CINXE.COM
wavefront set in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> wavefront set in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> wavefront set </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/16640/#Item_1" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="functional_analysis">Functional analysis</h4> <div class="hide"><div> <ul> <li><strong><a class="existingWikiWord" href="/nlab/show/functional+analysis">Functional Analysis</a></strong></li> </ul> <h2 id="overview_diagrams">Overview diagrams</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/TVS+relationships">topological vector spaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/diagram+of+LCTVS+properties">locally convex topological vector spaces</a></p> </li> </ul> <h2 id="basic_concepts">Basic concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+vector+space">topological vector space</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+convex+topological+vector+space">locally convex topological vector space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Banach+space">Banach Spaces</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/reflexive+Banach+space">reflexive</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Smith+space+%28functional+analysis%29">Smith Spaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hilbert+space">Hilbert Spaces</a>, <a class="existingWikiWord" href="/nlab/show/Fr%C3%A9chet+space">Fréchet Spaces</a>, <a class="existingWikiWord" href="/nlab/show/Sobolev+space">Sobolev spaces</a>, <a class="existingWikiWord" href="/nlab/show/Lebesgue+space">Lebesgue Spaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/bornological+vector+space">Bornological Vector Spaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/barrelled+topological+vector+space">Barrelled Vector Spaces</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/linear+operator">linear operator</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/bounded+linear+operator">bounded</a>, <a class="existingWikiWord" href="/nlab/show/unbounded+linear+operator">unbounded</a>, <a class="existingWikiWord" href="/nlab/show/self-adjoint+operator">self-adjoint</a>, <a class="existingWikiWord" href="/nlab/show/compact+operator">compact</a>, <a class="existingWikiWord" href="/nlab/show/Fredholm+operator">Fredholm</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spectrum+of+an+operator">spectrum of an operator</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/operator+algebras">operator algebras</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/functional+calculus">functional calculus</a></li> </ul> </li> </ul> <h2 id="theorems">Theorems</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Stone-Weierstrass+theorem">Stone-Weierstrass theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spectral+theory">spectral theory</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/spectral+theorem">spectral theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gelfand+duality">Gelfand duality</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/functional+calculus">functional calculus</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Riesz+representation+theorem">Riesz representation theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/measure+theory">measure theory</a></p> </li> </ul> <h2 id="topics_in_functional_analysis">Topics in Functional Analysis</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/basis+in+functional+analysis">Bases</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebraic+theories+in+functional+analysis">Algebraic Theories in Functional Analysis</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/an+elementary+treatment+of+Hilbert+spaces">An Elementary Treatment of Hilbert Spaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/isomorphism+classes+of+Banach+spaces">When are two Banach spaces isomorphic?</a></p> </li> </ul> <div> <p> <a href="/nlab/edit/functional+analysis+-+contents">Edit this sidebar</a> </p> </div></div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <ul> <li><a href='#motivation'>Motivation</a></li> <li><a href='#smoothness'>Smoothness</a></li> <li><a href='#wavefront_set'>Wavefront set</a></li> </ul> <li><a href='#examples'>Examples</a></li> <li><a href='#properties'>Properties</a></li> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> <ul> <li><a href='#general'>General</a></li> <li><a href='#in_quantum_field_theory'>In quantum field theory</a></li> <li><a href='#in_differential_cohomology'>In differential cohomology</a></li> </ul> </ul> </div> <h2 id="idea">Idea</h2> <p>In <a class="existingWikiWord" href="/nlab/show/microlocal+analysis">microlocal analysis</a>, the <em>wave front set</em> (<a href="#Hoermander70">Hörmander 70</a>) of a <a class="existingWikiWord" href="/nlab/show/generalized+function">generalized function</a> such as a <a class="existingWikiWord" href="/nlab/show/distribution">distribution</a> or a <a class="existingWikiWord" href="/nlab/show/hyperfunction">hyperfunction</a> is a characterization of the singularity structure of the generalized function, hence of how it deviates from being an ordinary smooth function.</p> <p>The wave front set is the sub-bundle of the <a class="existingWikiWord" href="/nlab/show/cotangent+bundle">cotangent bundle</a> that consists of all those <a class="existingWikiWord" href="/nlab/show/direction+of+a+vector">directions</a> (non-zero <a class="existingWikiWord" href="/nlab/show/covectors">covectors</a>) such that the local <a class="existingWikiWord" href="/nlab/show/Fourier+transform">Fourier transform</a> of the distribution is not rapidly decaying in this <a class="existingWikiWord" href="/nlab/show/direction+of+a+vector">direction</a> (<a href="#Hoermander90">Hörmander 90, section 8.1</a>). Such covectors are stable under multiplication by positive scalars, so the wave front set can also be considered as a <a class="existingWikiWord" href="/nlab/show/sub-bundle">sub-bundle</a> of the <a class="existingWikiWord" href="/nlab/show/unit+sphere+bundle">unit sphere bundle</a> of the <a class="existingWikiWord" href="/nlab/show/cotangent+bundle">cotangent bundle</a>.</p> <p>The <a class="existingWikiWord" href="/nlab/show/projection">projection</a> of the wave front set down to the base space is the <a class="existingWikiWord" href="/nlab/show/singular+support+of+a+distribution">singular support</a> of the distribution. The additional information in the “wave front” <a class="existingWikiWord" href="/nlab/show/covectors">covectors</a> over this singular support may be understood as providing the directions of <em>propagation of these singularities</em>. This is made precise by the <em><a class="existingWikiWord" href="/nlab/show/propagation+of+singularities+theorem">propagation of singularities theorem</a></em></p> <p>A notorious issue with <a class="existingWikiWord" href="/nlab/show/distributions">distributions</a> is that, when thought of as generalized functions, generally neither their <span class="newWikiWord">composition of distributions<a href="/nlab/new/composition+of+distributions">?</a></span> nor their pointwise <a class="existingWikiWord" href="/nlab/show/product+of+distributions">product of distributions</a> is defined. However, closer inspection shows that the <a class="existingWikiWord" href="/nlab/show/obstruction">obstruction</a> to these operations being defined for any given pair of distributions is exactly characterized by the wave front set:</p> <p>For instance the <a class="existingWikiWord" href="/nlab/show/product+of+distributions">product of distributions</a> is well defined precisely if the sum of their wave front sets does not intersect the zero-section (<a class="existingWikiWord" href="/nlab/show/H%C3%B6rmander%27s+criterion">Hörmander's criterion</a>, <a href="#Hoermander90">Hörmander 90, theorem 8.2.10</a>).</p> <h2 id="definition">Definition</h2> <h3 id="motivation">Motivation</h3> <p>The definition of wavefront sets is motivated by a version of a <a class="existingWikiWord" href="/nlab/show/Paley-Wiener+theorem">Paley-Wiener theorem</a> that characterizes smooth compactly supported functions (<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mi>n</mi></msup><mo>→</mo><mi>ℝ</mi></mrow><annotation encoding="application/x-tex">\mathbb{R}^n \to \mathbb{R}</annotation></semantics></math>) by a growth condition on their <a class="existingWikiWord" href="/nlab/show/Fourier+transform">Fourier transform</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℱ</mi></mrow><annotation encoding="application/x-tex">\mathcal{F}</annotation></semantics></math>:</p> <div class="num_theorem"> <h6 id="theorem">Theorem</h6> <p><strong>(<a class="existingWikiWord" href="/nlab/show/Paley-Wiener-Schwartz+theorem">Paley-Wiener-Schwartz theorem</a>)</strong></p> <p>The vector space <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mi>C</mi> <mn>0</mn> <mn>∞</mn></msubsup><mo stretchy="false">(</mo><msup><mi>ℝ</mi> <mi>n</mi></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">C_0^{\infty}(\mathbb{R}^n)</annotation></semantics></math> of <a class="existingWikiWord" href="/nlab/show/smooth+function">smooth</a> <a class="existingWikiWord" href="/nlab/show/compact+support">compactly supported</a> functions (<a class="existingWikiWord" href="/nlab/show/bump+functions">bump functions</a>) is (algebraically and topologically) <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphic</a>, via the <a class="existingWikiWord" href="/nlab/show/Fourier+transform">Fourier transform</a>, to the space of <a class="existingWikiWord" href="/nlab/show/entire+functions">entire functions</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math> which satisfy the following estimate: there is a positive constant <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math> such that for every <a class="existingWikiWord" href="/nlab/show/integer">integer</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi><mo>></mo><mn>0</mn></mrow><annotation encoding="application/x-tex">m \gt 0</annotation></semantics></math> there is a constant <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>C</mi> <mi>m</mi></msub></mrow><annotation encoding="application/x-tex">C_m</annotation></semantics></math> such that:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo><mo>≤</mo><msub><mi>C</mi> <mi>m</mi></msub><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mo stretchy="false">|</mo><mi>z</mi><mo stretchy="false">|</mo><msup><mo stretchy="false">)</mo> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>m</mi></mrow></msup><mi>exp</mi><mrow><mo stretchy="false">(</mo><mi>B</mi><mspace width="thickmathspace"></mspace><mo stretchy="false">|</mo><mo lspace="0em" rspace="thinmathspace">Im</mo><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo><mo stretchy="false">|</mo><mo stretchy="false">)</mo></mrow></mrow><annotation encoding="application/x-tex"> F(z) \le C_m (1 + |z|)^{-m} \exp{ (B \; |\operatorname{Im}(z)|)} </annotation></semantics></math></div></div> <h3 id="smoothness">Smoothness</h3> <p>We call a smooth compactly supported function that is identically <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>1</mn></mrow><annotation encoding="application/x-tex">1</annotation></semantics></math> in a neighbourhood of a point <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>x</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">x_0</annotation></semantics></math> a <strong>cutoff</strong> function at <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>x</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">x_0</annotation></semantics></math>. Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo>⊂</mo><msup><mi>ℝ</mi> <mi>n</mi></msup></mrow><annotation encoding="application/x-tex">U \subset \mathbb{R}^n</annotation></semantics></math> be open, we identify the <a class="existingWikiWord" href="/nlab/show/cotangent+bundle">cotangent bundle</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo>×</mo><msup><mi>ℝ</mi> <mi>n</mi></msup></mrow><annotation encoding="application/x-tex">U \times \mathbb{R}^n</annotation></semantics></math>. A subset of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo>×</mo><msup><mi>ℝ</mi> <mi>n</mi></msup></mrow><annotation encoding="application/x-tex">U \times \mathbb{R}^n</annotation></semantics></math> is said to be <strong>conic</strong> if it is stable under the transformation</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>ζ</mi><mo stretchy="false">)</mo><mo>↦</mo><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>ρ</mi><mi>ζ</mi><mo stretchy="false">)</mo><mspace width="1em"></mspace><mtext>with</mtext><mspace width="thickmathspace"></mspace><mi>ρ</mi><mo>></mo><mn>0</mn></mrow><annotation encoding="application/x-tex"> (x, \zeta) \mapsto (x, \rho \zeta) \quad \text{with} \; \rho \gt 0 </annotation></semantics></math></div> <p>Note that a <a class="existingWikiWord" href="/nlab/show/conical+set">conic</a> subset is uniquely determined by its intersection with the <a class="existingWikiWord" href="/nlab/show/unit+sphere">unit sphere</a> bundle <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo>×</mo><msup><mi>S</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow><annotation encoding="application/x-tex">U\times S^{n-1}</annotation></semantics></math>.</p> <div class="num_defn"> <h6 id="definition_2">Definition</h6> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> be a distribution and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>0</mn></msub><mo>,</mo><msub><mi>ζ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(x_0, \zeta_0)</annotation></semantics></math> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>ζ</mi> <mn>0</mn></msub><mo>≠</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\zeta_0 \neq 0</annotation></semantics></math> be a point of the cotangent bundle of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math>. <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> is <strong>smooth</strong> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>0</mn></msub><mo>,</mo><msub><mi>ζ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(x_0, \zeta_0)</annotation></semantics></math> if there is a cutoff function <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>χ</mi></mrow><annotation encoding="application/x-tex">\chi</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>x</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">x_0</annotation></semantics></math> and an open cone <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Γ</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">\Gamma_0</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbb{R}^n</annotation></semantics></math> containing <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>ζ</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">\zeta_0</annotation></semantics></math> such that for every <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi><mo>></mo><mn>0</mn></mrow><annotation encoding="application/x-tex">m \gt 0</annotation></semantics></math> there is a nonnegative constant <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>C</mi> <mi>m</mi></msub></mrow><annotation encoding="application/x-tex">C_m</annotation></semantics></math> such that for all <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ζ</mi><mo>∈</mo><msub><mi>Γ</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">\zeta \in \Gamma_0</annotation></semantics></math>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">‖</mo><mi>ℱ</mi><mo stretchy="false">(</mo><mi>χ</mi><mi>f</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>ζ</mi><mo stretchy="false">)</mo><mo stretchy="false">‖</mo><mo>≤</mo><msub><mi>C</mi> <mi>m</mi></msub><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mo stretchy="false">‖</mo><mi>ζ</mi><mo stretchy="false">‖</mo><msup><mo stretchy="false">)</mo> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>m</mi></mrow></msup></mrow><annotation encoding="application/x-tex"> \| \mathcal{F}(\chi f) (\zeta) \| \le C_m (1 + \| \zeta \|)^{-m} </annotation></semantics></math></div> <p>where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℱ</mi><mo stretchy="false">(</mo><mi>χ</mi><mi>f</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{F}(\chi f)</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/Fourier+transform">Fourier transform</a> (of the variable <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ζ</mi></mrow><annotation encoding="application/x-tex">\zeta</annotation></semantics></math>) of the function <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>χ</mi><mi>f</mi></mrow><annotation encoding="application/x-tex">\chi f</annotation></semantics></math> (of the variable <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math>).</p> </div> <div class="num_defn"> <h6 id="definition_3">Definition</h6> <p>A distribution <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> is smooth in a <a class="existingWikiWord" href="/nlab/show/conical+set">conic</a> subset <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Γ</mi></mrow><annotation encoding="application/x-tex">\Gamma</annotation></semantics></math> of the cotangent bundle of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math> if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> is smooth in a neighbourhood of every point in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Γ</mi></mrow><annotation encoding="application/x-tex">\Gamma</annotation></semantics></math>.</p> </div> <h3 id="wavefront_set">Wavefront set</h3> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo>⊆</mo><msup><mi>ℝ</mi> <mi>n</mi></msup></mrow><annotation encoding="application/x-tex">U \subseteq \mathbb{R}^n</annotation></semantics></math> be an open subset, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>T</mi> <mo>*</mo></msup><mi>U</mi></mrow><annotation encoding="application/x-tex">T^* U</annotation></semantics></math> its cotangent bundle and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> be a distribution on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math>. The complement of the union of all <a class="existingWikiWord" href="/nlab/show/conical+set">conic</a> subsets of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>T</mi> <mo>*</mo></msup><mi>U</mi></mrow><annotation encoding="application/x-tex">T^* U</annotation></semantics></math> where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> is smooth is the <strong>wavefront set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>WF</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">WF(f)</annotation></semantics></math></strong>. Since the wavefront set is therefore itself <a class="existingWikiWord" href="/nlab/show/conical+set">conic</a>, it is equivalently determined by a subset of the unit sphere bundle of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>T</mi> <mo>*</mo></msup><mi>U</mi></mrow><annotation encoding="application/x-tex">T^* U</annotation></semantics></math>.</p> <p>(<a href="#Hoermander70">Hörmander 70 (2.4.1)</a>, <a href="#Hoermander90">Hörmander 90, section 8.1</a>)</p> <p>This definition turns out to make invariant sense (<a href="#Hoermander90">Hörmander 90, p. 256</a>).</p> <h2 id="examples">Examples</h2> <div class="num_example" id="WaveFrontOfDeltaDistribution"> <h6 id="example">Example</h6> <p><strong>(wave front set of <a class="existingWikiWord" href="/nlab/show/delta+distribution">delta distribution</a>)</strong></p> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">n \in \mathbb{N}</annotation></semantics></math>, consider the <a class="existingWikiWord" href="/nlab/show/delta+distribution">delta distribution</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>δ</mi><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo><mo>∈</mo><mi>𝒟</mi><mo>′</mo><mo stretchy="false">(</mo><msup><mi>ℝ</mi> <mi>n</mi></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> \delta(0) \in \mathcal{D}'(\mathbb{R}^n) </annotation></semantics></math></div> <p>on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-dimensional <a class="existingWikiWord" href="/nlab/show/Cartesian+space">Cartesian space</a>, given by <a class="existingWikiWord" href="/nlab/show/evaluation">evaluation</a> at the origin. Its wave front set is</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>WF</mi><mo stretchy="false">(</mo><mi>δ</mi><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mrow><mo>{</mo><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mi>k</mi><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo stretchy="false">|</mo><mspace width="thickmathspace"></mspace><mi>k</mi><mo>∈</mo><msup><mi>ℝ</mi> <mi>n</mi></msup><mo>∖</mo><mo stretchy="false">{</mo><mn>0</mn><mo stretchy="false">}</mo><mo>}</mo></mrow><mo>⊂</mo><msup><mi>ℝ</mi> <mi>n</mi></msup><mo>×</mo><msup><mi>ℝ</mi> <mi>n</mi></msup><mo>≃</mo><msup><mi>T</mi> <mo>*</mo></msup><msup><mi>ℝ</mi> <mi>n</mi></msup><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> WF(\delta(0)) = \left\{ (0,k) \;\vert\; k \in \mathbb{R}^n \setminus \{0\} \right\} \subset \mathbb{R}^n \times \mathbb{R}^n \simeq T^\ast \mathbb{R}^n \,. </annotation></semantics></math></div></div> <div class="proof"> <h6 id="proof">Proof</h6> <p>First of all the <a class="existingWikiWord" href="/nlab/show/singular+support+of+a+distribution">singular support</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>δ</mi><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\delta(0)</annotation></semantics></math> is clearly <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>singsupp</mi><mo stretchy="false">(</mo><mi>δ</mi><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">{</mo><mn>0</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">singsupp(\delta(0)) = \{0\}</annotation></semantics></math>, hence the wave front set vanishes over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mi>n</mi></msup><mo>∖</mo><mo stretchy="false">{</mo><mn>0</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\mathbb{R}^n \setminus \{0\}</annotation></semantics></math>.</p> <p>At the origin, any bump function <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math> supported around the origin with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>b</mi><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">b(0) = 1</annotation></semantics></math> satisfies <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>b</mi><mo>⋅</mo><mi>δ</mi><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo><mo>=</mo><mi>δ</mi><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">b \cdot \delta(0) = \delta(0)</annotation></semantics></math> and hence the wave front set over the origin is the set of covectors along which the <a class="existingWikiWord" href="/nlab/show/Fourier+transform+of+distributions">Fourier transform</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>δ</mi><mo stretchy="false">^</mo></mover><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\hat \delta(0)</annotation></semantics></math> does not suitably decay. But this Fourier transform is in fact a <a class="existingWikiWord" href="/nlab/show/constant+function">constant function</a> and hence does not decay in any direction.</p> </div> <div class="num_example" id="WaveFrontSetOfHeavisideDistribution"> <h6 id="example_2">Example</h6> <p><strong>(wave front set of <a class="existingWikiWord" href="/nlab/show/Heaviside+distribution">Heaviside distribution</a>)</strong></p> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>H</mi><mo>∈</mo><mi>𝒟</mi><mo>′</mo><mo stretchy="false">(</mo><msup><mi>ℝ</mi> <mn>1</mn></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">H \in \mathcal{D}'(\mathbb{R}^1)</annotation></semantics></math> be the <a class="existingWikiWord" href="/nlab/show/Heaviside+distribution">Heaviside distribution</a> given by</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">⟨</mo><mi>H</mi><mo>,</mo><mi>b</mi><mo stretchy="false">⟩</mo><mo>≔</mo><msubsup><mo>∫</mo> <mn>0</mn> <mn>∞</mn></msubsup><mi>b</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mi>d</mi><mi>x</mi><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \langle H, b\rangle \coloneqq \int_0^\infty b(x)\, d x \,. </annotation></semantics></math></div> <p>Its wave front set is</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>WF</mi><mo stretchy="false">(</mo><mi>H</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">{</mo><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mi>k</mi><mo stretchy="false">)</mo><mo stretchy="false">|</mo><mi>k</mi><mo>≠</mo><mn>0</mn><mo stretchy="false">}</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> WF(H) = \{(0,k) \vert k \neq 0\} \,. </annotation></semantics></math></div></div> <div class="num_example"> <h6 id="example_3">Example</h6> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>e</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(X,e)</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/globally+hyperbolic+spacetime">globally hyperbolic spacetime</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/hyperbolic+differential+operator">hyperbolic differential operator</a> such as the <a class="existingWikiWord" href="/nlab/show/wave+operator">wave operator</a>/<a class="existingWikiWord" href="/nlab/show/Klein-Gordon+operator">Klein-Gordon operator</a>, then the <a class="existingWikiWord" href="/nlab/show/propagation+of+singularities+theorem">propagation of singularities theorem</a> says that the wave front set of any solution <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mi>f</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">P f = 0</annotation></semantics></math> is a union of <a class="existingWikiWord" href="/nlab/show/lightlike">lightlike</a> <a class="existingWikiWord" href="/nlab/show/geodesics">geodesics</a> and their <a class="existingWikiWord" href="/nlab/show/cotangent+vectors">cotangent vectors</a>.</p> <p>Specifically for the <a class="existingWikiWord" href="/nlab/show/Klein-Gordon+operator">Klein-Gordon operator</a> such ditributional solutions include the <a class="existingWikiWord" href="/nlab/show/causal+propagator">causal propagator</a> and the <a class="existingWikiWord" href="/nlab/show/Feynman+propagator">Feynman propagator</a>.</p> </div> <div class="num_example" id="WaveFrontOfTensorProductDistribution"> <h6 id="example_4">Example</h6> <p><strong>(wave front set of <a class="existingWikiWord" href="/nlab/show/tensor+product+distribution">tensor product distribution</a>)</strong></p> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>u</mi><mo>∈</mo><mi>𝒟</mi><mo>′</mo><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">u \in \mathcal{D}'(X)</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>v</mi><mo>∈</mo><mi>𝒟</mi><mo>′</mo><mo stretchy="false">(</mo><mi>Y</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">v \in \mathcal{D}'(Y)</annotation></semantics></math> be two distributions. then the wave front set of their <a class="existingWikiWord" href="/nlab/show/tensor+product+distribution">tensor product distribution</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>u</mi><mo>⊗</mo><mi>v</mi><mo>∈</mo><mi>𝒟</mi><mo>′</mo><mo stretchy="false">(</mo><mi>X</mi><mo>×</mo><mi>Y</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">u \otimes v \in \mathcal{D}'(X \times Y)</annotation></semantics></math> satisfies</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>WF</mi><mo stretchy="false">(</mo><mi>u</mi><mo>⊗</mo><mi>v</mi><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo>⊂</mo><mspace width="thickmathspace"></mspace><mrow><mo>(</mo><mi>WF</mi><mo stretchy="false">(</mo><mi>u</mi><mo stretchy="false">)</mo><mo>×</mo><mi>WF</mi><mo stretchy="false">(</mo><mi>v</mi><mo stretchy="false">)</mo><mo>)</mo></mrow><mo>∪</mo><mrow><mo>(</mo><mrow><mo>(</mo><mi>supp</mi><mo stretchy="false">(</mo><mi>u</mi><mo stretchy="false">)</mo><mo>×</mo><mo stretchy="false">{</mo><mn>0</mn><mo stretchy="false">}</mo><mo>)</mo></mrow><mo>×</mo><mi>WF</mi><mo stretchy="false">(</mo><mi>v</mi><mo stretchy="false">)</mo><mo>)</mo></mrow><mo>∪</mo><mrow><mo>(</mo><mi>WF</mi><mo stretchy="false">(</mo><mi>u</mi><mo stretchy="false">)</mo><mo>×</mo><mrow><mo>(</mo><mi>supp</mi><mo stretchy="false">(</mo><mi>v</mi><mo stretchy="false">)</mo><mo>×</mo><mo stretchy="false">{</mo><mn>0</mn><mo stretchy="false">}</mo><mo>)</mo></mrow><mo>)</mo></mrow><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> WF(u \otimes v) \;\subset\; \left( WF(u) \times WF(v) \right) \cup \left( \left( supp(u) \times \{0\} \right) \times WF(v) \right) \cup \left( WF(u) \times \left( supp(v) \times \{0\} \right) \right) \,, </annotation></semantics></math></div> <p>where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>supp</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">supp(-)</annotation></semantics></math> denotes the <a class="existingWikiWord" href="/nlab/show/support+of+a+distribution">support of a distribution</a>.</p> </div> <p>(<a href="#Hoermander90">Hörmander 90, theorem 8.2.9</a>)</p> <h2 id="properties">Properties</h2> <div class="num_prop" id="EmptyWaveFrontSetCorrespondsToOrdinaryFunction"> <h6 id="proposition">Proposition</h6> <p><strong>(empty wave front set corresponds to ordinary functions)</strong></p> <p>The wave front set of a <a class="existingWikiWord" href="/nlab/show/compactly+supported+distribution">compactly supported distribution</a> is empty precisely if the distribution comes from an ordinary <a class="existingWikiWord" href="/nlab/show/smooth+function">smooth function</a> (hence a <a class="existingWikiWord" href="/nlab/show/bump+function">bump function</a>).</p> </div> <p>e.g. (<a href="#Hoermander90">Hörmander 90, below (8.1.1)</a>)</p> <div class="num_prop" id="DerivativeOfDistributionRetainsOrShrinksWaveFrontSet"> <h6 id="proposition_2">Proposition</h6> <p><strong>(<a class="existingWikiWord" href="/nlab/show/derivative+of+distributions">derivative of distributions</a> retains or shrinks wave front set)</strong></p> <p>Taking <a class="existingWikiWord" href="/nlab/show/derivatives+of+distributions">derivatives of distributions</a> retains or shrinks the wave front set:</p> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>u</mi><mo>∈</mo><mi>𝒟</mi><mo>′</mo><mo stretchy="false">(</mo><msup><mi>ℝ</mi> <mi>n</mi></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">u \in \mathcal{D}'(\mathbb{R}^n)</annotation></semantics></math> a distribution and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi><mo>∈</mo><msup><mi>ℕ</mi> <mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\alpha \in \mathbb{N}^n</annotation></semantics></math> a multi-index with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>D</mi> <mi>α</mi></msup></mrow><annotation encoding="application/x-tex">D^\alpha</annotation></semantics></math> denoting the corresponding <a class="existingWikiWord" href="/nlab/show/partial+derivative">partial</a> <a class="existingWikiWord" href="/nlab/show/derivative+of+distributions">derivative of distributions</a>, then</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>WF</mi><mo stretchy="false">(</mo><msup><mi>D</mi> <mi>α</mi></msup><mi>u</mi><mo stretchy="false">)</mo><mo>⊂</mo><mi>WF</mi><mo stretchy="false">(</mo><mi>u</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> WF(D^\alpha u) \subset WF(u) \,. </annotation></semantics></math></div> <p>Hence if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math> is any <a class="existingWikiWord" href="/nlab/show/differential+operator">differential operator</a> with <a class="existingWikiWord" href="/nlab/show/smooth+function">smooth function</a> <a class="existingWikiWord" href="/nlab/show/coefficients">coefficients</a>, then</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>WF</mi><mo stretchy="false">(</mo><mi>P</mi><mi>u</mi><mo stretchy="false">)</mo><mo>⊂</mo><mi>WF</mi><mo stretchy="false">(</mo><mi>u</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> WF(P u) \subset WF(u) \,. </annotation></semantics></math></div></div> <p>(<a href="#Hoermander90">Hörmander 90, (8.1.10) (8.1.11), p. 256</a>)</p> <div class="num_prop" id="WaveFrontSetOfCompactlySupportedDistributions"> <h6 id="proposition_3">Proposition</h6> <p><strong>(<a class="existingWikiWord" href="/nlab/show/wave+front+set">wave front set</a> of <a class="existingWikiWord" href="/nlab/show/convolution+of+distributions">convolution of</a> <a class="existingWikiWord" href="/nlab/show/compactly+supported+distributions">compactly supported distributions</a>)</strong></p> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>u</mi><mo>,</mo><mi>v</mi><mo>∈</mo><mi>ℰ</mi><mo>′</mo><mo stretchy="false">(</mo><msup><mi>ℝ</mi> <mi>n</mi></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">u,v \in \mathcal{E}'(\mathbb{R}^n)</annotation></semantics></math> be two <a class="existingWikiWord" href="/nlab/show/compactly+supported+distributions">compactly supported distributions</a>. Then the <a class="existingWikiWord" href="/nlab/show/wave+front+set">wave front set</a> of their <a class="existingWikiWord" href="/nlab/show/convolution+of+distributions">convolution of distributions</a> is</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>WF</mi><mo stretchy="false">(</mo><mi>u</mi><mo>⋆</mo><mi>v</mi><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><mrow><mo>{</mo><mo stretchy="false">(</mo><mi>x</mi><mo>+</mo><mi>y</mi><mo>,</mo><mi>k</mi><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo stretchy="false">|</mo><mspace width="thickmathspace"></mspace><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>k</mi><mo stretchy="false">)</mo><mo>∈</mo><mi>WF</mi><mo stretchy="false">(</mo><mi>u</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mtext>and</mtext><mspace width="thinmathspace"></mspace><mo stretchy="false">(</mo><mi>y</mi><mo>,</mo><mi>k</mi><mo stretchy="false">)</mo><mo>∈</mo><mi>WF</mi><mo stretchy="false">(</mo><mi>u</mi><mo stretchy="false">)</mo><mo>}</mo></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> WF(u \star v) \;=\; \left\{ (x + y, k) \;\vert\; (x,k) \in WF(u) \,\text{and}\, (y,k) \in WF(u) \right\} \,. </annotation></semantics></math></div></div> <p>(<a href="convolution+of+distributions#Bengel77">Bengel 77, prop. 3.1</a>)</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/ultraviolet+divergence">ultraviolet divergence</a></li> </ul> <h2 id="references">References</h2> <h3 id="general">General</h3> <p>The concept of wave front set is due to</p> <ul> <li id="Hoermander70"><a class="existingWikiWord" href="/nlab/show/Lars+H%C3%B6rmander">Lars Hörmander</a>, <em>Linear differential operators</em>, Actes Congr. Int. Math. Nice 1970, 1, 121-133 (<a href="http://www.mathunion.org/ICM/ICM1970.1/Main/icm1970.1.0121.0134.ocr.pdf">pdf</a>)</li> </ul> <p>A textbook account for distributions on open subsets of <a class="existingWikiWord" href="/nlab/show/Euclidean+space">Euclidean space</a> is in</p> <ul> <li id="Hoermander90"><a class="existingWikiWord" href="/nlab/show/Lars+H%C3%B6rmander">Lars Hörmander</a>, section 8.1 of <em>The analysis of linear partial differential operators</em>, vol. I, Springer 1983, 1990</li> </ul> <p>and for distributions more generally on smooth manifolds is in</p> <ul> <li id="Hoermander94"><a class="existingWikiWord" href="/nlab/show/Lars+H%C3%B6rmander">Lars Hörmander</a>, <em>The analysis of linear partial differential operators</em>, vol. III, Springer 1994</li> </ul> <p>A history of the concept of wave front sets with extensive pointers to the literature is given in <a href="#Hoermander90">Hörmander 90, p. 322-324</a>.</p> <p>See also</p> <ul> <li>Wikipedia: <a href="http://en.wikipedia.org/wiki/Wavefront_set">wavefront set</a></li> </ul> <h3 id="in_quantum_field_theory">In quantum field theory</h3> <p>The application of <a class="existingWikiWord" href="/nlab/show/microlocal+analysis">microlocal analysis</a> via wave front sets to the discussion of <a class="existingWikiWord" href="/nlab/show/n-point+functions">n-point functions</a> in <a class="existingWikiWord" href="/nlab/show/quantum+field+theory">quantum field theory</a> and especially <a class="existingWikiWord" href="/nlab/show/quantum+field+theory+on+curved+spacetimes">quantum field theory on curved spacetimes</a> originates with the results of</p> <ul> <li id="DuistermaatHoermander72"><a class="existingWikiWord" href="/nlab/show/Johann+Duistermaat">Johann Duistermaat</a>, <a class="existingWikiWord" href="/nlab/show/Lars+H%C3%B6rmander">Lars Hörmander</a>, sections 6.5, 6.6 of <em>Fourier integral operators II</em>, Acta Mathematica 128, 183-269, 1972 (<a href="https://projecteuclid.org/euclid.acta/1485889724">Euclid</a>)</li> </ul> <p>which were first picked up in</p> <ul> <li> <p>C. Moreno, <em>Spaces of positive and negative frequency solutions of field equations in curved space- times. I. The Klein-Gordon equation in stationary space-times, II. The massive vector field equations in static space-times</em>, J. Math. Phys. 18, 2153-61 (1977), J. Math. Phys. 19, 92-99 (1978)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Jonathan+Dimock">Jonathan Dimock</a>, <em>Scalar quantum field in an external gravitational background</em>, J. Math. Phys. 20, 2549-2555 (1979)</p> </li> </ul> <p>and brought into context with the <a class="existingWikiWord" href="/nlab/show/Hadamard+distributions">Hadamard distributions</a> needed for the <a class="existingWikiWord" href="/nlab/show/construction">construction</a> of <a class="existingWikiWord" href="/nlab/show/Wick+algebras">Wick algebras</a> in</p> <ul> <li id="Radzikowski96"> <p><a class="existingWikiWord" href="/nlab/show/Marek+Radzikowski">Marek Radzikowski</a>, <em>Micro-local approach to the Hadamard condition in quantum field theory on curved space-time</em>, Commun. Math. Phys. <strong>179</strong> (1996) 529-553 [<a href="https://doi.org/10.1007/BF02100096">doi:10.1007/BF02100096</a>, <a href="http://projecteuclid.org/euclid.cmp/1104287114">euclid:cmp/1104287114</a>]</p> </li> <li id="BrunettiFredenhagen00"> <p><a class="existingWikiWord" href="/nlab/show/Romeo+Brunetti">Romeo Brunetti</a>, <a class="existingWikiWord" href="/nlab/show/Klaus+Fredenhagen">Klaus Fredenhagen</a>, <em>Microlocal Analysis and Interacting Quantum Field Theories: Renormalization on Physical Backgrounds</em>, Commun. Math. Phys. <strong>208</strong> (2000) 623-661 [<a href="https://arxiv.org/abs/math-ph/9903028">math-ph/9903028</a>, <a href="https://doi.org/10.1007/s002200050004">doi:10.1007/s002200050004</a>]</p> </li> </ul> <p>A textbook account amplifying this usage (on <a class="existingWikiWord" href="/nlab/show/Minkowski+spacetime">Minkowski spacetime</a>) in the mathematically rigorous construction of <a class="existingWikiWord" href="/nlab/show/perturbative+quantum+field+theory">perturbative quantum field theory</a> via <a class="existingWikiWord" href="/nlab/show/causal+perturbation+theory">causal perturbation theory</a> is in</p> <ul> <li id="Scharf95"> <p><a class="existingWikiWord" href="/nlab/show/G%C3%BCnter+Scharf">Günter Scharf</a>, <em><a class="existingWikiWord" href="/nlab/show/Finite+Quantum+Electrodynamics+--+The+Causal+Approach">Finite Quantum Electrodynamics – The Causal Approach</a></em>, Berlin: Springer-Verlag, 1995, 2nd edition</p> </li> <li id="Scharf01"> <p><a class="existingWikiWord" href="/nlab/show/G%C3%BCnter+Scharf">Günter Scharf</a>, <em><a class="existingWikiWord" href="/nlab/show/Quantum+Gauge+Theories+--+A+True+Ghost+Story">Quantum Gauge Theories – A True Ghost Story</a></em>, Wiley 2001</p> </li> </ul> <p>For more see the references at <em><a class="existingWikiWord" href="/nlab/show/locally+covariant+perturbative+quantum+field+theory">locally covariant perturbative quantum field theory</a></em>.</p> <h3 id="in_differential_cohomology">In differential cohomology</h3> <p>Wave-front sets of <a class="existingWikiWord" href="/nlab/show/currents+%28distribution+theory%29">currents</a> play a role in the construction of “geometric cycles” for <a class="existingWikiWord" href="/nlab/show/differential+cobordism+cohomology">differential cobordism cohomology</a> by actual <a class="existingWikiWord" href="/nlab/show/cobordism">cobordism</a>-classes equipped with <a class="existingWikiWord" href="/nlab/show/differential+geometry">differential geometric</a> data:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Ulrich+Bunke">Ulrich Bunke</a>, <a class="existingWikiWord" href="/nlab/show/Thomas+Schick">Thomas Schick</a>, Ingo Schroeder, Moritz Wiethaup, §4.2.6 in: <em>Landweber exact formal group laws and smooth cohomology theories</em>, Algebr. Geom. Topol. <strong>9</strong> (2009) 1751-1790 [<a href="https://arxiv.org/abs/0711.1134">arXiv:0711.1134</a>, <a href="https://doi.org/10.2140/agt.2009.9.1751">doi:10.2140/agt.2009.9.1751</a>]</li> </ul> <p>and in the <a class="existingWikiWord" href="/nlab/show/Hodge-filtered+differential+cohomology">Hodge-filtered</a> version:</p> <ul> <li id="Haus22"> <p><a class="existingWikiWord" href="/nlab/show/Knut+Bjarte+Haus">Knut Bjarte Haus</a>, §2.6 in: <em>Geometric Hodge filtered complex cobordism</em>, PhD thesis (2022) [<a href="https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3017489">ntnuopen:3017489</a>]</p> </li> <li id="HausQuick22"> <p><a class="existingWikiWord" href="/nlab/show/Knut+Bjarte+Haus">Knut Bjarte Haus</a>, <a class="existingWikiWord" href="/nlab/show/Gereon+Quick">Gereon Quick</a>, §2.10 of: <em>Geometric Hodge filtered complex cobordism</em> [<a href="https://arxiv.org/abs/2210.13259">arXiv:2210.13259</a>]</p> </li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on July 3, 2023 at 08:41:52. See the <a href="/nlab/history/wavefront+set" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/wavefront+set" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/16640/#Item_1">Discuss</a><span class="backintime"><a href="/nlab/revision/wavefront+set/23" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/wavefront+set" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/wavefront+set" accesskey="S" class="navlink" id="history" rel="nofollow">History (23 revisions)</a> <a href="/nlab/show/wavefront+set/cite" style="color: black">Cite</a> <a href="/nlab/print/wavefront+set" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/wavefront+set" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>