CINXE.COM

Vector space - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Vector space - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"b60e6a0c-eee1-4a5a-9342-90a7043135ac","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Vector_space","wgTitle":"Vector space","wgCurRevisionId":1269159351,"wgRevisionId":1269159351,"wgArticleId":32370,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Pages using multiple image with auto scaled images","CS1 German-language sources (de)","CS1 French-language sources (fr)","CS1 maint: location missing publisher","CS1 Italian-language sources (it)","Good articles","Concepts in physics","Group theory","Mathematical structures","Vectors (mathematics and physics)","Vector spaces"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel": "wikitext","wgRelevantPageName":"Vector_space","wgRelevantArticleId":32370,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":90000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q125977","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"], "GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips", "ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.16"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Vector_add_scale.svg/1200px-Vector_add_scale.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="666"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Vector_add_scale.svg/800px-Vector_add_scale.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="444"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Vector_add_scale.svg/640px-Vector_add_scale.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="355"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Vector space - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Vector_space"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Vector_space&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Vector_space"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Vector_space rootpage-Vector_space skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Vector+space" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Vector+space" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Vector+space" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Vector+space" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition_and_basic_properties" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definition_and_basic_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition and basic properties</span> </div> </a> <ul id="toc-Definition_and_basic_properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bases,_vector_coordinates,_and_subspaces" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Bases,_vector_coordinates,_and_subspaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Bases, vector coordinates, and subspaces</span> </div> </a> <ul id="toc-Bases,_vector_coordinates,_and_subspaces-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Examples</span> </div> </a> <button aria-controls="toc-Examples-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Examples subsection</span> </button> <ul id="toc-Examples-sublist" class="vector-toc-list"> <li id="toc-Arrows_in_the_plane" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Arrows_in_the_plane"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Arrows in the plane</span> </div> </a> <ul id="toc-Arrows_in_the_plane-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ordered_pairs_of_numbers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ordered_pairs_of_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Ordered pairs of numbers</span> </div> </a> <ul id="toc-Ordered_pairs_of_numbers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Coordinate_space" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Coordinate_space"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Coordinate space</span> </div> </a> <ul id="toc-Coordinate_space-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Complex_numbers_and_other_field_extensions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Complex_numbers_and_other_field_extensions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Complex numbers and other field extensions</span> </div> </a> <ul id="toc-Complex_numbers_and_other_field_extensions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Function_spaces" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Function_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Function spaces</span> </div> </a> <ul id="toc-Function_spaces-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Linear_equations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Linear_equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6</span> <span>Linear equations</span> </div> </a> <ul id="toc-Linear_equations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Linear_maps_and_matrices" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Linear_maps_and_matrices"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Linear maps and matrices</span> </div> </a> <button aria-controls="toc-Linear_maps_and_matrices-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Linear maps and matrices subsection</span> </button> <ul id="toc-Linear_maps_and_matrices-sublist" class="vector-toc-list"> <li id="toc-Matrices" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Matrices"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Matrices</span> </div> </a> <ul id="toc-Matrices-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Eigenvalues_and_eigenvectors" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Eigenvalues_and_eigenvectors"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Eigenvalues and eigenvectors</span> </div> </a> <ul id="toc-Eigenvalues_and_eigenvectors-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Basic_constructions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Basic_constructions"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Basic constructions</span> </div> </a> <button aria-controls="toc-Basic_constructions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Basic constructions subsection</span> </button> <ul id="toc-Basic_constructions-sublist" class="vector-toc-list"> <li id="toc-Subspaces_and_quotient_spaces" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Subspaces_and_quotient_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Subspaces and quotient spaces</span> </div> </a> <ul id="toc-Subspaces_and_quotient_spaces-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Direct_product_and_direct_sum" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Direct_product_and_direct_sum"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Direct product and direct sum</span> </div> </a> <ul id="toc-Direct_product_and_direct_sum-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Tensor_product" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Tensor_product"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Tensor product</span> </div> </a> <ul id="toc-Tensor_product-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Vector_spaces_with_additional_structure" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Vector_spaces_with_additional_structure"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Vector spaces with additional structure</span> </div> </a> <button aria-controls="toc-Vector_spaces_with_additional_structure-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Vector spaces with additional structure subsection</span> </button> <ul id="toc-Vector_spaces_with_additional_structure-sublist" class="vector-toc-list"> <li id="toc-Normed_vector_spaces_and_inner_product_spaces" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Normed_vector_spaces_and_inner_product_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Normed vector spaces and inner product spaces</span> </div> </a> <ul id="toc-Normed_vector_spaces_and_inner_product_spaces-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Topological_vector_spaces" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Topological_vector_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Topological vector spaces</span> </div> </a> <ul id="toc-Topological_vector_spaces-sublist" class="vector-toc-list"> <li id="toc-Banach_spaces" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Banach_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2.1</span> <span>Banach spaces</span> </div> </a> <ul id="toc-Banach_spaces-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hilbert_spaces" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Hilbert_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2.2</span> <span>Hilbert spaces</span> </div> </a> <ul id="toc-Hilbert_spaces-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Algebras_over_fields" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Algebras_over_fields"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Algebras over fields</span> </div> </a> <ul id="toc-Algebras_over_fields-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Related_structures" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Related_structures"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Related structures</span> </div> </a> <button aria-controls="toc-Related_structures-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Related structures subsection</span> </button> <ul id="toc-Related_structures-sublist" class="vector-toc-list"> <li id="toc-Vector_bundles" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Vector_bundles"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Vector bundles</span> </div> </a> <ul id="toc-Vector_bundles-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Modules" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Modules"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Modules</span> </div> </a> <ul id="toc-Modules-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Affine_and_projective_spaces" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Affine_and_projective_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3</span> <span>Affine and projective spaces</span> </div> </a> <ul id="toc-Affine_and_projective_spaces-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Citations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Citations"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Citations</span> </div> </a> <ul id="toc-Citations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>References</span> </div> </a> <button aria-controls="toc-References-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle References subsection</span> </button> <ul id="toc-References-sublist" class="vector-toc-list"> <li id="toc-Algebra" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Algebra"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.1</span> <span>Algebra</span> </div> </a> <ul id="toc-Algebra-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Analysis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Analysis"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.2</span> <span>Analysis</span> </div> </a> <ul id="toc-Analysis-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Historical_references" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Historical_references"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.3</span> <span>Historical references</span> </div> </a> <ul id="toc-Historical_references-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_references" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Further_references"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.4</span> <span>Further references</span> </div> </a> <ul id="toc-Further_references-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Vector space</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 78 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-78" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">78 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Vektorruimte" title="Vektorruimte – Afrikaans" lang="af" hreflang="af" data-title="Vektorruimte" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%81%D8%B6%D8%A7%D8%A1_%D9%85%D8%AA%D8%AC%D9%87%D9%8A" title="فضاء متجهي – Arabic" lang="ar" hreflang="ar" data-title="فضاء متجهي" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Espaciu_vectorial" title="Espaciu vectorial – Asturian" lang="ast" hreflang="ast" data-title="Espaciu vectorial" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%B8%E0%A6%A6%E0%A6%BF%E0%A6%95_%E0%A6%B0%E0%A6%BE%E0%A6%B6%E0%A6%BF%E0%A6%B0_%E0%A6%AC%E0%A7%80%E0%A6%9C%E0%A6%97%E0%A6%A3%E0%A6%BF%E0%A6%A4" title="সদিক রাশির বীজগণিত – Bangla" lang="bn" hreflang="bn" data-title="সদিক রাশির বীজগণিত" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/Hi%C3%B2ng-li%C5%8Dng_khong-kan" title="Hiòng-liōng khong-kan – Minnan" lang="nan" hreflang="nan" data-title="Hiòng-liōng khong-kan" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%BB%D1%8B_%D0%B0%D1%80%D0%B0%D1%83%D1%8B%D2%A1" title="Векторлы арауыҡ – Bashkir" lang="ba" hreflang="ba" data-title="Векторлы арауыҡ" data-language-autonym="Башҡортса" data-language-local-name="Bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%B0%D1%80%D0%BD%D0%B0%D1%8F_%D0%BF%D1%80%D0%B0%D1%81%D1%82%D0%BE%D1%80%D0%B0" title="Вектарная прастора – Belarusian" lang="be" hreflang="be" data-title="Вектарная прастора" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bh mw-list-item"><a href="https://bh.wikipedia.org/wiki/%E0%A4%B5%E0%A5%87%E0%A4%95%E0%A5%8D%E0%A4%9F%E0%A4%B0_%E0%A4%B8%E0%A5%8D%E0%A4%AA%E0%A5%87%E0%A4%B8" title="वेक्टर स्पेस – Bhojpuri" lang="bh" hreflang="bh" data-title="वेक्टर स्पेस" data-language-autonym="भोजपुरी" data-language-local-name="Bhojpuri" class="interlanguage-link-target"><span>भोजपुरी</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%BE_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE" title="Линейно пространство – Bulgarian" lang="bg" hreflang="bg" data-title="Линейно пространство" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Vektorski_prostor" title="Vektorski prostor – Bosnian" lang="bs" hreflang="bs" data-title="Vektorski prostor" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://ca.wikipedia.org/wiki/Espai_vectorial" title="Espai vectorial – Catalan" lang="ca" hreflang="ca" data-title="Espai vectorial" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%BB%D0%B0_%D1%83%C3%A7%D0%BB%C4%83%D1%85" title="Векторла уçлăх – Chuvash" lang="cv" hreflang="cv" data-title="Векторла уçлăх" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Vektorov%C3%BD_prostor" title="Vektorový prostor – Czech" lang="cs" hreflang="cs" data-title="Vektorový prostor" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Gofod_fector" title="Gofod fector – Welsh" lang="cy" hreflang="cy" data-title="Gofod fector" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Vektorrum" title="Vektorrum – Danish" lang="da" hreflang="da" data-title="Vektorrum" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Vektorraum" title="Vektorraum – German" lang="de" hreflang="de" data-title="Vektorraum" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Vektorruum" title="Vektorruum – Estonian" lang="et" hreflang="et" data-title="Vektorruum" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%94%CE%B9%CE%B1%CE%BD%CF%85%CF%83%CE%BC%CE%B1%CF%84%CE%B9%CE%BA%CF%8C%CF%82_%CF%87%CF%8E%CF%81%CE%BF%CF%82" title="Διανυσματικός χώρος – Greek" lang="el" hreflang="el" data-title="Διανυσματικός χώρος" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Espacio_vectorial" title="Espacio vectorial – Spanish" lang="es" hreflang="es" data-title="Espacio vectorial" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Vektora_spaco" title="Vektora spaco – Esperanto" lang="eo" hreflang="eo" data-title="Vektora spaco" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Bektore_espazio" title="Bektore espazio – Basque" lang="eu" hreflang="eu" data-title="Bektore espazio" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%81%D8%B6%D8%A7%DB%8C_%D8%A8%D8%B1%D8%AF%D8%A7%D8%B1%DB%8C" title="فضای برداری – Persian" lang="fa" hreflang="fa" data-title="فضای برداری" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Espace_vectoriel" title="Espace vectoriel – French" lang="fr" hreflang="fr" data-title="Espace vectoriel" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Sp%C3%A1s_veicteoireach" title="Spás veicteoireach – Irish" lang="ga" hreflang="ga" data-title="Spás veicteoireach" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Espazo_vectorial" title="Espazo vectorial – Galician" lang="gl" hreflang="gl" data-title="Espazo vectorial" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%B2%A1%ED%84%B0_%EA%B3%B5%EA%B0%84" title="벡터 공간 – Korean" lang="ko" hreflang="ko" data-title="벡터 공간" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%8E%D5%A5%D5%AF%D5%BF%D5%B8%D6%80%D5%A1%D5%AF%D5%A1%D5%B6_%D5%BF%D5%A1%D6%80%D5%A1%D5%AE%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6" title="Վեկտորական տարածություն – Armenian" lang="hy" hreflang="hy" data-title="Վեկտորական տարածություն" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B8%E0%A4%A6%E0%A4%BF%E0%A4%B6_%E0%A4%AC%E0%A5%80%E0%A4%9C%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4" title="सदिश बीजगणित – Hindi" lang="hi" hreflang="hi" data-title="सदिश बीजगणित" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Vektorski_prostor" title="Vektorski prostor – Croatian" lang="hr" hreflang="hr" data-title="Vektorski prostor" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Vektorala_spaco" title="Vektorala spaco – Ido" lang="io" hreflang="io" data-title="Vektorala spaco" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Ruang_vektor" title="Ruang vektor – Indonesian" lang="id" hreflang="id" data-title="Ruang vektor" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Spatio_vectorial" title="Spatio vectorial – Interlingua" lang="ia" hreflang="ia" data-title="Spatio vectorial" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Vigurr%C3%BAm" title="Vigurrúm – Icelandic" lang="is" hreflang="is" data-title="Vigurrúm" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Spazio_vettoriale" title="Spazio vettoriale – Italian" lang="it" hreflang="it" data-title="Spazio vettoriale" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A8%D7%97%D7%91_%D7%95%D7%A7%D7%98%D7%95%D7%A8%D7%99" title="מרחב וקטורי – Hebrew" lang="he" hreflang="he" data-title="מרחב וקטורי" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%B4%D1%83%D0%BA_%D0%BC%D0%B5%D0%B9%D0%BA%D0%B8%D0%BD%D0%B4%D0%B8%D0%BA" title="Вектордук мейкиндик – Kyrgyz" lang="ky" hreflang="ky" data-title="Вектордук мейкиндик" data-language-autonym="Кыргызча" data-language-local-name="Kyrgyz" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-lo mw-list-item"><a href="https://lo.wikipedia.org/wiki/%E0%BB%80%E0%BA%A7%E0%BA%B1%E0%BA%81%E0%BB%80%E0%BA%95%E0%BA%B5" title="ເວັກເຕີ – Lao" lang="lo" hreflang="lo" data-title="ເວັກເຕີ" data-language-autonym="ລາວ" data-language-local-name="Lao" class="interlanguage-link-target"><span>ລາວ</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Spatium_vectoriale" title="Spatium vectoriale – Latin" lang="la" hreflang="la" data-title="Spatium vectoriale" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Vektoru_telpa" title="Vektoru telpa – Latvian" lang="lv" hreflang="lv" data-title="Vektoru telpa" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Vektorin%C4%97_erdv%C4%97" title="Vektorinė erdvė – Lithuanian" lang="lt" hreflang="lt" data-title="Vektorinė erdvė" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Spazzi_vettorial" title="Spazzi vettorial – Lombard" lang="lmo" hreflang="lmo" data-title="Spazzi vettorial" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Vektort%C3%A9r" title="Vektortér – Hungarian" lang="hu" hreflang="hu" data-title="Vektortér" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D1%81%D0%BA%D0%B8_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D0%BE%D1%80" title="Векторски простор – Macedonian" lang="mk" hreflang="mk" data-title="Векторски простор" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%B8%E0%B4%A6%E0%B4%BF%E0%B4%B6%E0%B4%B8%E0%B4%AE%E0%B4%B7%E0%B5%8D%E0%B4%9F%E0%B4%BF" title="സദിശസമഷ്ടി – Malayalam" lang="ml" hreflang="ml" data-title="സദിശസമഷ്ടി" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Ruang_vektor" title="Ruang vektor – Malay" lang="ms" hreflang="ms" data-title="Ruang vektor" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Vectorruimte" title="Vectorruimte – Dutch" lang="nl" hreflang="nl" data-title="Vectorruimte" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%99%E3%82%AF%E3%83%88%E3%83%AB%E7%A9%BA%E9%96%93" title="ベクトル空間 – Japanese" lang="ja" hreflang="ja" data-title="ベクトル空間" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Vektorrom" title="Vektorrom – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Vektorrom" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Vektorrom" title="Vektorrom – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Vektorrom" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Espaci_vectoriau" title="Espaci vectoriau – Occitan" lang="oc" hreflang="oc" data-title="Espaci vectoriau" data-language-autonym="Occitan" data-language-local-name="Occitan" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B5%E0%A9%88%E0%A8%95%E0%A8%9F%E0%A8%B0_%E0%A8%B8%E0%A8%AA%E0%A9%87%E0%A8%B8" title="ਵੈਕਟਰ ਸਪੇਸ – Punjabi" lang="pa" hreflang="pa" data-title="ਵੈਕਟਰ ਸਪੇਸ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D9%88%DB%8C%DA%A9%D9%B9%D8%B1_%D8%B3%D9%BE%DB%8C%D8%B3" title="ویکٹر سپیس – Western Punjabi" lang="pnb" hreflang="pnb" data-title="ویکٹر سپیس" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Spassi_vetorial" title="Spassi vetorial – Piedmontese" lang="pms" hreflang="pms" data-title="Spassi vetorial" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Przestrze%C5%84_liniowa" title="Przestrzeń liniowa – Polish" lang="pl" hreflang="pl" data-title="Przestrzeń liniowa" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Espa%C3%A7o_vetorial" title="Espaço vetorial – Portuguese" lang="pt" hreflang="pt" data-title="Espaço vetorial" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://ro.wikipedia.org/wiki/Spa%C8%9Biu_vectorial" title="Spațiu vectorial – Romanian" lang="ro" hreflang="ro" data-title="Spațiu vectorial" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%BD%D0%BE%D0%B5_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE" title="Векторное пространство – Russian" lang="ru" hreflang="ru" data-title="Векторное пространство" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Hap%C3%ABsira_vektoriale" title="Hapësira vektoriale – Albanian" lang="sq" hreflang="sq" data-title="Hapësira vektoriale" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Spazziu_vitturiali" title="Spazziu vitturiali – Sicilian" lang="scn" hreflang="scn" data-title="Spazziu vitturiali" data-language-autonym="Sicilianu" data-language-local-name="Sicilian" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Vector_space" title="Vector space – Simple English" lang="en-simple" hreflang="en-simple" data-title="Vector space" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Vektorov%C3%BD_priestor" title="Vektorový priestor – Slovak" lang="sk" hreflang="sk" data-title="Vektorový priestor" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Vektorski_prostor" title="Vektorski prostor – Slovenian" lang="sl" hreflang="sl" data-title="Vektorski prostor" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%A8%DB%86%D8%B4%D8%A7%DB%8C%DB%8C%DB%8C_%D8%A6%D8%A7%DA%95%D8%A7%D8%B3%D8%AA%DB%95%D8%A8%DA%95%DB%95%DA%A9%D8%A7%D9%86" title="بۆشاییی ئاڕاستەبڕەکان – Central Kurdish" lang="ckb" hreflang="ckb" data-title="بۆشاییی ئاڕاستەبڕەکان" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D1%81%D0%BA%D0%B8_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D0%BE%D1%80" title="Векторски простор – Serbian" lang="sr" hreflang="sr" data-title="Векторски простор" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Vektorski_prostor" title="Vektorski prostor – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Vektorski prostor" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Vektoriavaruus" title="Vektoriavaruus – Finnish" lang="fi" hreflang="fi" data-title="Vektoriavaruus" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Linj%C3%A4rt_rum" title="Linjärt rum – Swedish" lang="sv" hreflang="sv" data-title="Linjärt rum" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Espasyong_bektor" title="Espasyong bektor – Tagalog" lang="tl" hreflang="tl" data-title="Espasyong bektor" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%A4%E0%AE%BF%E0%AE%9A%E0%AF%88%E0%AE%AF%E0%AE%A9%E0%AF%8D_%E0%AE%B5%E0%AF%86%E0%AE%B3%E0%AE%BF" title="திசையன் வெளி – Tamil" lang="ta" hreflang="ta" data-title="திசையன் வெளி" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Vekt%C3%B6r_uzay%C4%B1" title="Vektör uzayı – Turkish" lang="tr" hreflang="tr" data-title="Vektör uzayı" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%BD%D0%B8%D0%B9_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%96%D1%80" title="Векторний простір – Ukrainian" lang="uk" hreflang="uk" data-title="Векторний простір" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%B3%D9%85%D8%AA%DB%8C%DB%81_%D9%85%DA%A9%D8%A7%DA%BA" title="سمتیہ مکاں – Urdu" lang="ur" hreflang="ur" data-title="سمتیہ مکاں" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vec mw-list-item"><a href="https://vec.wikipedia.org/wiki/Spasio_vetorial" title="Spasio vetorial – Venetian" lang="vec" hreflang="vec" data-title="Spasio vetorial" data-language-autonym="Vèneto" data-language-local-name="Venetian" class="interlanguage-link-target"><span>Vèneto</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Kh%C3%B4ng_gian_vect%C6%A1" title="Không gian vectơ – Vietnamese" lang="vi" hreflang="vi" data-title="Không gian vectơ" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E7%9F%A2%E9%87%8F%E7%A9%BA%E9%96%93" title="矢量空間 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="矢量空間" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%90%91%E9%87%8F%E7%A9%BA%E9%97%B4" title="向量空间 – Wu" lang="wuu" hreflang="wuu" data-title="向量空间" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%90%91%E9%87%8F%E7%A9%BA%E9%96%93" title="向量空間 – Cantonese" lang="yue" hreflang="yue" data-title="向量空間" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%90%91%E9%87%8F%E7%A9%BA%E9%97%B4" title="向量空间 – Chinese" lang="zh" hreflang="zh" data-title="向量空间" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q125977#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Vector_space" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Vector_space" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Vector_space"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Vector_space&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Vector_space&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Vector_space"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Vector_space&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Vector_space&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Vector_space" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Vector_space" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Vector_space&amp;oldid=1269159351" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Vector_space&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Vector_space&amp;id=1269159351&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FVector_space"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FVector_space"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Vector_space&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Vector_space&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Vector_spaces" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikibooks mw-list-item"><a href="https://en.wikibooks.org/wiki/Linear_Algebra/Vector_Spaces" hreflang="en"><span>Wikibooks</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiversity mw-list-item"><a href="https://en.wikiversity.org/wiki/Vector_spaces" hreflang="en"><span>Wikiversity</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q125977" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-good-star" class="mw-indicator"><div class="mw-parser-output"><span typeof="mw:File"><a href="/wiki/Wikipedia:Good_articles*" title="This is a good article. Click here for more information."><img alt="This is a good article. Click here for more information." src="//upload.wikimedia.org/wikipedia/en/thumb/9/94/Symbol_support_vote.svg/19px-Symbol_support_vote.svg.png" decoding="async" width="19" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/94/Symbol_support_vote.svg/29px-Symbol_support_vote.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/94/Symbol_support_vote.svg/39px-Symbol_support_vote.svg.png 2x" data-file-width="180" data-file-height="185" /></a></span></div></div> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Algebraic structure in linear algebra</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Not to be confused with <a href="/wiki/Vector_field" title="Vector field">Vector field</a>.</div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">"Linear space" redirects here. For a structure in incidence geometry, see <a href="/wiki/Linear_space_(geometry)" title="Linear space (geometry)">Linear space (geometry)</a>.</div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Vector_add_scale.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Vector_add_scale.svg/200px-Vector_add_scale.svg.png" decoding="async" width="200" height="111" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Vector_add_scale.svg/300px-Vector_add_scale.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Vector_add_scale.svg/400px-Vector_add_scale.svg.png 2x" data-file-width="530" data-file-height="294" /></a><figcaption>Vector addition and scalar multiplication: a vector <span class="texhtml"><b>v</b></span> (blue) is added to another vector <span class="texhtml"> <b>w</b></span> (red, upper illustration). Below, <span class="texhtml"> <b>w</b></span> is stretched by a factor of 2, yielding the sum <span class="texhtml"><b>v</b> + 2<b>w</b></span>.</figcaption></figure> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a> and <a href="/wiki/Physics" title="Physics">physics</a>, a <b>vector space</b> (also called a <b>linear space</b>) is a <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> whose elements, often called <a href="/wiki/Vector_(mathematics_and_physics)" title="Vector (mathematics and physics)"><i>vectors</i></a>, can be added together and multiplied ("scaled") by numbers called <a href="/wiki/Scalar_(mathematics)" title="Scalar (mathematics)"><i>scalars</i></a>. The operations of vector addition and <a href="/wiki/Scalar_multiplication" title="Scalar multiplication">scalar multiplication</a> must satisfy certain requirements, called <i>vector <a href="/wiki/Axiom" title="Axiom">axioms</a></i>. <b>Real vector spaces</b> and <b>complex vector spaces</b> are kinds of vector spaces based on different kinds of scalars: <a href="/wiki/Real_numbers" class="mw-redirect" title="Real numbers">real numbers</a> and <a href="/wiki/Complex_numbers" class="mw-redirect" title="Complex numbers">complex numbers</a>. Scalars can also be, more generally, elements of any <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a>. </p><p>Vector spaces generalize <a href="/wiki/Euclidean_vector" title="Euclidean vector">Euclidean vectors</a>, which allow modeling of <a href="/wiki/Physical_quantity" title="Physical quantity">physical quantities</a> (such as <a href="/wiki/Force" title="Force">forces</a> and <a href="/wiki/Velocity" title="Velocity">velocity</a>) that have not only a <a href="/wiki/Magnitude_(mathematics)" title="Magnitude (mathematics)">magnitude</a>, but also a <a href="/wiki/Orientation_(geometry)" title="Orientation (geometry)">direction</a>. The concept of vector spaces is fundamental for <a href="/wiki/Linear_algebra" title="Linear algebra">linear algebra</a>, together with the concept of <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrices</a>, which allows computing in vector spaces. This provides a concise and synthetic way for manipulating and studying <a href="/wiki/Systems_of_linear_equations" class="mw-redirect" title="Systems of linear equations">systems of linear equations</a>. </p><p>Vector spaces are characterized by their <a href="/wiki/Dimension_(vector_space)" title="Dimension (vector space)">dimension</a>, which, roughly speaking, specifies the number of independent directions in the space. This means that, for two vector spaces over a given field and with the same dimension, the properties that depend only on the vector-space structure are exactly the same (technically the vector spaces are <a href="/wiki/Isomorphic" class="mw-redirect" title="Isomorphic">isomorphic</a>). A vector space is <i>finite-dimensional</i> if its dimension is a <a href="/wiki/Natural_number" title="Natural number">natural number</a>. Otherwise, it is <i>infinite-dimensional</i>, and its dimension is an <a href="/wiki/Transfinite_number" title="Transfinite number">infinite cardinal</a>. Finite-dimensional vector spaces occur naturally in <a href="/wiki/Geometry" title="Geometry">geometry</a> and related areas. Infinite-dimensional vector spaces occur in many areas of mathematics. For example, <a href="/wiki/Polynomial_ring" title="Polynomial ring">polynomial rings</a> are <a href="/wiki/Countably_infinite" class="mw-redirect" title="Countably infinite">countably</a> infinite-dimensional vector spaces, and many <a href="/wiki/Function_space" title="Function space">function spaces</a> have the <a href="/wiki/Cardinality_of_the_continuum" title="Cardinality of the continuum">cardinality of the continuum</a> as a dimension. </p><p>Many vector spaces that are considered in mathematics are also endowed with other <a href="/wiki/Mathematical_structure" title="Mathematical structure">structures</a>. This is the case of <a href="/wiki/Algebra_over_a_field" title="Algebra over a field">algebras</a>, which include <a href="/wiki/Field_extension" title="Field extension">field extensions</a>, polynomial rings, <a href="/wiki/Associative_algebra" title="Associative algebra">associative algebras</a> and <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebras</a>. This is also the case of <a href="/wiki/Topological_vector_space" title="Topological vector space">topological vector spaces</a>, which include function spaces, <a href="/wiki/Inner_product_space" title="Inner product space">inner product spaces</a>, <a href="/wiki/Normed_vector_space" title="Normed vector space">normed spaces</a>, <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert spaces</a> and <a href="/wiki/Banach_space" title="Banach space">Banach spaces</a>. </p> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><table class="sidebar sidebar-collapse nomobile nowraplinks plainlist"><tbody><tr><th class="sidebar-title" style="display:block;margin-bottom:0.35em;"><a href="/wiki/Algebraic_structure" title="Algebraic structure">Algebraic structures</a></th></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><a href="/wiki/Group_(mathematics)" title="Group (mathematics)">Group</a>-like</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Group_(mathematics)" title="Group (mathematics)">Group</a></li> <li><a href="/wiki/Semigroup" title="Semigroup">Semigroup</a>&#160;/&#32;<a href="/wiki/Monoid" title="Monoid">Monoid</a></li> <li><a href="/wiki/Racks_and_quandles" title="Racks and quandles">Rack and quandle</a></li> <li><a href="/wiki/Quasigroup" title="Quasigroup">Quasigroup and loop</a></li></ul> <div class="hlist"> <ul><li><a href="/wiki/Abelian_group" title="Abelian group">Abelian group</a></li> <li><a href="/wiki/Magma_(algebra)" title="Magma (algebra)">Magma</a></li> <li><a href="/wiki/Lie_group" title="Lie group">Lie group</a></li></ul> </div> <i><a href="/wiki/Group_theory" title="Group theory">Group theory</a></i></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">Ring</a>-like</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><div class="hlist"> <ul><li><a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">Ring</a></li> <li><a href="/wiki/Rng_(algebra)" title="Rng (algebra)">Rng</a></li> <li><a href="/wiki/Semiring" title="Semiring">Semiring</a></li> <li><a href="/wiki/Near-ring" title="Near-ring">Near-ring</a></li> <li><a href="/wiki/Commutative_ring" title="Commutative ring">Commutative ring</a></li> <li><a href="/wiki/Domain_(ring_theory)" title="Domain (ring theory)">Domain</a></li> <li><a href="/wiki/Integral_domain" title="Integral domain">Integral domain</a></li> <li><a href="/wiki/Field_(mathematics)" title="Field (mathematics)">Field</a></li> <li><a href="/wiki/Division_ring" title="Division ring">Division ring</a></li> <li><a href="/wiki/Lie_algebra#Lie_ring" title="Lie algebra">Lie ring</a></li></ul> </div> <i><a href="/wiki/Ring_theory" title="Ring theory">Ring theory</a></i></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><a href="/wiki/Lattice_(order)" title="Lattice (order)">Lattice</a>-like</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><div class="hlist"> <ul><li><a href="/wiki/Lattice_(order)" title="Lattice (order)">Lattice</a></li> <li><a href="/wiki/Semilattice" title="Semilattice">Semilattice</a></li> <li><a href="/wiki/Complemented_lattice" title="Complemented lattice">Complemented lattice</a></li> <li><a href="/wiki/Total_order" title="Total order">Total order</a></li> <li><a href="/wiki/Heyting_algebra" title="Heyting algebra">Heyting algebra</a></li> <li><a href="/wiki/Boolean_algebra_(structure)" title="Boolean algebra (structure)">Boolean algebra</a></li></ul> </div> <ul><li><a href="/wiki/Map_of_lattices" title="Map of lattices">Map of lattices</a></li> <li><i><a href="/wiki/Lattice_(order)" title="Lattice (order)">Lattice theory</a></i></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><a href="/wiki/Module_(mathematics)" title="Module (mathematics)">Module</a>-like</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><div class="hlist"> <ul><li><a href="/wiki/Module_(mathematics)" title="Module (mathematics)">Module</a></li> <li><a href="/wiki/Group_with_operators" title="Group with operators">Group with operators</a></li> <li><a class="mw-selflink selflink">Vector space</a></li></ul> </div> <ul><li><i><a href="/wiki/Linear_algebra" title="Linear algebra">Linear algebra</a></i></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><a href="/wiki/Algebra_over_a_field" title="Algebra over a field">Algebra</a>-like</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Algebra_over_a_field" title="Algebra over a field">Algebra</a></li></ul> <div class="hlist"> <ul><li><a href="/wiki/Associative_algebra" title="Associative algebra">Associative</a></li> <li><a href="/wiki/Non-associative_algebra" title="Non-associative algebra">Non-associative</a></li> <li><a href="/wiki/Composition_algebra" title="Composition algebra">Composition algebra</a></li> <li><a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a></li> <li><a href="/wiki/Graded_ring" title="Graded ring">Graded</a></li> <li><a href="/wiki/Bialgebra" title="Bialgebra">Bialgebra</a></li> <li><a href="/wiki/Hopf_algebra" title="Hopf algebra">Hopf algebra</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Algebraic_structures" title="Template:Algebraic structures"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Algebraic_structures" title="Template talk:Algebraic structures"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Algebraic_structures" title="Special:EditPage/Template:Algebraic structures"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition_and_basic_properties">Definition and basic properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=1" title="Edit section: Definition and basic properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In this article, vectors are represented in boldface to distinguish them from scalars.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>nb 1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTELang2002_2-0" class="reference"><a href="#cite_note-FOOTNOTELang2002-2"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>A vector space over a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> <span class="texhtml mvar" style="font-style:italic;">F</span> is a non-empty <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a>&#160;<span class="texhtml mvar" style="font-style:italic;">V</span> together with a <a href="/wiki/Binary_operation" title="Binary operation">binary operation</a> and a <a href="/wiki/Binary_function" title="Binary function">binary function</a> that satisfy the eight <a href="/wiki/Axiom" title="Axiom">axioms</a> listed below. In this context, the elements of <span class="texhtml mvar" style="font-style:italic;">V</span> are commonly called <i>vectors</i>, and the elements of&#160;<span class="texhtml mvar" style="font-style:italic;">F</span> are called <i>scalars</i>.<sup id="cite_ref-FOOTNOTEBrown199186_3-0" class="reference"><a href="#cite_note-FOOTNOTEBrown199186-3"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li>The binary operation, called <i>vector addition</i> or simply <i>addition</i> assigns to any two vectors&#160;<span class="texhtml"><b>v</b></span> and <span class="texhtml"><b>w</b></span> in <span class="texhtml mvar" style="font-style:italic;">V</span> a third vector in <span class="texhtml mvar" style="font-style:italic;">V</span> which is commonly written as <span class="texhtml"><b>v</b> + <b>w</b></span>, and called the <i>sum</i> of these two vectors.</li></ul> <ul><li>The binary function, called <i><a href="/wiki/Scalar_multiplication" title="Scalar multiplication">scalar multiplication</a></i>, assigns to any scalar&#160;<span class="texhtml mvar" style="font-style:italic;">a</span> in <span class="texhtml mvar" style="font-style:italic;">F</span> and any vector&#160;<span class="texhtml"><b>v</b></span> in <span class="texhtml mvar" style="font-style:italic;">V</span> another vector in <span class="texhtml mvar" style="font-style:italic;">V</span>, which is denoted&#160;<span class="texhtml"><i>a</i><b>v</b></span>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>nb 2<span class="cite-bracket">&#93;</span></a></sup></li></ul> <p>To have a vector space, the eight following <a href="/wiki/Axiom" title="Axiom">axioms</a> must be satisfied for every <span class="texhtml"><b>u</b></span>, <span class="texhtml"><b>v</b></span> and <span class="texhtml"><b>w</b></span> in <span class="texhtml mvar" style="font-style:italic;">V</span>, and <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">b</span> in <span class="texhtml mvar" style="font-style:italic;">F</span>.<sup id="cite_ref-FOOTNOTERoman2005ch._1,_p._27_5-0" class="reference"><a href="#cite_note-FOOTNOTERoman2005ch._1,_p._27-5"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <table border="0" class="wikitable" style="max-width:50em"> <tbody><tr> <th>Axiom </th> <th>Statement </th></tr> <tr> <td><a href="/wiki/Associativity" class="mw-redirect" title="Associativity">Associativity</a> of vector addition</td> <td><span class="texhtml"><b>u</b> + (<b>v</b> + <b>w</b>) = (<b>u</b> + <b>v</b>) + <b>w</b></span> </td></tr> <tr style="background:#F8F4FF;"> <td><a href="/wiki/Commutativity" class="mw-redirect" title="Commutativity">Commutativity</a> of vector addition</td> <td><span class="texhtml"><b>u</b> + <b>v</b> = <b>v</b> + <b>u</b></span> </td></tr> <tr> <td><a href="/wiki/Identity_element" title="Identity element">Identity element</a> of vector addition</td> <td>There exists an element <span class="texhtml"><b>0</b> ∈ <i>V</i></span>, called the <i><a href="/wiki/Zero_vector" class="mw-redirect" title="Zero vector">zero vector</a></i>, such that <span class="texhtml"><b>v</b> + <b>0</b> = <b>v</b></span> for all <span class="texhtml"><b>v</b> ∈ <i>V</i></span>. </td></tr> <tr style="background:#F8F4FF;"> <td><a href="/wiki/Inverse_element" title="Inverse element">Inverse elements</a> of vector addition</td> <td>For every <span class="texhtml"><b>v</b> ∈ <i>V</i></span>, there exists an element <span class="texhtml">−<b>v</b> ∈ <i>V</i></span>, called the <i><a href="/wiki/Additive_inverse" title="Additive inverse">additive inverse</a></i> of <span class="texhtml"><b>v</b></span>, such that <span class="texhtml"><b>v</b> + (−<b>v</b>) = <b>0</b></span>. </td></tr> <tr> <td>Compatibility of scalar multiplication with field multiplication</td> <td><span class="texhtml"><i>a</i>(<i>b</i><b>v</b>) = (<i>ab</i>)<b>v</b></span> <sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>nb 3<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr style="background:#F8F4FF;"> <td>Identity element of scalar multiplication</td> <td><span class="texhtml">1<b>v</b> = <b>v</b></span>, where <span class="texhtml">1</span> denotes the <a href="/wiki/Multiplicative_identity" class="mw-redirect" title="Multiplicative identity">multiplicative identity</a> in <span class="texhtml mvar" style="font-style:italic;">F</span>. </td></tr> <tr> <td><a href="/wiki/Distributivity" class="mw-redirect" title="Distributivity">Distributivity</a> of scalar multiplication with respect to vector addition&#8195;&#8195;</td> <td><span class="texhtml"><i>a</i>(<b>u</b> + <b>v</b>) = <i>a</i><b>u</b> + <i>a</i><b>v</b></span> </td></tr> <tr style="background:#F8F4FF;"> <td>Distributivity of scalar multiplication with respect to field addition</td> <td><span class="texhtml">(<i>a</i> + <i>b</i>)<b>v</b> = <i>a</i><b>v</b> + <i>b</i><b>v</b></span> </td></tr></tbody></table> <p>When the scalar field is the <a href="/wiki/Real_number" title="Real number">real numbers</a>, the vector space is called a <i>real vector space</i>, and when the scalar field is the <a href="/wiki/Complex_number" title="Complex number">complex numbers</a>, the vector space is called a <i>complex vector space</i>.<sup id="cite_ref-FOOTNOTEBrown199187_7-0" class="reference"><a href="#cite_note-FOOTNOTEBrown199187-7"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> These two cases are the most common ones, but vector spaces with scalars in an arbitrary field <span class="texhtml mvar" style="font-style:italic;">F</span> are also commonly considered. Such a vector space is called an <span class="nowrap"><span class="texhtml mvar" style="font-style:italic;">F</span>-</span><i>vector space</i> or a <i>vector space over <span class="texhtml mvar" style="font-style:italic;">F</span></i>.<sup id="cite_ref-FOOTNOTESpringer2000&#91;httpsbooksgooglecombooksidCes-AAAAQBAJpgPA185_185&#93;Brown199186_8-0" class="reference"><a href="#cite_note-FOOTNOTESpringer2000[httpsbooksgooglecombooksidCes-AAAAQBAJpgPA185_185]Brown199186-8"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>An equivalent definition of a vector space can be given, which is much more concise but less elementary: the first four axioms (related to vector addition) say that a vector space is an <a href="/wiki/Abelian_group" title="Abelian group">abelian group</a> under addition, and the four remaining axioms (related to the scalar multiplication) say that this operation defines a <a href="/wiki/Ring_homomorphism" title="Ring homomorphism">ring homomorphism</a> from the field <span class="texhtml"><i>F</i></span> into the <a href="/wiki/Endomorphism_ring" title="Endomorphism ring">endomorphism ring</a> of this group.<sup id="cite_ref-FOOTNOTEAtiyahMacdonald196917_9-0" class="reference"><a href="#cite_note-FOOTNOTEAtiyahMacdonald196917-9"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p>Subtraction of two vectors can be defined as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} -\mathbf {w} =\mathbf {v} +(-\mathbf {w} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} -\mathbf {w} =\mathbf {v} +(-\mathbf {w} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57d7e4e2d1ff332517fe5afbda913e8f33df1ada" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.728ex; height:2.843ex;" alt="{\displaystyle \mathbf {v} -\mathbf {w} =\mathbf {v} +(-\mathbf {w} ).}"></span> </p><p>Direct consequences of the axioms include that, for every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s\in F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s\in F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6fe9319682deb1cd7944bfec2a95227c49045ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.672ex; height:2.176ex;" alt="{\displaystyle s\in F}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} \in V,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <mi>V</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} \in V,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/794f60364056e7f3afbf6dbd23f17740438e1ef1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.686ex; height:2.509ex;" alt="{\displaystyle \mathbf {v} \in V,}"></span> one has </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\mathbf {v} =\mathbf {0} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\mathbf {v} =\mathbf {0} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ba3803fd77a3adfb4d6afeaabfd65d210bc0daf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.655ex; height:2.509ex;" alt="{\displaystyle 0\mathbf {v} =\mathbf {0} ,}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s\mathbf {0} =\mathbf {0} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s\mathbf {0} =\mathbf {0} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39449d1c7d13405130f3d34c1cfa1895f5dfbdcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.509ex; height:2.509ex;" alt="{\displaystyle s\mathbf {0} =\mathbf {0} ,}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-1)\mathbf {v} =-\mathbf {v} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-1)\mathbf {v} =-\mathbf {v} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcb25fcc46e503f132a6a6f2717f3b00b2bb9939" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.155ex; height:2.843ex;" alt="{\displaystyle (-1)\mathbf {v} =-\mathbf {v} ,}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s\mathbf {v} =\mathbf {0} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s\mathbf {v} =\mathbf {0} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87454385b059c0b19b950699c785eb3013514270" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.937ex; height:2.176ex;" alt="{\displaystyle s\mathbf {v} =\mathbf {0} }"></span> implies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7903b8069a44c70f6f96511675bdd9a4ff200ed7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.351ex; height:2.176ex;" alt="{\displaystyle s=0}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} =\mathbf {0} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} =\mathbf {0} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c78b3b71ce5ff4fed3781de611bd966408b90bc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.493ex; height:2.176ex;" alt="{\displaystyle \mathbf {v} =\mathbf {0} .}"></span></li></ul> <p>Even more concisely, a vector space is a <a href="/wiki/Module_(mathematics)" title="Module (mathematics)">module</a> over a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a>.<sup id="cite_ref-FOOTNOTEBourbaki1998§1.1,_Definition_2_10-0" class="reference"><a href="#cite_note-FOOTNOTEBourbaki1998§1.1,_Definition_2-10"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Bases,_vector_coordinates,_and_subspaces"><span id="Bases.2C_vector_coordinates.2C_and_subspaces"></span>Bases, vector coordinates, and subspaces</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=2" title="Edit section: Bases, vector coordinates, and subspaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Vector_components_and_base_change.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Vector_components_and_base_change.svg/200px-Vector_components_and_base_change.svg.png" decoding="async" width="200" height="197" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Vector_components_and_base_change.svg/300px-Vector_components_and_base_change.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Vector_components_and_base_change.svg/400px-Vector_components_and_base_change.svg.png 2x" data-file-width="244" data-file-height="240" /></a><figcaption>A vector <span class="texhtml"><b>v</b></span> in <span class="texhtml"><b>R</b><sup>2</sup></span> (blue) expressed in terms of different bases: using the <a href="/wiki/Standard_basis" title="Standard basis">standard basis</a> of <span class="texhtml"><b>R</b><sup>2</sup></span>: <span class="texhtml"><b>v</b> = <i>x</i><b>e</b><sub>1</sub> + <i>y</i><b>e</b><sub>2</sub></span> (black), and using a different, non-<a href="/wiki/Orthogonal_vector" class="mw-redirect" title="Orthogonal vector">orthogonal</a> basis: <span class="texhtml"><b>v</b> = <b>f</b><sub>1</sub> + <b>f</b><sub>2</sub></span> (red).</figcaption></figure> <dl><dt><a href="/wiki/Linear_combination" title="Linear combination">Linear combination</a></dt> <dd>Given a set <span class="texhtml mvar" style="font-style:italic;">G</span> of elements of a <span class="texhtml mvar" style="font-style:italic;">F</span>-vector space <span class="texhtml mvar" style="font-style:italic;">V</span>, a linear combination of elements of <span class="texhtml mvar" style="font-style:italic;">G</span> is an element of <span class="texhtml mvar" style="font-style:italic;">V</span> of the form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{1}\mathbf {g} _{1}+a_{2}\mathbf {g} _{2}+\cdots +a_{k}\mathbf {g} _{k},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{1}\mathbf {g} _{1}+a_{2}\mathbf {g} _{2}+\cdots +a_{k}\mathbf {g} _{k},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc4875d560ecf3338a56c7bf33c46cf1f80edec4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.985ex; height:2.509ex;" alt="{\displaystyle a_{1}\mathbf {g} _{1}+a_{2}\mathbf {g} _{2}+\cdots +a_{k}\mathbf {g} _{k},}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{1},\ldots ,a_{k}\in F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{1},\ldots ,a_{k}\in F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f66f5987b771668981dd85c7ada3ce3b3bea551" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.362ex; height:2.509ex;" alt="{\displaystyle a_{1},\ldots ,a_{k}\in F}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {g} _{1},\ldots ,\mathbf {g} _{k}\in G.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>G</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {g} _{1},\ldots ,\mathbf {g} _{k}\in G.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0817f411cb5afaaba86961d8b13e31b0a66d68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.309ex; height:2.676ex;" alt="{\displaystyle \mathbf {g} _{1},\ldots ,\mathbf {g} _{k}\in G.}"></span> The scalars <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{1},\ldots ,a_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{1},\ldots ,a_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe9c0425acf7d429b00d87e9a650d8f277dfe7b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.781ex; height:2.009ex;" alt="{\displaystyle a_{1},\ldots ,a_{k}}"></span> are called the <i>coefficients</i> of the linear combination.<sup id="cite_ref-FOOTNOTEBrown199194_11-0" class="reference"><a href="#cite_note-FOOTNOTEBrown199194-11"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup></dd> <dt><a href="/wiki/Linear_independence" title="Linear independence">Linear independence</a></dt> <dd>The elements of a subset <span class="texhtml mvar" style="font-style:italic;">G</span> of a <span class="texhtml mvar" style="font-style:italic;">F</span>-vector space <span class="texhtml mvar" style="font-style:italic;">V</span> are said to be <i>linearly independent</i> if no element of <span class="texhtml mvar" style="font-style:italic;">G</span> can be written as a linear combination of the other elements of <span class="texhtml mvar" style="font-style:italic;">G</span>. Equivalently, they are linearly independent if two linear combinations of elements of <span class="texhtml mvar" style="font-style:italic;">G</span> define the same element of <span class="texhtml mvar" style="font-style:italic;">V</span> if and only if they have the same coefficients. Also equivalently, they are linearly independent if a linear combination results in the zero vector if and only if all its coefficients are zero.<sup id="cite_ref-FOOTNOTEBrown199199–101_12-0" class="reference"><a href="#cite_note-FOOTNOTEBrown199199–101-12"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup></dd> <dt><a href="/wiki/Linear_subspace" title="Linear subspace">Linear subspace</a></dt> <dd>A <i>linear subspace</i> or <i>vector subspace</i> <span class="texhtml mvar" style="font-style:italic;">W</span> of a vector space <span class="texhtml mvar" style="font-style:italic;">V</span> is a non-empty subset of <span class="texhtml mvar" style="font-style:italic;">V</span> that is <a href="/wiki/Closure_(mathematics)" title="Closure (mathematics)">closed</a> under vector addition and scalar multiplication; that is, the sum of two elements of <span class="texhtml mvar" style="font-style:italic;">W</span> and the product of an element of <span class="texhtml mvar" style="font-style:italic;">W</span> by a scalar belong to <span class="texhtml mvar" style="font-style:italic;">W</span>.<sup id="cite_ref-FOOTNOTEBrown199192_13-0" class="reference"><a href="#cite_note-FOOTNOTEBrown199192-13"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> This implies that every linear combination of elements of <span class="texhtml mvar" style="font-style:italic;">W</span> belongs to <span class="texhtml mvar" style="font-style:italic;">W</span>. A linear subspace is a vector space for the induced addition and scalar multiplication; this means that the closure property implies that the axioms of a vector space are satisfied.<sup id="cite_ref-FOOTNOTEStollWong1968&#91;httpsbooksgooglecombooksidgLbiBQAAQBAJpgPA14_14&#93;_14-0" class="reference"><a href="#cite_note-FOOTNOTEStollWong1968[httpsbooksgooglecombooksidgLbiBQAAQBAJpgPA14_14]-14"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><br />The closure property also implies that <i>every <a href="/wiki/Intersection_(set_theory)" title="Intersection (set theory)">intersection</a> of linear subspaces is a linear subspace.</i><sup id="cite_ref-FOOTNOTEStollWong1968&#91;httpsbooksgooglecombooksidgLbiBQAAQBAJpgPA14_14&#93;_14-1" class="reference"><a href="#cite_note-FOOTNOTEStollWong1968[httpsbooksgooglecombooksidgLbiBQAAQBAJpgPA14_14]-14"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup></dd> <dt><a href="/wiki/Linear_span" title="Linear span">Linear span</a></dt> <dd>Given a subset <span class="texhtml mvar" style="font-style:italic;">G</span> of a vector space <span class="texhtml mvar" style="font-style:italic;">V</span>, the <i>linear span</i> or simply the <i>span</i> of <span class="texhtml mvar" style="font-style:italic;">G</span> is the smallest linear subspace of <span class="texhtml mvar" style="font-style:italic;">V</span> that contains <span class="texhtml mvar" style="font-style:italic;">G</span>, in the sense that it is the intersection of all linear subspaces that contain <span class="texhtml mvar" style="font-style:italic;">G</span>. The span of <span class="texhtml mvar" style="font-style:italic;">G</span> is also the set of all linear combinations of elements of <span class="texhtml mvar" style="font-style:italic;">G</span>.<br /> If <span class="texhtml mvar" style="font-style:italic;">W</span> is the span of <span class="texhtml mvar" style="font-style:italic;">G</span>, one says that <span class="texhtml mvar" style="font-style:italic;">G</span> <i>spans</i> or <i>generates</i> <span class="texhtml mvar" style="font-style:italic;">W</span>, and that <span class="texhtml mvar" style="font-style:italic;">G</span> is a <i><a href="/wiki/Spanning_set" class="mw-redirect" title="Spanning set">spanning set</a></i> or a <i>generating set</i> of <span class="texhtml mvar" style="font-style:italic;">W</span>.<sup id="cite_ref-FOOTNOTERoman200541–42_15-0" class="reference"><a href="#cite_note-FOOTNOTERoman200541–42-15"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup></dd> <dt><a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">Basis</a> and <a href="/wiki/Dimension_(vector_space)" title="Dimension (vector space)">dimension</a></dt> <dd>A subset of a vector space is a <i>basis</i> if its elements are linearly independent and span the vector space.<sup id="cite_ref-FOOTNOTELang198710–11AntonRorres2010&#91;httpsbooksgooglecombooksid1PJ-WHepeBsCpgPA212_212&#93;_16-0" class="reference"><a href="#cite_note-FOOTNOTELang198710–11AntonRorres2010[httpsbooksgooglecombooksid1PJ-WHepeBsCpgPA212_212]-16"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> Every vector space has at least one basis, or many in general (see <a href="/wiki/Basis_(linear_algebra)#Proof_that_every_vector_space_has_a_basis" title="Basis (linear algebra)">Basis (linear algebra) §&#160;Proof that every vector space has a basis</a>).<sup id="cite_ref-FOOTNOTEBlass1984_17-0" class="reference"><a href="#cite_note-FOOTNOTEBlass1984-17"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> Moreover, all bases of a vector space have the same <a href="/wiki/Cardinality" title="Cardinality">cardinality</a>, which is called the <i>dimension</i> of the vector space (see <a href="/wiki/Dimension_theorem_for_vector_spaces" title="Dimension theorem for vector spaces">Dimension theorem for vector spaces</a>).<sup id="cite_ref-FOOTNOTEJoshi1989&#91;httpsbooksgooglecombooksidRM1D3mFw2u0CpgPA450_450&#93;_18-0" class="reference"><a href="#cite_note-FOOTNOTEJoshi1989[httpsbooksgooglecombooksidRM1D3mFw2u0CpgPA450_450]-18"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> This is a fundamental property of vector spaces, which is detailed in the remainder of the section.</dd></dl> <p><span id="label1"><i>Bases</i></span> are a fundamental tool for the study of vector spaces, especially when the dimension is finite. In the infinite-dimensional case, the existence of infinite bases, often called <a href="/wiki/Hamel_bases" class="mw-redirect" title="Hamel bases">Hamel bases</a>, depends on the <a href="/wiki/Axiom_of_choice" title="Axiom of choice">axiom of choice</a>. It follows that, in general, no base can be explicitly described.<sup id="cite_ref-FOOTNOTEHeil2011&#91;httpsbooksgooglecombooksidprfuUT0Sw-ACpgPA126_126&#93;_19-0" class="reference"><a href="#cite_note-FOOTNOTEHeil2011[httpsbooksgooglecombooksidprfuUT0Sw-ACpgPA126_126]-19"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> For example, the <a href="/wiki/Real_number" title="Real number">real numbers</a> form an infinite-dimensional vector space over the <a href="/wiki/Rational_number" title="Rational number">rational numbers</a>, for which no specific basis is known. </p><p>Consider a basis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbf {b} _{1},\mathbf {b} _{2},\ldots ,\mathbf {b} _{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbf {b} _{1},\mathbf {b} _{2},\ldots ,\mathbf {b} _{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3f35afac8a96873cb899fbdc1dfa6663225581b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.804ex; height:2.843ex;" alt="{\displaystyle (\mathbf {b} _{1},\mathbf {b} _{2},\ldots ,\mathbf {b} _{n})}"></span> of a vector space <span class="texhtml mvar" style="font-style:italic;">V</span> of dimension <span class="texhtml mvar" style="font-style:italic;">n</span> over a field <span class="texhtml mvar" style="font-style:italic;">F</span>. The definition of a basis implies that every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} \in V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} \in V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aeb70f294c05e671203c3b21e7f5fb3d0b9a0ced" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.039ex; height:2.176ex;" alt="{\displaystyle \mathbf {v} \in V}"></span> may be written <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} =a_{1}\mathbf {b} _{1}+\cdots +a_{n}\mathbf {b} _{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} =a_{1}\mathbf {b} _{1}+\cdots +a_{n}\mathbf {b} _{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23433c59a98965eca86b8556cbbbbbb96ca989d4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:23.536ex; height:2.509ex;" alt="{\displaystyle \mathbf {v} =a_{1}\mathbf {b} _{1}+\cdots +a_{n}\mathbf {b} _{n},}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{1},\dots ,a_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{1},\dots ,a_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/852381be25b656d697c7a4a9634d3dc4c182d833" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.911ex; height:2.009ex;" alt="{\displaystyle a_{1},\dots ,a_{n}}"></span> in <span class="texhtml mvar" style="font-style:italic;">F</span>, and that this decomposition is unique. The scalars <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{1},\ldots ,a_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{1},\ldots ,a_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/451345cc97e2ed923dd4656fcc400c3f37119cca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.911ex; height:2.009ex;" alt="{\displaystyle a_{1},\ldots ,a_{n}}"></span> are called the <i>coordinates</i> of <span class="texhtml"><b>v</b></span> on the basis. They are also said to be the <i>coefficients</i> of the decomposition of <span class="texhtml"><b>v</b></span> on the basis. One also says that the <span class="texhtml mvar" style="font-style:italic;">n</span>-<a href="/wiki/Tuple" title="Tuple">tuple</a> of the coordinates is the <a href="/wiki/Coordinate_vector" title="Coordinate vector">coordinate vector</a> of <span class="texhtml"><b>v</b></span> on the basis, since the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/caeaf2cf3b94c8a21721478bcd52964068489df9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.033ex; height:2.343ex;" alt="{\displaystyle F^{n}}"></span> of the <span class="texhtml mvar" style="font-style:italic;">n</span>-tuples of elements of <span class="texhtml mvar" style="font-style:italic;">F</span> is a vector space for <a href="/wiki/Componentwise_operation" class="mw-redirect" title="Componentwise operation">componentwise</a> addition and scalar multiplication, whose dimension is <span class="texhtml mvar" style="font-style:italic;">n</span>. </p><p>The <a href="/wiki/One-to-one_correspondence" class="mw-redirect" title="One-to-one correspondence">one-to-one correspondence</a> between vectors and their coordinate vectors maps vector addition to vector addition and scalar multiplication to scalar multiplication. It is thus a <a href="/wiki/Vector_space_isomorphism" class="mw-redirect" title="Vector space isomorphism">vector space isomorphism</a>, which allows translating reasonings and computations on vectors into reasonings and computations on their coordinates.<sup id="cite_ref-FOOTNOTEHalmos1948&#91;httpsbooksgooglecombooksid1hzYCwAAQBAJpgPA12_12&#93;_20-0" class="reference"><a href="#cite_note-FOOTNOTEHalmos1948[httpsbooksgooglecombooksid1hzYCwAAQBAJpgPA12_12]-20"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=3" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Vector spaces stem from <a href="/wiki/Affine_geometry" title="Affine geometry">affine geometry</a>, via the introduction of <a href="/wiki/Coordinate" class="mw-redirect" title="Coordinate">coordinates</a> in the plane or three-dimensional space. Around 1636, French mathematicians <a href="/wiki/Ren%C3%A9_Descartes" title="René Descartes">René Descartes</a> and <a href="/wiki/Pierre_de_Fermat" title="Pierre de Fermat">Pierre de Fermat</a> founded <a href="/wiki/Analytic_geometry" title="Analytic geometry">analytic geometry</a> by identifying solutions to an equation of two variables with points on a plane <a href="/wiki/Curve" title="Curve">curve</a>.<sup id="cite_ref-FOOTNOTEBourbaki1969ch._&quot;Algèbre_linéaire_et_algèbre_multilinéaire&quot;,_pp._78–91_21-0" class="reference"><a href="#cite_note-FOOTNOTEBourbaki1969ch._&quot;Algèbre_linéaire_et_algèbre_multilinéaire&quot;,_pp._78–91-21"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> To achieve geometric solutions without using coordinates, <a href="/wiki/Bernhard_Bolzano" class="mw-redirect" title="Bernhard Bolzano">Bolzano</a> introduced, in 1804, certain operations on points, lines, and planes, which are predecessors of vectors.<sup id="cite_ref-FOOTNOTEBolzano1804_22-0" class="reference"><a href="#cite_note-FOOTNOTEBolzano1804-22"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> <a href="#CITEREFMöbius1827">Möbius (1827)</a> introduced the notion of <a href="/wiki/Barycentric_coordinates_(mathematics)" class="mw-redirect" title="Barycentric coordinates (mathematics)">barycentric coordinates</a>.<sup id="cite_ref-FOOTNOTEMöbius1827_23-0" class="reference"><a href="#cite_note-FOOTNOTEMöbius1827-23"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> <a href="#CITEREFBellavitis1833">Bellavitis (1833)</a> introduced an <a href="/wiki/Equivalence_relation" title="Equivalence relation">equivalence relation</a> on directed line segments that share the same length and direction which he called <a href="/wiki/Equipollence_(geometry)" title="Equipollence (geometry)">equipollence</a>.<sup id="cite_ref-FOOTNOTEBellavitis1833_24-0" class="reference"><a href="#cite_note-FOOTNOTEBellavitis1833-24"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> A <a href="/wiki/Euclidean_vector" title="Euclidean vector">Euclidean vector</a> is then an <a href="/wiki/Equivalence_class" title="Equivalence class">equivalence class</a> of that relation.<sup id="cite_ref-FOOTNOTEDorier1995_25-0" class="reference"><a href="#cite_note-FOOTNOTEDorier1995-25"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p><p>Vectors were reconsidered with the presentation of <a href="/wiki/Complex_numbers" class="mw-redirect" title="Complex numbers">complex numbers</a> by <a href="/wiki/Jean-Robert_Argand" title="Jean-Robert Argand">Argand</a> and <a href="/wiki/William_Rowan_Hamilton" title="William Rowan Hamilton">Hamilton</a> and the inception of <a href="/wiki/Quaternion" title="Quaternion">quaternions</a> by the latter.<sup id="cite_ref-FOOTNOTEHamilton1853_26-0" class="reference"><a href="#cite_note-FOOTNOTEHamilton1853-26"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> They are elements in <b>R</b><sup>2</sup> and <b>R</b><sup>4</sup>; treating them using <a href="/wiki/Linear_combination" title="Linear combination">linear combinations</a> goes back to <a href="/wiki/Laguerre" class="mw-redirect" title="Laguerre">Laguerre</a> in 1867, who also defined <a href="/wiki/System_of_linear_equations" title="System of linear equations">systems of linear equations</a>. </p><p>In 1857, <a href="/wiki/Arthur_Cayley" title="Arthur Cayley">Cayley</a> introduced the <a href="/wiki/Matrix_notation" class="mw-redirect" title="Matrix notation">matrix notation</a> which allows for harmonization and simplification of <a href="/wiki/Linear_map" title="Linear map">linear maps</a>. Around the same time, <a href="/wiki/Grassmann" class="mw-redirect" title="Grassmann">Grassmann</a> studied the barycentric calculus initiated by Möbius. He envisaged sets of abstract objects endowed with operations.<sup id="cite_ref-FOOTNOTEGrassmann2000_27-0" class="reference"><a href="#cite_note-FOOTNOTEGrassmann2000-27"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> In his work, the concepts of <a href="/wiki/Linear_independence" title="Linear independence">linear independence</a> and <a href="/wiki/Dimension" title="Dimension">dimension</a>, as well as <a href="/wiki/Scalar_product" class="mw-redirect" title="Scalar product">scalar products</a> are present. Grassmann's 1844 work exceeds the framework of vector spaces as well since his considering multiplication led him to what are today called <a href="/wiki/Algebras_over_a_field" class="mw-redirect" title="Algebras over a field">algebras</a>. Italian mathematician <a href="/wiki/Giuseppe_Peano" title="Giuseppe Peano">Peano</a> was the first to give the modern definition of vector spaces and linear maps in 1888,<sup id="cite_ref-FOOTNOTEPeano1888ch._IX_28-0" class="reference"><a href="#cite_note-FOOTNOTEPeano1888ch._IX-28"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> although he called them "linear systems".<sup id="cite_ref-FOOTNOTEGuo2021_29-0" class="reference"><a href="#cite_note-FOOTNOTEGuo2021-29"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> Peano's axiomatization allowed for vector spaces with infinite dimension, but Peano did not develop that theory further. In 1897, <a href="/wiki/Salvatore_Pincherle" title="Salvatore Pincherle">Salvatore Pincherle</a> adopted Peano's axioms and made initial inroads into the theory of infinite-dimensional vector spaces.<sup id="cite_ref-FOOTNOTEMoore1995268–271_30-0" class="reference"><a href="#cite_note-FOOTNOTEMoore1995268–271-30"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> </p><p>An important development of vector spaces is due to the construction of <a href="/wiki/Function_spaces" class="mw-redirect" title="Function spaces">function spaces</a> by <a href="/wiki/Henri_Lebesgue" title="Henri Lebesgue">Henri Lebesgue</a>. This was later formalized by <a href="/wiki/Stefan_Banach" title="Stefan Banach">Banach</a> and <a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert</a>, around 1920.<sup id="cite_ref-FOOTNOTEBanach1922_31-0" class="reference"><a href="#cite_note-FOOTNOTEBanach1922-31"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> At that time, <a href="/wiki/Algebra" title="Algebra">algebra</a> and the new field of <a href="/wiki/Functional_analysis" title="Functional analysis">functional analysis</a> began to interact, notably with key concepts such as <a href="/wiki/Lp_space" title="Lp space">spaces of <i>p</i>-integrable functions</a> and <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert spaces</a>.<sup id="cite_ref-FOOTNOTEDorier1995Moore1995_32-0" class="reference"><a href="#cite_note-FOOTNOTEDorier1995Moore1995-32"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Examples">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=4" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Examples_of_vector_spaces" title="Examples of vector spaces">Examples of vector spaces</a></div> <div class="mw-heading mw-heading3"><h3 id="Arrows_in_the_plane">Arrows in the plane</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=5" title="Edit section: Arrows in the plane"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1273380762/mw-parser-output/.tmulti">.mw-parser-output .tmulti .multiimageinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;text-align:center}.mw-parser-output .tmulti .tsingle .thumbcaption{text-align:left}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .tmulti .multiimageinner span:not(.skin-invert-image):not(.skin-invert):not(.bg-transparent) img{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .tmulti .multiimageinner span:not(.skin-invert-image):not(.skin-invert):not(.bg-transparent) img{background-color:white}}</style><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:192px;max-width:192px"><div class="trow"><div class="tsingle" style="width:190px;max-width:190px"><div class="thumbimage" style="height:77px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Vector_addition3.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e6/Vector_addition3.svg/188px-Vector_addition3.svg.png" decoding="async" width="188" height="77" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e6/Vector_addition3.svg/282px-Vector_addition3.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e6/Vector_addition3.svg/376px-Vector_addition3.svg.png 2x" data-file-width="190" data-file-height="78" /></a></span></div><div class="thumbcaption">Vector addition: the sum <span class="texhtml"><b>v</b> + <b>w</b></span> (black) of the vectors <span class="texhtml"><b>v</b></span> (blue) and <span class="texhtml"><b>w</b></span> (red) is shown.</div></div></div><div class="trow"><div class="tsingle" style="width:190px;max-width:190px"><div class="thumbimage" style="height:63px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Scalar_multiplication.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/50/Scalar_multiplication.svg/188px-Scalar_multiplication.svg.png" decoding="async" width="188" height="64" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/50/Scalar_multiplication.svg/282px-Scalar_multiplication.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/50/Scalar_multiplication.svg/376px-Scalar_multiplication.svg.png 2x" data-file-width="312" data-file-height="106" /></a></span></div><div class="thumbcaption">Scalar multiplication: the multiples <span class="texhtml">−<b>v</b></span> and <span class="texhtml">2<b>w</b></span> are shown.</div></div></div></div></div> <p>The first example of a vector space consists of <a href="/wiki/Arrow_(symbol)" title="Arrow (symbol)">arrows</a> in a fixed <a href="/wiki/Plane_(geometry)" class="mw-redirect" title="Plane (geometry)">plane</a>, starting at one fixed point. This is used in physics to describe <a href="/wiki/Force" title="Force">forces</a> or <a href="/wiki/Velocity" title="Velocity">velocities</a>.<sup id="cite_ref-FOOTNOTEKreyszig2020&#91;httpsbooksgooglecombooksidw4T3DwAAQBAJpgPA355_355&#93;_33-0" class="reference"><a href="#cite_note-FOOTNOTEKreyszig2020[httpsbooksgooglecombooksidw4T3DwAAQBAJpgPA355_355]-33"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> Given any two such arrows, <span class="texhtml"><b>v</b></span> and <span class="texhtml"><b>w</b></span>, the <a href="/wiki/Parallelogram" title="Parallelogram">parallelogram</a> spanned by these two arrows contains one diagonal arrow that starts at the origin, too. This new arrow is called the <i>sum</i> of the two arrows, and is denoted <span class="texhtml"><b>v</b> + <b>w</b></span>. In the special case of two arrows on the same line, their sum is the arrow on this line whose length is the sum or the difference of the lengths, depending on whether the arrows have the same direction. Another operation that can be done with arrows is scaling: given any positive <a href="/wiki/Real_number" title="Real number">real number</a> <span class="texhtml"><i>a</i></span>, the arrow that has the same direction as <span class="texhtml"><b>v</b></span>, but is dilated or shrunk by multiplying its length by <span class="texhtml"><i>a</i></span>, is called <i>multiplication</i> of <span class="texhtml"><b>v</b></span> by <span class="texhtml"><i>a</i></span>. It is denoted <span class="texhtml"><i>a</i><b>v</b></span>. When <span class="texhtml"><i>a</i></span> is negative, <span class="texhtml"><i>a</i><b>v</b></span> is defined as the arrow pointing in the opposite direction instead.<sup id="cite_ref-FOOTNOTEKreyszig2020&#91;httpsbooksgooglecombooksidw4T3DwAAQBAJpgPA358_358&amp;ndash;359&#93;_34-0" class="reference"><a href="#cite_note-FOOTNOTEKreyszig2020[httpsbooksgooglecombooksidw4T3DwAAQBAJpgPA358_358&amp;ndash;359]-34"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> </p><p>The following shows a few examples: if <span class="texhtml"><i>a</i> = 2</span>, the resulting vector <span class="texhtml"><i>a</i><b>w</b></span> has the same direction as <span class="texhtml"><b>w</b></span>, but is stretched to the double length of <span class="texhtml"><b>w</b></span> (the second image). Equivalently, <span class="texhtml">2<b>w</b></span> is the sum <span class="texhtml"><b>w</b> + <b>w</b></span>. Moreover, <span class="texhtml">(−1)<b>v</b> = −<b>v</b></span> has the opposite direction and the same length as <span class="texhtml"><b>v</b></span> (blue vector pointing down in the second image). </p> <div class="mw-heading mw-heading3"><h3 id="Ordered_pairs_of_numbers">Ordered pairs of numbers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=6" title="Edit section: Ordered pairs of numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A second key example of a vector space is provided by pairs of real numbers <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span>. The order of the components <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span> is significant, so such a pair is also called an <a href="/wiki/Ordered_pair" title="Ordered pair">ordered pair</a>. Such a pair is written as <span class="texhtml">(<i>x</i>, <i>y</i>)</span>. The sum of two such pairs and the multiplication of a pair with a number is defined as follows:<sup id="cite_ref-FOOTNOTEJain2001&#91;httpsbooksgooglecombooksid-lzAee3uQtICpgPA11_11&#93;_35-0" class="reference"><a href="#cite_note-FOOTNOTEJain2001[httpsbooksgooglecombooksid-lzAee3uQtICpgPA11_11]-35"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}(x_{1},y_{1})+(x_{2},y_{2})&amp;=(x_{1}+x_{2},y_{1}+y_{2}),\\a(x,y)&amp;=(ax,ay).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>a</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo>,</mo> <mi>a</mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}(x_{1},y_{1})+(x_{2},y_{2})&amp;=(x_{1}+x_{2},y_{1}+y_{2}),\\a(x,y)&amp;=(ax,ay).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b70e5ac60990df36550d2cc24b8d3004c608656" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:39.857ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}(x_{1},y_{1})+(x_{2},y_{2})&amp;=(x_{1}+x_{2},y_{1}+y_{2}),\\a(x,y)&amp;=(ax,ay).\end{aligned}}}"></span> </p><p>The first example above reduces to this example if an arrow is represented by a pair of <a href="/wiki/Cartesian_coordinates" class="mw-redirect" title="Cartesian coordinates">Cartesian coordinates</a> of its endpoint. </p> <div class="mw-heading mw-heading3"><h3 id="Coordinate_space">Coordinate space</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=7" title="Edit section: Coordinate space"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The simplest example of a vector space over a field <span class="texhtml"><i>F</i></span> is the field <span class="texhtml"><i>F</i></span> itself with its addition viewed as vector addition and its multiplication viewed as scalar multiplication. More generally, all <a href="/wiki/Tuple" title="Tuple"><span class="texhtml"><i>n</i></span>-tuples</a> (sequences of length <span class="texhtml"><i>n</i></span>) <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a_{1},a_{2},\dots ,a_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a_{1},a_{2},\dots ,a_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0301ea4e20db36959a961fefe4e3e38a667964d8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.038ex; height:2.843ex;" alt="{\displaystyle (a_{1},a_{2},\dots ,a_{n})}"></span> of elements <span class="texhtml"><i>a</i><sub><i>i</i></sub></span> of <span class="texhtml"><i>F</i></span> form a vector space that is usually denoted <span class="texhtml"><i>F</i><sup><i>n</i></sup></span> and called a <b>coordinate space</b>.<sup id="cite_ref-FOOTNOTELang1987ch._I.1_36-0" class="reference"><a href="#cite_note-FOOTNOTELang1987ch._I.1-36"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> The case <span class="texhtml"><i>n</i> = 1</span> is the above-mentioned simplest example, in which the field <span class="texhtml"><i>F</i></span> is also regarded as a vector space over itself. The case <span class="texhtml"><i>F</i> = <b>R</b></span> and <span class="texhtml"><i>n</i> = 2</span> (so <b>R</b><sup>2</sup>) reduces to the previous example. </p> <div class="mw-heading mw-heading3"><h3 id="Complex_numbers_and_other_field_extensions">Complex numbers and other field extensions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=8" title="Edit section: Complex numbers and other field extensions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The set of <a href="/wiki/Complex_numbers" class="mw-redirect" title="Complex numbers">complex numbers</a> <span class="texhtml"><b>C</b></span>, numbers that can be written in the form <span class="texhtml"><i>x</i> + <i>iy</i></span> for <a href="/wiki/Real_numbers" class="mw-redirect" title="Real numbers">real numbers</a> <span class="texhtml"><i>x</i></span> and <span class="texhtml"><i>y</i></span> where <span class="texhtml"><i>i</i></span> is the <a href="/wiki/Imaginary_unit" title="Imaginary unit">imaginary unit</a>, form a vector space over the reals with the usual addition and multiplication: <span class="texhtml">(<i>x</i> + <i>iy</i>) + (<i>a</i> + <i>ib</i>) = (<i>x</i> + <i>a</i>) + <i>i</i>(<i>y</i> + <i>b</i>)</span> and <span class="texhtml"><i>c</i> ⋅ (<i>x</i> + <i>iy</i>) = (<i>c</i> ⋅ <i>x</i>) + <i>i</i>(<i>c</i> ⋅ <i>y</i>)</span> for real numbers <span class="texhtml"><i>x</i></span>, <span class="texhtml"><i>y</i></span>, <span class="texhtml"><i>a</i></span>, <span class="texhtml"><i>b</i></span> and <span class="texhtml"><i>c</i></span>. The various axioms of a vector space follow from the fact that the same rules hold for complex number arithmetic. The example of complex numbers is essentially the same as (that is, it is <i>isomorphic</i> to) the vector space of ordered pairs of real numbers mentioned above: if we think of the complex number <span class="texhtml"><i>x</i> + <i>i</i> <i>y</i></span> as representing the ordered pair <span class="texhtml">(<i>x</i>, <i>y</i>)</span> in the <a href="/wiki/Complex_plane" title="Complex plane">complex plane</a> then we see that the rules for addition and scalar multiplication correspond exactly to those in the earlier example. </p><p>More generally, <a href="/wiki/Field_extension" title="Field extension">field extensions</a> provide another class of examples of vector spaces, particularly in algebra and <a href="/wiki/Algebraic_number_theory" title="Algebraic number theory">algebraic number theory</a>: a field <span class="texhtml"><i>F</i></span> containing a <a href="/wiki/Field_extension" title="Field extension">smaller field</a> <span class="texhtml"><i>E</i></span> is an <span class="texhtml"><i>E</i></span>-vector space, by the given multiplication and addition operations of <span class="texhtml"><i>F</i></span>.<sup id="cite_ref-FOOTNOTELang2002ch._V.1_37-0" class="reference"><a href="#cite_note-FOOTNOTELang2002ch._V.1-37"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> For example, the complex numbers are a vector space over <span class="texhtml"><b>R</b></span>, and the field extension <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {Q} (i{\sqrt {5}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Q</mi> </mrow> <mo stretchy="false">(</mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {Q} (i{\sqrt {5}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79cf13737fd8630f04a1028028c44e95b4729be0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.718ex; height:3.009ex;" alt="{\displaystyle \mathbf {Q} (i{\sqrt {5}})}"></span> is a vector space over <span class="texhtml"><b>Q</b></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Function_spaces">Function spaces</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=9" title="Edit section: Function spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Function_space" title="Function space">Function space</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Example_for_addition_of_functions.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d7/Example_for_addition_of_functions.svg/220px-Example_for_addition_of_functions.svg.png" decoding="async" width="220" height="166" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d7/Example_for_addition_of_functions.svg/330px-Example_for_addition_of_functions.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d7/Example_for_addition_of_functions.svg/440px-Example_for_addition_of_functions.svg.png 2x" data-file-width="487" data-file-height="367" /></a><figcaption>Addition of functions: the sum of the sine and the exponential function is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin +\exp :\mathbb {R} \to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>+</mo> <mi>exp</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin +\exp :\mathbb {R} \to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3afcecd5be8d1b1d1f1a990a4a5dac441daa9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.898ex; height:2.509ex;" alt="{\displaystyle \sin +\exp :\mathbb {R} \to \mathbb {R} }"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\sin +\exp )(x)=\sin(x)+\exp(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>sin</mi> <mo>+</mo> <mi>exp</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\sin +\exp )(x)=\sin(x)+\exp(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc39721fd4825bb41ad0bb72835e65db80e490f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.563ex; height:2.843ex;" alt="{\displaystyle (\sin +\exp )(x)=\sin(x)+\exp(x)}"></span>.</figcaption></figure> <p>Functions from any fixed set <span class="texhtml">Ω</span> to a field <span class="texhtml"><i>F</i></span> also form vector spaces, by performing addition and scalar multiplication pointwise. That is, the sum of two functions <span class="texhtml"><i>f</i></span> and <span class="texhtml"><i>g</i></span> is the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f+g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>+</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f+g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18ff99e669a82b98573d50cad35d6d2dc8402b5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.044ex; height:2.843ex;" alt="{\displaystyle (f+g)}"></span> given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f+g)(w)=f(w)+g(w),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>+</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>w</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>w</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>w</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f+g)(w)=f(w)+g(w),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bab026cce85931998fc137b8a02416c02260189" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.445ex; height:2.843ex;" alt="{\displaystyle (f+g)(w)=f(w)+g(w),}"></span> and similarly for multiplication. Such function spaces occur in many geometric situations, when <span class="texhtml">Ω</span> is the <a href="/wiki/Real_line" class="mw-redirect" title="Real line">real line</a> or an <a href="/wiki/Interval_(mathematics)" title="Interval (mathematics)">interval</a>, or other <a href="/wiki/Subset" title="Subset">subsets</a> of <span class="texhtml"><b>R</b></span>. Many notions in topology and analysis, such as <a href="/wiki/Continuous_function" title="Continuous function">continuity</a>, <a href="/wiki/Integral" title="Integral">integrability</a> or <a href="/wiki/Differentiability" class="mw-redirect" title="Differentiability">differentiability</a> are well-behaved with respect to linearity: sums and scalar multiples of functions possessing such a property still have that property.<sup id="cite_ref-FOOTNOTELang1993ch._XII.3.,_p._335_38-0" class="reference"><a href="#cite_note-FOOTNOTELang1993ch._XII.3.,_p._335-38"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> Therefore, the set of such functions are vector spaces, whose study belongs to <a href="/wiki/Functional_analysis" title="Functional analysis">functional analysis</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Linear_equations">Linear equations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=10" title="Edit section: Linear equations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Linear_equation" title="Linear equation">Linear equation</a>, <a href="/wiki/Linear_differential_equation" title="Linear differential equation">Linear differential equation</a>, and <a href="/wiki/Systems_of_linear_equations" class="mw-redirect" title="Systems of linear equations">Systems of linear equations</a></div> <p>Systems of <a href="/wiki/Homogeneous_linear_equation" class="mw-redirect" title="Homogeneous linear equation">homogeneous linear equations</a> are closely tied to vector spaces.<sup id="cite_ref-FOOTNOTELang1987ch._VI.3._39-0" class="reference"><a href="#cite_note-FOOTNOTELang1987ch._VI.3.-39"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> For example, the solutions of <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{9}&amp;&amp;a\,&amp;&amp;+\,3b\,&amp;\,+&amp;\,&amp;c&amp;\,=0\\4&amp;&amp;a\,&amp;&amp;+\,2b\,&amp;\,+&amp;\,2&amp;c&amp;\,=0\\\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd /> <mtd /> <mtd> <mi>a</mi> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mo>+</mo> <mspace width="thinmathspace" /> <mn>3</mn> <mi>b</mi> <mspace width="thinmathspace" /> </mtd> <mtd> <mi></mi> <mspace width="thinmathspace" /> <mo>+</mo> </mtd> <mtd> <mspace width="thinmathspace" /> </mtd> <mtd> <mi>c</mi> </mtd> <mtd> <mspace width="thinmathspace" /> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> <mtd /> <mtd> <mi>a</mi> <mspace width="thinmathspace" /> </mtd> <mtd /> <mtd> <mo>+</mo> <mspace width="thinmathspace" /> <mn>2</mn> <mi>b</mi> <mspace width="thinmathspace" /> </mtd> <mtd> <mi></mi> <mspace width="thinmathspace" /> <mo>+</mo> </mtd> <mtd> <mspace width="thinmathspace" /> <mn>2</mn> </mtd> <mtd> <mi>c</mi> </mtd> <mtd> <mspace width="thinmathspace" /> <mo>=</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{9}&amp;&amp;a\,&amp;&amp;+\,3b\,&amp;\,+&amp;\,&amp;c&amp;\,=0\\4&amp;&amp;a\,&amp;&amp;+\,2b\,&amp;\,+&amp;\,2&amp;c&amp;\,=0\\\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aebf9bf8985666ed710395bef8cb0f7ab540634" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:17.028ex; height:5.843ex;" alt="{\displaystyle {\begin{alignedat}{9}&amp;&amp;a\,&amp;&amp;+\,3b\,&amp;\,+&amp;\,&amp;c&amp;\,=0\\4&amp;&amp;a\,&amp;&amp;+\,2b\,&amp;\,+&amp;\,2&amp;c&amp;\,=0\\\end{alignedat}}}"></span> are given by triples with arbitrary <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f059f053fcf9f421b7c74362cf3bd5ed024e19d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.877ex; height:2.009ex;" alt="{\displaystyle a,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b=a/2,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>=</mo> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b=a/2,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b27f037b8e9aba144fb73ed74634611997b7bd4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.298ex; height:2.843ex;" alt="{\displaystyle b=a/2,}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=-5a/2.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>5</mn> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=-5a/2.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a0b11abd3d89d8d7ff42d1567e1e24459d14f79" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.277ex; height:2.843ex;" alt="{\displaystyle c=-5a/2.}"></span> They form a vector space: sums and scalar multiples of such triples still satisfy the same ratios of the three variables; thus they are solutions, too. <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">Matrices</a> can be used to condense multiple linear equations as above into one vector equation, namely </p> <div id="equation3"><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\mathbf {x} =\mathbf {0} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\mathbf {x} =\mathbf {0} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2febae9e52381255ec6072203b6bf65a0c5f611a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.236ex; height:2.509ex;" alt="{\displaystyle A\mathbf {x} =\mathbf {0} ,}"></span></div> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A={\begin{bmatrix}1&amp;3&amp;1\\4&amp;2&amp;2\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A={\begin{bmatrix}1&amp;3&amp;1\\4&amp;2&amp;2\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7540136866058593b6dc72b68d4bb0ca3ba8ddc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:16.181ex; height:6.176ex;" alt="{\displaystyle A={\begin{bmatrix}1&amp;3&amp;1\\4&amp;2&amp;2\end{bmatrix}}}"></span> is the matrix containing the coefficients of the given equations, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span> is the vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b,c),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b,c),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c052387768871591c5823a1c4ae9c057e95676d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.758ex; height:2.843ex;" alt="{\displaystyle (a,b,c),}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49d802e9b456b1476fcf3e6fd73b0bf266727c95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.154ex; height:2.176ex;" alt="{\displaystyle A\mathbf {x} }"></span> denotes the <a href="/wiki/Matrix_product" class="mw-redirect" title="Matrix product">matrix product</a>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {0} =(0,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {0} =(0,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/015934e10a84cfdabab9ec9b8647f6960dd37dcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.603ex; height:2.843ex;" alt="{\displaystyle \mathbf {0} =(0,0)}"></span> is the zero vector. In a similar vein, the solutions of homogeneous <i>linear differential equations</i> form vector spaces. For example, </p> <div id="equation1"><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{\prime \prime }(x)+2f^{\prime }(x)+f(x)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{\prime \prime }(x)+2f^{\prime }(x)+f(x)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6721f2ddd15edfaa7bfc741f6b3cf5cd7ca64407" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.263ex; height:3.009ex;" alt="{\displaystyle f^{\prime \prime }(x)+2f^{\prime }(x)+f(x)=0}"></span></div> <p>yields <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=ae^{-x}+bxe^{-x},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>x</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=ae^{-x}+bxe^{-x},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f878ee6a61dd1ed463a7553069f0cd028c1d52d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.629ex; height:3.009ex;" alt="{\displaystyle f(x)=ae^{-x}+bxe^{-x},}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> are arbitrary constants, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/841c0d168e64191c45a45e54c7e447defd17ec6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.256ex; height:2.343ex;" alt="{\displaystyle e^{x}}"></span> is the <a href="/wiki/Natural_exponential_function" class="mw-redirect" title="Natural exponential function">natural exponential function</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Linear_maps_and_matrices">Linear maps and matrices</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=11" title="Edit section: Linear maps and matrices"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Linear_map" title="Linear map">Linear map</a></div> <p>The relation of two vector spaces can be expressed by <i>linear map</i> or <i><a href="/wiki/Linear_transformation" class="mw-redirect" title="Linear transformation">linear transformation</a></i>. They are <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">functions</a> that reflect the vector space structure, that is, they preserve sums and scalar multiplication: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f(\mathbf {v} +\mathbf {w} )&amp;=f(\mathbf {v} )+f(\mathbf {w} ),\\f(a\cdot \mathbf {v} )&amp;=a\cdot f(\mathbf {v} )\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f(\mathbf {v} +\mathbf {w} )&amp;=f(\mathbf {v} )+f(\mathbf {w} ),\\f(a\cdot \mathbf {v} )&amp;=a\cdot f(\mathbf {v} )\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9681922d7136c6d4c62fa80cbe835e6565c091e7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:26.126ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}f(\mathbf {v} +\mathbf {w} )&amp;=f(\mathbf {v} )+f(\mathbf {w} ),\\f(a\cdot \mathbf {v} )&amp;=a\cdot f(\mathbf {v} )\end{aligned}}}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35c1866e359fbfd2e0f606c725ba5cc37a5195d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {w} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {w} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20795664b5b048744a2fd88977851104cc5816f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:1.676ex;" alt="{\displaystyle \mathbf {w} }"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ace9595e3ce66fdec7e9d30202626accd676b11e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.434ex; height:2.509ex;" alt="{\displaystyle V,}"></span> all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6b34655c2ef19b56c81af0e6d1f2f6df0d3ed33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.388ex; height:2.176ex;" alt="{\displaystyle F.}"></span><sup id="cite_ref-FOOTNOTERoman2005ch._2,_p._45_40-0" class="reference"><a href="#cite_note-FOOTNOTERoman2005ch._2,_p._45-40"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> </p><p>An <i><a href="/wiki/Isomorphism" title="Isomorphism">isomorphism</a></i> is a linear map <span class="texhtml"><i>f</i>&#160;: <i>V</i> → <i>W</i></span> such that there exists an <a href="/wiki/Inverse_map" class="mw-redirect" title="Inverse map">inverse map</a> <span class="texhtml"><i>g</i>&#160;: <i>W</i> → <i>V</i></span>, which is a map such that the two possible <a href="/wiki/Function_composition" title="Function composition">compositions</a> <span class="texhtml"><i>f</i> ∘ <i>g</i>&#160;: <i>W</i> → <i>W</i></span> and <span class="texhtml"><i>g</i> ∘ <i>f</i>&#160;: <i>V</i> → <i>V</i></span> are <a href="/wiki/Identity_function" title="Identity function">identity maps</a>. Equivalently, <span class="texhtml"><i>f</i></span> is both one-to-one (<a href="/wiki/Injective" class="mw-redirect" title="Injective">injective</a>) and onto (<a href="/wiki/Surjective" class="mw-redirect" title="Surjective">surjective</a>).<sup id="cite_ref-FOOTNOTELang1987ch._IV.4,_Corollary,_p._106_41-0" class="reference"><a href="#cite_note-FOOTNOTELang1987ch._IV.4,_Corollary,_p._106-41"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> If there exists an isomorphism between <span class="texhtml"><i>V</i></span> and <span class="texhtml"><i>W</i></span>, the two spaces are said to be <i>isomorphic</i>; they are then essentially identical as vector spaces, since all identities holding in <span class="texhtml"><i>V</i></span> are, via <span class="texhtml"><i>f</i></span>, transported to similar ones in <span class="texhtml"><i>W</i></span>, and vice versa via <span class="texhtml"><i>g</i></span>. </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Vector_components.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Vector_components.svg/180px-Vector_components.svg.png" decoding="async" width="180" height="141" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Vector_components.svg/270px-Vector_components.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Vector_components.svg/360px-Vector_components.svg.png 2x" data-file-width="196" data-file-height="154" /></a><figcaption>Describing an arrow vector <span class="texhtml"><b>v</b></span> by its coordinates <span class="texhtml"><i>x</i></span> and <span class="texhtml"><i>y</i></span> yields an isomorphism of vector spaces.</figcaption></figure> <p>For example, the arrows in the plane and the ordered pairs of numbers vector spaces in the introduction above (see <a href="#Examples">§&#160;Examples</a>) are isomorphic: a planar arrow <span class="texhtml"><b>v</b></span> departing at the <a href="/wiki/Origin_(mathematics)" title="Origin (mathematics)">origin</a> of some (fixed) <a href="/wiki/Coordinate_system" title="Coordinate system">coordinate system</a> can be expressed as an ordered pair by considering the <span class="texhtml"><i>x</i></span>- and <span class="texhtml"><i>y</i></span>-component of the arrow, as shown in the image at the right. Conversely, given a pair <span class="texhtml">(<i>x</i>, <i>y</i>)</span>, the arrow going by <span class="texhtml"><i>x</i></span> to the right (or to the left, if <span class="texhtml"><i>x</i></span> is negative), and <span class="texhtml"><i>y</i></span> up (down, if <span class="texhtml"><i>y</i></span> is negative) turns back the arrow <span class="texhtml"><b>v</b></span>.<sup id="cite_ref-FOOTNOTENicholson2018ch._7.3_42-0" class="reference"><a href="#cite_note-FOOTNOTENicholson2018ch._7.3-42"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> </p><p>Linear maps <span class="texhtml"><i>V</i> → <i>W</i></span> between two vector spaces form a vector space <span class="texhtml">Hom<sub><i>F</i></sub>(<i>V</i>, <i>W</i>)</span>, also denoted <span class="texhtml">L(<i>V</i>, <i>W</i>)</span>, or <span class="texhtml">𝓛(<i>V</i>, <i>W</i>)</span>.<sup id="cite_ref-FOOTNOTELang1987Example_IV.2.6_43-0" class="reference"><a href="#cite_note-FOOTNOTELang1987Example_IV.2.6-43"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> The space of linear maps from <span class="texhtml"><i>V</i></span> to <span class="texhtml"><i>F</i></span> is called the <i><a href="/wiki/Dual_vector_space" class="mw-redirect" title="Dual vector space">dual vector space</a></i>, denoted <span class="texhtml"><i>V</i><sup>∗</sup></span>.<sup id="cite_ref-FOOTNOTELang1987ch._VI.6_44-0" class="reference"><a href="#cite_note-FOOTNOTELang1987ch._VI.6-44"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> Via the injective <a href="/wiki/Natural_(category_theory)" class="mw-redirect" title="Natural (category theory)">natural</a> map <span class="texhtml"><i>V</i> → <i>V</i><sup>∗∗</sup></span>, any vector space can be embedded into its <i>bidual</i>; the map is an isomorphism if and only if the space is finite-dimensional.<sup id="cite_ref-FOOTNOTEHalmos1974p._28,_Ex._9_45-0" class="reference"><a href="#cite_note-FOOTNOTEHalmos1974p._28,_Ex._9-45"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> </p><p>Once a basis of <span class="texhtml"><i>V</i></span> is chosen, linear maps <span class="texhtml"><i>f</i>&#160;: <i>V</i> → <i>W</i></span> are completely determined by specifying the images of the basis vectors, because any element of <span class="texhtml"><i>V</i></span> is expressed uniquely as a linear combination of them.<sup id="cite_ref-FOOTNOTELang1987Theorem_IV.2.1,_p._95_46-0" class="reference"><a href="#cite_note-FOOTNOTELang1987Theorem_IV.2.1,_p._95-46"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> If <span class="texhtml">dim <i>V</i> = dim <i>W</i></span>, a <a href="/wiki/Bijection" title="Bijection">1-to-1 correspondence</a> between fixed bases of <span class="texhtml"><i>V</i></span> and <span class="texhtml"><i>W</i></span> gives rise to a linear map that maps any basis element of <span class="texhtml"><i>V</i></span> to the corresponding basis element of <span class="texhtml"><i>W</i></span>. It is an isomorphism, by its very definition.<sup id="cite_ref-FOOTNOTERoman2005Th._2.5_and_2.6,_p._49_47-0" class="reference"><a href="#cite_note-FOOTNOTERoman2005Th._2.5_and_2.6,_p._49-47"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> Therefore, two vector spaces over a given field are isomorphic if their dimensions agree and vice versa. Another way to express this is that any vector space over a given field is <i>completely classified</i> (<a href="/wiki/Up_to" title="Up to">up to</a> isomorphism) by its dimension, a single number. In particular, any <i>n</i>-dimensional <span class="texhtml"><i>F</i></span>-vector space <span class="texhtml"><i>V</i></span> is isomorphic to <span class="texhtml"><i>F</i><sup><i>n</i></sup></span>. However, there is no "canonical" or preferred isomorphism; an isomorphism <span class="texhtml"><i>φ</i>&#160;: <i>F</i><sup><i>n</i></sup> → <i>V</i></span> is equivalent to the choice of a basis of <span class="texhtml"><i>V</i></span>, by mapping the standard basis of <span class="texhtml"><i>F</i><sup><i>n</i></sup></span> to <span class="texhtml"><i>V</i></span>, via <span class="texhtml"><i>φ</i></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Matrices">Matrices</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=12" title="Edit section: Matrices"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">Matrix</a> and <a href="/wiki/Determinant" title="Determinant">Determinant</a></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Matrix.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bb/Matrix.svg/200px-Matrix.svg.png" decoding="async" width="200" height="169" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bb/Matrix.svg/300px-Matrix.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bb/Matrix.svg/400px-Matrix.svg.png 2x" data-file-width="224" data-file-height="189" /></a><figcaption>A typical matrix</figcaption></figure> <p><i>Matrices</i> are a useful notion to encode linear maps.<sup id="cite_ref-FOOTNOTELang1987ch._V.1_48-0" class="reference"><a href="#cite_note-FOOTNOTELang1987ch._V.1-48"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> They are written as a rectangular array of scalars as in the image at the right. Any <span class="texhtml"><i>m</i></span>-by-<span class="texhtml"><i>n</i></span> matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> gives rise to a linear map from <span class="texhtml"><i>F</i><sup><i>n</i></sup></span> to <span class="texhtml"><i>F</i><sup><i>m</i></sup></span>, by the following <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} =(x_{1},x_{2},\ldots ,x_{n})\mapsto \left(\sum _{j=1}^{n}a_{1j}x_{j},\sum _{j=1}^{n}a_{2j}x_{j},\ldots ,\sum _{j=1}^{n}a_{mj}x_{j}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mrow> <mo>(</mo> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>j</mi> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>,</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>j</mi> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} =(x_{1},x_{2},\ldots ,x_{n})\mapsto \left(\sum _{j=1}^{n}a_{1j}x_{j},\sum _{j=1}^{n}a_{2j}x_{j},\ldots ,\sum _{j=1}^{n}a_{mj}x_{j}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19c4e62a6ac16d4156d7fccadb5bf0346e1bf4a5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:61.838ex; height:7.676ex;" alt="{\displaystyle \mathbf {x} =(x_{1},x_{2},\ldots ,x_{n})\mapsto \left(\sum _{j=1}^{n}a_{1j}x_{j},\sum _{j=1}^{n}a_{2j}x_{j},\ldots ,\sum _{j=1}^{n}a_{mj}x_{j}\right),}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \sum }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x2211;<!-- ∑ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \sum }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e2b0b7618be940f4e8c0d27f05ab75fbc13e83c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.454ex; height:2.843ex;" alt="{\textstyle \sum }"></span> denotes <a href="/wiki/Summation" title="Summation">summation</a>, or by using the <a href="/wiki/Matrix_multiplication" title="Matrix multiplication">matrix multiplication</a> of the matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> with the coordinate vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span>: </p> <div id="equation2"><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} \mapsto A\mathbf {x} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} \mapsto A\mathbf {x} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc8e51a6109f62db762d60aa65e7fd6b0266b0fc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.826ex; height:2.176ex;" alt="{\displaystyle \mathbf {x} \mapsto A\mathbf {x} .}"></span></div> <p>Moreover, after choosing bases of <span class="texhtml"><i>V</i></span> and <span class="texhtml"><i>W</i></span>, <i>any</i> linear map <span class="texhtml"><i>f</i>&#160;: <i>V</i> → <i>W</i></span> is uniquely represented by a matrix via this assignment.<sup id="cite_ref-FOOTNOTELang1987ch._V.3.,_Corollary,_p._106_49-0" class="reference"><a href="#cite_note-FOOTNOTELang1987ch._V.3.,_Corollary,_p._106-49"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Determinant_parallelepiped.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Determinant_parallelepiped.svg/200px-Determinant_parallelepiped.svg.png" decoding="async" width="200" height="168" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Determinant_parallelepiped.svg/300px-Determinant_parallelepiped.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Determinant_parallelepiped.svg/400px-Determinant_parallelepiped.svg.png 2x" data-file-width="950" data-file-height="800" /></a><figcaption>The volume of this <a href="/wiki/Parallelepiped" title="Parallelepiped">parallelepiped</a> is the absolute value of the determinant of the 3-by-3 matrix formed by the vectors <span class="texhtml"><b>r</b><sub>1</sub></span>, <span class="texhtml"><b>r</b><sub>2</sub></span>, and <span class="texhtml"><b>r</b><sub>3</sub></span>.</figcaption></figure> <p>The <a href="/wiki/Determinant" title="Determinant">determinant</a> <span class="texhtml">det (<i>A</i>)</span> of a <a href="/wiki/Square_matrix" title="Square matrix">square matrix</a> <span class="texhtml"><i>A</i></span> is a scalar that tells whether the associated map is an isomorphism or not: to be so it is sufficient and necessary that the determinant is nonzero.<sup id="cite_ref-FOOTNOTELang1987Theorem_VII.9.8,_p._198_50-0" class="reference"><a href="#cite_note-FOOTNOTELang1987Theorem_VII.9.8,_p._198-50"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> The linear transformation of <span class="texhtml"><b>R</b><sup><i>n</i></sup></span> corresponding to a real <i>n</i>-by-<i>n</i> matrix is <a href="/wiki/Orientation_(vector_space)" title="Orientation (vector space)">orientation preserving</a> if and only if its determinant is positive. </p> <div class="mw-heading mw-heading3"><h3 id="Eigenvalues_and_eigenvectors">Eigenvalues and eigenvectors</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=13" title="Edit section: Eigenvalues and eigenvectors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Eigenvalues_and_eigenvectors" title="Eigenvalues and eigenvectors">Eigenvalues and eigenvectors</a></div> <p><a href="/wiki/Endomorphism" title="Endomorphism">Endomorphisms</a>, linear maps <span class="texhtml"><i>f</i>&#160;: <i>V</i> → <i>V</i></span>, are particularly important since in this case vectors <span class="texhtml"><b>v</b></span> can be compared with their image under <span class="texhtml"><i>f</i></span>, <span class="texhtml"><i>f</i>(<b>v</b>)</span>. Any nonzero vector <span class="texhtml"><b>v</b></span> satisfying <span class="texhtml"><i>λ</i><b>v</b> = <i>f</i>(<b>v</b>)</span>, where <span class="texhtml"><i>λ</i></span> is a scalar, is called an <i>eigenvector</i> of <span class="texhtml"><i>f</i></span> with <i>eigenvalue</i> <span class="texhtml"><i>λ</i></span>.<sup id="cite_ref-FOOTNOTERoman2005ch._8,_p._135–156_51-0" class="reference"><a href="#cite_note-FOOTNOTERoman2005ch._8,_p._135–156-51"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> Equivalently, <span class="texhtml"><b>v</b></span> is an element of the <a href="/wiki/Kernel_(linear_algebra)" title="Kernel (linear algebra)">kernel</a> of the difference <span class="texhtml"><i>f</i> − <i>λ</i> · Id</span> (where Id is the <a href="/wiki/Identity_function" title="Identity function">identity map</a> <span class="texhtml"><i>V</i> → <i>V</i>)</span>. If <span class="texhtml"><i>V</i></span> is finite-dimensional, this can be rephrased using determinants: <span class="texhtml"><i>f</i></span> having eigenvalue <span class="texhtml"><i>λ</i></span> is equivalent to <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det(f-\lambda \cdot \operatorname {Id} )=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>Id</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det(f-\lambda \cdot \operatorname {Id} )=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9d369d3a0465cb4b54b0f9c37f0e403e39daa31" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.232ex; height:2.843ex;" alt="{\displaystyle \det(f-\lambda \cdot \operatorname {Id} )=0.}"></span> By spelling out the definition of the determinant, the expression on the left hand side can be seen to be a polynomial function in <span class="texhtml"><i>λ</i></span>, called the <a href="/wiki/Characteristic_polynomial" title="Characteristic polynomial">characteristic polynomial</a> of <span class="texhtml"><i>f</i></span>.<sup id="cite_ref-FOOTNOTELang1987ch._IX.4_52-0" class="reference"><a href="#cite_note-FOOTNOTELang1987ch._IX.4-52"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> If the field <span class="texhtml"><i>F</i></span> is large enough to contain a zero of this polynomial (which automatically happens for <span class="texhtml"><i>F</i></span> <a href="/wiki/Algebraically_closed_field" title="Algebraically closed field">algebraically closed</a>, such as <span class="texhtml"><i>F</i> = <b>C</b></span>) any linear map has at least one eigenvector. The vector space <span class="texhtml"><i>V</i></span> may or may not possess an <a href="/wiki/Eigenbasis" class="mw-redirect" title="Eigenbasis">eigenbasis</a>, a basis consisting of eigenvectors. This phenomenon is governed by the <a href="/wiki/Jordan_canonical_form" class="mw-redirect" title="Jordan canonical form">Jordan canonical form</a> of the map.<sup id="cite_ref-FOOTNOTERoman2005ch._8,_p._140_53-0" class="reference"><a href="#cite_note-FOOTNOTERoman2005ch._8,_p._140-53"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> The set of all eigenvectors corresponding to a particular eigenvalue of <span class="texhtml"><i>f</i></span> forms a vector space known as the <i>eigenspace</i> corresponding to the eigenvalue (and <span class="texhtml"><i>f</i></span>) in question. </p> <div class="mw-heading mw-heading2"><h2 id="Basic_constructions">Basic constructions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=14" title="Edit section: Basic constructions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In addition to the above concrete examples, there are a number of standard linear algebraic constructions that yield vector spaces related to given ones. </p> <div class="mw-heading mw-heading3"><h3 id="Subspaces_and_quotient_spaces">Subspaces and quotient spaces</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=15" title="Edit section: Subspaces and quotient spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Linear_subspace" title="Linear subspace">Linear subspace</a> and <a href="/wiki/Quotient_vector_space" class="mw-redirect" title="Quotient vector space">Quotient vector space</a></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Linear_subspaces_with_shading.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Linear_subspaces_with_shading.svg/250px-Linear_subspaces_with_shading.svg.png" decoding="async" width="250" height="182" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Linear_subspaces_with_shading.svg/375px-Linear_subspaces_with_shading.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Linear_subspaces_with_shading.svg/500px-Linear_subspaces_with_shading.svg.png 2x" data-file-width="325" data-file-height="236" /></a><figcaption>A line passing through the <a href="/wiki/Origin_(mathematics)" title="Origin (mathematics)">origin</a> (blue, thick) in <span class="texhtml"><a href="/wiki/Euclidean_space" title="Euclidean space"><b>R</b><sup>3</sup></a></span> is a linear subspace. It is the intersection of two <a href="/wiki/Plane_(mathematics)" title="Plane (mathematics)">planes</a> (green and yellow).</figcaption></figure> <p>A nonempty <a href="/wiki/Subset" title="Subset">subset</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span> of a vector space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> that is closed under addition and scalar multiplication (and therefore contains the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {0} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {0} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62e8c650763635a93ddc69768c3c0c100afe985d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.337ex; height:2.176ex;" alt="{\displaystyle \mathbf {0} }"></span>-vector of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span>) is called a <i>linear subspace</i> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span>, or simply a <i>subspace</i> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span>, when the ambient space is unambiguously a vector space.<sup id="cite_ref-FOOTNOTERoman2005ch._1,_p._29_54-0" class="reference"><a href="#cite_note-FOOTNOTERoman2005ch._1,_p._29-54"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">&#91;</span>nb 4<span class="cite-bracket">&#93;</span></a></sup> Subspaces of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> are vector spaces (over the same field) in their own right. The intersection of all subspaces containing a given set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> of vectors is called its <a href="/wiki/Linear_span" title="Linear span">span</a>, and it is the smallest subspace of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> containing the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span>. Expressed in terms of elements, the span is the subspace consisting of all the <a href="/wiki/Linear_combination" title="Linear combination">linear combinations</a> of elements of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span>.<sup id="cite_ref-FOOTNOTERoman2005ch._1,_p._35_56-0" class="reference"><a href="#cite_note-FOOTNOTERoman2005ch._1,_p._35-56"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> </p><p><span class="anchor" id="vector_line"></span><span class="anchor" id="vector_plane"></span><span class="anchor" id="vector_hyperplane"></span>Linear subspace of dimension 1 and 2 are referred to as a <i>line</i> (also <i>vector line</i>), and a <i>plane</i> respectively. If <i>W</i> is an <i>n</i>-dimensional vector space, any subspace of dimension 1 less, i.e., of dimension <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbd0b0f32b28f51962943ee9ede4fb34198a2521" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.398ex; height:2.343ex;" alt="{\displaystyle n-1}"></span> is called a <i><a href="/wiki/Hyperplane" title="Hyperplane">hyperplane</a></i>.<sup id="cite_ref-FOOTNOTENicholson2018ch._10.4_57-0" class="reference"><a href="#cite_note-FOOTNOTENicholson2018ch._10.4-57"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> </p><p>The counterpart to subspaces are <i>quotient vector spaces</i>.<sup id="cite_ref-FOOTNOTERoman2005ch._3,_p._64_58-0" class="reference"><a href="#cite_note-FOOTNOTERoman2005ch._3,_p._64-58"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> Given any subspace <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W\subseteq V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W\subseteq V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7d05af9d62859741b09533bd82087feb0a9b298" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.321ex; height:2.343ex;" alt="{\displaystyle W\subseteq V}"></span>, the quotient space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V/W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V/W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74f0444abe38d7c9392ba2cfd13031b0f3d39cac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.385ex; height:2.843ex;" alt="{\displaystyle V/W}"></span> ("<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> <a href="/wiki/Modular_arithmetic" title="Modular arithmetic">modulo</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span>") is defined as follows: as a set, it consists of <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} +W=\{\mathbf {v} +\mathbf {w} :\mathbf {w} \in W\},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>+</mo> <mi>W</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <mi>W</mi> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} +W=\{\mathbf {v} +\mathbf {w} :\mathbf {w} \in W\},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f7a517f4b3041c24da6996b220fc1c86cc4f438" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.084ex; height:2.843ex;" alt="{\displaystyle \mathbf {v} +W=\{\mathbf {v} +\mathbf {w} :\mathbf {w} \in W\},}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35c1866e359fbfd2e0f606c725ba5cc37a5195d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} }"></span> is an arbitrary vector in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span>. The sum of two such elements <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{1}+W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} _{1}+W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afad24e3047dd467c6b0d71d1cb265a21dd14de8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.741ex; height:2.509ex;" alt="{\displaystyle \mathbf {v} _{1}+W}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{2}+W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} _{2}+W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d93a1952bd05dcb8f2c1bacc64785015b2d020f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.741ex; height:2.509ex;" alt="{\displaystyle \mathbf {v} _{2}+W}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\mathbf {v} _{1}+\mathbf {v} _{2}\right)+W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(\mathbf {v} _{1}+\mathbf {v} _{2}\right)+W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f01b2554e57d9cab67b748eb44ed44b90fdd1216" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.856ex; height:2.843ex;" alt="{\displaystyle \left(\mathbf {v} _{1}+\mathbf {v} _{2}\right)+W}"></span>, and scalar multiplication is given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\cdot (\mathbf {v} +W)=(a\cdot \mathbf {v} )+W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>+</mo> <mi>W</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\cdot (\mathbf {v} +W)=(a\cdot \mathbf {v} )+W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e97c4a5f8414686cc85e025dde11d1c10f70e4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.908ex; height:2.843ex;" alt="{\displaystyle a\cdot (\mathbf {v} +W)=(a\cdot \mathbf {v} )+W}"></span>. The key point in this definition is that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{1}+W=\mathbf {v} _{2}+W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>W</mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} _{1}+W=\mathbf {v} _{2}+W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4ba99b77b0d83e0af1328f84336e84d0d18b21f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.58ex; height:2.509ex;" alt="{\displaystyle \mathbf {v} _{1}+W=\mathbf {v} _{2}+W}"></span> <a href="/wiki/If_and_only_if" title="If and only if">if and only if</a> the difference of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/282458bb19c231f94697405bddd93af04a34cabe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.465ex; height:2.009ex;" alt="{\displaystyle \mathbf {v} _{1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/498720fbe6f897f2b86d2cf0f37498d682932aa0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.465ex; height:2.009ex;" alt="{\displaystyle \mathbf {v} _{2}}"></span> lies in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span>.<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">&#91;</span>nb 5<span class="cite-bracket">&#93;</span></a></sup> This way, the quotient space "forgets" information that is contained in the subspace <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span>. </p><p>The <a href="/wiki/Kernel_(algebra)" title="Kernel (algebra)">kernel</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ker(f)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ker</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ker(f)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39d2eca3185b45d4462e15bf85bd4ad36e32062d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.259ex; height:2.843ex;" alt="{\displaystyle \ker(f)}"></span> of a linear map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:V\to W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>V</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:V\to W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/574dffa1c85efaef6b6ef553ebd8ad9cf7f87fd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.052ex; height:2.509ex;" alt="{\displaystyle f:V\to W}"></span> consists of vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35c1866e359fbfd2e0f606c725ba5cc37a5195d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} }"></span> that are mapped to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {0} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {0} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62e8c650763635a93ddc69768c3c0c100afe985d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.337ex; height:2.176ex;" alt="{\displaystyle \mathbf {0} }"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span>.<sup id="cite_ref-FOOTNOTELang1987ch._IV.3._60-0" class="reference"><a href="#cite_note-FOOTNOTELang1987ch._IV.3.-60"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> The kernel and the <a href="/wiki/Image_(mathematics)" title="Image (mathematics)">image</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {im} (f)=\{f(\mathbf {v} ):\mathbf {v} \in V\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>im</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo stretchy="false">)</mo> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <mi>V</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {im} (f)=\{f(\mathbf {v} ):\mathbf {v} \in V\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53c17f1082d2ffdee338c8250f2f88011407b458" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.569ex; height:2.843ex;" alt="{\displaystyle \operatorname {im} (f)=\{f(\mathbf {v} ):\mathbf {v} \in V\}}"></span> are subspaces of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span>, respectively.<sup id="cite_ref-FOOTNOTERoman2005ch._2,_p._48_61-0" class="reference"><a href="#cite_note-FOOTNOTERoman2005ch._2,_p._48-61"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> </p><p>An important example is the kernel of a linear map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} \mapsto A\mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} \mapsto A\mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae5a1063a4f66331d643d57acd21b22bc77d009d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.179ex; height:2.176ex;" alt="{\displaystyle \mathbf {x} \mapsto A\mathbf {x} }"></span> for some fixed matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>. The kernel of this map is the subspace of vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\mathbf {x} =\mathbf {0} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\mathbf {x} =\mathbf {0} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f51dab2d10f98cebc72b24960edf3e14e06c1e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.589ex; height:2.176ex;" alt="{\displaystyle A\mathbf {x} =\mathbf {0} }"></span>, which is precisely the set of solutions to the system of homogeneous linear equations belonging to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>. This concept also extends to linear differential equations <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{0}f+a_{1}{\frac {df}{dx}}+a_{2}{\frac {d^{2}f}{dx^{2}}}+\cdots +a_{n}{\frac {d^{n}f}{dx^{n}}}=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>f</mi> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{0}f+a_{1}{\frac {df}{dx}}+a_{2}{\frac {d^{2}f}{dx^{2}}}+\cdots +a_{n}{\frac {d^{n}f}{dx^{n}}}=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8237f82c63139d443a99b7a3873373a25953760b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:41.989ex; height:6.009ex;" alt="{\displaystyle a_{0}f+a_{1}{\frac {df}{dx}}+a_{2}{\frac {d^{2}f}{dx^{2}}}+\cdots +a_{n}{\frac {d^{n}f}{dx^{n}}}=0,}"></span> where the coefficients <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0bc77764b2e74e64a63341054fa90f3e07db275f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.029ex; height:2.009ex;" alt="{\displaystyle a_{i}}"></span> are functions in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/feff4d40084c7351bf57b11ba2427f6331f5bdbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.977ex; height:2.009ex;" alt="{\displaystyle x,}"></span> too. In the corresponding map <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\mapsto D(f)=\sum _{i=0}^{n}a_{i}{\frac {d^{i}f}{dx^{i}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>D</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\mapsto D(f)=\sum _{i=0}^{n}a_{i}{\frac {d^{i}f}{dx^{i}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64f7f29f1c6a4d5e8fae8d8a7ff8520bb864c29b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:23.603ex; height:6.843ex;" alt="{\displaystyle f\mapsto D(f)=\sum _{i=0}^{n}a_{i}{\frac {d^{i}f}{dx^{i}}},}"></span> the <a href="/wiki/Derivative" title="Derivative">derivatives</a> of the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> appear linearly (as opposed to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{\prime \prime }(x)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{\prime \prime }(x)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad191043d35e0e30f217b0cc79b27754309cc0a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.651ex; height:3.176ex;" alt="{\displaystyle f^{\prime \prime }(x)^{2}}"></span>, for example). Since differentiation is a linear procedure (that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f+g)^{\prime }=f^{\prime }+g^{\prime }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>+</mo> <mi>g</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>+</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f+g)^{\prime }=f^{\prime }+g^{\prime }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6bd3fffda890ce19fcbf3ebbf5adffc29aaeb51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.476ex; height:3.009ex;" alt="{\displaystyle (f+g)^{\prime }=f^{\prime }+g^{\prime }}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (c\cdot f)^{\prime }=c\cdot f^{\prime }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>c</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>f</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mi>c</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (c\cdot f)^{\prime }=c\cdot f^{\prime }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8aa02e2100aa5a1ab0d2273325f9cdd04763106" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.248ex; height:3.009ex;" alt="{\displaystyle (c\cdot f)^{\prime }=c\cdot f^{\prime }}"></span> for a constant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span>) this assignment is linear, called a <a href="/wiki/Linear_differential_operator" class="mw-redirect" title="Linear differential operator">linear differential operator</a>. In particular, the solutions to the differential equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D(f)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D(f)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed5e2fc2c1dc63439f0f204f447fe79bf4d6bdde" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.273ex; height:2.843ex;" alt="{\displaystyle D(f)=0}"></span> form a vector space (over <span class="texhtml"><b>R</b></span> or <span class="texhtml"><b>C</b></span>).<sup id="cite_ref-FOOTNOTENicholson2018ch._7.4_62-0" class="reference"><a href="#cite_note-FOOTNOTENicholson2018ch._7.4-62"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup> </p><p>The existence of kernels and images is part of the statement that the <a href="/wiki/Category_of_vector_spaces" class="mw-redirect" title="Category of vector spaces">category of vector spaces</a> (over a fixed field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span>) is an <a href="/wiki/Abelian_category" title="Abelian category">abelian category</a>, that is, a corpus of mathematical objects and structure-preserving maps between them (a <a href="/wiki/Category_(mathematics)" title="Category (mathematics)">category</a>) that behaves much like the <a href="/wiki/Category_of_abelian_groups" title="Category of abelian groups">category of abelian groups</a>.<sup id="cite_ref-FOOTNOTEMac_Lane1998_63-0" class="reference"><a href="#cite_note-FOOTNOTEMac_Lane1998-63"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup> Because of this, many statements such as the <a href="/wiki/First_isomorphism_theorem" class="mw-redirect" title="First isomorphism theorem">first isomorphism theorem</a> (also called <a href="/wiki/Rank%E2%80%93nullity_theorem" title="Rank–nullity theorem">rank–nullity theorem</a> in matrix-related terms) <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V/\ker(f)\;\equiv \;\operatorname {im} (f)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>ker</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> <mo>&#x2261;<!-- ≡ --></mo> <mspace width="thickmathspace" /> <mi>im</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V/\ker(f)\;\equiv \;\operatorname {im} (f)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e1ede3953889f91ee4386a3a6ccbc25f2a209e1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.656ex; height:2.843ex;" alt="{\displaystyle V/\ker(f)\;\equiv \;\operatorname {im} (f)}"></span> and the second and third isomorphism theorem can be formulated and proven in a way very similar to the corresponding statements for <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">groups</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Direct_product_and_direct_sum">Direct product and direct sum</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=16" title="Edit section: Direct product and direct sum"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Direct_product" title="Direct product">Direct product</a> and <a href="/wiki/Direct_sum_of_modules" title="Direct sum of modules">Direct sum of modules</a></div> <p>The <i>direct product</i> of vector spaces and the <i>direct sum</i> of vector spaces are two ways of combining an indexed family of vector spaces into a new vector space. </p><p>The <i>direct product</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle {\prod _{i\in I}V_{i}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <munder> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mrow> </munder> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle {\prod _{i\in I}V_{i}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b7276b7a71c0022b5221c0a2a891548b1b01159" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.46ex; height:3.009ex;" alt="{\displaystyle \textstyle {\prod _{i\in I}V_{i}}}"></span> of a family of vector spaces <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f300b83673e961a9d48f3862216b167f94e5668c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.155ex; height:2.509ex;" alt="{\displaystyle V_{i}}"></span> consists of the set of all tuples <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\mathbf {v} _{i}\right)_{i\in I}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo>(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(\mathbf {v} _{i}\right)_{i\in I}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51b0c3b6453355a143a01f1222f310c7bb4dd9d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.744ex; height:3.009ex;" alt="{\displaystyle \left(\mathbf {v} _{i}\right)_{i\in I}}"></span>, which specify for each index <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> in some <a href="/wiki/Index_set" title="Index set">index set</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> an element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51747274b58895dd357bb270ba1b5cb71e4fa355" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.211ex; height:2.009ex;" alt="{\displaystyle \mathbf {v} _{i}}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f300b83673e961a9d48f3862216b167f94e5668c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.155ex; height:2.509ex;" alt="{\displaystyle V_{i}}"></span>.<sup id="cite_ref-FOOTNOTERoman2005ch._1,_pp._31–32_64-0" class="reference"><a href="#cite_note-FOOTNOTERoman2005ch._1,_pp._31–32-64"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup> Addition and scalar multiplication is performed componentwise. A variant of this construction is the <i>direct sum</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \bigoplus _{i\in I}V_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo>&#x2A01;<!-- ⨁ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mrow> </munder> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \bigoplus _{i\in I}V_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/792fd905a6c6c21b7e00e81a0b785840edc59b2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.848ex; height:3.009ex;" alt="{\textstyle \bigoplus _{i\in I}V_{i}}"></span> (also called <a href="/wiki/Coproduct" title="Coproduct">coproduct</a> and denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \coprod _{i\in I}V_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo>&#x2210;<!-- ∐ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mrow> </munder> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \coprod _{i\in I}V_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddf46cb4bf90baee84164db1246e0018346c2df8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.46ex; height:3.009ex;" alt="{\textstyle \coprod _{i\in I}V_{i}}"></span>), where only tuples with finitely many nonzero vectors are allowed. If the index set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> is finite, the two constructions agree, but in general they are different. </p> <div class="mw-heading mw-heading3"><h3 id="Tensor_product">Tensor product</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=17" title="Edit section: Tensor product"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Tensor_product_of_vector_spaces" class="mw-redirect" title="Tensor product of vector spaces">Tensor product of vector spaces</a></div> <p>The <i>tensor product</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V\otimes _{F}W,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <msub> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>F</mi> </mrow> </msub> <mi>W</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V\otimes _{F}W,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94bed517f45b4e6ecfe0df9a3862d5c895be220a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.173ex; height:2.509ex;" alt="{\displaystyle V\otimes _{F}W,}"></span> or simply <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V\otimes W,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>W</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V\otimes W,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c573e8e21370a278ec3c8f0225c1f970fe583eec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.71ex; height:2.509ex;" alt="{\displaystyle V\otimes W,}"></span> of two vector spaces <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span> is one of the central notions of <a href="/wiki/Multilinear_algebra" title="Multilinear algebra">multilinear algebra</a> which deals with extending notions such as linear maps to several variables. A map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g:V\times W\to X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>:</mo> <mi>V</mi> <mo>&#x00D7;<!-- × --></mo> <mi>W</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g:V\times W\to X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/573030f61b9c05c1a6d6f421c3a6aaf9dffe8f34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.71ex; height:2.509ex;" alt="{\displaystyle g:V\times W\to X}"></span> from the <a href="/wiki/Cartesian_product" title="Cartesian product">Cartesian product</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V\times W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>&#x00D7;<!-- × --></mo> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V\times W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b9b65a794c51f2c6b0396c9d01d3bbe48f54fa4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.063ex; height:2.176ex;" alt="{\displaystyle V\times W}"></span> is called <a href="/wiki/Bilinear_map" title="Bilinear map">bilinear</a> if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> is linear in both variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35c1866e359fbfd2e0f606c725ba5cc37a5195d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {w} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {w} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eaf8a103f40a7fbdb19c7e667d92541b26cae840" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.578ex; height:1.676ex;" alt="{\displaystyle \mathbf {w} .}"></span> That is to say, for fixed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {w} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {w} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20795664b5b048744a2fd88977851104cc5816f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:1.676ex;" alt="{\displaystyle \mathbf {w} }"></span> the map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} \mapsto g(\mathbf {v} ,\mathbf {w} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} \mapsto g(\mathbf {v} ,\mathbf {w} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0161f16d0b376773ad41a63192e7f768e921b0f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.326ex; height:2.843ex;" alt="{\displaystyle \mathbf {v} \mapsto g(\mathbf {v} ,\mathbf {w} )}"></span> is linear in the sense above and likewise for fixed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/403a39746fb7416e8917e81d974df3d75b710131" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.058ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} .}"></span> </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Universal_tensor_prod.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Universal_tensor_prod.svg/200px-Universal_tensor_prod.svg.png" decoding="async" width="200" height="115" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Universal_tensor_prod.svg/300px-Universal_tensor_prod.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Universal_tensor_prod.svg/400px-Universal_tensor_prod.svg.png 2x" data-file-width="248" data-file-height="142" /></a><figcaption><a href="/wiki/Commutative_diagram" title="Commutative diagram">Commutative diagram</a> depicting the universal property of the tensor product</figcaption></figure> <p>The tensor product is a particular vector space that is a <i>universal</i> recipient of bilinear maps <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81f2986cd965e404a1ee33ec84baee5c43da47fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.763ex; height:2.009ex;" alt="{\displaystyle g,}"></span> as follows. It is defined as the vector space consisting of finite (formal) sums of symbols called <a href="/wiki/Tensor" title="Tensor">tensors</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{1}\otimes \mathbf {w} _{1}+\mathbf {v} _{2}\otimes \mathbf {w} _{2}+\cdots +\mathbf {v} _{n}\otimes \mathbf {w} _{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} _{1}\otimes \mathbf {w} _{1}+\mathbf {v} _{2}\otimes \mathbf {w} _{2}+\cdots +\mathbf {v} _{n}\otimes \mathbf {w} _{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e928ff3fc8739d57c876a0596c0c69d51f5043f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:37.093ex; height:2.343ex;" alt="{\displaystyle \mathbf {v} _{1}\otimes \mathbf {w} _{1}+\mathbf {v} _{2}\otimes \mathbf {w} _{2}+\cdots +\mathbf {v} _{n}\otimes \mathbf {w} _{n},}"></span> subject to the rules<sup id="cite_ref-FOOTNOTELang2002ch._XVI.1_65-0" class="reference"><a href="#cite_note-FOOTNOTELang2002ch._XVI.1-65"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{6}a\cdot (\mathbf {v} \otimes \mathbf {w} )~&amp;=~(a\cdot \mathbf {v} )\otimes \mathbf {w} ~=~\mathbf {v} \otimes (a\cdot \mathbf {w} ),&amp;&amp;~~{\text{ where }}a{\text{ is a scalar}}\\(\mathbf {v} _{1}+\mathbf {v} _{2})\otimes \mathbf {w} ~&amp;=~\mathbf {v} _{1}\otimes \mathbf {w} +\mathbf {v} _{2}\otimes \mathbf {w} &amp;&amp;\\\mathbf {v} \otimes (\mathbf {w} _{1}+\mathbf {w} _{2})~&amp;=~\mathbf {v} \otimes \mathbf {w} _{1}+\mathbf {v} \otimes \mathbf {w} _{2}.&amp;&amp;\\\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mtd> <mtd> <mi></mi> <mo>=</mo> <mtext>&#xA0;</mtext> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mtext>&#xA0;</mtext> <mo>=</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x2297;<!-- ⊗ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> <mtd /> <mtd> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;where&#xA0;</mtext> </mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;is a scalar</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mtext>&#xA0;</mtext> </mtd> <mtd> <mi></mi> <mo>=</mo> <mtext>&#xA0;</mtext> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> </mtd> <mtd /> <mtd /> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x2297;<!-- ⊗ --></mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mtd> <mtd> <mi></mi> <mo>=</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>.</mo> </mtd> <mtd /> <mtd /> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{6}a\cdot (\mathbf {v} \otimes \mathbf {w} )~&amp;=~(a\cdot \mathbf {v} )\otimes \mathbf {w} ~=~\mathbf {v} \otimes (a\cdot \mathbf {w} ),&amp;&amp;~~{\text{ where }}a{\text{ is a scalar}}\\(\mathbf {v} _{1}+\mathbf {v} _{2})\otimes \mathbf {w} ~&amp;=~\mathbf {v} _{1}\otimes \mathbf {w} +\mathbf {v} _{2}\otimes \mathbf {w} &amp;&amp;\\\mathbf {v} \otimes (\mathbf {w} _{1}+\mathbf {w} _{2})~&amp;=~\mathbf {v} \otimes \mathbf {w} _{1}+\mathbf {v} \otimes \mathbf {w} _{2}.&amp;&amp;\\\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e663ae7296449dad89523a3d8fe5f2902fcf31c1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:66.39ex; height:9.176ex;" alt="{\displaystyle {\begin{alignedat}{6}a\cdot (\mathbf {v} \otimes \mathbf {w} )~&amp;=~(a\cdot \mathbf {v} )\otimes \mathbf {w} ~=~\mathbf {v} \otimes (a\cdot \mathbf {w} ),&amp;&amp;~~{\text{ where }}a{\text{ is a scalar}}\\(\mathbf {v} _{1}+\mathbf {v} _{2})\otimes \mathbf {w} ~&amp;=~\mathbf {v} _{1}\otimes \mathbf {w} +\mathbf {v} _{2}\otimes \mathbf {w} &amp;&amp;\\\mathbf {v} \otimes (\mathbf {w} _{1}+\mathbf {w} _{2})~&amp;=~\mathbf {v} \otimes \mathbf {w} _{1}+\mathbf {v} \otimes \mathbf {w} _{2}.&amp;&amp;\\\end{alignedat}}}"></span> These rules ensure that the map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> from the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V\times W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>&#x00D7;<!-- × --></mo> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V\times W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b9b65a794c51f2c6b0396c9d01d3bbe48f54fa4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.063ex; height:2.176ex;" alt="{\displaystyle V\times W}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V\otimes W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V\otimes W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0d8e48e05a95d9c68f80f49e3d509ba9de064c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.063ex; height:2.343ex;" alt="{\displaystyle V\otimes W}"></span> that maps a <a href="/wiki/Tuple" title="Tuple">tuple</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbf {v} ,\mathbf {w} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbf {v} ,\mathbf {w} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5cbbf33643a4bc2da3a392eb0af42e1b519afcc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.185ex; height:2.843ex;" alt="{\displaystyle (\mathbf {v} ,\mathbf {w} )}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} \otimes \mathbf {w} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} \otimes \mathbf {w} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b446f6a0aada1823198d4442ec0a7244b9ae255" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.183ex; height:2.176ex;" alt="{\displaystyle \mathbf {v} \otimes \mathbf {w} }"></span> is bilinear. The universality states that given <i>any</i> vector space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and <i>any</i> bilinear map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g:V\times W\to X,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>:</mo> <mi>V</mi> <mo>&#x00D7;<!-- × --></mo> <mi>W</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>X</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g:V\times W\to X,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1024452187992063c0bc54fceeed52a1ce9f37ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.357ex; height:2.509ex;" alt="{\displaystyle g:V\times W\to X,}"></span> there exists a unique map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30dcc93e14b40416ed2d1391bc6c08ee99fa5ff6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.977ex; height:2.009ex;" alt="{\displaystyle u,}"></span> shown in the diagram with a dotted arrow, whose <a href="/wiki/Function_composition" title="Function composition">composition</a> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> equals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g:}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>:</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g:}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68215c5fb5297aa27b47386a65b30831e4584b80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.408ex; height:2.009ex;" alt="{\displaystyle g:}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u(\mathbf {v} \otimes \mathbf {w} )=g(\mathbf {v} ,\mathbf {w} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u(\mathbf {v} \otimes \mathbf {w} )=g(\mathbf {v} ,\mathbf {w} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df7c0da737ebb45048abdcfa507abb0cd22c729a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.368ex; height:2.843ex;" alt="{\displaystyle u(\mathbf {v} \otimes \mathbf {w} )=g(\mathbf {v} ,\mathbf {w} ).}"></span><sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> This is called the <a href="/wiki/Universal_property" title="Universal property">universal property</a> of the tensor product, an instance of the method—much used in advanced abstract algebra—to indirectly define objects by specifying maps from or to this object. </p> <div class="mw-heading mw-heading2"><h2 id="Vector_spaces_with_additional_structure">Vector spaces with additional structure</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=18" title="Edit section: Vector spaces with additional structure"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>From the point of view of linear algebra, vector spaces are completely understood insofar as any vector space over a given field is characterized, up to isomorphism, by its dimension. However, vector spaces <i>per se</i> do not offer a framework to deal with the question—crucial to analysis—whether a sequence of functions <a href="/wiki/Limit_of_a_sequence" title="Limit of a sequence">converges</a> to another function. Likewise, linear algebra is not adapted to deal with <a href="/wiki/Infinite_series" class="mw-redirect" title="Infinite series">infinite series</a>, since the addition operation allows only finitely many terms to be added. <span id="labelFunctionalAnalysis">Therefore, the needs of <a href="/wiki/Functional_analysis" title="Functional analysis">functional analysis</a> require considering additional structures.</span><sup id="cite_ref-FOOTNOTERudin1991p.3_67-0" class="reference"><a href="#cite_note-FOOTNOTERudin1991p.3-67"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> </p><p>A vector space may be given a <a href="/wiki/Partial_order" class="mw-redirect" title="Partial order">partial order</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,\leq ,\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x2264;<!-- ≤ --></mo> <mo>,</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,\leq ,\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5b5304f5dfd5b1b91c2c52b32a03fc82b7f4a0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.229ex; height:2.343ex;" alt="{\displaystyle \,\leq ,\,}"></span> under which some vectors can be compared.<sup id="cite_ref-FOOTNOTESchaeferWolff1999pp._204–205_68-0" class="reference"><a href="#cite_note-FOOTNOTESchaeferWolff1999pp._204–205-68"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup> For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensional real space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ed657d7f0d7aa156e7b9b171f22b4a3aa6482c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.222ex; height:2.343ex;" alt="{\displaystyle \mathbf {R} ^{n}}"></span> can be ordered by comparing its vectors componentwise. <a href="/wiki/Ordered_vector_space" title="Ordered vector space">Ordered vector spaces</a>, for example <a href="/wiki/Riesz_space" title="Riesz space">Riesz spaces</a>, are fundamental to <a href="/wiki/Lebesgue_integration" class="mw-redirect" title="Lebesgue integration">Lebesgue integration</a>, which relies on the ability to express a function as a difference of two positive functions <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=f^{+}-f^{-}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=f^{+}-f^{-}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/784d56e3b9cbfaaae5e1cc982983f8eb91f56761" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.527ex; height:2.843ex;" alt="{\displaystyle f=f^{+}-f^{-}.}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1287ce7b0d53ec4a6c26a4c31f5a8f747be9ba98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.831ex; height:2.843ex;" alt="{\displaystyle f^{+}}"></span> denotes the positive part of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86c160282cc6444329bc1a54ab6e1f6c6530c594" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.831ex; height:2.843ex;" alt="{\displaystyle f^{-}}"></span> the negative part.<sup id="cite_ref-FOOTNOTEBourbaki2004ch._2,_p._48_69-0" class="reference"><a href="#cite_note-FOOTNOTEBourbaki2004ch._2,_p._48-69"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Normed_vector_spaces_and_inner_product_spaces">Normed vector spaces and inner product spaces</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=19" title="Edit section: Normed vector spaces and inner product spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Normed_vector_space" title="Normed vector space">Normed vector space</a> and <a href="/wiki/Inner_product_space" title="Inner product space">Inner product space</a></div> <p>"Measuring" vectors is done by specifying a <a href="/wiki/Norm_(mathematics)" title="Norm (mathematics)">norm</a>, a datum which measures lengths of vectors, or by an <a href="/wiki/Inner_product" class="mw-redirect" title="Inner product">inner product</a>, which measures angles between vectors. Norms and inner products are denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\mathbf {v} |}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\mathbf {v} |}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16a779e65de92152d395f5576ce1001c8e56d7f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.705ex; height:2.843ex;" alt="{\displaystyle |\mathbf {v} |}"></span> and <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \mathbf {v} ,\mathbf {w} \rangle ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \mathbf {v} ,\mathbf {w} \rangle ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4346bdf1bd9b9613acc20abb4389b6ac1d260f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.832ex; height:2.843ex;" alt="{\displaystyle \langle \mathbf {v} ,\mathbf {w} \rangle ,}"></span></span> respectively. The datum of an inner product entails that lengths of vectors can be defined too, by defining the associated norm <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle |\mathbf {v} |:={\sqrt {\langle \mathbf {v} ,\mathbf {v} \rangle }}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle |\mathbf {v} |:={\sqrt {\langle \mathbf {v} ,\mathbf {v} \rangle }}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77f614a517b5cbf88c3375b1430f049c87aec79e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.086ex; height:3.343ex;" alt="{\textstyle |\mathbf {v} |:={\sqrt {\langle \mathbf {v} ,\mathbf {v} \rangle }}.}"></span></span> Vector spaces endowed with such data are known as <i>normed vector spaces</i> and <i>inner product spaces</i>, respectively.<sup id="cite_ref-FOOTNOTERoman2005ch._9_70-0" class="reference"><a href="#cite_note-FOOTNOTERoman2005ch._9-70"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup> </p><p>Coordinate space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/caeaf2cf3b94c8a21721478bcd52964068489df9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.033ex; height:2.343ex;" alt="{\displaystyle F^{n}}"></span> can be equipped with the standard <a href="/wiki/Dot_product" title="Dot product">dot product</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \mathbf {x} ,\mathbf {y} \rangle =\mathbf {x} \cdot \mathbf {y} =x_{1}y_{1}+\cdots +x_{n}y_{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \mathbf {x} ,\mathbf {y} \rangle =\mathbf {x} \cdot \mathbf {y} =x_{1}y_{1}+\cdots +x_{n}y_{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94ccff40a4dd85b183730657b9874e0de84ad2cc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.897ex; height:2.843ex;" alt="{\displaystyle \langle \mathbf {x} ,\mathbf {y} \rangle =\mathbf {x} \cdot \mathbf {y} =x_{1}y_{1}+\cdots +x_{n}y_{n}.}"></span> In <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} ^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {R} ^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec417570cf838238bb2d86c60d2cbfab974607cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.704ex; height:3.009ex;" alt="{\displaystyle \mathbf {R} ^{2},}"></span> this reflects the common notion of the angle between two vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {y} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {y} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bcd6039f384fd6a570c06144b7fc365111eac83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.058ex; height:2.009ex;" alt="{\displaystyle \mathbf {y} ,}"></span> by the <a href="/wiki/Law_of_cosines" title="Law of cosines">law of cosines</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} \cdot \mathbf {y} =\cos \left(\angle (\mathbf {x} ,\mathbf {y} )\right)\cdot |\mathbf {x} |\cdot |\mathbf {y} |.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} \cdot \mathbf {y} =\cos \left(\angle (\mathbf {x} ,\mathbf {y} )\right)\cdot |\mathbf {x} |\cdot |\mathbf {y} |.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3aebaa2199918778e31afd4e84b132d223dc6ce" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.278ex; height:2.843ex;" alt="{\displaystyle \mathbf {x} \cdot \mathbf {y} =\cos \left(\angle (\mathbf {x} ,\mathbf {y} )\right)\cdot |\mathbf {x} |\cdot |\mathbf {y} |.}"></span> Because of this, two vectors satisfying <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \mathbf {x} ,\mathbf {y} \rangle =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \mathbf {x} ,\mathbf {y} \rangle =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91c94233efe3dbc09548f4716e5c44438c7ea8a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.926ex; height:2.843ex;" alt="{\displaystyle \langle \mathbf {x} ,\mathbf {y} \rangle =0}"></span> are called <a href="/wiki/Orthogonal" class="mw-redirect" title="Orthogonal">orthogonal</a>. An important variant of the standard dot product is used in <a href="/wiki/Minkowski_space" title="Minkowski space">Minkowski space</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} ^{4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {R} ^{4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd186b8abaeed43c225609f9556d8ee783b6a7fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.057ex; height:2.676ex;" alt="{\displaystyle \mathbf {R} ^{4}}"></span> endowed with the Lorentz product<sup id="cite_ref-FOOTNOTENaber2003ch._1.2_71-0" class="reference"><a href="#cite_note-FOOTNOTENaber2003ch._1.2-71"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \mathbf {x} |\mathbf {y} \rangle =x_{1}y_{1}+x_{2}y_{2}+x_{3}y_{3}-x_{4}y_{4}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \mathbf {x} |\mathbf {y} \rangle =x_{1}y_{1}+x_{2}y_{2}+x_{3}y_{3}-x_{4}y_{4}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0613e2ebaa3b76e545aaeeb8b8b7dfe2ddac4a89" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.854ex; height:2.843ex;" alt="{\displaystyle \langle \mathbf {x} |\mathbf {y} \rangle =x_{1}y_{1}+x_{2}y_{2}+x_{3}y_{3}-x_{4}y_{4}.}"></span> In contrast to the standard dot product, it is not <a href="/wiki/Positive_definite_bilinear_form" class="mw-redirect" title="Positive definite bilinear form">positive definite</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \mathbf {x} |\mathbf {x} \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \mathbf {x} |\mathbf {x} \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c473743b12e418662333624c8a95e4f475e89e3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.278ex; height:2.843ex;" alt="{\displaystyle \langle \mathbf {x} |\mathbf {x} \rangle }"></span> also takes negative values, for example, for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} =(0,0,0,1).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} =(0,0,0,1).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/152aae0b6d32f1144e8839d98002c7d2778b145f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.717ex; height:2.843ex;" alt="{\displaystyle \mathbf {x} =(0,0,0,1).}"></span> Singling out the fourth coordinate—<a href="/wiki/Timelike" class="mw-redirect" title="Timelike">corresponding to time</a>, as opposed to three space-dimensions—makes it useful for the mathematical treatment of <a href="/wiki/Special_relativity" title="Special relativity">special relativity</a>. Note that in other conventions time is often written as the first, or "zeroeth" component so that the Lorentz product is written <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \mathbf {x} |\mathbf {y} \rangle =-x_{0}y_{0}+x_{1}y_{1}+x_{2}y_{2}+x_{3}y_{3}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \mathbf {x} |\mathbf {y} \rangle =-x_{0}y_{0}+x_{1}y_{1}+x_{2}y_{2}+x_{3}y_{3}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed2585c032964a80f3534e345d38dc06d98b4a97" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.662ex; height:2.843ex;" alt="{\displaystyle \langle \mathbf {x} |\mathbf {y} \rangle =-x_{0}y_{0}+x_{1}y_{1}+x_{2}y_{2}+x_{3}y_{3}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Topological_vector_spaces">Topological vector spaces</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=20" title="Edit section: Topological vector spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Topological_vector_space" title="Topological vector space">Topological vector space</a></div> <p>Convergence questions are treated by considering vector spaces <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> carrying a compatible <a href="/wiki/Topological_space" title="Topological space">topology</a>, a structure that allows one to talk about elements being <a href="/wiki/Neighborhood_(topology)" class="mw-redirect" title="Neighborhood (topology)">close to each other</a>.<sup id="cite_ref-FOOTNOTETreves1967Bourbaki1987_72-0" class="reference"><a href="#cite_note-FOOTNOTETreves1967Bourbaki1987-72"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup> Compatible here means that addition and scalar multiplication have to be <a href="/wiki/Continuous_map" class="mw-redirect" title="Continuous map">continuous maps</a>. Roughly, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {y} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {y} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb25a040b592282dc2a254c3117e792c3c81161f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.411ex; height:2.009ex;" alt="{\displaystyle \mathbf {y} }"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> vary by a bounded amount, then so do <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} +\mathbf {y} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} +\mathbf {y} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/489fe3f87c1bac975b1bdea1a3e7b0369d8f7a08" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.662ex; height:2.343ex;" alt="{\displaystyle \mathbf {x} +\mathbf {y} }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\mathbf {x} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\mathbf {x} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ecda72965b1e05af5802cb3ac8cf540ff513397e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.288ex; height:1.676ex;" alt="{\displaystyle a\mathbf {x} .}"></span><sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">&#91;</span>nb 6<span class="cite-bracket">&#93;</span></a></sup> To make sense of specifying the amount a scalar changes, the field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> also has to carry a topology in this context; a common choice is the reals or the complex numbers. </p><p>In such <i>topological vector spaces</i> one can consider <a href="/wiki/Series_(mathematics)" title="Series (mathematics)">series</a> of vectors. The <a href="/wiki/Infinite_sum" class="mw-redirect" title="Infinite sum">infinite sum</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i=1}^{\infty }f_{i}~=~\lim _{n\to \infty }f_{1}+\cdots +f_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mtext>&#xA0;</mtext> <mo>=</mo> <mtext>&#xA0;</mtext> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i=1}^{\infty }f_{i}~=~\lim _{n\to \infty }f_{1}+\cdots +f_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49332ebd615bf4140938529f15b3ed01e1b10513" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:27.943ex; height:6.843ex;" alt="{\displaystyle \sum _{i=1}^{\infty }f_{i}~=~\lim _{n\to \infty }f_{1}+\cdots +f_{n}}"></span> denotes the <a href="/wiki/Limit_of_a_sequence" title="Limit of a sequence">limit</a> of the corresponding finite partial sums of the sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{1},f_{2},\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{1},f_{2},\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8014204900bd325a7519524aff99e3dc8114fd8f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.178ex; height:2.509ex;" alt="{\displaystyle f_{1},f_{2},\ldots }"></span> of elements of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b2661a49b86bd1a5548e527bbfb068aa9f59978" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.434ex; height:2.176ex;" alt="{\displaystyle V.}"></span> For example, the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65da883ca3d16b461e46c94777b0d9c4aa010e79" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.939ex; height:2.509ex;" alt="{\displaystyle f_{i}}"></span> could be (real or complex) functions belonging to some <a href="/wiki/Function_space" title="Function space">function space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ace9595e3ce66fdec7e9d30202626accd676b11e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.434ex; height:2.509ex;" alt="{\displaystyle V,}"></span> in which case the series is a <a href="/wiki/Function_series" title="Function series">function series</a>. The <a href="/wiki/Modes_of_convergence" title="Modes of convergence">mode of convergence</a> of the series depends on the topology imposed on the function space. In such cases, <a href="/wiki/Pointwise_convergence" title="Pointwise convergence">pointwise convergence</a> and <a href="/wiki/Uniform_convergence" title="Uniform convergence">uniform convergence</a> are two prominent examples.<sup id="cite_ref-FOOTNOTESchaeferWolff1999p._7_74-0" class="reference"><a href="#cite_note-FOOTNOTESchaeferWolff1999p._7-74"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Vector_norms2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/02/Vector_norms2.svg/250px-Vector_norms2.svg.png" decoding="async" width="250" height="260" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/02/Vector_norms2.svg/375px-Vector_norms2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/02/Vector_norms2.svg/500px-Vector_norms2.svg.png 2x" data-file-width="169" data-file-height="176" /></a><figcaption><a href="/wiki/Unit_ball" class="mw-redirect" title="Unit ball">Unit "spheres"</a> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/feb97520ae70482ae41b49980ec140d871cb8243" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.057ex; height:2.676ex;" alt="{\displaystyle \mathbf {R} ^{2}}"></span> consist of plane vectors of norm 1. Depicted are the unit spheres in different <a href="/wiki/Lp_norm" class="mw-redirect" title="Lp norm"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>-norms</a>, for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=1,2,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=1,2,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94e5afeb098d99e8393940f12eb4acb807507ab2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:8.363ex; height:2.509ex;" alt="{\displaystyle p=1,2,}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \infty .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \infty .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f6ccaf28d90bcfce739aca4c5ff119a60e08031" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.971ex; height:1.676ex;" alt="{\displaystyle \infty .}"></span> The bigger diamond depicts points of 1-norm equal to 2.</figcaption></figure> <p>A way to ensure the existence of limits of certain infinite series is to restrict attention to spaces where any <a href="/wiki/Cauchy_sequence" title="Cauchy sequence">Cauchy sequence</a> has a limit; such a vector space is called <a href="/wiki/Completeness_(topology)" class="mw-redirect" title="Completeness (topology)">complete</a>. Roughly, a vector space is complete provided that it contains all necessary limits. For example, the vector space of polynomials on the unit interval <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,1],}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,1],}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/971caee396752d8bf56711f55d2c3b1207d4a236" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.299ex; height:2.843ex;" alt="{\displaystyle [0,1],}"></span> equipped with the <a href="/wiki/Topology_of_uniform_convergence" class="mw-redirect" title="Topology of uniform convergence">topology of uniform convergence</a> is not complete because any continuous function on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/738f7d23bb2d9642bab520020873cccbef49768d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.653ex; height:2.843ex;" alt="{\displaystyle [0,1]}"></span> can be uniformly approximated by a sequence of polynomials, by the <a href="/wiki/Weierstrass_approximation_theorem" class="mw-redirect" title="Weierstrass approximation theorem">Weierstrass approximation theorem</a>.<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup> In contrast, the space of <i>all</i> continuous functions on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/738f7d23bb2d9642bab520020873cccbef49768d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.653ex; height:2.843ex;" alt="{\displaystyle [0,1]}"></span> with the same topology is complete.<sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup> A norm gives rise to a topology by defining that a sequence of vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05afff3073235a1f9b61144677764d1e3bda26f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.629ex; height:2.009ex;" alt="{\displaystyle \mathbf {v} _{n}}"></span> converges to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35c1866e359fbfd2e0f606c725ba5cc37a5195d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} }"></span> if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n\to \infty }|\mathbf {v} _{n}-\mathbf {v} |=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{n\to \infty }|\mathbf {v} _{n}-\mathbf {v} |=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df0483d6124c00638b669967171f5883444ea222" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.742ex; height:3.843ex;" alt="{\displaystyle \lim _{n\to \infty }|\mathbf {v} _{n}-\mathbf {v} |=0.}"></span> Banach and Hilbert spaces are complete topological vector spaces whose topologies are given, respectively, by a norm and an inner product. Their study—a key piece of <a href="/wiki/Functional_analysis" title="Functional analysis">functional analysis</a>—focuses on infinite-dimensional vector spaces, since all norms on finite-dimensional topological vector spaces give rise to the same notion of convergence.<sup id="cite_ref-FOOTNOTEChoquet1966Proposition_III.7.2_77-0" class="reference"><a href="#cite_note-FOOTNOTEChoquet1966Proposition_III.7.2-77"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> The image at the right shows the equivalence of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span>-norm and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c26c105004f30c27aa7c2a9c601550a4183b1f21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.676ex;" alt="{\displaystyle \infty }"></span>-norm on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} ^{2}:}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>:</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {R} ^{2}:}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05b5ce0ea8c16d0902300c6a7081bd5aadef39f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.349ex; height:2.676ex;" alt="{\displaystyle \mathbf {R} ^{2}:}"></span> as the unit "balls" enclose each other, a sequence converges to zero in one norm if and only if it so does in the other norm. In the infinite-dimensional case, however, there will generally be inequivalent topologies, which makes the study of topological vector spaces richer than that of vector spaces without additional data. </p><p>From a conceptual point of view, all notions related to topological vector spaces should match the topology. For example, instead of considering all linear maps (also called <a href="/wiki/Functional_(mathematics)" title="Functional (mathematics)">functionals</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V\to W,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>W</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V\to W,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52495bce078acc6cd5620da0a6da461fb6282f42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.483ex; height:2.509ex;" alt="{\displaystyle V\to W,}"></span> maps between topological vector spaces are required to be continuous.<sup id="cite_ref-FOOTNOTETreves1967p._34–36_78-0" class="reference"><a href="#cite_note-FOOTNOTETreves1967p._34–36-78"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup> In particular, the <span id="label2">(topological) dual space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5910e6a94f4f7ee2ee85ceed9dacef3eff7a6242" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.971ex; height:2.343ex;" alt="{\displaystyle V^{*}}"></span> consists of continuous functionals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V\to \mathbf {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V\to \mathbf {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30534e02fed26a26f80c4b15146efd1d141038a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.405ex; height:2.176ex;" alt="{\displaystyle V\to \mathbf {R} }"></span> (or to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:2.176ex;" alt="{\displaystyle \mathbf {C} }"></span>). The fundamental <a href="/wiki/Hahn%E2%80%93Banach_theorem" title="Hahn–Banach theorem">Hahn–Banach theorem</a> is concerned with separating subspaces of appropriate topological vector spaces by continuous functionals.<sup id="cite_ref-FOOTNOTELang1983Cor._4.1.2,_p._69_79-0" class="reference"><a href="#cite_note-FOOTNOTELang1983Cor._4.1.2,_p._69-79"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup></span> </p> <div class="mw-heading mw-heading4"><h4 id="Banach_spaces">Banach spaces</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=21" title="Edit section: Banach spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Banach_space" title="Banach space">Banach space</a></div> <p><i><a href="/wiki/Banach_space" title="Banach space">Banach spaces</a></i>, introduced by <a href="/wiki/Stefan_Banach" title="Stefan Banach">Stefan Banach</a>, are complete normed vector spaces.<sup id="cite_ref-FOOTNOTETreves1967ch._11_80-0" class="reference"><a href="#cite_note-FOOTNOTETreves1967ch._11-80"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup> </p><p>A first example is <a href="/wiki/Lp_space" title="Lp space">the vector space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell ^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell ^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9c352341ab7260ca1a9004da44c897d1395203c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.029ex; height:2.343ex;" alt="{\displaystyle \ell ^{p}}"></span></a> consisting of infinite vectors with real entries <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} =\left(x_{1},x_{2},\ldots ,x_{n},\ldots \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} =\left(x_{1},x_{2},\ldots ,x_{n},\ldots \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6e0cca1cbc4d8b2503004b51ccc5f8c92edae1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.604ex; height:2.843ex;" alt="{\displaystyle \mathbf {x} =\left(x_{1},x_{2},\ldots ,x_{n},\ldots \right)}"></span> whose <a href="/wiki/P-norm" class="mw-redirect" title="P-norm"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>-norm</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1\leq p\leq \infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>p</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1\leq p\leq \infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ec168a68b91d210bf5f71bc52715b0843c680e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.662ex; height:2.843ex;" alt="{\displaystyle (1\leq p\leq \infty )}"></span> given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|\mathbf {x} \|_{\infty }:=\sup _{i}|x_{i}|\qquad {\text{ for }}p=\infty ,{\text{ and }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msub> <mo>:=</mo> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for&#xA0;</mtext> </mrow> <mi>p</mi> <mo>=</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|\mathbf {x} \|_{\infty }:=\sup _{i}|x_{i}|\qquad {\text{ for }}p=\infty ,{\text{ and }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ee6900611e2c2424445573d079d9260b8c742f8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:37.795ex; height:4.509ex;" alt="{\displaystyle \|\mathbf {x} \|_{\infty }:=\sup _{i}|x_{i}|\qquad {\text{ for }}p=\infty ,{\text{ and }}}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|\mathbf {x} \|_{p}:=\left(\sum _{i}|x_{i}|^{p}\right)^{\frac {1}{p}}\qquad {\text{ for }}p&lt;\infty .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>:=</mo> <msup> <mrow> <mo>(</mo> <mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for&#xA0;</mtext> </mrow> <mi>p</mi> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|\mathbf {x} \|_{p}:=\left(\sum _{i}|x_{i}|^{p}\right)^{\frac {1}{p}}\qquad {\text{ for }}p&lt;\infty .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/835dd66a07fc73c57859c8fe378dbb7354e94a0f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:38.017ex; height:8.676ex;" alt="{\displaystyle \|\mathbf {x} \|_{p}:=\left(\sum _{i}|x_{i}|^{p}\right)^{\frac {1}{p}}\qquad {\text{ for }}p&lt;\infty .}"></span> </p><p>The topologies on the infinite-dimensional space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell ^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell ^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9c352341ab7260ca1a9004da44c897d1395203c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.029ex; height:2.343ex;" alt="{\displaystyle \ell ^{p}}"></span> are inequivalent for different <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88532f4eab1d4cef71ef96c0f8c98cac36fd9257" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.906ex; height:2.009ex;" alt="{\displaystyle p.}"></span> For example, the sequence of vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} _{n}=\left(2^{-n},2^{-n},\ldots ,2^{-n},0,0,\ldots \right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mrow> </msup> <mo>,</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mrow> </msup> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mrow> </msup> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} _{n}=\left(2^{-n},2^{-n},\ldots ,2^{-n},0,0,\ldots \right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6f15644e145728030235434d814c4f05d41c8fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:34.232ex; height:3.176ex;" alt="{\displaystyle \mathbf {x} _{n}=\left(2^{-n},2^{-n},\ldots ,2^{-n},0,0,\ldots \right),}"></span> in which the first <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8226f30650ee4fe4e640c6d2798127e80e9c160d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.381ex; height:2.343ex;" alt="{\displaystyle 2^{n}}"></span> components are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{-n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{-n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0414b5d9e81c2eb5bd85a6ca4af24b69d5336dad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.659ex; height:2.509ex;" alt="{\displaystyle 2^{-n}}"></span> and the following ones are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95547343453ea34a314dd174f8458012f5a39ca3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.809ex; height:2.509ex;" alt="{\displaystyle 0,}"></span> converges to the <a href="/wiki/Zero_vector" class="mw-redirect" title="Zero vector">zero vector</a> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=\infty ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=\infty ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcf616a43b37b2de8dae9af2cf7ec5828055c51f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:7.328ex; height:2.009ex;" alt="{\displaystyle p=\infty ,}"></span> but does not for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=1:}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mn>1</mn> <mo>:</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=1:}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e80f2a27ec1b538e50d813ff2aac9e5bd58a4331" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:6.812ex; height:2.509ex;" alt="{\displaystyle p=1:}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|\mathbf {x} _{n}\|_{\infty }=\sup(2^{-n},0)=2^{-n}\to 0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msub> <mo>=</mo> <mo movablelimits="true" form="prefix">sup</mo> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mrow> </msup> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mrow> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|\mathbf {x} _{n}\|_{\infty }=\sup(2^{-n},0)=2^{-n}\to 0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca820b1d23067920b7068c104272362b13cde6a2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.276ex; height:3.009ex;" alt="{\displaystyle \|\mathbf {x} _{n}\|_{\infty }=\sup(2^{-n},0)=2^{-n}\to 0,}"></span> but <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|\mathbf {x} _{n}\|_{1}=\sum _{i=1}^{2^{n}}2^{-n}=2^{n}\cdot 2^{-n}=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </munderover> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mrow> </msup> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|\mathbf {x} _{n}\|_{1}=\sum _{i=1}^{2^{n}}2^{-n}=2^{n}\cdot 2^{-n}=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aae8080b988f188916c4ee10b09e50cf0077fc89" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:32.234ex; height:7.343ex;" alt="{\displaystyle \|\mathbf {x} _{n}\|_{1}=\sum _{i=1}^{2^{n}}2^{-n}=2^{n}\cdot 2^{-n}=1.}"></span> </p><p>More generally than sequences of real numbers, functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\Omega \to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\Omega \to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a477b266a83071d2a3bddfb5e5af1e3e105b1823" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.186ex; height:2.509ex;" alt="{\displaystyle f:\Omega \to \mathbb {R} }"></span> are endowed with a norm that replaces the above sum by the <a href="/wiki/Lebesgue_integral" title="Lebesgue integral">Lebesgue integral</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{p}:=\left(\int _{\Omega }|f(x)|^{p}\,{d\mu (x)}\right)^{\frac {1}{p}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>:=</mo> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{p}:=\left(\int _{\Omega }|f(x)|^{p}\,{d\mu (x)}\right)^{\frac {1}{p}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48c2bc71417915bc933a17461d3ae2cb72900f18" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:30.228ex; height:7.176ex;" alt="{\displaystyle \|f\|_{p}:=\left(\int _{\Omega }|f(x)|^{p}\,{d\mu (x)}\right)^{\frac {1}{p}}.}"></span> </p><p>The space of <a href="/wiki/Integrable_function" class="mw-redirect" title="Integrable function">integrable functions</a> on a given <a href="/wiki/Domain_of_a_function" title="Domain of a function">domain</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> (for example an interval) satisfying <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{p}&lt;\infty ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{p}&lt;\infty ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/985aa50e1f0db7d175de33078041cca685111473" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.732ex; height:3.009ex;" alt="{\displaystyle \|f\|_{p}&lt;\infty ,}"></span> and equipped with this norm are called <a href="/wiki/Lp_space" title="Lp space">Lebesgue spaces</a>, denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{\;\!p}(\Omega ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thickmathspace" /> <mspace width="negativethinmathspace" /> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{\;\!p}(\Omega ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cee62bf7559ce803259cc0bff28486c8fa7ecd61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.034ex; height:2.843ex;" alt="{\displaystyle L^{\;\!p}(\Omega ).}"></span><sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">&#91;</span>nb 7<span class="cite-bracket">&#93;</span></a></sup> </p><p>These spaces are complete.<sup id="cite_ref-FOOTNOTETreves1967Theorem_11.2,_p._102_82-0" class="reference"><a href="#cite_note-FOOTNOTETreves1967Theorem_11.2,_p._102-82"><span class="cite-bracket">&#91;</span>75<span class="cite-bracket">&#93;</span></a></sup> (If one uses the <a href="/wiki/Riemann_integral" title="Riemann integral">Riemann integral</a> instead, the space is <em>not</em> complete, which may be seen as a justification for Lebesgue's integration theory.<sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">&#91;</span>nb 8<span class="cite-bracket">&#93;</span></a></sup>) Concretely this means that for any sequence of Lebesgue-integrable functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{1},f_{2},\ldots ,f_{n},\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{1},f_{2},\ldots ,f_{n},\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9308903d6794c2e017f99ed5f3719c87cde17e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.714ex; height:2.509ex;" alt="{\displaystyle f_{1},f_{2},\ldots ,f_{n},\ldots }"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f_{n}\|_{p}&lt;\infty ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f_{n}\|_{p}&lt;\infty ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5492677d1c54ef2d39eb57059acbf1588c171f4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.811ex; height:3.009ex;" alt="{\displaystyle \|f_{n}\|_{p}&lt;\infty ,}"></span> satisfying the condition <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{k,\ n\to \infty }\int _{\Omega }\left|f_{k}(x)-f_{n}(x)\right|^{p}\,{d\mu (x)}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </msub> <msup> <mrow> <mo>|</mo> <mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{k,\ n\to \infty }\int _{\Omega }\left|f_{k}(x)-f_{n}(x)\right|^{p}\,{d\mu (x)}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9eece866e9462537619272b3fd0349a04835f58" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:36.114ex; height:5.676ex;" alt="{\displaystyle \lim _{k,\ n\to \infty }\int _{\Omega }\left|f_{k}(x)-f_{n}(x)\right|^{p}\,{d\mu (x)}=0}"></span> there exists a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> belonging to the vector space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{\;\!p}(\Omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thickmathspace" /> <mspace width="negativethinmathspace" /> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{\;\!p}(\Omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db5a307f1bc9608c0233ef940dfeb0b4b9a3bef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.387ex; height:2.843ex;" alt="{\displaystyle L^{\;\!p}(\Omega )}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{k\to \infty }\int _{\Omega }\left|f(x)-f_{k}(x)\right|^{p}\,{d\mu (x)}=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </msub> <msup> <mrow> <mo>|</mo> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{k\to \infty }\int _{\Omega }\left|f(x)-f_{k}(x)\right|^{p}\,{d\mu (x)}=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed839d6a155ecea58d76d1a88a96454d47e00dba" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:33.657ex; height:5.676ex;" alt="{\displaystyle \lim _{k\to \infty }\int _{\Omega }\left|f(x)-f_{k}(x)\right|^{p}\,{d\mu (x)}=0.}"></span> </p><p>Imposing boundedness conditions not only on the function, but also on its <a href="/wiki/Derivative" title="Derivative">derivatives</a> leads to <a href="/wiki/Sobolev_space" title="Sobolev space">Sobolev spaces</a>.<sup id="cite_ref-FOOTNOTEEvans1998ch._5_84-0" class="reference"><a href="#cite_note-FOOTNOTEEvans1998ch._5-84"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> </p> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading4"><h4 id="Hilbert_spaces">Hilbert spaces</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=22" title="Edit section: Hilbert spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert space</a></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Periodic_identity_function.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Periodic_identity_function.gif/400px-Periodic_identity_function.gif" decoding="async" width="400" height="103" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/e/e8/Periodic_identity_function.gif 1.5x" data-file-width="491" data-file-height="126" /></a><figcaption>The succeeding snapshots show summation of 1 to 5 terms in approximating a periodic function (blue) by finite sum of sine functions (red).</figcaption></figure> <p>Complete inner product spaces are known as <i>Hilbert spaces</i>, in honor of <a href="/wiki/David_Hilbert" title="David Hilbert">David Hilbert</a>.<sup id="cite_ref-FOOTNOTETreves1967ch._12_85-0" class="reference"><a href="#cite_note-FOOTNOTETreves1967ch._12-85"><span class="cite-bracket">&#91;</span>77<span class="cite-bracket">&#93;</span></a></sup> The Hilbert space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{2}(\Omega ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{2}(\Omega ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebd00f5ffc32ce32b622d28467b3796998859ca4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.771ex; height:3.176ex;" alt="{\displaystyle L^{2}(\Omega ),}"></span> with inner product given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle f\ ,\ g\rangle =\int _{\Omega }f(x){\overline {g(x)}}\,dx,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>f</mi> <mtext>&#xA0;</mtext> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>g</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle f\ ,\ g\rangle =\int _{\Omega }f(x){\overline {g(x)}}\,dx,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdcbee430122d5256abe43e80315dccef1cd5806" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:24.963ex; height:5.676ex;" alt="{\displaystyle \langle f\ ,\ g\rangle =\int _{\Omega }f(x){\overline {g(x)}}\,dx,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {g(x)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {g(x)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f968b7527fcc59e6aac917588d3d4c81b915828" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.37ex; height:3.676ex;" alt="{\displaystyle {\overline {g(x)}}}"></span> denotes the <a href="/wiki/Complex_conjugate" title="Complex conjugate">complex conjugate</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(x),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(x),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c36278728763484856f51a229bf8ce5e592e61e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.902ex; height:2.843ex;" alt="{\displaystyle g(x),}"></span><sup id="cite_ref-FOOTNOTEDenneryKrzywicki1996p.190_86-0" class="reference"><a href="#cite_note-FOOTNOTEDenneryKrzywicki1996p.190-86"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-87" class="reference"><a href="#cite_note-87"><span class="cite-bracket">&#91;</span>nb 9<span class="cite-bracket">&#93;</span></a></sup> is a key case. </p><p>By definition, in a Hilbert space, any Cauchy sequence converges to a limit. Conversely, finding a sequence of functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2702450f0458a5e01a698e248af552a7fab2b50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.358ex; height:2.509ex;" alt="{\displaystyle f_{n}}"></span> with desirable properties that approximate a given limit function is equally crucial. Early analysis, in the guise of the <a href="/wiki/Taylor_approximation" class="mw-redirect" title="Taylor approximation">Taylor approximation</a>, established an approximation of <a href="/wiki/Differentiable_function" title="Differentiable function">differentiable functions</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> by polynomials.<sup id="cite_ref-FOOTNOTELang1993Th._XIII.6,_p._349_88-0" class="reference"><a href="#cite_note-FOOTNOTELang1993Th._XIII.6,_p._349-88"><span class="cite-bracket">&#91;</span>79<span class="cite-bracket">&#93;</span></a></sup> By the <a href="/wiki/Stone%E2%80%93Weierstrass_theorem" title="Stone–Weierstrass theorem">Stone–Weierstrass theorem</a>, every continuous function on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4b788fc5c637e26ee98b45f89a5c08c85f7935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.555ex; height:2.843ex;" alt="{\displaystyle [a,b]}"></span> can be approximated as closely as desired by a polynomial.<sup id="cite_ref-FOOTNOTELang1993Th._III.1.1_89-0" class="reference"><a href="#cite_note-FOOTNOTELang1993Th._III.1.1-89"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup> A similar approximation technique by <a href="/wiki/Trigonometric_function" class="mw-redirect" title="Trigonometric function">trigonometric functions</a> is commonly called <a href="/wiki/Fourier_expansion" class="mw-redirect" title="Fourier expansion">Fourier expansion</a>, and is much applied in engineering. More generally, and more conceptually, the theorem yields a simple description of what "basic functions", or, in abstract Hilbert spaces, what basic vectors suffice to generate a Hilbert space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef601e1519093ba6c2944b945882c119f990e704" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.71ex; height:2.509ex;" alt="{\displaystyle H,}"></span> in the sense that the <i><a href="/wiki/Closure_(topology)" title="Closure (topology)">closure</a></i> of their span (that is, finite linear combinations and limits of those) is the whole space. Such a set of functions is called a <i>basis</i> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef601e1519093ba6c2944b945882c119f990e704" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.71ex; height:2.509ex;" alt="{\displaystyle H,}"></span> its cardinality is known as the <a href="/wiki/Hilbert_space_dimension" class="mw-redirect" title="Hilbert space dimension">Hilbert space dimension</a>.<sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">&#91;</span>nb 10<span class="cite-bracket">&#93;</span></a></sup> Not only does the theorem exhibit suitable basis functions as sufficient for approximation purposes, but also together with the <a href="/wiki/Gram%E2%80%93Schmidt_process" title="Gram–Schmidt process">Gram–Schmidt process</a>, it enables one to construct a <a href="/wiki/Orthogonal_basis" title="Orthogonal basis">basis of orthogonal vectors</a>.<sup id="cite_ref-FOOTNOTEChoquet1966Lemma_III.16.11_91-0" class="reference"><a href="#cite_note-FOOTNOTEChoquet1966Lemma_III.16.11-91"><span class="cite-bracket">&#91;</span>81<span class="cite-bracket">&#93;</span></a></sup> Such orthogonal bases are the Hilbert space generalization of the coordinate axes in finite-dimensional <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a>. </p><p>The solutions to various <a href="/wiki/Differential_equation" title="Differential equation">differential equations</a> can be interpreted in terms of Hilbert spaces. For example, a great many fields in physics and engineering lead to such equations, and frequently solutions with particular physical properties are used as basis functions, often orthogonal.<sup id="cite_ref-FOOTNOTEKreyszig1999Chapter_11_92-0" class="reference"><a href="#cite_note-FOOTNOTEKreyszig1999Chapter_11-92"><span class="cite-bracket">&#91;</span>82<span class="cite-bracket">&#93;</span></a></sup> As an example from physics, the time-dependent <a href="/wiki/Schr%C3%B6dinger_equation" title="Schrödinger equation">Schrödinger equation</a> in <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a> describes the change of physical properties in time by means of a <a href="/wiki/Partial_differential_equation" title="Partial differential equation">partial differential equation</a>, whose solutions are called <a href="/wiki/Wavefunction" class="mw-redirect" title="Wavefunction">wavefunctions</a>.<sup id="cite_ref-FOOTNOTEGriffiths1995Chapter_1_93-0" class="reference"><a href="#cite_note-FOOTNOTEGriffiths1995Chapter_1-93"><span class="cite-bracket">&#91;</span>83<span class="cite-bracket">&#93;</span></a></sup> Definite values for physical properties such as energy, or momentum, correspond to <a href="/wiki/Eigenvalue" class="mw-redirect" title="Eigenvalue">eigenvalues</a> of a certain (linear) <a href="/wiki/Differential_operator" title="Differential operator">differential operator</a> and the associated wavefunctions are called <a href="/wiki/Eigenstate" class="mw-redirect" title="Eigenstate">eigenstates</a>. The <span id="labelSpectralTheorem"><a href="/wiki/Spectral_theorem" title="Spectral theorem">spectral theorem</a> decomposes a linear <a href="/wiki/Compact_operator" title="Compact operator">compact operator</a> acting on functions in terms of these eigenfunctions and their eigenvalues.</span><sup id="cite_ref-FOOTNOTELang1993ch._XVII.3_94-0" class="reference"><a href="#cite_note-FOOTNOTELang1993ch._XVII.3-94"><span class="cite-bracket">&#91;</span>84<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Algebras_over_fields">Algebras over fields</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=23" title="Edit section: Algebras over fields"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Algebra_over_a_field" title="Algebra over a field">Algebra over a field</a> and <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Rectangular_hyperbola.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/29/Rectangular_hyperbola.svg/250px-Rectangular_hyperbola.svg.png" decoding="async" width="250" height="250" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/29/Rectangular_hyperbola.svg/375px-Rectangular_hyperbola.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/29/Rectangular_hyperbola.svg/500px-Rectangular_hyperbola.svg.png 2x" data-file-width="300" data-file-height="300" /></a><figcaption>A <a href="/wiki/Hyperbola" title="Hyperbola">hyperbola</a>, given by the equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\cdot y=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>y</mi> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\cdot y=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/feae717f3cdb61fff0f74fb567b4cb24bf2825df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.072ex; height:2.509ex;" alt="{\displaystyle x\cdot y=1.}"></span> The <a href="/wiki/Coordinate_ring" class="mw-redirect" title="Coordinate ring">coordinate ring</a> of functions on this hyperbola is given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} [x,y]/(x\cdot y-1),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mo stretchy="false">[</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>y</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {R} [x,y]/(x\cdot y-1),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ba7424ec2e6bf0fc108cb223ae2d6209c67b44d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.602ex; height:2.843ex;" alt="{\displaystyle \mathbf {R} [x,y]/(x\cdot y-1),}"></span> an infinite-dimensional vector space over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {R} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a067bb21dcf0642bdce48f05a55e218efab3b85e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.65ex; height:2.176ex;" alt="{\displaystyle \mathbf {R} .}"></span></figcaption></figure> <p>General vector spaces do not possess a multiplication between vectors. A vector space equipped with an additional <a href="/wiki/Bilinear_operator" class="mw-redirect" title="Bilinear operator">bilinear operator</a> defining the multiplication of two vectors is an <i>algebra over a field</i> (or <i>F</i>-algebra if the field <i>F</i> is specified).<sup id="cite_ref-FOOTNOTELang2002ch._III.1,_p._121_95-0" class="reference"><a href="#cite_note-FOOTNOTELang2002ch._III.1,_p._121-95"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup> </p><p>For example, the set of all <a href="/wiki/Polynomial" title="Polynomial">polynomials</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b827c545ca1487214f0c498131228ef87718ece" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:3.908ex; height:2.843ex;" alt="{\displaystyle p(t)}"></span> forms an algebra known as the <a href="/wiki/Polynomial_ring" title="Polynomial ring">polynomial ring</a>: using that the sum of two polynomials is a polynomial, they form a vector space; they form an algebra since the product of two polynomials is again a polynomial. Rings of polynomials (in several variables) and their <a href="/wiki/Quotient_ring" title="Quotient ring">quotients</a> form the basis of <a href="/wiki/Algebraic_geometry" title="Algebraic geometry">algebraic geometry</a>, because they are <a href="/wiki/Coordinate_ring" class="mw-redirect" title="Coordinate ring">rings of functions of algebraic geometric objects</a>.<sup id="cite_ref-FOOTNOTEEisenbud1995ch._1.6_96-0" class="reference"><a href="#cite_note-FOOTNOTEEisenbud1995ch._1.6-96"><span class="cite-bracket">&#91;</span>86<span class="cite-bracket">&#93;</span></a></sup> </p><p>Another crucial example are <i><a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebras</a></i>, which are neither commutative nor associative, but the failure to be so is limited by the constraints (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [x,y]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [x,y]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b7bd6292c6023626c6358bfd3943a031b27d663" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.813ex; height:2.843ex;" alt="{\displaystyle [x,y]}"></span> denotes the product of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>): </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [x,y]=-[y,x]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">[</mo> <mi>y</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [x,y]=-[y,x]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f70fcda86c14de45e211c3a9a889845038bb7348" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.532ex; height:2.843ex;" alt="{\displaystyle [x,y]=-[y,x]}"></span> (<a href="/wiki/Anticommutativity" class="mw-redirect" title="Anticommutativity">anticommutativity</a>), and</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [x,[y,z]]+[y,[z,x]]+[z,[x,y]]=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>x</mi> <mo>,</mo> <mo stretchy="false">[</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">]</mo> <mo stretchy="false">]</mo> <mo>+</mo> <mo stretchy="false">[</mo> <mi>y</mi> <mo>,</mo> <mo stretchy="false">[</mo> <mi>z</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">]</mo> <mo stretchy="false">]</mo> <mo>+</mo> <mo stretchy="false">[</mo> <mi>z</mi> <mo>,</mo> <mo stretchy="false">[</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">]</mo> <mo stretchy="false">]</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [x,[y,z]]+[y,[z,x]]+[z,[x,y]]=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23655a62f2a7cc545f121d9bcc30fe2c56731457" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.627ex; height:2.843ex;" alt="{\displaystyle [x,[y,z]]+[y,[z,x]]+[z,[x,y]]=0}"></span> (<a href="/wiki/Jacobi_identity" title="Jacobi identity">Jacobi identity</a>).<sup id="cite_ref-FOOTNOTEVaradarajan1974_97-0" class="reference"><a href="#cite_note-FOOTNOTEVaradarajan1974-97"><span class="cite-bracket">&#91;</span>87<span class="cite-bracket">&#93;</span></a></sup></li></ul> <p>Examples include the vector space of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-by-<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> matrices, with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [x,y]=xy-yx,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>x</mi> <mi>y</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [x,y]=xy-yx,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c9d7bc98d1738f549c0420244c08c57decc66b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.369ex; height:2.843ex;" alt="{\displaystyle [x,y]=xy-yx,}"></span> the <a href="/wiki/Commutator" title="Commutator">commutator</a> of two matrices, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} ^{3},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {R} ^{3},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dabc730fd2ccb4bed18ccff4934bb48468027bfc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.704ex; height:3.009ex;" alt="{\displaystyle \mathbf {R} ^{3},}"></span> endowed with the <a href="/wiki/Cross_product" title="Cross product">cross product</a>. </p><p>The <a href="/wiki/Tensor_algebra" title="Tensor algebra">tensor algebra</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {T} (V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">T</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {T} (V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c18b68545f38e49986804a0e9facad8a7db9ea29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.275ex; height:2.843ex;" alt="{\displaystyle \operatorname {T} (V)}"></span> is a formal way of adding products to any vector space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> to obtain an algebra.<sup id="cite_ref-FOOTNOTELang2002ch._XVI.7_98-0" class="reference"><a href="#cite_note-FOOTNOTELang2002ch._XVI.7-98"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup> As a vector space, it is spanned by symbols, called simple <a href="/wiki/Tensor" title="Tensor">tensors</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{1}\otimes \mathbf {v} _{2}\otimes \cdots \otimes \mathbf {v} _{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} _{1}\otimes \mathbf {v} _{2}\otimes \cdots \otimes \mathbf {v} _{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d7f6e265a3024dcfc8a771a92f260398aba680e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.451ex; height:2.343ex;" alt="{\displaystyle \mathbf {v} _{1}\otimes \mathbf {v} _{2}\otimes \cdots \otimes \mathbf {v} _{n},}"></span> where the <a href="/wiki/Rank_of_a_tensor" class="mw-redirect" title="Rank of a tensor">degree</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> varies. The multiplication is given by concatenating such symbols, imposing the <a href="/wiki/Distributive_law" class="mw-redirect" title="Distributive law">distributive law</a> under addition, and requiring that scalar multiplication commute with the tensor product ⊗, much the same way as with the tensor product of two vector spaces introduced in the above section on <a href="#Tensor_product">tensor products</a>. In general, there are no relations between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{1}\otimes \mathbf {v} _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} _{1}\otimes \mathbf {v} _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f733cf6f632a3c41f6cce290f8b45d87eeb759e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.771ex; height:2.343ex;" alt="{\displaystyle \mathbf {v} _{1}\otimes \mathbf {v} _{2}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{2}\otimes \mathbf {v} _{1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} _{2}\otimes \mathbf {v} _{1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b779275d5e22fe962bc90e03258394d2ae321f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.418ex; height:2.343ex;" alt="{\displaystyle \mathbf {v} _{2}\otimes \mathbf {v} _{1}.}"></span> Forcing two such elements to be equal leads to the <a href="/wiki/Symmetric_algebra" title="Symmetric algebra">symmetric algebra</a>, whereas forcing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{1}\otimes \mathbf {v} _{2}=-\mathbf {v} _{2}\otimes \mathbf {v} _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} _{1}\otimes \mathbf {v} _{2}=-\mathbf {v} _{2}\otimes \mathbf {v} _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e33f11b00aaa607716f42fda09c86cdfc2863918" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.448ex; height:2.343ex;" alt="{\displaystyle \mathbf {v} _{1}\otimes \mathbf {v} _{2}=-\mathbf {v} _{2}\otimes \mathbf {v} _{1}}"></span> yields the <a href="/wiki/Exterior_algebra" title="Exterior algebra">exterior algebra</a>.<sup id="cite_ref-FOOTNOTELang2002ch._XVI.8_99-0" class="reference"><a href="#cite_note-FOOTNOTELang2002ch._XVI.8-99"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Related_structures">Related structures</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=24" title="Edit section: Related structures"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Vector_bundles">Vector bundles</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=25" title="Edit section: Vector bundles"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Vector_bundle" title="Vector bundle">Vector bundle</a> and <a href="/wiki/Tangent_bundle" title="Tangent bundle">Tangent bundle</a></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Mobius_strip_illus.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/66/Mobius_strip_illus.svg/249px-Mobius_strip_illus.svg.png" decoding="async" width="249" height="232" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/66/Mobius_strip_illus.svg/374px-Mobius_strip_illus.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/66/Mobius_strip_illus.svg/498px-Mobius_strip_illus.svg.png 2x" data-file-width="300" data-file-height="280" /></a><figcaption>A Möbius strip. Locally, it <a href="/wiki/Homeomorphism" title="Homeomorphism">looks like</a> <span class="texhtml"><i>U</i> × <b>R</b></span>.</figcaption></figure> <p>A <i>vector bundle</i> is a family of vector spaces parametrized continuously by a <a href="/wiki/Topological_space" title="Topological space">topological space</a> <i>X</i>.<sup id="cite_ref-FOOTNOTESpivak1999ch._3_100-0" class="reference"><a href="#cite_note-FOOTNOTESpivak1999ch._3-100"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup> More precisely, a vector bundle over <i>X</i> is a topological space <i>E</i> equipped with a continuous map <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi :E\to X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> <mo>:</mo> <mi>E</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi :E\to X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebbf8de3c25d0905f50abaf4f9374daa0a4bd796" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.639ex; height:2.176ex;" alt="{\displaystyle \pi :E\to X}"></span> such that for every <i>x</i> in <i>X</i>, the <a href="/wiki/Fiber_(mathematics)" title="Fiber (mathematics)">fiber</a> π<sup>−1</sup>(<i>x</i>) is a vector space. The case dim <span class="texhtml"><i>V</i> = 1</span> is called a <a href="/wiki/Line_bundle" title="Line bundle">line bundle</a>. For any vector space <i>V</i>, the projection <span class="texhtml"><i>X</i> × <i>V</i> → <i>X</i></span> makes the product <span class="texhtml"><i>X</i> × <i>V</i></span> into a <a href="/wiki/Trivial_bundle" class="mw-redirect" title="Trivial bundle">"trivial" vector bundle</a>. Vector bundles over <i>X</i> are required to be <a href="/wiki/Locally" class="mw-redirect" title="Locally">locally</a> a product of <i>X</i> and some (fixed) vector space <i>V</i>: for every <i>x</i> in <i>X</i>, there is a <a href="/wiki/Neighborhood_(topology)" class="mw-redirect" title="Neighborhood (topology)">neighborhood</a> <i>U</i> of <i>x</i> such that the restriction of π to π<sup>−1</sup>(<i>U</i>) is isomorphic<sup id="cite_ref-101" class="reference"><a href="#cite_note-101"><span class="cite-bracket">&#91;</span>nb 11<span class="cite-bracket">&#93;</span></a></sup> to the trivial bundle <span class="texhtml"><i>U</i> × <i>V</i> → <i>U</i></span>. Despite their locally trivial character, vector bundles may (depending on the shape of the underlying space <i>X</i>) be "twisted" in the large (that is, the bundle need not be (globally isomorphic to) the trivial bundle <span class="texhtml"><i>X</i> × <i>V</i></span>). For example, the <a href="/wiki/M%C3%B6bius_strip" title="Möbius strip">Möbius strip</a> can be seen as a line bundle over the circle <i>S</i><sup>1</sup> (by <a href="/wiki/Homeomorphism#Examples" title="Homeomorphism">identifying open intervals with the real line</a>). It is, however, different from the <a href="/wiki/Cylinder_(geometry)" class="mw-redirect" title="Cylinder (geometry)">cylinder</a> <span class="texhtml"><i>S</i><sup>1</sup> × <b>R</b></span>, because the latter is <a href="/wiki/Orientable_manifold" class="mw-redirect" title="Orientable manifold">orientable</a> whereas the former is not.<sup id="cite_ref-FOOTNOTEKreyszig1991§34,_p._108_102-0" class="reference"><a href="#cite_note-FOOTNOTEKreyszig1991§34,_p._108-102"><span class="cite-bracket">&#91;</span>91<span class="cite-bracket">&#93;</span></a></sup> </p><p>Properties of certain vector bundles provide information about the underlying topological space. For example, the <a href="/wiki/Tangent_bundle" title="Tangent bundle">tangent bundle</a> consists of the collection of <a href="/wiki/Tangent_space" title="Tangent space">tangent spaces</a> parametrized by the points of a differentiable manifold. The tangent bundle of the circle <i>S</i><sup>1</sup> is globally isomorphic to <span class="texhtml"><i>S</i><sup>1</sup> × <b>R</b></span>, since there is a global nonzero <a href="/wiki/Vector_field" title="Vector field">vector field</a> on <i>S</i><sup>1</sup>.<sup id="cite_ref-103" class="reference"><a href="#cite_note-103"><span class="cite-bracket">&#91;</span>nb 12<span class="cite-bracket">&#93;</span></a></sup> In contrast, by the <a href="/wiki/Hairy_ball_theorem" title="Hairy ball theorem">hairy ball theorem</a>, there is no (tangent) vector field on the <a href="/wiki/2-sphere" class="mw-redirect" title="2-sphere">2-sphere</a> <i>S</i><sup>2</sup> which is everywhere nonzero.<sup id="cite_ref-FOOTNOTEEisenbergGuy1979_104-0" class="reference"><a href="#cite_note-FOOTNOTEEisenbergGuy1979-104"><span class="cite-bracket">&#91;</span>92<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/K-theory" title="K-theory">K-theory</a> studies the isomorphism classes of all vector bundles over some topological space.<sup id="cite_ref-FOOTNOTEAtiyah1989_105-0" class="reference"><a href="#cite_note-FOOTNOTEAtiyah1989-105"><span class="cite-bracket">&#91;</span>93<span class="cite-bracket">&#93;</span></a></sup> In addition to deepening topological and geometrical insight, it has purely algebraic consequences, such as the classification of finite-dimensional real <a href="/wiki/Division_algebra" title="Division algebra">division algebras</a>: <b>R</b>, <b>C</b>, the <a href="/wiki/Quaternion" title="Quaternion">quaternions</a> <b>H</b> and the <a href="/wiki/Octonion" title="Octonion">octonions</a> <b>O</b>. </p><p>The <a href="/wiki/Cotangent_bundle" title="Cotangent bundle">cotangent bundle</a> of a differentiable manifold consists, at every point of the manifold, of the dual of the tangent space, the <a href="/wiki/Cotangent_space" title="Cotangent space">cotangent space</a>. <a href="/wiki/Section_(fiber_bundle)" title="Section (fiber bundle)">Sections</a> of that bundle are known as <a href="/wiki/Differential_form" title="Differential form">differential one-forms</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Modules">Modules</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=26" title="Edit section: Modules"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Module_(mathematics)" title="Module (mathematics)">Module</a></div> <p><i>Modules</i> are to <a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">rings</a> what vector spaces are to fields: the same axioms, applied to a ring <i>R</i> instead of a field <i>F</i>, yield modules.<sup id="cite_ref-FOOTNOTEArtin1991ch._12_106-0" class="reference"><a href="#cite_note-FOOTNOTEArtin1991ch._12-106"><span class="cite-bracket">&#91;</span>94<span class="cite-bracket">&#93;</span></a></sup> The theory of modules, compared to that of vector spaces, is complicated by the presence of ring elements that do not have <a href="/wiki/Multiplicative_inverse" title="Multiplicative inverse">multiplicative inverses</a>. For example, modules need not have bases, as the <b>Z</b>-module (that is, <a href="/wiki/Abelian_group" title="Abelian group">abelian group</a>) <a href="/wiki/Modular_arithmetic" title="Modular arithmetic"><b>Z</b>/2<b>Z</b></a> shows; those modules that do (including all vector spaces) are known as <a href="/wiki/Free_module" title="Free module">free modules</a>. Nevertheless, a vector space can be compactly defined as a <a href="/wiki/Module_(mathematics)" title="Module (mathematics)">module</a> over a <a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">ring</a> which is a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a>, with the elements being called vectors. Some authors use the term <i>vector space</i> to mean modules over a <a href="/wiki/Division_ring" title="Division ring">division ring</a>.<sup id="cite_ref-FOOTNOTEGrillet2007_107-0" class="reference"><a href="#cite_note-FOOTNOTEGrillet2007-107"><span class="cite-bracket">&#91;</span>95<span class="cite-bracket">&#93;</span></a></sup> The algebro-geometric interpretation of commutative rings via their <a href="/wiki/Spectrum_of_a_ring" title="Spectrum of a ring">spectrum</a> allows the development of concepts such as <a href="/wiki/Locally_free_module" class="mw-redirect" title="Locally free module">locally free modules</a>, the algebraic counterpart to vector bundles. </p> <div class="mw-heading mw-heading3"><h3 id="Affine_and_projective_spaces">Affine and projective spaces</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=27" title="Edit section: Affine and projective spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Affine_space" title="Affine space">Affine space</a> and <a href="/wiki/Projective_space" title="Projective space">Projective space</a></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Affine_subspace.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Affine_subspace.svg/200px-Affine_subspace.svg.png" decoding="async" width="200" height="154" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Affine_subspace.svg/300px-Affine_subspace.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Affine_subspace.svg/400px-Affine_subspace.svg.png 2x" data-file-width="216" data-file-height="166" /></a><figcaption>An <a href="/wiki/Affine_space" title="Affine space">affine plane</a> (light blue) in <b>R</b><sup>3</sup>. It is a two-dimensional subspace shifted by a vector <b>x</b> (red).</figcaption></figure> <p>Roughly, <i>affine spaces</i> are vector spaces whose origins are not specified.<sup id="cite_ref-FOOTNOTEMeyer2000Example_5.13.5,_p._436_108-0" class="reference"><a href="#cite_note-FOOTNOTEMeyer2000Example_5.13.5,_p._436-108"><span class="cite-bracket">&#91;</span>96<span class="cite-bracket">&#93;</span></a></sup> More precisely, an affine space is a set with a <a href="/wiki/Transitive_group_action" class="mw-redirect" title="Transitive group action">free transitive</a> vector space <a href="/wiki/Group_action_(mathematics)" class="mw-redirect" title="Group action (mathematics)">action</a>. In particular, a vector space is an affine space over itself, by the map <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V\times V\to W,\;(\mathbf {v} ,\mathbf {a} )\mapsto \mathbf {a} +\mathbf {v} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>&#x00D7;<!-- × --></mo> <mi>V</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>W</mi> <mo>,</mo> <mspace width="thickmathspace" /> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V\times V\to W,\;(\mathbf {v} ,\mathbf {a} )\mapsto \mathbf {a} +\mathbf {v} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef057e61ae7876a1608903d32ac488ca66098f30" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.509ex; height:2.843ex;" alt="{\displaystyle V\times V\to W,\;(\mathbf {v} ,\mathbf {a} )\mapsto \mathbf {a} +\mathbf {v} .}"></span> If <i>W</i> is a vector space, then an affine subspace is a subset of <i>W</i> obtained by translating a linear subspace <i>V</i> by a fixed vector <span class="texhtml"><b>x</b> ∈ <i>W</i></span>; this space is denoted by <span class="texhtml"><b>x</b> + <i>V</i></span> (it is a <a href="/wiki/Coset" title="Coset">coset</a> of <i>V</i> in <i>W</i>) and consists of all vectors of the form <span class="texhtml"><b>x</b> + <b>v</b></span> for <span class="texhtml"><b>v</b> ∈ <i>V</i>.</span> An important example is the space of solutions of a system of inhomogeneous linear equations <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\mathbf {v} =\mathbf {b} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\mathbf {v} =\mathbf {b} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/daadc740034404157c9a8aeccc90455db9c8bedd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.738ex; height:2.176ex;" alt="{\displaystyle A\mathbf {v} =\mathbf {b} }"></span> generalizing the homogeneous case discussed in the <a href="#equation3">above section</a> on linear equations, which can be found by setting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {b} =\mathbf {0} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {b} =\mathbf {0} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cdf97ca5b695e4defc6395e07c3148e7e7d1af0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.92ex; height:2.176ex;" alt="{\displaystyle \mathbf {b} =\mathbf {0} }"></span> in this equation.<sup id="cite_ref-FOOTNOTEMeyer2000Exercise_5.13.15–17,_p._442_109-0" class="reference"><a href="#cite_note-FOOTNOTEMeyer2000Exercise_5.13.15–17,_p._442-109"><span class="cite-bracket">&#91;</span>97<span class="cite-bracket">&#93;</span></a></sup> The space of solutions is the affine subspace <span class="texhtml"><b>x</b> + <i>V</i></span> where <b>x</b> is a particular solution of the equation, and <i>V</i> is the space of solutions of the homogeneous equation (the <a href="/wiki/Nullspace" class="mw-redirect" title="Nullspace">nullspace</a> of <i>A</i>). </p><p>The set of one-dimensional subspaces of a fixed finite-dimensional vector space <i>V</i> is known as <i>projective space</i>; it may be used to formalize the idea of <a href="/wiki/Parallel_(geometry)" title="Parallel (geometry)">parallel</a> lines intersecting at infinity.<sup id="cite_ref-FOOTNOTECoxeter1987_110-0" class="reference"><a href="#cite_note-FOOTNOTECoxeter1987-110"><span class="cite-bracket">&#91;</span>98<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Grassmannian_manifold" class="mw-redirect" title="Grassmannian manifold">Grassmannians</a> and <a href="/wiki/Flag_manifold" class="mw-redirect" title="Flag manifold">flag manifolds</a> generalize this by parametrizing linear subspaces of fixed dimension <i>k</i> and <a href="/wiki/Flag_(linear_algebra)" title="Flag (linear algebra)">flags</a> of subspaces, respectively. </p> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=28" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width reflist-columns-3"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">It is also common, especially in physics, to denote vectors with an arrow on top: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5548bdd4889d2a7931f2478b38dded1fa898eff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.822ex; height:2.343ex;" alt="{\displaystyle {\vec {v}}.}"></span> It is also common, especially in higher mathematics, to not use any typographical method for distinguishing vectors from other mathematical objects.</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">Scalar multiplication is not to be confused with the <a href="/wiki/Scalar_product" class="mw-redirect" title="Scalar product">scalar product</a>, which is an additional operation on some specific vector spaces, called <a href="/wiki/Inner_product_space" title="Inner product space">inner product spaces</a>. Scalar multiplication is the multiplication of a vector <i>by</i> a scalar that produces a vector, while the scalar product is a multiplication of two vectors that produces a scalar.</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text">This axiom is not an <a href="/wiki/Associative_property" title="Associative property">associative property</a>, since it refers to two different operations, scalar multiplication and field multiplication. So, it is independent from the associativity of field multiplication, which is assumed by field axioms.</span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text">This is typically the case when a vector space is also considered as an <a href="/wiki/Affine_space" title="Affine space">affine space</a>. In this case, a linear subspace contains the <a href="/wiki/Zero_vector" class="mw-redirect" title="Zero vector">zero vector</a>, while an affine subspace does not necessarily contain it.</span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text">Some authors, such as <a href="#CITEREFRoman2005">Roman (2005)</a>, choose to start with this <a href="/wiki/Equivalence_relation" title="Equivalence relation">equivalence relation</a> and derive the concrete shape of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V/W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V/W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74f0444abe38d7c9392ba2cfd13031b0f3d39cac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.385ex; height:2.843ex;" alt="{\displaystyle V/W}"></span> from this.</span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text">This requirement implies that the topology gives rise to a <a href="/wiki/Uniform_structure" class="mw-redirect" title="Uniform structure">uniform structure</a>, <a href="#CITEREFBourbaki1989">Bourbaki (1989)</a>, loc = ch. II.</span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text">The <a href="/wiki/Triangle_inequality" title="Triangle inequality">triangle inequality</a> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f+g\|_{p}\leq \|f\|_{p}+\|g\|_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <mo>+</mo> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>+</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f+g\|_{p}\leq \|f\|_{p}+\|g\|_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1d3de762058656808721fc899c4b223914c6c3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:23.721ex; height:3.009ex;" alt="{\displaystyle \|f+g\|_{p}\leq \|f\|_{p}+\|g\|_{p}}"></span> is provided by the <a href="/wiki/Minkowski_inequality" title="Minkowski inequality">Minkowski inequality</a>. For technical reasons, in the context of functions one has to identify functions that agree <a href="/wiki/Almost_everywhere" title="Almost everywhere">almost everywhere</a> to get a norm, and not only a <a href="/wiki/Seminorm" title="Seminorm">seminorm</a>.</span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text"> "Many functions in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba162c66ca85776c83557af5088cc6f8584d1912" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.637ex; height:2.676ex;" alt="{\displaystyle L^{2}}"></span> of Lebesgue measure, being unbounded, cannot be integrated with the classical Riemann integral. So spaces of Riemann integrable functions would not be complete in the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba162c66ca85776c83557af5088cc6f8584d1912" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.637ex; height:2.676ex;" alt="{\displaystyle L^{2}}"></span> norm, and the orthogonal decomposition would not apply to them. This shows one of the advantages of Lebesgue integration.", <a href="#CITEREFDudley1989">Dudley (1989)</a>, §5.3, p. 125.</span> </li> <li id="cite_note-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-87">^</a></b></span> <span class="reference-text">For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\neq 2,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>2</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\neq 2,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90cba96ef7df9709447abd7664755985c17d00ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:6.167ex; height:2.676ex;" alt="{\displaystyle p\neq 2,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{p}(\Omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{p}(\Omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b1ecf636f78aa6950ffe35ed4723bea9d8ca331" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.129ex; height:2.843ex;" alt="{\displaystyle L^{p}(\Omega )}"></span> is not a Hilbert space.</span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text">A basis of a Hilbert space is not the same thing as a basis of a linear algebra. For distinction, a linear algebra basis for a Hilbert space is called a <a href="/wiki/Hamel_basis" class="mw-redirect" title="Hamel basis">Hamel basis</a>.</span> </li> <li id="cite_note-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-101">^</a></b></span> <span class="reference-text">That is, there is a <a href="/wiki/Homeomorphism" title="Homeomorphism">homeomorphism</a> from π<sup>−1</sup>(<i>U</i>) to <span class="texhtml"><i>V</i> × <i>U</i></span> which restricts to linear isomorphisms between fibers.</span> </li> <li id="cite_note-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-103">^</a></b></span> <span class="reference-text">A line bundle, such as the tangent bundle of <i>S</i><sup>1</sup> is trivial if and only if there is a <a href="/wiki/Section_(fiber_bundle)" title="Section (fiber bundle)">section</a> that vanishes nowhere, see <a href="#CITEREFHusemoller1994">Husemoller (1994)</a>, Corollary 8.3. The sections of the tangent bundle are just <a href="/wiki/Vector_field" title="Vector field">vector fields</a>.</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Citations">Citations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=29" title="Edit section: Citations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width" style="column-width: 20em;"> <ol class="references"> <li id="cite_note-FOOTNOTELang2002-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELang2002_2-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang2002">Lang 2002</a>.</span> </li> <li id="cite_note-FOOTNOTEBrown199186-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBrown199186_3-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBrown1991">Brown 1991</a>, p.&#160;86.</span> </li> <li id="cite_note-FOOTNOTERoman2005ch._1,_p._27-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERoman2005ch._1,_p._27_5-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRoman2005">Roman 2005</a>, ch. 1, p. 27.</span> </li> <li id="cite_note-FOOTNOTEBrown199187-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBrown199187_7-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBrown1991">Brown 1991</a>, p.&#160;87.</span> </li> <li id="cite_note-FOOTNOTESpringer2000&#91;httpsbooksgooglecombooksidCes-AAAAQBAJpgPA185_185&#93;Brown199186-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTESpringer2000[httpsbooksgooglecombooksidCes-AAAAQBAJpgPA185_185]Brown199186_8-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFSpringer2000">Springer 2000</a>, p.&#160;<a rel="nofollow" class="external text" href="https://books.google.com/books?id=Ces-AAAAQBAJ&amp;pg=PA185">185</a>; <a href="#CITEREFBrown1991">Brown 1991</a>, p.&#160;86.</span> </li> <li id="cite_note-FOOTNOTEAtiyahMacdonald196917-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEAtiyahMacdonald196917_9-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFAtiyahMacdonald1969">Atiyah &amp; Macdonald 1969</a>, p.&#160;17.</span> </li> <li id="cite_note-FOOTNOTEBourbaki1998§1.1,_Definition_2-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBourbaki1998§1.1,_Definition_2_10-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBourbaki1998">Bourbaki 1998</a>, §1.1, Definition 2.</span> </li> <li id="cite_note-FOOTNOTEBrown199194-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBrown199194_11-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBrown1991">Brown 1991</a>, p.&#160;94.</span> </li> <li id="cite_note-FOOTNOTEBrown199199–101-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBrown199199–101_12-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBrown1991">Brown 1991</a>, pp.&#160;99–101.</span> </li> <li id="cite_note-FOOTNOTEBrown199192-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBrown199192_13-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBrown1991">Brown 1991</a>, p.&#160;92.</span> </li> <li id="cite_note-FOOTNOTEStollWong1968&#91;httpsbooksgooglecombooksidgLbiBQAAQBAJpgPA14_14&#93;-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEStollWong1968[httpsbooksgooglecombooksidgLbiBQAAQBAJpgPA14_14]_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEStollWong1968[httpsbooksgooglecombooksidgLbiBQAAQBAJpgPA14_14]_14-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFStollWong1968">Stoll &amp; Wong 1968</a>, p.&#160;<a rel="nofollow" class="external text" href="https://books.google.com/books?id=gLbiBQAAQBAJ&amp;pg=PA14">14</a>.</span> </li> <li id="cite_note-FOOTNOTERoman200541–42-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERoman200541–42_15-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRoman2005">Roman 2005</a>, pp.&#160;41–42.</span> </li> <li id="cite_note-FOOTNOTELang198710–11AntonRorres2010&#91;httpsbooksgooglecombooksid1PJ-WHepeBsCpgPA212_212&#93;-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELang198710–11AntonRorres2010[httpsbooksgooglecombooksid1PJ-WHepeBsCpgPA212_212]_16-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang1987">Lang 1987</a>, p.&#160;10–11; <a href="#CITEREFAntonRorres2010">Anton &amp; Rorres 2010</a>, p.&#160;<a rel="nofollow" class="external text" href="https://books.google.com/books?id=1PJ-WHepeBsC&amp;pg=PA212">212</a>.</span> </li> <li id="cite_note-FOOTNOTEBlass1984-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBlass1984_17-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBlass1984">Blass 1984</a>.</span> </li> <li id="cite_note-FOOTNOTEJoshi1989&#91;httpsbooksgooglecombooksidRM1D3mFw2u0CpgPA450_450&#93;-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEJoshi1989[httpsbooksgooglecombooksidRM1D3mFw2u0CpgPA450_450]_18-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFJoshi1989">Joshi 1989</a>, p.&#160;<a rel="nofollow" class="external text" href="https://books.google.com/books?id=RM1D3mFw2u0C&amp;pg=PA450">450</a>.</span> </li> <li id="cite_note-FOOTNOTEHeil2011&#91;httpsbooksgooglecombooksidprfuUT0Sw-ACpgPA126_126&#93;-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHeil2011[httpsbooksgooglecombooksidprfuUT0Sw-ACpgPA126_126]_19-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHeil2011">Heil 2011</a>, p.&#160;<a rel="nofollow" class="external text" href="https://books.google.com/books?id=prfuUT0Sw-AC&amp;pg=PA126">126</a>.</span> </li> <li id="cite_note-FOOTNOTEHalmos1948&#91;httpsbooksgooglecombooksid1hzYCwAAQBAJpgPA12_12&#93;-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHalmos1948[httpsbooksgooglecombooksid1hzYCwAAQBAJpgPA12_12]_20-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHalmos1948">Halmos 1948</a>, p.&#160;<a rel="nofollow" class="external text" href="https://books.google.com/books?id=1hzYCwAAQBAJ&amp;pg=PA12">12</a>.</span> </li> <li id="cite_note-FOOTNOTEBourbaki1969ch._&quot;Algèbre_linéaire_et_algèbre_multilinéaire&quot;,_pp._78–91-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBourbaki1969ch._&quot;Algèbre_linéaire_et_algèbre_multilinéaire&quot;,_pp._78–91_21-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBourbaki1969">Bourbaki 1969</a>, ch. "Algèbre linéaire et algèbre multilinéaire", pp. 78–91.</span> </li> <li id="cite_note-FOOTNOTEBolzano1804-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBolzano1804_22-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBolzano1804">Bolzano 1804</a>.</span> </li> <li id="cite_note-FOOTNOTEMöbius1827-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMöbius1827_23-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMöbius1827">Möbius 1827</a>.</span> </li> <li id="cite_note-FOOTNOTEBellavitis1833-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBellavitis1833_24-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBellavitis1833">Bellavitis 1833</a>.</span> </li> <li id="cite_note-FOOTNOTEDorier1995-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEDorier1995_25-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFDorier1995">Dorier 1995</a>.</span> </li> <li id="cite_note-FOOTNOTEHamilton1853-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHamilton1853_26-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHamilton1853">Hamilton 1853</a>.</span> </li> <li id="cite_note-FOOTNOTEGrassmann2000-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGrassmann2000_27-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGrassmann2000">Grassmann 2000</a>.</span> </li> <li id="cite_note-FOOTNOTEPeano1888ch._IX-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEPeano1888ch._IX_28-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFPeano1888">Peano 1888</a>, ch. IX.</span> </li> <li id="cite_note-FOOTNOTEGuo2021-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGuo2021_29-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGuo2021">Guo 2021</a>.</span> </li> <li id="cite_note-FOOTNOTEMoore1995268–271-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMoore1995268–271_30-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMoore1995">Moore 1995</a>, pp.&#160;268–271.</span> </li> <li id="cite_note-FOOTNOTEBanach1922-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBanach1922_31-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBanach1922">Banach 1922</a>.</span> </li> <li id="cite_note-FOOTNOTEDorier1995Moore1995-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEDorier1995Moore1995_32-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFDorier1995">Dorier 1995</a>; <a href="#CITEREFMoore1995">Moore 1995</a>.</span> </li> <li id="cite_note-FOOTNOTEKreyszig2020&#91;httpsbooksgooglecombooksidw4T3DwAAQBAJpgPA355_355&#93;-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEKreyszig2020[httpsbooksgooglecombooksidw4T3DwAAQBAJpgPA355_355]_33-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFKreyszig2020">Kreyszig 2020</a>, p.&#160;<a rel="nofollow" class="external text" href="https://books.google.com/books?id=w4T3DwAAQBAJ&amp;pg=PA355">355</a>.</span> </li> <li id="cite_note-FOOTNOTEKreyszig2020&#91;httpsbooksgooglecombooksidw4T3DwAAQBAJpgPA358_358&amp;ndash;359&#93;-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEKreyszig2020[httpsbooksgooglecombooksidw4T3DwAAQBAJpgPA358_358&amp;ndash;359]_34-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFKreyszig2020">Kreyszig 2020</a>, p.&#160;<a rel="nofollow" class="external text" href="https://books.google.com/books?id=w4T3DwAAQBAJ&amp;pg=PA358">358&#8211;359</a>.</span> </li> <li id="cite_note-FOOTNOTEJain2001&#91;httpsbooksgooglecombooksid-lzAee3uQtICpgPA11_11&#93;-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEJain2001[httpsbooksgooglecombooksid-lzAee3uQtICpgPA11_11]_35-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFJain2001">Jain 2001</a>, p.&#160;<a rel="nofollow" class="external text" href="https://books.google.com/books?id=-lzAee3uQtIC&amp;pg=PA11">11</a>.</span> </li> <li id="cite_note-FOOTNOTELang1987ch._I.1-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELang1987ch._I.1_36-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang1987">Lang 1987</a>, ch. I.1.</span> </li> <li id="cite_note-FOOTNOTELang2002ch._V.1-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELang2002ch._V.1_37-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang2002">Lang 2002</a>, ch. V.1.</span> </li> <li id="cite_note-FOOTNOTELang1993ch._XII.3.,_p._335-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELang1993ch._XII.3.,_p._335_38-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang1993">Lang 1993</a>, ch. XII.3., p. 335.</span> </li> <li id="cite_note-FOOTNOTELang1987ch._VI.3.-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELang1987ch._VI.3._39-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang1987">Lang 1987</a>, ch. VI.3..</span> </li> <li id="cite_note-FOOTNOTERoman2005ch._2,_p._45-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERoman2005ch._2,_p._45_40-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRoman2005">Roman 2005</a>, ch. 2, p. 45.</span> </li> <li id="cite_note-FOOTNOTELang1987ch._IV.4,_Corollary,_p._106-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELang1987ch._IV.4,_Corollary,_p._106_41-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang1987">Lang 1987</a>, ch. IV.4, Corollary, p. 106.</span> </li> <li id="cite_note-FOOTNOTENicholson2018ch._7.3-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTENicholson2018ch._7.3_42-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFNicholson2018">Nicholson 2018</a>, ch. 7.3.</span> </li> <li id="cite_note-FOOTNOTELang1987Example_IV.2.6-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELang1987Example_IV.2.6_43-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang1987">Lang 1987</a>, Example IV.2.6.</span> </li> <li id="cite_note-FOOTNOTELang1987ch._VI.6-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELang1987ch._VI.6_44-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang1987">Lang 1987</a>, ch. VI.6.</span> </li> <li id="cite_note-FOOTNOTEHalmos1974p._28,_Ex._9-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHalmos1974p._28,_Ex._9_45-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHalmos1974">Halmos 1974</a>, p. 28, Ex. 9.</span> </li> <li id="cite_note-FOOTNOTELang1987Theorem_IV.2.1,_p._95-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELang1987Theorem_IV.2.1,_p._95_46-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang1987">Lang 1987</a>, Theorem IV.2.1, p. 95.</span> </li> <li id="cite_note-FOOTNOTERoman2005Th._2.5_and_2.6,_p._49-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERoman2005Th._2.5_and_2.6,_p._49_47-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRoman2005">Roman 2005</a>, Th. 2.5 and 2.6, p. 49.</span> </li> <li id="cite_note-FOOTNOTELang1987ch._V.1-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELang1987ch._V.1_48-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang1987">Lang 1987</a>, ch. V.1.</span> </li> <li id="cite_note-FOOTNOTELang1987ch._V.3.,_Corollary,_p._106-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELang1987ch._V.3.,_Corollary,_p._106_49-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang1987">Lang 1987</a>, ch. V.3., Corollary, p. 106.</span> </li> <li id="cite_note-FOOTNOTELang1987Theorem_VII.9.8,_p._198-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELang1987Theorem_VII.9.8,_p._198_50-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang1987">Lang 1987</a>, Theorem VII.9.8, p. 198.</span> </li> <li id="cite_note-FOOTNOTERoman2005ch._8,_p._135–156-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERoman2005ch._8,_p._135–156_51-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRoman2005">Roman 2005</a>, ch. 8, p. 135–156.</span> </li> <li id="cite_note-FOOTNOTELang1987ch._IX.4-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELang1987ch._IX.4_52-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang1987"> &amp; Lang 1987</a>, ch. IX.4.</span> </li> <li id="cite_note-FOOTNOTERoman2005ch._8,_p._140-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERoman2005ch._8,_p._140_53-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRoman2005">Roman 2005</a>, ch. 8, p. 140.</span> </li> <li id="cite_note-FOOTNOTERoman2005ch._1,_p._29-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERoman2005ch._1,_p._29_54-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRoman2005">Roman 2005</a>, ch. 1, p. 29.</span> </li> <li id="cite_note-FOOTNOTERoman2005ch._1,_p._35-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERoman2005ch._1,_p._35_56-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRoman2005">Roman 2005</a>, ch. 1, p. 35.</span> </li> <li id="cite_note-FOOTNOTENicholson2018ch._10.4-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTENicholson2018ch._10.4_57-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFNicholson2018">Nicholson 2018</a>, ch. 10.4.</span> </li> <li id="cite_note-FOOTNOTERoman2005ch._3,_p._64-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERoman2005ch._3,_p._64_58-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRoman2005">Roman 2005</a>, ch. 3, p. 64.</span> </li> <li id="cite_note-FOOTNOTELang1987ch._IV.3.-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELang1987ch._IV.3._60-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang1987">Lang 1987</a>, ch. IV.3..</span> </li> <li id="cite_note-FOOTNOTERoman2005ch._2,_p._48-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERoman2005ch._2,_p._48_61-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRoman2005">Roman 2005</a>, ch. 2, p. 48.</span> </li> <li id="cite_note-FOOTNOTENicholson2018ch._7.4-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTENicholson2018ch._7.4_62-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFNicholson2018">Nicholson 2018</a>, ch. 7.4.</span> </li> <li id="cite_note-FOOTNOTEMac_Lane1998-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMac_Lane1998_63-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMac_Lane1998">Mac Lane 1998</a>.</span> </li> <li id="cite_note-FOOTNOTERoman2005ch._1,_pp._31–32-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERoman2005ch._1,_pp._31–32_64-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRoman2005">Roman 2005</a>, ch. 1, pp. 31–32.</span> </li> <li id="cite_note-FOOTNOTELang2002ch._XVI.1-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELang2002ch._XVI.1_65-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang2002">Lang 2002</a>, ch. XVI.1.</span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><a href="#CITEREFRoman2005">Roman (2005)</a>, Th. 14.3. See also <a href="/wiki/Yoneda_lemma" title="Yoneda lemma">Yoneda lemma</a>.</span> </li> <li id="cite_note-FOOTNOTERudin1991p.3-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERudin1991p.3_67-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRudin1991">Rudin 1991</a>, p.3.</span> </li> <li id="cite_note-FOOTNOTESchaeferWolff1999pp._204–205-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTESchaeferWolff1999pp._204–205_68-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFSchaeferWolff1999">Schaefer &amp; Wolff 1999</a>, pp. 204–205.</span> </li> <li id="cite_note-FOOTNOTEBourbaki2004ch._2,_p._48-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBourbaki2004ch._2,_p._48_69-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBourbaki2004">Bourbaki 2004</a>, ch. 2, p. 48.</span> </li> <li id="cite_note-FOOTNOTERoman2005ch._9-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERoman2005ch._9_70-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRoman2005">Roman 2005</a>, ch. 9.</span> </li> <li id="cite_note-FOOTNOTENaber2003ch._1.2-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTENaber2003ch._1.2_71-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFNaber2003">Naber 2003</a>, ch. 1.2.</span> </li> <li id="cite_note-FOOTNOTETreves1967Bourbaki1987-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETreves1967Bourbaki1987_72-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTreves1967">Treves 1967</a>; <a href="#CITEREFBourbaki1987">Bourbaki 1987</a>.</span> </li> <li id="cite_note-FOOTNOTESchaeferWolff1999p._7-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTESchaeferWolff1999p._7_74-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFSchaeferWolff1999">Schaefer &amp; Wolff 1999</a>, p. 7.</span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text"><a href="#CITEREFKreyszig1989">Kreyszig 1989</a>, §4.11-5</span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text"><a href="#CITEREFKreyszig1989">Kreyszig 1989</a>, §1.5-5</span> </li> <li id="cite_note-FOOTNOTEChoquet1966Proposition_III.7.2-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEChoquet1966Proposition_III.7.2_77-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFChoquet1966">Choquet 1966</a>, Proposition III.7.2.</span> </li> <li id="cite_note-FOOTNOTETreves1967p._34–36-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETreves1967p._34–36_78-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTreves1967">Treves 1967</a>, p. 34–36.</span> </li> <li id="cite_note-FOOTNOTELang1983Cor._4.1.2,_p._69-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELang1983Cor._4.1.2,_p._69_79-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang1983">Lang 1983</a>, Cor. 4.1.2, p. 69.</span> </li> <li id="cite_note-FOOTNOTETreves1967ch._11-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETreves1967ch._11_80-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTreves1967">Treves 1967</a>, ch. 11.</span> </li> <li id="cite_note-FOOTNOTETreves1967Theorem_11.2,_p._102-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETreves1967Theorem_11.2,_p._102_82-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTreves1967">Treves 1967</a>, Theorem 11.2, p. 102.</span> </li> <li id="cite_note-FOOTNOTEEvans1998ch._5-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEEvans1998ch._5_84-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFEvans1998">Evans 1998</a>, ch. 5.</span> </li> <li id="cite_note-FOOTNOTETreves1967ch._12-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETreves1967ch._12_85-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTreves1967">Treves 1967</a>, ch. 12.</span> </li> <li id="cite_note-FOOTNOTEDenneryKrzywicki1996p.190-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEDenneryKrzywicki1996p.190_86-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFDenneryKrzywicki1996">Dennery &amp; Krzywicki 1996</a>, p.190.</span> </li> <li id="cite_note-FOOTNOTELang1993Th._XIII.6,_p._349-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELang1993Th._XIII.6,_p._349_88-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang1993">Lang 1993</a>, Th. XIII.6, p. 349.</span> </li> <li id="cite_note-FOOTNOTELang1993Th._III.1.1-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELang1993Th._III.1.1_89-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang1993">Lang 1993</a>, Th. III.1.1.</span> </li> <li id="cite_note-FOOTNOTEChoquet1966Lemma_III.16.11-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEChoquet1966Lemma_III.16.11_91-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFChoquet1966">Choquet 1966</a>, Lemma III.16.11.</span> </li> <li id="cite_note-FOOTNOTEKreyszig1999Chapter_11-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEKreyszig1999Chapter_11_92-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFKreyszig1999">Kreyszig 1999</a>, Chapter 11.</span> </li> <li id="cite_note-FOOTNOTEGriffiths1995Chapter_1-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGriffiths1995Chapter_1_93-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGriffiths1995">Griffiths 1995</a>, Chapter 1.</span> </li> <li id="cite_note-FOOTNOTELang1993ch._XVII.3-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELang1993ch._XVII.3_94-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang1993">Lang 1993</a>, ch. XVII.3.</span> </li> <li id="cite_note-FOOTNOTELang2002ch._III.1,_p._121-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELang2002ch._III.1,_p._121_95-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang2002">Lang 2002</a>, ch. III.1, p. 121.</span> </li> <li id="cite_note-FOOTNOTEEisenbud1995ch._1.6-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEEisenbud1995ch._1.6_96-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFEisenbud1995">Eisenbud 1995</a>, ch. 1.6.</span> </li> <li id="cite_note-FOOTNOTEVaradarajan1974-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEVaradarajan1974_97-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFVaradarajan1974">Varadarajan 1974</a>.</span> </li> <li id="cite_note-FOOTNOTELang2002ch._XVI.7-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELang2002ch._XVI.7_98-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang2002">Lang 2002</a>, ch. XVI.7.</span> </li> <li id="cite_note-FOOTNOTELang2002ch._XVI.8-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELang2002ch._XVI.8_99-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang2002">Lang 2002</a>, ch. XVI.8.</span> </li> <li id="cite_note-FOOTNOTESpivak1999ch._3-100"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTESpivak1999ch._3_100-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFSpivak1999">Spivak 1999</a>, ch. 3.</span> </li> <li id="cite_note-FOOTNOTEKreyszig1991§34,_p._108-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEKreyszig1991§34,_p._108_102-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFKreyszig1991">Kreyszig 1991</a>, §34, p. 108.</span> </li> <li id="cite_note-FOOTNOTEEisenbergGuy1979-104"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEEisenbergGuy1979_104-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFEisenbergGuy1979">Eisenberg &amp; Guy 1979</a>.</span> </li> <li id="cite_note-FOOTNOTEAtiyah1989-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEAtiyah1989_105-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFAtiyah1989">Atiyah 1989</a>.</span> </li> <li id="cite_note-FOOTNOTEArtin1991ch._12-106"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEArtin1991ch._12_106-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFArtin1991">Artin 1991</a>, ch. 12.</span> </li> <li id="cite_note-FOOTNOTEGrillet2007-107"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGrillet2007_107-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGrillet2007">Grillet 2007</a>.</span> </li> <li id="cite_note-FOOTNOTEMeyer2000Example_5.13.5,_p._436-108"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMeyer2000Example_5.13.5,_p._436_108-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMeyer2000">Meyer 2000</a>, Example 5.13.5, p. 436.</span> </li> <li id="cite_note-FOOTNOTEMeyer2000Exercise_5.13.15–17,_p._442-109"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMeyer2000Exercise_5.13.15–17,_p._442_109-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMeyer2000">Meyer 2000</a>, Exercise 5.13.15–17, p. 442.</span> </li> <li id="cite_note-FOOTNOTECoxeter1987-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTECoxeter1987_110-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFCoxeter1987">Coxeter 1987</a>.</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=30" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Algebra">Algebra</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=31" title="Edit section: Algebra"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin refbegin-columns references-column-width" style="column-width: 30em"> <ul><li><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFAntonRorres2010" class="citation cs2">Anton, Howard; Rorres, Chris (2010), <i>Elementary Linear Algebra: Applications Version</i> (10th&#160;ed.), John Wiley &amp; Sons</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elementary+Linear+Algebra%3A+Applications+Version&amp;rft.edition=10th&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2010&amp;rft.aulast=Anton&amp;rft.aufirst=Howard&amp;rft.au=Rorres%2C+Chris&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArtin1991" class="citation cs2"><a href="/wiki/Michael_Artin" title="Michael Artin">Artin, Michael</a> (1991), <i>Algebra</i>, <a href="/wiki/Prentice_Hall" title="Prentice Hall">Prentice Hall</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-89871-510-1" title="Special:BookSources/978-0-89871-510-1"><bdi>978-0-89871-510-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Algebra&amp;rft.pub=Prentice+Hall&amp;rft.date=1991&amp;rft.isbn=978-0-89871-510-1&amp;rft.aulast=Artin&amp;rft.aufirst=Michael&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrown1991" class="citation cs2">Brown, William A. (1991), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/matricesvectorsp0000brow"><i>Matrices and vector spaces</i></a></span>, New York: M. Dekker, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8247-8419-5" title="Special:BookSources/978-0-8247-8419-5"><bdi>978-0-8247-8419-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Matrices+and+vector+spaces&amp;rft.place=New+York&amp;rft.pub=M.+Dekker&amp;rft.date=1991&amp;rft.isbn=978-0-8247-8419-5&amp;rft.aulast=Brown&amp;rft.aufirst=William+A.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmatricesvectorsp0000brow&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrillet2007" class="citation cs2">Grillet, Pierre Antoine (2007), <i>Abstract algebra</i>, Graduate Texts in Mathematics, vol.&#160;242, Springer Science &amp; Business Media, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-0-387-71568-1">10.1007/978-0-387-71568-1</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-71568-1" title="Special:BookSources/978-0-387-71568-1"><bdi>978-0-387-71568-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Abstract+algebra&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2007&amp;rft_id=info%3Adoi%2F10.1007%2F978-0-387-71568-1&amp;rft.isbn=978-0-387-71568-1&amp;rft.aulast=Grillet&amp;rft.aufirst=Pierre+Antoine&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalmos1948" class="citation cs2"><a href="/wiki/Paul_R._Halmos" class="mw-redirect" title="Paul R. Halmos">Halmos, Paul R.</a> (1948), <i>Finite Dimensional Vector Spaces</i>, vol.&#160;7, Princeton University Press</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Finite+Dimensional+Vector+Spaces&amp;rft.pub=Princeton+University+Press&amp;rft.date=1948&amp;rft.aulast=Halmos&amp;rft.aufirst=Paul+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeil2011" class="citation cs2">Heil, Christopher (2011), <i>A Basis Theory Primer: Expanded Edition</i>, Applied and Numerical Harmonic Analysis, Birkhäuser, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-0-8176-4687-5">10.1007/978-0-8176-4687-5</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8176-4687-5" title="Special:BookSources/978-0-8176-4687-5"><bdi>978-0-8176-4687-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Basis+Theory+Primer%3A+Expanded+Edition&amp;rft.series=Applied+and+Numerical+Harmonic+Analysis&amp;rft.pub=Birkh%C3%A4user&amp;rft.date=2011&amp;rft_id=info%3Adoi%2F10.1007%2F978-0-8176-4687-5&amp;rft.isbn=978-0-8176-4687-5&amp;rft.aulast=Heil&amp;rft.aufirst=Christopher&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJain2001" class="citation cs2">Jain, M. C. (2001), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=-lzAee3uQtIC"><i>Vector Spaces and Matrices in Physics</i></a>, CRC Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8493-0978-6" title="Special:BookSources/978-0-8493-0978-6"><bdi>978-0-8493-0978-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Vector+Spaces+and+Matrices+in+Physics&amp;rft.pub=CRC+Press&amp;rft.date=2001&amp;rft.isbn=978-0-8493-0978-6&amp;rft.aulast=Jain&amp;rft.aufirst=M.+C.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D-lzAee3uQtIC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJoshi1989" class="citation cs2">Joshi, K. D. (1989), <i>Foundations of Discrete Mathematics</i>, John Wiley &amp; Sons</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Foundations+of+Discrete+Mathematics&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1989&amp;rft.aulast=Joshi&amp;rft.aufirst=K.+D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKreyszig2020" class="citation cs2">Kreyszig, Erwin (2020), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=w4T3DwAAQBAJ"><i>Advanced Engineering Mathematics</i></a>, John Wiley &amp; Sons, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-119-45592-9" title="Special:BookSources/978-1-119-45592-9"><bdi>978-1-119-45592-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Advanced+Engineering+Mathematics&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2020&amp;rft.isbn=978-1-119-45592-9&amp;rft.aulast=Kreyszig&amp;rft.aufirst=Erwin&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dw4T3DwAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLang1987" class="citation cs2">Lang, Serge (1987), <i>Linear algebra</i>, Undergraduate Texts in Mathematics (3rd&#160;ed.), Springer, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4757-1949-9">10.1007/978-1-4757-1949-9</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4757-1949-9" title="Special:BookSources/978-1-4757-1949-9"><bdi>978-1-4757-1949-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Linear+algebra&amp;rft.series=Undergraduate+Texts+in+Mathematics&amp;rft.edition=3rd&amp;rft.pub=Springer&amp;rft.date=1987&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-4757-1949-9&amp;rft.isbn=978-1-4757-1949-9&amp;rft.aulast=Lang&amp;rft.aufirst=Serge&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLang2002" class="citation cs2"><a href="/wiki/Serge_Lang" title="Serge Lang">Lang, Serge</a> (2002), <i>Algebra</i>, <a href="/wiki/Graduate_Texts_in_Mathematics" title="Graduate Texts in Mathematics">Graduate Texts in Mathematics</a>, vol.&#160;211 (Revised third&#160;ed.), New York: Springer-Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-95385-4" title="Special:BookSources/978-0-387-95385-4"><bdi>978-0-387-95385-4</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1878556">1878556</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Algebra&amp;rft.place=New+York&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.edition=Revised+third&amp;rft.pub=Springer-Verlag&amp;rft.date=2002&amp;rft.isbn=978-0-387-95385-4&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1878556%23id-name%3DMR&amp;rft.aulast=Lang&amp;rft.aufirst=Serge&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMac_Lane1999" class="citation cs2"><a href="/wiki/Saunders_Mac_Lane" title="Saunders Mac Lane">Mac Lane, Saunders</a> (1999), <i>Algebra</i> (3rd&#160;ed.), American Mathematical Soc., pp.&#160;<span class="nowrap">193–</span>222, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8218-1646-2" title="Special:BookSources/978-0-8218-1646-2"><bdi>978-0-8218-1646-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Algebra&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E193-%3C%2Fspan%3E222&amp;rft.edition=3rd&amp;rft.pub=American+Mathematical+Soc.&amp;rft.date=1999&amp;rft.isbn=978-0-8218-1646-2&amp;rft.aulast=Mac+Lane&amp;rft.aufirst=Saunders&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMeyer2000" class="citation cs2">Meyer, Carl D. (2000), <a rel="nofollow" class="external text" href="http://www.matrixanalysis.com/"><i>Matrix Analysis and Applied Linear Algebra</i></a>, <a href="/wiki/Society_for_Industrial_and_Applied_Mathematics" title="Society for Industrial and Applied Mathematics">SIAM</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-89871-454-8" title="Special:BookSources/978-0-89871-454-8"><bdi>978-0-89871-454-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Matrix+Analysis+and+Applied+Linear+Algebra&amp;rft.pub=SIAM&amp;rft.date=2000&amp;rft.isbn=978-0-89871-454-8&amp;rft.aulast=Meyer&amp;rft.aufirst=Carl+D.&amp;rft_id=http%3A%2F%2Fwww.matrixanalysis.com%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNicholson2018" class="citation cs2">Nicholson, W. Keith (2018), <a rel="nofollow" class="external text" href="https://lyryx.com/linear-algebra-applications/"><i>Linear Algebra with Applications</i></a>, Lyryx</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Linear+Algebra+with+Applications&amp;rft.pub=Lyryx&amp;rft.date=2018&amp;rft.aulast=Nicholson&amp;rft.aufirst=W.+Keith&amp;rft_id=https%3A%2F%2Flyryx.com%2Flinear-algebra-applications%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoman2005" class="citation cs2"><a href="/wiki/Steven_Roman" title="Steven Roman">Roman, Steven</a> (2005), <i>Advanced Linear Algebra</i>, Graduate Texts in Mathematics, vol.&#160;135 (2nd&#160;ed.), Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-24766-3" title="Special:BookSources/978-0-387-24766-3"><bdi>978-0-387-24766-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Advanced+Linear+Algebra&amp;rft.place=Berlin%2C+New+York&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.edition=2nd&amp;rft.pub=Springer-Verlag&amp;rft.date=2005&amp;rft.isbn=978-0-387-24766-3&amp;rft.aulast=Roman&amp;rft.aufirst=Steven&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSpindler1993" class="citation cs2">Spindler, Karlheinz (1993), <i>Abstract Algebra with Applications: Volume 1: Vector spaces and groups</i>, CRC, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8247-9144-5" title="Special:BookSources/978-0-8247-9144-5"><bdi>978-0-8247-9144-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Abstract+Algebra+with+Applications%3A+Volume+1%3A+Vector+spaces+and+groups&amp;rft.pub=CRC&amp;rft.date=1993&amp;rft.isbn=978-0-8247-9144-5&amp;rft.aulast=Spindler&amp;rft.aufirst=Karlheinz&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSpringer2000" class="citation cs2">Springer, T.A. (2000), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Ces-AAAAQBAJ"><i>Linear Algebraic Groups</i></a>, Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8176-4840-4" title="Special:BookSources/978-0-8176-4840-4"><bdi>978-0-8176-4840-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Linear+Algebraic+Groups&amp;rft.pub=Springer&amp;rft.date=2000&amp;rft.isbn=978-0-8176-4840-4&amp;rft.aulast=Springer&amp;rft.aufirst=T.A.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DCes-AAAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStollWong1968" class="citation cs2">Stoll, R. R.; Wong, E. T. (1968), <i>Linear Algebra</i>, Academic Press</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Linear+Algebra&amp;rft.pub=Academic+Press&amp;rft.date=1968&amp;rft.aulast=Stoll&amp;rft.aufirst=R.+R.&amp;rft.au=Wong%2C+E.+T.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvan_der_Waerden1993" class="citation cs2 cs1-prop-foreign-lang-source"><a href="/wiki/Bartel_Leendert_van_der_Waerden" title="Bartel Leendert van der Waerden">van der Waerden, Bartel Leendert</a> (1993), <i>Algebra</i> (in German) (9th&#160;ed.), Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-56799-8" title="Special:BookSources/978-3-540-56799-8"><bdi>978-3-540-56799-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Algebra&amp;rft.place=Berlin%2C+New+York&amp;rft.edition=9th&amp;rft.pub=Springer-Verlag&amp;rft.date=1993&amp;rft.isbn=978-3-540-56799-8&amp;rft.aulast=van+der+Waerden&amp;rft.aufirst=Bartel+Leendert&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading3"><h3 id="Analysis">Analysis</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=32" title="Edit section: Analysis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239549316"><div class="refbegin refbegin-columns references-column-width" style="column-width: 30em"> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBourbaki1987" class="citation cs2"><a href="/wiki/Nicolas_Bourbaki" title="Nicolas Bourbaki">Bourbaki, Nicolas</a> (1987), <i>Topological vector spaces</i>, Elements of mathematics, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-13627-9" title="Special:BookSources/978-3-540-13627-9"><bdi>978-3-540-13627-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Topological+vector+spaces&amp;rft.place=Berlin%2C+New+York&amp;rft.series=Elements+of+mathematics&amp;rft.pub=Springer-Verlag&amp;rft.date=1987&amp;rft.isbn=978-3-540-13627-9&amp;rft.aulast=Bourbaki&amp;rft.aufirst=Nicolas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBourbaki2004" class="citation cs2"><a href="/wiki/Nicolas_Bourbaki" title="Nicolas Bourbaki">Bourbaki, Nicolas</a> (2004), <i>Integration I</i>, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-41129-1" title="Special:BookSources/978-3-540-41129-1"><bdi>978-3-540-41129-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Integration+I&amp;rft.place=Berlin%2C+New+York&amp;rft.pub=Springer-Verlag&amp;rft.date=2004&amp;rft.isbn=978-3-540-41129-1&amp;rft.aulast=Bourbaki&amp;rft.aufirst=Nicolas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBraun1993" class="citation cs2">Braun, Martin (1993), <i>Differential equations and their applications: an introduction to applied mathematics</i>, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-97894-9" title="Special:BookSources/978-0-387-97894-9"><bdi>978-0-387-97894-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Differential+equations+and+their+applications%3A+an+introduction+to+applied+mathematics&amp;rft.place=Berlin%2C+New+York&amp;rft.pub=Springer-Verlag&amp;rft.date=1993&amp;rft.isbn=978-0-387-97894-9&amp;rft.aulast=Braun&amp;rft.aufirst=Martin&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBSE-32001" class="citation cs2">BSE-3 (2001) [1994], <a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Tangent_plane">"Tangent plane"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Tangent+plane&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft.au=BSE-3&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DTangent_plane&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChoquet1966" class="citation cs2"><a href="/wiki/Gustave_Choquet" title="Gustave Choquet">Choquet, Gustave</a> (1966), <i>Topology</i>, Boston, MA: <a href="/wiki/Academic_Press" title="Academic Press">Academic Press</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Topology&amp;rft.place=Boston%2C+MA&amp;rft.pub=Academic+Press&amp;rft.date=1966&amp;rft.aulast=Choquet&amp;rft.aufirst=Gustave&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDenneryKrzywicki1996" class="citation cs2">Dennery, Philippe; Krzywicki, Andre (1996), <i>Mathematics for Physicists</i>, Courier Dover Publications, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-69193-0" title="Special:BookSources/978-0-486-69193-0"><bdi>978-0-486-69193-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematics+for+Physicists&amp;rft.pub=Courier+Dover+Publications&amp;rft.date=1996&amp;rft.isbn=978-0-486-69193-0&amp;rft.aulast=Dennery&amp;rft.aufirst=Philippe&amp;rft.au=Krzywicki%2C+Andre&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDudley1989" class="citation cs2">Dudley, Richard M. (1989), <i>Real analysis and probability</i>, The Wadsworth &amp; Brooks/Cole Mathematics Series, Pacific Grove, CA: Wadsworth &amp; Brooks/Cole Advanced Books &amp; Software, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-534-10050-6" title="Special:BookSources/978-0-534-10050-6"><bdi>978-0-534-10050-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Real+analysis+and+probability&amp;rft.place=Pacific+Grove%2C+CA&amp;rft.series=The+Wadsworth+%26+Brooks%2FCole+Mathematics+Series&amp;rft.pub=Wadsworth+%26+Brooks%2FCole+Advanced+Books+%26+Software&amp;rft.date=1989&amp;rft.isbn=978-0-534-10050-6&amp;rft.aulast=Dudley&amp;rft.aufirst=Richard+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDunham2005" class="citation cs2">Dunham, William (2005), <i>The Calculus Gallery</i>, <a href="/wiki/Princeton_University_Press" title="Princeton University Press">Princeton University Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-691-09565-3" title="Special:BookSources/978-0-691-09565-3"><bdi>978-0-691-09565-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Calculus+Gallery&amp;rft.pub=Princeton+University+Press&amp;rft.date=2005&amp;rft.isbn=978-0-691-09565-3&amp;rft.aulast=Dunham&amp;rft.aufirst=William&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEvans1998" class="citation cs2">Evans, Lawrence C. (1998), <i>Partial differential equations</i>, Providence, R.I.: <a href="/wiki/American_Mathematical_Society" title="American Mathematical Society">American Mathematical Society</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8218-0772-9" title="Special:BookSources/978-0-8218-0772-9"><bdi>978-0-8218-0772-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Partial+differential+equations&amp;rft.place=Providence%2C+R.I.&amp;rft.pub=American+Mathematical+Society&amp;rft.date=1998&amp;rft.isbn=978-0-8218-0772-9&amp;rft.aulast=Evans&amp;rft.aufirst=Lawrence+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFolland1992" class="citation cs2">Folland, Gerald B. (1992), <i>Fourier Analysis and Its Applications</i>, Brooks-Cole, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-534-17094-3" title="Special:BookSources/978-0-534-17094-3"><bdi>978-0-534-17094-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fourier+Analysis+and+Its+Applications&amp;rft.pub=Brooks-Cole&amp;rft.date=1992&amp;rft.isbn=978-0-534-17094-3&amp;rft.aulast=Folland&amp;rft.aufirst=Gerald+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGasquetWitomski1999" class="citation cs2">Gasquet, Claude; Witomski, Patrick (1999), <i>Fourier Analysis and Applications: Filtering, Numerical Computation, Wavelets</i>, Texts in Applied Mathematics, New York: Springer-Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-98485-8" title="Special:BookSources/978-0-387-98485-8"><bdi>978-0-387-98485-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fourier+Analysis+and+Applications%3A+Filtering%2C+Numerical+Computation%2C+Wavelets&amp;rft.place=New+York&amp;rft.series=Texts+in+Applied+Mathematics&amp;rft.pub=Springer-Verlag&amp;rft.date=1999&amp;rft.isbn=978-0-387-98485-8&amp;rft.aulast=Gasquet&amp;rft.aufirst=Claude&amp;rft.au=Witomski%2C+Patrick&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIfeachorJervis2001" class="citation cs2">Ifeachor, Emmanuel C.; Jervis, Barrie W. (2001), <i>Digital Signal Processing: A Practical Approach</i> (2nd&#160;ed.), Harlow, Essex, England: Prentice-Hall (published 2002), <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-201-59619-9" title="Special:BookSources/978-0-201-59619-9"><bdi>978-0-201-59619-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Digital+Signal+Processing%3A+A+Practical+Approach&amp;rft.place=Harlow%2C+Essex%2C+England&amp;rft.edition=2nd&amp;rft.pub=Prentice-Hall&amp;rft.date=2001&amp;rft.isbn=978-0-201-59619-9&amp;rft.aulast=Ifeachor&amp;rft.aufirst=Emmanuel+C.&amp;rft.au=Jervis%2C+Barrie+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKrantz1999" class="citation cs2">Krantz, Steven G. (1999), <i>A Panorama of Harmonic Analysis</i>, Carus Mathematical Monographs, Washington, DC: Mathematical Association of America, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-88385-031-2" title="Special:BookSources/978-0-88385-031-2"><bdi>978-0-88385-031-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Panorama+of+Harmonic+Analysis&amp;rft.place=Washington%2C+DC&amp;rft.series=Carus+Mathematical+Monographs&amp;rft.pub=Mathematical+Association+of+America&amp;rft.date=1999&amp;rft.isbn=978-0-88385-031-2&amp;rft.aulast=Krantz&amp;rft.aufirst=Steven+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKreyszig1988" class="citation cs2"><a href="/wiki/Erwin_Kreyszig" title="Erwin Kreyszig">Kreyszig, Erwin</a> (1988), <i>Advanced Engineering Mathematics</i> (6th&#160;ed.), New York: John Wiley &amp; Sons, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-85824-9" title="Special:BookSources/978-0-471-85824-9"><bdi>978-0-471-85824-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Advanced+Engineering+Mathematics&amp;rft.place=New+York&amp;rft.edition=6th&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1988&amp;rft.isbn=978-0-471-85824-9&amp;rft.aulast=Kreyszig&amp;rft.aufirst=Erwin&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKreyszig1989" class="citation cs2"><a href="/wiki/Erwin_Kreyszig" title="Erwin Kreyszig">Kreyszig, Erwin</a> (1989), <i>Introductory functional analysis with applications</i>, Wiley Classics Library, New York: <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley &amp; Sons">John Wiley &amp; Sons</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-50459-7" title="Special:BookSources/978-0-471-50459-7"><bdi>978-0-471-50459-7</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0992618">0992618</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introductory+functional+analysis+with+applications&amp;rft.place=New+York&amp;rft.series=Wiley+Classics+Library&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1989&amp;rft.isbn=978-0-471-50459-7&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D992618%23id-name%3DMR&amp;rft.aulast=Kreyszig&amp;rft.aufirst=Erwin&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLang1983" class="citation cs2"><a href="/wiki/Serge_Lang" title="Serge Lang">Lang, Serge</a> (1983), <i>Real analysis</i>, <a href="/wiki/Addison-Wesley" title="Addison-Wesley">Addison-Wesley</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-201-14179-5" title="Special:BookSources/978-0-201-14179-5"><bdi>978-0-201-14179-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Real+analysis&amp;rft.pub=Addison-Wesley&amp;rft.date=1983&amp;rft.isbn=978-0-201-14179-5&amp;rft.aulast=Lang&amp;rft.aufirst=Serge&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLang1993" class="citation cs2"><a href="/wiki/Serge_Lang" title="Serge Lang">Lang, Serge</a> (1993), <i>Real and functional analysis</i>, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-94001-4" title="Special:BookSources/978-0-387-94001-4"><bdi>978-0-387-94001-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Real+and+functional+analysis&amp;rft.place=Berlin%2C+New+York&amp;rft.pub=Springer-Verlag&amp;rft.date=1993&amp;rft.isbn=978-0-387-94001-4&amp;rft.aulast=Lang&amp;rft.aufirst=Serge&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLoomis2011" class="citation cs2">Loomis, Lynn H. (2011) [1953], <i>An introduction to abstract harmonic analysis</i>, Dover, <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2027%2Fuc1.b4250788">2027/uc1.b4250788</a></span>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-48123-4" title="Special:BookSources/978-0-486-48123-4"><bdi>978-0-486-48123-4</bdi></a>, <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/702357363">702357363</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+introduction+to+abstract+harmonic+analysis&amp;rft.pub=Dover&amp;rft.date=2011&amp;rft_id=info%3Ahdl%2F2027%2Fuc1.b4250788&amp;rft_id=info%3Aoclcnum%2F702357363&amp;rft.isbn=978-0-486-48123-4&amp;rft.aulast=Loomis&amp;rft.aufirst=Lynn+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNariciBeckenstein2011" class="citation book cs1">Narici, Lawrence; Beckenstein, Edward (2011). <i>Topological Vector Spaces</i>. Pure and applied mathematics (Second&#160;ed.). Boca Raton, FL: CRC Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1584888666" title="Special:BookSources/978-1584888666"><bdi>978-1584888666</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/144216834">144216834</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Topological+Vector+Spaces&amp;rft.place=Boca+Raton%2C+FL&amp;rft.series=Pure+and+applied+mathematics&amp;rft.edition=Second&amp;rft.pub=CRC+Press&amp;rft.date=2011&amp;rft_id=info%3Aoclcnum%2F144216834&amp;rft.isbn=978-1584888666&amp;rft.aulast=Narici&amp;rft.aufirst=Lawrence&amp;rft.au=Beckenstein%2C+Edward&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRudin1991" class="citation cs2">Rudin, Walter (1991), <i>Functional analysis</i> (2&#160;ed.), McGraw-Hill, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0070542368" title="Special:BookSources/0070542368"><bdi>0070542368</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Functional+analysis&amp;rft.edition=2&amp;rft.pub=McGraw-Hill&amp;rft.date=1991&amp;rft.isbn=0070542368&amp;rft.aulast=Rudin&amp;rft.aufirst=Walter&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchaeferWolff1999" class="citation book cs1"><a href="/wiki/Helmut_H._Schaefer" title="Helmut H. Schaefer">Schaefer, Helmut H.</a>; Wolff, Manfred P. (1999). <i>Topological Vector Spaces</i>. <a href="/wiki/Graduate_Texts_in_Mathematics" title="Graduate Texts in Mathematics">GTM</a>. Vol.&#160;8 (Second&#160;ed.). New York, NY: Springer New York Imprint Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4612-7155-0" title="Special:BookSources/978-1-4612-7155-0"><bdi>978-1-4612-7155-0</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/840278135">840278135</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Topological+Vector+Spaces&amp;rft.place=New+York%2C+NY&amp;rft.series=GTM&amp;rft.edition=Second&amp;rft.pub=Springer+New+York+Imprint+Springer&amp;rft.date=1999&amp;rft_id=info%3Aoclcnum%2F840278135&amp;rft.isbn=978-1-4612-7155-0&amp;rft.aulast=Schaefer&amp;rft.aufirst=Helmut+H.&amp;rft.au=Wolff%2C+Manfred+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTreves1967" class="citation cs2"><a href="/wiki/Fran%C3%A7ois_Tr%C3%A8ves" title="François Trèves">Treves, François</a> (1967), <i>Topological vector spaces, distributions and kernels</i>, Boston, MA: <a href="/wiki/Academic_Press" title="Academic Press">Academic Press</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Topological+vector+spaces%2C+distributions+and+kernels&amp;rft.place=Boston%2C+MA&amp;rft.pub=Academic+Press&amp;rft.date=1967&amp;rft.aulast=Treves&amp;rft.aufirst=Fran%C3%A7ois&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading3"><h3 id="Historical_references">Historical references</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=33" title="Edit section: Historical references"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239549316"><div class="refbegin refbegin-columns references-column-width" style="column-width: 30em"> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBanach1922" class="citation cs2 cs1-prop-foreign-lang-source"><a href="/wiki/Stefan_Banach" title="Stefan Banach">Banach, Stefan</a> (1922), <a rel="nofollow" class="external text" href="http://matwbn.icm.edu.pl/ksiazki/fm/fm3/fm3120.pdf">"Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales (On operations in abstract sets and their application to integral equations)"</a> <span class="cs1-format">(PDF)</span>, <i><a href="/wiki/Fundamenta_Mathematicae" title="Fundamenta Mathematicae">Fundamenta Mathematicae</a></i> (in French), <b>3</b>: <span class="nowrap">133–</span>181, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Ffm-3-1-133-181">10.4064/fm-3-1-133-181</a>, <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0016-2736">0016-2736</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fundamenta+Mathematicae&amp;rft.atitle=Sur+les+op%C3%A9rations+dans+les+ensembles+abstraits+et+leur+application+aux+%C3%A9quations+int%C3%A9grales+%28On+operations+in+abstract+sets+and+their+application+to+integral+equations%29&amp;rft.volume=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E133-%3C%2Fspan%3E181&amp;rft.date=1922&amp;rft_id=info%3Adoi%2F10.4064%2Ffm-3-1-133-181&amp;rft.issn=0016-2736&amp;rft.aulast=Banach&amp;rft.aufirst=Stefan&amp;rft_id=http%3A%2F%2Fmatwbn.icm.edu.pl%2Fksiazki%2Ffm%2Ffm3%2Ffm3120.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBolzano1804" class="citation cs2 cs1-prop-foreign-lang-source"><a href="/wiki/Bernard_Bolzano" title="Bernard Bolzano">Bolzano, Bernard</a> (1804), <a rel="nofollow" class="external text" href="http://dml.cz/handle/10338.dmlcz/400338"><i>Betrachtungen über einige Gegenstände der Elementargeometrie (Considerations of some aspects of elementary geometry)</i></a> (in German)</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Betrachtungen+%C3%BCber+einige+Gegenst%C3%A4nde+der+Elementargeometrie+%28Considerations+of+some+aspects+of+elementary+geometry%29&amp;rft.date=1804&amp;rft.aulast=Bolzano&amp;rft.aufirst=Bernard&amp;rft_id=http%3A%2F%2Fdml.cz%2Fhandle%2F10338.dmlcz%2F400338&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBellavitis1833" class="citation cs2"><a href="/wiki/Giusto_Bellavitis" title="Giusto Bellavitis">Bellavitis, Giuso</a> (1833), "Sopra alcune applicazioni di un nuovo metodo di geometria analitica", <i>Il poligrafo giornale di scienze, lettre ed arti</i>, <b>13</b>, Verona: <span class="nowrap">53–</span>61</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Il+poligrafo+giornale+di+scienze%2C+lettre+ed+arti&amp;rft.atitle=Sopra+alcune+applicazioni+di+un+nuovo+metodo+di+geometria+analitica&amp;rft.volume=13&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E53-%3C%2Fspan%3E61&amp;rft.date=1833&amp;rft.aulast=Bellavitis&amp;rft.aufirst=Giuso&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBourbaki1969" class="citation cs2 cs1-prop-foreign-lang-source"><a href="/wiki/Nicolas_Bourbaki" title="Nicolas Bourbaki">Bourbaki, Nicolas</a> (1969), <i>Éléments d'histoire des mathématiques (Elements of history of mathematics)</i> (in French), Paris: Hermann</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=%C3%89l%C3%A9ments+d%27histoire+des+math%C3%A9matiques+%28Elements+of+history+of+mathematics%29&amp;rft.place=Paris&amp;rft.pub=Hermann&amp;rft.date=1969&amp;rft.aulast=Bourbaki&amp;rft.aufirst=Nicolas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDorier1995" class="citation cs2">Dorier, Jean-Luc (1995), <a rel="nofollow" class="external text" href="http://archive-ouverte.unige.ch/unige:16642">"A general outline of the genesis of vector space theory"</a>, <i><a href="/wiki/Historia_Mathematica" title="Historia Mathematica">Historia Mathematica</a></i>, <b>22</b> (3): <span class="nowrap">227–</span>261, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1006%2Fhmat.1995.1024">10.1006/hmat.1995.1024</a></span>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1347828">1347828</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Historia+Mathematica&amp;rft.atitle=A+general+outline+of+the+genesis+of+vector+space+theory&amp;rft.volume=22&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E227-%3C%2Fspan%3E261&amp;rft.date=1995&amp;rft_id=info%3Adoi%2F10.1006%2Fhmat.1995.1024&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1347828%23id-name%3DMR&amp;rft.aulast=Dorier&amp;rft.aufirst=Jean-Luc&amp;rft_id=http%3A%2F%2Farchive-ouverte.unige.ch%2Funige%3A16642&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFourier1822" class="citation cs2 cs1-prop-foreign-lang-source"><a href="/wiki/Joseph_Fourier" title="Joseph Fourier">Fourier, Jean Baptiste Joseph</a> (1822), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=TDQJAAAAIAAJ"><i>Théorie analytique de la chaleur</i></a> (in French), Chez Firmin Didot, père et fils</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Th%C3%A9orie+analytique+de+la+chaleur&amp;rft.pub=Chez+Firmin+Didot%2C+p%C3%A8re+et+fils&amp;rft.date=1822&amp;rft.aulast=Fourier&amp;rft.aufirst=Jean+Baptiste+Joseph&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DTDQJAAAAIAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrassmann1844" class="citation cs2 cs1-prop-foreign-lang-source"><a href="/wiki/Hermann_Grassmann" title="Hermann Grassmann">Grassmann, Hermann</a> (1844), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=bKgAAAAAMAAJ&amp;pg=PA1"><i>Die Lineale Ausdehnungslehre - Ein neuer Zweig der Mathematik</i></a> (in German), O. Wigand</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Die+Lineale+Ausdehnungslehre+-+Ein+neuer+Zweig+der+Mathematik&amp;rft.pub=O.+Wigand&amp;rft.date=1844&amp;rft.aulast=Grassmann&amp;rft.aufirst=Hermann&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DbKgAAAAAMAAJ%26pg%3DPA1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span>, reprint: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrassmann2000" class="citation cs2">Grassmann, Hermann (2000), Kannenberg, L.C. (ed.), <i>Extension Theory</i>, translated by Kannenberg, Lloyd C., Providence, R.I.: <a href="/wiki/American_Mathematical_Society" title="American Mathematical Society">American Mathematical Society</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8218-2031-5" title="Special:BookSources/978-0-8218-2031-5"><bdi>978-0-8218-2031-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Extension+Theory&amp;rft.place=Providence%2C+R.I.&amp;rft.pub=American+Mathematical+Society&amp;rft.date=2000&amp;rft.isbn=978-0-8218-2031-5&amp;rft.aulast=Grassmann&amp;rft.aufirst=Hermann&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuo2021" class="citation cs2">Guo, Hongyu (2021-06-16), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=5dM3EAAAQBAJ"><i>What Are Tensors Exactly?</i></a>, World Scientific, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-981-12-4103-1" title="Special:BookSources/978-981-12-4103-1"><bdi>978-981-12-4103-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=What+Are+Tensors+Exactly%3F&amp;rft.pub=World+Scientific&amp;rft.date=2021-06-16&amp;rft.isbn=978-981-12-4103-1&amp;rft.aulast=Guo&amp;rft.aufirst=Hongyu&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D5dM3EAAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHamilton1853" class="citation cs2"><a href="/wiki/William_Rowan_Hamilton" title="William Rowan Hamilton">Hamilton, William Rowan</a> (1853), <a rel="nofollow" class="external text" href="http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer?did=05230001&amp;seq=9"><i>Lectures on Quaternions</i></a>, Royal Irish Academy</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Lectures+on+Quaternions&amp;rft.pub=Royal+Irish+Academy&amp;rft.date=1853&amp;rft.aulast=Hamilton&amp;rft.aufirst=William+Rowan&amp;rft_id=http%3A%2F%2Fhistorical.library.cornell.edu%2Fcgi-bin%2Fcul.math%2Fdocviewer%3Fdid%3D05230001%26seq%3D9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMöbius1827" class="citation cs2 cs1-prop-foreign-lang-source"><a href="/wiki/August_Ferdinand_M%C3%B6bius" title="August Ferdinand Möbius">Möbius, August Ferdinand</a> (1827), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20061123192612/http://mathdoc.emath.fr/cgi-bin/oeitem?id=OE_MOBIUS__1_1_0"><i>Der Barycentrische Calcul&#160;: ein neues Hülfsmittel zur analytischen Behandlung der Geometrie (Barycentric calculus: a new utility for an analytic treatment of geometry)</i></a> (in German), archived from <a rel="nofollow" class="external text" href="http://mathdoc.emath.fr/cgi-bin/oeitem?id=OE_MOBIUS__1_1_0">the original</a> on 2006-11-23</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Der+Barycentrische+Calcul+%3A+ein+neues+H%C3%BClfsmittel+zur+analytischen+Behandlung+der+Geometrie+%28Barycentric+calculus%3A+a+new+utility+for+an+analytic+treatment+of+geometry%29&amp;rft.date=1827&amp;rft.aulast=M%C3%B6bius&amp;rft.aufirst=August+Ferdinand&amp;rft_id=http%3A%2F%2Fmathdoc.emath.fr%2Fcgi-bin%2Foeitem%3Fid%3DOE_MOBIUS&#95;_1_1_0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoore1995" class="citation cs2">Moore, Gregory H. (1995), "The axiomatization of linear algebra: 1875–1940", <i><a href="/wiki/Historia_Mathematica" title="Historia Mathematica">Historia Mathematica</a></i>, <b>22</b> (3): <span class="nowrap">262–</span>303, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1006%2Fhmat.1995.1025">10.1006/hmat.1995.1025</a></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Historia+Mathematica&amp;rft.atitle=The+axiomatization+of+linear+algebra%3A+1875%E2%80%931940&amp;rft.volume=22&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E262-%3C%2Fspan%3E303&amp;rft.date=1995&amp;rft_id=info%3Adoi%2F10.1006%2Fhmat.1995.1025&amp;rft.aulast=Moore&amp;rft.aufirst=Gregory+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeano1888" class="citation cs2 cs1-prop-foreign-lang-source"><a href="/wiki/Giuseppe_Peano" title="Giuseppe Peano">Peano, Giuseppe</a> (1888), <i>Calcolo Geometrico secondo l'Ausdehnungslehre di H. Grassmann preceduto dalle Operazioni della Logica Deduttiva</i> (in Italian), Turin</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Calcolo+Geometrico+secondo+l%27Ausdehnungslehre+di+H.+Grassmann+preceduto+dalle+Operazioni+della+Logica+Deduttiva&amp;rft.place=Turin&amp;rft.date=1888&amp;rft.aulast=Peano&amp;rft.aufirst=Giuseppe&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Citation" title="Template:Citation">citation</a>}}</code>: CS1 maint: location missing publisher (<a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">link</a>)</span></li> <li>Peano, G. (1901) <a href="/wiki/Formulario_mathematico" title="Formulario mathematico">Formulario mathematico</a>: <a rel="nofollow" class="external text" href="https://archive.org/details/formulairedesmat00pean/page/194">vct axioms</a> via <a href="/wiki/Internet_Archive" title="Internet Archive">Internet Archive</a></li></ul> </div> <div class="mw-heading mw-heading3"><h3 id="Further_references">Further references</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=34" title="Edit section: Further references"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239549316"><div class="refbegin refbegin-columns references-column-width" style="column-width: 30em"> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAshcroftMermin1976" class="citation cs2"><a href="/wiki/Neil_Ashcroft" title="Neil Ashcroft">Ashcroft, Neil</a>; <a href="/wiki/N._David_Mermin" title="N. David Mermin">Mermin, N. David</a> (1976), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/solidstatephysic00ashc"><i>Solid State Physics</i></a></span>, Toronto: Thomson Learning, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-03-083993-1" title="Special:BookSources/978-0-03-083993-1"><bdi>978-0-03-083993-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Solid+State+Physics&amp;rft.place=Toronto&amp;rft.pub=Thomson+Learning&amp;rft.date=1976&amp;rft.isbn=978-0-03-083993-1&amp;rft.aulast=Ashcroft&amp;rft.aufirst=Neil&amp;rft.au=Mermin%2C+N.+David&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fsolidstatephysic00ashc&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAtiyah1989" class="citation cs2"><a href="/wiki/Michael_Atiyah" title="Michael Atiyah">Atiyah, Michael Francis</a> (1989), <i>K-theory</i>, Advanced Book Classics (2nd&#160;ed.), <a href="/wiki/Addison-Wesley" title="Addison-Wesley">Addison-Wesley</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-201-09394-0" title="Special:BookSources/978-0-201-09394-0"><bdi>978-0-201-09394-0</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1043170">1043170</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=K-theory&amp;rft.series=Advanced+Book+Classics&amp;rft.edition=2nd&amp;rft.pub=Addison-Wesley&amp;rft.date=1989&amp;rft.isbn=978-0-201-09394-0&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1043170%23id-name%3DMR&amp;rft.aulast=Atiyah&amp;rft.aufirst=Michael+Francis&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAtiyahMacdonald1969" class="citation cs2"><a href="/wiki/Michael_Atiyah" title="Michael Atiyah">Atiyah, Michael Francis</a>; <a href="/wiki/Ian_G._Macdonald" title="Ian G. Macdonald">Macdonald, Ian Grant</a> (1969), <i>Introduction to Commutative Algebra</i>, Advanced Book Classics, <a href="/wiki/Addison-Wesley" title="Addison-Wesley">Addison-Wesley</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Commutative+Algebra&amp;rft.series=Advanced+Book+Classics&amp;rft.pub=Addison-Wesley&amp;rft.date=1969&amp;rft.aulast=Atiyah&amp;rft.aufirst=Michael+Francis&amp;rft.au=Macdonald%2C+Ian+Grant&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlass1984" class="citation cs2">Blass, Andreas (1984), <a rel="nofollow" class="external text" href="http://www.math.lsa.umich.edu/~ablass/bases-AC.pdf">"Existence of bases implies the axiom of choice"</a> <span class="cs1-format">(PDF)</span>, <i>Axiomatic set theory</i>, Contemporary Mathematics volume 31, Providence, R.I.: <a href="/wiki/American_Mathematical_Society" title="American Mathematical Society">American Mathematical Society</a>, pp.&#160;<span class="nowrap">31–</span>33, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8218-5026-8" title="Special:BookSources/978-0-8218-5026-8"><bdi>978-0-8218-5026-8</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0763890">0763890</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Existence+of+bases+implies+the+axiom+of+choice&amp;rft.btitle=Axiomatic+set+theory&amp;rft.place=Providence%2C+R.I.&amp;rft.series=Contemporary+Mathematics+volume+31&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E31-%3C%2Fspan%3E33&amp;rft.pub=American+Mathematical+Society&amp;rft.date=1984&amp;rft.isbn=978-0-8218-5026-8&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D763890%23id-name%3DMR&amp;rft.aulast=Blass&amp;rft.aufirst=Andreas&amp;rft_id=http%3A%2F%2Fwww.math.lsa.umich.edu%2F~ablass%2Fbases-AC.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBourbaki1998" class="citation cs2"><a href="/wiki/Nicolas_Bourbaki" title="Nicolas Bourbaki">Bourbaki, Nicolas</a> (1998), <i>Elements of Mathematics&#160;: Algebra I Chapters 1-3</i>, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-64243-5" title="Special:BookSources/978-3-540-64243-5"><bdi>978-3-540-64243-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elements+of+Mathematics+%3A+Algebra+I+Chapters+1-3&amp;rft.place=Berlin%2C+New+York&amp;rft.pub=Springer-Verlag&amp;rft.date=1998&amp;rft.isbn=978-3-540-64243-5&amp;rft.aulast=Bourbaki&amp;rft.aufirst=Nicolas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBourbaki1989" class="citation cs2"><a href="/wiki/Nicolas_Bourbaki" title="Nicolas Bourbaki">Bourbaki, Nicolas</a> (1989), <i>General Topology. Chapters 1-4</i>, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-64241-1" title="Special:BookSources/978-3-540-64241-1"><bdi>978-3-540-64241-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=General+Topology.+Chapters+1-4&amp;rft.place=Berlin%2C+New+York&amp;rft.pub=Springer-Verlag&amp;rft.date=1989&amp;rft.isbn=978-3-540-64241-1&amp;rft.aulast=Bourbaki&amp;rft.aufirst=Nicolas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCoxeter1987" class="citation cs2"><a href="/wiki/Harold_Scott_MacDonald_Coxeter" title="Harold Scott MacDonald Coxeter">Coxeter, Harold Scott MacDonald</a> (1987), <i>Projective Geometry</i> (2nd&#160;ed.), Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-96532-1" title="Special:BookSources/978-0-387-96532-1"><bdi>978-0-387-96532-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Projective+Geometry&amp;rft.place=Berlin%2C+New+York&amp;rft.edition=2nd&amp;rft.pub=Springer-Verlag&amp;rft.date=1987&amp;rft.isbn=978-0-387-96532-1&amp;rft.aulast=Coxeter&amp;rft.aufirst=Harold+Scott+MacDonald&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEisenbergGuy1979" class="citation cs2">Eisenberg, Murray; Guy, Robert (1979), "A proof of the hairy ball theorem", <i><a href="/wiki/American_Mathematical_Monthly" class="mw-redirect" title="American Mathematical Monthly">The American Mathematical Monthly</a></i>, <b>86</b> (7): <span class="nowrap">572–</span>574, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2320587">10.2307/2320587</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2320587">2320587</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Mathematical+Monthly&amp;rft.atitle=A+proof+of+the+hairy+ball+theorem&amp;rft.volume=86&amp;rft.issue=7&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E572-%3C%2Fspan%3E574&amp;rft.date=1979&amp;rft_id=info%3Adoi%2F10.2307%2F2320587&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2320587%23id-name%3DJSTOR&amp;rft.aulast=Eisenberg&amp;rft.aufirst=Murray&amp;rft.au=Guy%2C+Robert&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEisenbud1995" class="citation cs2"><a href="/wiki/David_Eisenbud" title="David Eisenbud">Eisenbud, David</a> (1995), <i>Commutative algebra</i>, Graduate Texts in Mathematics, vol.&#160;150, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-94269-8" title="Special:BookSources/978-0-387-94269-8"><bdi>978-0-387-94269-8</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1322960">1322960</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Commutative+algebra&amp;rft.place=Berlin%2C+New+York&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.pub=Springer-Verlag&amp;rft.date=1995&amp;rft.isbn=978-0-387-94269-8&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1322960%23id-name%3DMR&amp;rft.aulast=Eisenbud&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoldrei1996" class="citation cs2">Goldrei, Derek (1996), <i>Classic Set Theory: A guided independent study</i> (1st&#160;ed.), London: <a href="/wiki/Chapman_and_Hall" class="mw-redirect" title="Chapman and Hall">Chapman and Hall</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-412-60610-6" title="Special:BookSources/978-0-412-60610-6"><bdi>978-0-412-60610-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Classic+Set+Theory%3A+A+guided+independent+study&amp;rft.place=London&amp;rft.edition=1st&amp;rft.pub=Chapman+and+Hall&amp;rft.date=1996&amp;rft.isbn=978-0-412-60610-6&amp;rft.aulast=Goldrei&amp;rft.aufirst=Derek&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGriffiths1995" class="citation cs2"><a href="/wiki/David_J._Griffiths" title="David J. Griffiths">Griffiths, David J.</a> (1995), <i>Introduction to Quantum Mechanics</i>, Upper Saddle River, NJ: <a href="/wiki/Prentice_Hall" title="Prentice Hall">Prentice Hall</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-13-124405-4" title="Special:BookSources/978-0-13-124405-4"><bdi>978-0-13-124405-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Quantum+Mechanics&amp;rft.place=Upper+Saddle+River%2C+NJ&amp;rft.pub=Prentice+Hall&amp;rft.date=1995&amp;rft.isbn=978-0-13-124405-4&amp;rft.aulast=Griffiths&amp;rft.aufirst=David+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalmos1974" class="citation cs2"><a href="/wiki/Paul_R._Halmos" class="mw-redirect" title="Paul R. Halmos">Halmos, Paul R.</a> (1974), <i>Finite-dimensional vector spaces</i>, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-90093-3" title="Special:BookSources/978-0-387-90093-3"><bdi>978-0-387-90093-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Finite-dimensional+vector+spaces&amp;rft.place=Berlin%2C+New+York&amp;rft.pub=Springer-Verlag&amp;rft.date=1974&amp;rft.isbn=978-0-387-90093-3&amp;rft.aulast=Halmos&amp;rft.aufirst=Paul+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalpern1966" class="citation cs2">Halpern, James D. (Jun 1966), "Bases in Vector Spaces and the Axiom of Choice", <i><a href="/wiki/Proceedings_of_the_American_Mathematical_Society" title="Proceedings of the American Mathematical Society">Proceedings of the American Mathematical Society</a></i>, <b>17</b> (3): <span class="nowrap">670–</span>673, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2035388">10.2307/2035388</a></span>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2035388">2035388</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+American+Mathematical+Society&amp;rft.atitle=Bases+in+Vector+Spaces+and+the+Axiom+of+Choice&amp;rft.volume=17&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E670-%3C%2Fspan%3E673&amp;rft.date=1966-06&amp;rft_id=info%3Adoi%2F10.2307%2F2035388&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2035388%23id-name%3DJSTOR&amp;rft.aulast=Halpern&amp;rft.aufirst=James+D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHughes-HallettMcCallumGleason2013" class="citation cs2">Hughes-Hallett, Deborah; McCallum, William G.; Gleason, Andrew M. (2013), <i>Calculus&#160;: Single and Multivariable</i> (6&#160;ed.), <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley &amp; Sons">John Wiley &amp; Sons</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0470-88861-2" title="Special:BookSources/978-0470-88861-2"><bdi>978-0470-88861-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Calculus+%3A+Single+and+Multivariable&amp;rft.edition=6&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2013&amp;rft.isbn=978-0470-88861-2&amp;rft.aulast=Hughes-Hallett&amp;rft.aufirst=Deborah&amp;rft.au=McCallum%2C+William+G.&amp;rft.au=Gleason%2C+Andrew+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHusemoller1994" class="citation cs2">Husemoller, Dale (1994), <i>Fibre Bundles</i> (3rd&#160;ed.), Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-94087-8" title="Special:BookSources/978-0-387-94087-8"><bdi>978-0-387-94087-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fibre+Bundles&amp;rft.place=Berlin%2C+New+York&amp;rft.edition=3rd&amp;rft.pub=Springer-Verlag&amp;rft.date=1994&amp;rft.isbn=978-0-387-94087-8&amp;rft.aulast=Husemoller&amp;rft.aufirst=Dale&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJost2005" class="citation cs2">Jost, Jürgen (2005), <i>Riemannian Geometry and Geometric Analysis</i> (4th&#160;ed.), Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-25907-7" title="Special:BookSources/978-3-540-25907-7"><bdi>978-3-540-25907-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Riemannian+Geometry+and+Geometric+Analysis&amp;rft.place=Berlin%2C+New+York&amp;rft.edition=4th&amp;rft.pub=Springer-Verlag&amp;rft.date=2005&amp;rft.isbn=978-3-540-25907-7&amp;rft.aulast=Jost&amp;rft.aufirst=J%C3%BCrgen&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKreyszig1991" class="citation cs2"><a href="/wiki/Erwin_Kreyszig" title="Erwin Kreyszig">Kreyszig, Erwin</a> (1991), <i>Differential geometry</i>, New York: <a href="/wiki/Dover_Publications" title="Dover Publications">Dover Publications</a>, pp.&#160;xiv+352, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-66721-8" title="Special:BookSources/978-0-486-66721-8"><bdi>978-0-486-66721-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Differential+geometry&amp;rft.place=New+York&amp;rft.pages=xiv%2B352&amp;rft.pub=Dover+Publications&amp;rft.date=1991&amp;rft.isbn=978-0-486-66721-8&amp;rft.aulast=Kreyszig&amp;rft.aufirst=Erwin&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKreyszig1999" class="citation cs2">Kreyszig, Erwin (1999), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/advancedengineer0008krey"><i>Advanced Engineering Mathematics</i></a></span> (8th&#160;ed.), New York: <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley &amp; Sons">John Wiley &amp; Sons</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-15496-9" title="Special:BookSources/978-0-471-15496-9"><bdi>978-0-471-15496-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Advanced+Engineering+Mathematics&amp;rft.place=New+York&amp;rft.edition=8th&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1999&amp;rft.isbn=978-0-471-15496-9&amp;rft.aulast=Kreyszig&amp;rft.aufirst=Erwin&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fadvancedengineer0008krey&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLuenberger1997" class="citation cs2">Luenberger, David (1997), <i>Optimization by vector space methods</i>, New York: <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley &amp; Sons">John Wiley &amp; Sons</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-18117-0" title="Special:BookSources/978-0-471-18117-0"><bdi>978-0-471-18117-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Optimization+by+vector+space+methods&amp;rft.place=New+York&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1997&amp;rft.isbn=978-0-471-18117-0&amp;rft.aulast=Luenberger&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMac_Lane1998" class="citation cs2"><a href="/wiki/Saunders_Mac_Lane" title="Saunders Mac Lane">Mac Lane, Saunders</a> (1998), <a href="/wiki/Categories_for_the_Working_Mathematician" title="Categories for the Working Mathematician"><i>Categories for the Working Mathematician</i></a> (2nd&#160;ed.), Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-98403-2" title="Special:BookSources/978-0-387-98403-2"><bdi>978-0-387-98403-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Categories+for+the+Working+Mathematician&amp;rft.place=Berlin%2C+New+York&amp;rft.edition=2nd&amp;rft.pub=Springer-Verlag&amp;rft.date=1998&amp;rft.isbn=978-0-387-98403-2&amp;rft.aulast=Mac+Lane&amp;rft.aufirst=Saunders&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMisnerThorneWheeler1973" class="citation cs2"><a href="/wiki/Charles_W._Misner" title="Charles W. Misner">Misner, Charles W.</a>; <a href="/wiki/Kip_Thorne" title="Kip Thorne">Thorne, Kip</a>; <a href="/wiki/John_Archibald_Wheeler" title="John Archibald Wheeler">Wheeler, John Archibald</a> (1973), <a href="/wiki/Gravitation_(book)" title="Gravitation (book)"><i>Gravitation</i></a>, W. H. Freeman, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-7167-0344-0" title="Special:BookSources/978-0-7167-0344-0"><bdi>978-0-7167-0344-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Gravitation&amp;rft.pub=W.+H.+Freeman&amp;rft.date=1973&amp;rft.isbn=978-0-7167-0344-0&amp;rft.aulast=Misner&amp;rft.aufirst=Charles+W.&amp;rft.au=Thorne%2C+Kip&amp;rft.au=Wheeler%2C+John+Archibald&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNaber2003" class="citation cs2">Naber, Gregory L. (2003), <i>The geometry of Minkowski spacetime</i>, New York: <a href="/wiki/Dover_Publications" title="Dover Publications">Dover Publications</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-43235-9" title="Special:BookSources/978-0-486-43235-9"><bdi>978-0-486-43235-9</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2044239">2044239</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+geometry+of+Minkowski+spacetime&amp;rft.place=New+York&amp;rft.pub=Dover+Publications&amp;rft.date=2003&amp;rft.isbn=978-0-486-43235-9&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2044239%23id-name%3DMR&amp;rft.aulast=Naber&amp;rft.aufirst=Gregory+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchönhageStrassen1971" class="citation cs2 cs1-prop-foreign-lang-source"><a href="/wiki/Arnold_Sch%C3%B6nhage" title="Arnold Schönhage">Schönhage, A.</a>; <a href="/wiki/Volker_Strassen" title="Volker Strassen">Strassen, Volker</a> (1971), "Schnelle Multiplikation großer Zahlen (Fast multiplication of big numbers)", <i>Computing</i> (in German), <b>7</b> (<span class="nowrap">3–</span>4): <span class="nowrap">281–</span>292, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fbf02242355">10.1007/bf02242355</a>, <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0010-485X">0010-485X</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9738629">9738629</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Computing&amp;rft.atitle=Schnelle+Multiplikation+gro%C3%9Fer+Zahlen+%28Fast+multiplication+of+big+numbers%29&amp;rft.volume=7&amp;rft.issue=%3Cspan+class%3D%22nowrap%22%3E3%E2%80%93%3C%2Fspan%3E4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E281-%3C%2Fspan%3E292&amp;rft.date=1971&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9738629%23id-name%3DS2CID&amp;rft.issn=0010-485X&amp;rft_id=info%3Adoi%2F10.1007%2Fbf02242355&amp;rft.aulast=Sch%C3%B6nhage&amp;rft.aufirst=A.&amp;rft.au=Strassen%2C+Volker&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSpivak1999" class="citation cs2"><a href="/wiki/Michael_Spivak" title="Michael Spivak">Spivak, Michael</a> (1999), <i>A Comprehensive Introduction to Differential Geometry (Volume Two)</i>, Houston, TX: Publish or Perish</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Comprehensive+Introduction+to+Differential+Geometry+%28Volume+Two%29&amp;rft.place=Houston%2C+TX&amp;rft.pub=Publish+or+Perish&amp;rft.date=1999&amp;rft.aulast=Spivak&amp;rft.aufirst=Michael&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStewart1975" class="citation cs2"><a href="/wiki/Ian_Stewart_(mathematician)" title="Ian Stewart (mathematician)">Stewart, Ian</a> (1975), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/galoistheory0000stew"><i>Galois Theory</i></a></span>, <a href="/wiki/Chapman_and_Hall" class="mw-redirect" title="Chapman and Hall">Chapman and Hall</a> Mathematics Series, London: <a href="/wiki/Chapman_and_Hall" class="mw-redirect" title="Chapman and Hall">Chapman and Hall</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-412-10800-6" title="Special:BookSources/978-0-412-10800-6"><bdi>978-0-412-10800-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Galois+Theory&amp;rft.place=London&amp;rft.series=Chapman+and+Hall+Mathematics+Series&amp;rft.pub=Chapman+and+Hall&amp;rft.date=1975&amp;rft.isbn=978-0-412-10800-6&amp;rft.aulast=Stewart&amp;rft.aufirst=Ian&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgaloistheory0000stew&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVaradarajan1974" class="citation cs2">Varadarajan, V. S. (1974), <i>Lie groups, Lie algebras, and their representations</i>, <a href="/wiki/Prentice_Hall" title="Prentice Hall">Prentice Hall</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-13-535732-3" title="Special:BookSources/978-0-13-535732-3"><bdi>978-0-13-535732-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Lie+groups%2C+Lie+algebras%2C+and+their+representations&amp;rft.pub=Prentice+Hall&amp;rft.date=1974&amp;rft.isbn=978-0-13-535732-3&amp;rft.aulast=Varadarajan&amp;rft.aufirst=V.+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWallace1992" class="citation cs2">Wallace, G.K. (Feb 1992), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20070113155847/http://www.csc.ncsu.edu/faculty/rhee/export/papers/TheJPEGStillPictureCompressionStandard.pdf">"The JPEG still picture compression standard"</a> <span class="cs1-format">(PDF)</span>, <i>IEEE Transactions on Consumer Electronics</i>, <b>38</b> (1): <span class="nowrap">xviii–</span>xxxiv, <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.318.4292">10.1.1.318.4292</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2F30.125072">10.1109/30.125072</a>, <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0098-3063">0098-3063</a>, archived from <a rel="nofollow" class="external text" href="http://www.csc.ncsu.edu/faculty/rhee/export/papers/TheJPEGStillPictureCompressionStandard.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2007-01-13<span class="reference-accessdate">, retrieved <span class="nowrap">2017-10-25</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Consumer+Electronics&amp;rft.atitle=The+JPEG+still+picture+compression+standard&amp;rft.volume=38&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3Exviii-%3C%2Fspan%3Exxxiv&amp;rft.date=1992-02&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.318.4292%23id-name%3DCiteSeerX&amp;rft.issn=0098-3063&amp;rft_id=info%3Adoi%2F10.1109%2F30.125072&amp;rft.aulast=Wallace&amp;rft.aufirst=G.K.&amp;rft_id=http%3A%2F%2Fwww.csc.ncsu.edu%2Ffaculty%2Frhee%2Fexport%2Fpapers%2FTheJPEGStillPictureCompressionStandard.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeibel1994" class="citation book cs1"><a href="/wiki/Charles_Weibel" title="Charles Weibel">Weibel, Charles A.</a> (1994). <i>An introduction to homological algebra</i>. Cambridge Studies in Advanced Mathematics. Vol.&#160;38. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-55987-4" title="Special:BookSources/978-0-521-55987-4"><bdi>978-0-521-55987-4</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1269324">1269324</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/36131259">36131259</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+introduction+to+homological+algebra&amp;rft.series=Cambridge+Studies+in+Advanced+Mathematics&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1994&amp;rft_id=info%3Aoclcnum%2F36131259&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1269324%23id-name%3DMR&amp;rft.isbn=978-0-521-55987-4&amp;rft.aulast=Weibel&amp;rft.aufirst=Charles+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vector_space&amp;action=edit&amp;section=35" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wikibooks-logo-en-noslogan.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/40px-Wikibooks-logo-en-noslogan.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/60px-Wikibooks-logo-en-noslogan.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/80px-Wikibooks-logo-en-noslogan.svg.png 2x" data-file-width="400" data-file-height="400" /></a></span></div> <div class="side-box-text plainlist">The Wikibook <i><a href="https://en.wikibooks.org/wiki/Linear_Algebra" class="extiw" title="wikibooks:Linear Algebra">Linear Algebra</a></i> has a page on the topic of: <i><b><a href="https://en.wikibooks.org/wiki/Linear_Algebra/Definition_and_Examples_of_Vector_Spaces" class="extiw" title="wikibooks:Linear Algebra/Definition and Examples of Vector Spaces">Real vector spaces</a></b></i></div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wikibooks-logo-en-noslogan.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/40px-Wikibooks-logo-en-noslogan.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/60px-Wikibooks-logo-en-noslogan.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/80px-Wikibooks-logo-en-noslogan.svg.png 2x" data-file-width="400" data-file-height="400" /></a></span></div> <div class="side-box-text plainlist">The Wikibook <i><a href="https://en.wikibooks.org/wiki/Linear_Algebra" class="extiw" title="wikibooks:Linear Algebra">Linear Algebra</a></i> has a page on the topic of: <i><b><a href="https://en.wikibooks.org/wiki/Linear_Algebra/Vector_spaces" class="extiw" title="wikibooks:Linear Algebra/Vector spaces">Vector spaces</a></b></i></div></div> </div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Vector_space">"Vector space"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Vector+space&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DVector_space&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVector+space" class="Z3988"></span></li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Linear_algebra379" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Linear_algebra" title="Template:Linear algebra"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Linear_algebra" title="Template talk:Linear algebra"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Linear_algebra" title="Special:EditPage/Template:Linear algebra"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Linear_algebra379" style="font-size:114%;margin:0 4em"><a href="/wiki/Linear_algebra" title="Linear algebra">Linear algebra</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><a href="/wiki/Outline_of_linear_algebra" title="Outline of linear algebra">Outline</a></li> <li><a href="/wiki/Glossary_of_linear_algebra" title="Glossary of linear algebra">Glossary</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Scalar_(mathematics)" title="Scalar (mathematics)">Scalar</a></li> <li><a href="/wiki/Euclidean_vector" title="Euclidean vector">Vector</a></li> <li><a class="mw-selflink selflink">Vector space</a></li> <li><a href="/wiki/Scalar_multiplication" title="Scalar multiplication">Scalar multiplication</a></li> <li><a href="/wiki/Vector_projection" title="Vector projection">Vector projection</a></li> <li><a href="/wiki/Linear_span" title="Linear span">Linear span</a></li> <li><a href="/wiki/Linear_map" title="Linear map">Linear map</a></li> <li><a href="/wiki/Projection_(linear_algebra)" title="Projection (linear algebra)">Linear projection</a></li> <li><a href="/wiki/Linear_independence" title="Linear independence">Linear independence</a></li> <li><a href="/wiki/Linear_combination" title="Linear combination">Linear combination</a></li> <li><a href="/wiki/Multilinear_map" title="Multilinear map">Multilinear map</a></li> <li><a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">Basis</a></li> <li><a href="/wiki/Change_of_basis" title="Change of basis">Change of basis</a></li> <li><a href="/wiki/Row_and_column_vectors" title="Row and column vectors">Row and column vectors</a></li> <li><a href="/wiki/Row_and_column_spaces" title="Row and column spaces">Row and column spaces</a></li> <li><a href="/wiki/Kernel_(linear_algebra)" title="Kernel (linear algebra)">Kernel</a></li> <li><a href="/wiki/Eigenvalues_and_eigenvectors" title="Eigenvalues and eigenvectors">Eigenvalues and eigenvectors</a></li> <li><a href="/wiki/Transpose" title="Transpose">Transpose</a></li> <li><a href="/wiki/System_of_linear_equations" title="System of linear equations">Linear equations</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="6" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/Euclidean_space" title="Euclidean space"><img alt="Three dimensional Euclidean space" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Linear_subspaces_with_shading.svg/80px-Linear_subspaces_with_shading.svg.png" decoding="async" width="80" height="58" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Linear_subspaces_with_shading.svg/120px-Linear_subspaces_with_shading.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Linear_subspaces_with_shading.svg/160px-Linear_subspaces_with_shading.svg.png 2x" data-file-width="325" data-file-height="236" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">Matrices</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Block_matrix" title="Block matrix">Block</a></li> <li><a href="/wiki/Matrix_decomposition" title="Matrix decomposition">Decomposition</a></li> <li><a href="/wiki/Invertible_matrix" title="Invertible matrix">Invertible</a></li> <li><a href="/wiki/Minor_(linear_algebra)" title="Minor (linear algebra)">Minor</a></li> <li><a href="/wiki/Matrix_multiplication" title="Matrix multiplication">Multiplication</a></li> <li><a href="/wiki/Rank_(linear_algebra)" title="Rank (linear algebra)">Rank</a></li> <li><a href="/wiki/Transformation_matrix" title="Transformation matrix">Transformation</a></li> <li><a href="/wiki/Cramer%27s_rule" title="Cramer&#39;s rule">Cramer's rule</a></li> <li><a href="/wiki/Gaussian_elimination" title="Gaussian elimination">Gaussian elimination</a></li> <li><a href="/wiki/Productive_matrix" title="Productive matrix">Productive matrix</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Bilinear_map" title="Bilinear map">Bilinear</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Orthogonality" title="Orthogonality">Orthogonality</a></li> <li><a href="/wiki/Dot_product" title="Dot product">Dot product</a></li> <li><a href="/wiki/Hadamard_product_(matrices)" title="Hadamard product (matrices)">Hadamard product</a></li> <li><a href="/wiki/Inner_product_space" title="Inner product space">Inner product space</a></li> <li><a href="/wiki/Outer_product" title="Outer product">Outer product</a></li> <li><a href="/wiki/Kronecker_product" title="Kronecker product">Kronecker product</a></li> <li><a href="/wiki/Gram%E2%80%93Schmidt_process" title="Gram–Schmidt process">Gram–Schmidt process</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Multilinear_algebra" title="Multilinear algebra">Multilinear algebra</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Determinant" title="Determinant">Determinant</a></li> <li><a href="/wiki/Cross_product" title="Cross product">Cross product</a></li> <li><a href="/wiki/Triple_product" title="Triple product">Triple product</a></li> <li><a href="/wiki/Seven-dimensional_cross_product" title="Seven-dimensional cross product">Seven-dimensional cross product</a></li> <li><a href="/wiki/Geometric_algebra" title="Geometric algebra">Geometric algebra</a></li> <li><a href="/wiki/Exterior_algebra" title="Exterior algebra">Exterior algebra</a></li> <li><a href="/wiki/Bivector" title="Bivector">Bivector</a></li> <li><a href="/wiki/Multivector" title="Multivector">Multivector</a></li> <li><a href="/wiki/Tensor" title="Tensor">Tensor</a></li> <li><a href="/wiki/Outermorphism" title="Outermorphism">Outermorphism</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a class="mw-selflink selflink">Vector space</a> constructions</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dual_space" title="Dual space">Dual</a></li> <li><a href="/wiki/Direct_sum_of_modules#Construction_for_two_vector_spaces" title="Direct sum of modules">Direct sum</a></li> <li><a href="/wiki/Function_space#In_linear_algebra" title="Function space">Function space</a></li> <li><a href="/wiki/Quotient_space_(linear_algebra)" title="Quotient space (linear algebra)">Quotient</a></li> <li><a href="/wiki/Linear_subspace" title="Linear subspace">Subspace</a></li> <li><a href="/wiki/Tensor_product" title="Tensor product">Tensor product</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Numerical_linear_algebra" title="Numerical linear algebra">Numerical</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Floating-point_arithmetic" title="Floating-point arithmetic">Floating-point</a></li> <li><a href="/wiki/Numerical_stability" title="Numerical stability">Numerical stability</a></li> <li><a href="/wiki/Basic_Linear_Algebra_Subprograms" title="Basic Linear Algebra Subprograms">Basic Linear Algebra Subprograms</a></li> <li><a href="/wiki/Sparse_matrix" title="Sparse matrix">Sparse matrix</a></li> <li><a href="/wiki/Comparison_of_linear_algebra_libraries" title="Comparison of linear algebra libraries">Comparison of linear algebra libraries</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Linear_algebra" title="Category:Linear algebra">Category</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox1768" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q125977#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4130622-3">Germany</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Vector spaces"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85142456">United States</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Espaces vectoriels"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb11947083w">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Espaces vectoriels"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb11947083w">BnF data</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="vektorové prostory"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph156663&amp;CON_LNG=ENG">Czech Republic</a></span></span><ul><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="lineární prostory"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph168763&amp;CON_LNG=ENG">2</a></span></span></li></ul></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://www.nli.org.il/en/authorities/987007534278205171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <p class="mw-empty-elt"> </p> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐b766959bd‐829g7 Cached time: 20250214040707 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.832 seconds Real time usage: 2.113 seconds Preprocessor visited node count: 22575/1000000 Post‐expand include size: 252544/2097152 bytes Template argument size: 24556/2097152 bytes Highest expansion depth: 13/100 Expensive parser function count: 32/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 313455/5000000 bytes Lua time usage: 0.958/10.000 seconds Lua memory usage: 8519093/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1501.742 1 -total 26.86% 403.409 78 Template:Citation 17.92% 269.130 92 Template:Sfn 11.25% 168.939 197 Template:Math 7.00% 105.061 1 Template:Algebraic_structures 6.88% 103.375 1 Template:Sidebar_with_collapsible_lists 5.85% 87.883 301 Template:Main_other 5.70% 85.602 1 Template:Short_description 4.28% 64.242 2 Template:Pagetype 4.01% 60.277 1 Template:Authority_control --> <!-- Saved in parser cache with key enwiki:pcache:32370:|#|:idhash:canonical and timestamp 20250214040707 and revision id 1269159351. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Vector_space&amp;oldid=1269159351">https://en.wikipedia.org/w/index.php?title=Vector_space&amp;oldid=1269159351</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Concepts_in_physics" title="Category:Concepts in physics">Concepts in physics</a></li><li><a href="/wiki/Category:Group_theory" title="Category:Group theory">Group theory</a></li><li><a href="/wiki/Category:Mathematical_structures" title="Category:Mathematical structures">Mathematical structures</a></li><li><a href="/wiki/Category:Vectors_(mathematics_and_physics)" title="Category:Vectors (mathematics and physics)">Vectors (mathematics and physics)</a></li><li><a href="/wiki/Category:Vector_spaces" title="Category:Vector spaces">Vector spaces</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Pages_using_multiple_image_with_auto_scaled_images" title="Category:Pages using multiple image with auto scaled images">Pages using multiple image with auto scaled images</a></li><li><a href="/wiki/Category:CS1_German-language_sources_(de)" title="Category:CS1 German-language sources (de)">CS1 German-language sources (de)</a></li><li><a href="/wiki/Category:CS1_French-language_sources_(fr)" title="Category:CS1 French-language sources (fr)">CS1 French-language sources (fr)</a></li><li><a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">CS1 maint: location missing publisher</a></li><li><a href="/wiki/Category:CS1_Italian-language_sources_(it)" title="Category:CS1 Italian-language sources (it)">CS1 Italian-language sources (it)</a></li><li><a href="/wiki/Category:Good_articles" title="Category:Good articles">Good articles</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 13 January 2025, at 09:19<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Vector_space&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Vector space</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>78 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-b766959bd-7jhvm","wgBackendResponseTime":135,"wgPageParseReport":{"limitreport":{"cputime":"1.832","walltime":"2.113","ppvisitednodes":{"value":22575,"limit":1000000},"postexpandincludesize":{"value":252544,"limit":2097152},"templateargumentsize":{"value":24556,"limit":2097152},"expansiondepth":{"value":13,"limit":100},"expensivefunctioncount":{"value":32,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":313455,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1501.742 1 -total"," 26.86% 403.409 78 Template:Citation"," 17.92% 269.130 92 Template:Sfn"," 11.25% 168.939 197 Template:Math"," 7.00% 105.061 1 Template:Algebraic_structures"," 6.88% 103.375 1 Template:Sidebar_with_collapsible_lists"," 5.85% 87.883 301 Template:Main_other"," 5.70% 85.602 1 Template:Short_description"," 4.28% 64.242 2 Template:Pagetype"," 4.01% 60.277 1 Template:Authority_control"]},"scribunto":{"limitreport-timeusage":{"value":"0.958","limit":"10.000"},"limitreport-memusage":{"value":8519093,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREF\"] = 5,\n [\"CITEREFAntonRorres2010\"] = 1,\n [\"CITEREFArtin1991\"] = 1,\n [\"CITEREFAshcroftMermin1976\"] = 1,\n [\"CITEREFAtiyah1989\"] = 1,\n [\"CITEREFAtiyahMacdonald1969\"] = 1,\n [\"CITEREFBSE-3\"] = 1,\n [\"CITEREFBanach1922\"] = 1,\n [\"CITEREFBellavitis1833\"] = 1,\n [\"CITEREFBlass1984\"] = 1,\n [\"CITEREFBolzano1804\"] = 1,\n [\"CITEREFBourbaki1969\"] = 1,\n [\"CITEREFBourbaki1987\"] = 1,\n [\"CITEREFBourbaki1989\"] = 1,\n [\"CITEREFBourbaki1998\"] = 1,\n [\"CITEREFBourbaki2004\"] = 1,\n [\"CITEREFBraun1993\"] = 1,\n [\"CITEREFBrown1991\"] = 1,\n [\"CITEREFChoquet1966\"] = 1,\n [\"CITEREFCoxeter1987\"] = 1,\n [\"CITEREFDenneryKrzywicki1996\"] = 1,\n [\"CITEREFDorier1995\"] = 1,\n [\"CITEREFDudley1989\"] = 1,\n [\"CITEREFDunham2005\"] = 1,\n [\"CITEREFEisenbergGuy1979\"] = 1,\n [\"CITEREFEisenbud1995\"] = 1,\n [\"CITEREFEvans1998\"] = 1,\n [\"CITEREFFolland1992\"] = 1,\n [\"CITEREFFourier1822\"] = 1,\n [\"CITEREFGasquetWitomski1999\"] = 1,\n [\"CITEREFGoldrei1996\"] = 1,\n [\"CITEREFGrassmann1844\"] = 1,\n [\"CITEREFGrassmann2000\"] = 1,\n [\"CITEREFGriffiths1995\"] = 1,\n [\"CITEREFGrillet2007\"] = 1,\n [\"CITEREFGuo2021\"] = 1,\n [\"CITEREFHalmos1948\"] = 1,\n [\"CITEREFHalmos1974\"] = 1,\n [\"CITEREFHalpern1966\"] = 1,\n [\"CITEREFHamilton1853\"] = 1,\n [\"CITEREFHeil2011\"] = 1,\n [\"CITEREFHughes-HallettMcCallumGleason2013\"] = 1,\n [\"CITEREFHusemoller1994\"] = 1,\n [\"CITEREFIfeachorJervis2001\"] = 1,\n [\"CITEREFJain2001\"] = 1,\n [\"CITEREFJoshi1989\"] = 1,\n [\"CITEREFJost2005\"] = 1,\n [\"CITEREFKrantz1999\"] = 1,\n [\"CITEREFKreyszig1988\"] = 1,\n [\"CITEREFKreyszig1989\"] = 1,\n [\"CITEREFKreyszig1991\"] = 1,\n [\"CITEREFKreyszig1999\"] = 1,\n [\"CITEREFKreyszig2020\"] = 1,\n [\"CITEREFLang1983\"] = 1,\n [\"CITEREFLang1987\"] = 1,\n [\"CITEREFLang1993\"] = 1,\n [\"CITEREFLoomis2011\"] = 1,\n [\"CITEREFLuenberger1997\"] = 1,\n [\"CITEREFMac_Lane1998\"] = 1,\n [\"CITEREFMac_Lane1999\"] = 1,\n [\"CITEREFMeyer2000\"] = 1,\n [\"CITEREFMisnerThorneWheeler1973\"] = 1,\n [\"CITEREFMoore1995\"] = 1,\n [\"CITEREFMöbius1827\"] = 1,\n [\"CITEREFNaber2003\"] = 1,\n [\"CITEREFNicholson2018\"] = 1,\n [\"CITEREFPeano1888\"] = 1,\n [\"CITEREFRoman2005\"] = 1,\n [\"CITEREFRudin1991\"] = 1,\n [\"CITEREFSchönhageStrassen1971\"] = 1,\n [\"CITEREFSpindler1993\"] = 1,\n [\"CITEREFSpivak1999\"] = 1,\n [\"CITEREFSpringer2000\"] = 1,\n [\"CITEREFStewart1975\"] = 1,\n [\"CITEREFStollWong1968\"] = 1,\n [\"CITEREFTreves1967\"] = 1,\n [\"CITEREFVaradarajan1974\"] = 1,\n [\"CITEREFWallace1992\"] = 1,\n [\"CITEREFvan_der_Waerden1993\"] = 1,\n [\"vector_hyperplane\"] = 1,\n [\"vector_line\"] = 1,\n [\"vector_plane\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Algebraic structures\"] = 1,\n [\"Anchor\"] = 1,\n [\"Authority control\"] = 1,\n [\"Citation\"] = 77,\n [\"Clear\"] = 1,\n [\"DEFAULTSORT:Vector Space\"] = 1,\n [\"Distinguish\"] = 1,\n [\"Em\"] = 1,\n [\"Good article\"] = 1,\n [\"Harvnb\"] = 2,\n [\"Harvtxt\"] = 7,\n [\"Lang Algebra\"] = 1,\n [\"Linear algebra\"] = 1,\n [\"Main\"] = 17,\n [\"Math\"] = 197,\n [\"Multiple image\"] = 1,\n [\"Mvar\"] = 64,\n [\"Narici Beckenstein Topological Vector Spaces\"] = 1,\n [\"Nowrap\"] = 3,\n [\"Redirect\"] = 1,\n [\"Refbegin\"] = 4,\n [\"Refend\"] = 4,\n [\"Reflist\"] = 2,\n [\"Schaefer Wolff Topological Vector Spaces\"] = 1,\n [\"Sfn\"] = 92,\n [\"Sfnm\"] = 4,\n [\"Short description\"] = 1,\n [\"Slink\"] = 2,\n [\"Springer\"] = 2,\n [\"Weibel IHA\"] = 1,\n [\"Wikibooks\"] = 2,\n}\narticle_whitelist = table#1 {\n}\nciteref_patterns = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-b766959bd-829g7","timestamp":"20250214040707","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Vector space","url":"https:\/\/en.wikipedia.org\/wiki\/Vector_space","sameAs":"http:\/\/www.wikidata.org\/entity\/Q125977","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q125977","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-10-21T00:55:57Z","dateModified":"2025-01-13T09:19:02Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/a\/a6\/Vector_add_scale.svg","headline":"the basic algebraic structure of linear algebra; a module over a field, such that its elements can be added together or scaled by elements of the field"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10