CINXE.COM

Search results for: melt

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: melt</title> <meta name="description" content="Search results for: melt"> <meta name="keywords" content="melt"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="melt" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="melt"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 264</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: melt</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">264</span> Experimental and Theoretical Study of Melt Viscosity in Injection Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chung-Chih%20Lin">Chung-Chih Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Teng%20Wang"> Wen-Teng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin-Chiuan%20Kuo"> Chin-Chiuan Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chieh-Liang%20Wu"> Chieh-Liang Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The state of melt viscosity in injection process is significantly influenced by the setting parameters due to that the shear rate of injection process is higher than other processes. How to determine plastic melt viscosity during injection process is important to understand the influence of setting parameters on the melt viscosity. An apparatus named as pressure sensor bushing (PSB) module that is used to evaluate the melt viscosity during injection process is developed in this work. The formulations to coupling melt viscosity with fill time and injection pressure are derived and then the melt viscosity is determined. A test mold is prepared to evaluate the accuracy on viscosity calculations between the PSB module and the conventional approaches. The influence of melt viscosity on the tensile strength of molded part is proposed to study the consistency of injection quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=injection%20molding" title="injection molding">injection molding</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20viscosity" title=" melt viscosity"> melt viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test"> tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20sensor%20bushing%20%28PSB%29" title=" pressure sensor bushing (PSB)"> pressure sensor bushing (PSB)</a> </p> <a href="https://publications.waset.org/abstracts/7574/experimental-and-theoretical-study-of-melt-viscosity-in-injection-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">263</span> Online Monitoring Rheological Property of Polymer Melt during Injection Molding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chung-Chih%20Lin">Chung-Chih Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Liang%20Wu"> Chien-Liang Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The detection of the polymer melt state during manufacture process is regarded as an efficient way to control the molded part quality in advance. Online monitoring rheological property of polymer melt during processing procedure provides an approach to understand the melt state immediately. Rheological property reflects the polymer melt state at different processing parameters and is very important in injection molding process especially. An approach that demonstrates how to calculate rheological property of polymer melt through in-process measurement, using injection molding as an example, is proposed in this study. The system consists of two sensors and a data acquisition module can process the measured data, which are used for the calculation of rheological properties of polymer melt. The rheological properties of polymer melt discussed in this study include shear rate and viscosity which are investigated with respect to injection speed and melt temperature. The results show that the effect of injection speed on the rheological properties is apparent, especially for high melt temperature and should be considered for precision molding process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=injection%20molding" title="injection molding">injection molding</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20viscosity" title=" melt viscosity"> melt viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20rate" title=" shear rate"> shear rate</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a> </p> <a href="https://publications.waset.org/abstracts/23196/online-monitoring-rheological-property-of-polymer-melt-during-injection-molding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">262</span> Raman Line Mapping on Melt Spun Polycarbonate/MWNT Fiber-Based Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Poonam%20Yadav">Poonam Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Bok%20Lee"> Dong Bok Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Raman spectroscopy was used for characterization of multi-wall carbon nanotube (MWNT) and Polycarbonate/multi-wall carbon nanotube (PC/MWNT) based fibers with 0.55% and 0.75% of MWNT (PC/MWNT55 and PC/MWNT75). PC/MWNT55 and PC/MWNT75 fibers was prepared by melt spinning device using nanocomposites made by two different route, viz., solvent casting and melt extrusion. Fibers prepared from melt extruded nanocomposites showed smooth and uniform morphology as compared to solvent casting based nanocomposites. The Raman mapping confirmed that the melt extruded based nanocomposites had better dispersion of MWNT in Polycarbonate (PC) than solvent casting carbon nanotube. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dispersion" title="dispersion">dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20extrusion" title=" melt extrusion"> melt extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-wall%20carbon%20nanotube" title=" multi-wall carbon nanotube"> multi-wall carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping" title=" mapping"> mapping</a> </p> <a href="https://publications.waset.org/abstracts/19041/raman-line-mapping-on-melt-spun-polycarbonatemwnt-fiber-based-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">261</span> Preparation of Melt Electrospun Polylactic Acid Nanofibers with Optimum Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Doustgani">Amir Doustgani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Melt electrospinning is a safe and simple technique for the production of micro and nanofibers which can be an alternative to conventional solvent electrospinning. The effects of various melt-electrospinning parameters, including molecular weight, electric field strength, flow rate and temperature on the morphology and fiber diameter of polylactic acid were studied. It was shown that molecular weight was the predominant factor in determining the obtainable fiber diameter of the collected fibers. An orthogonal design was used to examine process parameters. Results showed that molecular weight is the most effective parameter on the average fiber diameter of melt electrospun PLA nanofibers and the flow rate has the less important impact. Mean fiber diameter increased by increasing MW and flow rate, but decreased by increasing electric field strength and temperature. MFD of optimized fibers was below 100 nm and the result of software was in good agreement with the experimental condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20formation" title="fiber formation">fiber formation</a>, <a href="https://publications.waset.org/abstracts/search?q=processing" title=" processing"> processing</a>, <a href="https://publications.waset.org/abstracts/search?q=spinning" title=" spinning"> spinning</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20blowing" title=" melt blowing"> melt blowing</a> </p> <a href="https://publications.waset.org/abstracts/36067/preparation-of-melt-electrospun-polylactic-acid-nanofibers-with-optimum-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">260</span> Convective Interactions and Heat Transfer in a Czochralski Melt with a Model Phase Boundary of Two Different Shapes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Faiez">R. Faiez</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mashhoudi"> M. Mashhoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Najafi"> F. Najafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Implicit in most large-scale numerical analyses of the crystal growth from the melt is the assumption that the shape and position of the phase boundary are determined by the transport phenomena coupled strongly to the melt hydrodynamics. In the present numerical study, the interface shape-effect on the convective interactions in a Czochralski oxide melt is described. It was demonstrated that thermos-capillary flow affects inversely the phase boundaries of distinct shapes. The in homogenity of heat flux and the location of the stagnation point at the crystallization front were investigated. The forced convection effect on the point displacement at the boundary found to be much stronger for the flat plate interface compared to the cone-shaped one with and without the Marangoni flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20simulation" title="computer simulation">computer simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20flow" title=" fluid flow"> fluid flow</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20shape" title=" interface shape"> interface shape</a>, <a href="https://publications.waset.org/abstracts/search?q=thermos-capillary%20effect" title=" thermos-capillary effect"> thermos-capillary effect</a> </p> <a href="https://publications.waset.org/abstracts/7920/convective-interactions-and-heat-transfer-in-a-czochralski-melt-with-a-model-phase-boundary-of-two-different-shapes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">259</span> Three-dimensional Steady Flow in Thin Annular Pools of Silicon Melt under a Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brahim%20Mahfoud">Brahim Mahfoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A three-dimensional (3D) numerical technique is used to investigate the possibility of reducing the price of manufacturing some silicon-based devices, particularly those in which minor temperature gradients can significantly reduce performance. The silicon melt under the magnetic field produces Lorentz force, which can effectively suppress the flow which is caused by temperature gradients. This might allow some silicon-based products, such as solar cells, to be manufactured using a less pure, and hence less expensive. The thermocapillary effect of the silicon melt flow in thin annular pools subjected to an externally induced magnetic field was observed. The results reveal that with a strong enough magnetic field, isothermal lines change form and become concentric circles. As the amplitude of the magnetic field (Ha) grows, the azimuthal velocity and temperature at the free surface reduce, and the asymmetric 3D flow becomes axisymmetric steady when Ha surpasses a threshold value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title="magnetic field">magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20melt" title=" silicon melt"> silicon melt</a>, <a href="https://publications.waset.org/abstracts/search?q=thermocapillary" title=" thermocapillary"> thermocapillary</a> </p> <a href="https://publications.waset.org/abstracts/174986/three-dimensional-steady-flow-in-thin-annular-pools-of-silicon-melt-under-a-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">258</span> Formation of In-Situ Composite during Reactive Wetting and Imbibition Ta by Cu(B) Melt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergei%20Zhevnenko">Sergei Zhevnenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Сontinuous layer of tantalum boride is formed on the surface as a result of reactive wetting of oxidized tantalum by copper melt with boron at a temperatures above 1150 °C. An increase in the wetting temperature above 1400 °C leads to a change in the formation mechanism of tantalum borides, they are formed in the nanosized flakes. In the presented work, we studied the process of copper-based in-situ composite formation, strengthened by the particles of tantalum borides. We investigated the structure of the formed particles, the conditions, and the kinetics of their formation. Dissolving boride particles do not have time to mix uniformly in the melt upon sufficiently rapid cooling and form a macrostructure, partly repeating the shape of the metallic tantalum. This allows to set different gradient structures in the copper alloy. Such macrostructures have been obtained. Boride particles and microstructures were studied by scanning and transmission electron microscopy, and regions with particles were investigated by nanoindentation. In this work, we also measured the kinetics of impregnation of porous tantalum with copper-boron melt and studied the structures of the composite, in which the melt filling the interpore space is saturated with boride particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper" title="copper">copper</a>, <a href="https://publications.waset.org/abstracts/search?q=tantalum%20borides" title=" tantalum borides"> tantalum borides</a>, <a href="https://publications.waset.org/abstracts/search?q=in-situ%20composites" title=" in-situ composites"> in-situ composites</a>, <a href="https://publications.waset.org/abstracts/search?q=wetting" title=" wetting"> wetting</a>, <a href="https://publications.waset.org/abstracts/search?q=imbibition" title=" imbibition"> imbibition</a> </p> <a href="https://publications.waset.org/abstracts/162812/formation-of-in-situ-composite-during-reactive-wetting-and-imbibition-ta-by-cub-melt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">257</span> Preparation of Nanocomposites Based on Biodegradable Polycaprolactone by Melt Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Amine%20Zenasni">Mohamed Amine Zenasni</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahia%20Meroufel"> Bahia Meroufel</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20Merlin"> André Merlin</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Benfarhi"> Said Benfarhi</a>, <a href="https://publications.waset.org/abstracts/search?q=St%C3%A9phane%20Molina"> Stéphane Molina</a>, <a href="https://publications.waset.org/abstracts/search?q=B%C3%A9atrice%20George"> Béatrice George </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The introduction of nano-fillers into polymers field lead to the creation of the nano composites. This creation is starting up a new revolution into the world of materials. Nano composites are similar to traditional composite of a polymer blend and filler with at least one nano-scopic dimension. In our project, we worked with nano composites of biodegradable polymer: polycaprolactone, combined with nano-clay (Maghnite) and with different nano-organo-clays. These nano composites have been prepared by melt mixture method. The advantage of this polymer is its degradability and bio compatibility. A study of the relationship between development, micro structure and physico chemical properties of nano composites, clays modified with 3-aminopropyltriethoxysilane (APTES) and Hexadecyltriméthy ammonium bromide (CTAB) and untreated clays were made. Melt mixture method is most suitable methods to get a better dispersion named exfoliation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title="nanocomposite">nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title=" biodegradable"> biodegradable</a>, <a href="https://publications.waset.org/abstracts/search?q=polycaprolactone" title=" polycaprolactone"> polycaprolactone</a>, <a href="https://publications.waset.org/abstracts/search?q=maghnite" title=" maghnite"> maghnite</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20mixture" title=" melt mixture"> melt mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=APTES" title=" APTES"> APTES</a>, <a href="https://publications.waset.org/abstracts/search?q=CTAB" title=" CTAB"> CTAB</a> </p> <a href="https://publications.waset.org/abstracts/18860/preparation-of-nanocomposites-based-on-biodegradable-polycaprolactone-by-melt-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">256</span> Effect of Accelerated Ions Interacted with Al Targets Using Plasma Focus Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Habibi">Morteza Habibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Amrollahi"> Reza Amrollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Aluminum made targets were placed at the central part of a Fillipov type (90KJ) plasma focus cathode. These targets were exposed to perpendicular dense plasma stream incidence. Melt layer erosion by melt motion, surface smoothing, and bubble formation were some of different effects caused by diverse working conditions. Micro hardness of surface layer tends to decrease particularly in the central region of the sample where destruction is more intense. The most pronouced melt motion is registered in the region of the maximum gradient of pressure and the etching of aluminium surface is noticeable in the central part of target. The crater with a maximum depth of 200µm, and the diameter of about 8.5mm is observed close to the mountains. Adding Krypton admixture to the Deuterium gas lead to collapsing bubbles and greater surface damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fillipov%20type%20plasma%20focus" title="fillipov type plasma focus">fillipov type plasma focus</a>, <a href="https://publications.waset.org/abstracts/search?q=al%20target%20interaction" title=" al target interaction"> al target interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=bubbling%20effect" title=" bubbling effect"> bubbling effect</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20layer%20motion" title=" melt layer motion"> melt layer motion</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20smoothing" title=" surface smoothing"> surface smoothing</a> </p> <a href="https://publications.waset.org/abstracts/30371/effect-of-accelerated-ions-interacted-with-al-targets-using-plasma-focus-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">255</span> Hydrological Response of the Glacierised Catchment: Himalayan Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonu%20Khanal">Sonu Khanal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mandira%20Shrestha"> Mandira Shrestha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Snow and Glaciers are the largest dependable reserved sources of water for the river system originating from the Himalayas so an accurate estimate of the volume of water contained in the snowpack and the rate of release of water from snow and glaciers are, therefore, needed for efficient management of the water resources. This research assess the fusion of energy exchanges between the snowpack, air above and soil below according to mass and energy balance which makes it apposite than the models using simple temperature index for the snow and glacier melt computation. UEBGrid a Distributed energy based model is used to calculate the melt which is then routed by Geo-SFM. The model robustness is maintained by incorporating the albedo generated from the Landsat-7 ETM images on a seasonal basis for the year 2002-2003 and substrate map derived from TM. The Substrate file includes predominantly the 4 major thematic layers viz Snow, clean ice, Glaciers and Barren land. This approach makes use of CPC RFE-2 and MERRA gridded data sets as the source of precipitation and climatic variables. The subsequent model run for the year between 2002-2008 shows a total annual melt of 17.15 meter is generate from the Marshyangdi Basin of which 71% is contributed by the glaciers , 18% by the rain and rest being from the snow melt. The albedo file is decisive in governing the melt dynamics as 30% increase in the generated surface albedo results in the 10% decrease in the simulated discharge. The melt routed with the land cover and soil variables using Geo-SFM shows Nash-Sutcliffe Efficiency of 0.60 with observed discharge for the study period. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Glacier" title="Glacier">Glacier</a>, <a href="https://publications.waset.org/abstracts/search?q=Glacier%20melt" title=" Glacier melt"> Glacier melt</a>, <a href="https://publications.waset.org/abstracts/search?q=Snowmelt" title=" Snowmelt"> Snowmelt</a>, <a href="https://publications.waset.org/abstracts/search?q=Energy%20balance" title=" Energy balance"> Energy balance</a> </p> <a href="https://publications.waset.org/abstracts/33015/hydrological-response-of-the-glacierised-catchment-himalayan-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">254</span> Spatio-Temporal Dynamics of Snow Cover and Melt/Freeze Conditions in Indian Himalayas </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajashree%20Bothale">Rajashree Bothale</a>, <a href="https://publications.waset.org/abstracts/search?q=Venkateswara%20Rao"> Venkateswara Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indian Himalayas also known as third pole with 0.9 Million SQ km area, contain the largest reserve of ice and snow outside poles and affect global climate and water availability in the perennial rivers. The variations in the extent of snow are indicative of climate change. The snow melt is sensitive to climate change (warming) and also an influencing factor to the climate change. A study of the spatio-temporal dynamics of snow cover and melt/freeze conditions is carried out using space based observations in visible and microwave bands. An analysis period of 2003 to 2015 is selected to identify and map the changes and trend in snow cover using Indian Remote Sensing (IRS) Advanced Wide Field Sensor (AWiFS) and Moderate Resolution Imaging Spectroradiometer(MODIS) data. For mapping of wet snow, microwave data is used, which is sensitive to the presence of liquid water in the snow. The present study uses Ku-band scatterometer data from QuikSCAT and Oceansat satellites. The enhanced resolution images at 2.25 km from the 13.6GHz sensor are used to analyze the backscatter response to dry and wet snow for the period of 2000-2013 using threshold method. The study area is divided into three major river basins namely Brahmaputra, Ganges and Indus which also represent the diversification in Himalayas as the Eastern Himalayas, Central Himalayas and Western Himalayas. Topographic variations across different zones show that a majority of the study area lies in 4000–5500 m elevation range and the maximum percent of high elevated areas (>5500 m) lies in Western Himalayas. The effect of climate change could be seen in the extent of snow cover and also on the melt/freeze status in different parts of Himalayas. Melt onset day increases from east (March11+11) to west (May12+15) with large variation in number of melt days. Western Himalayas has shorter melt duration (120+15) in comparison to Eastern Himalayas (150+16) providing lesser time for melt. Eastern Himalaya glaciers are prone for enhanced melt due to large melt duration. The extent of snow cover coupled with the status of melt/freeze indicating solar radiation can be used as precursor for monsoon prediction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indian%20Himalaya" title="Indian Himalaya">Indian Himalaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Scatterometer" title=" Scatterometer"> Scatterometer</a>, <a href="https://publications.waset.org/abstracts/search?q=Snow%20Melt%2FFreeze" title=" Snow Melt/Freeze"> Snow Melt/Freeze</a>, <a href="https://publications.waset.org/abstracts/search?q=AWiFS" title=" AWiFS"> AWiFS</a>, <a href="https://publications.waset.org/abstracts/search?q=Cryosphere" title=" Cryosphere"> Cryosphere</a> </p> <a href="https://publications.waset.org/abstracts/66867/spatio-temporal-dynamics-of-snow-cover-and-meltfreeze-conditions-in-indian-himalayas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">253</span> Synthesis Characterisation and Evaluation of Co-Processed Wax Matrix Excipient for Controlled Release Tablets Formulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kalyan%20Raj">M. Kalyan Raj</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Umesh%20Rao"> Vinay Umesh Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sudhakar"> M. Sudhakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work focuses on the development of a directly compressible controlled release co-processed excipient using melt granulation technique. Erodible wax matrix systems are fabricated in which three different types of waxes are co processed separately with Maize starch in different ratios by melt granulation. The resultant free flowing powder is characterized by FTIR, NMR, Mass spectrophotometer and gel permeation chromatography. Also, controlled release tablets of Aripiprazole were formulated and dissolution profile was compared with that of the target product profile given in Zysis patent (Patent no. 20100004262) for Aripiprazole once a week formulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-processing" title="co-processing">co-processing</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20melt%20extrusion" title=" hot melt extrusion"> hot melt extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20compression" title=" direct compression"> direct compression</a>, <a href="https://publications.waset.org/abstracts/search?q=maize%20starch" title=" maize starch"> maize starch</a>, <a href="https://publications.waset.org/abstracts/search?q=stearic%20acid" title=" stearic acid"> stearic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=aripiprazole" title=" aripiprazole"> aripiprazole</a> </p> <a href="https://publications.waset.org/abstracts/8897/synthesis-characterisation-and-evaluation-of-co-processed-wax-matrix-excipient-for-controlled-release-tablets-formulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">252</span> Influence of Processing Regime and Contaminants on the Properties of Postconsumer Thermoplastics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fares%20Alsewailem">Fares Alsewailem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Material recycling of thermoplastic waste offers practical solution for municipal solid waste reduction. Post-consumer plastics such as polyethylene (PE), polyethyleneterephtalate (PET), and polystyrene (PS) may be separated from each other by physical methods such as density difference and hence processed as single plastic, however one should be cautious about the contaminants presence in the waste stream inform of paper, glue, etc. since these articles even in trace amount may deteriorate properties of the recycled plastics especially the mechanical properties. furthermore, melt processing methods used to recycle thermoplastics such as extrusion and compression molding may induce degradation of some of the recycled plastics such as PET and PS. In this research, it is shown that care should be taken when processing recycled plastics by melt processing means in two directions, first contaminants should be extremely minimized, and secondly melt processing steps should also be minimum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Recycling" title="Recycling">Recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=PET" title=" PET"> PET</a>, <a href="https://publications.waset.org/abstracts/search?q=PS" title=" PS"> PS</a>, <a href="https://publications.waset.org/abstracts/search?q=HDPE" title=" HDPE"> HDPE</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical" title=" mechanical"> mechanical</a> </p> <a href="https://publications.waset.org/abstracts/28691/influence-of-processing-regime-and-contaminants-on-the-properties-of-postconsumer-thermoplastics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">251</span> Effects of Strain-Induced Melt Activation Process on the Structure and Morphology Mg₂Si in Al-15%Mg₂Si Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Eslami-Farsani">Reza Eslami-Farsani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Alipour"> Mohammad Alipour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of deformation on the semisolid microstructure and degree of globularity of Al–15%Mg₂Si composite produced by the strain induced melt activation (SIMA) process was studied. Deformation of 25% was used. After deformation, the samples were heated to a temperature above the solidus and below the liquidus point and maintained in the isothermal conditions at three different temperatures (560, 580 and 595 °C) for varying time (5, 10, 20 and 40 min). The microstructural study was carried out on the alloy by the use of optical microscopy. It was observed that strain induced deformation and subsequently melt activation has caused the globular morphology of Mg₂Si particles. The results showed that for the desired microstructures of the alloy during SIMA process, the optimum temperature and time are 595 °C and 40 min respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deformation" title="deformation">deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=semisolid" title=" semisolid"> semisolid</a>, <a href="https://publications.waset.org/abstracts/search?q=SIMA" title=" SIMA"> SIMA</a>, <a href="https://publications.waset.org/abstracts/search?q=Mg%E2%82%82Si%20phase" title=" Mg₂Si phase"> Mg₂Si phase</a>, <a href="https://publications.waset.org/abstracts/search?q=modification" title=" modification"> modification</a> </p> <a href="https://publications.waset.org/abstracts/53553/effects-of-strain-induced-melt-activation-process-on-the-structure-and-morphology-mg2si-in-al-15mg2si-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">250</span> Functionally Modified Melt-Electrospun Thermoplastic Polyurethane (TPU) Mats for Wound-Dressing Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christoph%20Hacker">Christoph Hacker</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeynep%20Karahaliloglu"> Zeynep Karahaliloglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunnar%20Seide"> Gunnar Seide</a>, <a href="https://publications.waset.org/abstracts/search?q=Emir%20Baki%20Denkbas"> Emir Baki Denkbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Gries"> Thomas Gries</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A wound dressing material is designed to facilitate wound healing and minimize scarring. An ideal wound dressing material should protect the wound from any contaminations of exogeneous microorganism. In addition, the dressing material should provide a moist environment through extraction of body fluid from the wound area. Recently, wound dressing electrospun nanofibrous membranes are produced by electrospinning from a polymer solution or a polymer melt. These materials have a great potential as dressing materials for wound healing because of superior properties such as high surface-to-volume ratio, high porosity with excellent pore interconnectivity. Melt electrospinning is an attractive tissue engineering scaffold manufacturing process which eliminated the health risk posed by organic solvents used in electrospinning process and reduced the production costs. In this study, antibacterial wound dressing materials were prepared from TPU (Elastollan 1185A) by a melt-electrospinning technique. The electrospinning parameters for an efficient melt-electrospinning process of TPU were optimized. The surface of the fibers was modified with poly(ethylene glycol) (PEG) by radio-frequency glow discharge plasma deposition method and with silver nanoparticles (nAg) to improve their wettability and antimicrobial properties. TPU melt-electrospun mats were characterized using SEM, DSC, TGA and XPS. The cell viability and proliferation on modified melt-electrospun TPU mats were evaluated using a mouse fibroblast cell line (L929). Antibacterial effects of theirs against both Staphylococcus aureus strain and Escherichia coli were investigated by disk-diffusion method. TPU was successfully processed into a porous, fibrous network of beadless fibers in the micrometer range (4.896±0.94 µm) with a voltage of 50 kV, a working distance of 6 cm, a temperature of the thermocouple and hot coil of 225–230ºC, and a flow rate of 0.1 mL/h. The antibacterial test indicated that PEG-modified nAg-loaded TPU melt-electrospun structure had excellent antibacterial effects and cell study results demonstrated that nAg-loaded TPU mats had no cytotoxic effect on the fibroblast cells. In this work, the surface of a melt-electrospun TPU mats was modified via PEG monomer and then nAg. Results showed melt-electrospun TPU mats modified with PEG and nAg have a great potential for use as an antibacterial wound dressing material and thus, requires further investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=melt%20electrospinning" title="melt electrospinning">melt electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofiber" title=" nanofiber"> nanofiber</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20dressing" title=" wound dressing"> wound dressing</a> </p> <a href="https://publications.waset.org/abstracts/23367/functionally-modified-melt-electrospun-thermoplastic-polyurethane-tpu-mats-for-wound-dressing-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">249</span> Study of Nano Clay Based on Pet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Zouai">F. Zouai</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Z.%20Benabid"> F. Z. Benabid</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bouhelal"> S. Bouhelal</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Benachoura"> D. Benachoura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A (PET)/clay nano composites has been successfully performed in one step by reactive melt extrusion. The PEN was first mixed in the melt state with different amounts of functionalized clay. It was observed that the composition PET/4 wt% clay showed total exfoliation. These completely exfoliated composition called nPET, was used to prepare new nPET nano composites in the same mixing batch. The nPEN was compared to neat PET. The nanocomposites were characterized by different techniques: differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS). The micro and nanostructure/properties relationships were investigated. From the different WAXS patterns, it is seen that all samples are amorphous phase. In addition, nPET blends present lower Tc values and higher Tm values than the corresponding neat PET. The present study allowed establishing good correlations between the different measured properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PET" title="PET">PET</a>, <a href="https://publications.waset.org/abstracts/search?q=montmorillonite" title=" montmorillonite"> montmorillonite</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=exfoliation" title=" exfoliation"> exfoliation</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20melt-mixing" title=" reactive melt-mixing"> reactive melt-mixing</a> </p> <a href="https://publications.waset.org/abstracts/21033/study-of-nano-clay-based-on-pet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">248</span> Development of 420 mm Diameter Silicon Crystal Growth Using Continuous Czochralski Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilsun%20Pang">Ilsun Pang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwanghun%20Kim"> Kwanghun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungsun%20Baik"> Sungsun Baik </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Large diameter Si wafer is used as semiconductor substrate. Large diameter Si crystal ingot should be needed in order to increase wafer size. To make convection of large silicon melt stable, magnetic field is normally applied, but magnetic field is expensive and it is not proper to stabilize the large Si melt. To solve the problem, we propose a continuous Czochralski process which can be applied to small melt without magnetic field. We used granule poly, which has size distribution of 1~3 mm and is easily supplied in double crucible during silicon ingot growth. As the result, we produced 420 mm diameter ingot. In this paper, we describe an experimental study on crystal growth of large diameter silicon by Continuous Czochralski process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Czochralski" title="Czochralski">Czochralski</a>, <a href="https://publications.waset.org/abstracts/search?q=ingot" title=" ingot"> ingot</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20crystal" title=" silicon crystal"> silicon crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=wafer" title=" wafer"> wafer</a> </p> <a href="https://publications.waset.org/abstracts/23956/development-of-420-mm-diameter-silicon-crystal-growth-using-continuous-czochralski-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">247</span> Studies of Reduction Metal Impurity in Residual Melt by Czochralski Method </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaemin%20Kim">Jaemin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilsun%20Pang"> Ilsun Pang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongrae%20Cho"> Yongrae Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwanghun%20Kim"> Kwanghun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungsun%20Baik"> Sungsun Baik </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturing cost reduction is becoming more important due to excessive oversupply of Single crystalline ingot in recent solar market. Many companies are carrying out extensive research to grow more than one Single crystalline ingot in one batch to reduce manufacturing cost. However what most companies are finding difficult in this process is the effect on ingot due to increasing levels of impurities. Every ingot leaves a certain amount of melt after it is fully grown. This is the impurity that lowers the ingot quality. This impurity increase in the batch after second, third and more are grown subsequently in one batch. In order to solve this problem, the experiment to remove the residual melt in high temperature of hot zone was performed and succeeded. Theoretical average metal concentration of second ingot by new method was calculated and compared to it by conventional method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20crystal" title="single crystal">single crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20impurity" title=" metal impurity"> metal impurity</a>, <a href="https://publications.waset.org/abstracts/search?q=Ingot" title=" Ingot"> Ingot</a> </p> <a href="https://publications.waset.org/abstracts/24923/studies-of-reduction-metal-impurity-in-residual-melt-by-czochralski-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">246</span> Simulation of Single-Track Laser Melting on IN718 using Material Point Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Kadiyala">S. Kadiyala</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Berzins"> M. Berzins</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Juba"> D. Juba</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Keyrouz"> W. Keyrouz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the Material Point Method (MPM) for simulating a single-track laser melting process on an IN718 solid plate. MPM, known for simulating challenging multiphysics problems, is used to model the intricate thermal, mechanical, and fluid interactions during the laser sintering process. This study analyzes the formation of single tracks, exploring the impact of varying laser parameters such as speed, power, and spot diameter on the melt pool and track formation. The focus is on MPM’s ability to accurately simulate and capture the transient thermo-mechanical and phase change phenomena, which are critical in predicting the cooling rates before and after solidification of the laser track and the final melt pool geometry. The simulation results are rigorously compared with experimental data (AMB2022 benchmarks), demonstrating the effectiveness of MPM in replicating the physical processes in laser sintering. This research highlights the potential of MPM in advancing the understanding and simulation of melt pool physics in metal additive manufacturing, paving the way for optimized process parameters and improved material performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dditive%20manufacturing%20simulation" title="dditive manufacturing simulation">dditive manufacturing simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20point%20method" title=" material point method"> material point method</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change" title=" phase change"> phase change</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20pool%20physics" title=" melt pool physics"> melt pool physics</a> </p> <a href="https://publications.waset.org/abstracts/177736/simulation-of-single-track-laser-melting-on-in718-using-material-point-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">245</span> Forecast of Polyethylene Properties in the Gas Phase Polymerization Aided by Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasrin%20Bakhshizadeh">Nasrin Bakhshizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashkan%20Forootan"> Ashkan Forootan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A major problem that affects the quality control of polymer in the industrial polymerization is the lack of suitable on-line measurement tools to evaluate the properties of the polymer such as melt and density indices. Controlling the polymerization in ordinary method is performed manually by taking samples, measuring the quality of polymer in the lab and registry of results. This method is highly time consuming and leads to producing large number of incompatible products. An online application for estimating melt index and density proposed in this study is a neural network based on the input-output data of the polyethylene production plant. Temperature, the level of reactors&#39; bed, the intensity of ethylene mass flow, hydrogen and butene-1, the molar concentration of ethylene, hydrogen and butene-1 are used for the process to establish the neural model. The neural network is taught based on the actual operational data and back-propagation and Levenberg-Marquart techniques. The simulated results indicate that the neural network process model established with three layers (one hidden layer) for forecasting the density and the four layers for the melt index is able to successfully predict those quality properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyethylene" title="polyethylene">polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=polymerization" title=" polymerization"> polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20index" title=" melt index"> melt index</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a> </p> <a href="https://publications.waset.org/abstracts/105904/forecast-of-polyethylene-properties-in-the-gas-phase-polymerization-aided-by-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">244</span> Estimation of Snow and Ice Melt Contributions to Discharge from the Glacierized Hunza River Basin, Karakoram, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Hammad%20Ali">Syed Hammad Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Rijan%20Bhakta%20Kayastha"> Rijan Bhakta Kayastha</a>, <a href="https://publications.waset.org/abstracts/search?q=Danial%20Hashmi"> Danial Hashmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Armstrong"> Richard Armstrong</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahuti%20Shrestha"> Ahuti Shrestha</a>, <a href="https://publications.waset.org/abstracts/search?q=Iram%20Bano"> Iram Bano</a>, <a href="https://publications.waset.org/abstracts/search?q=Javed%20Hassan"> Javed Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the results of a semi-distributed modified positive degree-day model (MPDDM) for estimating snow and ice melt contributions to discharge from the glacierized Hunza River basin, Pakistan. The model uses daily temperature data, daily precipitation data, and positive degree day factors for snow and ice melt. The model is calibrated for the period 1995-2001 and validated for 2002-2013, and demonstrates close agreements between observed and simulated discharge with Nash–Sutcliffe Efficiencies of 0.90 and 0.88, respectively. Furthermore, the Weather Research and Forecasting model projected temperature, and precipitation data from 2016-2050 are used for representative concentration pathways RCP4.5 and RCP8.5, and bias correction was done using a statistical approach for future discharge estimation. No drastic changes in future discharge are predicted for the emissions scenarios. The aggregate snow-ice melt contribution is 39% of total discharge in the period 1993-2013. Snow-ice melt contribution ranges from 35% to 63% during the high flow period (May to October), which constitutes 89% of annual discharge; in the low flow period (November to April) it ranges from 0.02% to 17%, which constitutes 11 % of the annual discharge. The snow-ice melt contribution to total discharge will increase gradually in the future and reach up to 45% in 2041-2050. From a sensitivity analysis, it is found that the combination of a 2°C temperature rise and 20% increase in precipitation shows a 10% increase in discharge. The study allows us to evaluate the impact of climate change in such basins and is also useful for the future prediction of discharge to define hydropower potential, inform other water resource management in the area, to understand future changes in snow-ice melt contribution to discharge, and offer a possible evaluation of future water quantity and availability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20variability" title="climate variability">climate variability</a>, <a href="https://publications.waset.org/abstracts/search?q=future%20discharge%20projection" title=" future discharge projection"> future discharge projection</a>, <a href="https://publications.waset.org/abstracts/search?q=positive%20degree%20day" title=" positive degree day"> positive degree day</a>, <a href="https://publications.waset.org/abstracts/search?q=regional%20climate%20model" title=" regional climate model"> regional climate model</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resource%20management" title=" water resource management"> water resource management</a> </p> <a href="https://publications.waset.org/abstracts/69578/estimation-of-snow-and-ice-melt-contributions-to-discharge-from-the-glacierized-hunza-river-basin-karakoram-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">243</span> Investigation of Dispersion of Carbon Nanoparticles in Polymer Melt for the Fabrication of Functional Filaments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merle%20Bischoff">Merle Bischoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Gries"> Thomas Gries</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunnar%20Seide"> Gunnar Seide</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanocomposites have become more and more important as the implementation of nanoparticles in polymer allows additional functions in common industrial parts. Especially in the fabrication of filaments or fibres nanomodification is important, as only very small fillers can be added to the very fine fibres (common diameter is 20 µm, fine filament are 1 µm). Discharging fibres, conductive fibres, and many other functional fibres raise in their importance nowadays. Especially the dispersion quality is essential for the final enhancement of the filament propertied. In this paper, the dispersion of carbon nanoparticles in polymer melt is enhanced by a newly developed sonication unit of ITA and BANDELIN electronic GmbH & Co. KG. The first development steps of the unit fabrication, as well as the first experimental results of the modification of the dispersion, are shown. Special focus will be laid on the sealing of the new sonication unit as well as the positioning and equipment size when being implemented in an existing melt spinning unit. Furthermore, the influence on the thereby manufactured nano-modified filaments will be shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dispersion" title="dispersion">dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=sonication" title=" sonication"> sonication</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanoparticles" title=" carbon nanoparticles"> carbon nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=filaments" title=" filaments"> filaments</a> </p> <a href="https://publications.waset.org/abstracts/65923/investigation-of-dispersion-of-carbon-nanoparticles-in-polymer-melt-for-the-fabrication-of-functional-filaments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">242</span> Development of an Erodable Matrix Drug Delivery Platform for Controled Delivery of Non Steroidal Anti Inflamatory Drugs Using Melt Granulation Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Hilsana">A. Hilsana</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinay%20U.%20Rao"> Vinay U. Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sudhakar"> M. Sudhakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Even though a number of non-steroidal anti-inflammatory drugs (NSAIDS) are available with different chemistries, they share a common solubility characteristic that is they are relatively more soluble in alkaline environment and practically insoluble in acidic environment. This work deals with developing a wax matrix drug delivery platform for controlled delivery of three model NSAIDS, Diclofenac sodium (DNa), Mefenamic acid (MA) and Naproxen (NPX) using the melt granulation technique. The aim of developing the platform was to have a general understanding on how an erodible matrix system modulates drug delivery rate and extent and how it can be optimized to give a delivery system which shall release the drug as per a common target product profile (TPP). Commonly used waxes like Cetostearyl alcohol and stearic acid were used singly an in combination to achieve a TPP of not 15 to 35% in 1 hour and not less than 80% Q in 24 hours. Full factorial design of experiments was followed for optimization of the formulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NSAIDs" title="NSAIDs">NSAIDs</a>, <a href="https://publications.waset.org/abstracts/search?q=controlled%20delivery" title=" controlled delivery"> controlled delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20product%20profile" title=" target product profile"> target product profile</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20granulation" title=" melt granulation"> melt granulation</a> </p> <a href="https://publications.waset.org/abstracts/9021/development-of-an-erodable-matrix-drug-delivery-platform-for-controled-delivery-of-non-steroidal-anti-inflamatory-drugs-using-melt-granulation-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">241</span> The Analysis of Defects Prediction in Injection Molding </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Moayyedian">Mehdi Moayyedian</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazem%20Abhary"> Kazem Abhary</a>, <a href="https://publications.waset.org/abstracts/search?q=Romeo%20Marian"> Romeo Marian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an evaluation of a plastic defect in injection molding before it occurs in the process; it is known as the short shot defect. The evaluation of different parameters which affect the possibility of short shot defect is the aim of this paper. The analysis of short shot possibility is conducted via SolidWorks Plastics and Taguchi method to determine the most significant parameters. Finite Element Method (FEM) is employed to analyze two circular flat polypropylene plates of 1 mm thickness. Filling time, part cooling time, pressure holding time, melt temperature and gate type are chosen as process and geometric parameters, respectively. A methodology is presented herein to predict the possibility of the short-shot occurrence. The analysis determined melt temperature is the most influential parameter affecting the possibility of short shot defect with a contribution of 74.25%, and filling time with a contribution of 22%, followed by gate type with a contribution of 3.69%. It was also determined the optimum level of each parameter leading to a reduction in the possibility of short shot are gate type at level 1, filling time at level 3 and melt temperature at level 3. Finally, the most significant parameters affecting the possibility of short shot were determined to be melt temperature, filling time, and gate type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=injection%20molding" title="injection molding">injection molding</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20defects" title=" plastic defects"> plastic defects</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20shot" title=" short shot"> short shot</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method "> Taguchi method </a> </p> <a href="https://publications.waset.org/abstracts/56717/the-analysis-of-defects-prediction-in-injection-molding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">240</span> The Fabrication of Scintillator Column by Hydraulic Pressure Injection Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chien%20Chon%20Chen">Chien Chon Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun%20Mei%20Chu"> Chun Mei Chu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuan%20Ju%20Wang"> Chuan Ju Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih%20Yuan%20Chen"> Chih Yuan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ker%20Jer%20Huang"> Ker Jer Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cesiumiodide with Na doping (CsI(Na)) solution or melt is easily forming three- dimension dendrites on the free surface. The defects or bobbles form inside the CsI(Na) during the solution or melt solidification. The defects or bobbles can further effect the x-ray path in the CsI(Na) crystal and decrease the scintillation characteristics of CsI(Na). In order to enhance the CsI(Na) scintillated property we made single crystal of CsI(Na) column in the anodic aluminum oxide (AAO) template by hydraulic pressure injection method. It is interesting that when CsI(Na) melt is confined in the small AAO channels, the column grow as stable single column without any dendrites. The high aspect ratio (100~10000) of AAO and nano to sub-micron channel structure which is a suitable template for single of crystal CsI(Na) formation. In this work, a new low-cost approach to fabricate scintillator crystals using anodic aluminum oxide (AAO) rather than Si is reported, which can produce scintillator crystals with a wide range of controllable size to optimize their performance in X-ray detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cesiumiodide" title="cesiumiodide">cesiumiodide</a>, <a href="https://publications.waset.org/abstracts/search?q=AAO" title=" AAO"> AAO</a>, <a href="https://publications.waset.org/abstracts/search?q=scintillator" title=" scintillator"> scintillator</a>, <a href="https://publications.waset.org/abstracts/search?q=crystal" title=" crystal"> crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray" title=" X-ray"> X-ray</a> </p> <a href="https://publications.waset.org/abstracts/4389/the-fabrication-of-scintillator-column-by-hydraulic-pressure-injection-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">239</span> Studying the Effect of Nanoclays on the Mechanical Properties of Polypropylene/Polyamide Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benalia%20Kouini">Benalia Kouini</a>, <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Serier"> Aicha Serier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanocomposites based on polypropylene/polyamide 66 (PP/PA66) nanoblends containing organophilic montmorillonite (OMMT) and maleic anhydride grafted polypropylene (PP-g-MAH) were prepared by melt compounding method followed by injection molding. Two different types of nanoclays were used in this work. DELLITE LVF is the untreated nanoclay and DELLITE 67G is the treated one. The morphology of the nanocomposites was studied using the XR diffraction (XRD). The results indicate that the incorporation of treated nanoclay has a significant effect on the impact strength of PP/PA66 nanocomposites. Furthermore, it was found that XRD results revealed the intercalation, exfoliation of nanaclays of nanocomposites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nNanoclay" title="nNanoclay">nNanoclay</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanocomposites" title=" Nanocomposites"> Nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=Polypropylene" title=" Polypropylene"> Polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=Polyamide" title=" Polyamide"> Polyamide</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20processing" title=" melt processing"> melt processing</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties." title=" mechanical properties."> mechanical properties.</a> </p> <a href="https://publications.waset.org/abstracts/46381/studying-the-effect-of-nanoclays-on-the-mechanical-properties-of-polypropylenepolyamide-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">238</span> Effect of Modified Layered Silicate Nanoclay on the Dynamic Viscoelastic Properties of Thermoplastic Polymers Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benalia%20Kouini">Benalia Kouini</a>, <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Serier"> Aicha Serier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to investigate the structure–property relationship in ternary nanocomposites consisting of polypropylene as the matrix, polyamide 66 as the minor phase and treated nanoclay DELLITE 67G as the reinforcement. All PP/PA66/Nanoclay systems with polypropylene grafted maleic anhydride PP-g-MAH as a compatibilizer were prepared via melt compounding and characterized in terms of nanoclay content. Morphological structure was investigated by scanning electron microscopy. The rheological behavior of the nanocomposites was determined by various methods, viz melt flow index (MFI) and parallel plate rheological measurements. The PP/PP-g-MAH/PA66 nanocomposites showed a homogeneous morphology supporting the compatibility improvement between PP, PA66 and nanoclay. SEM results revealed the formation of nanocomposites as the nanoclay was intercalated and exfoliated. In the ternary nanocomposites, the rheological behavior showed that, the complex viscosity is increased with increasing the nanoclay content; however, at low frequencies this increase is governed by the content of nanofiller while at high frequencies it is mainly determined by talc content. A similar trend was also observed for the variations of storage modulus (G′) and loss modulus (G″) with frequency. The results showed that the use of nanoclay considerably affects the melt elasticity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title="nanocomposites">nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=polyamide66" title=" polyamide66"> polyamide66</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20nanoclay" title=" modified nanoclay"> modified nanoclay</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a> </p> <a href="https://publications.waset.org/abstracts/41743/effect-of-modified-layered-silicate-nanoclay-on-the-dynamic-viscoelastic-properties-of-thermoplastic-polymers-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">237</span> Melt–Electrospun Polyprophylene Fabrics Functionalized with TiO2 Nanoparticles for Effective Photocatalytic Decolorization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Karahalilo%C4%9Flu">Z. Karahaliloğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Hacker"> C. Hacker</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Demirbilek"> M. Demirbilek</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Seide"> G. Seide</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20B.%20Denkba%C5%9F"> E. B. Denkbaş</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Gries"> T. Gries</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, textile industry has played an important role in world’s economy, especially in developing countries. Dyes and pigments used in textile industry are significant pollutants. Most of theirs are azo dyes that have chromophore (-N=N-) in their structure. There are many methods for removal of the dyes from wastewater such as chemical coagulation, flocculation, precipitation and ozonation. But these methods have numerous disadvantages and alternative methods are needed for wastewater decolorization. Titanium-mediated photodegradation has been used generally due to non-toxic, insoluble, inexpensive, and highly reactive properties of titanium dioxide semiconductor (TiO2). Melt electrospinning is an attractive manufacturing process for thin fiber production through electrospinning from PP (Polyprophylene). PP fibers have been widely used in the filtration due to theirs unique properties such as hydrophobicity, good mechanical strength, chemical resistance and low-cost production. In this study, we aimed to investigate the effect of titanium nanoparticle localization and amine modification on the dye degradation. The applicability of the prepared chemical activated composite and pristine fabrics for a novel treatment of dyeing wastewater were evaluated.In this study, a photocatalyzer material was prepared from nTi (titanium dioxide nanoparticles) and PP by a melt-electrospinning technique. The electrospinning parameters of pristine PP and PP/nTi nanocomposite fabrics were optimized. Before functionalization with nTi, the surface of fabrics was activated by a technique using glutaraldehyde (GA) and polyethyleneimine to promote the dye degredation. Pristine PP and PP/nTi nanocomposite melt-electrospun fabrics were characterized using scanning electron microscopy (SEM) and X-Ray Photon Spectroscopy (XPS). Methyl orange (MO) was used as a model compound for the decolorization experiments. Photocatalytic performance of nTi-loaded pristine and nanocomposite melt-electrospun filters was investigated by varying initial dye concentration 10, 20, 40 mg/L). nTi-PP composite fabrics were successfully processed into a uniform, fibrous network of beadless fibers with diameters of 800±0.4 nm. The process parameters were determined as a voltage of 30 kV, a working distance of 5 cm, a temperature of the thermocouple and hotcoil of 260–300 ºC and a flow rate of 0.07 mL/h. SEM results indicated that TiO2 nanoparticles were deposited uniformly on the nanofibers and XPS results confirmed the presence of titanium nanoparticles and generation of amine groups after modification. According to photocatalytic decolarization test results, nTi-loaded GA-treated pristine or nTi-PP nanocomposite fabric filtern have superior properties, especially over 90% decolorization efficiency at GA-treated pristine and nTi-PP composite PP fabrics. In this work, as a photocatalyzer for wastewater treatment, surface functionalized with nTi melt-electrospun fabrics from PP were prepared. Results showed melt-electrospun nTi-loaded GA-tretaed composite or pristine PP fabrics have a great potential for use as a photocatalytic filter to decolorization of wastewater and thus, requires further investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium%20oxide%20nanoparticles" title="titanium oxide nanoparticles">titanium oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=polyprophylene" title=" polyprophylene"> polyprophylene</a>, <a href="https://publications.waset.org/abstracts/search?q=melt-electrospinning" title=" melt-electrospinning"> melt-electrospinning</a> </p> <a href="https://publications.waset.org/abstracts/27267/melt-electrospun-polyprophylene-fabrics-functionalized-with-tio2-nanoparticles-for-effective-photocatalytic-decolorization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">236</span> Reactive Blending of Thermoplastic Starch, Ethylene-1-Butene Rubber, and Chitosan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kittisak%20Jantanasakulwong">Kittisak Jantanasakulwong</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshiaki%20Ougizawa"> Toshiaki Ougizawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermoplastic starch (TPS) was prepared by melt-blending of cassava starch with glycerol (70/30 wt%/wt%) at 130 ◦C for 10 min. Chitosan (CTS) was used as a compatibilizer. TPS/CTS blend was melt-blended with maleic anhydride grafted ethylene-1-butene rubber (EB-MAH) in the composition of 80/20 respectively. Addition of CTS in TPS/EB-MAH blend decreased particles size of EB-MAH rubber to 1µm in TPS matrix. Mechanical properties, solubility, swelling property, morphology, and water contact angle of TPS/EB-MAH blend were improved by CTS incorporation. FTIR confirmed a reaction had occurred between amino groups (-NH2) of CTS and the MAH groups of EB-MAH. This reaction and the enhanced miscibility between TPS and CTS improved morphology and properties of the TPS/EB-MAH/CTS blend. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20starch" title="thermoplastic starch">thermoplastic starch</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber" title=" rubber"> rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20blending" title=" reactive blending"> reactive blending</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a> </p> <a href="https://publications.waset.org/abstracts/79632/reactive-blending-of-thermoplastic-starch-ethylene-1-butene-rubber-and-chitosan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">235</span> Study of Poly(Ethylene Terephthalate)-Clay Nanocomposites Prepareted by Extrusion Reactive Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Zouai">F. Zouai</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Z.%20Benabid"> F. Z. Benabid</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bouhelal"> S. Bouhelal</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Benachour"> D. Benachour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A method for the exfoliation of polyethylene terephtalate (PET) - clay nanocomposites has been reported in this study. Montmorillonite clay based polyethylene terephtalate nanocomposites were prepared by reactive melt-mixing. To achieve this, untreated clay was first functionalized with the crosslinking agent compound based mainly on peroxide/sulphur and TMTD as accelerator or activator for sulphur. Furthermore, the different blends composition of PET/clay were directly mixed in melt state in closed chamber of plastograph at given working conditions for short time and in one step process. To investigate the microstructure modification and thermal, mechanical and rheological properties the DSC, WAXS, microhardness, FTIR and tensile properties were performed. The resulting structure of the modified samples shows that total exfoliation appears at 4% w/w of clay to PET matrices. The crystallinity and tensile modulus were correlated by the H microhardness and the DSC shows no significant effect on the cristallinity degree. The mechanical properties were improved significantly. The viscosity decreases for 4% clay and the activation energy is the minimum. The WAXS measurement shows a partial exfoliation without any intercalation which is the most relevant point. The grafting of organic to inorganic nanolayers was observed by Si—O—C and Si—C bonds by FTIR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PET" title="PET">PET</a>, <a href="https://publications.waset.org/abstracts/search?q=montmorillonite" title=" montmorillonite"> montmorillonite</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=exfoliation" title=" exfoliation"> exfoliation</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20melt-mixing" title=" reactive melt-mixing"> reactive melt-mixing</a> </p> <a href="https://publications.waset.org/abstracts/6668/study-of-polyethylene-terephthalate-clay-nanocomposites-prepareted-by-extrusion-reactive-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=melt&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=melt&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=melt&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=melt&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=melt&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=melt&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=melt&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=melt&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=melt&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10