CINXE.COM

International Journal of Engineering Research in Africa Vol. 61 | Scientific.Net

<!DOCTYPE html> <html lang="iv" dir="ltr"> <head> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="description" content="In the 61st volume of &quot;International Journal of Engineering Research in Africa&quot; are included the peer-reviewed manuscripts reflecting the research results in the fields of structural metals and composite materials, technologies of materials processing and synthesis, biomass gasification technology and numerical analysis processes of natural convection in the porous medium. Readers will also be interested in investigations in radio electronics, wind energy and energy management, building materials and geotechnics. The presented scientific articles will be appreciated by many engineers and technologists from the industrial sector, as well as academics and students majoring in engineering science." /> <link rel="canonical" href="https://www.scientific.net/JERA.61" /> <meta property="og:title" content="International Journal of Engineering Research in Africa Vol. 61 | Scientific.Net" /> <meta property="og:type" content="website" /> <meta property="og:url" content="https://www.scientific.net/JERA.61" /> <meta property="og:image" content="/Content/app/scinet5/images/metadata_logo.png" /> <meta property="og:image:type" content="image/png" /> <meta property="og:image:width" content="261" /> <meta property="og:image:height" content="260" /> <meta property="og:image:alt" content="Scientific.Net Logo" /> <title>International Journal of Engineering Research in Africa Vol. 61 | Scientific.Net</title> <link href="/Content/app/scinet5/images/favicon.ico" rel="shortcut icon" /> <link href="/Content/public.min.css?v=sTzmHAq2zYw3fxGTHUWq0SNFP1rKhxuSRAanqS9YOY0" rel="stylesheet" /> <link rel="preconnect" href="https://www.google-analytics.com"> <link rel="preconnect" href="https://www.gstatic.com"> <link rel="preconnect" href="https://www.googletagmanager.com"> <link rel="icon" href="/Content/app/scinet5/images/favicon.ico"> <link rel="apple-touch-icon" href="/Content/app/scinet5/images/apple-touch-icon.png"> <link rel="preconnect" href="https://fonts.googleapis.com"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link href="https://fonts.googleapis.com/css?family=Open&#x2B;Sans&#x2B;Condensed:300,700%7COpen&#x2B;Sans:300i,400,400i,600,600i,700&amp;display=swap" rel="stylesheet"> <!-- HTML5 shim support of HTML5 elements and media queries --> <!--[if lte IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <![endif]--> <!-- Google Tag Manager --> <script> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-T3VDKWV');</script> <!-- End Google Tag Manager --> </head> <body> <noscript> <!-- Google Tag Manager (noscript) --> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-T3VDKWV" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <div class="sc-content-container"> <div class="sc-content"> <div class="header-menu-container"> <div class="identity-menu-container header-menu-container-not-logged-in"> <div class="container"> <div class="row"> <ul class="role-menu"> <li class="user-menu between normal-user-menu"> <div class="hdivider-100"></div> <div class="cart-info"> <a href="https://main.scientific.net/Payment/Cart"> <i class="inline-icon cart-icon-white"></i> <span id="cartInfoTotalItemsCount"></span> </a> </div> <div class="user-menu-login-or-register"> <a href="https://main.scientific.net/Account/Registration?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FJERA.61" rel="nofollow"> Registration </a> <a href="https://main.scientific.net/Account/Login?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FJERA.61" rel="nofollow"> Log In </a> </div> </li> </ul> </div> </div> </div> <div class="header-fluid"> <div class="container"> <div class="row"> <div class="block-header"> <div class="logo-block"> <a href="/" class="application-logo inline-icon logo-icon"></a> <div class="burger-menu-button visible-xs"> <div class="hamburger-box"> <div class="hamburger-inner"></div> </div> </div> </div> <div class="menu-and-search-block"> <div class="burger-menu"> <nav class="burger-menu-items"> <div class="public-menu"> <ul> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/open-access-partners">Open Access</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> </ul> </div> </nav> </div> <div class="header-menu-top"> <div class="header-menu-list"> <a href="/ForLibraries">For Libraries</a> <a href="/ForPublication/Paper">For Publication</a> <a href="/open-access-partners">Open Access</a> <a href="/DocuCenter">Downloads</a> <a href="/Home/AboutUs">About Us</a> <a href="/Home/Contacts">Contact Us</a> </div> </div> <div class="search-block"> <input class="search-control" type="search" placeholder="Search" data-url="/Search"> <button class="button button-95 button-grey search-btn button-simple"> <span class="hidden-xs">Search</span> <i class="inline-icon search-icon-grey visible-xs"></i> </button> </div> </div> </div> </div> </div> </div> </div> <div class="container-fluid"> <div class="row"> <div class="banner-new"></div> </div> </div> <div class="content"> <div class="container"> <div class="row content-container"> <div class="left-content col-md-4 col-sm-5"> <div class="left-content-first-line icon-container mobile-collapse-button"> <div class="page-name-block underline-begin sibling-name-block"> <div class="page-name-block-text"> Volumes <a class="left-content-expand-button"><i class="inline-icon arrow-right-black no-hover-icon on-focus-arrow-down-black"></i></a> </div> </div> </div> <div class="row mobile-collapse-content"> <a href="/JERA.67" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> International Journal of Engineering Research in Africa <br /> <span class="paper-volume-number">Vol. 67</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/JERA.66" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> International Journal of Engineering Research in Africa <br /> <span class="paper-volume-number">Vol. 66</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/JERA.65" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> International Journal of Engineering Research in Africa <br /> <span class="paper-volume-number">Vol. 65</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/JERA.64" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> International Journal of Engineering Research in Africa <br /> <span class="paper-volume-number">Vol. 64</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/JERA.63" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> International Journal of Engineering Research in Africa <br /> <span class="paper-volume-number">Vol. 63</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/JERA.62" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> International Journal of Engineering Research in Africa <br /> <span class="paper-volume-number">Vol. 62</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/JERA.61" class="normal-large-text icon-container active-element active"> <div class="element-list"> <div class="element-list-text"> International Journal of Engineering Research in Africa <br /> <span class="paper-volume-number">Vol. 61</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/JERA.60" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> International Journal of Engineering Research in Africa <br /> <span class="paper-volume-number">Vol. 60</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/JERA.59" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> International Journal of Engineering Research in Africa <br /> <span class="paper-volume-number">Vol. 59</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/JERA.58" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> International Journal of Engineering Research in Africa <br /> <span class="paper-volume-number">Vol. 58</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/JERA.57" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> International Journal of Engineering Research in Africa <br /> <span class="paper-volume-number">Vol. 57</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/JERA.56" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> International Journal of Engineering Research in Africa <br /> <span class="paper-volume-number">Vol. 56</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/JERA.55" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> International Journal of Engineering Research in Africa <br /> <span class="paper-volume-number">Vol. 55</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> </div> </div> <div class="right-content col-md-8 col-sm-7 col-xs-12"> <div class="bread-crumbs hidden-xs"> <a class="bread-crumbs-first" href="/">Home</a><i class="inline-icon arrow-breadcrumbs"></i><a class="bread-crumbs-first" href="/JERA">International Journal of Engineering Research in...</a><i class="inline-icon arrow-breadcrumbs"></i><span class="bread-crumbs-second">International Journal of Engineering Research in...</span></div> <div class="page-name-block underline-begin"> <h1 class="page-name-block-text">International Journal of Engineering Research in Africa Vol. 61</h1> </div> <div class="clearfix title-details"> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>DOI:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="https://doi.org/10.4028/v-547piz">https://doi.org/10.4028/v-547piz</a></p> </div> </div> </div> </div> <div id="titleMarcXmlLink" style="display: none" class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Export:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/JERA.61/marc.xml">MARCXML</a></p> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>ToC:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/JERA.61_toc.pdf">Table of Contents</a></p> </div> </div> </div> </div> </div> <div class="volume-tabs"> </div> <div class=""> <div class="volume-papers-page"> <div class="block-search-pagination clearfix"> <div class="block-search-volume"> <input id="paper-search" type="search" placeholder="Search" maxlength="65"> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/JERA.61/2">2</a></li><li class="PagedList-skipToNext"><a href="/JERA.61/2" rel="next">></a></li></ul></div> </div> <div class="block-volume-title normal-text-gray"> <p> Paper Title <span>Page</span> </p> </div> <div class="item-block"> <div class="item-link"> <a href="/JERA.61.1">Atomistic Investigation Using Molecular Dynamics Simulation of τ<sub>4</sub>-Al<sub>3</sub>FeSi<sub>2</sub> and τ<sub>12</sub>-Al<sub>3</sub>Fe<sub>2</sub>Si Phases under Tensile Deformation</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Meryem Taoufiki, Hanae Chabba, Driss Dafir, Abderrahim Barroug, Mustapha Boulghallat, Ahmed Jouaiti </div> </div> <div id="abstractTextBlock588008" class="volume-info volume-info-text volume-info-description"> Abstract: Aluminum-Iron-Silicon (Al-Fe-Si) alloys are extremely applied in many specific industries, such as aerospace and automobiles. Their atomic concentration influences the mechanical behavior of the investigated τ<sub>4-</sub>Al<sub>3</sub>Fe<sub>2</sub>Si and τ<sub>12-</sub>Al<sub>3</sub>FeSi<sub>2 </sub>phases. The uniaxial-tensile deformation is used to compare their structural evolution under the same conditions.Atomic displacement and mechanical behavior have an interest in the elastic and plastic areas. Stress-Strain responses and Radial Distribution Function (RDF) are required. Further, atomic simulations using molecular dynamics demonstrate the change occurs. Its process is carried out at a strain rate of 21×10<sup>10</sup> s<sup>-1 </sup>using the NPT (isothermal-isobaric) with roughly 20 700 atoms at a pressure of 10<sup>5</sup> Pa. Furthermore, using a Nosée Hoover thermostat at the temperature of 300 k is decisive.The Modified Embedded Atoms Method (MEAM) is the applied potential between Al, Fe, and Si atoms. The elastic modulus and single pair atomic correlation before and after straining are increased by this method. The atomic correlations are shown in short- and long-range order and the τ<sub>12</sub>-Al<sub>3</sub>Fe<sub>2</sub>Si phase illustrates stronger properties compared to τ<sub>4-</sub>Al<sub>3</sub>Fe<sub>2</sub>Si phase. Our results underscore an important variation associated with the change of iron and silicon concentration. More specifics are covered in the selection paper. </div> <div> <a data-readmore="{ block: '#abstractTextBlock588008', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 1 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/JERA.61.17">Thermal Analysis of the Mechanism and Kinetics Parameters of the Metastable Phases Precipitation in the Al-Mg-Si Alloy</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Mounia Guessoum, A. A. Raho, N. Ouali, M. Trari </div> </div> <div id="abstractTextBlock587913" class="volume-info volume-info-text volume-info-description"> Abstract: In this experimental study, the mechanism and kinetic parameters of the metastable phases precipitation in the Al-Mg-Si alloy were determined thermally by differential scanning calorimetric (DSC) analysis. All samples were treated up to 550 °C at heating rates of 5, 10, 20 and 30 °C/min. The apparent activation energy (56.74 kJ/mol) and the Avrami exponent (0.99), were determined by DSC from the non-isothermal method, using the Ozawa, Boswell and Kissinger methods while those obtained by isothermal method using the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model were 51.04 kJ/mol and 1.18. The activation energies values indicate that the formation of the metastable phases was mainly controlled by the migration of Mg and Si. The values of n, are characteristics of a growth of plate after saturation of nucleation. The frequency factor (k<sub>o</sub>) calculated by the isothermal method is found to be 8.36×10<sup>7</sup> s<sup>-1</sup>. </div> <div> <a data-readmore="{ block: '#abstractTextBlock587913', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 17 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/JERA.61.29">Evaluation of Un-Preprocessed Expired Piroxicam Drug as Corrosion Inhibitor for Mild Steel in Hydrochloric Acid</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Omokafe Seun Michael, Olatunde Borode, Oyelola Oladunni Alabi, Kenneth Kanayo Alaneme, Adediran Adeolu Adesoji </div> </div> <div id="abstractTextBlock566188" class="volume-info volume-info-text volume-info-description"> Abstract: Illegal disposal and recirculation of expired drugs is a global menace which can be solved by their re-utilization as corrosion inhibitors. Thus, helping to combat the current widespread corrosion-induced wastage of expensive mild steel infrastructure. The experimental investigation evaluated the capability and effectiveness of an expired drug (piroxicam) for inhibiting mild steel corrosion in blank 0.5M HCl and acidic environments containing 2 to 8 g/L of the expired drug. Spectrometry, weight loss analysis, atomic absorption spectroscopy, microscopy, polarisation and electrochemical impedance study (EIS) were employed. Analyses revealed drastic inhibition of corrosion in mild steel by expired piroxicam drug in the acid. Corrosion currents ( ) obtained at all concentrations of the expired drug were reduced in comparison to that of the uninhibited environment. The solution resistance recorded was not significantly altered; charge transfer resistances were increased while the capacitance of the electrochemical double layers (Double layer capacitance) as well as the concentration of dissolved iron (Fe<sup>n+</sup>) ions in the environment, were all reduced with increasing concentration of the expired drug. Although moderate amounts of the expired drug delivered appreciable levels of corrosion inhibition when dissolved directly into the corrosive environment and without any pre-treatment, increased concentration of expired drug resulted in increased corrosion inhibition efficiency. The highest corrosion inhibition efficiency obtained was 97.6% and was from the acidic environment that contained 8 g/L of expired piroxicam drug. The expired piroxicam drug inhibited corrosion of mild steel in 0.5M HCl acid via spontaneous physical adsorption (physisorption) process(s), obeying Langmuir’s adsorption isotherm. </div> <div> <a data-readmore="{ block: '#abstractTextBlock566188', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 29 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/JERA.61.51">Thermal Behavior of the early Life of an Aluminum Electrolysis Cell</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Mohamed M. Ali, Khalid Yuossif, Gomma A. Abdalla, Elsayed A. Elbadry </div> </div> <div id="abstractTextBlock587854" class="volume-info volume-info-text volume-info-description"> Abstract: The electrolytic production of aluminium starts after the completion of the cathode lining and the baking process. After that, the cell start-up period is followed by the early operating period. During the early operating period, the following parameters (cell voltage, metal height, electrolyte height, cryolite ratio, electrolyte temperature, and ledge formation) were measured and investigated. The required times for these parameters to reach the steady-state have been investigated. The cell voltage, metal height, electrolyte height, cryolite ratio, and electrolyte temperature were stabilized after 35, 25, 24, 86, and 45 days, respectively from cell start-up. These cells took four months to form a stable ledge at a thickness of 10 cm. Also, the thermal behavior of the sidewall carbon blocks was studied during the early operating period by inserting twenty thermocouples at these locations in three prebaked cells. The cell instability during the early operation period for these cells was illustrated. </div> <div> <a data-readmore="{ block: '#abstractTextBlock587854', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 51 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/JERA.61.69">Spark Plasma Sintering of TaN/TiAl Composites: Microstructure and Microhardness Study</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Vinolia Phumzile Mkhwanazi, Bukola Joseph Babalola, Olusoji Oluremi Ayodele, Thato Tshephe, Peter Apata Olubambi </div> </div> <div id="abstractTextBlock586953" class="volume-info volume-info-text volume-info-description"> Abstract: Titanium aluminide (TiAl)-based materials have attracted much attention in the aerospace and automobile industries due to their attractive properties. Studying the microhardness of these materials as it relates to the as-sintered and heat-treated state is of interest in this article. TiAl and TiAl-based composites with varying additions of Tantalum nitride (TaN) content (2, 4, 6, 8 wt.%) were prepared by spark plasma sintering technique. The samples were sintered at 1150 °C, 100 C/min, 50 MPa, a dwell time of 10 mins, and fully dense characteristics as their relative densities were above 98 %. The microstructure and microhardness of the sintered samples were examined. Also, the sintered samples' microhardness was evaluated after the heat treatment process at 750 °C. It was observed that the relative density of the composites dropped at 2 and 8 wt.% addition of TaN, while the addition of TaN significantly increased hardness value in the as-sintered and heat-treated condition, from 304 HV to a maximum of 499 HV in the as-sintered state. The microstructures revealed that the reinforcement was segregated to the gamma phase, interlocked by the lamellar colonies. </div> <div> <a data-readmore="{ block: '#abstractTextBlock586953', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 69 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/JERA.61.79">Coconut Shell Particle Reinforced Al-Cu-Mg Nanocomposites for Cavity Die Mould Parts Applications</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Sefiu Adekunle Bello </div> </div> <div id="abstractTextBlock587526" class="volume-info volume-info-text volume-info-description"> Abstract: This study explored coconut shells in developing Al-Cu-Mg based nanocomposites for fabricating mould parts. The aim is to engineer alternate way through which income can be generated from agricultural wastes and recycling of industrial waste like aluminium cans. Al-Cu-Mg based nanocomposites were produced and characterised. Effects of carbonised and uncarbonised coconut shell nanoparticle (UCSNP) additions on properties of Al-Cu-Mg nanocomposites were compared. Maximum tensile strength was obtained at 10%vol uncarbonised coconut shell nanoparticle additions to Al-Cu-Mg. Increase in tensile strength and elastic modulus were noted with carbonised coconut shell reinforced Al-Cu-Mg nanocomposites against the decrease in the elastic (Young’s) modulus of the UCSNP/Al-Cu-Mg nanocomposites. Despite highest tensile strength of 10%volUCSNP/Al-Cu-Mg, 10%volCCSNP/Al-Cu-Mg nanocomposite is ranked as the best material in this study due to its optimum combination of properties including tensile strength, elastic modulus, tensile strain, impact energy and hardness values. Hence, it has been selected for fabricating open die mould parts to be used in compression sheet forming process for fabricating polymeric standard samples for tensile flexural analyses. Keywords: Al-Cu-Mg, Coconut, Shell, Nanoparticles, Mould fabrication </div> <div> <a data-readmore="{ block: '#abstractTextBlock587526', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 79 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/JERA.61.95">Effect of Tool Design on the Mechanical Properties of Bobbin Friction Stir Welded High-Density Polyethylene Sheets: Experimental Study</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Djilali Bouha, Habib Khellafi, El Bahri Ould Chikh, Hadj Miloud Meddah, Abdellah Kaou </div> </div> <div id="abstractTextBlock583260" class="volume-info volume-info-text volume-info-description"> Abstract: Welding polymers by the friction stir welding (FSW) technique is one assembly process among several known assembly techniques which consists in welding two materials without filler material. The FSW process is based on the generation of heat due to friction and material deformation under an axial force. Among the main aspects affecting material flow, the choice of welding tool geometry has become of great interest to improve the welds quality. The main objective of this work is the welding of polymers using the FSW technique. A new method of welding HDPE (high density polyethylene) plates, called BT-FSW (bobbin tool friction stir welding) was developed. Standard rectangular shape intended for the distribution of natural gas has been successfully welded by BT-FSW. Tensile tests and hardness measurements were carried out on samples cut from the welded sheets and the results were analyzed to compare the mechanical characteristics of the plates welded by the BT-FSW and conventional FSW (C-FSW) processes. The results of the comparative studies on the micro-hardness characteristics and mechanical properties of the two welding processes indicate that welding using the bobbin tool can significantly reduce hardness and improve both weld formation and mechanical properties of joints. This study showed that the design of the welding tool has a big impact on the weld strength. An improvement in the mechanical properties of the specimens welded by BT-FSW was observed to give a better welding quality for the polymers studied. </div> <div> <a data-readmore="{ block: '#abstractTextBlock583260', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 95 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/JERA.61.115">Experimental Studies on Synthesis Gas Production from Wood Wastes in a Pilot Downdraft Gasifier</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Peter Akhator, Albert Obanor, Godwin Sadjere </div> </div> <div id="abstractTextBlock585651" class="volume-info volume-info-text volume-info-description"> Abstract: Gasification is a green technology, which produces combustible gas mixture from solid biomass by partial oxidation at elevated temperatures. Synthesis gas, the desired product of such technology, has more uses than the solid biomass. In this study, a locally developed pilot scale fixed-bed downdraft biomass gasifier was examined. Several gasification experiments using mixed wood wastes (generated from the utilisation of various wood species for making furniture) as feedstock was carried out under varied operating conditions to ascertain their effects on the syngas produced in the process. The effects of grate temperatures and biomass moisture levels on rate of biomass consumption and produced syngas quality were examined via several gasification experiments. The performance of the biomass gasifier system was evaluated in terms of syngas composition, lower heating value, syngas yield and carbon conversion efficiency. The results obtained revealed an average syngas yield of 1.77Nm<sup>3</sup> per kg of wood waste consumed. The averaged molar syngas composition obtained was 28.15% CO, 16.64% H<sub>2</sub>, 6.19% CO<sub>2</sub>, 2.54% CH<sub>4</sub> and 45.42% N<sub>2</sub>, while the average syngas LHV was 6.23MJ/Nm<sup>3</sup>. These results were compared with those published in literature. </div> <div> <a data-readmore="{ block: '#abstractTextBlock585651', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 115 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/JERA.61.129">Numerical Analysis of Natural Convection in a Concentric Trapezoidal Enclosure Filled with a Porous Medium</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Olalekan Adebayo Olayemi, Muhammed Isiaka, Khaled Al-Farhany, Mohammed Azeez Alomari, Muneer A. Ismael, Sunday Olayinka Oyedepo </div> </div> <div id="abstractTextBlock586521" class="volume-info volume-info-text volume-info-description"> Abstract: Numerical study of natural convection around a heated trapezoidal block of different sizes located centrically in a larger trapezium has been investigated. The annulus between the trapeziums is filled with porous media. The sides of the inner trapezium are heated to a fixed temperature (T_h), and the slanted walls of the outer trapezium are adiabatic while its upper and lower walls are heated to temperatures of 〖T_c+(T_h-T_c)sin〗⁡(πx⁄L) and 〖T_h+(T_h-T_c)sin〗⁡(πx⁄L) respectively. The finite element numerical approach was used to solve the relevant dimensionless equations. Results are gotten for salient parameters including; modified Rayleigh number (10≤Ra_m≤ 1000), Darcy number (10^(-5)≤Da≤ 10^(-2)), and area ratio (1/5≤AR≤ 1/3). The results of this study are shown as isothermal contours, stream functions, and average Nusselt number. The results show that increasing Ra_m improves heat transfer; however, the response of thermal characteristics to AR increment depends on the range of Darcy number considered. Results from this study find application in ingot treatments and microchannel cooling among others. </div> <div> <a data-readmore="{ block: '#abstractTextBlock586521', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 129 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/JERA.61.151">Parametric Study and Analysis of Modified Electromagnetic Band Gap in Frequency Notching of Ultra-Wide Band Antenna</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Gabriel Fadehan, Kazeem Bolade Adedeji, Yekeen O. Olasoji </div> </div> <div id="abstractTextBlock588449" class="volume-info volume-info-text volume-info-description"> Abstract: This paper presents parametric study of dual band notch ultra wideband (UWB) antenna using modified electromagnetic band gap. The Electromagnetic Band Gap (EBG) comprises of two strip patched and an edge-located via with respect to ground for dual notch band. The study was presented in order to have an improved knowledge of EBG characteristics and its effect on the notching band of a small squared ultra wideband antenna of size 24 by 31 mm<sup>2</sup> dual band notch using HFSS software. The antenna operates within the return loss (s11&lt; -10dB) 3.2 to 12.3 GHz. The simulation results show that the notched band between 4.57 – 4.99 GHz and 7.96 – 8.32 GHz corresponding to WLAN and ITU respectively was achieved. The effect of gap distance between the field line and EBG was demonstrated as well and the position of via with respect to the ground as a means for notched band centre frequency tuning. The antenna could be considered a good candidate for any UWB applications that must avoid narrow band interference. The research gives ideas on the best placement position of EBG structure along field line in UWB antenna frequency notching technique. </div> <div> <a data-readmore="{ block: '#abstractTextBlock588449', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 151 </div> </div> <div class="block-bottom-pagination"> <div class="pager-info"> <p>Showing 1 to 10 of 15 Paper Titles</p> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/JERA.61/2">2</a></li><li class="PagedList-skipToNext"><a href="/JERA.61/2" rel="next">></a></li></ul></div> </div> </div> </div> </div> </div> </div> </div> <div class="social-icon-popup"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-popup-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-popup-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-popup-icon social-icon"></i></a> </div> </div> <div class="sc-footer"> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="footer-menu col-md-12 col-sm-12 col-xs-12"> <ul class="list-inline menu-font"> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/insights" target="_blank">Insights</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/PolicyAndEthics/PublishingPolicies">Policy &amp; Ethics</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> <li><a href="/Home/Imprint">Imprint</a></li> <li><a href="/Home/PrivacyPolicy">Privacy Policy</a></li> <li><a href="/Home/Sitemap">Sitemap</a></li> <li><a href="/Conferences">All Conferences</a></li> <li><a href="/special-issues">All Special Issues</a></li> <li><a href="/news/all">All News</a></li> <li><a href="/open-access-partners">Open Access Partners</a></li> </ul> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-footer-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-footer-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-footer-icon social-icon"></i></a> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12 footer-copyright"> <p> &#169; 2025 Trans Tech Publications Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For open access content, terms of the Creative Commons licensing CC-BY are applied. <br />Scientific.Net is a registered trademark of Trans Tech Publications Ltd. </p> </div> </div> </div> </div> </div> <a class="scrollTop inline-icon scroll-top-icon" href="#" style="display: none"></a> </div> <script src="/Scripts/public.min.js?v=RxM_FbfHCcsoT4U-BoPCKYjCQ67x2cooj7su0mYkWQ4"></script> <script> $(function () { $("#paper-search").autocomplete({ minLength: 1, source: '/Title/Search?kurzel=JERA&volumeBegin=61&volumeEnd=61', delay: 200, select: function (event, ui) { window.location.href = ui.item.url; } }); }); </script> <script asp-render-component-scripts> $(function () { $.get("/Title/ShowMarcXmlLink") .done(function (showMarcXmlLink) { if (showMarcXmlLink) { $("#titleMarcXmlLink").show(); } }); }); Scinet.public = (function () { function loadCartInfo(onLoad) { var formatCartItemCount = function (count) { var format = (count > 1 || count === 0) ? "{0} items" : "{0} item"; $("#cartInfoTotalItemsCount").html(Scinet.stringFormat(format, count)); }, cookieCartItemCount = Cookies.get("Scinet5.CartItemsCount"); if (onLoad && cookieCartItemCount != null) { formatCartItemCount(parseInt(cookieCartItemCount, 10)); } else { $.ajax({ url: "/Cart/GetItemsCount", cache: false }) .done( function (count) { Cookies.set("Scinet5.CartItemsCount", count, { domain: ".scientific.net", secure: true }); formatCartItemCount(count); }); } } return { loadCartInfo: loadCartInfo }; })(); $(function () { Scinet.public.loadCartInfo(true); $("[data-add-book-to-cart]").on("click", function (e) { e.preventDefault(); var data = $(this).data("add-book-to-cart"); console.log(data); var url = "/Cart/AddBook"; $.post(url, data) .done( function () { Scinet.public.loadCartInfo(); $("#addToCart").modal(); }) .fail( function (xhr) { Scinet.error(xhr.responseText); }); }) }); </script> <script> var $buoop = { required: { e: 11, f: -6, o: -6, s: -3, c: -6 }, insecure: false, unsupported: false, api: 2019.11, reminder: 0, onshow: function () { window.browserUpdateOutdated = true; } }; function $buo_f() { var e = document.createElement("script"); e.src = "//browser-update.org/update.min.js"; document.body.appendChild(e); }; try { document.addEventListener("DOMContentLoaded", $buo_f, false) } catch (e) { window.attachEvent("onload", $buo_f) } </script> <!-- IE polyfills--> <!--[if lt IE 10]> <script src="/Scripts/lib/flexibility/flexibility.js"></script> <script> flexibility(document.documentElement); </script> <![endif]--> <script> window.clientErrorLogActionUrl = "/Errors/LogClientError"; </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10