965-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Semi_flexible_Hamiltonian_Walks_on_3_and_4_simplex_Fractal_Lattices","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="82302039"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/82302039/Semi_flexible_compact_polymers_in_two_dimensional_nonhomogeneous_confinement"><img alt="Research paper thumbnail of Semi-flexible compact polymers in two dimensional nonhomogeneous confinement" class="work-thumbnail" src="https://attachments.academia-assets.com/88055182/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/82302039/Semi_flexible_compact_polymers_in_two_dimensional_nonhomogeneous_confinement">Semi-flexible compact polymers in two dimensional nonhomogeneous confinement</a></div><div class="wp-workCard_item"><span>Journal of Physics A: Mathematical and Theoretical</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="895d96bc7ed7219f83780606d17f03c8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":88055182,"asset_id":82302039,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/88055182/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="82302039"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="82302039"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 82302039; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=82302039]").text(description); $(".js-view-count[data-work-id=82302039]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 82302039; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='82302039']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 82302039, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "895d96bc7ed7219f83780606d17f03c8" } } $('.js-work-strip[data-work-id=82302039]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":82302039,"title":"Semi-flexible compact polymers in two dimensional nonhomogeneous confinement","translated_title":"","metadata":{"publisher":"IOP Publishing","grobid_abstract":"We have studied the compact phase conformations of semi-flexible polymer chains confined in two dimensional nonhomogeneous media, modelled by fractals that belong to the family of modified rectangular (MR) lattices. Members of the MR family are enumerated by an integer p (2 ≤ p \u003c ∞) and fractal dimension of each member of the family is equal to 2. The polymer flexibility is described by the stiffness parameter s, while the polymer conformations are modelled by weighted Hamiltonian walks (HWs). Applying an exact method of recurrence equations we have found that partition function Z N for closed HWs consisting of N steps scales as ω N µ √ N , where constants ω and µ depend on both p and s. We have calculated numerically the stiffness dependence of the polymer persistence length, as well as various thermodynamic quantities (such as free and internal energy, specific heat and entropy) for a large set of members of MR family. Analysis of these quantities has shown that semi-flexible compact polymers on MR lattices can exist only in the liquidlike (disordered) phase, whereas the crystal (ordered) phase has not appeared. Finally, behavior of the examined system at zero temperature has been discussed.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Journal of Physics A: Mathematical and Theoretical","grobid_abstract_attachment_id":88055182},"translated_abstract":null,"internal_url":"https://www.academia.edu/82302039/Semi_flexible_compact_polymers_in_two_dimensional_nonhomogeneous_confinement","translated_internal_url":"","created_at":"2022-06-28T10:19:28.799-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":88055182,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88055182/thumbnails/1.jpg","file_name":"1805.pdf","download_url":"https://www.academia.edu/attachments/88055182/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Semi_flexible_compact_polymers_in_two_di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88055182/1805-libre.pdf?1656437875=\u0026response-content-disposition=attachment%3B+filename%3DSemi_flexible_compact_polymers_in_two_di.pdf\u0026Expires=1732752048\u0026Signature=DwjeWqQ97rJqEuhsHQ3hCT~bFVYAXd5fQlG~4wfGguKO5Gf1ZADvNDgb~lWDFP9FYVODD-xOCB7fIC7WZFzF~ZAXC40YhfxSnesw5VF8Di17OaFq54F~lYkKgLl~OvapWgYO8phZLtDeQPNL7RtkWX42n0Surcr77O-tVYlOJXU8~yJqJ2bxThHLTEUJh6SzHxtMFZvTildAYtf~lRK7f5sSBYrpZjBNxUPPunWQKbag~LQ5URpRJK8gPlzatmg25tql5V4NVX5NYhCTq0Fjqf7oosCA1PosViIwojQvSCkJMeQy7q6jK2Wl2i2T6hbnKl68dg39obRoGLim7ke74A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Semi_flexible_compact_polymers_in_two_dimensional_nonhomogeneous_confinement","translated_slug":"","page_count":21,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[{"id":88055182,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88055182/thumbnails/1.jpg","file_name":"1805.pdf","download_url":"https://www.academia.edu/attachments/88055182/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Semi_flexible_compact_polymers_in_two_di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88055182/1805-libre.pdf?1656437875=\u0026response-content-disposition=attachment%3B+filename%3DSemi_flexible_compact_polymers_in_two_di.pdf\u0026Expires=1732752048\u0026Signature=DwjeWqQ97rJqEuhsHQ3hCT~bFVYAXd5fQlG~4wfGguKO5Gf1ZADvNDgb~lWDFP9FYVODD-xOCB7fIC7WZFzF~ZAXC40YhfxSnesw5VF8Di17OaFq54F~lYkKgLl~OvapWgYO8phZLtDeQPNL7RtkWX42n0Surcr77O-tVYlOJXU8~yJqJ2bxThHLTEUJh6SzHxtMFZvTildAYtf~lRK7f5sSBYrpZjBNxUPPunWQKbag~LQ5URpRJK8gPlzatmg25tql5V4NVX5NYhCTq0Fjqf7oosCA1PosViIwojQvSCkJMeQy7q6jK2Wl2i2T6hbnKl68dg39obRoGLim7ke74A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[{"id":21783608,"url":"http://stacks.iop.org/1751-8121/52/i=12/a=125001?key=crossref.7ca21b637b75b66cf039bfe89e3381eb"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="82302033"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/82302033/Compact_Polymers_on_Fractal_Lattices"><img alt="Research paper thumbnail of Compact Polymers on Fractal Lattices" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/82302033/Compact_Polymers_on_Fractal_Lattices">Compact Polymers on Fractal Lattices</a></div><div class="wp-workCard_item"><span>AIP Conference Proceedings</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study compact polymers, modelled by Hamiltonian walks (HWs), i.e. self‐avoiding walks that vis...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study compact polymers, modelled by Hamiltonian walks (HWs), i.e. self‐avoiding walks that visit every site of the lattice, on various fractal lattices: Sierpinski gasket (SG), Given‐Mandelbrot family of fractals, modified SG fractals, and n‐simplex fractals. Self‐similarity of these lattices enables establishing exact recursion relations for the numbers of HWs conveniently divided into several classes. Via analytical and numerical analysis of these relations, we find the asymptotic behaviour of the number of HWs and calculate connectivity constants, as well as critical exponents corresponding to the overall number of open and closed HWs. The nonuniversality of the HW critical exponents, obtained for some homogeneous lattices is confirmed by our results, whereas the scaling relations for the number of HWs, obtained here, are in general different from the relations expected for homogeneous lattices.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="82302033"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="82302033"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 82302033; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=82302033]").text(description); $(".js-view-count[data-work-id=82302033]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 82302033; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='82302033']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 82302033, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=82302033]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":82302033,"title":"Compact Polymers on Fractal Lattices","translated_title":"","metadata":{"abstract":"We study compact polymers, modelled by Hamiltonian walks (HWs), i.e. self‐avoiding walks that visit every site of the lattice, on various fractal lattices: Sierpinski gasket (SG), Given‐Mandelbrot family of fractals, modified SG fractals, and n‐simplex fractals. Self‐similarity of these lattices enables establishing exact recursion relations for the numbers of HWs conveniently divided into several classes. Via analytical and numerical analysis of these relations, we find the asymptotic behaviour of the number of HWs and calculate connectivity constants, as well as critical exponents corresponding to the overall number of open and closed HWs. The nonuniversality of the HW critical exponents, obtained for some homogeneous lattices is confirmed by our results, whereas the scaling relations for the number of HWs, obtained here, are in general different from the relations expected for homogeneous lattices.","publisher":"AIP","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"AIP Conference Proceedings"},"translated_abstract":"We study compact polymers, modelled by Hamiltonian walks (HWs), i.e. self‐avoiding walks that visit every site of the lattice, on various fractal lattices: Sierpinski gasket (SG), Given‐Mandelbrot family of fractals, modified SG fractals, and n‐simplex fractals. Self‐similarity of these lattices enables establishing exact recursion relations for the numbers of HWs conveniently divided into several classes. Via analytical and numerical analysis of these relations, we find the asymptotic behaviour of the number of HWs and calculate connectivity constants, as well as critical exponents corresponding to the overall number of open and closed HWs. The nonuniversality of the HW critical exponents, obtained for some homogeneous lattices is confirmed by our results, whereas the scaling relations for the number of HWs, obtained here, are in general different from the relations expected for homogeneous lattices.","internal_url":"https://www.academia.edu/82302033/Compact_Polymers_on_Fractal_Lattices","translated_internal_url":"","created_at":"2022-06-28T10:18:57.173-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Compact_Polymers_on_Fractal_Lattices","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":172625,"name":"Fractal","url":"https://www.academia.edu/Documents/in/Fractal"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="82302025"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/82302025/Semi_flexible_compact_polymers_on_fractal_lattices"><img alt="Research paper thumbnail of Semi-flexible compact polymers on fractal lattices" class="work-thumbnail" src="https://attachments.academia-assets.com/88055171/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/82302025/Semi_flexible_compact_polymers_on_fractal_lattices">Semi-flexible compact polymers on fractal lattices</a></div><div class="wp-workCard_item"><span>Physica A: Statistical Mechanics and its Applications</span><span>, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="71e62b02832be125bbfa744771a9acae" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":88055171,"asset_id":82302025,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/88055171/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="82302025"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="82302025"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 82302025; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=82302025]").text(description); $(".js-view-count[data-work-id=82302025]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 82302025; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='82302025']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 82302025, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "71e62b02832be125bbfa744771a9acae" } } $('.js-work-strip[data-work-id=82302025]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":82302025,"title":"Semi-flexible compact polymers on fractal lattices","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Hamiltonian cycles with bending rigidity are studied on the first three members of the fractal family obtained by generalization of the modified rectangular (MR) fractal lattice. This model is proposed to describe conformational and thermodynamic properties of a single semi-flexible ring polymer confined in a poor and disordered (e.g. crowded) solvent. Due to the competition between temperature and polymer stiffness, there is a possibility for the phase transition between molten globule and crystal phase of a polymer to occur. The partition function of the model in the thermodynamic limit is obtained and analyzed as a function of polymer stiffness parameter s (Boltzmann weight), which for semi-flexible polymers can take on values over the interval (0,1). Other quantities, such as persistence length, specific heat and entropy, are obtained numerically and presented graphically as functions of stiffness parameter s.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Physica A: Statistical Mechanics and its Applications","grobid_abstract_attachment_id":88055171},"translated_abstract":null,"internal_url":"https://www.academia.edu/82302025/Semi_flexible_compact_polymers_on_fractal_lattices","translated_internal_url":"","created_at":"2022-06-28T10:18:13.247-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":88055171,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88055171/thumbnails/1.jpg","file_name":"4059.pdf","download_url":"https://www.academia.edu/attachments/88055171/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Semi_flexible_compact_polymers_on_fracta.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88055171/4059-libre.pdf?1656437872=\u0026response-content-disposition=attachment%3B+filename%3DSemi_flexible_compact_polymers_on_fracta.pdf\u0026Expires=1732752048\u0026Signature=bZK2-zDNmz9i1Tqbwn4y1Q~ylWTKTyGeIN9qKMjMyl52PvFps4zEH~9U7rQR~ZNs1Cy9sX-TrXHMIhl0e8iCNUDrUXKXuQ5i6YS6XfhlEqIRFoBejBXQM~P17pc9QBliR1-cObEUZVUqpbsHsvdwWQMsZY4iyb~MFuQDfJvsdnIsk3ZLauzeSxis-pkQlqQKE5JCY0FgPHp9He4mO-ovUQR2AvsGvz9BGyvU4uXTqvzGaj57b55bSBD0SjPPIzf4vG5BajfXmd76k65nQEyQn3t6IwONm6fC0IIQWt5ZV4ln6St2L89O-fYUxHUPWw0rjgfrQws4yUBRKHq-O8GgvQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Semi_flexible_compact_polymers_on_fractal_lattices","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[{"id":88055171,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88055171/thumbnails/1.jpg","file_name":"4059.pdf","download_url":"https://www.academia.edu/attachments/88055171/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Semi_flexible_compact_polymers_on_fracta.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88055171/4059-libre.pdf?1656437872=\u0026response-content-disposition=attachment%3B+filename%3DSemi_flexible_compact_polymers_on_fracta.pdf\u0026Expires=1732752048\u0026Signature=bZK2-zDNmz9i1Tqbwn4y1Q~ylWTKTyGeIN9qKMjMyl52PvFps4zEH~9U7rQR~ZNs1Cy9sX-TrXHMIhl0e8iCNUDrUXKXuQ5i6YS6XfhlEqIRFoBejBXQM~P17pc9QBliR1-cObEUZVUqpbsHsvdwWQMsZY4iyb~MFuQDfJvsdnIsk3ZLauzeSxis-pkQlqQKE5JCY0FgPHp9He4mO-ovUQR2AvsGvz9BGyvU4uXTqvzGaj57b55bSBD0SjPPIzf4vG5BajfXmd76k65nQEyQn3t6IwONm6fC0IIQWt5ZV4ln6St2L89O-fYUxHUPWw0rjgfrQws4yUBRKHq-O8GgvQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":317,"name":"Fractal Geometry","url":"https://www.academia.edu/Documents/in/Fractal_Geometry"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":172625,"name":"Fractal","url":"https://www.academia.edu/Documents/in/Fractal"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":230901,"name":"Molten Globule","url":"https://www.academia.edu/Documents/in/Molten_Globule"},{"id":247487,"name":"Temperature Dependence","url":"https://www.academia.edu/Documents/in/Temperature_Dependence"},{"id":556555,"name":"Partition Function","url":"https://www.academia.edu/Documents/in/Partition_Function"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="82302015"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/82302015/Critical_exponents_of_surface_interacting_self_avoiding_walks_on_a_family_of_truncated_n_simplex_lattices"><img alt="Research paper thumbnail of Critical exponents of surface-interacting self-avoiding walks on a family of truncated n-simplex lattices" class="work-thumbnail" src="https://attachments.academia-assets.com/88055164/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/82302015/Critical_exponents_of_surface_interacting_self_avoiding_walks_on_a_family_of_truncated_n_simplex_lattices">Critical exponents of surface-interacting self-avoiding walks on a family of truncated n-simplex lattices</a></div><div class="wp-workCard_item"><span>Physica A: Statistical Mechanics and its Applications</span><span>, 1996</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b36f2f50148c0738a2d5c87ae4d85945" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":88055164,"asset_id":82302015,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/88055164/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="82302015"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="82302015"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 82302015; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=82302015]").text(description); $(".js-view-count[data-work-id=82302015]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 82302015; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='82302015']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 82302015, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b36f2f50148c0738a2d5c87ae4d85945" } } $('.js-work-strip[data-work-id=82302015]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":82302015,"title":"Critical exponents of surface-interacting self-avoiding walks on a family of truncated n-simplex lattices","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"We study the critical behavior of surface-interacting self-avoiding random walks on a class of truncated simplex lattices, which can be labeled by an integer n ≥ 3. Using the exact renormalization group method we have been able to obtain the exact values of various critical exponents for all values of n up to n = 6. We also derived simple formulas which describe the asymptotic behavior of these exponents in the limit of large n (n → ∞). In spite of the fact that the coordination number of the lattice tends to infinity in this limit, we found that the most of the studied critical exponents approach certain finite values, which differ from corresponding values for simple random walks (without self-avoiding walk constraint).","publication_date":{"day":null,"month":null,"year":1996,"errors":{}},"publication_name":"Physica A: Statistical Mechanics and its Applications","grobid_abstract_attachment_id":88055164},"translated_abstract":null,"internal_url":"https://www.academia.edu/82302015/Critical_exponents_of_surface_interacting_self_avoiding_walks_on_a_family_of_truncated_n_simplex_lattices","translated_internal_url":"","created_at":"2022-06-28T10:17:45.013-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":88055164,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88055164/thumbnails/1.jpg","file_name":"9612233.pdf","download_url":"https://www.academia.edu/attachments/88055164/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Critical_exponents_of_surface_interactin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88055164/9612233-libre.pdf?1656437875=\u0026response-content-disposition=attachment%3B+filename%3DCritical_exponents_of_surface_interactin.pdf\u0026Expires=1732752048\u0026Signature=GwifIbODGPqinA8a5T4adn1r~rqFK9MdNNg9mpwX7CyIj3aO10uDodMjh5NlK02EfKInEb0wLsWn2u6tl~K6-5wpQbrR6ZYSYB9CbaL5Z~dEwWvvtun42kGbrhOwCy2ztI62TR89s8jtgy8HqtNrVlxJ53uHuDYQ7SIG9PawYpoHoxUJzWpOt42~en1HnRZmsjJOTG1Oly2quTXWZgW3JHxe3O6WavXkxJkhvDO~MZUHDI6YFOXUlvZKSoYfok7OuYHQsf8Ml86R2udPBJFVOus8xpHzbqIjtQBzy8eG6-3VkL5STFN8Mg4L35KKErUYb3GStS06ywcczUmcPy3RiA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Critical_exponents_of_surface_interacting_self_avoiding_walks_on_a_family_of_truncated_n_simplex_lattices","translated_slug":"","page_count":33,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[{"id":88055164,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88055164/thumbnails/1.jpg","file_name":"9612233.pdf","download_url":"https://www.academia.edu/attachments/88055164/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Critical_exponents_of_surface_interactin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88055164/9612233-libre.pdf?1656437875=\u0026response-content-disposition=attachment%3B+filename%3DCritical_exponents_of_surface_interactin.pdf\u0026Expires=1732752048\u0026Signature=GwifIbODGPqinA8a5T4adn1r~rqFK9MdNNg9mpwX7CyIj3aO10uDodMjh5NlK02EfKInEb0wLsWn2u6tl~K6-5wpQbrR6ZYSYB9CbaL5Z~dEwWvvtun42kGbrhOwCy2ztI62TR89s8jtgy8HqtNrVlxJ53uHuDYQ7SIG9PawYpoHoxUJzWpOt42~en1HnRZmsjJOTG1Oly2quTXWZgW3JHxe3O6WavXkxJkhvDO~MZUHDI6YFOXUlvZKSoYfok7OuYHQsf8Ml86R2udPBJFVOus8xpHzbqIjtQBzy8eG6-3VkL5STFN8Mg4L35KKErUYb3GStS06ywcczUmcPy3RiA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"},{"id":112234,"name":"Exact Renormalization Group","url":"https://www.academia.edu/Documents/in/Exact_Renormalization_Group"},{"id":494966,"name":"Renormalization Group","url":"https://www.academia.edu/Documents/in/Renormalization_Group"},{"id":721120,"name":"Coordination number","url":"https://www.academia.edu/Documents/in/Coordination_number"},{"id":1278668,"name":"Self Avoiding Walk","url":"https://www.academia.edu/Documents/in/Self_Avoiding_Walk"},{"id":3599123,"name":"critical behavior","url":"https://www.academia.edu/Documents/in/critical_behavior"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="82301995"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/82301995/Pulling_self_interacting_linear_polymers_on_a_family_of_fractal_lattices_embedded_in_three_dimensional_space"><img alt="Research paper thumbnail of Pulling self-interacting linear polymers on a family of fractal lattices embedded in three-dimensional space" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/82301995/Pulling_self_interacting_linear_polymers_on_a_family_of_fractal_lattices_embedded_in_three_dimensional_space">Pulling self-interacting linear polymers on a family of fractal lattices embedded in three-dimensional space</a></div><div class="wp-workCard_item"><span>Journal of Statistical Mechanics: Theory and Experiment</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT We have studied the problem of force pulling self-interacting linear polymers situated i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT We have studied the problem of force pulling self-interacting linear polymers situated in fractal containers that belong to the Sierpinski gasket (SG) family of fractals embedded in three-dimensional (3D) space. Each member of this family is labeled with an integer b (2 ≤ b ≤ ∞). The polymer chain is modeled by a self-avoiding walk (SAW) with one end anchored to one of the four boundary walls of the lattice, while the other (floating in the bulk of the fractal) is the position at which the force is acting. By applying an exact renormalization group (RG) method we have established the phase diagrams, including the critical force–temperature dependence, for fractals with b = 2,3 and 4. Also, for the same fractals, in all polymer phases, we examined the generating function G1 for the numbers of all possible SAWs with one end anchored to the boundary wall. We found that besides the usual power-law singularity of G1, governed by the critical exponent γ1, whose specific values are worked out for all cases studied, in some regimes the function G1 displays an essential singularity in its behavior.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="82301995"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="82301995"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 82301995; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=82301995]").text(description); $(".js-view-count[data-work-id=82301995]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 82301995; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='82301995']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 82301995, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=82301995]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":82301995,"title":"Pulling self-interacting linear polymers on a family of fractal lattices embedded in three-dimensional space","translated_title":"","metadata":{"abstract":"ABSTRACT We have studied the problem of force pulling self-interacting linear polymers situated in fractal containers that belong to the Sierpinski gasket (SG) family of fractals embedded in three-dimensional (3D) space. Each member of this family is labeled with an integer b (2 ≤ b ≤ ∞). The polymer chain is modeled by a self-avoiding walk (SAW) with one end anchored to one of the four boundary walls of the lattice, while the other (floating in the bulk of the fractal) is the position at which the force is acting. By applying an exact renormalization group (RG) method we have established the phase diagrams, including the critical force–temperature dependence, for fractals with b = 2,3 and 4. Also, for the same fractals, in all polymer phases, we examined the generating function G1 for the numbers of all possible SAWs with one end anchored to the boundary wall. We found that besides the usual power-law singularity of G1, governed by the critical exponent γ1, whose specific values are worked out for all cases studied, in some regimes the function G1 displays an essential singularity in its behavior.","publisher":"IOP Publishing","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Journal of Statistical Mechanics: Theory and Experiment"},"translated_abstract":"ABSTRACT We have studied the problem of force pulling self-interacting linear polymers situated in fractal containers that belong to the Sierpinski gasket (SG) family of fractals embedded in three-dimensional (3D) space. Each member of this family is labeled with an integer b (2 ≤ b ≤ ∞). The polymer chain is modeled by a self-avoiding walk (SAW) with one end anchored to one of the four boundary walls of the lattice, while the other (floating in the bulk of the fractal) is the position at which the force is acting. By applying an exact renormalization group (RG) method we have established the phase diagrams, including the critical force–temperature dependence, for fractals with b = 2,3 and 4. Also, for the same fractals, in all polymer phases, we examined the generating function G1 for the numbers of all possible SAWs with one end anchored to the boundary wall. We found that besides the usual power-law singularity of G1, governed by the critical exponent γ1, whose specific values are worked out for all cases studied, in some regimes the function G1 displays an essential singularity in its behavior.","internal_url":"https://www.academia.edu/82301995/Pulling_self_interacting_linear_polymers_on_a_family_of_fractal_lattices_embedded_in_three_dimensional_space","translated_internal_url":"","created_at":"2022-06-28T10:17:29.340-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Pulling_self_interacting_linear_polymers_on_a_family_of_fractal_lattices_embedded_in_three_dimensional_space","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":172625,"name":"Fractal","url":"https://www.academia.edu/Documents/in/Fractal"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="82301735"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/82301735/Can_Collapsed_Polymer_Globule_Exist_on_n_simplex_Lattice_with_Odd_n"><img alt="Research paper thumbnail of Can Collapsed Polymer Globule Exist on n-simplex Lattice with Odd n?" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/82301735/Can_Collapsed_Polymer_Globule_Exist_on_n_simplex_Lattice_with_Odd_n">Can Collapsed Polymer Globule Exist on n-simplex Lattice with Odd n?</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="82301735"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="82301735"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 82301735; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=82301735]").text(description); $(".js-view-count[data-work-id=82301735]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 82301735; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='82301735']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 82301735, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=82301735]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":82301735,"title":"Can Collapsed Polymer Globule Exist on n-simplex Lattice with Odd n?","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2007,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/82301735/Can_Collapsed_Polymer_Globule_Exist_on_n_simplex_Lattice_with_Odd_n","translated_internal_url":"","created_at":"2022-06-28T10:12:50.836-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Can_Collapsed_Polymer_Globule_Exist_on_n_simplex_Lattice_with_Odd_n","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="68591699"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/68591699/Interacting_linear_polymers_on_three_dimensional_Sierpinski_fractals"><img alt="Research paper thumbnail of Interacting linear polymers on three-dimensional Sierpinski fractals" class="work-thumbnail" src="https://attachments.academia-assets.com/79018156/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/68591699/Interacting_linear_polymers_on_three_dimensional_Sierpinski_fractals">Interacting linear polymers on three-dimensional Sierpinski fractals</a></div><div class="wp-workCard_item"><span>arXiv: Statistical Mechanics</span><span>, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Using self-avoiding walk model on three-dimensional Sierpinski fractals (3d SF) we have studied c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Using self-avoiding walk model on three-dimensional Sierpinski fractals (3d SF) we have studied critical properties of self-interacting linear polymers in porous environment, via exact real-space renormalization group (RG) method. We have found that RG equations for 3d SF with base b=4 are much more complicated than for the previously studied b=2 and b=3 3d SFs. Numerical analysis of these equations shows that for all considered cases there are three fixed points, corresponding to the high-temperature extended polymer state, collapse transition, and the low-temperature state, which is compact or semi-compact, depending on the value of the fractal base b. We discuss the reasons for such different low--temperature behavior, as well as the possibility of establishing the RG equations beyond b=4.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a2cbc8bb6efceba11a636e7657ba8dfe" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":79018156,"asset_id":68591699,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/79018156/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="68591699"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="68591699"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 68591699; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=68591699]").text(description); $(".js-view-count[data-work-id=68591699]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 68591699; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='68591699']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 68591699, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a2cbc8bb6efceba11a636e7657ba8dfe" } } $('.js-work-strip[data-work-id=68591699]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":68591699,"title":"Interacting linear polymers on three-dimensional Sierpinski fractals","translated_title":"","metadata":{"abstract":"Using self-avoiding walk model on three-dimensional Sierpinski fractals (3d SF) we have studied critical properties of self-interacting linear polymers in porous environment, via exact real-space renormalization group (RG) method. We have found that RG equations for 3d SF with base b=4 are much more complicated than for the previously studied b=2 and b=3 3d SFs. Numerical analysis of these equations shows that for all considered cases there are three fixed points, corresponding to the high-temperature extended polymer state, collapse transition, and the low-temperature state, which is compact or semi-compact, depending on the value of the fractal base b. We discuss the reasons for such different low--temperature behavior, as well as the possibility of establishing the RG equations beyond b=4.","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"arXiv: Statistical Mechanics"},"translated_abstract":"Using self-avoiding walk model on three-dimensional Sierpinski fractals (3d SF) we have studied critical properties of self-interacting linear polymers in porous environment, via exact real-space renormalization group (RG) method. We have found that RG equations for 3d SF with base b=4 are much more complicated than for the previously studied b=2 and b=3 3d SFs. Numerical analysis of these equations shows that for all considered cases there are three fixed points, corresponding to the high-temperature extended polymer state, collapse transition, and the low-temperature state, which is compact or semi-compact, depending on the value of the fractal base b. We discuss the reasons for such different low--temperature behavior, as well as the possibility of establishing the RG equations beyond b=4.","internal_url":"https://www.academia.edu/68591699/Interacting_linear_polymers_on_three_dimensional_Sierpinski_fractals","translated_internal_url":"","created_at":"2022-01-18T02:14:40.359-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":79018156,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79018156/thumbnails/1.jpg","file_name":"0205509v1.pdf","download_url":"https://www.academia.edu/attachments/79018156/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interacting_linear_polymers_on_three_dim.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79018156/0205509v1-libre.pdf?1642504367=\u0026response-content-disposition=attachment%3B+filename%3DInteracting_linear_polymers_on_three_dim.pdf\u0026Expires=1732752048\u0026Signature=QVLJaFDUkaoI~SgplBO1HIKgrKPDVph7vDB3whyMXYW~UyCK~T7skuKJTMY3q44UQCT-u8vXk3eQAqsUQRhoo82jMDdkpxInokRIKp3cAvm371rrJAWijg5qwjrEqOV-QQ6Ymqd6KA-bXzvP~ySoUHXiQ~x1P6ODaBk3omH7esEnuEhwsTgbmfttKtTNdyMKa-FQPXbg2o7XJxUsEUuYfmfw2-3iok~OTWuVF5wtTBw8ZI5hiaD3lBwKsOTyvCYUHZ6lmm5ySlS9zUg4VNdgl53lRYW2m--NlgoIwqtAmq9QU8xiKdOBMnnX4tfRGITSKS4VFGqcXN2YxbsMq0bdLw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Interacting_linear_polymers_on_three_dimensional_Sierpinski_fractals","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[{"id":79018156,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/79018156/thumbnails/1.jpg","file_name":"0205509v1.pdf","download_url":"https://www.academia.edu/attachments/79018156/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interacting_linear_polymers_on_three_dim.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/79018156/0205509v1-libre.pdf?1642504367=\u0026response-content-disposition=attachment%3B+filename%3DInteracting_linear_polymers_on_three_dim.pdf\u0026Expires=1732752048\u0026Signature=QVLJaFDUkaoI~SgplBO1HIKgrKPDVph7vDB3whyMXYW~UyCK~T7skuKJTMY3q44UQCT-u8vXk3eQAqsUQRhoo82jMDdkpxInokRIKp3cAvm371rrJAWijg5qwjrEqOV-QQ6Ymqd6KA-bXzvP~ySoUHXiQ~x1P6ODaBk3omH7esEnuEhwsTgbmfttKtTNdyMKa-FQPXbg2o7XJxUsEUuYfmfw2-3iok~OTWuVF5wtTBw8ZI5hiaD3lBwKsOTyvCYUHZ6lmm5ySlS9zUg4VNdgl53lRYW2m--NlgoIwqtAmq9QU8xiKdOBMnnX4tfRGITSKS4VFGqcXN2YxbsMq0bdLw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":12022,"name":"Numerical Analysis","url":"https://www.academia.edu/Documents/in/Numerical_Analysis"},{"id":494966,"name":"Renormalization Group","url":"https://www.academia.edu/Documents/in/Renormalization_Group"}],"urls":[{"id":16581791,"url":"https://arxiv.org/pdf/cond-mat/0205509v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="52032363"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/52032363/Exact_study_of_surface_critical_exponents_of_polymer_chains_grafted_to_adsorbing_boundary_of_fractal_lattices_embedded_in_three_dimensional_space"><img alt="Research paper thumbnail of Exact study of surface critical exponents of polymer chains grafted to adsorbing boundary of fractal lattices embedded in three-dimensional space" class="work-thumbnail" src="https://attachments.academia-assets.com/69484120/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/52032363/Exact_study_of_surface_critical_exponents_of_polymer_chains_grafted_to_adsorbing_boundary_of_fractal_lattices_embedded_in_three_dimensional_space">Exact study of surface critical exponents of polymer chains grafted to adsorbing boundary of fractal lattices embedded in three-dimensional space</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study the adsorption problem of linear polymers, when the container of the polymer--solvent sy...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study the adsorption problem of linear polymers, when the container of the polymer--solvent system is taken to be a member of the three dimensional Sierpinski gasket (SG) family of fractals. Members of the SG family are enumerated by an integer $b$ ($2\le b\le\infty$), and it is assumed that one side of each SG fractal is impenetrable adsorbing boundary. We calculate the critical exponents $\gamma_1, \gamma_{11}$, and $\gamma_s$ which, within the self--avoiding walk model (SAW) of polymer chain, are associated with the numbers of all possible SAWs with one, both, and no ends grafted on the adsorbing impenetrable boundary, respectively. By applying the exact renormalization group (RG) method, for $2\le b\le 4$, we have obtained specific values for these exponents, for various type of polymer conformations. We discuss their mutual relations and their relations with other critical exponents pertinent to SAWs on the SG fractals.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e04e410f0c9d6c971afaae23f22b003f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":69484120,"asset_id":52032363,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/69484120/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="52032363"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="52032363"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 52032363; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=52032363]").text(description); $(".js-view-count[data-work-id=52032363]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 52032363; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='52032363']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 52032363, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e04e410f0c9d6c971afaae23f22b003f" } } $('.js-work-strip[data-work-id=52032363]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":52032363,"title":"Exact study of surface critical exponents of polymer chains grafted to adsorbing boundary of fractal lattices embedded in three-dimensional space","translated_title":"","metadata":{"abstract":"We study the adsorption problem of linear polymers, when the container of the polymer--solvent system is taken to be a member of the three dimensional Sierpinski gasket (SG) family of fractals. Members of the SG family are enumerated by an integer $b$ ($2\\le b\\le\\infty$), and it is assumed that one side of each SG fractal is impenetrable adsorbing boundary. We calculate the critical exponents $\\gamma_1, \\gamma_{11}$, and $\\gamma_s$ which, within the self--avoiding walk model (SAW) of polymer chain, are associated with the numbers of all possible SAWs with one, both, and no ends grafted on the adsorbing impenetrable boundary, respectively. By applying the exact renormalization group (RG) method, for $2\\le b\\le 4$, we have obtained specific values for these exponents, for various type of polymer conformations. We discuss their mutual relations and their relations with other critical exponents pertinent to SAWs on the SG fractals."},"translated_abstract":"We study the adsorption problem of linear polymers, when the container of the polymer--solvent system is taken to be a member of the three dimensional Sierpinski gasket (SG) family of fractals. Members of the SG family are enumerated by an integer $b$ ($2\\le b\\le\\infty$), and it is assumed that one side of each SG fractal is impenetrable adsorbing boundary. We calculate the critical exponents $\\gamma_1, \\gamma_{11}$, and $\\gamma_s$ which, within the self--avoiding walk model (SAW) of polymer chain, are associated with the numbers of all possible SAWs with one, both, and no ends grafted on the adsorbing impenetrable boundary, respectively. By applying the exact renormalization group (RG) method, for $2\\le b\\le 4$, we have obtained specific values for these exponents, for various type of polymer conformations. We discuss their mutual relations and their relations with other critical exponents pertinent to SAWs on the SG fractals.","internal_url":"https://www.academia.edu/52032363/Exact_study_of_surface_critical_exponents_of_polymer_chains_grafted_to_adsorbing_boundary_of_fractal_lattices_embedded_in_three_dimensional_space","translated_internal_url":"","created_at":"2021-09-12T13:56:15.203-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":69484120,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/69484120/thumbnails/1.jpg","file_name":"Exact_study_of_surface_critical_exponent20210912-18346-17rm7f.pdf","download_url":"https://www.academia.edu/attachments/69484120/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Exact_study_of_surface_critical_exponent.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/69484120/Exact_study_of_surface_critical_exponent20210912-18346-17rm7f.pdf?1631480240=\u0026response-content-disposition=attachment%3B+filename%3DExact_study_of_surface_critical_exponent.pdf\u0026Expires=1732752048\u0026Signature=cmc4bffLao0L-UsB7VdoqadabmWXAcv1y72wv7-7DgGQ~n7IMNup3pI8MvrLpnumKfG2BXpFBRg9H7c6ZaQpmWF2fx0g098pfzxjLNmqYoFmcTXJ7YTvKKlHCpC3XovD2Nx-oeG47IV0m6eP08JNe~l5l~ZsziHOs83wOOinMbg3wKQ5voJbeWT2IMG8HvIQ3z~myBiJZz6qEYpzj2ND~BPguuaCUBo1SpuDFmVCoNeQ2-NaJwiSS~6atAhT2ajadoF6KeTo~zA~8MsFlMMqu4dQ1cGGB4hSvGJTtup~llJCPv7NFinzErO2UhzjsRLoARclbDTOoGdf-OJY0rDtEQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Exact_study_of_surface_critical_exponents_of_polymer_chains_grafted_to_adsorbing_boundary_of_fractal_lattices_embedded_in_three_dimensional_space","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[{"id":69484120,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/69484120/thumbnails/1.jpg","file_name":"Exact_study_of_surface_critical_exponent20210912-18346-17rm7f.pdf","download_url":"https://www.academia.edu/attachments/69484120/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Exact_study_of_surface_critical_exponent.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/69484120/Exact_study_of_surface_critical_exponent20210912-18346-17rm7f.pdf?1631480240=\u0026response-content-disposition=attachment%3B+filename%3DExact_study_of_surface_critical_exponent.pdf\u0026Expires=1732752048\u0026Signature=cmc4bffLao0L-UsB7VdoqadabmWXAcv1y72wv7-7DgGQ~n7IMNup3pI8MvrLpnumKfG2BXpFBRg9H7c6ZaQpmWF2fx0g098pfzxjLNmqYoFmcTXJ7YTvKKlHCpC3XovD2Nx-oeG47IV0m6eP08JNe~l5l~ZsziHOs83wOOinMbg3wKQ5voJbeWT2IMG8HvIQ3z~myBiJZz6qEYpzj2ND~BPguuaCUBo1SpuDFmVCoNeQ2-NaJwiSS~6atAhT2ajadoF6KeTo~zA~8MsFlMMqu4dQ1cGGB4hSvGJTtup~llJCPv7NFinzErO2UhzjsRLoARclbDTOoGdf-OJY0rDtEQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="8051739"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/8051739/Interacting_linear_polymers_on_three_dimensional_Sierpinski_fractals"><img alt="Research paper thumbnail of Interacting linear polymers on three-dimensional Sierpinski fractals" class="work-thumbnail" src="https://attachments.academia-assets.com/34509343/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/8051739/Interacting_linear_polymers_on_three_dimensional_Sierpinski_fractals">Interacting linear polymers on three-dimensional Sierpinski fractals</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Using self-avoiding walk model on three-dimensional Sierpinski fractals (3d SF) we have studied c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Using self-avoiding walk model on three-dimensional Sierpinski fractals (3d SF) we have studied critical properties of self-interacting linear polymers in porous environment, via exact real-space renormalization group (RG) method. We have found that RG equations for 3d SF with base b=4 are much more complicated than for the previously studied b=2 and b=3 3d SFs. Numerical analysis of these equations shows that for all considered cases there are three fixed points, corresponding to the high-temperature extended polymer state, collapse transition, and the low-temperature state, which is compact or semi-compact, depending on the value of the fractal base b. We discuss the reasons for such different low--temperature behavior, as well as the possibility of establishing the RG equations beyond b=4.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="57a751f82bf7357d7b4c4910ecacb618" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":34509343,"asset_id":8051739,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/34509343/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="8051739"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="8051739"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8051739; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8051739]").text(description); $(".js-view-count[data-work-id=8051739]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8051739; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='8051739']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 8051739, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "57a751f82bf7357d7b4c4910ecacb618" } } $('.js-work-strip[data-work-id=8051739]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":8051739,"title":"Interacting linear polymers on three-dimensional Sierpinski fractals","translated_title":"","metadata":{"abstract":"Using self-avoiding walk model on three-dimensional Sierpinski fractals (3d SF) we have studied critical properties of self-interacting linear polymers in porous environment, via exact real-space renormalization group (RG) method. We have found that RG equations for 3d SF with base b=4 are much more complicated than for the previously studied b=2 and b=3 3d SFs. Numerical analysis of these equations shows that for all considered cases there are three fixed points, corresponding to the high-temperature extended polymer state, collapse transition, and the low-temperature state, which is compact or semi-compact, depending on the value of the fractal base b. We discuss the reasons for such different low--temperature behavior, as well as the possibility of establishing the RG equations beyond b=4.","publication_date":{"day":null,"month":null,"year":2002,"errors":{}}},"translated_abstract":"Using self-avoiding walk model on three-dimensional Sierpinski fractals (3d SF) we have studied critical properties of self-interacting linear polymers in porous environment, via exact real-space renormalization group (RG) method. We have found that RG equations for 3d SF with base b=4 are much more complicated than for the previously studied b=2 and b=3 3d SFs. Numerical analysis of these equations shows that for all considered cases there are three fixed points, corresponding to the high-temperature extended polymer state, collapse transition, and the low-temperature state, which is compact or semi-compact, depending on the value of the fractal base b. We discuss the reasons for such different low--temperature behavior, as well as the possibility of establishing the RG equations beyond b=4.","internal_url":"https://www.academia.edu/8051739/Interacting_linear_polymers_on_three_dimensional_Sierpinski_fractals","translated_internal_url":"","created_at":"2014-08-22T06:19:56.820-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34509343,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34509343/thumbnails/1.jpg","file_name":"0205509.pdf","download_url":"https://www.academia.edu/attachments/34509343/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interacting_linear_polymers_on_three_dim.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34509343/0205509-libre.pdf?1408713611=\u0026response-content-disposition=attachment%3B+filename%3DInteracting_linear_polymers_on_three_dim.pdf\u0026Expires=1732752048\u0026Signature=UOCnDuzipYTEGvmaYE1K-LOPb6kF~XMfvkHM2IR7I7hayVpptUDo4p7WrJdD~Y~O~zzwx519imQ4MRjbndwTM4frtW7RJsbGfgKrnRorMJgngCxK7ihQkq6hNCExYR1mG0KUA75Wa~S1ZE3K8QGjLrmyXO16JPpfOr3LtsYXKUh6nxEiFSui29-zZN8BhzMOD1kxkkVncknCWp1GzZDmYD2ToXWziiOur1drrcigBLWT75BMsR5xisx~HJojDqnhxXbiXVm~UTPNO8irHBRicjHIXwsKiNzJNjX~iZiH2PPfFabN0Z6zJBOUo~qxhcr1ZMNjjDaGfvqdtg2cZ56CKA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Interacting_linear_polymers_on_three_dimensional_Sierpinski_fractals","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[{"id":34509343,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34509343/thumbnails/1.jpg","file_name":"0205509.pdf","download_url":"https://www.academia.edu/attachments/34509343/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interacting_linear_polymers_on_three_dim.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34509343/0205509-libre.pdf?1408713611=\u0026response-content-disposition=attachment%3B+filename%3DInteracting_linear_polymers_on_three_dim.pdf\u0026Expires=1732752048\u0026Signature=UOCnDuzipYTEGvmaYE1K-LOPb6kF~XMfvkHM2IR7I7hayVpptUDo4p7WrJdD~Y~O~zzwx519imQ4MRjbndwTM4frtW7RJsbGfgKrnRorMJgngCxK7ihQkq6hNCExYR1mG0KUA75Wa~S1ZE3K8QGjLrmyXO16JPpfOr3LtsYXKUh6nxEiFSui29-zZN8BhzMOD1kxkkVncknCWp1GzZDmYD2ToXWziiOur1drrcigBLWT75BMsR5xisx~HJojDqnhxXbiXVm~UTPNO8irHBRicjHIXwsKiNzJNjX~iZiH2PPfFabN0Z6zJBOUo~qxhcr1ZMNjjDaGfvqdtg2cZ56CKA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":12022,"name":"Numerical Analysis","url":"https://www.academia.edu/Documents/in/Numerical_Analysis"},{"id":494966,"name":"Renormalization Group","url":"https://www.academia.edu/Documents/in/Renormalization_Group"}],"urls":[{"id":3371017,"url":"http://arxiv.org/abs/cond-mat/0205509"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="8051738"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/8051738/Crossover_exponent_for_piecewise_directed_walk_adsorption_on_Sierpinski_fractals"><img alt="Research paper thumbnail of Crossover exponent for piecewise directed walk adsorption on Sierpinski fractals" class="work-thumbnail" src="https://attachments.academia-assets.com/34509341/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/8051738/Crossover_exponent_for_piecewise_directed_walk_adsorption_on_Sierpinski_fractals">Crossover exponent for piecewise directed walk adsorption on Sierpinski fractals</a></div><div class="wp-workCard_item"><span>Journal of Physics A-mathematical and General</span><span>, 1999</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study the problem of critical adsorption of piecewise directed random walks on a boundary of f...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study the problem of critical adsorption of piecewise directed random walks on a boundary of fractal lattices that belong to the Sierpinski gasket family. By applying the exact real space renormalization group method, we calculate the crossover exponent $\phi$, associated with the number of adsorbed steps, for the complete fractal family. We demonstrate that our results are very close to the results obtained for ordinary self-avoiding walk, and discuss the asymptotic behaviour of $\phi$ at the fractal to Euclidean lattice crossover.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d7efdb2948bc67f60e651e40d539649e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":34509341,"asset_id":8051738,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/34509341/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="8051738"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="8051738"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8051738; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8051738]").text(description); $(".js-view-count[data-work-id=8051738]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8051738; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='8051738']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 8051738, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d7efdb2948bc67f60e651e40d539649e" } } $('.js-work-strip[data-work-id=8051738]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":8051738,"title":"Crossover exponent for piecewise directed walk adsorption on Sierpinski fractals","translated_title":"","metadata":{"abstract":"We study the problem of critical adsorption of piecewise directed random walks on a boundary of fractal lattices that belong to the Sierpinski gasket family. By applying the exact real space renormalization group method, we calculate the crossover exponent $\\phi$, associated with the number of adsorbed steps, for the complete fractal family. We demonstrate that our results are very close to the results obtained for ordinary self-avoiding walk, and discuss the asymptotic behaviour of $\\phi$ at the fractal to Euclidean lattice crossover.","publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"publication_name":"Journal of Physics A-mathematical and General"},"translated_abstract":"We study the problem of critical adsorption of piecewise directed random walks on a boundary of fractal lattices that belong to the Sierpinski gasket family. By applying the exact real space renormalization group method, we calculate the crossover exponent $\\phi$, associated with the number of adsorbed steps, for the complete fractal family. We demonstrate that our results are very close to the results obtained for ordinary self-avoiding walk, and discuss the asymptotic behaviour of $\\phi$ at the fractal to Euclidean lattice crossover.","internal_url":"https://www.academia.edu/8051738/Crossover_exponent_for_piecewise_directed_walk_adsorption_on_Sierpinski_fractals","translated_internal_url":"","created_at":"2014-08-22T06:19:50.513-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34509341,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34509341/thumbnails/1.jpg","file_name":"9812112.pdf","download_url":"https://www.academia.edu/attachments/34509341/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Crossover_exponent_for_piecewise_directe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34509341/9812112-libre.pdf?1408713606=\u0026response-content-disposition=attachment%3B+filename%3DCrossover_exponent_for_piecewise_directe.pdf\u0026Expires=1732752048\u0026Signature=fCC7KcYz-8SxGGn-oHPKv7PpTkcaacQzJCh8VKMYrBah4Px1f0WkwCAla3~euVBeYLHVpP1KRw~Q-Gn0RMmBLdfg5RE18xEKNeKiXN-6pNbyvkMs-gwxlFTmo-Ob87wyTc9sGn4uj9gld9I4pzzSSDPq7mJxMrdJYy1PkQoY4fBNd3gZdhpCOIi2j9Kn8Xgx8J4psUURvxW~B4ZwRjwBj-UsLXSogF8FjTSbFy7Sr8IhfYLjfmSMFMwEew9RH-hO8PsJFUlwPMQ4~5iZUMvRT4r2UeqZSNQH-XxgpLEZ1MDAhoLuSYNz~U3OpKhthF-xOrRWWbsDUjcGGGF0h-lK5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Crossover_exponent_for_piecewise_directed_walk_adsorption_on_Sierpinski_fractals","translated_slug":"","page_count":29,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[{"id":34509341,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34509341/thumbnails/1.jpg","file_name":"9812112.pdf","download_url":"https://www.academia.edu/attachments/34509341/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Crossover_exponent_for_piecewise_directe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34509341/9812112-libre.pdf?1408713606=\u0026response-content-disposition=attachment%3B+filename%3DCrossover_exponent_for_piecewise_directe.pdf\u0026Expires=1732752048\u0026Signature=fCC7KcYz-8SxGGn-oHPKv7PpTkcaacQzJCh8VKMYrBah4Px1f0WkwCAla3~euVBeYLHVpP1KRw~Q-Gn0RMmBLdfg5RE18xEKNeKiXN-6pNbyvkMs-gwxlFTmo-Ob87wyTc9sGn4uj9gld9I4pzzSSDPq7mJxMrdJYy1PkQoY4fBNd3gZdhpCOIi2j9Kn8Xgx8J4psUURvxW~B4ZwRjwBj-UsLXSogF8FjTSbFy7Sr8IhfYLjfmSMFMwEew9RH-hO8PsJFUlwPMQ4~5iZUMvRT4r2UeqZSNQH-XxgpLEZ1MDAhoLuSYNz~U3OpKhthF-xOrRWWbsDUjcGGGF0h-lK5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":34509340,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34509340/thumbnails/1.jpg","file_name":"9812112.pdf","download_url":"https://www.academia.edu/attachments/34509340/download_file","bulk_download_file_name":"Crossover_exponent_for_piecewise_directe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34509340/9812112-libre.pdf?1408713605=\u0026response-content-disposition=attachment%3B+filename%3DCrossover_exponent_for_piecewise_directe.pdf\u0026Expires=1732752048\u0026Signature=O0elLP~5Sm65EaRkdin8HrdO9Ug3wIkM3nXAqaNFUkWkEjjF9cd1g5~3obpVmHqrSxeGKZfAcQu~ApO6LL7deXRyYjAZaXmqEGGLpK3qCpqmnIrNVT8ZQ6-ZSyXaQ~sgkYfBK22b5m4XEv5eJWb1eG7hsc5PkA45D52ig0POXepE~Lu6cbxrIjgWDSqKXe39zSwRi8kvKGoDaDy9u0VpYP9jS-bMWigXcgsdb6ulqdAyqbt3ypofcFc1nWcZqbs-OKDnrpQNERq1vQz175h0mCPdIdFx1Oyur7QY9xTi5fFl2mkCtfZUPmNz0U1cHXTnTYELb2Dxdcnv-YYb77AraQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[{"id":3371016,"url":"http://arxiv.org/abs/cond-mat/9812112"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="8051737"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/8051737/Critical_behavior_of_the_system_of_two_crossing_self_avoiding_walks_on_a_family_of_three_dimensional_fractal_lattices"><img alt="Research paper thumbnail of Critical behavior of the system of two crossing self-avoiding walks on a family of three-dimensional fractal lattices" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/8051737/Critical_behavior_of_the_system_of_two_crossing_self_avoiding_walks_on_a_family_of_three_dimensional_fractal_lattices">Critical behavior of the system of two crossing self-avoiding walks on a family of three-dimensional fractal lattices</a></div><div class="wp-workCard_item"><span>Chaos Solitons & Fractals</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT We study the polymer system consisting of two-polymer chains situated in a fractal conta...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT We study the polymer system consisting of two-polymer chains situated in a fractal container that belongs to the three-dimensional Sierpinski Gasket (3D SG) family of fractals. The two-polymer system is modeled by two interacting self-avoiding walks (SAW) immersed in a good solvent. To conceive the inter-chain interactions we apply the model of two crossing self-avoiding walks (CSAW) in which the chains can cross each other. By applying renormalization group (RG) method, we establish the relevant phase diagrams for b=2 and b=3 members of the 3D SG fractal family. Also, at the appropriate transition fixed points we calculate the contact critical exponents φ, associated with the number of contacts between monomers of different chains. For larger b(2⩽b⩽30) we apply Monte Carlo renormalization group (MCRG) method, and compare the obtained results for φ with phenomenological proposals for the contact critical exponent, as well as with results obtained for other similar models of two-polymer system.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="8051737"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="8051737"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8051737; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8051737]").text(description); $(".js-view-count[data-work-id=8051737]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8051737; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='8051737']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 8051737, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=8051737]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":8051737,"title":"Critical behavior of the system of two crossing self-avoiding walks on a family of three-dimensional fractal lattices","translated_title":"","metadata":{"abstract":"ABSTRACT We study the polymer system consisting of two-polymer chains situated in a fractal container that belongs to the three-dimensional Sierpinski Gasket (3D SG) family of fractals. The two-polymer system is modeled by two interacting self-avoiding walks (SAW) immersed in a good solvent. To conceive the inter-chain interactions we apply the model of two crossing self-avoiding walks (CSAW) in which the chains can cross each other. By applying renormalization group (RG) method, we establish the relevant phase diagrams for b=2 and b=3 members of the 3D SG fractal family. Also, at the appropriate transition fixed points we calculate the contact critical exponents φ, associated with the number of contacts between monomers of different chains. For larger b(2⩽b⩽30) we apply Monte Carlo renormalization group (MCRG) method, and compare the obtained results for φ with phenomenological proposals for the contact critical exponent, as well as with results obtained for other similar models of two-polymer system.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Chaos Solitons \u0026 Fractals"},"translated_abstract":"ABSTRACT We study the polymer system consisting of two-polymer chains situated in a fractal container that belongs to the three-dimensional Sierpinski Gasket (3D SG) family of fractals. The two-polymer system is modeled by two interacting self-avoiding walks (SAW) immersed in a good solvent. To conceive the inter-chain interactions we apply the model of two crossing self-avoiding walks (CSAW) in which the chains can cross each other. By applying renormalization group (RG) method, we establish the relevant phase diagrams for b=2 and b=3 members of the 3D SG fractal family. Also, at the appropriate transition fixed points we calculate the contact critical exponents φ, associated with the number of contacts between monomers of different chains. For larger b(2⩽b⩽30) we apply Monte Carlo renormalization group (MCRG) method, and compare the obtained results for φ with phenomenological proposals for the contact critical exponent, as well as with results obtained for other similar models of two-polymer system.","internal_url":"https://www.academia.edu/8051737/Critical_behavior_of_the_system_of_two_crossing_self_avoiding_walks_on_a_family_of_three_dimensional_fractal_lattices","translated_internal_url":"","created_at":"2014-08-22T06:19:43.146-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Critical_behavior_of_the_system_of_two_crossing_self_avoiding_walks_on_a_family_of_three_dimensional_fractal_lattices","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"}],"urls":[{"id":3371015,"url":"http://www.sciencedirect.com/science/article/pii/S096007790800502X"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="8051736"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/8051736/Comment_on_Critical_behavior_of_the_chain_generating_function_of_self_avoiding_walks_on_the_Sierpinski_gasket_family_The_Euclidean_limit"><img alt="Research paper thumbnail of Comment on ``Critical behavior of the chain--generating function of self--avoiding walks on the Sierpinski gasket family: The Euclidean limit" class="work-thumbnail" src="https://attachments.academia-assets.com/34509338/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/8051736/Comment_on_Critical_behavior_of_the_chain_generating_function_of_self_avoiding_walks_on_the_Sierpinski_gasket_family_The_Euclidean_limit">Comment on ``Critical behavior of the chain--generating function of self--avoiding walks on the Sierpinski gasket family: The Euclidean limit</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We refute the claims made by Riera and Chalub [Phys.Rev.E {\bf 58}, 4001 (1998)] by demonstrating...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We refute the claims made by Riera and Chalub [Phys.Rev.E {\bf 58}, 4001 (1998)] by demonstrating that they have not provided enough data (requisite in their series expansion method) to draw reliable conclusions about criticality of self-avoiding walks on the Sierpinski gasket family of fractals.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1a9b2a20af8fa0e47151675aa83908a8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":34509338,"asset_id":8051736,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/34509338/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="8051736"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="8051736"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8051736; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8051736]").text(description); $(".js-view-count[data-work-id=8051736]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8051736; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='8051736']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 8051736, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1a9b2a20af8fa0e47151675aa83908a8" } } $('.js-work-strip[data-work-id=8051736]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":8051736,"title":"Comment on ``Critical behavior of the chain--generating function of self--avoiding walks on the Sierpinski gasket family: The Euclidean limit","translated_title":"","metadata":{"abstract":"We refute the claims made by Riera and Chalub [Phys.Rev.E {\\bf 58}, 4001 (1998)] by demonstrating that they have not provided enough data (requisite in their series expansion method) to draw reliable conclusions about criticality of self-avoiding walks on the Sierpinski gasket family of fractals.","publication_date":{"day":null,"month":null,"year":1998,"errors":{}}},"translated_abstract":"We refute the claims made by Riera and Chalub [Phys.Rev.E {\\bf 58}, 4001 (1998)] by demonstrating that they have not provided enough data (requisite in their series expansion method) to draw reliable conclusions about criticality of self-avoiding walks on the Sierpinski gasket family of fractals.","internal_url":"https://www.academia.edu/8051736/Comment_on_Critical_behavior_of_the_chain_generating_function_of_self_avoiding_walks_on_the_Sierpinski_gasket_family_The_Euclidean_limit","translated_internal_url":"","created_at":"2014-08-22T06:19:43.035-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34509338,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34509338/thumbnails/1.jpg","file_name":"9812399.pdf","download_url":"https://www.academia.edu/attachments/34509338/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comment_on_Critical_behavior_of_the_chai.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34509338/9812399-libre.pdf?1408713605=\u0026response-content-disposition=attachment%3B+filename%3DComment_on_Critical_behavior_of_the_chai.pdf\u0026Expires=1732752049\u0026Signature=JkLUhs2K-F6-84OdK57EeVMVwlHWEr88F30RgP8lceoi~f0A9jREvfoLD3qr8lHWyz4I9pP74No6G-pnR5s7fR~uX6owBOgAFTc0xdp1kr5qn095UjI~zm4qtE9A-0eOiEEnmx-TuMtasaxKDaBPHlgc1FhQwWTp8yPM-K9TQjd5x2yiF2K98p3kqnS3shtd1U93YffgmjekuzycDajF25iVBSXLL5h8kJ9UzPSOdXQdC125Vsy93WTaxKeJIM7Oa6nlp9zL~yETmZuDi4F4TktfT7JHjP21Ct2DI-qzZMqBJTqUzvI04KEcww3zb03UbflSmqwVlbnffTcYnDavRQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Comment_on_Critical_behavior_of_the_chain_generating_function_of_self_avoiding_walks_on_the_Sierpinski_gasket_family_The_Euclidean_limit","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[{"id":34509338,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34509338/thumbnails/1.jpg","file_name":"9812399.pdf","download_url":"https://www.academia.edu/attachments/34509338/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comment_on_Critical_behavior_of_the_chai.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34509338/9812399-libre.pdf?1408713605=\u0026response-content-disposition=attachment%3B+filename%3DComment_on_Critical_behavior_of_the_chai.pdf\u0026Expires=1732752049\u0026Signature=JkLUhs2K-F6-84OdK57EeVMVwlHWEr88F30RgP8lceoi~f0A9jREvfoLD3qr8lHWyz4I9pP74No6G-pnR5s7fR~uX6owBOgAFTc0xdp1kr5qn095UjI~zm4qtE9A-0eOiEEnmx-TuMtasaxKDaBPHlgc1FhQwWTp8yPM-K9TQjd5x2yiF2K98p3kqnS3shtd1U93YffgmjekuzycDajF25iVBSXLL5h8kJ9UzPSOdXQdC125Vsy93WTaxKeJIM7Oa6nlp9zL~yETmZuDi4F4TktfT7JHjP21Ct2DI-qzZMqBJTqUzvI04KEcww3zb03UbflSmqwVlbnffTcYnDavRQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":34509339,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34509339/thumbnails/1.jpg","file_name":"9812399.pdf","download_url":"https://www.academia.edu/attachments/34509339/download_file","bulk_download_file_name":"Comment_on_Critical_behavior_of_the_chai.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34509339/9812399-libre.pdf?1408713604=\u0026response-content-disposition=attachment%3B+filename%3DComment_on_Critical_behavior_of_the_chai.pdf\u0026Expires=1732752049\u0026Signature=Noa0NxZ1nYGVVXoT9Lkn2p8aKj7Dee3yLKMT8jBG1BCyHhvF~ZrzA8uRXvR6uvFVOZlO5swtSDA5B4X0Jzto5nY4MgLmtmON2Dx98AeUNyts43MwQOVicXxqy2PQ1bFSvmvN6a9bdafctH2o0EUgxe1ktYz4MkjTqo~6KcwdROk4jodmegKc4Fn59pYZCJMknetM0RfeDpNRRNsVoviUCBODP7f43fgGBOuuWWeR0A2iE6ReJexQfsrhKeE3KQwjEUnk9oXyHc3VgEAcGu7KHVoa7INfXA3vxyg2Jhy6S-xkCCGDZu2l601fokWiAy9fUJYbMc3g6lU2EhTJnTR4kg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1278668,"name":"Self Avoiding Walk","url":"https://www.academia.edu/Documents/in/Self_Avoiding_Walk"},{"id":1627143,"name":"Sierpinski gasket","url":"https://www.academia.edu/Documents/in/Sierpinski_gasket"},{"id":2516454,"name":"Generating Function","url":"https://www.academia.edu/Documents/in/Generating_Function"}],"urls":[{"id":3371014,"url":"http://arxiv.org/abs/cond-mat/9812399"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="8051735"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/8051735/Stiffness_dependence_of_critical_exponents_of_semiflexible_polymer_chains_situated_on_two_dimensional_compact_fractals"><img alt="Research paper thumbnail of Stiffness dependence of critical exponents of semiflexible polymer chains situated on two-dimensional compact fractals" class="work-thumbnail" src="https://attachments.academia-assets.com/48239490/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/8051735/Stiffness_dependence_of_critical_exponents_of_semiflexible_polymer_chains_situated_on_two_dimensional_compact_fractals">Stiffness dependence of critical exponents of semiflexible polymer chains situated on two-dimensional compact fractals</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present an exact and Monte Carlo renormalization group (MCRG) study of semiflexible polymer ch...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present an exact and Monte Carlo renormalization group (MCRG) study of semiflexible polymer chains on an infinite family of the plane-filling (PF) fractals. The fractals are compact, that is, their fractal dimension df is equal to 2 for all members of the fractal family enumerated by the odd integer b(3≤b<∞) . For various values of stiffness parameter s of the chain, on the PF fractals (for 3≤b≤9 ), we calculate exactly the critical exponents ν (associated with the mean squared end-to-end distances of polymer chain) and γ (associated with the total number of different polymer chains). In addition, we calculate ν and γ through the MCRG approach for b up to 201. Our results show that for each particular b , critical exponents are stiffness dependent functions, in such a way that the stiffer polymer chains (with smaller values of s ) display enlarged values of ν , and diminished values of γ . On the other hand, for any specific s , the critical exponent ν monotonically decreases, whereas the critical exponent γ monotonically increases, with the scaling parameter b . We reflect on a possible relevance of the criticality of semiflexible polymer chains on the PF family of fractals to the same problem on the regular Euclidean lattices.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e3864ca8557ace01c8c76f4c5bfb6637" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":48239490,"asset_id":8051735,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/48239490/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="8051735"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="8051735"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8051735; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8051735]").text(description); $(".js-view-count[data-work-id=8051735]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8051735; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='8051735']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 8051735, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e3864ca8557ace01c8c76f4c5bfb6637" } } $('.js-work-strip[data-work-id=8051735]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":8051735,"title":"Stiffness dependence of critical exponents of semiflexible polymer chains situated on two-dimensional compact fractals","translated_title":"","metadata":{"abstract":"We present an exact and Monte Carlo renormalization group (MCRG) study of semiflexible polymer chains on an infinite family of the plane-filling (PF) fractals. The fractals are compact, that is, their fractal dimension df is equal to 2 for all members of the fractal family enumerated by the odd integer b(3≤b\u003c∞) . For various values of stiffness parameter s of the chain, on the PF fractals (for 3≤b≤9 ), we calculate exactly the critical exponents ν (associated with the mean squared end-to-end distances of polymer chain) and γ (associated with the total number of different polymer chains). In addition, we calculate ν and γ through the MCRG approach for b up to 201. Our results show that for each particular b , critical exponents are stiffness dependent functions, in such a way that the stiffer polymer chains (with smaller values of s ) display enlarged values of ν , and diminished values of γ . On the other hand, for any specific s , the critical exponent ν monotonically decreases, whereas the critical exponent γ monotonically increases, with the scaling parameter b . We reflect on a possible relevance of the criticality of semiflexible polymer chains on the PF family of fractals to the same problem on the regular Euclidean lattices.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Physical Review E"},"translated_abstract":"We present an exact and Monte Carlo renormalization group (MCRG) study of semiflexible polymer chains on an infinite family of the plane-filling (PF) fractals. The fractals are compact, that is, their fractal dimension df is equal to 2 for all members of the fractal family enumerated by the odd integer b(3≤b\u003c∞) . For various values of stiffness parameter s of the chain, on the PF fractals (for 3≤b≤9 ), we calculate exactly the critical exponents ν (associated with the mean squared end-to-end distances of polymer chain) and γ (associated with the total number of different polymer chains). In addition, we calculate ν and γ through the MCRG approach for b up to 201. Our results show that for each particular b , critical exponents are stiffness dependent functions, in such a way that the stiffer polymer chains (with smaller values of s ) display enlarged values of ν , and diminished values of γ . On the other hand, for any specific s , the critical exponent ν monotonically decreases, whereas the critical exponent γ monotonically increases, with the scaling parameter b . We reflect on a possible relevance of the criticality of semiflexible polymer chains on the PF family of fractals to the same problem on the regular Euclidean lattices.","internal_url":"https://www.academia.edu/8051735/Stiffness_dependence_of_critical_exponents_of_semiflexible_polymer_chains_situated_on_two_dimensional_compact_fractals","translated_internal_url":"","created_at":"2014-08-22T06:19:42.892-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":48239490,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48239490/thumbnails/1.jpg","file_name":"0907.3107.pdf","download_url":"https://www.academia.edu/attachments/48239490/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Stiffness_dependence_of_critical_exponen.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48239490/0907.3107-libre.pdf?1471905490=\u0026response-content-disposition=attachment%3B+filename%3DStiffness_dependence_of_critical_exponen.pdf\u0026Expires=1732752049\u0026Signature=SvqNL1f6-7rSji3WCuQpNYKOTEcMZZde3X7siUG3y4KbwvJbfvuYpBJZSJlwkg08GoNyv6Lmu-j3zQSSlINx43ei14PlootuS3t6guOKUgE9iBmbCEvozYXI41zeXzJ23P0yporDpnfVv3D4G~H89suQtUEZEeZdAQwqXLMbbcwpTAJa7BD3csD6rrt9x9WkAdhada0FjWXiXOkLLNREdroH0S2VEt2vGVoolZb7Ea3A~JhIOkbeIIc~pyI8awi7RupzRMN8JLcHTgFbG36h5UkPO2Mg~GXFt6spoor5bg~Tnn~3nwqpzTruGPYvARiDRg2YrR6ykefO7-YcJsAaaQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Stiffness_dependence_of_critical_exponents_of_semiflexible_polymer_chains_situated_on_two_dimensional_compact_fractals","translated_slug":"","page_count":22,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[{"id":48239490,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48239490/thumbnails/1.jpg","file_name":"0907.3107.pdf","download_url":"https://www.academia.edu/attachments/48239490/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Stiffness_dependence_of_critical_exponen.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48239490/0907.3107-libre.pdf?1471905490=\u0026response-content-disposition=attachment%3B+filename%3DStiffness_dependence_of_critical_exponen.pdf\u0026Expires=1732752049\u0026Signature=SvqNL1f6-7rSji3WCuQpNYKOTEcMZZde3X7siUG3y4KbwvJbfvuYpBJZSJlwkg08GoNyv6Lmu-j3zQSSlINx43ei14PlootuS3t6guOKUgE9iBmbCEvozYXI41zeXzJ23P0yporDpnfVv3D4G~H89suQtUEZEeZdAQwqXLMbbcwpTAJa7BD3csD6rrt9x9WkAdhada0FjWXiXOkLLNREdroH0S2VEt2vGVoolZb7Ea3A~JhIOkbeIIc~pyI8awi7RupzRMN8JLcHTgFbG36h5UkPO2Mg~GXFt6spoor5bg~Tnn~3nwqpzTruGPYvARiDRg2YrR6ykefO7-YcJsAaaQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":21466,"name":"Polymers","url":"https://www.academia.edu/Documents/in/Polymers"},{"id":24831,"name":"Fractals","url":"https://www.academia.edu/Documents/in/Fractals"},{"id":69542,"name":"Computer Simulation","url":"https://www.academia.edu/Documents/in/Computer_Simulation"},{"id":78086,"name":"Random Walk","url":"https://www.academia.edu/Documents/in/Random_Walk"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":494966,"name":"Renormalization Group","url":"https://www.academia.edu/Documents/in/Renormalization_Group"},{"id":586110,"name":"Elastic Modulus","url":"https://www.academia.edu/Documents/in/Elastic_Modulus"},{"id":890611,"name":"Fractal Dimension","url":"https://www.academia.edu/Documents/in/Fractal_Dimension"},{"id":954642,"name":"Levy Flight","url":"https://www.academia.edu/Documents/in/Levy_Flight"},{"id":1333436,"name":"Monte Carlo Method","url":"https://www.academia.edu/Documents/in/Monte_Carlo_Method"}],"urls":[{"id":3371013,"url":"http://adsabs.harvard.edu/abs/2009PhRvE..80f1131Z"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="8051734"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/8051734/Comment_on_Critical_behavior_of_the_chain_generating_function_of_self_avoiding_walks_on_the_Sierpinski_gasket_family_The_Euclidean_limit"><img alt="Research paper thumbnail of Comment on ``Critical behavior of the chain-generating function of self-avoiding walks on the Sierpinski gasket family: The Euclidean limit" class="work-thumbnail" src="https://attachments.academia-assets.com/48239509/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/8051734/Comment_on_Critical_behavior_of_the_chain_generating_function_of_self_avoiding_walks_on_the_Sierpinski_gasket_family_The_Euclidean_limit">Comment on ``Critical behavior of the chain-generating function of self-avoiding walks on the Sierpinski gasket family: The Euclidean limit</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We refute the claims made by Riera and Chalub [Phys. Rev. E 58, 4001 (1998)] by demonstrating tha...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We refute the claims made by Riera and Chalub [Phys. Rev. E 58, 4001 (1998)] by demonstrating that they have not provided enough data (requisite in their series expansion method) to draw reliable conclusions about criticality of self-avoiding walks on the Sierpinski gasket family of fractals.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5e1cac5f7c2da8c673e7819168f5f5d9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":48239509,"asset_id":8051734,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/48239509/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="8051734"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="8051734"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8051734; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8051734]").text(description); $(".js-view-count[data-work-id=8051734]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8051734; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='8051734']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 8051734, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5e1cac5f7c2da8c673e7819168f5f5d9" } } $('.js-work-strip[data-work-id=8051734]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":8051734,"title":"Comment on ``Critical behavior of the chain-generating function of self-avoiding walks on the Sierpinski gasket family: The Euclidean limit","translated_title":"","metadata":{"abstract":"We refute the claims made by Riera and Chalub [Phys. Rev. E 58, 4001 (1998)] by demonstrating that they have not provided enough data (requisite in their series expansion method) to draw reliable conclusions about criticality of self-avoiding walks on the Sierpinski gasket family of fractals.","ai_title_tag":"Refuting Claims on Self-Avoiding Walks on Sierpinski Gaskets","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Physical Review E"},"translated_abstract":"We refute the claims made by Riera and Chalub [Phys. Rev. E 58, 4001 (1998)] by demonstrating that they have not provided enough data (requisite in their series expansion method) to draw reliable conclusions about criticality of self-avoiding walks on the Sierpinski gasket family of fractals.","internal_url":"https://www.academia.edu/8051734/Comment_on_Critical_behavior_of_the_chain_generating_function_of_self_avoiding_walks_on_the_Sierpinski_gasket_family_The_Euclidean_limit","translated_internal_url":"","created_at":"2014-08-22T06:19:42.764-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":48239509,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48239509/thumbnails/1.jpg","file_name":"Comment_on_Critical_behavior_of_the_chai20160822-7464-ac1h8m.pdf","download_url":"https://www.academia.edu/attachments/48239509/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comment_on_Critical_behavior_of_the_chai.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48239509/Comment_on_Critical_behavior_of_the_chai20160822-7464-ac1h8m-libre.pdf?1471905488=\u0026response-content-disposition=attachment%3B+filename%3DComment_on_Critical_behavior_of_the_chai.pdf\u0026Expires=1732752049\u0026Signature=XQZlDOGjfX6XZIwl1~h0~~Fah-iYM-ZTQRD-X4p5xkrV7JWsDZpb3mQXdd57PCnCEuVteFWPYxdf1zdfyV8ruddMUktGpOdd6wCEp99gs4vygdzT4HT587vVCgTAJYeKI7gQzLc9FX3fzrmsaSRwRbDidLjsrpMgLLs40tiNqmwynfLPWbIO6PQXXYrOlER8ljDtjX~mHRkk-gWESnqUiroLx0qwwRUy3rORQyaxC3h6uXxUy1cxN2ZkjgPjolnDobrs1ZxpGmMritCxbChNNBBgkDiFXtFMNbaMKrryb8TwAujDY~N4GL~fbefDS0IJjjt46Qm1lL-glEplzG~Iog__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Comment_on_Critical_behavior_of_the_chain_generating_function_of_self_avoiding_walks_on_the_Sierpinski_gasket_family_The_Euclidean_limit","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[{"id":48239509,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48239509/thumbnails/1.jpg","file_name":"Comment_on_Critical_behavior_of_the_chai20160822-7464-ac1h8m.pdf","download_url":"https://www.academia.edu/attachments/48239509/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comment_on_Critical_behavior_of_the_chai.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48239509/Comment_on_Critical_behavior_of_the_chai20160822-7464-ac1h8m-libre.pdf?1471905488=\u0026response-content-disposition=attachment%3B+filename%3DComment_on_Critical_behavior_of_the_chai.pdf\u0026Expires=1732752049\u0026Signature=XQZlDOGjfX6XZIwl1~h0~~Fah-iYM-ZTQRD-X4p5xkrV7JWsDZpb3mQXdd57PCnCEuVteFWPYxdf1zdfyV8ruddMUktGpOdd6wCEp99gs4vygdzT4HT587vVCgTAJYeKI7gQzLc9FX3fzrmsaSRwRbDidLjsrpMgLLs40tiNqmwynfLPWbIO6PQXXYrOlER8ljDtjX~mHRkk-gWESnqUiroLx0qwwRUy3rORQyaxC3h6uXxUy1cxN2ZkjgPjolnDobrs1ZxpGmMritCxbChNNBBgkDiFXtFMNbaMKrryb8TwAujDY~N4GL~fbefDS0IJjjt46Qm1lL-glEplzG~Iog__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1278668,"name":"Self Avoiding Walk","url":"https://www.academia.edu/Documents/in/Self_Avoiding_Walk"},{"id":1627143,"name":"Sierpinski gasket","url":"https://www.academia.edu/Documents/in/Sierpinski_gasket"},{"id":2516454,"name":"Generating Function","url":"https://www.academia.edu/Documents/in/Generating_Function"}],"urls":[{"id":3371012,"url":"http://adsabs.harvard.edu/abs/2000PhRvE..61.2141M"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="8051733"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/8051733/Exact_renormalization_group_treatment_of_the_piecewise_directed_random_walks_on_fractals"><img alt="Research paper thumbnail of Exact renormalization group treatment of the piecewise directed random walks on fractals" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/8051733/Exact_renormalization_group_treatment_of_the_piecewise_directed_random_walks_on_fractals">Exact renormalization group treatment of the piecewise directed random walks on fractals</a></div><div class="wp-workCard_item"><span>Physica A-statistical Mechanics and Its Applications</span><span>, 1988</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">An exact evaluation of the critical exponent v associated with the mean squared end-to-end distan...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">An exact evaluation of the critical exponent v associated with the mean squared end-to-end distance of the piecewise directed random walks is presented in the case of the complete family of the Sierpinski gasket type of fractals.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="8051733"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="8051733"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8051733; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8051733]").text(description); $(".js-view-count[data-work-id=8051733]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8051733; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='8051733']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 8051733, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=8051733]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":8051733,"title":"Exact renormalization group treatment of the piecewise directed random walks on fractals","translated_title":"","metadata":{"abstract":"An exact evaluation of the critical exponent v associated with the mean squared end-to-end distance of the piecewise directed random walks is presented in the case of the complete family of the Sierpinski gasket type of fractals.","publication_date":{"day":null,"month":null,"year":1988,"errors":{}},"publication_name":"Physica A-statistical Mechanics and Its Applications"},"translated_abstract":"An exact evaluation of the critical exponent v associated with the mean squared end-to-end distance of the piecewise directed random walks is presented in the case of the complete family of the Sierpinski gasket type of fractals.","internal_url":"https://www.academia.edu/8051733/Exact_renormalization_group_treatment_of_the_piecewise_directed_random_walks_on_fractals","translated_internal_url":"","created_at":"2014-08-22T06:19:42.639-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Exact_renormalization_group_treatment_of_the_piecewise_directed_random_walks_on_fractals","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"},{"id":78086,"name":"Random Walk","url":"https://www.academia.edu/Documents/in/Random_Walk"},{"id":112234,"name":"Exact Renormalization Group","url":"https://www.academia.edu/Documents/in/Exact_Renormalization_Group"},{"id":1627143,"name":"Sierpinski gasket","url":"https://www.academia.edu/Documents/in/Sierpinski_gasket"}],"urls":[{"id":3371011,"url":"http://adsabs.harvard.edu/abs/1988PhyA..150..402E"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="8051732"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/8051732/Piecewise_directed_random_walk_on_the_Sierpinski_gasket_family_of_fractals"><img alt="Research paper thumbnail of Piecewise directed random walk on the Sierpinski gasket family of fractals" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/8051732/Piecewise_directed_random_walk_on_the_Sierpinski_gasket_family_of_fractals">Piecewise directed random walk on the Sierpinski gasket family of fractals</a></div><div class="wp-workCard_item"><span>Physics Letters A</span><span>, 1989</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="8051732"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="8051732"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8051732; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8051732]").text(description); $(".js-view-count[data-work-id=8051732]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8051732; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='8051732']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 8051732, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=8051732]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":8051732,"title":"Piecewise directed random walk on the Sierpinski gasket family of fractals","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1989,"errors":{}},"publication_name":"Physics Letters A"},"translated_abstract":null,"internal_url":"https://www.academia.edu/8051732/Piecewise_directed_random_walk_on_the_Sierpinski_gasket_family_of_fractals","translated_internal_url":"","created_at":"2014-08-22T06:19:42.513-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Piecewise_directed_random_walk_on_the_Sierpinski_gasket_family_of_fractals","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[],"research_interests":[{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[{"id":3371010,"url":"http://linkinghub.elsevier.com/retrieve/pii/0375960189907494"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="8051731"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/8051731/Statistics_of_semiflexible_self_avoiding_trails_on_a_family_of_two_dimensional_compact_fractals"><img alt="Research paper thumbnail of Statistics of semiflexible self-avoiding trails on a family of two-dimensional compact fractals" class="work-thumbnail" src="https://attachments.academia-assets.com/48239516/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/8051731/Statistics_of_semiflexible_self_avoiding_trails_on_a_family_of_two_dimensional_compact_fractals">Statistics of semiflexible self-avoiding trails on a family of two-dimensional compact fractals</a></div><div class="wp-workCard_item"><span>Journal of Statistical Mechanics-theory and Experiment</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We have applied the exact and Monte Carlo renormalization group (MCRG) method to study the statis...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We have applied the exact and Monte Carlo renormalization group (MCRG) method to study the statistics of semiflexible self-avoiding trails (SATs) on the family of plane-filling (PF) fractals. Each fractal of the family is compact, that is, the fractal dimension df is equal to 2 for all members of the PF family, which are enumerated by an odd integer b, 3\le b\lt \infty . Varying values of the stiffness parameter s of trails from 1 to 0 (so that when s decreases the trail stiffness increases) we calculate exactly (for 3 <= b <= 7) and through the MCRG approach (for b <= 201) the sets of the critical exponents ν (associated with the mean squared end-to-end distances of SATs) and γ (associated with the total number of different SATs). Our results show that critical exponents are stiffness dependent functions, so that ν(s) is a monotonically decreasing function of s, for each studied b, whereas γ(s) displays a non-monotonic behavior for some values of b. On the other hand, by fixing the stiffness parameter s, our results show clearly that for highly flexible trails (with s = 1 and 0.9) ν is a non-monotonic function of b, while for stiffer SATs (with s <= 0.7) ν monotonically decreases with b. We also show that γ(b) increases with increasing b, independently of s. Finally, we compare the obtained SAT data with those obtained for the semiflexible self-avoiding walk (SAW) model on the same fractal family, and for both models we discuss behavior of the studied exponents in the fractal-to-Euclidean crossover region b\to \infty .</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="86b6a79b4b212a056935ca696d6560b8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":48239516,"asset_id":8051731,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/48239516/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="8051731"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="8051731"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 8051731; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=8051731]").text(description); $(".js-view-count[data-work-id=8051731]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 8051731; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='8051731']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 8051731, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "86b6a79b4b212a056935ca696d6560b8" } } $('.js-work-strip[data-work-id=8051731]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":8051731,"title":"Statistics of semiflexible self-avoiding trails on a family of two-dimensional compact fractals","translated_title":"","metadata":{"abstract":"We have applied the exact and Monte Carlo renormalization group (MCRG) method to study the statistics of semiflexible self-avoiding trails (SATs) on the family of plane-filling (PF) fractals. Each fractal of the family is compact, that is, the fractal dimension df is equal to 2 for all members of the PF family, which are enumerated by an odd integer b, 3\\le b\\lt \\infty . Varying values of the stiffness parameter s of trails from 1 to 0 (so that when s decreases the trail stiffness increases) we calculate exactly (for 3 \u003c= b \u003c= 7) and through the MCRG approach (for b \u003c= 201) the sets of the critical exponents ν (associated with the mean squared end-to-end distances of SATs) and γ (associated with the total number of different SATs). Our results show that critical exponents are stiffness dependent functions, so that ν(s) is a monotonically decreasing function of s, for each studied b, whereas γ(s) displays a non-monotonic behavior for some values of b. On the other hand, by fixing the stiffness parameter s, our results show clearly that for highly flexible trails (with s = 1 and 0.9) ν is a non-monotonic function of b, while for stiffer SATs (with s \u003c= 0.7) ν monotonically decreases with b. We also show that γ(b) increases with increasing b, independently of s. Finally, we compare the obtained SAT data with those obtained for the semiflexible self-avoiding walk (SAW) model on the same fractal family, and for both models we discuss behavior of the studied exponents in the fractal-to-Euclidean crossover region b\\to \\infty .","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Journal of Statistical Mechanics-theory and Experiment"},"translated_abstract":"We have applied the exact and Monte Carlo renormalization group (MCRG) method to study the statistics of semiflexible self-avoiding trails (SATs) on the family of plane-filling (PF) fractals. Each fractal of the family is compact, that is, the fractal dimension df is equal to 2 for all members of the PF family, which are enumerated by an odd integer b, 3\\le b\\lt \\infty . Varying values of the stiffness parameter s of trails from 1 to 0 (so that when s decreases the trail stiffness increases) we calculate exactly (for 3 \u003c= b \u003c= 7) and through the MCRG approach (for b \u003c= 201) the sets of the critical exponents ν (associated with the mean squared end-to-end distances of SATs) and γ (associated with the total number of different SATs). Our results show that critical exponents are stiffness dependent functions, so that ν(s) is a monotonically decreasing function of s, for each studied b, whereas γ(s) displays a non-monotonic behavior for some values of b. On the other hand, by fixing the stiffness parameter s, our results show clearly that for highly flexible trails (with s = 1 and 0.9) ν is a non-monotonic function of b, while for stiffer SATs (with s \u003c= 0.7) ν monotonically decreases with b. We also show that γ(b) increases with increasing b, independently of s. Finally, we compare the obtained SAT data with those obtained for the semiflexible self-avoiding walk (SAW) model on the same fractal family, and for both models we discuss behavior of the studied exponents in the fractal-to-Euclidean crossover region b\\to \\infty .","internal_url":"https://www.academia.edu/8051731/Statistics_of_semiflexible_self_avoiding_trails_on_a_family_of_two_dimensional_compact_fractals","translated_internal_url":"","created_at":"2014-08-22T06:19:42.394-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":15510184,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":48239516,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48239516/thumbnails/1.jpg","file_name":"Statistics_of_semiflexible_self-avoiding20160822-12910-5815w4.pdf","download_url":"https://www.academia.edu/attachments/48239516/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Statistics_of_semiflexible_self_avoiding.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48239516/Statistics_of_semiflexible_self-avoiding20160822-12910-5815w4-libre.pdf?1471905491=\u0026response-content-disposition=attachment%3B+filename%3DStatistics_of_semiflexible_self_avoiding.pdf\u0026Expires=1732752049\u0026Signature=MWN3U2X6phlsh8HD3L0c8h47wImZ0vNRzWN6Zf7ByQmYO548KPabK42UqoexWDEkLOJcnpDbfhrt74yrk5zry0knYhUw-rQQW1GkzjnkZmNE4J1qwF0dfIRQFCOWUhqBK8oGQRv0Eie6gQV8QiZurMmg-2x8Vxq93SAGVLx51g82IzXiGrMGeOrAd35A7-adQouR5q0IzBHR7qrmG1ZrvD6~rv~sUQjUbjVMJVrka4jNwhotSyMVzD8yl0b~nkQOyaamlsVwlh2qKgXKPLUfCB3ADcx4b~PtRlf6pNYUpgbd~Q07s-0WD2dYUl064Rv-2qd1cO~fSaeTXybqY3XeFQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Statistics_of_semiflexible_self_avoiding_trails_on_a_family_of_two_dimensional_compact_fractals","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":15510184,"first_name":"Suncica","middle_initials":null,"last_name":"Elezovic-Hadzic","page_name":"SuncicaElezovicHadzic","domain_name":"bg","created_at":"2014-08-22T06:18:25.589-07:00","display_name":"Suncica Elezovic-Hadzic","url":"https://bg.academia.edu/SuncicaElezovicHadzic"},"attachments":[{"id":48239516,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48239516/thumbnails/1.jpg","file_name":"Statistics_of_semiflexible_self-avoiding20160822-12910-5815w4.pdf","download_url":"https://www.academia.edu/attachments/48239516/download_file?st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&st=MTczMjc0ODQ0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Statistics_of_semiflexible_self_avoiding.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48239516/Statistics_of_semiflexible_self-avoiding20160822-12910-5815w4-libre.pdf?1471905491=\u0026response-content-disposition=attachment%3B+filename%3DStatistics_of_semiflexible_self_avoiding.pdf\u0026Expires=1732752049\u0026Signature=MWN3U2X6phlsh8HD3L0c8h47wImZ0vNRzWN6Zf7ByQmYO548KPabK42UqoexWDEkLOJcnpDbfhrt74yrk5zry0knYhUw-rQQW1GkzjnkZmNE4J1qwF0dfIRQFCOWUhqBK8oGQRv0Eie6gQV8QiZurMmg-2x8Vxq93SAGVLx51g82IzXiGrMGeOrAd35A7-adQouR5q0IzBHR7qrmG1ZrvD6~rv~sUQjUbjVMJVrka4jNwhotSyMVzD8yl0b~nkQOyaamlsVwlh2qKgXKPLUfCB3ADcx4b~PtRlf6pNYUpgbd~Q07s-0WD2dYUl064Rv-2qd1cO~fSaeTXybqY3XeFQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"}],"urls":[{"id":3371009,"url":"http://adsabs.harvard.edu/abs/2011JSMTE..10..015Z"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "0f36dd47d0fc1cfc041af829e0f49029afb813282ec53fde19cba63707385378", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="vmtQxhTJ7l1jV3xsSA7kXtqrcvucaoDacbVirG7ap3ebuRuPrLDPaVg7okP29nWsIH6YrLTUUxNYhpqi6BxMzw==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://bg.academia.edu/SuncicaElezovicHadzic" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="KDWTLp70QxYCb8ZzH/9jdEolaeMb5a/uc1QooKIAUhgN59hnJo1iIjkDGFyhB/KGsPCDtDNbfCdaZ9CuJMa5oA==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>