CINXE.COM

Search results for: gut microbiota

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: gut microbiota</title> <meta name="description" content="Search results for: gut microbiota"> <meta name="keywords" content="gut microbiota"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="gut microbiota" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="gut microbiota"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 110</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: gut microbiota</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> Dietary Gluten and the Balance of Gut Microbiota in the Dextran Sulphate Sodium Induced Colitis Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Austin%20Belfiori">Austin Belfiori</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Rinek"> Kevin Rinek</a>, <a href="https://publications.waset.org/abstracts/search?q=Zach%20Barcroft"> Zach Barcroft</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Berglind"> Jennifer Berglind</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diet influences the composition of the gut microbiota and host's health. Disruption of the balance among the microbiota, epithelial cells, and resident immune cells in the intestine is involved in the pathogenesis of inflammatory bowel disease (IBD). To study the role of gut microbiota in intestinal inflammation, the microbiome of control mice (C57BL6) given a gluten-containing standard diet versus C57BL6 mice given the gluten-free (GF) feed (n=10 in each group) was examined. All mice received the 3% DSS for 5 days. Throughout the study, feces were collected and processed for DNA extraction and MiSeq Illumina sequencing of V4 region of bacterial 16S rRNA gene. Alpha and beta diversities and compositional differences at phylum and genus levels were determined in intestinal microbiota. The mice receiving the GF diet showed a significantly increased abundance of Firmicutes and a decrease of Bacteroides and Lactobacillus at phylum level. Therefore, the gluten free diet led to reductions in beneficial gut bacteria populations. These findings indicate a role of wheat gluten in dysbiosis of the intestinal microbiota. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gluten" title="gluten">gluten</a>, <a href="https://publications.waset.org/abstracts/search?q=colitis" title=" colitis"> colitis</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiota" title=" microbiota"> microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=DSS" title=" DSS"> DSS</a>, <a href="https://publications.waset.org/abstracts/search?q=dextran%20sulphate%20sodium" title=" dextran sulphate sodium"> dextran sulphate sodium</a> </p> <a href="https://publications.waset.org/abstracts/92869/dietary-gluten-and-the-balance-of-gut-microbiota-in-the-dextran-sulphate-sodium-induced-colitis-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> Gut-Microbiota-Brain-Axis, Leaky Gut, Leaky Brain: Pathophysiology of Second Brain Aging and Alzheimer’s Disease- A Neuroscientific Riddle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bilal%20Ahmad">Bilal Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alzheimer’s disease (AD) is one of the most common neurodegenerative illnesses. However, how Gut-microbiota plays a role in the pathogenesis of AD is not well elucidated. The purpose of this literature review is to summarize and understand the current findings that may elucidate the gut microbiota's role in the development of AD. Methods: A literature review of all the relevant papers known to the author was conducted. Relevant articles, abstracts and research papers were collected from well-accepted web sources like PubMed, PMC, and Google Scholar. Results: Recent studies have shown that Gut-microbiota has an important role in the progression of AD via Gut-Microbiota-Brain Axis. The onset of AD supports the ‘Hygiene Hypothesis’, which shows that AD might begin in the Gut, causing dysbiosis, which interferes with the intestinal barrier by releasing pro-inflammatory cytokines and making its way up to the brain via the blood-brain barrier (BBB). Molecular mechanisms lipopolysaccharides and serotonin kynurenine (tryptophan) pathways have a direct association with inflammation, the immune system, neurodegeneration, and AD. Conclusion: The studies helped to analyze the molecular basis of AD, other neurological conditions like depression, autism, and Parkinson's disease and how they are linked to Gut-microbiota. Further, studies to explore the therapeutic effects of probiotics in AD and cognitive enhancement should be warranted to provide significant clinical and practical value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gut-microbiota" title="gut-microbiota">gut-microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%E2%80%99s%20disease" title=" Alzheimer’s disease"> Alzheimer’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20brain%20aging" title=" second brain aging"> second brain aging</a>, <a href="https://publications.waset.org/abstracts/search?q=lipopolysaccharides" title=" lipopolysaccharides"> lipopolysaccharides</a>, <a href="https://publications.waset.org/abstracts/search?q=short-chain%20fatty%20acids" title=" short-chain fatty acids"> short-chain fatty acids</a> </p> <a href="https://publications.waset.org/abstracts/185444/gut-microbiota-brain-axis-leaky-gut-leaky-brain-pathophysiology-of-second-brain-aging-and-alzheimers-disease-a-neuroscientific-riddle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> Characterization of the Intestinal Microbiota: A Signature in Fecal Samples from Patients with Irritable Bowel Syndrome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mina%20Hojat%20Ansari">Mina Hojat Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Bagheri%20Lankarani"> Kamran Bagheri Lankarani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Fattahi"> Mohammad Reza Fattahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Reza%20Safarpour"> Ali Reza Safarpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Irritable bowel syndrome (IBS) is a common bowel disorder which is usually diagnosed through the abdominal pain, fecal irregularities and bloating. Alteration in the intestinal microbial composition is implicating to inflammatory and functional bowel disorders which is recently also noted as an IBS feature. Owing to the potential importance of microbiota implication in both efficiencies of the treatment and prevention of the diseases, we examined the association between the intestinal microbiota and different bowel patterns in a cohort of subjects with IBS and healthy controls. Fresh fecal samples were collected from a total of 50 subjects, 30 of whom met the Rome IV criteria for IBS and 20 Healthy control. Total DNA was extracted and library preparation was conducted following the standard protocol for small whole genome sequencing. The pooled libraries sequenced on an Illumina Nextseq platform with a 2 × 150 paired-end read length and obtained sequences were analyzed using several bioinformatics programs. The majority of sequences obtained in the current study assigned to bacteria. However, our finding highlighted the significant microbial taxa variation among the studied groups. The result, therefore, suggests a significant association of the microbiota with symptoms and bowel characteristics in patients with IBS. These alterations in fecal microbiota could be exploited as a biomarker for IBS or its subtypes and suggest the modification of the microbiota might be integrated into prevention and treatment strategies for IBS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irritable%20bowel%20syndrome" title="irritable bowel syndrome">irritable bowel syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=intestinal%20microbiota" title=" intestinal microbiota"> intestinal microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20whole%20genome%20sequencing" title=" small whole genome sequencing"> small whole genome sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=fecal%20samples" title=" fecal samples"> fecal samples</a>, <a href="https://publications.waset.org/abstracts/search?q=Illumina" title=" Illumina"> Illumina</a> </p> <a href="https://publications.waset.org/abstracts/98505/characterization-of-the-intestinal-microbiota-a-signature-in-fecal-samples-from-patients-with-irritable-bowel-syndrome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Gut Microbiota and Their Modulating Role in Pregnant and Non-pregnant Hypertensive Rats Fed with Selected Local Wild Beans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bankole%20Do">Bankole Do</a>, <a href="https://publications.waset.org/abstracts/search?q=Omodara%20T.%20R."> Omodara T. R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Awyinka%20O.%20A."> Awyinka O. A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Probiotic supplementation has been known to be associated with a lower prevalence of hypertension. Against these backdrop, activities of the gut microbiota from hypertensive induced pregnant and non-pregnant rats as mediated by the soluble and indigestible fraction of carbohydrates derived from Otiliand fermentedIru were studied in this present work. Microbiota from hypertensive induced non- pregnant rats fed with Otili and Iruhad Proteus vulgaris + Staphylococcus aureus. However, hypertensive induced pregnant rats fed with Otilipredominantly contained Proteus vulgaris + Bacillus lichniformiswhile the group fed with Iruhad Staphylococcus aureus + Bacillus lichniformis. Thus, showingdysbiosis in hypertensive induced rats is influenced by pregnancy. Further In-vitro study showed Proteus vulgaris playing a key role in the fermentative process of the indigestible fraction of carbohydrates while Esherichia coli played the key role in the fermentative process of the soluble fraction of carbohydrates in all the bean samples. This dysbiosis of the gut microbiota, as seen in hypertension in rats in this present study, might be part of the strategies for the prevention and treatment of this Non-Communicable Disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=probiotic" title="probiotic">probiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiota" title=" microbiota"> microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=dysbiosis" title=" dysbiosis"> dysbiosis</a>, <a href="https://publications.waset.org/abstracts/search?q=hypertension" title=" hypertension"> hypertension</a> </p> <a href="https://publications.waset.org/abstracts/141226/gut-microbiota-and-their-modulating-role-in-pregnant-and-non-pregnant-hypertensive-rats-fed-with-selected-local-wild-beans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> The Effect of Heat Stress on the Gastro-Intestinal Microbiota of Pigs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yadnyavalkya%20Patil">Yadnyavalkya Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Gooneratne"> Ravi Gooneratne</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiang-Hong%20Ju"> Xiang-Hong Ju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat stress (HS) negatively affects the physiology of pigs. In this study, 6 pigs will be subjected to temperatures of 35 ± 2℃ for 12 hrs/day for a duration of 21 days. The changes in the gastrointestinal tract (GIT) microbiota will be observed by analyzing the freshly collected faeces on days 1, 3, 7, 14 and 21. The changes will be compared to faeces from a set of 6 control pigs kept simultaneously at temperatures of 26 ± 2℃ for the same duration of 21 days. Different types of stresses such a weaning have a detrimental effect on GIT microflora. Similarly, HS is expected to have a harmful effect on the microbial diversity of the GIT. How these changes affect the immune system of the pigs will be studied and therapeutics to reduce the negative effects of HS will be developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIT%20microbiota" title="GIT microbiota">GIT microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20stress" title=" heat stress"> heat stress</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20system" title=" immune system"> immune system</a>, <a href="https://publications.waset.org/abstracts/search?q=therapeutics" title=" therapeutics"> therapeutics</a> </p> <a href="https://publications.waset.org/abstracts/93443/the-effect-of-heat-stress-on-the-gastro-intestinal-microbiota-of-pigs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> Metagenomics Features of The Gut Microbiota in Metabolic Syndrome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20D.%20Kotrova">Anna D. Kotrova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandr%20N.%20Shishkin"> Alexandr N. Shishkin</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20I.%20Ermolenko"> Elena I. Ermolenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim. To study the quantitative and qualitative colon bacteria ratio from patients with metabolic syndrome. Materials and methods. Fecal samples from patients of 2 groups were identified and analyzed: the first group was formed by patients with metabolic syndrome, the second one - by healthy individuals. The metagenomics method was used with the analysis of 16S rRNA gene sequences. The libraries of the variable sites (V3 and V4) gene 16S RNA were analyzed using the MiSeq device (Illumina). To prepare the libraries was used the standard recommended by Illumina, a method based on two rounds of PCR. Results. At the phylum level in the microbiota of patients with metabolic syndrome compared to healthy individuals, the proportion of Tenericutes was reduced, the proportion of Actinobacteria was increased. At the genus level, in the group with metabolic syndrome, relative to the second group was increased the proportion of Lachnospira. Conclusion. Changes in the colon bacteria ratio in the gut microbiota of patients with metabolic syndrome were found both at the type and the genus level. In the metabolic syndrome group, there is a decrease in the proportion of bacteria that do not have a cell wall. To confirm the revealed microbiota features in patients with metabolic syndrome, further study with a larger number of samples is required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gut%20microbiota" title="gut microbiota">gut microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolic%20syndrome" title=" metabolic syndrome"> metabolic syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=metagenomics" title=" metagenomics"> metagenomics</a>, <a href="https://publications.waset.org/abstracts/search?q=tenericutes" title=" tenericutes"> tenericutes</a> </p> <a href="https://publications.waset.org/abstracts/130125/metagenomics-features-of-the-gut-microbiota-in-metabolic-syndrome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> Alterations of Gut Microbiota and Its Metabolomics in Child with 6PPDQ, PBDE, PCB, and Metal (Loid) Exposure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xia%20Huo">Xia Huo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The composition and metabolites of the gut microbiota can be altered by environmental pollutants. However, the effect of co-exposure to multiple pollutants on the human gut microbiota has not been sufficiently studied. In this study, gut microorganisms and their metabolites were compared between 33 children from Guiyu and 34 children from Haojiang. The exposure level was assessed by estimating the daily intake (EDI) of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), 6PPD-quinone (6PPDQ), and metal(loid)s in dust. Significant correlations were found between the EDIs of 6PPDQ, BDE28, PCB52, Ni, Cu, and both the alpha diversity index and specific metabolites in single-element models. The study found that the Bayesian kernel machine regression (BKMR) model showed a negative correlation between the EDIs of five pollutants (6PPDQ, BDE28, PCB52, Ni, and Cu) and the Chao 1 index, particularly beyond the 55th percentile. Furthermore, the EDIs of these five pollutants were positively correlated with the levels of the metabolite 2,4-diaminobutyric acid while negatively correlated with the levels of d-erythro-sphingosine and d-threitol. Our research suggests that exposure to 6PPDQ, BDE28, PCB52, Ni, and Cu in kindergarten dust is associated with alterations in the gut microbiota and its metabolites. These alterations may be associated with neurodevelopmental abnormalities in children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gut%20microbiota" title="gut microbiota">gut microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=6PPDQ" title=" 6PPDQ"> 6PPDQ</a>, <a href="https://publications.waset.org/abstracts/search?q=PBDEs" title=" PBDEs"> PBDEs</a>, <a href="https://publications.waset.org/abstracts/search?q=PCBs" title=" PCBs"> PCBs</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%28loid%29s" title=" metal(loid)s"> metal(loid)s</a>, <a href="https://publications.waset.org/abstracts/search?q=BKMR" title=" BKMR"> BKMR</a> </p> <a href="https://publications.waset.org/abstracts/184571/alterations-of-gut-microbiota-and-its-metabolomics-in-child-with-6ppdq-pbde-pcb-and-metal-loid-exposure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> Mediterranean Diet-Driven Changes in Gut Microbiota Decrease the Infiltration of Inflammatory Myeloid Cells into the Intestinal Tissue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gema%20Go%CC%81mez-Casado">Gema Gómez-Casado</a>, <a href="https://publications.waset.org/abstracts/search?q=Alba%20Rodri%CC%81guez-Mun%CC%83oz"> Alba Rodríguez-Muñoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Virginia%20Mela-Rivas"> Virginia Mela-Rivas</a>, <a href="https://publications.waset.org/abstracts/search?q=Pallavi%20Kompella"> Pallavi Kompella</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Jose%CC%81%20Tinahones-Maduen%CC%83a"> Francisco José Tinahones-Madueña</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabel%20Moreno-Indias"> Isabel Moreno-Indias</a>, <a href="https://publications.waset.org/abstracts/search?q=Almudena%20Ortega-Go%CC%81mez"> Almudena Ortega-Gómez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Obesity is a high-priority health problem worldwide due to its high prevalence. The proportion of obese and overweight subjects in industrialized countries exceeds half of the population in most cases. Beyond the metabolic problem, obesity boosts inflammation levels in the organism. The gut microbiota, considered an organ by itself, controls a high variety of processes at a systemic level. In fact, the microbiota interacts closely with the immune system, being crucial in determining the maturation state of neutrophils, key effectors of the innate immune response. It is known that changes in the diet exert strong effects on the variety and activity of the gut microbiota. The effect that those changes have on the axis microbiota-immune response is an unexplored field. In this study, 10 patients with obesity (weight 114,3 ± 14,5Kg, BMI 40,47±3,66) followed a Mediterranean-hypocaloric diet for 3 months, reducing their initial weight by 12,71 ± 3%. A transplant of microbiota from these patients before and after the diet was performed into wild type “germ-free” mice (n=10/group), treated with antibiotics. Six weeks after the transplant, mice were euthanized, and the presence of cells from the innate immune system were analysed in different organs (bone marrow, blood, spleen, visceral adipose tissue, and intestine) by flow cytometry. No differences were observed in the number of myeloid cells in bone marrow, blood, spleen, or visceral adipose tissue of mice transplanted with patient’s microbiota before and after following the Mediterranean diet. However, the intestine of mice that received post-diet microbiota presented a marked decrease in the number of neutrophils (whose presence is associated with tissue inflammation), as well as macrophages. In line with these findings, intestine monocytes from mice with post-diet microbiota showed a less inflammatory profile (lower Ly6Gˡᵒʷ proportion of cells). These results point toward a decrease in the inflammatory state of the intestinal tissue, derived from changes in the gut microbiota, which occurred after a 3-month Mediterranean diet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=obesity" title="obesity">obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition" title=" nutrition"> nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=Mediterranean%20diet" title=" Mediterranean diet"> Mediterranean diet</a>, <a href="https://publications.waset.org/abstracts/search?q=gut%20microbiota" title=" gut microbiota"> gut microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20system" title=" immune system"> immune system</a> </p> <a href="https://publications.waset.org/abstracts/157501/mediterranean-diet-driven-changes-in-gut-microbiota-decrease-the-infiltration-of-inflammatory-myeloid-cells-into-the-intestinal-tissue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> The Promising Way to Minimize the Negative Effects of Iron Fortification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Juffrie">M. Juffrie</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Helmyati"> Siti Helmyati</a>, <a href="https://publications.waset.org/abstracts/search?q=Toto%20Sudargo"> Toto Sudargo</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20J.%20Istiti%20Kandarina"> B. J. Istiti Kandarina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Iron fortification is one potential way to overcome anemia but it can cause gut microbiota imbalance. Probiotics addition can increase the growth of good gut bacteria while prebiotics can support the probiotics growth. Tempeh is rich in nutrients required for hemoglobin synthesis, such as protein, vitamin B12, vitamin C, zinc, iron and copper. Objective: To know the efficacy of fermented tempeh extract fortified with iron and synbiotic in maintain gut microbiota balance. Methods: Fermented synbiotic tempeh extract was made using Lactobacillus plantarum Dad13 and Fructo-oligosaccharides. A total of 32 anemic Wistar rats underwent the iron repletion phase then divided into 4 groups, given: 1) Fermented synbiotic tempeh extract with 50 ppm Fe/NaFeEDTA (Na), 2) Fermented synbiotic tempeh extract with 50 ppm Fe/FeSO4 (Fe), 3) Fermented synbiotic tempeh extract (St), and 4) not receive any interventions (Co). Rats were feed AIN-93 free Fe during intervention. Gut microbiota was measured with culture technique using selective media agar while hemoglobin concentration (Hb) was measured with photometric method before and after intervention. Results: There were significant increase in Hb after intervention in Na, Fe, and St, 6.85 to 11.80; 6.41 to 11.48 and 6.47 to 11.03 mg/dL, respectively (p <0.05). Co did not show increase in Hb (6.40 vs. 6.28 mg/dL). Lactobacilli increased in all groups while both of Bifidobacteria increased and E. coli decreased only in Na and St groups. Conclusion: Iron fortification of fermented synbiotic tempeh extract can increase hemoglobin concentrations in anemic animal, increase Lactobacilli and decrease E. coli. It can be an alternative solution to conduct iron fortification without deteriorate the gut microbiota. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tempeh" title="tempeh">tempeh</a>, <a href="https://publications.waset.org/abstracts/search?q=synbiotic" title=" synbiotic"> synbiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=iron" title=" iron"> iron</a>, <a href="https://publications.waset.org/abstracts/search?q=haemoglobin" title=" haemoglobin"> haemoglobin</a>, <a href="https://publications.waset.org/abstracts/search?q=gut%20microbiota" title=" gut microbiota"> gut microbiota</a> </p> <a href="https://publications.waset.org/abstracts/16447/the-promising-way-to-minimize-the-negative-effects-of-iron-fortification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> Value Added by Spirulina Platensis in Two Different Diets on Growth Performance, Gut Microbiota, and Meat Quality of Japanese Quails</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Yusuf">Mohamed Yusuf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: The growth promoting the effect of the blue-green filamentous alga Spirulina platensis (SP) was observed on meat type Japanese quail with antibiotic growth promoter alternative and immune enhancing power. Materials and Methods: This study was conducted on 180 Japanese quail chicks for 4 weeks to find out the effect of diet type (vegetarian protein diet [VPD] and fish meal protein diet [FMPD])- Spirulina dose interaction (1 or 2 g/kg diet) on growth performance, gut microbiota, and sensory meat quality of growing Japanese quails (1-5 weeks old). Results: Data revealed improvement (p<0.05) of weight gain, feed conversion ratio, and European efficiency index due to 1, 2 g (SP)/kg VPD, and 2 g (SP)/kg FMPD, respectively. There was a significant decrease of ileum mean pH value by 1 g(SP)/kg VPD. Concerning gut microbiota, there was a trend toward an increase in Lactobacilli count in both 1; 2 g (SP)/kgVPD and 2 g (SP)/kg FMPD. It was concluded that 1 or 2 g (SP)/kg vegetarian diet may enhance parameters of performance without obvious effect on both meat quality and gut microbiota. Moreover, 1 and/or 2 g (SP) may not be invited to share fishmeal based diet for growing Japanese quails. Conclusion: Using of SP will support the profitable production of Japanese quails fed vegetable protein diet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isocaloric" title="isocaloric">isocaloric</a>, <a href="https://publications.waset.org/abstracts/search?q=isonitrogenous" title=" isonitrogenous"> isonitrogenous</a>, <a href="https://publications.waset.org/abstracts/search?q=meat%20quality" title=" meat quality"> meat quality</a>, <a href="https://publications.waset.org/abstracts/search?q=performances" title=" performances"> performances</a>, <a href="https://publications.waset.org/abstracts/search?q=quails" title=" quails"> quails</a>, <a href="https://publications.waset.org/abstracts/search?q=spirulina" title=" spirulina"> spirulina</a>, <a href="https://publications.waset.org/abstracts/search?q=spirulina" title=" spirulina"> spirulina</a> </p> <a href="https://publications.waset.org/abstracts/66900/value-added-by-spirulina-platensis-in-two-different-diets-on-growth-performance-gut-microbiota-and-meat-quality-of-japanese-quails" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> Development of an in vitro Fermentation Chicken Ileum Microbiota Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bello%20Gonzalez">Bello Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=Setten%20Van%20M."> Setten Van M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Brouwer%20M."> Brouwer M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The chicken small intestine represents a dynamic and complex organ in which the enzymatic digestion and absorption of nutrients take place. The development of an in vitro fermentation chicken small intestinal model could be used as an alternative to explore the interaction between the microbiota and nutrient metabolism and to enhance the efficacy of targeting interventions to improve animal health. In the present study we have developed an in vitro fermentation chicken ileum microbiota model for unrevealing the complex interaction of ileum microbial community under physiological conditions. A two-vessel continuous fermentation process simulating in real-time the physiological conditions of the ileum content (pH, temperature, microaerophilic/anoxic conditions, and peristaltic movements) has been standardized as a proof of concept. As inoculum, we use a pool of ileum microbial community obtained from chicken broilers at the age of day 14. The development and validation of the model provide insight into the initial characterization of the ileum microbial community and its dynamics over time-related to nutrient assimilation and fermentation. Samples can be collected at different time points and can be used to determine the microbial compositional structure, dynamics, and diversity over time. The results of studies using this in vitro model will serve as the foundation for the development of a whole small intestine in vitro fermentation chicken gastrointestinal model to complement our already established in vitro fermentation chicken caeca model. The insight gained from this model could provide us with some information about the nutritional strategies to restore and maintain chicken gut homeostasis. Moreover, the in vitro fermentation model will also allow us to study relationships between gut microbiota composition and its dynamics over time associated with nutrients, antimicrobial compounds, and disease modelling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broilers" title="broilers">broilers</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20model" title=" in vitro model"> in vitro model</a>, <a href="https://publications.waset.org/abstracts/search?q=ileum%20microbiota" title=" ileum microbiota"> ileum microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a> </p> <a href="https://publications.waset.org/abstracts/185845/development-of-an-in-vitro-fermentation-chicken-ileum-microbiota-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Probiotics as Therapeutic Agents in the Treatment of Various Diseases: A Literature Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20B.%20Chathyushya">K. B. Chathyushya</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shiva%20Prakash"> M. Shiva Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Hemalatha"> R. Hemalatha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Gastrointestinal (GI) tract has a number of microorganisms (microbiota) that influences the host’s health. The imbalance in the gut microbiota, which is also called as gut dysbiosis, affects human health which causes various metabolic, inflammatory, and infectious diseases. Probiotics play an important role in reinstating the gut balance. Probiotics are involved in the maintenance of healthier gut microbiota and have also been identified as effective adjuvants in insulin resistance therapies. Methods: This paper systematically reviews different randomized, controlled, blinded trials of probiotics for the treatment of various diseases along with the therapeutic or prophylactic properties of probiotic bacteria in different metabolic, inflammatory, infectious and anxiety-related disorders. Conclusion: The present review summarises that probiotics have some considerable effect in the management of various diseases, however, the benefits are strain specific, although more clinical trials are need to be carried out with different probiotic and symbiotic combinations as some probiotics have broad spectrum of benefits and few with specific activity <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20style%20diseases" title="life style diseases">life style diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=cognition" title=" cognition"> cognition</a>, <a href="https://publications.waset.org/abstracts/search?q=health" title=" health"> health</a>, <a href="https://publications.waset.org/abstracts/search?q=gut%20dysbiosis" title=" gut dysbiosis"> gut dysbiosis</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotics" title=" probiotics"> probiotics</a> </p> <a href="https://publications.waset.org/abstracts/111824/probiotics-as-therapeutic-agents-in-the-treatment-of-various-diseases-a-literature-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Effects of Brewer&#039;s Yeast Peptide Extract on the Growth of Probiotics and Gut Microbiota</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manuela%20Amorim">Manuela Amorim</a>, <a href="https://publications.waset.org/abstracts/search?q=Cl%C3%A1udia%20S.%20Marques"> Cláudia S. Marques</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Concei%C3%A7%C3%A3o%20Calhau"> Maria Conceição Calhau</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%A9lder%20J.%20Pinheiro"> Hélder J. Pinheiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Manuela%20Pintado"> Maria Manuela Pintado</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently it has been recognized peptides from different food sources with biological activities. However, no relevant study has proven the potential of brewer yeast peptides in the modulation of gut microbiota. The importance of human intestinal microbiota in maintaining host health is well known. Probiotics, prebiotics and the combination of these two components, can contribute to support an adequate balance of the bacterial population in the human large intestine. The survival of many bacterial species inhabiting the large bowel depends essentially on the substrates made available to them, most of which come directly from the diet. Some of these substrates can be selectively considered as prebiotics, which are food ingredients that can stimulate beneficial bacteria such as Lactobacilli or Bifidobacteria growth in the colon. Moreover, conventional food can be used as vehicle to intake bioactive compounds that provide those health benefits and increase people well-being. In this way, the main objective of this work was to study the potential prebiotic activity of brewer yeast peptide extract (BYP) obtained via hydrolysis of yeast proteins by cardosins present in Cynara cardunculus extract for possible use as a functional ingredient. To evaluate the effect of BYP on the modulation of gut microbiota in diet-induced obesity model, Wistar rats were fed either with a standard or a high-fat diet. Quantified via 16S ribosomal RNA (rRNA) expression by quantitative PCR (qPCR), genera of beneficial bacteria (Lactobacillus spp. and Bifidobacterium spp.) and three main phyla (Firmicutes, Bacteroidetes and Actinobacteria) were assessed. Results showed relative abundance of Lactobacillus spp., Bifidobacterium spp. and Bacteroidetes was significantly increased (P < 0.05) by BYP. Consequently, the potential health-promoting effects of WPE through modulation of gut microbiota were demonstrated in vivo. Altogether, these findings highlight the possible intervention of BYP as gut microbiota enhancer, promoting healthy life style, and the incorporation in new food products, leads them bringing associated benefits endorsing a new trend in the improvement of new value-added food products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functional%20ingredients" title="functional ingredients">functional ingredients</a>, <a href="https://publications.waset.org/abstracts/search?q=gut%20microbiota" title=" gut microbiota"> gut microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=prebiotics" title=" prebiotics"> prebiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=brewer%20yeast%20peptide%20extract" title=" brewer yeast peptide extract"> brewer yeast peptide extract</a> </p> <a href="https://publications.waset.org/abstracts/31141/effects-of-brewers-yeast-peptide-extract-on-the-growth-of-probiotics-and-gut-microbiota" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> Bacterial Interactions of Upper Respiratory Tract Microbiota</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Almuhayya">Sarah Almuhayya</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Mcbain"> Andrew Mcbain</a>, <a href="https://publications.waset.org/abstracts/search?q=Gavin%20Humphreys"> Gavin Humphreys</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background. The microbiome of the upper respiratory tract (URT) has received less research attention than other body sites. This study aims to investigate the microbial ecology of the human URT with a focus on the antagonism between the corynebacteria and staphylococci. Methods. Mucosal swabs were collected from the anterior nares and nasal turbinates of 20 healthy adult subjects. Genomic DNA amplification targeting the (V4) of the 16Sr RNA gene was conducted and analyzed using QIIME. Nasal swab isolates were cultured and identified using near full-length sequencing of the 16S rRNA gene. Isolates identified as corynebacteria or staphylococci were typed using (rep-PCR). Antagonism was determined using an agar-based inhibition assay. Results. Four major bacterial phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) were identified from all volunteers. The typing of cultured staphylococci and corynebacteria suggested that intra-individual strain diversity was limited. Analysis of generated nasal microbiota profiles suggested an inverse correlation in terms of relative abundance between staphylococci and corynebacteria. Despite the apparent antagonism between these genera, it was limited when investigated on agar. Of 1000 pairwise interactions, observable zones of inhibition were only reported between a single strain of C.pseudodiphtheriticum and S.aureus. Imaging under EM revealed this effect to be bactericidal with clear lytic effects on staphylococcal cell morphology. Conclusion. Nasal microbiota is complex, but culturable staphylococci and corynebacteria were limited in terms of clone type. Analysis of generated nasal microbiota profiles suggested an inverse correlation in terms of relative abundance between these genera suggesting an antagonism or competition between these taxonomic groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nasal" title="nasal">nasal</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiota" title=" microbiota"> microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=S.aureus" title=" S.aureus"> S.aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=microbioal%20interaction" title=" microbioal interaction"> microbioal interaction</a> </p> <a href="https://publications.waset.org/abstracts/164241/bacterial-interactions-of-upper-respiratory-tract-microbiota" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Gut Microbiota in Patients with Opioid Use Disorder: A 12-week Follow up Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheng-Yu%20Lee">Sheng-Yu Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: Opioid use disorder is often characterized by repetitive drug-seeking and drug-taking behaviors with severe public health consequences. Animal model showed that opioid-induced perturbations in the gut microbiota causally relate to neuroinflammation, deficits in reward responding, and opioid tolerance, possibly due to changes in gut microbiota. Therefore, we propose that the dysbiosis of gut microbiota can be associated with pathogenesis of opioid dependence. In this current study, we explored the differences in gut microbiota between patients and normal controls and in patients before and after initiation of methadone treatment program for 12 weeks. Methods: Patients with opioid use disorder between 20 and 65 years were recruited from the methadone maintenance outpatient clinic in 2 medical centers in the Southern Taiwan. Healthy controls without any family history of major psychiatric disorders (schizophrenia, bipolar disorder and major depressive disorder) were recruited from the community. After initial screening, 15 patients with opioid use disorder joined the study for initial evaluation (Week 0), 12 of them completed the 12-week follow-up while receiving methadone treatment and ceased heroin use (Week 12). Fecal samples were collected from the patients at baseline and the end of 12th week. A one-time fecal sample was collected from the healthy controls. The microbiota of fecal samples were investigated using 16S rRNA V3V4 amplicon sequencing, followed by bioinformatics and statistical analyses. Results: We found no significant differences in species diversity in opioid dependent patients between Week 0 and Week 12, nor compared between patients at both points and controls. For beta diversity, using principal component analysis, we found no significant differences between patients at Week 0 and Week 12, however, both patient groups showed significant differences compared to control (P=0.011). Furthermore, the linear discriminant analysis effect size (LEfSe) analysis was used to identify differentially enriched bacteria between opioid use patients and healthy controls. Compared to controls, the relative abundance of Lactobacillaceae Lactobacillus (L. Lactobacillus), Megasphaera Megasphaerahexanoica (M. Megasphaerahexanoica) and Caecibacter Caecibactermassiliensis (C Caecibactermassiliensis) were increased in patients at Week 0, while Coriobacteriales Atopobiaceae (C. Atopobiaceae), Acidaminococcus Acidaminococcusintestini (A. Acidaminococcusintestini) and Tractidigestivibacter Tractidigestivibacterscatoligenes (T. Tractidigestivibacterscatoligenes) were increased in patients at Week 12. Conclusion: In conclusion, we suggest that the gut microbiome community maybe linked to opioid use disorder, such differences may not be altered even after 12-week of cessation of opioid use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=opioid%20use%20disorder" title="opioid use disorder">opioid use disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=gut%20microbiota" title=" gut microbiota"> gut microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=methadone%20treatment" title=" methadone treatment"> methadone treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=follow%20up%20study" title=" follow up study"> follow up study</a> </p> <a href="https://publications.waset.org/abstracts/166977/gut-microbiota-in-patients-with-opioid-use-disorder-a-12-week-follow-up-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Characterization of Genus Candida Yeasts Isolated from Oral Microbiota of Brazilian Schoolchildren with Different Caries Experience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20V.%20Barbieri">D. S. V. Barbieri</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20R.%20Gomes"> R. R. Gomes</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20D.%20Santos"> G. D. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20F.%20Herkert"> P. F. Herkert</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Moreira"> M. Moreira</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20S.%20Trindade"> E. S. Trindade</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20Vicente"> V. A. Vicente</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The importance of yeast infections has increased in recent decades. The monitoring of Candida yeasts has been relevant in the study of groups and populations. This research evaluated 31 Candida spp. isolates from oral microbiota of 12 Brazilian schoolchildren coinfected with Streptococcus mutans. The isolates were evaluated for their ability to form biofilm in vitro and molecularly characterized based on the sequencing of intergenic spacer regions ITS1-5,8S-ITS2 and variable domains of the large subunit (D1/D2) regions of the rDNA, as well as ABC system genotyping. The sequencing confirmed 26 lineages of Candida albicans, three Candida tropicalis, one Candida guillhermondii and one Candida glabrata. Genetic variability and differences on in biofilm formation were observed among Candida yeasts lineages. At least one Candida strain from each caries activity child was C.albicans genotype A or Candida non-albicans. C. tropicalis was associated with highest cavities rates. These results indicate that the presence of C. albicans genotype A or multi-colonization by non albicans species seem to be associates to the potentialization of caries risk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilm" title="biofilm">biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=Candida%20albicans" title=" Candida albicans"> Candida albicans</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20microbiota" title=" oral microbiota"> oral microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=caries" title=" caries"> caries</a> </p> <a href="https://publications.waset.org/abstracts/22050/characterization-of-genus-candida-yeasts-isolated-from-oral-microbiota-of-brazilian-schoolchildren-with-different-caries-experience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> Characterizing Nasal Microbiota in COVID-19 Patients: Insights from Nanopore Technology and Comparative Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Pinzauti">David Pinzauti</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20De%20Jaegher"> Simon De Jaegher</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20D%27Aguano"> Maria D&#039;Aguano</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuele%20Biazzo"> Manuele Biazzo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The COVID-19 pandemic has left an indelible mark on global health, leading to a pressing need for understanding the intricate interactions between the virus and the human microbiome. This study focuses on characterizing the nasal microbiota of patients affected by COVID-19, with a specific emphasis on the comparison with unaffected individuals, to shed light on the crucial role of the microbiome in the development of this viral disease. To achieve this objective, Nanopore technology was employed to analyze the bacterial 16s rRNA full-length gene present in nasal swabs collected in Malta between January 2021 and August 2022. A comprehensive dataset consisting of 268 samples (126 SARS-negative samples and 142 SARS-positive samples) was subjected to a comparative analysis using an in-house, custom pipeline. The findings from this study revealed that individuals affected by COVID-19 possess a nasal microbiota that is significantly less diverse, as evidenced by lower α diversity, and is characterized by distinct microbial communities compared to unaffected individuals. The beta diversity analyses were carried out at different taxonomic resolutions. At the phylum level, Bacteroidota was found to be more prevalent in SARS-negative samples, suggesting a potential decrease during the course of viral infection. At the species level, the identification of several specific biomarkers further underscores the critical role of the nasal microbiota in COVID-19 pathogenesis. Notably, species such as Finegoldia magna, Moraxella catarrhalis, and others exhibited relative abundance in SARS-positive samples, potentially serving as significant indicators of the disease. This study presents valuable insights into the relationship between COVID-19 and the nasal microbiota. The identification of distinct microbial communities and potential biomarkers associated with the disease offers promising avenues for further research and therapeutic interventions aimed at enhancing public health outcomes in the context of COVID-19. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title="COVID-19">COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=nasal%20microbiota" title=" nasal microbiota"> nasal microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=nanopore%20technology" title=" nanopore technology"> nanopore technology</a>, <a href="https://publications.waset.org/abstracts/search?q=16s%20rRNA%20gene" title=" 16s rRNA gene"> 16s rRNA gene</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a> </p> <a href="https://publications.waset.org/abstracts/170798/characterizing-nasal-microbiota-in-covid-19-patients-insights-from-nanopore-technology-and-comparative-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> The Role of Oral and Intestinal Microbiota in European Badgers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emma%20J.%20Dale">Emma J. Dale</a>, <a href="https://publications.waset.org/abstracts/search?q=Christina%20D.%20Buesching"> Christina D. Buesching</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20R.%20Theis"> Kevin R. Theis</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20W.%20Macdonald"> David W. Macdonald</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the oral and intestinal microbiomes of wild-living European badgers (Meles meles) and will relate inter-individual differences to social contact networks, somatic and reproductive fitness, varying susceptibility to bovine tuberculous (bTB) and to the olfactory advertisement. Badgers are an interesting model for this research, as they have great variation in body condition, despite living in complex social networks and having access to the same resources. This variation in somatic fitness, in turn, affects breeding success, particularly in females. We postulate that microbiota have a central role to play in determining the successfulness of an individual. Our preliminary results, characterising the microbiota of individual badgers, indicate unique compositions of microbiota communities within social groups of badgers. This basal information will inform further questions related to the extent microbiota influence fitness. Hitherto, the potential role of microbiota has not been considered in determining host condition, but also other key fitness variables, namely; communication and resistance to disease. Badgers deposit their faeces in communal latrines, which play an important role in olfactory communication. Odour profiles of anal and subcaudal gland secretions are highly individual-specific and encode information about group-membership and fitness-relevant parameters, and their chemical composition is strongly dependent on symbiotic microbiota. As badgers sniff/ lick (using their Vomeronasal organ) and over-mark faecal deposits of conspecifics, these microbial communities can be expected to vary with social contact networks. However, this is particularly important in the context of bTB, where badgers are assumed to transmit bTB to cattle as well as conspecifics. Interestingly, we have found that some individuals are more susceptible to bTB than are others. As acquired immunity and thus potential susceptibility to infectious diseases are known to depend also on symbiotic microbiota in other members of the mustelids, a role of particularly oral microbiota can currently not be ruled out as a potential explanation for inter-individual differences in infection susceptibility of bTB in badgers. Tri annually badgers are caught in the context of a long-term population study that began in 1987. As all badgers receive an individual tattoo upon first capture, age, natal as well as previous and current social group-membership and other life history parameters are known for all animals. Swabs (subcaudal ‘scent gland’, anal, genital, nose, mouth and ear) and fecal samples will be taken from all individuals, stored at -80oC until processing. Microbial samples will be processed and identified at Wayne State University’s Theis (Host-Microbe Interactions) Lab, using High Throughput Sequencing (16S rRNA-encoding gene amplification and sequencing). Acknowledgments: Gas-Chromatography/ Mass-spectrometry (in the context of olfactory communication) analyses will be performed through an established collaboration with Dr. Veronica Tinnesand at Telemark University, Norway. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=communication" title="communication">communication</a>, <a href="https://publications.waset.org/abstracts/search?q=energetics" title=" energetics"> energetics</a>, <a href="https://publications.waset.org/abstracts/search?q=fitness" title=" fitness"> fitness</a>, <a href="https://publications.waset.org/abstracts/search?q=free-ranging%20animals" title=" free-ranging animals"> free-ranging animals</a>, <a href="https://publications.waset.org/abstracts/search?q=immunology" title=" immunology"> immunology</a> </p> <a href="https://publications.waset.org/abstracts/100388/the-role-of-oral-and-intestinal-microbiota-in-european-badgers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Role of Human Milk Oligosaccharides (HMOs) in Epigenetic Modulation of Bacterial Pathogen in Infant and Toddler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aftab%20Yusuf%20Raj">Aftab Yusuf Raj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human milk oligosaccharides (HMOs) are complex carbohydrates. They are 3rd most abundant solid component found in breast milk, after lactose and lipids. HMO has profound beneficial health benefit effects on infants and toddlers. They have diverse roles, in immuno-modulation, development of neonatal gut, influencing the commensal microbiota of developing gut, and anti-inflammatory functions. HMOs, gut and commensal microbiota of the gut work synergistically to bring positive impact on infant and toddler health. HMO influences the gut-brain axis, maintains good mental health and cognitive function and inhibits neuronal inflammation. HMOs are now applied in infant nutrition, and supplementation of HMOs in infant formula is a promising innovation for infant nutrition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HMO%E2%80%99s" title="HMO’s">HMO’s</a>, <a href="https://publications.waset.org/abstracts/search?q=gut" title=" gut"> gut</a>, <a href="https://publications.waset.org/abstracts/search?q=epigenetic%20modulation" title=" epigenetic modulation"> epigenetic modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a> </p> <a href="https://publications.waset.org/abstracts/191265/role-of-human-milk-oligosaccharides-hmos-in-epigenetic-modulation-of-bacterial-pathogen-in-infant-and-toddler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> The Interplay of Dietary Fibers and Intestinal Microbiota Affects Type 2 Diabetes by Generating Short-Chain Fatty Acids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Mazhar">Muhammad Mazhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Zhu"> Yong Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Likang%20Qin"> Likang Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Foods contain endogenous components known as dietary fibers, which are classified into soluble and insoluble forms. Dietary fibers are resistant to gut digestive enzymes, modulating anaerobic intestinal microbiota (AIM) and fabricating short-chain fatty acids (SCFAs). Acetate, butyrate, and propionate dominate in the gut, and different pathways, including Wood-Ljungdahl and acrylate pathways, generate these SCFAs. In pancreatic dysfunction, the release of insulin/glucagon is impaired, which leads to hyperglycemia. SCFAs enhance insulin sensitivity or secretion, beta-cell functions, leptin release, mitochondrial functions, and intestinal gluconeogenesis in human organs, which positively affect type 2 diabetes (T2D). Research models presented that SCFAs either enhance the release of peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) from L-cells (entero-endocrine) or promote the release of leptin hormone satiation in adipose tissues through G-protein receptors, i.e., GPR-41/GPR-43. Dietary fibers are the components of foods that influence AIM and produce SCFAs, which may be offering beneficial effects on T2D. This review addresses the effectiveness of SCFAs in modulating gut AIM in the fermentation of dietary fiber and their worth against T2D. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dietary%20fibers" title="dietary fibers">dietary fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=intestinal%20microbiota" title=" intestinal microbiota"> intestinal microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=short-chain%20fatty%20acids" title=" short-chain fatty acids"> short-chain fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=type%202%20diabetes" title=" type 2 diabetes"> type 2 diabetes</a> </p> <a href="https://publications.waset.org/abstracts/174081/the-interplay-of-dietary-fibers-and-intestinal-microbiota-affects-type-2-diabetes-by-generating-short-chain-fatty-acids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> Assessing Antimicrobial Activity of Various Plant Extracts on Midgutmicroflora of Aedesaegypti</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Baweja">V. Baweja</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Gupta"> K. K. Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Dubey"> V. Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Keshavam"> C. Keshavam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antimicrobial activity of six indigenous plants such as Tulsi Ocimum sanctum, Neem Azadirachta indica, Aloe vera, Turmeric Curcuma longa, Lantana Lantana camara, and Clove Syzygium aromaticum was assessed against the gut microbiota of the dengue fever mosquito Aedes aegypti, keeping in view that the presence of midgut bacteria may affect the ability of the vector to transmit pathogens. Eleven different types of bacterial clones were isolated from the midgut of lab-reared fourth instar larvae of Aedes aegypti and were grown on LB agar medium at an optimum temperature of 25 ºC. Identification of these bacteria was done on the basis of their colony characteristic such as colony size, shape, opacity, elevation, consistency, and growth. Light microscopic studies of the gut microbiota revealed dominance of Gram-negative cocci over gram positive cocci and bacilli and Gram-negative bacilli. Identification of species was done by chemical characterization of the colonies. Crude extracts of all test plants were screened for their antimicrobial activities against gut microbiota by disc diffusion assay. The zone of exclusion seen after 24 hr of incubation in different assays revealed the most potent antibacterial activities in neem followed by clove and turmeric. Lantana and Aloe vera were least effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plant%20extract" title="plant extract">plant extract</a>, <a href="https://publications.waset.org/abstracts/search?q=aedes" title=" aedes"> aedes</a>, <a href="https://publications.waset.org/abstracts/search?q=dengue" title=" dengue"> dengue</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a> </p> <a href="https://publications.waset.org/abstracts/11181/assessing-antimicrobial-activity-of-various-plant-extracts-on-midgutmicroflora-of-aedesaegypti" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> Theory of Negative Trigger: The Contract between Oral Probiotics and Immune System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cliff%20Shunsheng%20Han">Cliff Shunsheng Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Identifying the direct allergy cause that can be easily mitigated is the foundation to stop the allergy epidemic that has been started in the seventies. It has confirmed that the personal and social hygiene practices are associated with the allergy prevalence. But direct causes have been found, and proposed translational measures have not been effective. This study, assisted by a particular case of allergies, has seen the direct cause of allergies, developed a valid test resulted in lasting relief for allergies, and constructed theory describing general relationship between microbiota and host immune system. Saliva samples were collected from a subject for three years during which time the person experienced yearlong allergy, seasonal allergy, and remission of allergy symptoms. Bacterial DNA was extracted and 16S rRNA genes were profiled with Illumina sequencing technology. The analyzing results indicate that the possible direct cause of allergy is the lacking probiotic bacteria in the oral cavity, such as genera Streptococcus and Veilonella, that can produce metabolites to pacify immune system. Targeted promotion of those bacteria with a compound designed for them, has led to lasting remissions of allergic rhinitis. During the development of the translational measure, the subject's oral biofilm was completely destructed by a moderate fever due to an unrelated respiratory infection. The incident not only facilitated the development of the heat based microbiota reseeding procedure but also indicated a possible natural switch that subsequently increases the efficacy of the immune system previously restrained by metabolites from microbiota. These results lead to the proposal of a Theory of Negative Trigger (TNT) to describe the relationship between oral probiotics and immune system, in which probiotics are the negative trigger that will release the power of immune system when removed by fever or modern lifestyles. This study could open doors leading to further understanding of how the immune system functions under the influence of microbiota as well as validate simple traditional practices for healthy living. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oral%20microbiome" title="oral microbiome">oral microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=allergy" title=" allergy"> allergy</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20system" title=" immune system"> immune system</a>, <a href="https://publications.waset.org/abstracts/search?q=infection" title=" infection"> infection</a> </p> <a href="https://publications.waset.org/abstracts/94884/theory-of-negative-trigger-the-contract-between-oral-probiotics-and-immune-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Isolation and Identification of the Dominant Flora of the Intestinal Microbiota of Rattus norvegicus an Algerian Firm West</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karima%20Ould%20Yerou">Karima Ould Yerou</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Meddah"> B. Meddah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tir%20Touil"> A. Tir Touil </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The intestinal flora also called the intestinal microbiota, consists of different bacteria and other microorganisms which occur naturally in the gastrointestinal tract organs components. These intestinal bacteria are present in their millions and help the functioning of the body in particular allowing aid to degradation of certain molecules into absorbable substrates. They also protect against invasion of the gut by other pathogenic bacteria, that is to say which may be responsible for disease. Factors like stress, antibiotics and diet can affect the balance of intestinal flora and in case of imbalance, digestive disorders type bloating, diarrhea or vomiting may occur. Rattus norvegicus of bad weight of 100 kg, an Algerian firm West are scarified and isolation of their ileum and colon respectively two Bactrian strains Escherichia coli and Lactobacillus are then purified and identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intestinal%20flora" title="intestinal flora">intestinal flora</a>, <a href="https://publications.waset.org/abstracts/search?q=Rattus%20norvegicus" title=" Rattus norvegicus"> Rattus norvegicus</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=lactobacillus" title=" lactobacillus"> lactobacillus</a>, <a href="https://publications.waset.org/abstracts/search?q=West%20Algerian%20farm" title=" West Algerian farm"> West Algerian farm</a> </p> <a href="https://publications.waset.org/abstracts/42813/isolation-and-identification-of-the-dominant-flora-of-the-intestinal-microbiota-of-rattus-norvegicus-an-algerian-firm-west" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Soil and the Gut Microbiome: Supporting the &#039;Hygiene Hypothesis&#039;</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chris%20George">Chris George</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Hamlin"> Adam Hamlin</a>, <a href="https://publications.waset.org/abstracts/search?q=Lily%20Pereg"> Lily Pereg</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Charlesworth"> Richard Charlesworth</a>, <a href="https://publications.waset.org/abstracts/search?q=Gal%20Winter"> Gal Winter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: According to the ‘hygiene hypothesis’ the current rise in allergies and autoimmune diseases stems mainly from reduced microbial exposure due, amongst other factors, to urbanisation and distance from soil. However, this hypothesis is based on epidemiological and not biological data. Useful insights into the underlying mechanisms of this hypothesis can be gained by studying our interaction with soil. Soil microbiota may be directly ingested or inhaled by humans, enter the body through skin-soil contact or using plants as vectors. This study aims to examine the ability of soil microbiota to colonise the gut, study the interaction of soil microbes with the immune system and their potential protective activity. Method: The nutrition of the rats was supplemented daily with fresh or autoclaved soil for 21 days followed by 14 days of no supplementations. Faecal samples were collected throughout and analysed using 16S sequencing. At the end of the experiment rats were sacrificed and tissues and digesta were collected. Results/Conclusion: Results showed significantly higher richness and diversity following soil supplementation even after recovery. Specific soil microbial groups identified as able to colonise the gut. Of particular interest was the mucosal layer which emerged as a receptive host for soil microorganisms. Histological examination revealed innate and adaptive immune activation. Findings of this study reinforce the ‘hygiene hypothesis’ by demonstrating the ability of soil microbes to colonise the gut and activate the immune system. This paves the way for further studies aimed to examine the interaction of soil microorganisms with the immune system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gut%20microbiota" title="gut microbiota">gut microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=hygiene%20hypothesis" title=" hygiene hypothesis"> hygiene hypothesis</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiome" title=" microbiome"> microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a> </p> <a href="https://publications.waset.org/abstracts/90507/soil-and-the-gut-microbiome-supporting-the-hygiene-hypothesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Effects of Dietary Supplementation with Fermented Feed Mulberry(Morus alba L.) on Reproductive Performance and Fecal M Icro Biota of Pregnant Sows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuping%20Zhang">Yuping Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Teng%20Ma"> Teng Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Everaert"> Nadia Everaert</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongfu%20Zhang"> Hongfu Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supplying dietary fiber during gestation is known to improve the welfare of feed-restricted sows. However, whether high fiber supplementation during pregnancy can improve the performance of sows and their offspring depends on the type, amount, source, etc., in which the solubility plays a key important role. Insoluble fibers have been shown to increase feed intake of sows in lactation, meet the needs of sows for milk production, reduce sow’s weight and backfat loss, and thus improve the performance of sows and their offspring. In this study, we investigated the effect of the addition of fermented feed mulberry (FFM), rich in insoluble fiber, during the whole gestation on the performance of sows and their offspring and explored possible mechanisms by determining serum hormones and fecal microbiota. The FFM-diet contained 25.5% FFM (on dry matter basis) and was compared with the control–diet (CON, corn, and soybean meal diet). The insoluble fiber content of the FFM and CON diet are respectively 29.3% and 19.1%. both groups were allocated 20 multiparous sows, and they are fed different feed allowance to make sure all the sows get the same digestible energy for each day. After farrowing, all sows were fed the same lactation diet ad libitum. The serum estradiol, progesterone concentration, blood glucose, and insulin levels at gestation day 0, 20, and 60 were tested. And also, the composition and differences fecal microbiota at day 60 of gestation were analyzed. Fecal consistency was determined with Bristol stool scale method, those with a score below 3 were counted as constipation The results showed that there was no impact of the FFM treatment on sows’ backfat, bodyweight changes, blood glucose, serum estradiol, and progesterone concentration, litter size, and performance of the offspring(p > 0.05), Except significant decrease in the concentration of insulin in sows’ serum at 60 days of gestation were observed in the FFM group compare to the CON group (P < 0.01). FFM diet also significantly increased feed intake on the first, third, and 21st days of sow lactation. (p < 0.01); The α- and β- diversity and abundance of the microbiota were significant increased (p < 0.01) compared with the CON group, The abundance of Firmicutes and Bacteroidetes were significantly increased, meanwhile the abundances of Spirochetes, Proteobacteria, and Euryarchaeota, were significantly reduced in the feces of the FFM group. We also analyzed the fecal microbiota of constipated sows vs non-constipated sows and found that the diversity and abundance did also differ between these two groups. FFM and CON group < 0.01). The relationship between sow’s constipation and microbiota merits further investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermented%20feed%20mulberry" title="fermented feed mulberry">fermented feed mulberry</a>, <a href="https://publications.waset.org/abstracts/search?q=reproductive%20performance" title=" reproductive performance"> reproductive performance</a>, <a href="https://publications.waset.org/abstracts/search?q=fecal%20flora" title=" fecal flora"> fecal flora</a>, <a href="https://publications.waset.org/abstracts/search?q=sow" title=" sow"> sow</a> </p> <a href="https://publications.waset.org/abstracts/123693/effects-of-dietary-supplementation-with-fermented-feed-mulberrymorus-alba-l-on-reproductive-performance-and-fecal-m-icro-biota-of-pregnant-sows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Oral Microbiota as a Novel Predictive Biomarker of Response To Immune Checkpoint Inhibitors in Advanced Non-small Cell Lung Cancer Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Pantano">Francesco Pantano</a>, <a href="https://publications.waset.org/abstracts/search?q=Marta%20Fogolari"> Marta Fogolari</a>, <a href="https://publications.waset.org/abstracts/search?q=Michele%20Iuliani"> Michele Iuliani</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Simonetti"> Sonia Simonetti</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Cavaliere"> Silvia Cavaliere</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Russano"> Marco Russano</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabrizio%20Citarella"> Fabrizio Citarella</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Vincenzi"> Bruno Vincenzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Angeletti"> Silvia Angeletti</a>, <a href="https://publications.waset.org/abstracts/search?q=Giuseppe%20Tonini"> Giuseppe Tonini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Although immune checkpoint inhibitors (ICIs) have changed the treatment paradigm of non–small cell lung cancer (NSCLC), these drugs fail to elicit durable responses in the majority of NSCLC patients. The gut microbiota, able to regulate immune responsiveness, is emerging as a promising, modifiable target to improve ICIs response rates. Since the oral microbiome has been demonstrated to be the primary source of bacterial microbiota in the lungs, we investigated its composition as a potential predictive biomarker to identify and select patients who could benefit from immunotherapy. Methods: Thirty-five patients with stage IV squamous and non-squamous cell NSCLC eligible for an anti-PD-1/PD-L1 as monotherapy were enrolled. Saliva samples were collected from patients prior to the start of treatment, bacterial DNA was extracted using the QIAamp® DNA Microbiome Kit (QIAGEN) and the 16S rRNA gene was sequenced on a MiSeq sequencing instrument (Illumina). Results: NSCLC patients were dichotomized as “Responders” (partial or complete response) and “Non-Responders” (progressive disease), after 12 weeks of treatment, based on RECIST criteria. A prevalence of the phylum Candidatus Saccharibacteria was found in the 10 responders compared to non-responders (abundance 5% vs 1% respectively; p-value = 1.46 x 10-7; False Discovery Rate (FDR) = 1.02 x 10-6). Moreover, a higher prevalence of Saccharibacteria Genera Incertae Sedis genus (belonging to the Candidatus Saccharibacteria phylum) was observed in "responders" (p-value = 6.01 x 10-7 and FDR = 2.46 x 10-5). Finally, the patients who benefit from immunotherapy showed a significant abundance of TM7 Phylum Sp Oral Clone FR058 strain, member of Saccharibacteria Genera Incertae Sedis genus (p-value = 6.13 x 10-7 and FDR=7.66 x 10-5). Conclusions: These preliminary results showed a significant association between oral microbiota and ICIs response in NSCLC patients. In particular, the higher prevalence of Candidatus Saccharibacteria phylum and TM7 Phylum Sp Oral Clone FR058 strain in responders suggests their potential immunomodulatory role. The study is still ongoing and updated data will be presented at the congress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oral%20microbiota" title="oral microbiota">oral microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20checkpoint%20inhibitors" title=" immune checkpoint inhibitors"> immune checkpoint inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=non-small%20cell%20lung%20cancer" title=" non-small cell lung cancer"> non-small cell lung cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20biomarker" title=" predictive biomarker"> predictive biomarker</a> </p> <a href="https://publications.waset.org/abstracts/163788/oral-microbiota-as-a-novel-predictive-biomarker-of-response-to-immune-checkpoint-inhibitors-in-advanced-non-small-cell-lung-cancer-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> In Silico Study of Cell Surface Structures of Parabacteroides distasonis Involved in Its Maintain Within the Gut Microbiota and Its Potential Pathogenicity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jordan%20Chamarande">Jordan Chamarande</a>, <a href="https://publications.waset.org/abstracts/search?q=Lisiane%20Cunat"> Lisiane Cunat</a>, <a href="https://publications.waset.org/abstracts/search?q=Corentine%20Alauzet"> Corentine Alauzet</a>, <a href="https://publications.waset.org/abstracts/search?q=Catherine%20Cailliez-Grimal"> Catherine Cailliez-Grimal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gut microbiota (GM) is now considered a new organ mainly due to the microorganism’s specific biochemical interaction with its host. Although mechanisms underlying host-microbiota interactions are not fully described, it is now well-defined that cell surface molecules and structures of the GM play a key role in such relation. The study of surface structures of GM members is also fundamental for their role in the establishment of species in the versatile and competitive environment of the digestive tract and as a potential virulence factor. Among these structures are capsular polysaccharides (CPS), fimbriae, pili and lipopolysaccharides (LPS), all well-described for their central role in microorganism colonization and communication with host epithelium. The health-promoting Parabacteroides distasonis, which is part of the core microbiome, has recently received a lot of attention, showing beneficial properties for its host and as a new potential biotherapeutic product. However, to the best of the authors’ knowledge, the cell surface molecules and structures of P. distasonis that allow its maintain within the GM are not identified. Moreover, although P. distasonis is strongly recognized as intestinal commensal species with benefits for its host, it has also been recognized as an opportunistic pathogen. In this study, we reported gene clusters potentially involved in the synthesis of the capsule, fimbriae-like and pili-like cell surface structures in 26 P. distasonis genomes and applied the new RfbA-Typing classification in order to better understand and characterize the beneficial/pathogenic behaviour related to P. distasonis strains. In context, 2 different types of fimbriae, 3 of pilus and up to 14 capsular polysaccharide loci, have been identified over the 26 genomes studied. Moreover, the addition of data to the rfbA-Type classification modified the outcome by rearranging rfbA genes and adding a fifth group to the classification. In conclusion, the strain variability in terms of external proteinaceous structure could explain the inter-strain differences previously observed in P. distasonis adhesion capacities and its potential pathogenicity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gut%20microbiota" title="gut microbiota">gut microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=Parabacteroides%20distasonis" title=" Parabacteroides distasonis"> Parabacteroides distasonis</a>, <a href="https://publications.waset.org/abstracts/search?q=capsular%20polysaccharide" title=" capsular polysaccharide"> capsular polysaccharide</a>, <a href="https://publications.waset.org/abstracts/search?q=fimbriae" title=" fimbriae"> fimbriae</a>, <a href="https://publications.waset.org/abstracts/search?q=pilus" title=" pilus"> pilus</a>, <a href="https://publications.waset.org/abstracts/search?q=O-antigen" title=" O-antigen"> O-antigen</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogenicity" title=" pathogenicity"> pathogenicity</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotic" title=" probiotic"> probiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20genomics" title=" comparative genomics"> comparative genomics</a> </p> <a href="https://publications.waset.org/abstracts/151575/in-silico-study-of-cell-surface-structures-of-parabacteroides-distasonis-involved-in-its-maintain-within-the-gut-microbiota-and-its-potential-pathogenicity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Evaluation of Methods for Simultaneous Extraction and Purification of Fungal and Bacterial DNA from Vaginal Swabs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vanessa%20De%20Carvalho">Vanessa De Carvalho</a>, <a href="https://publications.waset.org/abstracts/search?q=Chad%20MacPherson"> Chad MacPherson</a>, <a href="https://publications.waset.org/abstracts/search?q=Julien%20Tremblay"> Julien Tremblay</a>, <a href="https://publications.waset.org/abstracts/search?q=Julie%20Champagne"> Julie Champagne</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephanie-Anne%20Girard"> Stephanie-Anne Girard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The interactions between bacteria and fungi in the human vaginal microbiome are fundamental to the concept of health and disease. The means by which the microbiota and mycobiota interact is still poorly understood and further studies are necessary to properly characterize this complex ecosystem. The aim of this study was to select a DNA extraction method capable of recovering high qualities of fungal and bacterial DNA from a single vaginal swab. Methods: 11 female volunteers ( ≥ 20 to < 55 years old) self-collected vaginal swabs in triplicates. Three commercial extraction kits: Masterpure Yeast Purification kit (Epicenter), PureLink™ Microbiome DNA Purification kit (Invitrogen), and Quick-DNA™ Fecal/Soil Microbe Miniprep kit (Zymo) were evaluated on the ability to recover fungal and bacterial DNA simultaneously. The extraction kits were compared on the basis of recovery, yield, purity, and the community richness of bacterial (16S rRNA - V3-V4 region) and fungal (ITS1) microbiota composition by Illumina MiSeq amplicon sequencing. Results: Recovery of bacterial DNA was achieved with all three kits while fungal DNA was only consistently recovered with Masterpure Yeast Purification kit (yield and purity). Overall, all kits displayed similar microbiota profiles for the top 20 OTUs; however, Quick-DNA™ Fecal/Soil Microbe Miniprep kit (Zymo) showed more species richness than the other two kits. Conclusion: In the present study, Masterpure Yeast purification kit proved to be a good candidate for purification of high quality fungal and bacterial DNA simultaneously. These findings have potential benefits that could be applied in future vaginal microbiome research. Whilst the use of a single extraction method would lessen the burden of multiple swab sampling, decrease laboratory workload and off-set costs associated with multiple DNA extractions, thoughtful consideration must be taken when selecting an extraction kit depending on the desired downstream application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterial%20vaginosis" title="bacterial vaginosis">bacterial vaginosis</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20extraction" title=" DNA extraction"> DNA extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiota" title=" microbiota"> microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=mycobiota" title=" mycobiota"> mycobiota</a>, <a href="https://publications.waset.org/abstracts/search?q=vagina" title=" vagina"> vagina</a>, <a href="https://publications.waset.org/abstracts/search?q=vulvovaginal%20candidiasis" title=" vulvovaginal candidiasis"> vulvovaginal candidiasis</a>, <a href="https://publications.waset.org/abstracts/search?q=women%E2%80%99s%20health" title=" women’s health"> women’s health</a> </p> <a href="https://publications.waset.org/abstracts/95405/evaluation-of-methods-for-simultaneous-extraction-and-purification-of-fungal-and-bacterial-dna-from-vaginal-swabs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Microbiota Associated With the Larval Culture of Red Cusk Eel Genipterus Chilensis in Chile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luz%20Hurtado">Luz Hurtado</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20Rojas"> Rodrigo Rojas</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Romero"> Jaime Romero</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Concha"> Christopher Concha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The culture of the marine fish red cusk eel Genypterus chilensis is currently considered a priority for Chilean aquaculture which is a Chilean native species of high gastronomic demand and market value. The microbiota was analyzed in terms of diversity and structure using massive Illumina sequencing. The analysis of alpha diversity was performed in samples of G. chilensis larvae of 6, 18 and 32 dph (days post-hatching) and it was observed that there were significant differences (P = 0.05) between the days of culture for the Chao1 index, being the larvae of 18 dph the one with the highest index followed by the larvae of 6 dph, The lowest value for this index was presented in larvae of 32 dph. There were no significant differences in larvae between the days of culture for the Shannon (P=0.0857) and Simpson (P=0.0714) indices. In general, the larvae of G. chilensis have high rates of diversity. When analyzing the beta diversity, a differentiation between the bacterial communities is observed depending on the day of the culture of the larvae. Considering the PCoA elaborated from the unweighted UniFrac statistic, the explained variance was 46.2% (PC1 29.2% and PC2 17.0%) and in the case of the PCoA elaborated with the weighted UniFrac statistic; the explained variance was 65.5% (PC1 41.8% and PC2 23.7%) these differences were significant based on the Permanova statistical analysis (P= 0.002 and 0.037 respectively). When analyzing the taxonomic composition of the microbiota of the larvae in the different days of culture it was observed that at the phyla level the most abundant in the larvae of 6 dph were Proteobacteria (57%) Verrucomicrobia (24%) and Firmicutes (14%), for the larvae of 18 dph the predominant phyla were Proteobacteria (90%), Dependientiae (5%), Actinobacteria (2%) and Plactomyces (2%), for the larvae of 32 dph the phyla that presented the highest relative abundance were Proteobacteria (57%), Firmicutes (29%), Verrucomicrobia (5%) and Actinobacteria (5%), when comparing the larvae between the days it was observed that the phylum Proteobacteria was the most abundant in the samples of larvae of 6, 18 and 32 dph being the larvae of 18 dph those that present the highest relative abundance, the larvae of 6 dph were those that presented the highest relative abundance for the phylum Verrucomicrobia and in the larvae of 32 dph was observed greater abundance of the phylum Firmicutes compared to the other days of larval culture. At the level of genera, those with the highest relative abundance in larvae of 6 dph were Rubritalea (30%), Psychrobacter (28%), staphylococcus (17%) and Ralstonia (10%), for the larvae of 18 dph the genera with the highest abundance were Psychrobacter (47%), Litoreibacter (13%), Nautella (9%) and Cohesibacter (8%), for the larvae of 32 dph the most abundant genera were Alloiococcus (25%), Dialister (14%), Neptunomonas (13%) and Piscirickettsia (11%). When observing the taxonomic composition of the larvae between the days of larval culture, it is observed that there are differences between them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbiota" title="microbiota">microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Chilensis" title=" G. Chilensis"> G. Chilensis</a>, <a href="https://publications.waset.org/abstracts/search?q=larvae" title=" larvae"> larvae</a> </p> <a href="https://publications.waset.org/abstracts/167894/microbiota-associated-with-the-larval-culture-of-red-cusk-eel-genipterus-chilensis-in-chile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Evaluation of Herbal Extracts for Their Potential Application as Skin Prebiotics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anja%20I.%20Petrov">Anja I. Petrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Milica%20B.%20Veljkovi%C4%87"> Milica B. Veljković</a>, <a href="https://publications.waset.org/abstracts/search?q=Marija%20M.%20%C4%86orovi%C4%87"> Marija M. Ćorović</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20D.%20Milivojevi%C4%87"> Ana D. Milivojević</a>, <a href="https://publications.waset.org/abstracts/search?q=Milica%20B.%20Simovi%C4%87"> Milica B. Simović</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarina%20M.%20Banjanac"> Katarina M. Banjanac</a>, <a href="https://publications.waset.org/abstracts/search?q=Dejan%20I.%20Bezbradica"> Dejan I. Bezbradica</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the fundamental requirements for overall human well-being is a stable and balanced microbiome. Aside from the microorganisms that reside within the body, a large number of microorganisms, especially bacteria, swarming the human skin is in homeostasis with the host and represents a skin microbiota. Even though the immune system of the skin is capable of distinguishing between commensal and potentially harmful transient bacteria, the cutaneous microbial balance can be disrupted under certain circumstances. In that case, a reduction in the skin microbiota diversity, as well as changes in metabolic activity, results in dermal infections and inflammation. Probiotics and prebiotics have the potential to play a significant role in the treatment of these skin disorders. The most common resident bacteria found on the skin, Staphylococcus epidermidis, can act as a potential skin probiotic, contributing to the protection of healthy skin from pathogen colonization, such as Staphylococcus aureus, which is related to atopic dermatitis exacerbation. However, as it is difficult to meet regulations in cosmetic products, another therapy approach could be topical prebiotic supplementation of the skin microbiota. In recent research, polyphenols are attracting scientists' interest as biomolecules with possible prebiotic effects on the skin microbiota. This research aimed to determine how herbal extracts rich in different polyphenolic compounds (lemon balm, St. John's wort, coltsfoot, pine needle, and yarrow) affected the growth of S. epidermidis and S. aureus. The first part of the study involved screening plants to determine if they could be regarded as probable candidates to be skin prebiotics. The effect of each plant on bacterial growth was examined by supplementing the nutrient medium with their extracts and comparing it with control samples (without extract). The results obtained after 24 h of incubation showed that all tested extracts influenced the growth of the examined bacteria to some extent. Since lemon balm and St. John's wort extracts displayed bactericidal activity against S. epidermidis, whereas coltsfoot inhibited both bacteria equally, they were not explored further. On the other hand, pine needles and yarrow extract led to an increase in S. epidermidis/S. aureus ratio, making them prospective candidates to be used as skin prebiotics. By examining the prebiotic effect of two extracts at different concentrations, it was revealed that, in the case of yarrow, 0.1% of extract dry matter in the fermentation medium was optimal, while for the pine needle extract, a concentration of 0.05% was preferred, since it selectively stimulated S. epidermidis growth and inhibited S. aureus proliferation. Additionally, the total polyphenols and flavonoid content of the two extracts were determined, revealing different concentrations and polyphenol profiles. Since yarrow and pine extracts affected the growth of skin bacteria in a dose-dependent manner, by carefully selecting the quantities of these extracts, and thus polyphenols content, it is possible to achieve desirable alterations of skin microbiota composition, which may be suitable for the treatment of atopic dermatitis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=herbal%20extracts" title="herbal extracts">herbal extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20microbiota" title=" skin microbiota"> skin microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20prebiotics" title=" skin prebiotics"> skin prebiotics</a> </p> <a href="https://publications.waset.org/abstracts/145474/evaluation-of-herbal-extracts-for-their-potential-application-as-skin-prebiotics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gut%20microbiota&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gut%20microbiota&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gut%20microbiota&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gut%20microbiota&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10