CINXE.COM

Search results for: mapping

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: mapping</title> <meta name="description" content="Search results for: mapping"> <meta name="keywords" content="mapping"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="mapping" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="mapping"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1126</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: mapping</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1126</span> An Alternative Way to Mapping Cone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousuf%20Alkhezi">Yousuf Alkhezi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since most of the literature on algebra does not make much deal with the special case of mapping cone. This paper is an alternative way to examine the special tensor product and mapping cone. Also, we show that the isomorphism that implies the mapping cone commutes with the tensor product for the ordinary tensor product no longer holds for the pinched tensor product. However, we show there is a morphism. We will introduce an alternative way of mapping cone. We are looking for more properties which is our future project. Also, we want to apply these new properties in some application. Many results and examples with classical algorithms will be provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex" title="complex">complex</a>, <a href="https://publications.waset.org/abstracts/search?q=tensor%20product" title=" tensor product"> tensor product</a>, <a href="https://publications.waset.org/abstracts/search?q=pinched%20tensore%20product" title=" pinched tensore product"> pinched tensore product</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping%20cone" title=" mapping cone"> mapping cone</a> </p> <a href="https://publications.waset.org/abstracts/153677/an-alternative-way-to-mapping-cone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1125</span> Heuristic for Accelerating Run-Time Task Mapping in NoC-Based Heterogeneous MPSoCs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Benhaoua">M. K. Benhaoua</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Singh"> A. K. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20E.%20H.%20Benyamina"> A. E. H. Benyamina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kumar"> A. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Boulet"> P. Boulet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a new packing strategy to find free resources for run-time mapping of application tasks on NoC-based Heterogeneous MPSoCs. The proposed strategy minimizes the task mapping time in addition to placing the communicating tasks close to each other. To evaluate our approach, a comparative study is carried out. Experiments show that our strategy provides better results when compared to latest dynamic mapping strategies reported in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20MPSoCs" title="heterogeneous MPSoCs">heterogeneous MPSoCs</a>, <a href="https://publications.waset.org/abstracts/search?q=NoC" title=" NoC"> NoC</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20mapping" title=" dynamic mapping"> dynamic mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=routing" title=" routing"> routing</a> </p> <a href="https://publications.waset.org/abstracts/7972/heuristic-for-accelerating-run-time-task-mapping-in-noc-based-heterogeneous-mpsocs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1124</span> Dynamic Communications Mapping in NoC-Based Heterogeneous MPSoCs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Benhaoua">M. K. Benhaoua</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Singh"> A. K. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20E.%20H.%20Benyamina"> A. E. H. Benyamina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose heuristic for dynamic communications mapping that considers the placement of communications in order to optimize the overall performance. The mapping technique uses a newly proposed Algorithm to place communications between the tasks. The placement we propose of the communications leads to a better optimization of several performance metrics (time and energy consumption). Experimental results show that the proposed mapping approach provides significant performance improvements when compared to those using static routing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Multi-Processor%20Systems-on-Chip%20%28MPSoCs%29" title="Multi-Processor Systems-on-Chip (MPSoCs)">Multi-Processor Systems-on-Chip (MPSoCs)</a>, <a href="https://publications.waset.org/abstracts/search?q=Network-on-Chip%20%28NoC%29" title=" Network-on-Chip (NoC)"> Network-on-Chip (NoC)</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20architectures" title=" heterogeneous architectures"> heterogeneous architectures</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20mapping%20heuristics" title=" dynamic mapping heuristics"> dynamic mapping heuristics</a> </p> <a href="https://publications.waset.org/abstracts/22269/dynamic-communications-mapping-in-noc-based-heterogeneous-mpsocs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1123</span> Mapping Method to Solve a Nonlinear Schrodinger Type Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edamana%20Vasudevan%20Krishnan">Edamana Vasudevan Krishnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies solitons in optical materials with the help of Mapping Method. Two types of nonlinear media have been investigated, namely, the cubic nonlinearity and the quintic nonlinearity. The soliton solutions, shock wave solutions and singular solutions have been derives with certain constraint conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solitons" title="solitons">solitons</a>, <a href="https://publications.waset.org/abstracts/search?q=integrability" title=" integrability"> integrability</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterials" title=" metamaterials"> metamaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping%20method" title=" mapping method"> mapping method</a> </p> <a href="https://publications.waset.org/abstracts/32851/mapping-method-to-solve-a-nonlinear-schrodinger-type-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1122</span> Presenting a Knowledge Mapping Model According to a Comparative Study on Applied Models and Approaches to Map Organizational Knowledge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Aslizadeh">Ahmad Aslizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Farid%20Ghaderi"> Farid Ghaderi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mapping organizational knowledge is an innovative concept and useful instrument of representation, capturing and visualization of implicit and explicit knowledge. There are a diversity of methods, instruments and techniques presented by different researchers following mapping organizational knowledge to reach determined goals. Implicating of these methods, it is necessary to know their exigencies and conditions in which those can be used. Integrating identified methods of knowledge mapping and comparing them would help knowledge managers to select the appropriate methods. This research conducted to presenting a model and framework to map organizational knowledge. At first, knowledge maps, their applications and necessity are introduced because of extracting comparative framework and detection of their structure. At the next step techniques of researchers such as Eppler, Kim, Egbu, Tandukar and Ebner as knowledge mapping models are presented and surveyed. Finally, they compare and a superior model would be introduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=knowledge%20mapping" title="knowledge mapping">knowledge mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20management" title=" knowledge management"> knowledge management</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20study" title=" comparative study"> comparative study</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20and%20management" title=" business and management"> business and management</a> </p> <a href="https://publications.waset.org/abstracts/29967/presenting-a-knowledge-mapping-model-according-to-a-comparative-study-on-applied-models-and-approaches-to-map-organizational-knowledge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1121</span> Buzan Mind Mapping: An Efficient Technique for Note-Taking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20K.%20Tee">T. K. Tee</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20A.%20Azman"> M. N. A. Azman</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mohamed"> S. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Muhammad"> M. Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Mohamad"> M. M. Mohamad</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Md%20Yunos"> J. Md Yunos</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Yee"> M. H. Yee</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Othman"> W. Othman </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Buzan mind mapping is an efficient system of note-taking that makes revision a fun thing to do for students. Tony Buzan has been teaching children all over the world for the past thirty years and has proved that mind maps are the magic formula in the classroom for everyone. The purpose of this paper is to discuss the importance of Buzan mind mapping as a note-taking technique for the secondary school students. This paper also examines the mind mapping technique, advantages and disadvantages of hand-drawn mind maps. Samples of students’ mind maps were presented and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buzan%20mind%20mapping" title="Buzan mind mapping">Buzan mind mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=note-taking%20technique" title=" note-taking technique"> note-taking technique</a>, <a href="https://publications.waset.org/abstracts/search?q=hand-drawn" title=" hand-drawn"> hand-drawn</a>, <a href="https://publications.waset.org/abstracts/search?q=mind%20maps" title=" mind maps "> mind maps </a> </p> <a href="https://publications.waset.org/abstracts/4240/buzan-mind-mapping-an-efficient-technique-for-note-taking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1120</span> Mapping Feature Models to Code Using a Reference Architecture: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karam%20Ignaim">Karam Ignaim</a>, <a href="https://publications.waset.org/abstracts/search?q=Joao%20M.%20Fernandes"> Joao M. Fernandes</a>, <a href="https://publications.waset.org/abstracts/search?q=Andre%20L.%20Ferreira"> Andre L. Ferreira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mapping the artifacts coming from a set of similar products family developed in an ad-hoc manner to make up the resulting software product line (SPL) plays a key role to maintain the consistency between requirements and code. This paper presents a feature mapping approach that focuses on tracing the artifact coming from the migration process, the current feature model (FM), to the other artifacts of the resulting SPL, the reference architecture, and code. Thus, our approach relates each feature of the current FM to its locations in the implementation code, using the reference architecture as an intermediate artifact (as a centric point) to preserve consistency among them during an SPL evolution. The approach uses a particular artifact (i.e., traceability tree) as a solution for managing the mapping process. Tool support is provided using friendlyMapper. We have evaluated the feature mapping approach and tool support by putting the approach into practice (i.e., conducting a case study) of the automotive domain for Classical Sensor Variants Family at Bosch Car Multimedia S.A. The evaluation reveals that the mapping approach presented by this paper fits the automotive domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feature%20location" title="feature location">feature location</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20models" title=" feature models"> feature models</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping" title=" mapping"> mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20product%20lines" title=" software product lines"> software product lines</a>, <a href="https://publications.waset.org/abstracts/search?q=traceability" title=" traceability"> traceability</a> </p> <a href="https://publications.waset.org/abstracts/133113/mapping-feature-models-to-code-using-a-reference-architecture-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1119</span> Sub-Pixel Mapping Based on New Mixed Interpolation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeyu%20Zhou">Zeyu Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaojun%20Bi"> Xiaojun Bi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the limited environmental parameters and the limited resolution of the sensor, the universal existence of the mixed pixels in the process of remote sensing images restricts the spatial resolution of the remote sensing images. Sub-pixel mapping technology can effectively improve the spatial resolution. As the bilinear interpolation algorithm inevitably produces the edge blur effect, which leads to the inaccurate sub-pixel mapping results. In order to avoid the edge blur effect that affects the sub-pixel mapping results in the interpolation process, this paper presents a new edge-directed interpolation algorithm which uses the covariance adaptive interpolation algorithm on the edge of the low-resolution image and uses bilinear interpolation algorithm in the low-resolution image smooth area. By using the edge-directed interpolation algorithm, the super-resolution of the image with low resolution is obtained, and we get the percentage of each sub-pixel under a certain type of high-resolution image. Then we rely on the probability value as a soft attribute estimate and carry out sub-pixel scale under the ‘hard classification’. Finally, we get the result of sub-pixel mapping. Through the experiment, we compare the algorithm and the bilinear algorithm given in this paper to the results of the sub-pixel mapping method. It is found that the sub-pixel mapping method based on the edge-directed interpolation algorithm has better edge effect and higher mapping accuracy. The results of the paper meet our original intention of the question. At the same time, the method does not require iterative computation and training of samples, making it easier to implement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing%20images" title="remote sensing images">remote sensing images</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-pixel%20mapping" title=" sub-pixel mapping"> sub-pixel mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=bilinear%20interpolation" title=" bilinear interpolation"> bilinear interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=edge-directed%20interpolation" title=" edge-directed interpolation"> edge-directed interpolation</a> </p> <a href="https://publications.waset.org/abstracts/77883/sub-pixel-mapping-based-on-new-mixed-interpolation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1118</span> A Simulation Tool for Projection Mapping Based on Mapbox and Unity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noriko%20Hanakawa">Noriko Hanakawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Masaki%20Obana"> Masaki Obana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simulation tool has been proposed for big-scale projection mapping events. The tool has four main functions based on Mapbox and Unity utilities. The first function is building a 3D model of real cities by MapBox. The second function is a movie projection to some buildings in real cities by Unity. The third function is a movie sending function from a PC to a virtual projector. The fourth function is mapping movies with fitting buildings. The simulation tool was adapted to a real projection mapping event that was held in 2019. The event has been finished. The event had a serious problem in the movie projection to the target building. The extra tents were set in front of the target building. The tents became the obstacles to the movie projection. The simulation tool can be reappeared the problems of the event. Therefore, if the simulation tool was developed before the 2019 projection mapping event, the problem of the tents’ obstacles could be avoided with the simulation tool. In addition, we confirmed that the simulation tool is useful to make a plan of future projection mapping events in order to avoid obstacles of various extra equipment such as utility poles, planting trees, monument towers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=projection%20mapping" title="projection mapping">projection mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=projector%20position" title=" projector position"> projector position</a>, <a href="https://publications.waset.org/abstracts/search?q=real%203D%20map" title=" real 3D map"> real 3D map</a>, <a href="https://publications.waset.org/abstracts/search?q=avoiding%20obstacles" title=" avoiding obstacles"> avoiding obstacles</a> </p> <a href="https://publications.waset.org/abstracts/140107/a-simulation-tool-for-projection-mapping-based-on-mapbox-and-unity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1117</span> The Revised Completion of Student Internship Report by Goal Mapping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faizah%20Herman">Faizah Herman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to explore the attitudes and behavior of goal mapping performed by the student in completing the internship report revised on time. The approach is phenomenological research with qualitative methods. Data sources include observation, interviews and questionnaires, focus group discussions. Research subject 5 students who have completed the internship report revisions in a timely manner. The analysis technique is an interactive model of Miles&Huberman data analysis techniques. The results showed that the students have a goal of mapping that includes the ultimate goal, formulate goals by identifying what are the things that need to be done, action to be taken and what kind of support is needed from the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=goal%20mapping" title="goal mapping">goal mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=revision%20internship%20report" title=" revision internship report"> revision internship report</a>, <a href="https://publications.waset.org/abstracts/search?q=students" title=" students"> students</a>, <a href="https://publications.waset.org/abstracts/search?q=Brawijaya" title=" Brawijaya"> Brawijaya</a> </p> <a href="https://publications.waset.org/abstracts/5083/the-revised-completion-of-student-internship-report-by-goal-mapping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1116</span> Algorithms for Run-Time Task Mapping in NoC-Based Heterogeneous MPSoCs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Benhaoua">M. K. Benhaoua</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Singh"> A. K. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20E.%20Benyamina"> A. E. Benyamina</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Boulet"> P. Boulet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mapping parallelized tasks of applications onto these MPSoCs can be done either at design time (static) or at run-time (dynamic). Static mapping strategies find the best placement of tasks at design-time, and hence, these are not suitable for dynamic workload and seem incapable of runtime resource management. The number of tasks or applications executing in MPSoC platform can exceed the available resources, requiring efficient run-time mapping strategies to meet these constraints. This paper describes a new Spiral Dynamic Task Mapping heuristic for mapping applications onto NoC-based Heterogeneous MPSoC. This heuristic is based on packing strategy and routing Algorithm proposed also in this paper. Heuristic try to map the tasks of an application in a clustering region to reduce the communication overhead between the communicating tasks. The heuristic proposed in this paper attempts to map the tasks of an application that are most related to each other in a spiral manner and to find the best possible path load that minimizes the communication overhead. In this context, we have realized a simulation environment for experimental evaluations to map applications with varying number of tasks onto an 8x8 NoC-based Heterogeneous MPSoCs platform, we demonstrate that the new mapping heuristics with the new modified dijkstra routing algorithm proposed are capable of reducing the total execution time and energy consumption of applications when compared to state-of-the-art run-time mapping heuristics reported in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiprocessor%20system%20on%20chip" title="multiprocessor system on chip">multiprocessor system on chip</a>, <a href="https://publications.waset.org/abstracts/search?q=MPSoC" title=" MPSoC"> MPSoC</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20on%20chip" title=" network on chip"> network on chip</a>, <a href="https://publications.waset.org/abstracts/search?q=NoC" title=" NoC"> NoC</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20architectures" title=" heterogeneous architectures"> heterogeneous architectures</a>, <a href="https://publications.waset.org/abstracts/search?q=run-time%20mapping%20heuristics" title=" run-time mapping heuristics"> run-time mapping heuristics</a>, <a href="https://publications.waset.org/abstracts/search?q=routing%20algorithm" title=" routing algorithm "> routing algorithm </a> </p> <a href="https://publications.waset.org/abstracts/24295/algorithms-for-run-time-task-mapping-in-noc-based-heterogeneous-mpsocs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1115</span> The Use of Semantic Mapping Technique When Teaching English Vocabulary at Saudi Schools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Hassan%20Alshaikhi">Mohammed Hassan Alshaikhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vocabulary is essential factor of learning and mastering any languages, and it helps learners to communicate with others and to be understood. The aim of this study was to examine whether semantic mapping technique was helpful in terms of improving student's English vocabulary learning comparing to the traditional technique. The students’ age was between 11 and 13 years old. There were 60 students in total who participated in this study. 30 students were in the treatment group (target vocabulary items were taught with semantic mapping). The other 30 students were in the control group (the target vocabulary items were taught by a traditional technique). A t-test was used with the results of pre-test and post-test in order to examine the outcomes of using semantic mapping when teaching vocabulary. The results showed that the vocabulary mastery in the treatment group was increased more than the control group. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=English%20language" title="English language">English language</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20vocabulary" title=" learning vocabulary"> learning vocabulary</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20teachers" title=" Saudi teachers"> Saudi teachers</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20mapping" title=" semantic mapping"> semantic mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=teaching%20vocabulary%20strategies" title=" teaching vocabulary strategies"> teaching vocabulary strategies</a> </p> <a href="https://publications.waset.org/abstracts/75154/the-use-of-semantic-mapping-technique-when-teaching-english-vocabulary-at-saudi-schools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1114</span> Variable Mapping: From Bibliometrics to Implications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Przemys%C5%82aw%20Tomczyk">Przemysław Tomczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Dagmara%20Plata-Alf"> Dagmara Plata-Alf</a>, <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Kwiatek"> Piotr Kwiatek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Literature review is indispensable in research. One of the key techniques used in it is bibliometric analysis, where one of the methods is science mapping. The classic approach that dominates today in this area consists of mapping areas, keywords, terms, authors, or citations. This approach is also used in relation to the review of literature in the field of marketing. The development of technology has resulted in the fact that researchers and practitioners use the capabilities of software available on the market for this purpose. The use of science mapping software tools (e.g., VOSviewer, SciMAT, Pajek) in recent publications involves the implementation of a literature review, and it is useful in areas with a relatively high number of publications. Despite this well-grounded science mapping approach having been applied in the literature reviews, performing them is a painstaking task, especially if authors would like to draw precise conclusions about the studied literature and uncover potential research gaps. The aim of this article is to identify to what extent a new approach to science mapping, variable mapping, takes advantage of the classic science mapping approach in terms of research problem formulation and content/thematic analysis for literature reviews. To perform the analysis, a set of 5 articles on customer ideation was chosen. Next, the analysis of key words mapping results in VOSviewer science mapping software was performed and compared with the variable map prepared manually on the same articles. Seven independent expert judges (management scientists on different levels of expertise) assessed the usability of both the stage of formulating, the research problem, and content/thematic analysis. The results show the advantage of variable mapping in the formulation of the research problem and thematic/content analysis. First, the ability to identify a research gap is clearly visible due to the transparent and comprehensive analysis of the relationships between the variables, not only keywords. Second, the analysis of relationships between variables enables the creation of a story with an indication of the directions of relationships between variables. Demonstrating the advantage of the new approach over the classic one may be a significant step towards developing a new approach to the synthesis of literature and its reviews. Variable mapping seems to allow scientists to build clear and effective models presenting the scientific achievements of a chosen research area in one simple map. Additionally, the development of the software enabling the automation of the variable mapping process on large data sets may be a breakthrough change in the field of conducting literature research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bibliometrics" title="bibliometrics">bibliometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=literature%20review" title=" literature review"> literature review</a>, <a href="https://publications.waset.org/abstracts/search?q=science%20mapping" title=" science mapping"> science mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20mapping" title=" variable mapping"> variable mapping</a> </p> <a href="https://publications.waset.org/abstracts/150833/variable-mapping-from-bibliometrics-to-implications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1113</span> Plantation Forests Height Mapping Using Unmanned Aerial System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiming%20Li">Shiming Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingwang%20Liu"> Qingwang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Honggan%20Wu"> Honggan Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianbing%20Zhang"> Jianbing Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plantation forests are useful for timber production, recreation, environmental protection and social development. Stands height is an important parameter for the estimation of forest volume and carbon stocks. Although lidar is suitable technology for the vertical parameters extraction of forests, but high costs make it not suitable for operational inventory. With the development of computer vision and photogrammetry, aerial photos from unmanned aerial system can be used as an alternative solution for height mapping. Structure-from-motion (SfM) photogrammetry technique can be used to extract DSM and DEM information. Canopy height model (CHM) can be achieved by subtraction DEM from DSM. Our result shows that overlapping aerial photos is a potential solution for plantation forests height mapping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forest%20height%20mapping" title="forest height mapping">forest height mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=plantation%20forests" title=" plantation forests"> plantation forests</a>, <a href="https://publications.waset.org/abstracts/search?q=structure-from-motion%20photogrammetry" title=" structure-from-motion photogrammetry"> structure-from-motion photogrammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=UAS" title=" UAS"> UAS</a> </p> <a href="https://publications.waset.org/abstracts/63172/plantation-forests-height-mapping-using-unmanned-aerial-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1112</span> Inverse Mapping of Weld Bead Geometry in Shielded Metal Arc-Welding: Genetic Algorithm Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Nagesh">D. S. Nagesh</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20L.%20Datta"> G. L. Datta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the field of welding, various studies had been made by some of the previous investigators to predict as well as optimize weld bead geometric descriptors. Modeling of weld bead shape is important for predicting the quality of welds. In most of the cases, design of experiments technique to postulate multiple linear regression equations have been used. Nowadays, Genetic Algorithm (GA) an intelligent information treatment system with the characteristics of treating complex relationships as seen in welding processes used as a tool for inverse mapping/optimization of the process is attempted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smaw" title="smaw">smaw</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=bead%20geometry" title=" bead geometry"> bead geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%2Finverse%20mapping" title=" optimization/inverse mapping"> optimization/inverse mapping</a> </p> <a href="https://publications.waset.org/abstracts/30261/inverse-mapping-of-weld-bead-geometry-in-shielded-metal-arc-welding-genetic-algorithm-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1111</span> Genetic Algorithm Approach for Inverse Mapping of Weld Bead Geometry in Shielded Metal Arc-Welding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Nagesh">D. S. Nagesh</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20L.%20Datta"> G. L. Datta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the field of welding, various studies had been made by some of the previous investigators to predict as well as optimize weld bead geometric descriptors. Modeling of weld bead shape is important for predicting the quality of welds. In most of the cases design of experiments technique to postulate multiple linear regression equations have been used. Nowadays Genetic Algorithm (GA) an intelligent information treatment system with the characteristics of treating complex relationships as seen in welding processes used as a tool for inverse mapping/optimization of the process is attempted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SMAW" title="SMAW">SMAW</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=bead%20geometry" title=" bead geometry"> bead geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%2Finverse%20mapping" title=" optimization/inverse mapping"> optimization/inverse mapping</a> </p> <a href="https://publications.waset.org/abstracts/30262/genetic-algorithm-approach-for-inverse-mapping-of-weld-bead-geometry-in-shielded-metal-arc-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1110</span> Exploring the Capabilities of Sentinel-1A and Sentinel-2A Data for Landslide Mapping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ismayanti%20Magfirah">Ismayanti Magfirah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sartohadi%20Junun"> Sartohadi Junun</a>, <a href="https://publications.waset.org/abstracts/search?q=Samodra%20Guruh"> Samodra Guruh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Landslides are one of the most frequent and devastating natural disasters in Indonesia. Many studies have been conducted regarding this phenomenon. However, there is a lack of attention in the landslide inventory mapping. The natural condition (dense forest area) and the limited human and economic resources are some of the major problems in building landslide inventory in Indonesia. Considering the importance of landslide inventory data in susceptibility, hazard, and risk analysis, it is essential to generate landslide inventory based on available resources. In order to achieve this, the first thing we have to do is identify the landslides' location. The presence of Sentinel-1A and Sentinel-2A data gives new insights into land monitoring investigation. The free access, high spatial resolution, and short revisit time, make the data become one of the most trending open sources data used in landslide mapping. Sentinel-1A and Sentinel-2A data have been used broadly for landslide detection and landuse/landcover mapping. This study aims to generate landslide map by integrating Sentinel-1A and Sentinel-2A data use change detection method. The result will be validated by field investigation to make preliminary landslide inventory in the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=change%20detection%20method" title="change detection method">change detection method</a>, <a href="https://publications.waset.org/abstracts/search?q=landslide%20inventory%20mapping" title=" landslide inventory mapping"> landslide inventory mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=Sentinel-1A" title=" Sentinel-1A"> Sentinel-1A</a>, <a href="https://publications.waset.org/abstracts/search?q=Sentinel-2A" title=" Sentinel-2A"> Sentinel-2A</a> </p> <a href="https://publications.waset.org/abstracts/94105/exploring-the-capabilities-of-sentinel-1a-and-sentinel-2a-data-for-landslide-mapping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1109</span> Multi-Temporal Urban Land Cover Mapping Using Spectral Indices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mst%20Ilme%20Faridatul">Mst Ilme Faridatul</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Wu"> Bo Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multi-temporal urban land cover mapping is of paramount importance for monitoring urban sprawl and managing the ecological environment. For diversified urban activities, it is challenging to map land covers in a complex urban environment. Spectral indices have proved to be effective for mapping urban land covers. To improve multi-temporal urban land cover classification and mapping, we evaluate the performance of three spectral indices, e.g. modified normalized difference bare-land index (MNDBI), tasseled cap water and vegetation index (TCWVI) and shadow index (ShDI). The MNDBI is developed to evaluate its performance of enhancing urban impervious areas by separating bare lands. A tasseled cap index, TCWVI is developed to evaluate its competence to detect vegetation and water simultaneously. The ShDI is developed to maximize the spectral difference between shadows of skyscrapers and water and enhance water detection. First, this paper presents a comparative analysis of three spectral indices using Landsat Enhanced Thematic Mapper (ETM), Thematic Mapper (TM) and Operational Land Imager (OLI) data. Second, optimized thresholds of the spectral indices are imputed to classify land covers, and finally, their performance of enhancing multi-temporal urban land cover mapping is assessed. The results indicate that the spectral indices are competent to enhance multi-temporal urban land cover mapping and achieves an overall classification accuracy of 93-96%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20cover" title="land cover">land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping" title=" mapping"> mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-temporal" title=" multi-temporal"> multi-temporal</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20indices" title=" spectral indices"> spectral indices</a> </p> <a href="https://publications.waset.org/abstracts/103491/multi-temporal-urban-land-cover-mapping-using-spectral-indices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1108</span> Technology Road Mapping in the Fourth Industrial Revolution: A Comprehensive Analysis and Strategic Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Rahman%20Hamdan">Abdul Rahman Hamdan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Fourth Industrial Revolution (4IR) has brought unprecedented technological advancements that have disrupted many industries worldwide. In keeping up with the technological advances and rapid disruption by the introduction of many technological advancements brought forth by the 4IR, the use of technology road mapping has emerged as one of the critical tools for organizations to leverage. Technology road mapping can be used by many companies to guide them to become more adaptable and anticipate future transformation and innovation, and avoid being redundant or irrelevant due to the rapid changes in technological advancement. This research paper provides a comprehensive analysis of technology road mapping within the context of the 4IR. The objectives of the paper are to provide companies with practical insights and a strategic framework of technology road mapping for them to navigate the fast-changing nature of the 4IR. This study also contributes to the understanding and practice of technology road mapping in the 4IR and, at the same time, provides organizations with the necessary tools and critical insight to navigate the 4IR transformation by leveraging technology road mapping. Based on the literature review and case studies, the study analyses key principles, methodologies, and best practices in technology road mapping and integrates them with the unique characteristics and challenges of the 4IR. The research paper gives the background of the fourth industrial revolution. It explores the disruptive potential of technologies in the 4IR and the critical need for technology road mapping that consists of strategic planning and foresight to remain competitive and relevant in the 4IR era. It also highlights the importance of technology road mapping as an organisation’s proactive approach to align the organisation’s objectives and resources to their technology and product development in meeting the fast-evolving technological 4IR landscape. The paper also includes the theoretical foundations of technology road mapping and examines various methodological approaches, and identifies external stakeholders in the process, such as external experts, stakeholders, collaborative platforms, and cross-functional teams to ensure an integrated and robust technological roadmap for the organisation. Moreover, this study presents a comprehensive framework for technology road mapping in the 4IR by incorporating key elements and processes such as technology assessment, competitive intelligence, risk analysis, and resource allocation. It provides a framework for implementing technology road mapping from strategic planning, goal setting, and technology scanning to road mapping visualisation, implementation planning, monitoring, and evaluation. In addition, the study also addresses the challenges and limitations related to technology roadmapping in 4IR, including the gap analysis. In conclusion of the study, the study will propose a set of practical recommendations for organizations that intend to leverage technology road mapping as a strategic tool in the 4IR in driving innovation and becoming competitive in the current and future ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=technology%20management" title="technology management">technology management</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20road%20mapping" title=" technology road mapping"> technology road mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20transfer" title=" technology transfer"> technology transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20planning" title=" technology planning"> technology planning</a> </p> <a href="https://publications.waset.org/abstracts/169614/technology-road-mapping-in-the-fourth-industrial-revolution-a-comprehensive-analysis-and-strategic-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1107</span> Building a Parametric Link between Mapping and Planning: A Sunlight-Adaptive Urban Green System Plan Formation Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chenhao%20Zhu">Chenhao Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantitative mapping is playing a growing role in guiding urban planning, such as using a heat map created by CFX, CFD2000, or Envi-met, to adjust the master plan. However, there is no effective quantitative link between the mappings and planning formation. So, in many cases, the decision-making is still based on the planner's subjective interpretation and understanding of these mappings, which limits the improvement of scientific and accuracy brought by the quantitative mapping. Therefore, in this paper, an effort has been made to give a methodology of building a parametric link between the mapping and planning formation. A parametric planning process based on radiant mapping has been proposed for creating an urban green system. In the first step, a script is written in Grasshopper to build a road network and form the block, while the Ladybug Plug-in is used to conduct a radiant analysis in the form of mapping. Then, the research creatively transforms the radiant mapping from a polygon into a data point matrix, because polygon is hard to engage in the design formation. Next, another script is created to select the main green spaces from the road network based on the criteria of radiant intensity and connect the green spaces' central points to generate a green corridor. After that, a control parameter is introduced to adjust the corridor's form based on the radiant intensity. Finally, a green system containing greenspace and green corridor is generated under the quantitative control of the data matrix. The designer only needs to modify the control parameter according to the relevant research results and actual conditions to realize the optimization of the green system. This method can also be applied to much other mapping-based analysis, such as wind environment analysis, thermal environment analysis, and even environmental sensitivity analysis. The parameterized link between the mapping and planning will bring about a more accurate, objective, and scientific planning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parametric%20link" title="parametric link">parametric link</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping" title=" mapping"> mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20green%20system" title=" urban green system"> urban green system</a>, <a href="https://publications.waset.org/abstracts/search?q=radiant%20intensity" title=" radiant intensity"> radiant intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=planning%20strategy" title=" planning strategy"> planning strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=grasshopper" title=" grasshopper"> grasshopper</a> </p> <a href="https://publications.waset.org/abstracts/109538/building-a-parametric-link-between-mapping-and-planning-a-sunlight-adaptive-urban-green-system-plan-formation-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1106</span> Modular Data and Calculation Framework for a Technology-based Mapping of the Manufacturing Process According to the Value Stream Management Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tim%20Wollert">Tim Wollert</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabian%20Behrendt"> Fabian Behrendt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Value Stream Management (VSM) is a widely used methodology in the context of Lean Management for improving end-to-end material and information flows from a supplier to a customer from a company’s perspective. Whereas the design principles, e.g. Pull, value-adding, customer-orientation and further ones are still valid against the background of an increasing digitalized and dynamic environment, the methodology itself for mapping a value stream is characterized as time- and resource-intensive due to the high degree of manual activities. The digitalization of processes in the context of Industry 4.0 enables new opportunities to reduce these manual efforts and make the VSM approach more agile. The paper at hand aims at providing a modular data and calculation framework, utilizing the available business data, provided by information and communication technologies for automizing the value stream mapping process with focus on the manufacturing process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lean%20management%204.0" title="lean management 4.0">lean management 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20stream%20management%20%28VSM%29%204.0" title=" value stream management (VSM) 4.0"> value stream management (VSM) 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20value%20stream%20mapping" title=" dynamic value stream mapping"> dynamic value stream mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=enterprise%20resource%20planning%20%28ERP%29" title=" enterprise resource planning (ERP)"> enterprise resource planning (ERP)</a> </p> <a href="https://publications.waset.org/abstracts/153596/modular-data-and-calculation-framework-for-a-technology-based-mapping-of-the-manufacturing-process-according-to-the-value-stream-management-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1105</span> Assessment of Planet Image for Land Cover Mapping Using Soft and Hard Classifiers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lamyaa%20Gamal%20El-Deen%20Taha">Lamyaa Gamal El-Deen Taha</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Sharawi"> Ashraf Sharawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Planet image is a new data source from planet lab. This research is concerned with the assessment of Planet image for land cover mapping. Two pixel based classifiers and one subpixel based classifier were compared. Firstly, rectification of Planet image was performed. Secondly, a comparison between minimum distance, maximum likelihood and neural network classifications for classification of Planet image was performed. Thirdly, the overall accuracy of classification and kappa coefficient were calculated. Results indicate that neural network classification is best followed by maximum likelihood classifier then minimum distance classification for land cover mapping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=planet%20image" title="planet image">planet image</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover%20mapping" title=" land cover mapping"> land cover mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=rectification" title=" rectification"> rectification</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network%20classification" title=" neural network classification"> neural network classification</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer%20perceptron" title=" multilayer perceptron"> multilayer perceptron</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20classifiers" title=" soft classifiers"> soft classifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20classifiers" title=" hard classifiers"> hard classifiers</a> </p> <a href="https://publications.waset.org/abstracts/89202/assessment-of-planet-image-for-land-cover-mapping-using-soft-and-hard-classifiers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1104</span> Technology of Gyro Orientation Measurement Unit (Gyro Omu) for Underground Utility Mapping Practice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Ruzlin%20Mohd%20Mokhtar">Mohd Ruzlin Mohd Mokhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, most operators who are working on projects for utilities such as power, water, oil, gas, telecommunication and sewerage are using technologies e.g. Total station, Global Positioning System (GPS), Electromagnetic Locator (EML) and Ground Penetrating Radar (GPR) to perform underground utility mapping. With the increase in popularity of Horizontal Directional Drilling (HDD) method among the local authorities and asset owners, most of newly installed underground utilities need to use the HDD method. HDD method is seen as simple and create not much disturbance to the public and traffic. Thus, it was the preferred utilities installation method in most of areas especially in urban areas. HDDs were installed much deeper than exiting utilities (some reports saying that HDD is averaging 5 meter in depth). However, this impacts the accuracy or ability of existing underground utility mapping technologies. In most of Malaysia underground soil condition, those technologies were limited to maximum of 3 meter depth. Thus, those utilities which were installed much deeper than 3 meter depth could not be detected by using existing detection tools. The accuracy and reliability of existing underground utility mapping technologies or work procedure were in doubt. Thus, a mitigation action plan is required. While installing new utility using Horizontal Directional Drilling (HDD) method, a more accurate underground utility mapping can be achieved by using Gyro OMU compared to existing practice using e.g. EML and GPR. Gyro OMU is a method to accurately identify the location of HDD thus this mapping can be used or referred to avoid those cost of breakdown due to future HDD works which can be caused by inaccurate underground utility mapping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyro%20Orientation%20Measurement%20Unit%20%28Gyro%20OMU%29" title="Gyro Orientation Measurement Unit (Gyro OMU)">Gyro Orientation Measurement Unit (Gyro OMU)</a>, <a href="https://publications.waset.org/abstracts/search?q=Horizontal%20Directional%20Drilling%20%28HDD%29" title=" Horizontal Directional Drilling (HDD)"> Horizontal Directional Drilling (HDD)</a>, <a href="https://publications.waset.org/abstracts/search?q=Ground%20Penetrating%20Radar%20%28GPR%29" title=" Ground Penetrating Radar (GPR)"> Ground Penetrating Radar (GPR)</a>, <a href="https://publications.waset.org/abstracts/search?q=Electromagnetic%20Locator%20%28EML%29" title=" Electromagnetic Locator (EML)"> Electromagnetic Locator (EML)</a> </p> <a href="https://publications.waset.org/abstracts/128215/technology-of-gyro-orientation-measurement-unit-gyro-omu-for-underground-utility-mapping-practice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1103</span> A Proposal for Systematic Mapping Study of Software Security Testing, Verification and Validation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adriano%20Bessa%20Albuquerque">Adriano Bessa Albuquerque</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Jose%20Barreto%20Nunes"> Francisco Jose Barreto Nunes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software vulnerabilities are increasing and not only impact services and processes availability as well as information confidentiality, integrity and privacy, but also cause changes that interfere in the development process. Security test could be a solution to reduce vulnerabilities. However, the variety of test techniques with the lack of real case studies of applying tests focusing on software development life cycle compromise its effective use. This paper offers an overview of how a Systematic Mapping Study (MS) about security verification, validation and test (VVT) was performed, besides presenting general results about this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20test" title="software test">software test</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20security%20verification%20validation%20and%20test" title=" software security verification validation and test"> software security verification validation and test</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20test%20institutionalization" title=" security test institutionalization"> security test institutionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=systematic%20mapping%20study" title=" systematic mapping study"> systematic mapping study</a> </p> <a href="https://publications.waset.org/abstracts/43751/a-proposal-for-systematic-mapping-study-of-software-security-testing-verification-and-validation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1102</span> Flood-prone Urban Area Mapping Using Machine Learning, a Case Sudy of M&#039;sila City (Algeria)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Medjadj%20Tarek">Medjadj Tarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghribi%20Hayet"> Ghribi Hayet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to develop a flood sensitivity assessment tool using machine learning (ML) techniques and geographic information system (GIS). The importance of this study is integrating the geographic information systems (GIS) and machine learning (ML) techniques for mapping flood risks, which help decision-makers to identify the most vulnerable areas and take the necessary precautions to face this type of natural disaster. To reach this goal, we will study the case of the city of M'sila, which is among the areas most vulnerable to floods. This study drew a map of flood-prone areas based on the methodology where we have made a comparison between 3 machine learning algorithms: the xGboost model, the Random Forest algorithm and the K Nearest Neighbour algorithm. Each of them gave an accuracy respectively of 97.92 - 95 - 93.75. In the process of mapping flood-prone areas, the first model was relied upon, which gave the greatest accuracy (xGboost). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geographic%20information%20systems%20%28GIS%29" title="Geographic information systems (GIS)">Geographic information systems (GIS)</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning%20%28ML%29" title=" machine learning (ML)"> machine learning (ML)</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency%20mapping" title=" emergency mapping"> emergency mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20disaster%20management" title=" flood disaster management"> flood disaster management</a> </p> <a href="https://publications.waset.org/abstracts/163225/flood-prone-urban-area-mapping-using-machine-learning-a-case-sudy-of-msila-city-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1101</span> Continuous Functions Modeling with Artificial Neural Network: An Improvement Technique to Feed the Input-Output Mapping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Belayadi">A. Belayadi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mougari"> A. Mougari</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Ait-Gougam"> L. Ait-Gougam</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Mekideche-Chafa"> F. Mekideche-Chafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The artificial neural network is one of the interesting techniques that have been advantageously used to deal with modeling problems. In this study, the computing with artificial neural network (CANN) is proposed. The model is applied to modulate the information processing of one-dimensional task. We aim to integrate a new method which is based on a new coding approach of generating the input-output mapping. The latter is based on increasing the neuron unit in the last layer. Accordingly, to show the efficiency of the approach under study, a comparison is made between the proposed method of generating the input-output set and the conventional method. The results illustrated that the increasing of the neuron units, in the last layer, allows to find the optimal network’s parameters that fit with the mapping data. Moreover, it permits to decrease the training time, during the computation process, which avoids the use of computers with high memory usage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20network%20computing" title="neural network computing">neural network computing</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20functions%20generating%20the%20input-output%20mapping" title=" continuous functions generating the input-output mapping"> continuous functions generating the input-output mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=decreasing%20the%20training%20time" title=" decreasing the training time"> decreasing the training time</a>, <a href="https://publications.waset.org/abstracts/search?q=machines%20with%20big%20memories" title=" machines with big memories"> machines with big memories</a> </p> <a href="https://publications.waset.org/abstracts/45427/continuous-functions-modeling-with-artificial-neural-network-an-improvement-technique-to-feed-the-input-output-mapping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1100</span> Data Hiding in Gray Image Using ASCII Value and Scanning Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Pateriya">R. K. Pateriya</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyoti%20Bharti"> Jyoti Bharti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an approach for data hiding methods which provides a secret communication between sender and receiver. The data is hidden in gray-scale images and the boundary of gray-scale image is used to store the mapping information. In this an approach data is in ASCII format and the mapping is in between ASCII value of hidden message and pixel value of cover image, since pixel value of an image as well as ASCII value is in range of 0 to 255 and this mapping information is occupying only 1 bit per character of hidden message as compared to 8 bit per character thus maintaining good quality of stego image. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ASCII%20value" title="ASCII value">ASCII value</a>, <a href="https://publications.waset.org/abstracts/search?q=cover%20image" title=" cover image"> cover image</a>, <a href="https://publications.waset.org/abstracts/search?q=PSNR" title=" PSNR"> PSNR</a>, <a href="https://publications.waset.org/abstracts/search?q=pixel%20value" title=" pixel value"> pixel value</a>, <a href="https://publications.waset.org/abstracts/search?q=stego%20image" title=" stego image"> stego image</a>, <a href="https://publications.waset.org/abstracts/search?q=secret%20message" title=" secret message"> secret message</a> </p> <a href="https://publications.waset.org/abstracts/50472/data-hiding-in-gray-image-using-ascii-value-and-scanning-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1099</span> Application of Unmanned Aerial Vehicle in Geohazard Mapping: Case Study Dominica</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Mickson">Michael Mickson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The recent development of unmanned aerial vehicles (UAVs) has been increasing the number of technical solutions that can be used to identify, map, and manage the effects of geohazards. UAVs are generally cheaper and more versatile than traditional remote-sensing techniques, and they can be therefore considered as a good alternative for the acquisition of imagery and other remote sensing data before, during and after a natural hazard event. This study aims to use UAV for investigating areas susceptible to high mobility flows such as debris flow in Dominica, especially after the 2017 Hurricane Maria. The use of UAVs in identifying, mapping and managing of natural hazards helps to mitigate the negative effects of natural hazards on livelihood, properties and the built environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicle%20%28UAV%29" title="unmanned aerial vehicle (UAV)">unmanned aerial vehicle (UAV)</a>, <a href="https://publications.waset.org/abstracts/search?q=geohazards" title=" geohazards"> geohazards</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping" title=" mapping"> mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominica" title=" Dominica "> Dominica </a> </p> <a href="https://publications.waset.org/abstracts/118559/application-of-unmanned-aerial-vehicle-in-geohazard-mapping-case-study-dominica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1098</span> Urban Flood Risk Mapping–a Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sherly%20M.%20A.">Sherly M. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhankar%20Karmakar"> Subhankar Karmakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Terence%20Chan"> Terence Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Rau"> Christian Rau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Floods are one of the most frequent natural disasters, causing widespread devastation, economic damage and threat to human lives. Hydrologic impacts of climate change and intensification of urbanization are two root causes of increased flood occurrences, and recent research trends are oriented towards understanding these aspects. Due to rapid urbanization, population of cities across the world has increased exponentially leading to improperly planned developments. Climate change due to natural and anthropogenic activities on our environment has resulted in spatiotemporal changes in rainfall patterns. The combined effect of both aggravates the vulnerability of urban populations to floods. In this context, an efficient and effective flood risk management with its core component as flood risk mapping is essential in prevention and mitigation of flood disasters. Urban flood risk mapping involves zoning of an urban region based on its flood risk, which depicts the spatiotemporal pattern of frequency and severity of hazards, exposure to hazards, and degree of vulnerability of the population in terms of socio-economic, environmental and infrastructural aspects. Although vulnerability is a key component of risk, its assessment and mapping is often less advanced than hazard mapping and quantification. A synergic effort from technical experts and social scientists is vital for the effectiveness of flood risk management programs. Despite an increasing volume of quality research conducted on urban flood risk, a comprehensive multidisciplinary approach towards flood risk mapping still remains neglected due to which many of the input parameters and definitions of flood risk concepts are imprecise. Thus, the objectives of this review are to introduce and precisely define the relevant input parameters, concepts and terms in urban flood risk mapping, along with its methodology, current status and limitations. The review also aims at providing thought-provoking insights to potential future researchers and flood management professionals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20risk" title="flood risk">flood risk</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20hazard" title=" flood hazard"> flood hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20vulnerability" title=" flood vulnerability"> flood vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20modeling" title=" flood modeling"> flood modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20flooding" title=" urban flooding"> urban flooding</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20flood%20risk%20mapping" title=" urban flood risk mapping"> urban flood risk mapping</a> </p> <a href="https://publications.waset.org/abstracts/21525/urban-flood-risk-mapping-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">590</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1097</span> Machine Learning Methods for Flood Hazard Mapping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stefano%20Zappacosta">Stefano Zappacosta</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristiano%20Bove"> Cristiano Bove</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Carmela%20Marinelli"> Maria Carmela Marinelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Paola%20di%20Lauro"> Paola di Lauro</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarina%20Spasenovic"> Katarina Spasenovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorenzo%20Ostano"> Lorenzo Ostano</a>, <a href="https://publications.waset.org/abstracts/search?q=Giuseppe%20Aiello"> Giuseppe Aiello</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Pietrosanto"> Marco Pietrosanto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a novel neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The proposed hybrid model can be used to classify four different increasing levels of hazard. The classification capability was compared with the flood hazard mapping River Basin Plans (PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale). The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20modeling" title="flood modeling">flood modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard%20map" title=" hazard map"> hazard map</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogeological%20risk" title=" hydrogeological risk"> hydrogeological risk</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20risk%20assessment" title=" flood risk assessment"> flood risk assessment</a> </p> <a href="https://publications.waset.org/abstracts/140468/machine-learning-methods-for-flood-hazard-mapping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mapping&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mapping&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mapping&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mapping&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mapping&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mapping&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mapping&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mapping&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mapping&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mapping&amp;page=37">37</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mapping&amp;page=38">38</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mapping&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10