CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 871 results for author: <span class="mathjax">Liu, Z</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Liu%2C+Z">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Liu, Z"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Liu%2C+Z&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Liu, Z"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Liu%2C+Z&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Liu%2C+Z&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+Z&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+Z&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+Z&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+Z&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07814">arXiv:2502.07814</a> <span> [<a href="https://arxiv.org/pdf/2502.07814">pdf</a>, <a href="https://arxiv.org/format/2502.07814">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Satellite Observations Guided Diffusion Model for Accurate Meteorological States at Arbitrary Resolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tu%2C+S">Siwei Tu</a>, <a href="/search/physics?searchtype=author&query=Fei%2C+B">Ben Fei</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+W">Weidong Yang</a>, <a href="/search/physics?searchtype=author&query=Ling%2C+F">Fenghua Ling</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">Hao Chen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zili Liu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+K">Kun Chen</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+H">Hang Fan</a>, <a href="/search/physics?searchtype=author&query=Ouyang%2C+W">Wanli Ouyang</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+L">Lei Bai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07814v1-abstract-short" style="display: inline;"> Accurate acquisition of surface meteorological conditions at arbitrary locations holds significant importance for weather forecasting and climate simulation. Due to the fact that meteorological states derived from satellite observations are often provided in the form of low-resolution grid fields, the direct application of spatial interpolation to obtain meteorological states for specific location… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07814v1-abstract-full').style.display = 'inline'; document.getElementById('2502.07814v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07814v1-abstract-full" style="display: none;"> Accurate acquisition of surface meteorological conditions at arbitrary locations holds significant importance for weather forecasting and climate simulation. Due to the fact that meteorological states derived from satellite observations are often provided in the form of low-resolution grid fields, the direct application of spatial interpolation to obtain meteorological states for specific locations often results in significant discrepancies when compared to actual observations. Existing downscaling methods for acquiring meteorological state information at higher resolutions commonly overlook the correlation with satellite observations. To bridge the gap, we propose Satellite-observations Guided Diffusion Model (SGD), a conditional diffusion model pre-trained on ERA5 reanalysis data with satellite observations (GridSat) as conditions, which is employed for sampling downscaled meteorological states through a zero-shot guided sampling strategy and patch-based methods. During the training process, we propose to fuse the information from GridSat satellite observations into ERA5 maps via the attention mechanism, enabling SGD to generate atmospheric states that align more accurately with actual conditions. In the sampling, we employed optimizable convolutional kernels to simulate the upscale process, thereby generating high-resolution ERA5 maps using low-resolution ERA5 maps as well as observations from weather stations as guidance. Moreover, our devised patch-based method promotes SGD to generate meteorological states at arbitrary resolutions. Experiments demonstrate SGD fulfills accurate meteorological states downscaling to 6.25km. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07814v1-abstract-full').style.display = 'none'; document.getElementById('2502.07814v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07201">arXiv:2502.07201</a> <span> [<a href="https://arxiv.org/pdf/2502.07201">pdf</a>, <a href="https://arxiv.org/format/2502.07201">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Well-to-Tank Carbon Intensity Variability of Fossil Marine Fuels: A Country-Level Assessment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Long%2C+W">Wennan Long</a>, <a href="/search/physics?searchtype=author&query=Moya%2C+D">Diego Moya</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z+E">Zemin Eitan Liu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zhenlin Chen</a>, <a href="/search/physics?searchtype=author&query=Jing%2C+L">Liang Jing</a>, <a href="/search/physics?searchtype=author&query=Jabbar%2C+M+Y">Muhammad Yousuf Jabbar</a>, <a href="/search/physics?searchtype=author&query=Orfanidis%2C+D">Dimitrios Orfanidis</a>, <a href="/search/physics?searchtype=author&query=Masnadi%2C+M+S">Mohammad S. Masnadi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07201v1-abstract-short" style="display: inline;"> The transition toward a low-carbon maritime transportation requires understanding lifecycle carbon intensity (CI) of marine fuels. While well-to-tank emissions significantly contribute to total greenhouse gas emissions, many studies lack global perspective in accounting for upstream operations, transportation, refining, and distribution. This study evaluates well-to-tank CI of High Sulphur Fuel Oi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07201v1-abstract-full').style.display = 'inline'; document.getElementById('2502.07201v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07201v1-abstract-full" style="display: none;"> The transition toward a low-carbon maritime transportation requires understanding lifecycle carbon intensity (CI) of marine fuels. While well-to-tank emissions significantly contribute to total greenhouse gas emissions, many studies lack global perspective in accounting for upstream operations, transportation, refining, and distribution. This study evaluates well-to-tank CI of High Sulphur Fuel Oil (HSFO) and well-to-refinery exit CI of Liquefied Petroleum Gas (LPG) worldwide at asset level. HSFO represents traditional marine fuel, while LPG serves as potential transition fuel due to lower tank-to-wake emissions and compatibility with low-carbon fuels. Using OPGEE and PRELIM tools with R-based geospatial methods, we derive country-level CI values for 72 countries (HSFO) and 74 countries (LPG), covering 98% of global production. Results show significant variation in climate impacts globally. HSFO upstream CI ranges 1-22.7 gCO2e/MJ, refining CI 1.2-12.6 gCO2e/MJ, with global volume-weighted-average well-to-tank CI of 12.4 gCO2e/MJ. Upstream and refining account for 55% and 32% of HSFO well-to-tank CI, with large exporters and intensive refining practices showing higher emissions. For LPG, upstream CI ranges 0.9-22.7 gCO2e/MJ, refining CI 2.8-13.9 gCO2e/MJ, with volume-weighted-average well-to-refinery CI of 15.6 gCO2e/MJ. Refining comprises 49% of LPG well-to-refinery CI, while upstream and transport represent 44% and 6%. Major players include China, United States and Russia. These findings reveal significant CI variability across countries and supply chains, offering opportunities for targeted emission reduction policies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07201v1-abstract-full').style.display = 'none'; document.getElementById('2502.07201v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.17286">arXiv:2501.17286</a> <span> [<a href="https://arxiv.org/pdf/2501.17286">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Fine-Tuning Open-Source Large Language Models to Improve Their Performance on Radiation Oncology Tasks: A Feasibility Study to Investigate Their Potential Clinical Applications in Radiation Oncology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+P">Peilong Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhengliang Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yiwei Li</a>, <a href="/search/physics?searchtype=author&query=Holmes%2C+J">Jason Holmes</a>, <a href="/search/physics?searchtype=author&query=Shu%2C+P">Peng Shu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+L">Lian Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xiang Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Q">Quanzheng Li</a>, <a href="/search/physics?searchtype=author&query=Laughlin%2C+B+S">Brady S. Laughlin</a>, <a href="/search/physics?searchtype=author&query=Toesca%2C+D+S">Diego Santos Toesca</a>, <a href="/search/physics?searchtype=author&query=Vora%2C+S+A">Sujay A. Vora</a>, <a href="/search/physics?searchtype=author&query=Patel%2C+S+H">Samir H. Patel</a>, <a href="/search/physics?searchtype=author&query=Sio%2C+T+T">Terence T. Sio</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+T">Tianming Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+W">Wei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.17286v1-abstract-short" style="display: inline;"> Background: The radiation oncology clinical practice involves many steps relying on the dynamic interplay of abundant text data. Large language models have displayed remarkable capabilities in processing complex text information. But their direct applications in specific fields like radiation oncology remain underexplored. Purpose: This study aims to investigate whether fine-tuning LLMs with dom… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17286v1-abstract-full').style.display = 'inline'; document.getElementById('2501.17286v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.17286v1-abstract-full" style="display: none;"> Background: The radiation oncology clinical practice involves many steps relying on the dynamic interplay of abundant text data. Large language models have displayed remarkable capabilities in processing complex text information. But their direct applications in specific fields like radiation oncology remain underexplored. Purpose: This study aims to investigate whether fine-tuning LLMs with domain knowledge can improve the performance on Task (1) treatment regimen generation, Task (2) treatment modality selection (photon, proton, electron, or brachytherapy), and Task (3) ICD-10 code prediction in radiation oncology. Methods: Data for 15,724 patient cases were extracted. Cases where patients had a single diagnostic record, and a clearly identifiable primary treatment plan were selected for preprocessing and manual annotation to have 7,903 cases of the patient diagnosis, treatment plan, treatment modality, and ICD-10 code. Each case was used to construct a pair consisting of patient diagnostics details and an answer (treatment regimen, treatment modality, or ICD-10 code respectively) for the supervised fine-tuning of these three tasks. Open source LLaMA2-7B and Mistral-7B models were utilized for the fine-tuning with the Low-Rank Approximations method. Accuracy and ROUGE-1 score were reported for the fine-tuned models and original models. Clinical evaluation was performed on Task (1) by radiation oncologists, while precision, recall, and F-1 score were evaluated for Task (2) and (3). One-sided Wilcoxon signed-rank tests were used to statistically analyze the results. Results: Fine-tuned LLMs outperformed original LLMs across all tasks with p-value <= 0.001. Clinical evaluation demonstrated that over 60% of the fine-tuned LLMs-generated treatment regimens were clinically acceptable. Precision, recall, and F1-score showed improved performance of fine-tuned LLMs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17286v1-abstract-full').style.display = 'none'; document.getElementById('2501.17286v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.16705">arXiv:2501.16705</a> <span> [<a href="https://arxiv.org/pdf/2501.16705">pdf</a>, <a href="https://arxiv.org/format/2501.16705">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.23.014059">10.1103/PhysRevApplied.23.014059 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Convection-modulated topological edge mode and extended-localized criticality in thermal metamaterials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhoufei Liu</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+J">Jiping Huang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Ying Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.16705v1-abstract-short" style="display: inline;"> Convection offers a dynamic and flexible approach to achieving a variety of novel physical phenomena beyond pure conduction. Here, we demonstrate that thermal metamaterials with convection modulation enable the realization of non-Hermitian topological edge modes and bulk mode criticality. We illustrate that a periodic modulation can induce localized edge modes within the band gap. The temperature… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16705v1-abstract-full').style.display = 'inline'; document.getElementById('2501.16705v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.16705v1-abstract-full" style="display: none;"> Convection offers a dynamic and flexible approach to achieving a variety of novel physical phenomena beyond pure conduction. Here, we demonstrate that thermal metamaterials with convection modulation enable the realization of non-Hermitian topological edge modes and bulk mode criticality. We illustrate that a periodic modulation can induce localized edge modes within the band gap. The temperature field of the topological state is localized at the edge rings, decaying exponentially at a fixed rate. Additionally, we introduce an extended-localized criticality through the quasiperiodic convection modulation in thermotics. The convections have an advantage of fantastic tunability in the application. Our work proposes a scheme for implementing topological modes and bulk mode criticality through modulating convection in diffusion systems, paving the way for the design of reconfigurable thermal devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16705v1-abstract-full').style.display = 'none'; document.getElementById('2501.16705v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Appl. 23, 014059 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.16148">arXiv:2501.16148</a> <span> [<a href="https://arxiv.org/pdf/2501.16148">pdf</a>, <a href="https://arxiv.org/ps/2501.16148">ps</a>, <a href="https://arxiv.org/format/2501.16148">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Velocity-comb modulation transfer spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Guan%2C+X">Xiaolei Guan</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+Z">Zheng Xiao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zijie Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhiyang Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jia Zhang</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+X">Xun Gao</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+P">Pengyuan Chang</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+T">Tiantian Shi</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jingbiao Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.16148v1-abstract-short" style="display: inline;"> Sub-Doppler laser spectroscopy is a crucial technique for laser frequency stabilization, playing a significant role in atomic physics, precision measurement, and quantum communication. However, recent efforts to improve frequency stability appear to have reached a bottleneck, as they primarily focus on external technical approaches while neglecting the fundamental issue of low atomic utilization (… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16148v1-abstract-full').style.display = 'inline'; document.getElementById('2501.16148v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.16148v1-abstract-full" style="display: none;"> Sub-Doppler laser spectroscopy is a crucial technique for laser frequency stabilization, playing a significant role in atomic physics, precision measurement, and quantum communication. However, recent efforts to improve frequency stability appear to have reached a bottleneck, as they primarily focus on external technical approaches while neglecting the fundamental issue of low atomic utilization (< 1%), caused by only near-zero transverse velocity atoms involved in the transition. Here, we propose a velocity-comb modulation transfer spectroscopy (MTS) solution that takes advantage of the velocity-selective resonance effect of multi-frequency comb lasers to enhance the utilization of non-zero-velocity atoms. In the probe-pump configuration, each pair of counter-propagating lasers interacts with atoms from different transverse velocity-comb groups, independently contributing to the spectral amplitude and signal-to-noise ratio. Preliminary proof-of-principle results show that the frequency stability of the triple-frequency laser is optimized by nearly a factor of \sqrt{3} compared to the single-frequency laser, consistent with theoretical expectations. With more frequency comb components, MTS-stabilized lasers are expected to achieve order-of-magnitude breakthroughs in frequency stability, taking an important step toward next-generation compact optical clocks. This unique method can also be widely applied to any quantum system with a wide velocity distribution, inspiring innovative advances in numerous fields with a fresh perspective. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16148v1-abstract-full').style.display = 'none'; document.getElementById('2501.16148v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.14003">arXiv:2501.14003</a> <span> [<a href="https://arxiv.org/pdf/2501.14003">pdf</a>, <a href="https://arxiv.org/format/2501.14003">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> PaMMA-Net: Plasmas magnetic measurement evolution based on data-driven incremental accumulative prediction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ling%2C+Y">Yunfei Ling</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zijie Liu</a>, <a href="/search/physics?searchtype=author&query=Du%2C+J">Jun Du</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Y">Yao Huang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yuehang Wang</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+B">Bingjia Xiao</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+X">Xin Fang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.14003v1-abstract-short" style="display: inline;"> An accurate evolution model is crucial for effective control and in-depth study of fusion plasmas. Evolution methods based on physical models often encounter challenges such as insufficient robustness or excessive computational costs. Given the proven strong fitting capabilities of deep learning methods across various fields, including plasma research, this paper introduces a deep learning-based m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14003v1-abstract-full').style.display = 'inline'; document.getElementById('2501.14003v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.14003v1-abstract-full" style="display: none;"> An accurate evolution model is crucial for effective control and in-depth study of fusion plasmas. Evolution methods based on physical models often encounter challenges such as insufficient robustness or excessive computational costs. Given the proven strong fitting capabilities of deep learning methods across various fields, including plasma research, this paper introduces a deep learning-based magnetic measurement evolution method named PaMMA-Net (Plasma Magnetic Measurements Incremental Accumulative Prediction Network). This network is capable of evolving magnetic measurements in tokamak discharge experiments over extended periods or, in conjunction with equilibrium reconstruction algorithms, evolving macroscopic parameters such as plasma shape. Leveraging a incremental prediction approach and data augmentation techniques tailored for magnetic measurements, PaMMA-Net achieves superior evolution results compared to existing studies. The tests conducted on real experimental data from EAST validate the high generalization capability of the proposed method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14003v1-abstract-full').style.display = 'none'; document.getElementById('2501.14003v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.12936">arXiv:2501.12936</a> <span> [<a href="https://arxiv.org/pdf/2501.12936">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Universal Catalyst Design Framework for Electrochemical Hydrogen Peroxide Synthesis Facilitated by Local Atomic Environment Descriptors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhijian Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yan Liu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+B">Bingqian Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yuqi Zhang</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+T">Tianxiang Gao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+M">Mingzhe Li</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+X">Xue Jia</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+D">Di Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Heng Liu</a>, <a href="/search/physics?searchtype=author&query=Shao%2C+X">Xuqiang Shao</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+L">Li Wei</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hao Li</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+W">Weijie Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.12936v1-abstract-short" style="display: inline;"> Developing a universal and precise design framework is crucial to search high-performance catalysts, but it remains a giant challenge due to the diverse structures and sites across various types of catalysts. To address this challenge, herein, we developed a novel framework by the refined local atomic environment descriptors (i.e., weighted Atomic Center Symmetry Function, wACSF) combined with mac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12936v1-abstract-full').style.display = 'inline'; document.getElementById('2501.12936v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.12936v1-abstract-full" style="display: none;"> Developing a universal and precise design framework is crucial to search high-performance catalysts, but it remains a giant challenge due to the diverse structures and sites across various types of catalysts. To address this challenge, herein, we developed a novel framework by the refined local atomic environment descriptors (i.e., weighted Atomic Center Symmetry Function, wACSF) combined with machine learning (ML), microkinetic modeling, and computational high-throughput screening. This framework is successfully integrated into the Digital Catalysis Database (DigCat), enabling efficient screening for 2e- water oxidation reaction (2e- WOR) catalysts across four material categories (i.e., metal alloys, metal oxides and perovskites, and single-atom catalysts) within a ML model. The proposed wACSF descriptors integrating both geometric and chemical features are proven effective in predicting the adsorption free energies with ML. Excitingly, based on the wACSF descriptors, the ML models accurately predict the adsorption free energies of hydroxyl (螖GOH*) and oxygen (螖GO*) for such a wide range of catalysts, achieving R2 values of 0.84 and 0.91, respectively. Through density functional theory calculations and microkinetic modeling, a universal 2e- WOR microkinetic volcano model was derived with excellent agreement with experimental observations reported to date, which was further used to rapidly screen high-performance catalysts with the input of ML-predicted 螖GOH*. Most importantly, this universal framework can significantly improve the efficiency of catalyst design by considering multiple types of materials at the same time, which can dramatically accelerate the screening of high-performance catalysts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12936v1-abstract-full').style.display = 'none'; document.getElementById('2501.12936v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.12391">arXiv:2501.12391</a> <span> [<a href="https://arxiv.org/pdf/2501.12391">pdf</a>, <a href="https://arxiv.org/format/2501.12391">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Physics of Skill Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Ziming Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yizhou Liu</a>, <a href="/search/physics?searchtype=author&query=Michaud%2C+E+J">Eric J. Michaud</a>, <a href="/search/physics?searchtype=author&query=Gore%2C+J">Jeff Gore</a>, <a href="/search/physics?searchtype=author&query=Tegmark%2C+M">Max Tegmark</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.12391v1-abstract-short" style="display: inline;"> We aim to understand physics of skill learning, i.e., how skills are learned in neural networks during training. We start by observing the Domino effect, i.e., skills are learned sequentially, and notably, some skills kick off learning right after others complete learning, similar to the sequential fall of domino cards. To understand the Domino effect and relevant behaviors of skill learning, we t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12391v1-abstract-full').style.display = 'inline'; document.getElementById('2501.12391v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.12391v1-abstract-full" style="display: none;"> We aim to understand physics of skill learning, i.e., how skills are learned in neural networks during training. We start by observing the Domino effect, i.e., skills are learned sequentially, and notably, some skills kick off learning right after others complete learning, similar to the sequential fall of domino cards. To understand the Domino effect and relevant behaviors of skill learning, we take physicists' approach of abstraction and simplification. We propose three models with varying complexities -- the Geometry model, the Resource model, and the Domino model, trading between reality and simplicity. The Domino effect can be reproduced in the Geometry model, whose resource interpretation inspires the Resource model, which can be further simplified to the Domino model. These models present different levels of abstraction and simplification; each is useful to study some aspects of skill learning. The Geometry model provides interesting insights into neural scaling laws and optimizers; the Resource model sheds light on the learning dynamics of compositional tasks; the Domino model reveals the benefits of modularity. These models are not only conceptually interesting -- e.g., we show how Chinchilla scaling laws can emerge from the Geometry model, but also are useful in practice by inspiring algorithmic development -- e.g., we show how simple algorithmic changes, motivated by these toy models, can speed up the training of deep learning models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12391v1-abstract-full').style.display = 'none'; document.getElementById('2501.12391v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 20 figures. Codes are available at https://github.com/KindXiaoming/physics_of_skill_learning</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.11238">arXiv:2501.11238</a> <span> [<a href="https://arxiv.org/pdf/2501.11238">pdf</a>, <a href="https://arxiv.org/format/2501.11238">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> WSSM: Geographic-enhanced hierarchical state-space model for global station weather forecast </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yang%2C+S">Songru Yang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zili Liu</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Z">Zhenwei Shi</a>, <a href="/search/physics?searchtype=author&query=Zou%2C+Z">Zhengxia Zou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.11238v1-abstract-short" style="display: inline;"> Global Station Weather Forecasting (GSWF), a prominent meteorological research area, is pivotal in providing timely localized weather predictions. Despite the progress existing models have made in the overall accuracy of the GSWF, executing high-precision extreme event prediction still presents a substantial challenge. The recent emergence of state-space models, with their ability to efficiently c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.11238v1-abstract-full').style.display = 'inline'; document.getElementById('2501.11238v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.11238v1-abstract-full" style="display: none;"> Global Station Weather Forecasting (GSWF), a prominent meteorological research area, is pivotal in providing timely localized weather predictions. Despite the progress existing models have made in the overall accuracy of the GSWF, executing high-precision extreme event prediction still presents a substantial challenge. The recent emergence of state-space models, with their ability to efficiently capture continuous-time dynamics and latent states, offer potential solutions. However, early investigations indicated that Mamba underperforms in the context of GSWF, suggesting further adaptation and optimization. To tackle this problem, in this paper, we introduce Weather State-space Model (WSSM), a novel Mamba-based approach tailored for GSWF. Geographical knowledge is integrated in addition to the widely-used positional encoding to represent the absolute special-temporal position. The multi-scale time-frequency features are synthesized from coarse to fine to model the seasonal to extreme weather dynamic. Our method effectively improves the overall prediction accuracy and addresses the challenge of forecasting extreme weather events. The state-of-the-art results obtained on the Weather-5K subset underscore the efficacy of the WSSM <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.11238v1-abstract-full').style.display = 'none'; document.getElementById('2501.11238v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.09701">arXiv:2501.09701</a> <span> [<a href="https://arxiv.org/pdf/2501.09701">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D4MH00795F">10.1039/D4MH00795F <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mixed anion control of enhanced negative thermal expansion in the oxysulfide of PbTiO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pan%2C+Z">Zhao Pan</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+Z">Zhengli Liang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiao Wang</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+Y">Yue-Wen Fang</a>, <a href="/search/physics?searchtype=author&query=Ye%2C+X">Xubin Ye</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhehong Liu</a>, <a href="/search/physics?searchtype=author&query=Nishikubo%2C+T">Takumi Nishikubo</a>, <a href="/search/physics?searchtype=author&query=Sakai%2C+Y">Yuki Sakai</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xi Shen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Q">Qiumin Liu</a>, <a href="/search/physics?searchtype=author&query=Kawaguchi%2C+S">Shogo Kawaguchi</a>, <a href="/search/physics?searchtype=author&query=Zhan%2C+F">Fei Zhan</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+L">Longlong Fan</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yong-Yang Wang</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+C">Chen-Yan Ma</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+X">Xingxing Jiang</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+Z">Zheshuai Lin</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+R">Richeng Yu</a>, <a href="/search/physics?searchtype=author&query=Xing%2C+X">Xianran Xing</a>, <a href="/search/physics?searchtype=author&query=Azuma%2C+M">Masaki Azuma</a>, <a href="/search/physics?searchtype=author&query=Long%2C+Y">Youwen Long</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.09701v1-abstract-short" style="display: inline;"> The rare physical property of negative thermal expansion (NTE) is intriguing because materials with large NTE over a wide temperature range can serve as high-performance thermal expansion compensators. However, applications of NTE are hindered by the fact that most of the available NTE materials show small magnitudes of NTE, and/or NTE occurs only in a narrow temperature range. Herein, for the fir… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09701v1-abstract-full').style.display = 'inline'; document.getElementById('2501.09701v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.09701v1-abstract-full" style="display: none;"> The rare physical property of negative thermal expansion (NTE) is intriguing because materials with large NTE over a wide temperature range can serve as high-performance thermal expansion compensators. However, applications of NTE are hindered by the fact that most of the available NTE materials show small magnitudes of NTE, and/or NTE occurs only in a narrow temperature range. Herein, for the first time, we investigated the effect of anion substitution instead of general Pb/Ti-site substitutions on the thermal expansion properties of a typical ferroelectric NTE material, PbTiO3. Intriguingly, the substitution of S for O in PbTiO3 further increases the tetragonality of PbTiO3. Consequently, an unusually enhanced NTE with an average volumetric coefficient of thermal expansion $\bar伪_V$ = -2.50 $\times$ 10$^{-5}$/K was achieved over a wide temperature range (300 -- 790 K), which is contrasted to that of pristine PbTiO3 ($\bar伪_V$ = -1.99 $\times$ 10$^{-5}$/K RT -- 763 K). The intensified NTE is attributed to the enhanced hybridization between Pb/Ti and O/S atoms by the substitution of S, as evidenced by our theoretical investigations. We therefore demonstrate a new technique for introducing mixed anions to achieve large NTE over a wide temperature range in PbTiO3-based ferroelectrics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09701v1-abstract-full').style.display = 'none'; document.getElementById('2501.09701v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Materials Horizons, 11, 5394-5401, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08852">arXiv:2501.08852</a> <span> [<a href="https://arxiv.org/pdf/2501.08852">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Chirality transfer from chiral perovskite to molecular dopants via charge transfer states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+G">Guan-Lin Chen</a>, <a href="/search/physics?searchtype=author&query=Tsai%2C+H">Hsinhan Tsai</a>, <a href="/search/physics?searchtype=author&query=Forde%2C+A">Aaron Forde</a>, <a href="/search/physics?searchtype=author&query=Tseng%2C+K">Kai-Wei Tseng</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhe-Yu Liu</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+C">Chi-An Dai</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+T">Tong Xiao</a>, <a href="/search/physics?searchtype=author&query=Coltlet%2C+M">Mircea Coltlet</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+L">Leeyih Wang</a>, <a href="/search/physics?searchtype=author&query=Tretiak%2C+S">Sergei Tretiak</a>, <a href="/search/physics?searchtype=author&query=Nie%2C+W">Wanyi Nie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08852v1-abstract-short" style="display: inline;"> Chiral perovskites are emerging semiconducting materials with broken symmetry that can selectively absorb and emit circularly polarized light. However, most of the chiral perovskites are typically low-dimensional structures with limited electrical conductivity and their light absorption occurs in the UV region. In this work, we find doping 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TC… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08852v1-abstract-full').style.display = 'inline'; document.getElementById('2501.08852v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08852v1-abstract-full" style="display: none;"> Chiral perovskites are emerging semiconducting materials with broken symmetry that can selectively absorb and emit circularly polarized light. However, most of the chiral perovskites are typically low-dimensional structures with limited electrical conductivity and their light absorption occurs in the UV region. In this work, we find doping 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) in the chiral perovskite matrix can improve the electrical conductivity with an addition of visible light absorption through the emerging charge-transfer electronic states. The new absorption feature exhibits strong circular dichroism adapted from the chiral matrix, which is indicative of a chirality transfer from the host to the guest via an electronic coupling. The charge transfer state is validated by transient absorption spectroscopy and theory modeling. Quantum-chemical modeling identifies a strong wave function overlap between an electron and a hole of the guest-host in a closely packed crystal configuration forming the charge-transfer absorption state. We then integrate the doped chiral perovskite film in photodetectors and demonstrate a selective detection of circularly polarized light both in the UV and visible range. Our results suggest a universal approach of introducing visible photo absorption states to the chiral matrix to broaden the optical active range and enhance the conductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08852v1-abstract-full').style.display = 'none'; document.getElementById('2501.08852v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.03648">arXiv:2501.03648</a> <span> [<a href="https://arxiv.org/pdf/2501.03648">pdf</a>, <a href="https://arxiv.org/format/2501.03648">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Observations of Turbulence and Transport of Energetic Particles at Interplanetary Shocks: Transition of Transport Regimes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhao%2C+S">Siqi Zhao</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+H">Huirong Yan</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+T+Z">Terry Z. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.03648v1-abstract-short" style="display: inline;"> The transport of energetic particles is intimately related to the properties of plasma turbulence, a ubiquitous dynamic process that transfers energy across a broad range of spatial and temporal scales. However, the mechanisms governing the interactions between plasma turbulence and energetic particles remain incompletely understood. Here we present comprehensive observations from the upstream reg… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03648v1-abstract-full').style.display = 'inline'; document.getElementById('2501.03648v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.03648v1-abstract-full" style="display: none;"> The transport of energetic particles is intimately related to the properties of plasma turbulence, a ubiquitous dynamic process that transfers energy across a broad range of spatial and temporal scales. However, the mechanisms governing the interactions between plasma turbulence and energetic particles remain incompletely understood. Here we present comprehensive observations from the upstream region of a quasi-perpendicular interplanetary (IP) shock on 2004 January 22, using data from four Cluster spacecraft to investigate the interplay between turbulence dynamics and energetic particle transport. Our observations reveal a transition in energetic proton fluxes from exponential to power-law decay with increasing distance from the IP shock. This result provides possible observational evidence of a shift in transport behavior from normal diffusion to superdiffusion. This transition correlates with an increase in the time ratio from $蟿_s/蟿_{c}<1$ to $蟿_s/蟿_{c}\gg1$, where $蟿_s$ is the proton isotropization time, and $蟿_{c}$ is the turbulence correlation time. Additionally, the frequency-wavenumber distributions of magnetic energy in the power-law decay zone indicate that energetic particles excite linear Alfv茅n-like harmonic waves through gyroresonance, thereby modulating the original turbulence structure. These findings provide valuable insights for future studies on the propagation and acceleration of energetic particles in turbulent astrophysical and space plasma systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03648v1-abstract-full').style.display = 'none'; document.getElementById('2501.03648v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 9 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.02540">arXiv:2501.02540</a> <span> [<a href="https://arxiv.org/pdf/2501.02540">pdf</a>, <a href="https://arxiv.org/ps/2501.02540">ps</a>, <a href="https://arxiv.org/format/2501.02540">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Mapping Transient Structures of Cyclo[18]Carbon by Computational X-Ray Spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wei%2C+M">Minrui Wei</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S">Sheng-Yu Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jun-Rong Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+L">Lu Zhang</a>, <a href="/search/physics?searchtype=author&query=Ge%2C+G">Guoyan Ge</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zeyu Liu</a>, <a href="/search/physics?searchtype=author&query=Hua%2C+W">Weijie Hua</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.02540v1-abstract-short" style="display: inline;"> The structure of cyclo[18]carbon (C$_{18}$), whether in its polyynic form with bond length alternation (BLA) or its cumulenic form without BLA, has long fascinated researchers, even prior to its successful synthesis. Recent studies suggest a polyynic ground state and a cumulenic transient state; however, the dynamics remain unclear and lack experimental validation. This study presents a first-prin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02540v1-abstract-full').style.display = 'inline'; document.getElementById('2501.02540v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.02540v1-abstract-full" style="display: none;"> The structure of cyclo[18]carbon (C$_{18}$), whether in its polyynic form with bond length alternation (BLA) or its cumulenic form without BLA, has long fascinated researchers, even prior to its successful synthesis. Recent studies suggest a polyynic ground state and a cumulenic transient state; however, the dynamics remain unclear and lack experimental validation. This study presents a first-principles theoretical investigation of the bond lengths ($R_1$ and $R_2$) dependent two-dimensional potential energy surfaces (PESs) of C$_{18}$, concentrating on the ground state and carbon 1s ionized and excited states. We examine the potential of X-ray spectra for determining bond lengths and monitoring transient structures, finding that both X-ray photoelectron (XPS) and absorption (XAS) spectra are sensitive to these variations. Utilizing a library of ground-state minimum structures optimized with 14 different functionals, we observe that core binding energies predicted with the $蠅$B97XD functional can vary by 0.9 eV (290.3--291.2 eV). Unlike the ground state PES, which predicts minima at alternating bond lengths, the C1s ionized state PES predicts minima with equivalent bond lengths. In the XAS spectra, peaks 1$蟺^*$ and 2$蟺^*$ show a redshift with increasing bond lengths along the line where $R_1 = R_2$. Additionally, increasing $R_2$ (with $R_1$ fixed) results in an initial redshift followed by a blueshift, minimizing at $R_1 = R_2$. Major peaks indicate that both 1$蟺^*$ and 2$蟺^*$ arise from two channels: C1s$\rightarrow蟺^*_{z}$ (out-of-plane) and C1s$\rightarrow蟺^*_{xy}$ (in-plane) transitions at coinciding energies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02540v1-abstract-full').style.display = 'none'; document.getElementById('2501.02540v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.01971">arXiv:2501.01971</a> <span> [<a href="https://arxiv.org/pdf/2501.01971">pdf</a>, <a href="https://arxiv.org/format/2501.01971">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D4CP04180A">10.1039/D4CP04180A <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermodynamics and transport in molten chloride salts and their mixtures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cockrell%2C+C">Cillian Cockrell</a>, <a href="/search/physics?searchtype=author&query=Withington%2C+M">Margaret-Ann Withington</a>, <a href="/search/physics?searchtype=author&query=Devereux%2C+H+L">Harvey L. Devereux</a>, <a href="/search/physics?searchtype=author&query=Elena%2C+A+M">Alin M. Elena</a>, <a href="/search/physics?searchtype=author&query=Todorov%2C+I+T">Ilian T. Todorov</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zi-Kui Liu</a>, <a href="/search/physics?searchtype=author&query=Shang%2C+S">Shun-Li Shang</a>, <a href="/search/physics?searchtype=author&query=McCloy%2C+J+S">James S. McCloy</a>, <a href="/search/physics?searchtype=author&query=Bingham%2C+P+A">Paul A. Bingham</a>, <a href="/search/physics?searchtype=author&query=Trachenko%2C+K">Kostya Trachenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.01971v1-abstract-short" style="display: inline;"> Molten salts are important in a number of energy applications, but the fundamental mechanisms operating in ionic liquids are poorly understood, particularly at higher temperatures. This is despite their candidacy for deployment in solar cells, next-generation nuclear reactors, and nuclear pyroprocessing. We perform extensive molecular dynamics simulations over a variety of molten chloride salt com… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01971v1-abstract-full').style.display = 'inline'; document.getElementById('2501.01971v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.01971v1-abstract-full" style="display: none;"> Molten salts are important in a number of energy applications, but the fundamental mechanisms operating in ionic liquids are poorly understood, particularly at higher temperatures. This is despite their candidacy for deployment in solar cells, next-generation nuclear reactors, and nuclear pyroprocessing. We perform extensive molecular dynamics simulations over a variety of molten chloride salt compositions at varying temperature and pressures to calculate the thermodynamic and transport properties of these liquids. Using recent developments in the theory of liquid thermophysical properties, we interpret our results on the basis of collective atomistic dynamics (phonons). We find that the properties of ionic liquids well explained by their collective dynamics, as in simple liquids. In particular, we relate the decrease of heat capacity, viscosity, and thermal conductivity to the loss of transverse phonons from the liquid spectrum. We observe the singular dependence of the isochoric heat capacity on the mean free path of phonons, and the obeyance of the Stokes-Einstein equation relating the viscosity to the mass diffusion. The transport properties of mixtures are more complicated compared to simple liquids, however viscosity and thermal conductivity are well guided by fundamental bounds proposed recently. The kinematic viscosity and thermal diffusivity lie very close to one another and obey the theoretical fundamental bounds determined solely by fundamental physical constants. Our results show that recent advances in the theoretical physics of liquids are applicable to molten salts mixtures, and therefore that the evolution and interplay of properties common to all liquids may act as a guide to a deeper understanding of these mixtures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01971v1-abstract-full').style.display = 'none'; document.getElementById('2501.01971v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.01815">arXiv:2501.01815</a> <span> [<a href="https://arxiv.org/pdf/2501.01815">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Analytical modeling of laminated composite rings on nonreciprocal elastic foundations under non-axisymmetric loading </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhipeng Liu</a>, <a href="/search/physics?searchtype=author&query=Ju%2C+J">Jaehyung Ju</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.01815v1-abstract-short" style="display: inline;"> A mechanical model of a laminated composite ring on a nonreciprocal elastic foundation is a valuable engineering tool during the early design stages of various applications, such as non-pneumatic wheels, flexible bearings, expandable tubulars in oil wells, and vascular stents interacting with blood vessel linings, especially under non-axisymmetric loadings. Despite its importance, limited research… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01815v1-abstract-full').style.display = 'inline'; document.getElementById('2501.01815v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.01815v1-abstract-full" style="display: none;"> A mechanical model of a laminated composite ring on a nonreciprocal elastic foundation is a valuable engineering tool during the early design stages of various applications, such as non-pneumatic wheels, flexible bearings, expandable tubulars in oil wells, and vascular stents interacting with blood vessel linings, especially under non-axisymmetric loadings. Despite its importance, limited research has focused on the interaction between laminated composite rings and nonreciprocal elastic foundations. Moreover, no quantitative studies have yet explored the influence of foundation stiffness on the ring deformation. This work aims to develop an analytical framework for a laminated composite ring supported by a nonreciprocal elastic foundation under non-axisymmetric loading conditions. The model generates a design map that correlates the foundation stiffness with the ring deformation, accounting for ring dimensions, laminate layup architecture, and lamina anisotropy. The closed-form solution provides an efficient design tool for analyzing non-axisymmetric and nonuniform loadings at a low computational cost. The resulting design map provides a valuable resource for exploring the interaction between the nonreciprocal foundation and the laminated ring. The proposed analytical framework and design map hold broad potential applications in automotive, mechanical, civil, and biomedical engineering fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01815v1-abstract-full').style.display = 'none'; document.getElementById('2501.01815v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages,11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.01036">arXiv:2501.01036</a> <span> [<a href="https://arxiv.org/pdf/2501.01036">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Oblique rotational axis detection using elliptical optical vortex based on rotational Doppler effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhu%2C+X">Xiangyang Zhu</a>, <a href="/search/physics?searchtype=author&query=Ren%2C+Y">Yuan Ren</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+Y">Yaohui Fan</a>, <a href="/search/physics?searchtype=author&query=Wen%2C+X">Xinyi Wen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xiaocen Chen</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+R">Ruoyu Tang</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+Y">You Ding</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhengliang Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+T">Tong Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.01036v1-abstract-short" style="display: inline;"> The rotational Doppler effect (RDE) of structured light carrying orbital angular momentum (OAM) has attracted widespread attention for applications in optical sensors and OAM spectrum detection. These studies, however, based on RDE, are mostly focused on the motion parameters of rotating objects; other equally important attitude characteristics, e.g., the tilt angle of the axis of rotation, have r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01036v1-abstract-full').style.display = 'inline'; document.getElementById('2501.01036v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.01036v1-abstract-full" style="display: none;"> The rotational Doppler effect (RDE) of structured light carrying orbital angular momentum (OAM) has attracted widespread attention for applications in optical sensors and OAM spectrum detection. These studies, however, based on RDE, are mostly focused on the motion parameters of rotating objects; other equally important attitude characteristics, e.g., the tilt angle of the axis of rotation, have rarely been considered. We observed an interesting phenomenon in the experiments: the rotational Doppler spectral distribution varies with the ellipticity of the elliptical optical vortex (EOV) and the tilt angle between the rotational axis and optical axis, which inspired us to wonder if it is possible to detect oblique rotational axis or compensate the rotational Doppler broadening effect induced by oblique incidence by utilizing the EOV. Here, we reveal the RDE quantitative relationship with tilt angle and ellipticity for the first time and report a novel approach for tilt angle measurement. By employing a series of EOV with periodically varying ellipticity to illuminate a rotating object and analyze the time-frequency spectral distribution of scattered light associated with ellipticity and tilt angle, the tilt angle can be acquired accurately based on the specific relationship between the tilt angle and ellipticity of the EOV. Furthermore, the spectrum broadening effect arising from oblique incidence in the actual scenario may be addressed through our scheme. The method may find applications in industrial manufacturing and target attitude measurement, and our results provide new insights for obtaining more information about objects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01036v1-abstract-full').style.display = 'none'; document.getElementById('2501.01036v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.00347">arXiv:2501.00347</a> <span> [<a href="https://arxiv.org/pdf/2501.00347">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Observation of nonreciprocal transverse localization of light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liang%2C+S">Shun Liang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+C">Changchang Li</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+W">Wenqing Yu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhenzhi Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+C">Changbiao Li</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yanpeng Zhang</a>, <a href="/search/physics?searchtype=author&query=Malpuech%2C+G">Guillaume Malpuech</a>, <a href="/search/physics?searchtype=author&query=Solnyshkov%2C+D">Dmitry Solnyshkov</a>, <a href="/search/physics?searchtype=author&query=Jing%2C+H">Hui Jing</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zhaoyang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.00347v1-abstract-short" style="display: inline;"> Magnetic-free nonreciprocal optical devices that can prevent backscattering of signals are essential for integrated optical information processing. The achieved nonreciprocal behaviors mostly rely on various dispersive effects in optical media, which give rise to dispersive modulations of the transverse beam profile, such as spatial broadening and discretization, of the incident signals. Such defo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00347v1-abstract-full').style.display = 'inline'; document.getElementById('2501.00347v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.00347v1-abstract-full" style="display: none;"> Magnetic-free nonreciprocal optical devices that can prevent backscattering of signals are essential for integrated optical information processing. The achieved nonreciprocal behaviors mostly rely on various dispersive effects in optical media, which give rise to dispersive modulations of the transverse beam profile, such as spatial broadening and discretization, of the incident signals. Such deformation inevitably reduces the matching with subsequent components for information processing. Here we experimentally demonstrate the nonreciprocal transverse localization of light in a moir茅 photonic lattice induced in atomic vapors. When the probe field is set to co- or counter-propagate with the coupling field formed by superposing two identical honeycomb beams in a certain rotation angle, the output pattern can exhibit localized or dispersive behavior. The localization in the forward case is derived from the moir茅 structure, and the nonreciprocal behaviors (in both beam size and transmitted intensity) are introduced by the thermal motion of atoms. The thermal-motion-induced Doppler effect can destroy the coherent condition for electromagnetically induced transparency in the backward case, because of which the probe beam becomes immune to the modulation of the coupling field. The current work provides an approach to control the transverse beam profile in one-way transmission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00347v1-abstract-full').style.display = 'none'; document.getElementById('2501.00347v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.19875">arXiv:2412.19875</a> <span> [<a href="https://arxiv.org/pdf/2412.19875">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> Biological Insights from Integrative Modeling of Intrinsically Disordered Protein Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Z+H">Zi Hao Liu</a>, <a href="/search/physics?searchtype=author&query=Tsanai%2C+M">Maria Tsanai</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+O">Oufan Zhang</a>, <a href="/search/physics?searchtype=author&query=Head-Gordon%2C+T">Teresa Head-Gordon</a>, <a href="/search/physics?searchtype=author&query=Forman-Kay%2C+J">Julie Forman-Kay</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.19875v1-abstract-short" style="display: inline;"> Intrinsically disordered proteins and regions are increasingly appreciated for their abundance in the proteome and the many functional roles they play in the cell. In this short review, we describe a variety of approaches used to obtain biological insight from the structural ensembles of disordered proteins, regions, and complexes and the integrative biology challenges that arise from combining di… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19875v1-abstract-full').style.display = 'inline'; document.getElementById('2412.19875v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.19875v1-abstract-full" style="display: none;"> Intrinsically disordered proteins and regions are increasingly appreciated for their abundance in the proteome and the many functional roles they play in the cell. In this short review, we describe a variety of approaches used to obtain biological insight from the structural ensembles of disordered proteins, regions, and complexes and the integrative biology challenges that arise from combining diverse experiments and computational models. Importantly, we highlight findings regarding structural and dynamic characterization of disordered regions involved in binding and phase separation, as well as drug targeting of disordered regions, using a broad framework of integrative modeling approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19875v1-abstract-full').style.display = 'none'; document.getElementById('2412.19875v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18220">arXiv:2412.18220</a> <span> [<a href="https://arxiv.org/pdf/2412.18220">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Altermagnetic Spin-Splitting Magnetoresistance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+H">Hongyu Chen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zian Wang</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+P">Peixin Qin</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+Z">Ziang Meng</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+X">Xiaorong Zhou</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiaoning Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+L">Li Liu</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+G">Guojian Zhao</a>, <a href="/search/physics?searchtype=author&query=Duan%2C+Z">Zhiyuan Duan</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+T">Tianli Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jinghua Liu</a>, <a href="/search/physics?searchtype=author&query=Shao%2C+D">Dingfu Shao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhiqi Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18220v1-abstract-short" style="display: inline;"> The recently discovered altermagnets, featured by the exotic correlation of magnetic exchange interaction and alternating crystal environments, have offered exciting cutting-edge opportunities for spintronics. Here, we report the experimental observation of an altermagnetic spin-splitting magnetoresistance effect, which is driven by a spin current associated with the giant nonrelativistic spin spl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18220v1-abstract-full').style.display = 'inline'; document.getElementById('2412.18220v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18220v1-abstract-full" style="display: none;"> The recently discovered altermagnets, featured by the exotic correlation of magnetic exchange interaction and alternating crystal environments, have offered exciting cutting-edge opportunities for spintronics. Here, we report the experimental observation of an altermagnetic spin-splitting magnetoresistance effect, which is driven by a spin current associated with the giant nonrelativistic spin splitting of an altermagnet. The spin current polarization and the corresponding magnetic field direction associated with the magnetoresistance extrema are largely determined by the Neel vector of the altermagnet, leading to a remarkable phase shift compared to that driven by a conventional relativistic spin current. Our work opens a door to unearthing luxuriant nonrelativistic quantum states of matter in emergent materials with unconventional spin degeneracy lifting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18220v1-abstract-full').style.display = 'none'; document.getElementById('2412.18220v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.17322">arXiv:2412.17322</a> <span> [<a href="https://arxiv.org/pdf/2412.17322">pdf</a>, <a href="https://arxiv.org/format/2412.17322">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.chaos.2024.114936">10.1016/j.chaos.2024.114936 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable beam splitting via photorefractive nonlinearity and its applications in chiral waveguide induction and vortex generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+H">Hechong Chen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zihan Liu</a>, <a href="/search/physics?searchtype=author&query=Lian%2C+S">Shengdi Lian</a>, <a href="/search/physics?searchtype=author&query=Quan%2C+Q">Qingying Quan</a>, <a href="/search/physics?searchtype=author&query=Malomed%2C+B+A">Boris A. Malomed</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Shuobo Li</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yong Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Huagang Li</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+D">Dongmei Deng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.17322v1-abstract-short" style="display: inline;"> We report experimental observation and theoretical explanation of novel propagation regimes for optical beams in an artificial nonlinear material with outstanding photorefractive properties. Nondiffractive beams, which keep their shapes invariant in the free space, feature self-splitting from the middle in two separating secondary beams, due to the light-matter interaction. The splitting degree is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17322v1-abstract-full').style.display = 'inline'; document.getElementById('2412.17322v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.17322v1-abstract-full" style="display: none;"> We report experimental observation and theoretical explanation of novel propagation regimes for optical beams in an artificial nonlinear material with outstanding photorefractive properties. Nondiffractive beams, which keep their shapes invariant in the free space, feature self-splitting from the middle in two separating secondary beams, due to the light-matter interaction. The splitting degree is controlled by means of a phase-pre-modulation method. We propose applications of the self-splitting to the creation of an effectively chiral waveguide and the generation of even-order vortices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17322v1-abstract-full').style.display = 'none'; document.getElementById('2412.17322v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chaos, Solitons & Fractals, 183(2024)114936 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.16234">arXiv:2412.16234</a> <span> [<a href="https://arxiv.org/pdf/2412.16234">pdf</a>, <a href="https://arxiv.org/format/2412.16234">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Is AI Robust Enough for Scientific Research? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jun-Jie Zhang</a>, <a href="/search/physics?searchtype=author&query=Song%2C+J">Jiahao Song</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiu-Cheng Wang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+F">Fu-Peng Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zehan Liu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jian-Nan Chen</a>, <a href="/search/physics?searchtype=author&query=Dang%2C+H">Haoning Dang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S">Shiyao Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yiyan Zhang</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+J">Jianhui Xu</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+C">Chunxiang Shi</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+F">Fei Wang</a>, <a href="/search/physics?searchtype=author&query=Pang%2C+L">Long-Gang Pang</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+N">Nan Cheng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+W">Weiwei Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+D">Duo Zhang</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+D">Deyu Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.16234v1-abstract-short" style="display: inline;"> We uncover a phenomenon largely overlooked by the scientific community utilizing AI: neural networks exhibit high susceptibility to minute perturbations, resulting in significant deviations in their outputs. Through an analysis of five diverse application areas -- weather forecasting, chemical energy and force calculations, fluid dynamics, quantum chromodynamics, and wireless communication -- we d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16234v1-abstract-full').style.display = 'inline'; document.getElementById('2412.16234v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.16234v1-abstract-full" style="display: none;"> We uncover a phenomenon largely overlooked by the scientific community utilizing AI: neural networks exhibit high susceptibility to minute perturbations, resulting in significant deviations in their outputs. Through an analysis of five diverse application areas -- weather forecasting, chemical energy and force calculations, fluid dynamics, quantum chromodynamics, and wireless communication -- we demonstrate that this vulnerability is a broad and general characteristic of AI systems. This revelation exposes a hidden risk in relying on neural networks for essential scientific computations, calling further studies on their reliability and security. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16234v1-abstract-full').style.display = 'none'; document.getElementById('2412.16234v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.14440">arXiv:2412.14440</a> <span> [<a href="https://arxiv.org/pdf/2412.14440">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Dual atom (87Rb-133Cs) grating magneto-optical trap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xu%2C+L">Lei Xu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+M">Muming Li</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+Z">Zhilong Yu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zheyu Liu</a>, <a href="/search/physics?searchtype=author&query=Duan%2C+J">Junyi Duan</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+F">Fang Wang</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+F">Feng Zhao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+X">Xiaochi Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.14440v1-abstract-short" style="display: inline;"> This paper proposes a dual-color grating chip design method for simultaneously capturing dual atomic clouds (87Rb and 133Cs). By simulating key parameters such as the grating period, etching depth, duty cycle, coating material, and thickness, the optimal design parameters were determined to ensure efficient dual-wavelength diffraction and maximize the number of captured atoms. Experimental results… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14440v1-abstract-full').style.display = 'inline'; document.getElementById('2412.14440v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.14440v1-abstract-full" style="display: none;"> This paper proposes a dual-color grating chip design method for simultaneously capturing dual atomic clouds (87Rb and 133Cs). By simulating key parameters such as the grating period, etching depth, duty cycle, coating material, and thickness, the optimal design parameters were determined to ensure efficient dual-wavelength diffraction and maximize the number of captured atoms. Experimental results demonstrate the simultaneous trapping of 1.6E8 87Rb atoms and 7.8E6 133Cs atoms, thereby offering an approach for multi-species cold atom systems. This dual-species grating magneto-optical trap (GMOT) system has potential applications in precision measurements such as cold atom clocks, quantum interferometers, and quantum electrometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14440v1-abstract-full').style.display = 'none'; document.getElementById('2412.14440v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.14109">arXiv:2412.14109</a> <span> [<a href="https://arxiv.org/pdf/2412.14109">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Machine Learning Co-pilot for Screening of Organic Molecular Additives for Perovskite Solar Cells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pu%2C+Y">Yang Pu</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+Z">Zhiyuan Dai</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Y">Yifan Zhou</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+N">Ning Jia</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">Hongyue Wang</a>, <a href="/search/physics?searchtype=author&query=Mukhametkarimov%2C+Y">Yerzhan Mukhametkarimov</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+R">Ruihao Chen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">Hongqiang Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhe Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.14109v1-abstract-short" style="display: inline;"> Machine learning (ML) has been extensively employed in planar perovskite photovoltaics to screen effective organic molecular additives, while encountering predictive biases for novel materials due to small datasets and reliance on predefined descriptors. Present work thus proposes an effective approach, Co-Pilot for Perovskite Additive Screener (Co-PAS), an ML-driven framework designed to accelera… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14109v1-abstract-full').style.display = 'inline'; document.getElementById('2412.14109v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.14109v1-abstract-full" style="display: none;"> Machine learning (ML) has been extensively employed in planar perovskite photovoltaics to screen effective organic molecular additives, while encountering predictive biases for novel materials due to small datasets and reliance on predefined descriptors. Present work thus proposes an effective approach, Co-Pilot for Perovskite Additive Screener (Co-PAS), an ML-driven framework designed to accelerate additive screening for perovskite solar cells (PSCs). Co-PAS overcomes predictive biases by integrating the Molecular Scaffold Classifier (MSC) for scaffold-based pre-screening and utilizing Junction Tree Variational Autoencoder (JTVAE) latent vectors to enhance molecular structure representation, thereby enhancing the accuracy of power conversion efficiency (PCE) predictions. Leveraging Co-PAS, we integrate domain knowledge to screen an extensive dataset of 250,000 molecules from PubChem, prioritizing candidates based on predicted PCE values and key molecular properties such as donor number, dipole moment, and hydrogen bond acceptor count. This workflow leads to the identification of several promising passivating molecules, including the novel Boc-L-threonine N-hydroxysuccinimide ester (BTN), which, to our knowledge, has not been explored as an additive in PSCs and achieves a device PCE of 25.20%. Our results underscore the potential of Co-PAS in advancing additive discovery for high-performance PSCs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14109v1-abstract-full').style.display = 'none'; document.getElementById('2412.14109v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.13498">arXiv:2412.13498</a> <span> [<a href="https://arxiv.org/pdf/2412.13498">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Attention-aware convolutional neural networks for identification of magnetic islands in the tearing mode on EAST tokamak </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Long%2C+F">Feifei Long</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Y">Yian Zhao</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yunjiao Zhang</a>, <a href="/search/physics?searchtype=author&query=Wan%2C+C">Chenguang Wan</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Y">Yinan Zhou</a>, <a href="/search/physics?searchtype=author&query=Qiang%2C+Z">Ziwei Qiang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+K">Kangning Yang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jiuying Li</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+T">Tonghui Shi</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+B">Bihao Guo</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yang Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+H">Hailing Zhao</a>, <a href="/search/physics?searchtype=author&query=Ti%2C+A">Ang Ti</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+A">Adi Liu</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+C">Chu Zhou</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+J">Jinlin Xie</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zixi Liu</a>, <a href="/search/physics?searchtype=author&query=Zhuang%2C+G">Ge Zhuang</a>, <a href="/search/physics?searchtype=author&query=Team%2C+E">EAST Team</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.13498v1-abstract-short" style="display: inline;"> The tearing mode, a large-scale MHD instability in tokamak, typically disrupts the equilibrium magnetic surfaces, leads to the formation of magnetic islands, and reduces core electron temperature and density, thus resulting in significant energy losses and may even cause discharge termination. This process is unacceptable for ITER. Therefore, the accurate identification of a magnetic island in rea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13498v1-abstract-full').style.display = 'inline'; document.getElementById('2412.13498v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.13498v1-abstract-full" style="display: none;"> The tearing mode, a large-scale MHD instability in tokamak, typically disrupts the equilibrium magnetic surfaces, leads to the formation of magnetic islands, and reduces core electron temperature and density, thus resulting in significant energy losses and may even cause discharge termination. This process is unacceptable for ITER. Therefore, the accurate identification of a magnetic island in real time is crucial for the effective control of the tearing mode in ITER in the future. In this study, based on the characteristics induced by tearing modes, an attention-aware convolutional neural network (AM-CNN) is proposed to identify the presence of magnetic islands in tearing mode discharge utilizing the data from ECE diagnostics in the EAST tokamak. A total of 11 ECE channels covering the range of core is used in the tearing mode dataset, which includes 2.5*10^9 data collected from 68 shots from 2016 to 2021 years. We split the dataset into training, validation, and test sets (66.5%, 5.7%, and 27.8%), respectively. An attention mechanism is designed to couple with the convolutional neural networks to improve the capability of feature extraction of signals. During the model training process, we utilized adaptive learning rate adjustment and early stopping mechanisms to optimize performance of AM-CNN. The model results show that a classification accuracy of 91.96% is achieved in tearing mode identification. Compared to CNN without AM, the attention-aware convolutional neural networks demonstrate great performance across accuracy, recall metrics, and F1 score. By leveraging the deep learning model, which incorporates a physical understanding of the tearing process to identify tearing mode behaviors, the combination of physical mechanisms and deep learning is emphasized, significantly laying an important foundation for the future intelligent control of tearing mode dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13498v1-abstract-full').style.display = 'none'; document.getElementById('2412.13498v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.11082">arXiv:2412.11082</a> <span> [<a href="https://arxiv.org/pdf/2412.11082">pdf</a>, <a href="https://arxiv.org/format/2412.11082">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> EquiFlow: Equivariant Conditional Flow Matching with Optimal Transport for 3D Molecular Conformation Prediction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tian%2C+Q">Qingwen Tian</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Y">Yuxin Xu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Y">Yixuan Yang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Ziqi Liu</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+P">Pengju Yan</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xiaolin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.11082v1-abstract-short" style="display: inline;"> Molecular 3D conformations play a key role in determining how molecules interact with other molecules or protein surfaces. Recent deep learning advancements have improved conformation prediction, but slow training speeds and difficulties in utilizing high-degree features limit performance. We propose EquiFlow, an equivariant conditional flow matching model with optimal transport. EquiFlow uniquely… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11082v1-abstract-full').style.display = 'inline'; document.getElementById('2412.11082v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.11082v1-abstract-full" style="display: none;"> Molecular 3D conformations play a key role in determining how molecules interact with other molecules or protein surfaces. Recent deep learning advancements have improved conformation prediction, but slow training speeds and difficulties in utilizing high-degree features limit performance. We propose EquiFlow, an equivariant conditional flow matching model with optimal transport. EquiFlow uniquely applies conditional flow matching in molecular 3D conformation prediction, leveraging simulation-free training to address slow training speeds. It uses a modified Equiformer model to encode Cartesian molecular conformations along with their atomic and bond properties into higher-degree embeddings. Additionally, EquiFlow employs an ODE solver, providing faster inference speeds compared to diffusion models with SDEs. Experiments on the QM9 dataset show that EquiFlow predicts small molecule conformations more accurately than current state-of-the-art models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11082v1-abstract-full').style.display = 'none'; document.getElementById('2412.11082v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages,5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.10622">arXiv:2412.10622</a> <span> [<a href="https://arxiv.org/pdf/2412.10622">pdf</a>, <a href="https://arxiv.org/format/2412.10622">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> A recent evaluation on the performance of LLMs on radiation oncology physics using questions of randomly shuffled options </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+P">Peilong Wang</a>, <a href="/search/physics?searchtype=author&query=Holmes%2C+J">Jason Holmes</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhengliang Liu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+D">Dequan Chen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+T">Tianming Liu</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+J">Jiajian Shen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+W">Wei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.10622v3-abstract-short" style="display: inline;"> Purpose: We present an updated study evaluating the performance of large language models (LLMs) in answering radiation oncology physics questions, focusing on the recently released models. Methods: A set of 100 multiple-choice radiation oncology physics questions, previously created by a well-experienced physicist, was used for this study. The answer options of the questions were randomly shuffl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10622v3-abstract-full').style.display = 'inline'; document.getElementById('2412.10622v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.10622v3-abstract-full" style="display: none;"> Purpose: We present an updated study evaluating the performance of large language models (LLMs) in answering radiation oncology physics questions, focusing on the recently released models. Methods: A set of 100 multiple-choice radiation oncology physics questions, previously created by a well-experienced physicist, was used for this study. The answer options of the questions were randomly shuffled to create "new" exam sets. Five LLMs -- OpenAI o1-preview, GPT-4o, LLaMA 3.1 (405B), Gemini 1.5 Pro, and Claude 3.5 Sonnet -- with the versions released before September 30, 2024, were queried using these new exam sets. To evaluate their deductive reasoning ability, the correct answer options in the questions were replaced with "None of the above." Then, the explain-first and step-by-step instruction prompts were used to test if this strategy improved their reasoning ability. The performance of the LLMs was compared with the answers from medical physicists. Results: All models demonstrated expert-level performance on these questions, with o1-preview even surpassing medical physicists with a majority vote. When replacing the correct answer options with 'None of the above', all models exhibited a considerable decline in performance, suggesting room for improvement. The explain-first and step-by-step instruction prompts helped enhance the reasoning ability of the LLaMA 3.1 (405B), Gemini 1.5 Pro, and Claude 3.5 Sonnet models. Conclusion: These recently released LLMs demonstrated expert-level performance in answering radiation oncology physics questions, exhibiting great potential to assist in radiation oncology physics education and training. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10622v3-abstract-full').style.display = 'none'; document.getElementById('2412.10622v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.09857">arXiv:2412.09857</a> <span> [<a href="https://arxiv.org/pdf/2412.09857">pdf</a>, <a href="https://arxiv.org/format/2412.09857">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Orthogonal Geometry of Magneto-Optical Kerr Effect Enabled by Magnetization Multipole of Berry Curvature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pan%2C+H">Haolin Pan</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Han Li</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+J">Jixiang Huang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zheng Liu</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+M">Mingyue Fang</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+Y">Yanan Yuan</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+D">Daxiang Liu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+X">Xintong Hu</a>, <a href="/search/physics?searchtype=author&query=Peng%2C+W">Wenzhi Peng</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+Z">Zhenguo Liang</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+X">Xiao Chang</a>, <a href="/search/physics?searchtype=author&query=Sheng%2C+Z">Zhigao Sheng</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xianzhe Chen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+L">Lingfei Wang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Q">Qian Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+P">Peng Li</a>, <a href="/search/physics?searchtype=author&query=Niu%2C+Q">Qian Niu</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+Y">Yang Gao</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Q">Qinghui Yang</a>, <a href="/search/physics?searchtype=author&query=Hou%2C+D">Dazhi Hou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.09857v2-abstract-short" style="display: inline;"> The Magneto-Optical Kerr Effect (MOKE) is a fundamental tool in magnetometry, pivotal for advancing research in optics, magnetism, and spintronics as a direct probe of magnetization. Traditional MOKE measurements primarily detect the magnetization components parallel to the Poynting vector, which can only access the magnitude but not the direction of the orthogonal component. In this study, we int… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09857v2-abstract-full').style.display = 'inline'; document.getElementById('2412.09857v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.09857v2-abstract-full" style="display: none;"> The Magneto-Optical Kerr Effect (MOKE) is a fundamental tool in magnetometry, pivotal for advancing research in optics, magnetism, and spintronics as a direct probe of magnetization. Traditional MOKE measurements primarily detect the magnetization components parallel to the Poynting vector, which can only access the magnitude but not the direction of the orthogonal component. In this study, we introduce an orthogonal MOKE geometry in which the Kerr signal detects both the magnitude and direction of the magnetization component perpendicular to the Poynting vector. We demonstrate the broad applicability of this orthogonal geometry through the MOKE measurements in cubic ferromagnets and van der Waals ferromagnet. We theoretically show that the orthogonal MOKE geometry is enabled by the multipolar structure of Berry curvature in the magnetization space, which generally induces a Voigt vector orthogonal to the magnetization, thereby accounting for the unique magnetization angle dependence distinct from conventional MOKE. The establishment of the orthogonal MOKE geometry not only introduces a new paradigm for magneto-optical measurements but also provides a framework for exploring the magnetization multipoles of Berry curvature across the electromagnetic spectrum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09857v2-abstract-full').style.display = 'none'; document.getElementById('2412.09857v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.09775">arXiv:2412.09775</a> <span> [<a href="https://arxiv.org/pdf/2412.09775">pdf</a>, <a href="https://arxiv.org/format/2412.09775">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> waveOrder: generalist framework for label-agnostic computational microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chandler%2C+T">Talon Chandler</a>, <a href="/search/physics?searchtype=author&query=Hirata-Miyasaki%2C+E">Eduardo Hirata-Miyasaki</a>, <a href="/search/physics?searchtype=author&query=Ivanov%2C+I+E">Ivan E. Ivanov</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Ziwen Liu</a>, <a href="/search/physics?searchtype=author&query=Sundarraman%2C+D">Deepika Sundarraman</a>, <a href="/search/physics?searchtype=author&query=Ryan%2C+A+Q">Allyson Quinn Ryan</a>, <a href="/search/physics?searchtype=author&query=Jacobo%2C+A">Adrian Jacobo</a>, <a href="/search/physics?searchtype=author&query=Balla%2C+K">Keir Balla</a>, <a href="/search/physics?searchtype=author&query=Mehta%2C+S+B">Shalin B. Mehta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.09775v2-abstract-short" style="display: inline;"> Correlative computational microscopy is accelerating the mapping of dynamic biological systems by integrating morphological and molecular measurements across spatial scales, from organelles to entire organisms. Visualization, measurement, and prediction of interactions among the components of biological systems can be accelerated by generalist computational imaging frameworks that relax the trade-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09775v2-abstract-full').style.display = 'inline'; document.getElementById('2412.09775v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.09775v2-abstract-full" style="display: none;"> Correlative computational microscopy is accelerating the mapping of dynamic biological systems by integrating morphological and molecular measurements across spatial scales, from organelles to entire organisms. Visualization, measurement, and prediction of interactions among the components of biological systems can be accelerated by generalist computational imaging frameworks that relax the trade-offs imposed by multiplex dynamic imaging. This work reports a generalist framework for wave optical imaging of the architectural order (waveOrder) among biomolecules for encoding and decoding multiple specimen properties from a minimal set of acquired channels, with or without fluorescent labels. waveOrder expresses material properties in terms of elegant physically motivated basis vectors directly interpretable as phase, absorption, birefringence, diattenuation, and fluorophore density; and it expresses image data in terms of directly measurable Stokes parameters. We report a corresponding multi-channel reconstruction algorithm to recover specimen properties in multiple contrast modes. With this framework, we implement multiple 3D computational microscopy methods, including quantitative phase imaging, quantitative label-free imaging with phase and polarization, and fluorescence deconvolution imaging, across scales ranging from organelles to whole zebrafish. These advances are available via an extensible open-source computational imaging library, waveOrder, and a napari plugin, recOrder. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09775v2-abstract-full').style.display = 'none'; document.getElementById('2412.09775v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 11 pages with 5 figures and one table; Ancillary files: 15 pages of supplementary text with 4 figures and one table; 5 videos. Changelog v1->v2: separated supplemental doc and updated video 2</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.05834">arXiv:2412.05834</a> <span> [<a href="https://arxiv.org/pdf/2412.05834">pdf</a>, <a href="https://arxiv.org/format/2412.05834">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Space Charge-Induced Emittance Growth in the Downstream Section of ERL Injectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xiuji Chen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zipeng Liu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+S">Si Chen</a>, <a href="/search/physics?searchtype=author&query=Gu%2C+D">Duan Gu</a>, <a href="/search/physics?searchtype=author&query=qian%2C+H">Houjun qian</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+D">Dong Wang</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+H">Haixiao Deng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.05834v3-abstract-short" style="display: inline;"> The injector for ERL-FEL has been widely researched. Unlike traditional linacs, the bunch in the injector for ERLs requires additional deflection and matching section at lower energies. It makes the bunch more susceptible to the effects of the Space Charge. This will lead to a degradation in beam quality. In this paper, we comprehensively analyze the impact of space charge on ERL-injector and prop… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05834v3-abstract-full').style.display = 'inline'; document.getElementById('2412.05834v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.05834v3-abstract-full" style="display: none;"> The injector for ERL-FEL has been widely researched. Unlike traditional linacs, the bunch in the injector for ERLs requires additional deflection and matching section at lower energies. It makes the bunch more susceptible to the effects of the Space Charge. This will lead to a degradation in beam quality. In this paper, we comprehensively analyze the impact of space charge on ERL-injector and propose new design concepts to further maintain beam quality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05834v3-abstract-full').style.display = 'none'; document.getElementById('2412.05834v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01384">arXiv:2412.01384</a> <span> [<a href="https://arxiv.org/pdf/2412.01384">pdf</a>, <a href="https://arxiv.org/format/2412.01384">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Addressing general measurements in quantum Monte Carlo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhiyan Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zenan Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhe Wang</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+Z">Zheng Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01384v2-abstract-short" style="display: inline;"> Achieving general (off-diagonal) measurements is one of the most significant challenges in quantum Monte Carlo, which strongly limits its application during the decades of development. We propose a universal scheme to tackle the problems of general measurement. The target observables are expressed as the ratio of two types of partition functions $\langle \mathrm{O} \rangle=\bar{Z}/Z$, where… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01384v2-abstract-full').style.display = 'inline'; document.getElementById('2412.01384v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01384v2-abstract-full" style="display: none;"> Achieving general (off-diagonal) measurements is one of the most significant challenges in quantum Monte Carlo, which strongly limits its application during the decades of development. We propose a universal scheme to tackle the problems of general measurement. The target observables are expressed as the ratio of two types of partition functions $\langle \mathrm{O} \rangle=\bar{Z}/Z$, where $\bar{Z}=\mathrm{tr} (\mathrm{Oe^{-尾H}})$ and $Z=\mathrm{tr} (\mathrm{e^{-尾H}})$. These two partition functions can be estimated separately within the reweight-annealing frame, and then be connected by an easily solvable reference point. We have successfully applied this scheme to XXZ model and transverse field Ising model, from 1D to 2D systems, from two-body to multi-body correlations and even non-local disorder operators, and from equal-time to imaginary-time correlations. The reweighting path is not limited to physical parameters, but also works for space and (imaginary) time. Our work paves an easy and efficient way to capture the complex off-diagonal operators in quantum Monte Carlo simulation, which provides new insight to address the challenge of quantum Monte Carlo. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01384v2-abstract-full').style.display = 'none'; document.getElementById('2412.01384v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages,16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01061">arXiv:2412.01061</a> <span> [<a href="https://arxiv.org/pdf/2412.01061">pdf</a>, <a href="https://arxiv.org/format/2412.01061">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Fractionalized Kohn-Sham ansatz for strongly-correlated electrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhao%2C+B">Bo Zhao</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+J">Jingyu Zhao</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+Z">Zheng Zhu</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+J">Jian Wu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zheng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01061v1-abstract-short" style="display: inline;"> We propose to expand the territory of density functional theory to strongly-correlated electrons by reformulating the Kohn-Sham ansatz in the representation of fractionalized particles. We call it the ''KS* ansatz''. Using inhomogeneous t-J chains as a test bed, we show that the KS* ansatz with simple local density approximtion is able to achieve accurate ground state energy and density distributi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01061v1-abstract-full').style.display = 'inline'; document.getElementById('2412.01061v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01061v1-abstract-full" style="display: none;"> We propose to expand the territory of density functional theory to strongly-correlated electrons by reformulating the Kohn-Sham ansatz in the representation of fractionalized particles. We call it the ''KS* ansatz''. Using inhomogeneous t-J chains as a test bed, we show that the KS* ansatz with simple local density approximtion is able to achieve accurate ground state energy and density distribution comparable to the density matrix renormalization group method, while the computational complexity is much lower. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01061v1-abstract-full').style.display = 'none'; document.getElementById('2412.01061v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19139">arXiv:2411.19139</a> <span> [<a href="https://arxiv.org/pdf/2411.19139">pdf</a>, <a href="https://arxiv.org/format/2411.19139">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Sensing Based on Quantum Correlation of Photons in the Weak Nonlinear Regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yin%2C+Z">Zi-Qiang Yin</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhi-Hao Liu</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jian Tang</a>, <a href="/search/physics?searchtype=author&query=Jing%2C+H">Hui Jing</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+X">Xun-Wei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19139v1-abstract-short" style="display: inline;"> Quantum correlation of photons based on quantum interference, such as unconventional photon blockade (UPB), has been extensively studied for realizing single-photon sources in weak nonlinear regime. However, how to use this effect for other practical applications is rarely studied. Here, we propose schemes to realize sensitive sensing by the quantum correlation of photons based on quantum interfer… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19139v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19139v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19139v1-abstract-full" style="display: none;"> Quantum correlation of photons based on quantum interference, such as unconventional photon blockade (UPB), has been extensively studied for realizing single-photon sources in weak nonlinear regime. However, how to use this effect for other practical applications is rarely studied. Here, we propose schemes to realize sensitive sensing by the quantum correlation of photons based on quantum interference. We demonstrate that UPB can be observed in the mixing field output from a Mach-Zehnder interferometer (MZI) with two cavities in the two arms based on quantum interference. We show that the second-order correlation function of the output field is sensitive to the parameters of system and propose schemes to realize angular velocity and temperature sensing by measuring the second-order correlation of the photons output from the MZI. We find that the second-order correlation function of the output field is much more sensitive to the parameters of system than the mean photon number, which provides an application scenario for the quantum correlation of photons in sensitive sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19139v1-abstract-full').style.display = 'none'; document.getElementById('2411.19139v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18925">arXiv:2411.18925</a> <span> [<a href="https://arxiv.org/pdf/2411.18925">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202414631">10.1002/adma.202414631 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-Performance Green and Blue Light-Emitting Diodes Enabled by CdZnSe/ZnS Core/Shell Colloidal Quantum Wells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhu%2C+Y">Yunke Zhu</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+X">Xiuyuan Lu</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+J">Jingjing Qiu</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+P">Peng Bai</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+A">An Hu</a>, <a href="/search/physics?searchtype=author&query=Yao%2C+Y">Yige Yao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Q">Qinyun Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yang Li</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+W">Wenjin Yu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yaolong Li</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+W">Wangxiao Jin</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+X">Xitong Zhu</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+Y">Yunzhou Deng</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhetong Liu</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+P">Peng Gao</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+X">XiaoFei Zhao</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+Y">Youqin Zhu</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+L">Li Zhou</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+Y">Yizheng Jin</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+Y">Yunan Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18925v1-abstract-short" style="display: inline;"> The unique anisotropic properties of colloidal quantum wells (CQWs) make them highly promising as components in nanocrystal-based devices. However, the limited performance of green and blue light-emitting diodes (LEDs) based on CQWs has impeded their practical applications. In this study, we tailored alloy CdZnSe core CQWs with precise compositions via direct cation exchange (CE) from CdSe CQWs wi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18925v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18925v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18925v1-abstract-full" style="display: none;"> The unique anisotropic properties of colloidal quantum wells (CQWs) make them highly promising as components in nanocrystal-based devices. However, the limited performance of green and blue light-emitting diodes (LEDs) based on CQWs has impeded their practical applications. In this study, we tailored alloy CdZnSe core CQWs with precise compositions via direct cation exchange (CE) from CdSe CQWs with specific size, shape, and crystal structure and utilized hot-injection shell (HIS) growth to synthesize CdZnSe/ZnS core/shell CQWs exhibiting exceptional optoelectronic characteristics. This approach enabled us to successfully fabricate green and blue LEDs manifesting superior performance compared to previously reported solution-processed CQW-LEDs. Our devices demonstrated a remarkable peak external quantum efficiency (20.4% for green and 10.6% for blue), accompanied by a maximum brightness 347,683 cd m-2 for green and 38,063 cd m-2 for blue. The high-performance represents a significant advancement for nanocrystal-based light-emitting diodes (Nc-LEDs) incorporating anisotropic nanocrystals. This work provides a comprehensive synthesis strategy for enhancing the efficiency of Nc-LEDs utilizing anisotropic nanocrystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18925v1-abstract-full').style.display = 'none'; document.getElementById('2411.18925v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13747">arXiv:2411.13747</a> <span> [<a href="https://arxiv.org/pdf/2411.13747">pdf</a>, <a href="https://arxiv.org/ps/2411.13747">ps</a>, <a href="https://arxiv.org/format/2411.13747">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Interfacial Water Polarization: A Critical Force for Graphene-based Electrochemical Interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+P">Peiyao Wang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+G">Gengping Jiang</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+Y">Yuan Yan</a>, <a href="/search/physics?searchtype=author&query=Qu%2C+L">Longbing Qu</a>, <a href="/search/physics?searchtype=author&query=Du%2C+X">Xiaoyang Du</a>, <a href="/search/physics?searchtype=author&query=Li%2C+D">Dan Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J+Z">Jefferson Zhe Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13747v1-abstract-short" style="display: inline;"> Water molecules predominantly act as solvents in electrochemical systems and are often modeled as a passive dielectric medium. In this work, we use molecular dynamics simulations and theoretical analysis to revisit this conventional view. We reveal that the interfacial polarized water overscreens the electrostatic potential between ions and the surface beyond being a passive dielectric medium. Thi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13747v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13747v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13747v1-abstract-full" style="display: none;"> Water molecules predominantly act as solvents in electrochemical systems and are often modeled as a passive dielectric medium. In this work, we use molecular dynamics simulations and theoretical analysis to revisit this conventional view. We reveal that the interfacial polarized water overscreens the electrostatic potential between ions and the surface beyond being a passive dielectric medium. This overscreening enables the interfacial water to dominate the electric potential spatial distribution, inverting the electrode surface potential polarity and dominating the capacitance. A model is then developed to incorporate this critical interfacial water polarization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13747v1-abstract-full').style.display = 'none'; document.getElementById('2411.13747v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13352">arXiv:2411.13352</a> <span> [<a href="https://arxiv.org/pdf/2411.13352">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> New Insights on the High Reconnection Rate and the Diminishment of Ion Outflow </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Fan%2C+C">Cheng-Yu Fan</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S">Shan Wang</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+X">Xu-Zhi Zhou</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+S">San Lu</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Q">Quanming Lu</a>, <a href="/search/physics?searchtype=author&query=Pyakurel%2C+P+S">Prayash Sharma Pyakurel</a>, <a href="/search/physics?searchtype=author&query=Zong%2C+Q">Qiugang Zong</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhi-Yang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13352v2-abstract-short" style="display: inline;"> The recently discovered electron-only reconnection has drawn great interests due to abnormal features like lack of ion outflows and high reconnection rates. Using particle-in-cell simulations, we investigate their physical mechanisms. The reconnection rate, when normalized by ion parameters ($R_i$), may appear anomalously high, whereas that normalized by electron parameters ($R_e$) remains ~0.1. W… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13352v2-abstract-full').style.display = 'inline'; document.getElementById('2411.13352v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13352v2-abstract-full" style="display: none;"> The recently discovered electron-only reconnection has drawn great interests due to abnormal features like lack of ion outflows and high reconnection rates. Using particle-in-cell simulations, we investigate their physical mechanisms. The reconnection rate, when normalized by ion parameters ($R_i$), may appear anomalously high, whereas that normalized by electron parameters ($R_e$) remains ~0.1. We propose that the essence of high $R_i$ is insufficient field line bending outside the electron diffusion region, indicating an incomplete development of the ion diffusion region. It may result from bursty reconnection in thin current sheets, or small system sizes. The ion outflow diminishes at high $尾_i$ when the gyroradius ($蟻_i$) exceeds the system size. Low-velocity ions still experience notable acceleration from Hall fields. However, a local distribution includes many high-velocity ions that experience random accelerations from different electric fields across $蟻_i$, resulting in near-zero bulk velocities. Our study helps understand reconnection structures and the underlying physics for transitions between different regimes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13352v2-abstract-full').style.display = 'none'; document.getElementById('2411.13352v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12815">arXiv:2411.12815</a> <span> [<a href="https://arxiv.org/pdf/2411.12815">pdf</a>, <a href="https://arxiv.org/format/2411.12815">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Multi-Mission Observations of Relativistic Electrons and High-Speed Jets Linked to Shock Generated Transients </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Raptis%2C+S">Savvas Raptis</a>, <a href="/search/physics?searchtype=author&query=Lindberg%2C+M">Martin Lindberg</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+T+Z">Terry Z. Liu</a>, <a href="/search/physics?searchtype=author&query=Turner%2C+D+L">Drew L. Turner</a>, <a href="/search/physics?searchtype=author&query=Lalti%2C+A">Ahmad Lalti</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Y">Yufei Zhou</a>, <a href="/search/physics?searchtype=author&query=Kajdi%C4%8D%2C+P">Primo啪 Kajdi膷</a>, <a href="/search/physics?searchtype=author&query=Kouloumvakos%2C+A">Athanasios Kouloumvakos</a>, <a href="/search/physics?searchtype=author&query=Sibeck%2C+D+G">David G. Sibeck</a>, <a href="/search/physics?searchtype=author&query=Vuorinen%2C+L">Laura Vuorinen</a>, <a href="/search/physics?searchtype=author&query=Michael%2C+A">Adam Michael</a>, <a href="/search/physics?searchtype=author&query=Shumko%2C+M">Mykhaylo Shumko</a>, <a href="/search/physics?searchtype=author&query=Osmane%2C+A">Adnane Osmane</a>, <a href="/search/physics?searchtype=author&query=Kr%C3%A4mer%2C+E">Eva Kr盲mer</a>, <a href="/search/physics?searchtype=author&query=Turc%2C+L">Lucile Turc</a>, <a href="/search/physics?searchtype=author&query=Karlsson%2C+T">Tomas Karlsson</a>, <a href="/search/physics?searchtype=author&query=Katsavrias%2C+C">Christos Katsavrias</a>, <a href="/search/physics?searchtype=author&query=Wilson%2C+L+B">Lynn B. Wilson III</a>, <a href="/search/physics?searchtype=author&query=Madanian%2C+H">Hadi Madanian</a>, <a href="/search/physics?searchtype=author&query=Blanco-Cano%2C+X">X贸chitl Blanco-Cano</a>, <a href="/search/physics?searchtype=author&query=Cohen%2C+I+J">Ian J. Cohen</a>, <a href="/search/physics?searchtype=author&query=Escoubet%2C+C+P">C. Philippe Escoubet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12815v1-abstract-short" style="display: inline;"> Shock-generated transients, such as hot flow anomalies (HFAs), upstream of planetary bow shocks, play a critical role in electron acceleration. Using multi-mission data from NASA's Magnetospheric Multiscale (MMS) and ESA's Cluster missions, we demonstrate the transmission of HFAs through Earth's quasi-parallel bow shock, associated with acceleration of electrons up to relativistic energies. Energe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12815v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12815v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12815v1-abstract-full" style="display: none;"> Shock-generated transients, such as hot flow anomalies (HFAs), upstream of planetary bow shocks, play a critical role in electron acceleration. Using multi-mission data from NASA's Magnetospheric Multiscale (MMS) and ESA's Cluster missions, we demonstrate the transmission of HFAs through Earth's quasi-parallel bow shock, associated with acceleration of electrons up to relativistic energies. Energetic electrons, initially accelerated upstream, are shown to remain broadly confined within the transmitted transient structures downstream, where betatron acceleration further boosts their energy due to elevated compression levels. Additionally, high-speed jets form at the compressive edges of HFAs, exhibiting a significant increase in dynamic pressure and potentially contributing to driving further localized compression. Our findings emphasize the efficiency of quasi-parallel shocks in driving particle acceleration far beyond the immediate shock transition region, expanding the acceleration region to a larger spatial domain. Finally, this study underscores the importance of multi-scale observational approach in understanding the convoluted processes behind collisionless shock physics and their broader implications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12815v1-abstract-full').style.display = 'none'; document.getElementById('2411.12815v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11905">arXiv:2411.11905</a> <span> [<a href="https://arxiv.org/pdf/2411.11905">pdf</a>, <a href="https://arxiv.org/format/2411.11905">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Revisit of discrete energy bands in Galilean moon's footprint tails: remote signals of particle absorption </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yang%2C+F">Fan Yang</a>, <a href="/search/physics?searchtype=author&query=Xuzhi-Zhou"> Xuzhi-Zhou</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Ying Liu</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+Y">Yi-Xin Sun</a>, <a href="/search/physics?searchtype=author&query=Yin%2C+Z">Ze-Fan Yin</a>, <a href="/search/physics?searchtype=author&query=Hao%2C+Y">Yi-Xin Hao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhi-Yang Liu</a>, <a href="/search/physics?searchtype=author&query=Blanc%2C+M">Michel Blanc</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+J">Jiu-Tong Zhao</a>, <a href="/search/physics?searchtype=author&query=He%2C+D">Dong-Wen He</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Y">Ya-Ze Wu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S">Shan Wang</a>, <a href="/search/physics?searchtype=author&query=Yue%2C+C">Chao Yue</a>, <a href="/search/physics?searchtype=author&query=Zong%2C+Q">Qiu-Gang Zong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11905v1-abstract-short" style="display: inline;"> Recent observations from the Juno spacecraft during its transit over flux tubes of the Galilean moons have identified sharp enhancements of particle fluxes at discrete energies. These banded structures have been suspected to originate from a bounce resonance between particles and standing Alfven waves generated by the moon-magnetospheric interaction. Here, we show that predictions from the above h… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11905v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11905v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11905v1-abstract-full" style="display: none;"> Recent observations from the Juno spacecraft during its transit over flux tubes of the Galilean moons have identified sharp enhancements of particle fluxes at discrete energies. These banded structures have been suspected to originate from a bounce resonance between particles and standing Alfven waves generated by the moon-magnetospheric interaction. Here, we show that predictions from the above hypothesis are inconsistent with the observations, and propose an alternative interpretation that the banded structures are remote signals of particle absorption at the moons. In this scenario, whether a particle would encounter the moon before reaching Juno depends on the number of bounce cycles it experiences within a fixed section of drift motion determined by moon-spacecraft longitudinal separation. Therefore, the absorption bands are expected to appear at discrete, equally-spaced velocities consistent with the observations. This finding improves our understanding of moon-plasma interactions and provides a potential way to evaluate the Jovian magnetospheric models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11905v1-abstract-full').style.display = 'none'; document.getElementById('2411.11905v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09345">arXiv:2411.09345</a> <span> [<a href="https://arxiv.org/pdf/2411.09345">pdf</a>, <a href="https://arxiv.org/format/2411.09345">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> DarkSHINE Baseline Design Report: Physics Prospects and Detector Technologies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jing Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Ji-Yuan Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jun-Feng Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xiang Chen</a>, <a href="/search/physics?searchtype=author&query=Fu%2C+C">Chang-Bo Fu</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jun Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Y">Yi-Han Guo</a>, <a href="/search/physics?searchtype=author&query=Khaw%2C+K+S">Kim Siang Khaw</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jia-Lin Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Liang Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Shu Li</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+Y">Yu-ming Lin</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+D">Dan-Ning Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+K">Kang Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+K">Kun Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Q">Qi-Bin Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhi Liu</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Ze-Jia Lu</a>, <a href="/search/physics?searchtype=author&query=Lv%2C+M">Meng Lv</a>, <a href="/search/physics?searchtype=author&query=Song%2C+S">Si-Yuan Song</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+T">Tong Sun</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jian-Nan Tang</a>, <a href="/search/physics?searchtype=author&query=Wan%2C+W">Wei-Shi Wan</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+D">Dong Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiao-Long Wang</a> , et al. (17 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09345v2-abstract-short" style="display: inline;"> DarkSHINE is a newly proposed fixed-target experiment initiative to search for the invisible decay of Dark Photon via missing energy/momentum signatures, based on the high repetition rate electron beam to be deployed/delivered by the Shanghai High repetition rate XFEL and Extreme light facility (SHINE). This report elaborates the baseline design of DarkSHINE experiment by introducing the physics g… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09345v2-abstract-full').style.display = 'inline'; document.getElementById('2411.09345v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09345v2-abstract-full" style="display: none;"> DarkSHINE is a newly proposed fixed-target experiment initiative to search for the invisible decay of Dark Photon via missing energy/momentum signatures, based on the high repetition rate electron beam to be deployed/delivered by the Shanghai High repetition rate XFEL and Extreme light facility (SHINE). This report elaborates the baseline design of DarkSHINE experiment by introducing the physics goals, experimental setups, details of each sub-detector system technical designs, signal and backgground modelings, expected search sensitivities and future prospects, which mark an important step towards the further prototyping and technical demonstrations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09345v2-abstract-full').style.display = 'none'; document.getElementById('2411.09345v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07145">arXiv:2411.07145</a> <span> [<a href="https://arxiv.org/pdf/2411.07145">pdf</a>, <a href="https://arxiv.org/format/2411.07145">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3389/fspas.2024.1436916">10.3389/fspas.2024.1436916 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transient Upstream Mesoscale Structures: Drivers of Solar-Quiet Space Weather </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kajdi%C4%8D%2C+P">Primo啪 Kajdi膷</a>, <a href="/search/physics?searchtype=author&query=Blanco-Cano%2C+X">X贸chitl Blanco-Cano</a>, <a href="/search/physics?searchtype=author&query=Turc%2C+L">Lucile Turc</a>, <a href="/search/physics?searchtype=author&query=Archer%2C+M">Martin Archer</a>, <a href="/search/physics?searchtype=author&query=Raptis%2C+S">Savvas Raptis</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+T+Z">Terry Z. Liu</a>, <a href="/search/physics?searchtype=author&query=Pfau-Kempf%2C+Y">Yann Pfau-Kempf</a>, <a href="/search/physics?searchtype=author&query=LaMoury%2C+A+T">Adrian T. LaMoury</a>, <a href="/search/physics?searchtype=author&query=Hao%2C+Y">Yufei Hao</a>, <a href="/search/physics?searchtype=author&query=Escoubet%2C+P+C">Philippe C. Escoubet</a>, <a href="/search/physics?searchtype=author&query=Omidi%2C+N">Nojan Omidi</a>, <a href="/search/physics?searchtype=author&query=Sibeck%2C+D+G">David G. Sibeck</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+B">Boyi Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Hui Zhang</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+Y">Yu Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07145v1-abstract-short" style="display: inline;"> In recent years, it has become increasingly clear that space weather disturbances can be triggered by transient upstream mesoscale structures (TUMS), independently of the occurrence of large-scale solar wind (SW) structures, such as interplanetary coronal mass ejections and stream interaction regions. Different types of magnetospheric pulsations, transient perturbations of the geomagnetic field an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07145v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07145v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07145v1-abstract-full" style="display: none;"> In recent years, it has become increasingly clear that space weather disturbances can be triggered by transient upstream mesoscale structures (TUMS), independently of the occurrence of large-scale solar wind (SW) structures, such as interplanetary coronal mass ejections and stream interaction regions. Different types of magnetospheric pulsations, transient perturbations of the geomagnetic field and auroral structures are often observed during times when SW monitors indicate quiet conditions, and have been found to be associated to TUMS. In this mini-review we describe the space weather phenomena that have been associated with four of the largest-scale and the most energetic TUMS, namely hot flow anomalies, foreshock bubbles, travelling foreshocks and foreshock compressional boundaries. The space weather phenomena associated with TUMS tend to be more localized and less intense compared to geomagnetic storms. However, the quiet time space weather may occur more often since, especially during solar minima, quiet SW periods prevail over the perturbed times. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07145v1-abstract-full').style.display = 'none'; document.getElementById('2411.07145v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1 figure, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Front. Astron. Space Sci., (2024), Sec. Space Physics, Volume 11 - 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02966">arXiv:2411.02966</a> <span> [<a href="https://arxiv.org/pdf/2411.02966">pdf</a>, <a href="https://arxiv.org/format/2411.02966">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.5281/zenodo.13970100">10.5281/zenodo.13970100 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MuCol Milestone Report No. 5: Preliminary Parameters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Accettura%2C+C">Carlotta Accettura</a>, <a href="/search/physics?searchtype=author&query=Adrian%2C+S">Simon Adrian</a>, <a href="/search/physics?searchtype=author&query=Agarwal%2C+R">Rohit Agarwal</a>, <a href="/search/physics?searchtype=author&query=Ahdida%2C+C">Claudia Ahdida</a>, <a href="/search/physics?searchtype=author&query=Aim%C3%A9%2C+C">Chiara Aim茅</a>, <a href="/search/physics?searchtype=author&query=Aksoy%2C+A">Avni Aksoy</a>, <a href="/search/physics?searchtype=author&query=Alberghi%2C+G+L">Gian Luigi Alberghi</a>, <a href="/search/physics?searchtype=author&query=Alden%2C+S">Siobhan Alden</a>, <a href="/search/physics?searchtype=author&query=Alfonso%2C+L">Luca Alfonso</a>, <a href="/search/physics?searchtype=author&query=Amapane%2C+N">Nicola Amapane</a>, <a href="/search/physics?searchtype=author&query=Amorim%2C+D">David Amorim</a>, <a href="/search/physics?searchtype=author&query=Andreetto%2C+P">Paolo Andreetto</a>, <a href="/search/physics?searchtype=author&query=Anulli%2C+F">Fabio Anulli</a>, <a href="/search/physics?searchtype=author&query=Appleby%2C+R">Rob Appleby</a>, <a href="/search/physics?searchtype=author&query=Apresyan%2C+A">Artur Apresyan</a>, <a href="/search/physics?searchtype=author&query=Asadi%2C+P">Pouya Asadi</a>, <a href="/search/physics?searchtype=author&query=Mahmoud%2C+M+A">Mohammed Attia Mahmoud</a>, <a href="/search/physics?searchtype=author&query=Auchmann%2C+B">Bernhard Auchmann</a>, <a href="/search/physics?searchtype=author&query=Back%2C+J">John Back</a>, <a href="/search/physics?searchtype=author&query=Badea%2C+A">Anthony Badea</a>, <a href="/search/physics?searchtype=author&query=Bae%2C+K+J">Kyu Jung Bae</a>, <a href="/search/physics?searchtype=author&query=Bahng%2C+E+J">E. J. Bahng</a>, <a href="/search/physics?searchtype=author&query=Balconi%2C+L">Lorenzo Balconi</a>, <a href="/search/physics?searchtype=author&query=Balli%2C+F">Fabrice Balli</a>, <a href="/search/physics?searchtype=author&query=Bandiera%2C+L">Laura Bandiera</a> , et al. (369 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02966v1-abstract-short" style="display: inline;"> This document is comprised of a collection of updated preliminary parameters for the key parts of the muon collider. The updated preliminary parameters follow on from the October 2023 Tentative Parameters Report. Particular attention has been given to regions of the facility that are believed to hold greater technical uncertainty in their design and that have a strong impact on the cost and power… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02966v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02966v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02966v1-abstract-full" style="display: none;"> This document is comprised of a collection of updated preliminary parameters for the key parts of the muon collider. The updated preliminary parameters follow on from the October 2023 Tentative Parameters Report. Particular attention has been given to regions of the facility that are believed to hold greater technical uncertainty in their design and that have a strong impact on the cost and power consumption of the facility. The data is collected from a collaborative spreadsheet and transferred to overleaf. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02966v1-abstract-full').style.display = 'none'; document.getElementById('2411.02966v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01754">arXiv:2411.01754</a> <span> [<a href="https://arxiv.org/pdf/2411.01754">pdf</a>, <a href="https://arxiv.org/format/2411.01754">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Experimental demonstration of dark current mitigation by an over-inserted plug in a normal conducting VHF gun </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+X+-">X. -H. Wang</a>, <a href="/search/physics?searchtype=author&query=Shu%2C+G">G. Shu</a>, <a href="/search/physics?searchtype=author&query=Qian%2C+H">H. Qian</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">X. Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Z. Liu</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+Z">Z. Jiang</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+H">H. Meng</a>, <a href="/search/physics?searchtype=author&query=Xing%2C+C">C. Xing</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Q">Q. Zhou</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+H">H. Deng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01754v1-abstract-short" style="display: inline;"> The room temperature continuous wave (CW) very-high-frequency (VHF) gun is one of the candidates for the electron gun of the high-repetition-rate free-electron lasers (FELs). The VHF gun operates with a cathode gradient of ~ 20 MV/m and an accelerating voltage of ~ 750 kV. The gun dark current emission leads to beam loss along the FEL machine, therefore is a critical parameter for the performance… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01754v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01754v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01754v1-abstract-full" style="display: none;"> The room temperature continuous wave (CW) very-high-frequency (VHF) gun is one of the candidates for the electron gun of the high-repetition-rate free-electron lasers (FELs). The VHF gun operates with a cathode gradient of ~ 20 MV/m and an accelerating voltage of ~ 750 kV. The gun dark current emission leads to beam loss along the FEL machine, therefore is a critical parameter for the performance of the CW gun. In this paper, we presents a systematic study of the dark current reduction of the VHF gun, including cathode region optimizations, dark current tracking simulations and measurements. Over-inserted cathode plugs were tested in two VHF guns of different acceleration gap sizes, and both demonstrated significant dark current reduction ratios of more than two orders of magnitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01754v1-abstract-full').style.display = 'none'; document.getElementById('2411.01754v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23151">arXiv:2410.23151</a> <span> [<a href="https://arxiv.org/pdf/2410.23151">pdf</a>, <a href="https://arxiv.org/format/2410.23151">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Shedding a Light on the Kinetics of the Carboxysulfitic Scenario </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=White%2C+S+B">S. B. White</a>, <a href="/search/physics?searchtype=author&query=Rimmer%2C+P+B">P. B. Rimmer</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Z. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23151v1-abstract-short" style="display: inline;"> One way in which we can attempt to relate chemical pathways to geochemical environments is by studying the kinetics of a given sequence of reactions and identifying the conditions under which this chemistry is the most productive. Many prebiotic reactions rely on a source of fixed carbon, therefore chemical pathways that suggest prebiotically plausible ways of fixing carbon are of significant inte… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23151v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23151v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23151v1-abstract-full" style="display: none;"> One way in which we can attempt to relate chemical pathways to geochemical environments is by studying the kinetics of a given sequence of reactions and identifying the conditions under which this chemistry is the most productive. Many prebiotic reactions rely on a source of fixed carbon, therefore chemical pathways that suggest prebiotically plausible ways of fixing carbon are of significant interest. One such pathway is the carboxysulfitic reaction network which uses solvated electrons, produced as a result of electron photodetachment from sulfite, to reduce carbon. In this work we explore carboxysulfitic chemistry at three different pH values: 6, 9, and 12. We utilise a new light source, that matches the broadband spectral shape of the young Sun, to irradiate a mixture of bicarbonate and sulfite. We determine the rate equation for the production of formate from these compounds and find the order to be 0.71 $\pm$ 0.12 with respect to bicarbonate and -0.60 $\pm$ 0.10 with respect to sulfite. Following this, we determine rate constants for the production of formate considering two different mechanisms. We find this chemistry to be feasible at all three of the pH values tested, with the magnitude of the rate constants being highly dependent on the assumed mechanism. We suggest that these results may have implications for Mars Sample Return owing to Jezero Crater having had lakes similar to those in which we propose carboxysulfitic chemistry to have been the most productive. Due to Mars' relatively unaltered surface, we propose that Mars Sample Return missions could look for preserved tracers of this chemistry, shedding light on Mars' past conditions and its potential for having hosted life. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23151v1-abstract-full').style.display = 'none'; document.getElementById('2410.23151v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages (+ 59 pages of SI), 5 figures (+ 42 figures in the SI). This is the Accepted Manuscript version of a work that was subsequently published in ACS Earth and Space Chemistry, published by the American Chemical Society after peer review and technical editing by the publisher. The final edited and published version can be accessed at DOI: 10.1021/acsearthspacechem.4c00083</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21327">arXiv:2410.21327</a> <span> [<a href="https://arxiv.org/pdf/2410.21327">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cplett.2024.141668">10.1016/j.cplett.2024.141668 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection of Nanopores with the Scanning Ion Conductance Microscopy: A Simulation Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Qiu%2C+Y">Yinghua Qiu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+L">Long Ma</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhe Liu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Hongwen Zhang</a>, <a href="/search/physics?searchtype=author&query=Ai%2C+B">Bowen Ai</a>, <a href="/search/physics?searchtype=author&query=Tu%2C+X">Xinman Tu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21327v1-abstract-short" style="display: inline;"> During the dielectric breakdown process of thin solid-state nanopores, the application of high voltages may cause the formation of multi-nanopores on one chip, which number and sizes are important for their applications. Here, simulations were conducted to mimic the investigation of in situ nanopore detection with scanning ion conductance microscopy (SICM). Results show that SICM can provide accur… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21327v1-abstract-full').style.display = 'inline'; document.getElementById('2410.21327v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21327v1-abstract-full" style="display: none;"> During the dielectric breakdown process of thin solid-state nanopores, the application of high voltages may cause the formation of multi-nanopores on one chip, which number and sizes are important for their applications. Here, simulations were conducted to mimic the investigation of in situ nanopore detection with scanning ion conductance microscopy (SICM). Results show that SICM can provide accurate nanopore location and relative pore size. Detection resolution is influenced by the dimensions of the applied probe and separation between the probe and membranes, which can be enhanced under large voltages or a concentration gradient. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21327v1-abstract-full').style.display = 'none'; document.getElementById('2410.21327v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 6 figuers</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chemical Physics Letters, 2024, 856: 141668 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17934">arXiv:2410.17934</a> <span> [<a href="https://arxiv.org/pdf/2410.17934">pdf</a>, <a href="https://arxiv.org/format/2410.17934">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Retrieving snow depth distribution by downscaling ERA5 Reanalysis with ICESat-2 laser altimetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhihao Liu</a>, <a href="/search/physics?searchtype=author&query=Filhol%2C+S">Simon Filhol</a>, <a href="/search/physics?searchtype=author&query=Treichler%2C+D">D茅sir茅e Treichler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17934v1-abstract-short" style="display: inline;"> Estimating the variability of seasonal snow cover, in particular snow depth in remote areas, poses significant challenges due to limited spatial and temporal data availability. This study uses snow depth measurements from the ICESat-2 satellite laser altimeter, which are sparse in both space and time, and incorporates them with climate reanalysis data into a downscaling-calibration scheme to produ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17934v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17934v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17934v1-abstract-full" style="display: none;"> Estimating the variability of seasonal snow cover, in particular snow depth in remote areas, poses significant challenges due to limited spatial and temporal data availability. This study uses snow depth measurements from the ICESat-2 satellite laser altimeter, which are sparse in both space and time, and incorporates them with climate reanalysis data into a downscaling-calibration scheme to produce monthly gridded snow depth maps at microscale (10 m). Snow surface elevation measurements from ICESat-2 along profiles are compared to a digital elevation model to determine snow depth at each point. To efficiently turn sparse measurements into snow depth maps, a regression model is fitted to establish a relationship between the retrieved snow depth and the corresponding ERA5 Land snow depth. This relationship, referred to as subgrid variability, is then applied to downscale the monthly ERA5 Land snow depth data. The method can provide timeseries of monthly snow depth maps for the entire ERA5 time range (since 1950). The validation of downscaled snow depth data was performed at an intermediate scale (100 m x 500 m) using datasets from airborne laser scanning (ALS) in the Hardangervidda region of southern Norway. Results show that snow depth prediction achieved R2 values ranging from 0.74 to 0.88 (post-calibration). The method relies on globally available data and is applicable to other snow regions above the treeline. Though requiring area-specific calibration, our approach has the potential to provide snow depth maps in areas where no such data exist and can be used to extrapolate existing snow surveys in time and over larger areas. With this, it can offer valuable input data for hydrological, ecological or permafrost modeling tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17934v1-abstract-full').style.display = 'none'; document.getElementById('2410.17934v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17660">arXiv:2410.17660</a> <span> [<a href="https://arxiv.org/pdf/2410.17660">pdf</a>, <a href="https://arxiv.org/format/2410.17660">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> The design of high-brightness ERL-FEL injector based on VHF electron gun </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xiuji Chen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zipeng Liu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+S">Si Chen</a>, <a href="/search/physics?searchtype=author&query=Gu%2C+D">Duan Gu</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+X">Xuan Huang</a>, <a href="/search/physics?searchtype=author&query=Qian%2C+H">Houjun Qian</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+D">Dong Wang</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+H">Haixiao Deng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17660v1-abstract-short" style="display: inline;"> In the past decade, the fourth-generation light source based on the combination of Energy Recovery Linac (ERL) and Free-Electron Laser (FEL) using superconducting linear accelerators has garnered significant attention. It holds immense potential, particularly in generating high-power Extreme Ultraviolet (EUV) light sources. This article primarily focuses on the physical design of an injector for E… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17660v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17660v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17660v1-abstract-full" style="display: none;"> In the past decade, the fourth-generation light source based on the combination of Energy Recovery Linac (ERL) and Free-Electron Laser (FEL) using superconducting linear accelerators has garnered significant attention. It holds immense potential, particularly in generating high-power Extreme Ultraviolet (EUV) light sources. This article primarily focuses on the physical design of an injector for ERL-FEL, based on a Very High Frequency (VHF) electron gun with a charge of 100 pC. The beam energy is accelerated to 10 MeV using 3-cell superconducting cavity. The optimization of beam parameters is conducted through employment of BMad and ASTRA simulations, incorporating the concept of Merger optimization. The beam emittance is less than 0.6 mm mrad, and the peak current at the injector exit exceeds 18 A. We present a new method to evaluate the Longitudinal Space Charge (LSC) effects in merger sections, which can be readily applied in design work. Furthermore, we introduce a novel type of merger. The performance of this new merger is comparable to the previously known optimum, the zigzag merger, offering a potential alternative solution for injectors in ERLs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17660v1-abstract-full').style.display = 'none'; document.getElementById('2410.17660v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16420">arXiv:2410.16420</a> <span> [<a href="https://arxiv.org/pdf/2410.16420">pdf</a>, <a href="https://arxiv.org/format/2410.16420">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> BI-EqNO: Generalized Approximate Bayesian Inference with an Equivariant Neural Operator Framework </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhou%2C+X">Xu-Hui Zhou</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhuo-Ran Liu</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+H">Heng Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16420v1-abstract-short" style="display: inline;"> Bayesian inference offers a robust framework for updating prior beliefs based on new data using Bayes' theorem, but exact inference is often computationally infeasible, necessitating approximate methods. Though widely used, these methods struggle to estimate marginal likelihoods accurately, particularly due to the rigid functional structures of deterministic models like Gaussian processes and the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16420v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16420v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16420v1-abstract-full" style="display: none;"> Bayesian inference offers a robust framework for updating prior beliefs based on new data using Bayes' theorem, but exact inference is often computationally infeasible, necessitating approximate methods. Though widely used, these methods struggle to estimate marginal likelihoods accurately, particularly due to the rigid functional structures of deterministic models like Gaussian processes and the limitations of small sample sizes in stochastic models like the ensemble Kalman method. In this work, we introduce BI-EqNO, an equivariant neural operator framework for generalized approximate Bayesian inference, designed to enhance both deterministic and stochastic approaches. BI-EqNO transforms priors into posteriors conditioned on observation data through data-driven training. The framework is flexible, supporting diverse prior and posterior representations with arbitrary discretizations and varying numbers of observations. Crucially, BI-EqNO's architecture ensures (1) permutation equivariance between prior and posterior representations, and (2) permutation invariance with respect to observational data. We demonstrate BI-EqNO's utility through two examples: (1) as a generalized Gaussian process (gGP) for regression, and (2) as an ensemble neural filter (EnNF) for sequential data assimilation. Results show that gGP outperforms traditional Gaussian processes by offering a more flexible representation of covariance functions. Additionally, EnNF not only outperforms the ensemble Kalman filter in small-ensemble settings but also has the potential to function as a "super" ensemble filter, capable of representing and integrating multiple ensemble filters for enhanced assimilation performance. This study highlights BI-EqNO's versatility and effectiveness, improving Bayesian inference through data-driven training while reducing computational costs across various applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16420v1-abstract-full').style.display = 'none'; document.getElementById('2410.16420v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15989">arXiv:2410.15989</a> <span> [<a href="https://arxiv.org/pdf/2410.15989">pdf</a>, <a href="https://arxiv.org/format/2410.15989">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad8579">10.3847/1538-4357/ad8579 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interaction of the Prominence Plasma within the Magnetic Cloud of an ICME with the Earth's Bow Shock </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Madanian%2C+H">Hadi Madanian</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+L">Li-Jen Chen</a>, <a href="/search/physics?searchtype=author&query=Ng%2C+J">Jonathan Ng</a>, <a href="/search/physics?searchtype=author&query=Starkey%2C+M+J">Michael J. Starkey</a>, <a href="/search/physics?searchtype=author&query=Fuselier%2C+S+A">Stephen A. Fuselier</a>, <a href="/search/physics?searchtype=author&query=Bessho%2C+N">Naoki Bessho</a>, <a href="/search/physics?searchtype=author&query=Gershman%2C+D+J">Daniel J. Gershman</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+T+Z">Terry Z. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15989v2-abstract-short" style="display: inline;"> The magnetic cloud within an interplanetary coronal mass ejection (ICME) is characterized by high magnetic field intensities. In this study, we investigate the interaction of a magnetic cloud carrying a density structure with the Earth's bow shock during the ICME event on 24 April 2023. Elevated abundances of cold protons and heavier ions, namely alpha particles and singly charged helium ions, ass… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15989v2-abstract-full').style.display = 'inline'; document.getElementById('2410.15989v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15989v2-abstract-full" style="display: none;"> The magnetic cloud within an interplanetary coronal mass ejection (ICME) is characterized by high magnetic field intensities. In this study, we investigate the interaction of a magnetic cloud carrying a density structure with the Earth's bow shock during the ICME event on 24 April 2023. Elevated abundances of cold protons and heavier ions, namely alpha particles and singly charged helium ions, associated with the prominence plasma are observed within this structure. The plasma downstream of the bow shock exhibits an irregular compression pattern which could be due to the presence of heavy ions. Heavy ions carry a significant fraction of the upstream flow energy; however, due to their different charge per mass ratio and rigidity, they are less scattered by the electromagnetic and electrostatic waves at the shock. We find that downstream of the shock, while the thermal ion energy is only a small fraction of the background magnetic energy density, nevertheless increased ion fluxes reduce the characteristic wave speeds in the that region. As such, we observe a transition state of an unstable bow shock layer across which the plasma flow is super Alfv茅nic in both upstream and downstream regions. Our findings help with understanding the intense space weather impacts of such events. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15989v2-abstract-full').style.display = 'none'; document.getElementById('2410.15989v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15779">arXiv:2410.15779</a> <span> [<a href="https://arxiv.org/pdf/2410.15779">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Piezoelectric Manipulation and Engineering for Layertronics in Two-Dimensional Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tian%2C+J">Jianke Tian</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jia Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hengbo Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yan Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Ze Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Linyang Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jun Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+G">Guodong Liu</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+J">Junjie Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15779v1-abstract-short" style="display: inline;"> The electronic transport characteristics of two-dimensional (2D) systems have widespread application prospects in the fabrication of multifunctional nanodevices. However, the current research for basic transport phenomena, such as anomalous valley Hall effect (AVHE) and piezoelectric response, is limited to discrete discussion. Here, we theoretically propose a valley-piezoelectricity coupling stra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15779v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15779v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15779v1-abstract-full" style="display: none;"> The electronic transport characteristics of two-dimensional (2D) systems have widespread application prospects in the fabrication of multifunctional nanodevices. However, the current research for basic transport phenomena, such as anomalous valley Hall effect (AVHE) and piezoelectric response, is limited to discrete discussion. Here, we theoretically propose a valley-piezoelectricity coupling strategy beyond the existing paradigm to realize AVHE and layer Hall effect (LHE) in ferrovalley (FV) systems, and its essential principle can be extended to general valleytronic materials. Through first-principles calculations, we demonstrate that the large polarized electric field of 2.8*106 (1.67*107) V/m can be induced by 0.1% uniaxial strain in FV 2H-LaHF (1T-LaHF) monolayers. In addition, the microscopic mechanism of interlayer antiferromagnetic (AFM) state of 2H-LaHF bilayer is uncovered by the spin Hamiltonian and super-superexchange (SSE) interaction. Our findings pave the way for new explorations of valley Hall-related effect involving piezoelectricity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15779v1-abstract-full').style.display = 'none'; document.getElementById('2410.15779v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15769">arXiv:2410.15769</a> <span> [<a href="https://arxiv.org/pdf/2410.15769">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Spin-layer coupling in altermagnets multilayer: a design principle for spintronics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tian%2C+J">Jianke Tian</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jia Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hengbo Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yan Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Ze Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Linyang Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jun Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+G">Guodong Liu</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+J">Junjie Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15769v1-abstract-short" style="display: inline;"> The discovery of collinear symmetric-compensated altermagnets (AM) with intrinsic spin splitting provides a route towards energy-efficient and ultrafast device applications. Here, using first-principles calculations and symmetry analysis, we propose a series of AM Cr2SX (X=O, S, Se) monolayer and explore the spin splitting in Cr2SX multilayer. A general design principle for realizing the spin-laye… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15769v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15769v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15769v1-abstract-full" style="display: none;"> The discovery of collinear symmetric-compensated altermagnets (AM) with intrinsic spin splitting provides a route towards energy-efficient and ultrafast device applications. Here, using first-principles calculations and symmetry analysis, we propose a series of AM Cr2SX (X=O, S, Se) monolayer and explore the spin splitting in Cr2SX multilayer. A general design principle for realizing the spin-layer coupling in odd/even-layer is mapped out based on the comprehensive analysis of spin group symmetry. The spin splitting behavior related with the MzUt, Mz and ML symmetries in AM multilayer can be significantly modulated by magnetic orders, crystal symmetry and external perpendicular gate field (Ez). Due to the spin-compensated bands of sublayers linked by overall Mz and interlayers ML symmetries, the Cr2S2 odd-layer exhibits the unique coexistence of spin splitting and spin degeneracy at high symmetric paths and X/Y valley, respectively. Furthermore, owing to the higher priority of overall ML symmetry compared to interlayers ML symmetry in AM even-layer, the spin-layer coupling of AM multilayer shows strong odd/even-layer dependence. Our work not only offer a new direction for manipulating spin splitting, but also greatly enrich the research on AM monolayer and multilayer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15769v1-abstract-full').style.display = 'none'; document.getElementById('2410.15769v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14952">arXiv:2410.14952</a> <span> [<a href="https://arxiv.org/pdf/2410.14952">pdf</a>, <a href="https://arxiv.org/format/2410.14952">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> A Fast AI Surrogate for Coastal Ocean Circulation Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xu%2C+Z">Zelin Xu</a>, <a href="/search/physics?searchtype=author&query=Ren%2C+J">Jie Ren</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yupu Zhang</a>, <a href="/search/physics?searchtype=author&query=Ondina%2C+J+M+G">Jose Maria Gonzalez Ondina</a>, <a href="/search/physics?searchtype=author&query=Olabarrieta%2C+M">Maitane Olabarrieta</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+T">Tingsong Xiao</a>, <a href="/search/physics?searchtype=author&query=He%2C+W">Wenchong He</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zibo Liu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+S">Shigang Chen</a>, <a href="/search/physics?searchtype=author&query=Smith%2C+K">Kaleb Smith</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+Z">Zhe Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14952v1-abstract-short" style="display: inline;"> Nearly 900 million people live in low-lying coastal zones around the world and bear the brunt of impacts from more frequent and severe hurricanes and storm surges. Oceanographers simulate ocean current circulation along the coasts to develop early warning systems that save lives and prevent loss and damage to property from coastal hazards. Traditionally, such simulations are conducted using coasta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14952v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14952v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14952v1-abstract-full" style="display: none;"> Nearly 900 million people live in low-lying coastal zones around the world and bear the brunt of impacts from more frequent and severe hurricanes and storm surges. Oceanographers simulate ocean current circulation along the coasts to develop early warning systems that save lives and prevent loss and damage to property from coastal hazards. Traditionally, such simulations are conducted using coastal ocean circulation models such as the Regional Ocean Modeling System (ROMS), which usually runs on an HPC cluster with multiple CPU cores. However, the process is time-consuming and energy expensive. While coarse-grained ROMS simulations offer faster alternatives, they sacrifice detail and accuracy, particularly in complex coastal environments. Recent advances in deep learning and GPU architecture have enabled the development of faster AI (neural network) surrogates. This paper introduces an AI surrogate based on a 4D Swin Transformer to simulate coastal tidal wave propagation in an estuary for both hindcast and forecast (up to 12 days). Our approach not only accelerates simulations but also incorporates a physics-based constraint to detect and correct inaccurate results, ensuring reliability while minimizing manual intervention. We develop a fully GPU-accelerated workflow, optimizing the model training and inference pipeline on NVIDIA DGX-2 A100 GPUs. Our experiments demonstrate that our AI surrogate reduces the time cost of 12-day forecasting of traditional ROMS simulations from 9,908 seconds (on 512 CPU cores) to 22 seconds (on one A100 GPU), achieving over 450$\times$ speedup while maintaining high-quality simulation results. This work contributes to oceanographic modeling by offering a fast, accurate, and physically consistent alternative to traditional simulation models, particularly for real-time forecasting in rapid disaster response. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14952v1-abstract-full').style.display = 'none'; document.getElementById('2410.14952v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Liu%2C+Z&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Liu%2C+Z&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+Z&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+Z&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+Z&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+Z&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>