CINXE.COM
Fredholm operator in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> Fredholm operator in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> Fredholm operator </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/4831/#Item_7" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="functional_analysis">Functional analysis</h4> <div class="hide"><div> <ul> <li><strong><a class="existingWikiWord" href="/nlab/show/functional+analysis">Functional Analysis</a></strong></li> </ul> <h2 id="overview_diagrams">Overview diagrams</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/TVS+relationships">topological vector spaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/diagram+of+LCTVS+properties">locally convex topological vector spaces</a></p> </li> </ul> <h2 id="basic_concepts">Basic concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+vector+space">topological vector space</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+convex+topological+vector+space">locally convex topological vector space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Banach+space">Banach Spaces</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/reflexive+Banach+space">reflexive</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Smith+space+%28functional+analysis%29">Smith Spaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hilbert+space">Hilbert Spaces</a>, <a class="existingWikiWord" href="/nlab/show/Fr%C3%A9chet+space">Fréchet Spaces</a>, <a class="existingWikiWord" href="/nlab/show/Sobolev+space">Sobolev spaces</a>, <a class="existingWikiWord" href="/nlab/show/Lebesgue+space">Lebesgue Spaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/bornological+vector+space">Bornological Vector Spaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/barrelled+topological+vector+space">Barrelled Vector Spaces</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/linear+operator">linear operator</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/bounded+linear+operator">bounded</a>, <a class="existingWikiWord" href="/nlab/show/unbounded+linear+operator">unbounded</a>, <a class="existingWikiWord" href="/nlab/show/self-adjoint+operator">self-adjoint</a>, <a class="existingWikiWord" href="/nlab/show/compact+operator">compact</a>, <a class="existingWikiWord" href="/nlab/show/Fredholm+operator">Fredholm</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spectrum+of+an+operator">spectrum of an operator</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/operator+algebras">operator algebras</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/functional+calculus">functional calculus</a></li> </ul> </li> </ul> <h2 id="theorems">Theorems</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Stone-Weierstrass+theorem">Stone-Weierstrass theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spectral+theory">spectral theory</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/spectral+theorem">spectral theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gelfand+duality">Gelfand duality</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/functional+calculus">functional calculus</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Riesz+representation+theorem">Riesz representation theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/measure+theory">measure theory</a></p> </li> </ul> <h2 id="topics_in_functional_analysis">Topics in Functional Analysis</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/basis+in+functional+analysis">Bases</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebraic+theories+in+functional+analysis">Algebraic Theories in Functional Analysis</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/an+elementary+treatment+of+Hilbert+spaces">An Elementary Treatment of Hilbert Spaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/isomorphism+classes+of+Banach+spaces">When are two Banach spaces isomorphic?</a></p> </li> </ul> <div> <p> <a href="/nlab/edit/functional+analysis+-+contents">Edit this sidebar</a> </p> </div></div></div> <h4 id="index_theory">Index theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/index+theory">index theory</a>, <a class="existingWikiWord" href="/nlab/show/KK-theory">KK-theory</a></strong></p> <p><a class="existingWikiWord" href="/nlab/show/noncommutative+topology">noncommutative topology</a>, <a class="existingWikiWord" href="/nlab/show/noncommutative+geometry">noncommutative geometry</a></p> <p><a class="existingWikiWord" href="/nlab/show/noncommutative+stable+homotopy+theory">noncommutative stable homotopy theory</a></p> <p><strong><a class="existingWikiWord" href="/nlab/show/partition+function">partition function</a></strong></p> <p><strong><a class="existingWikiWord" href="/nlab/show/genus">genus</a>, <a class="existingWikiWord" href="/nlab/show/orientation+in+generalized+cohomology">orientation in generalized cohomology</a></strong></p> <h2 id="definitions">Definitions</h2> <p><strong><a class="existingWikiWord" href="/nlab/show/operator+K-theory">operator K-theory</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/C%2A-algebra">C*-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hilbert+module">Hilbert module</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/K-homology">K-homology</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Fredholm+operator">Fredholm operator</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+operator">differential operator</a>, <a class="existingWikiWord" href="/nlab/show/pseudodifferential+operator">pseudodifferential operator</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/symbol+of+a+differential+operator">symbol of a differential operator</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/elliptic+operator">elliptic operator</a>, <a class="existingWikiWord" href="/nlab/show/elliptic+complex">elliptic complex</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Dirac+operator">Dirac operator</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Spin%5Ec+Dirac+operator">Spin^c Dirac operator</a></li> </ul> </li> </ul> <h2 id="index_theorems">Index theorems</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+index">topological index</a>, <a class="existingWikiWord" href="/nlab/show/analytical+index">analytical index</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Atiyah-Singer+index+theorem">Atiyah-Singer index theorem</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Gauss-Bonnet+theorem">Gauss-Bonnet theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hirzebruch-Riemann-Roch+theorem">Hirzebruch-Riemann-Roch theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/global+analytic+index+theory">global analytic index theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hirzebruch+signature+theorem">Hirzebruch signature theorem</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Mishchenko-Fomenko+index+theorem">Mishchenko-Fomenko index theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Baum-Connes+conjecture">Baum-Connes conjecture</a></p> </li> </ul> <h2 id="higher_genera">Higher genera</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/elliptic+genus">elliptic genus</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Witten+genus">Witten genus</a></p> </li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#definition'>Definition</a></li> <li><a href='#examples'>Examples</a></li> <li><a href='#properties'>Properties</a></li> <li><a href='#generalizations'>Generalizations</a></li> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="definition">Definition</h2> <div class="num_defn" id="FredholmOperator"> <h6 id="definition_2">Definition</h6> <p>A <a class="existingWikiWord" href="/nlab/show/continuous+function">continuous</a> <a class="existingWikiWord" href="/nlab/show/linear+operator">linear operator</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo lspace="verythinmathspace">:</mo><msub><mi>B</mi> <mn>1</mn></msub><mo>→</mo><msub><mi>B</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">F \colon B_1\to B_2</annotation></semantics></math> between <a class="existingWikiWord" href="/nlab/show/Banach+spaces">Banach spaces</a> is <strong>Fredholm</strong> if it has <a class="existingWikiWord" href="/nlab/show/finite+set">finite</a> <a class="existingWikiWord" href="/nlab/show/dimension">dimensional</a> <a class="existingWikiWord" href="/nlab/show/kernel">kernel</a> and finite dimensional <a class="existingWikiWord" href="/nlab/show/cokernel">cokernel</a>.</p> </div> <div class="num_defn"> <h6 id="definition_3">Definition</h6> <p>The difference between the <a class="existingWikiWord" href="/nlab/show/dimension+of+a+vector+space">dimensions</a> of the kernel and the cokernel of a Fredholm operator <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math> is called its <em><a class="existingWikiWord" href="/nlab/show/index">index</a></em> (the <em><a class="existingWikiWord" href="/nlab/show/Fredholm+index">Fredholm index</a></em>)</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>ind</mi><mi>F</mi><mo>≔</mo><mi>dim</mi><mo stretchy="false">(</mo><mi>ker</mi><mi>F</mi><mo stretchy="false">)</mo><mo>−</mo><mi>dim</mi><mo stretchy="false">(</mo><mi>coker</mi><mi>F</mi><mo stretchy="false">)</mo><mo>=</mo><mi>dim</mi><mo stretchy="false">(</mo><mi>ker</mi><mi>F</mi><mo stretchy="false">)</mo><mo>−</mo><mi>codim</mi><mo stretchy="false">(</mo><mi>im</mi><mi>F</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> ind F \coloneqq dim (ker F) - dim (coker F) = dim (ker F) - codim (im F) \,. </annotation></semantics></math></div></div> <p>A standard equivalent characterization of Fredholm operators is the following:</p> <div class="num_defn" id="Parametrix"> <h6 id="definition_4">Definition</h6> <p>A <strong>parametrix</strong> of a <a class="existingWikiWord" href="/nlab/show/bounded+operator">bounded</a> <a class="existingWikiWord" href="/nlab/show/linear+operator">linear operator</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo lspace="verythinmathspace">:</mo><msub><mi>ℋ</mi> <mn>1</mn></msub><mo>→</mo><msub><mi>ℋ</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">F \colon \mathcal{H}_1 \to \mathcal{H}_2</annotation></semantics></math> is a reverse operator <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo lspace="verythinmathspace">:</mo><msub><mi>ℋ</mi> <mn>2</mn></msub><mo>→</mo><msub><mi>ℋ</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">P \colon \mathcal{H}_2 \to \mathcal{H}_1</annotation></semantics></math> which is an “<a class="existingWikiWord" href="/nlab/show/inverse">inverse</a> up to <a class="existingWikiWord" href="/nlab/show/compact+operators">compact operators</a>”, i.e. such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>∘</mo><mi>P</mi><mo>−</mo><msub><mi>id</mi> <mrow><msub><mi>ℋ</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding="application/x-tex">F \circ P - id_{\mathcal{H}_2}</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo>∘</mo><mi>F</mi><mo>−</mo><msub><mi>id</mi> <mrow><msub><mi>ℋ</mi> <mn>1</mn></msub></mrow></msub></mrow><annotation encoding="application/x-tex">P \circ F - id_{\mathcal{H}_1}</annotation></semantics></math> are both <a class="existingWikiWord" href="/nlab/show/compact+operators">compact operators</a>.</p> </div> <div class="num_prop"> <h6 id="proposition">Proposition</h6> <p>A <a class="existingWikiWord" href="/nlab/show/bounded+operator">bounded</a> <a class="existingWikiWord" href="/nlab/show/linear+operator">linear operator</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo lspace="verythinmathspace">:</mo><msub><mi>B</mi> <mn>1</mn></msub><mo>→</mo><msub><mi>B</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex"> F \colon B_1\to B_2</annotation></semantics></math> between <a class="existingWikiWord" href="/nlab/show/Banach+spaces">Banach spaces</a> is Fredholm, def. <a class="maruku-ref" href="#FredholmOperator"></a> precisely it is has a parametrix, def. <a class="maruku-ref" href="#Parametrix"></a>.</p> </div> <h2 id="examples">Examples</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/elliptic+operator">Elliptic operators</a> on <a class="existingWikiWord" href="/nlab/show/compact+topological+space">compact</a> <a class="existingWikiWord" href="/nlab/show/manifolds">manifolds</a> are naturally Fredholm, when understood between the appropriate <a class="existingWikiWord" href="/nlab/show/Sobolev+spaces">Sobolev spaces</a>.</p> </li> <li> <p><a href="Dirac+field#FreeDiracFieldInCoulombBackground">charged vacua of free Dirac field in Coulomb background</a> are characterized by Fredholm operators</p> </li> </ul> <h2 id="properties">Properties</h2> <div class="num_prop"> <h6 id="proposition_2">Proposition</h6> <p>The <a class="existingWikiWord" href="/nlab/show/image">image</a> (range) of a Fredholm operator is closed.</p> </div> <div class="num_prop"> <h6 id="proposition_3">Proposition</h6> <p>The subspace <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Fred</mi><mo stretchy="false">(</mo><msub><mi>B</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>B</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>⊂</mo><mi>B</mi><mo stretchy="false">(</mo><msub><mi>B</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>B</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Fred(B_1,B_2)\subset B(B_1,B_2)</annotation></semantics></math> of Fredholm operators in the space of bounded linear operators with the norm topology is open.</p> </div> <p>In other words, given a Fredholm operator <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math>, there exists <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϵ</mi><mo>></mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\epsilon\gt 0</annotation></semantics></math> such that every bounded linear operator <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> satisfying <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">‖</mo><mi>G</mi><mo>−</mo><mi>F</mi><mo stretchy="false">‖</mo><mo><</mo><mi>ϵ</mi></mrow><annotation encoding="application/x-tex">\| G-F\|\lt \epsilon</annotation></semantics></math> is Fredholm. Fredholm operators on a fixed separable Hilbert space <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>H</mi><mo>=</mo><msub><mi>B</mi> <mn>1</mn></msub><mo>=</mo><msub><mi>B</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">H = B_1 = B_2</annotation></semantics></math> form a <a class="existingWikiWord" href="/nlab/show/semigroup">semigroup</a> with respect to the composition and the index is a morphism of semigroups: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ind</mi><mi>F</mi><mi>G</mi><mo>=</mo><mi>ind</mi><mi>F</mi><mo>+</mo><mi>ind</mi><mi>G</mi></mrow><annotation encoding="application/x-tex">ind F G = ind F + ind G</annotation></semantics></math>.</p> <div class="num_prop"> <h6 id="proposition_4">Proposition</h6> <p>The space <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Fred</mi></mrow><annotation encoding="application/x-tex">Fred</annotation></semantics></math> of all Fredholm operators on an (infinite dimensional) <a class="existingWikiWord" href="/nlab/show/separable+Hilbert+space">separable Hilbert space</a> is a model for the <a class="existingWikiWord" href="/nlab/show/classifying+space">classifying space</a> of degree-0 <a class="existingWikiWord" href="/nlab/show/topological+K-theory">topological K-theory</a>.</p> </div> <p>(…)</p> <h2 id="generalizations">Generalizations</h2> <p>Fredholm operators generalize to Fredholm complexes. A finite <a class="existingWikiWord" href="/nlab/show/chain+complex">chain complex</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mn>0</mn><mo>→</mo><msub><mi>C</mi> <mn>0</mn></msub><mover><mo>→</mo><mrow><msub><mi>d</mi> <mn>0</mn></msub></mrow></mover><msub><mi>C</mi> <mn>1</mn></msub><mover><mo>→</mo><mrow><msub><mi>d</mi> <mn>1</mn></msub></mrow></mover><msub><mi>C</mi> <mn>2</mn></msub><mi>…</mi><msub><mi>C</mi> <mi>n</mi></msub><mo>→</mo><mn>0</mn></mrow><annotation encoding="application/x-tex"> 0 \to C_0 \stackrel{d_0}\to C_1\stackrel{d_1}\to C_2 \ldots C_n\to 0 </annotation></semantics></math></div> <p>of <a class="existingWikiWord" href="/nlab/show/Banach+space">Banach space</a>s and bounded operators is said to be a <strong>Fredholm complex</strong> if the images <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>d</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">d_i</annotation></semantics></math> are closed and the <a class="existingWikiWord" href="/nlab/show/chain+homology">chain homology</a> of the complex is finite dimensional. The <a class="existingWikiWord" href="/nlab/show/Euler+characteristic">Euler characteristic</a> (the alternative sum of the dimensions of the homology groups) is then called the <strong>index</strong> of the Fredholm complex. Each Fredholm operator can be considered as a Fredholm complex concentrated at zero. Each Fredholm complex produces a Fredholm operator from the sum of the even- to the sum of the odd-numbered spaces in the complex.</p> <p>One can consider <em>Fredholm almost complexes</em>, where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>d</mi> <mi>i</mi></msub><mo>∘</mo><msub><mi>d</mi> <mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow><annotation encoding="application/x-tex">d_i \circ d_{i-1}</annotation></semantics></math> is not zero but the image of that operator is compact. Out of every Fredholm almost complex one can make a complex by correcting the differentials by compact perturbation terms. <a class="existingWikiWord" href="/nlab/show/elliptic+complex">Elliptic complexes</a> give examples of Fredholm complexes.</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Fredholm+module">Fredholm module</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Fredholm+determinant">Fredholm determinant</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Dirac+operator">Dirac operator</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Toeplitz+operator">Toeplitz operator</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/K-theory">K-theory</a>, <a class="existingWikiWord" href="/nlab/show/KK-theory">KK-theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/index+theory">index theory</a></p> </li> </ul> <h2 id="references">References</h2> <p>Textbook accounts:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/William+Arveson">William Arveson</a>, Section 3.3 of: <em>A Short Course on Spectral Theory</em>, Graduate Texts in Mathematics <strong>209</strong>, Springer (2002) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo></mrow><annotation encoding="application/x-tex">[</annotation></semantics></math><a href="https://link.springer.com/book/10.1007/b97227">doi:10.1007/b97227</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">]</annotation></semantics></math></li> </ul> <p>Discussion of the space of Fredholm operators as the <a class="existingWikiWord" href="/nlab/show/classifying+space">classifying space</a> for <a class="existingWikiWord" href="/nlab/show/topological+K-theory">topological K-theory</a>:</p> <ul> <li id="Atiyah67"><a class="existingWikiWord" href="/nlab/show/Michael+Atiyah">Michael Atiyah</a>, Appendix of: <em>K-theory</em>, Harvard Lecture 1964 (notes by D. W. Anderson), Benjamin 1967 (<a href="https://www.maths.ed.ac.uk/~v1ranick/papers/atiyahk.pdf">pdf</a>, <a class="existingWikiWord" href="/nlab/files/AtiyahKTheory.pdf" title="pdf">pdf</a>)</li> </ul> <p>See also:</p> <ul> <li> <p>Wikipedia, <em><a href="http://en.wikipedia.org/wiki/Fredholm_operator">Fredholm operator</a></em></p> </li> <li> <p>A. S. Mishchenko, Векторные расслоения и их применения (Vector bundles and their applications), Nauka, Moscow, 1984. 208 pp. MR87f:55010</p> </li> <li> <p>S. Rempel, B-W. Schulze, <em>Index theory of elliptic boundary problems</em>, Akademie–Verlag, Berlin, 1982.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lars+H%C3%B6rmander">Lars Hörmander</a>, <em>The analysis of linear partial differential operators. III. Pseudo-differential operators</em>, 1994, reprinted 2007.</p> </li> <li> <p>Pietro Aiena, <em>Fredholm and local spectral theory, with applications to multipliers</em>, <a href="http://www.springer.com/mathematics/analysis/book/978-1-4020-1830-5">book page</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Otgonbayar+Uuye">Otgonbayar Uuye</a>, <em>A simple proof of the Fredholm Alternative</em>, <a href="http://arxiv.org/abs/1011.2933">arxiv/1011.2933</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Alexander+Grothendieck">Alexander Grothendieck</a>, <em>La théorie de Fredholm</em>, Bulletin de la Société Mathématique de France <strong>84</strong> (1956), p. 319-384, <a href="http://www.numdam.org/item?id=BSMF_1956__84__319_0">numdam</a></p> </li> <li> <p>Marina Prokhorova, <em>Spectral Sections</em>, <a href="https://arxiv.org/abs/2008.04672">arXiv:2008.04672</a>.</p> </li> <li> <p>Marina Prokhorova, <em>Spaces of unbounded Fredholm operators. I. Homotopy equivalences</em>, <a href="https://arxiv.org/abs/2110.14359">arXiv:2110.14359</a>.</p> </li> <li> <p>Marina Prokhorova, <em>The continuity properties of discrete-spectrum families of Fredholm operators</em>, <a href="https://arxiv.org/abs/2201.09869">arXiv:2201.09869</a>.</p> </li> <li> <p>Marina Prokhorova, <em>From graph to Riesz continuity</em>, <a href="https://arxiv.org/abs/2202.03337">arXiv:2202.03337</a>.</p> </li> </ul> <p>For Fredholm complexes, see</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Graeme+Segal">Graeme Segal</a>, <em>Fredholm complexes</em>, Quarterly Journal of Mathematics 21:4 (1970), 385–402. <a href="http://dx.doi.org/10.1093/qmath/21.4.385">doi</a>.</li> </ul> <div class="property">category: <a class="category_link" href="/nlab/all_pages/analysis">analysis</a></div></body></html> </div> <div class="revisedby"> <p> Last revised on March 12, 2023 at 04:32:03. See the <a href="/nlab/history/Fredholm+operator" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/Fredholm+operator" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/4831/#Item_7">Discuss</a><span class="backintime"><a href="/nlab/revision/Fredholm+operator/27" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/Fredholm+operator" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/Fredholm+operator" accesskey="S" class="navlink" id="history" rel="nofollow">History (27 revisions)</a> <a href="/nlab/show/Fredholm+operator/cite" style="color: black">Cite</a> <a href="/nlab/print/Fredholm+operator" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/Fredholm+operator" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>