CINXE.COM

suplattice in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> suplattice in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> suplattice </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/9664/#Item_13" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="category_theory"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(0,1)</annotation></semantics></math>-Category theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/%280%2C1%29-category+theory">(0,1)-category theory</a></strong>: <a class="existingWikiWord" href="/nlab/show/logic">logic</a>, <a class="existingWikiWord" href="/nlab/show/order+theory">order theory</a></p> <p><strong><a class="existingWikiWord" href="/nlab/show/%280%2C1%29-category">(0,1)-category</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/relation+between+preorders+and+%280%2C1%29-categories">relation between preorders and (0,1)-categories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/proset">proset</a>, <a class="existingWikiWord" href="/nlab/show/partially+ordered+set">partially ordered set</a> (<a class="existingWikiWord" href="/nlab/show/directed+set">directed set</a>, <a class="existingWikiWord" href="/nlab/show/total+order">total order</a>, <a class="existingWikiWord" href="/nlab/show/linear+order">linear order</a>)</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/top">top</a>, <a class="existingWikiWord" href="/nlab/show/true">true</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/bottom">bottom</a>, <a class="existingWikiWord" href="/nlab/show/false">false</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monotone+function">monotone function</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/implication">implication</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/filter">filter</a>, <a class="existingWikiWord" href="/nlab/show/interval">interval</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/lattice">lattice</a>, <a class="existingWikiWord" href="/nlab/show/semilattice">semilattice</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/meet">meet</a>, <a class="existingWikiWord" href="/nlab/show/logical+conjunction">logical conjunction</a>, <a class="existingWikiWord" href="/nlab/show/and">and</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/join">join</a>, <a class="existingWikiWord" href="/nlab/show/logical+disjunction">logical disjunction</a>, <a class="existingWikiWord" href="/nlab/show/or">or</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+element">compact element</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/lattice+of+subobjects">lattice of subobjects</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/complete+lattice">complete lattice</a>, <a class="existingWikiWord" href="/nlab/show/algebraic+lattice">algebraic lattice</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/distributive+lattice">distributive lattice</a>, <a class="existingWikiWord" href="/nlab/show/completely+distributive+lattice">completely distributive lattice</a>, <a class="existingWikiWord" href="/nlab/show/canonical+extension">canonical extension</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/hyperdoctrine">hyperdoctrine</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/first-order+hyperdoctrine">first-order</a>, <a class="existingWikiWord" href="/nlab/show/Boolean+hyperdoctrine">Boolean</a>, <a class="existingWikiWord" href="/nlab/show/coherent+hyperdoctrine">coherent</a>, <a class="existingWikiWord" href="/nlab/show/tripos">tripos</a></li> </ul> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/%280%2C1%29-topos">(0,1)-topos</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Heyting+algebra">Heyting algebra</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/regular+element">regular element</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Boolean+algebra">Boolean algebra</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/frame">frame</a>, <a class="existingWikiWord" href="/nlab/show/locale">locale</a></p> </li> </ul> <h2 id="theorems">Theorems</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/Stone+duality">Stone duality</a></li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#definition'>Definition</a></li> <li><a href='#the_free_suplattice_on_a_poset'>The free suplattice on a poset</a></li> <li><a href='#the_category_of_suplattices'>The category of suplattices</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="definition">Definition</h2> <p>A <strong>suplattice</strong> is a <a class="existingWikiWord" href="/nlab/show/poset">poset</a> that has <a class="existingWikiWord" href="/nlab/show/joins">joins</a> of arbitrary <a class="existingWikiWord" href="/nlab/show/subsets">subsets</a> (and in particular is a join-<a class="existingWikiWord" href="/nlab/show/semilattice">semilattice</a>). By the <a class="existingWikiWord" href="/nlab/show/adjoint+functor+theorem">adjoint functor theorem</a> for posets, a suplattice necessarily has all <a class="existingWikiWord" href="/nlab/show/meet">meets</a> as well and so is a <a class="existingWikiWord" href="/nlab/show/complete+lattice">complete lattice</a>. However, a <strong>suplattice homomorphism</strong> preserves joins, but not necessarily meets. Furthermore, a <em><a class="existingWikiWord" href="/nlab/show/proper+class">large</a></em> semilattice which has all <em>small</em> joins need not have all meets, but might still be considered a large suplattice (even though it may not even be a lattice).</p> <p>Dually, an <strong>inflattice</strong> is a poset which has all <a class="existingWikiWord" href="/nlab/show/meets">meets</a>, and an <strong>inflattice homomorphism</strong> is a monotone function that preserves all meets.</p> <p>A <strong><a class="existingWikiWord" href="/nlab/show/frame">frame</a></strong> (dual to a <a class="existingWikiWord" href="/nlab/show/locale">locale</a>) is a suplattice in which finitary meets distribute over arbitrary joins. (Frame homomorphisms preserve all joins and finitary meets.)</p> <p>The <a class="existingWikiWord" href="/nlab/show/category">category</a> <a class="existingWikiWord" href="/nlab/show/SupLat">SupLat</a> of suplattices and suplattice homomorphisms admits a <a class="existingWikiWord" href="/nlab/show/tensor+product">tensor product</a> which represents “<a class="existingWikiWord" href="/nlab/show/bilinear+maps">bilinear maps</a>”, i.e. functions which preserve joins separately in each variable. Under this tensor product, the category of suplattices is a <a class="existingWikiWord" href="/nlab/show/star-autonomous+category">star-autonomous category</a> in which the <a class="existingWikiWord" href="/nlab/show/dualizing+object">dualizing object</a> is the suplattice dual to the object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>TV</mi></mrow><annotation encoding="application/x-tex">TV</annotation></semantics></math> of <a class="existingWikiWord" href="/nlab/show/truth-values">truth-values</a>. A <a class="existingWikiWord" href="/nlab/show/semigroup+object">semigroup</a> in this <a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a> is a <strong><a class="existingWikiWord" href="/nlab/show/quantale">quantale</a></strong>, including <a class="existingWikiWord" href="/nlab/show/frames">frames</a> as a special case when the quantale is idempotent and unital. Modules over them are <a class="existingWikiWord" href="/nlab/show/modules+over+quantales">modules over quantales</a> (quantic modules with special case of localic modules, used in the localic analogue of the Grothendieck’s descent theory in <a href="#JoyalTierney84">Joyal-Tierney 84</a>).</p> <h2 id="the_free_suplattice_on_a_poset">The free suplattice on a poset</h2> <p>There is a <a class="existingWikiWord" href="/nlab/show/forgetful+functor">forgetful functor</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo lspace="verythinmathspace">:</mo><mi>SupLat</mi><mo>→</mo><mi>Poset</mi></mrow><annotation encoding="application/x-tex"> U \colon SupLat \to Poset </annotation></semantics></math></div> <p>This has a <a class="existingWikiWord" href="/nlab/show/left+adjoint">left adjoint</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo lspace="verythinmathspace">:</mo><mi>Poset</mi><mo>→</mo><mi>SupLat</mi></mrow><annotation encoding="application/x-tex"> F \colon Poset \to SupLat </annotation></semantics></math></div> <p>where for any poset <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math>, the suplattice <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">F(P)</annotation></semantics></math> is the poset of downsets of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math>, ordered by inclusion. Here a <strong><a class="existingWikiWord" href="/nlab/show/downset">downset</a></strong> of a poset <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math> is a subset <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi><mo>⊆</mo><mi>P</mi></mrow><annotation encoding="application/x-tex">S \subseteq P</annotation></semantics></math> such that</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>s</mi><mo>∈</mo><mi>S</mi><mo>,</mo><mi>s</mi><mo>′</mo><mo>≤</mo><mi>s</mi><mspace width="1em"></mspace><mo>⇒</mo><mspace width="1em"></mspace><mi>s</mi><mo>′</mo><mo>∈</mo><mi>S</mi><mo>.</mo></mrow><annotation encoding="application/x-tex"> s \in S, s' \le s \quad \implies \quad s' \in S. </annotation></semantics></math></div> <p>This set of all downsets in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math>, say <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>P</mi><mo stretchy="false">^</mo></mover></mrow><annotation encoding="application/x-tex">\hat{P}</annotation></semantics></math>, is ordered by inclusion, and it’s a suplattice: any union of downsets is a downset. There’s an embedding of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>P</mi><mo stretchy="false">^</mo></mover></mrow><annotation encoding="application/x-tex">\hat{P}</annotation></semantics></math> that sends each <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>∈</mo><mi>P</mi></mrow><annotation encoding="application/x-tex">p \in P</annotation></semantics></math> to its <strong>principal</strong> downset <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">{</mo><mi>s</mi><mo>∈</mo><mi>P</mi><mo>:</mo><mspace width="thickmathspace"></mspace><mi>s</mi><mo>≤</mo><mi>p</mi><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{s \in P : \; s \le p \}</annotation></semantics></math>. (To give a downset is to give an <a class="existingWikiWord" href="/nlab/show/antichain">antichain</a>, and so the free suplattice is sometimes described equivalently in terms of antichains.)</p> <p>To understand this description of the free suplattice on a poset, some <a class="existingWikiWord" href="/nlab/show/enriched+category+theory">enriched category theory</a> is useful. <a class="existingWikiWord" href="/nlab/show/preorder">Preorders</a> are the same as <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Bool</mi></mrow><annotation encoding="application/x-tex">Bool</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/enriched+categories">enriched categories</a>, where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Bool</mi></mrow><annotation encoding="application/x-tex">Bool</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a> with two objects <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math> and one nontrivial morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>⇒</mo><mi>T</mi></mrow><annotation encoding="application/x-tex">F \implies T</annotation></semantics></math>, its monoidal structure being “and”. Using this idea, the downsets of a poset <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math> correspond in a one-to-one way with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Bool</mi></mrow><annotation encoding="application/x-tex">Bool</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/enriched+functors">enriched functors</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo lspace="verythinmathspace">:</mo><msup><mi>P</mi> <mi>op</mi></msup><mo>→</mo><mi>Bool</mi></mrow><annotation encoding="application/x-tex">f \colon P^{op} \to Bool</annotation></semantics></math>, just as <a class="existingWikiWord" href="/nlab/show/presheaves">presheaves</a> on a category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> are functors <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo lspace="verythinmathspace">:</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>→</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">f \colon C^{op} \to Set</annotation></semantics></math>. The embedding <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>y</mi><mo lspace="verythinmathspace">:</mo><mi>P</mi><mo>→</mo><mover><mi>P</mi><mo stretchy="false">^</mo></mover></mrow><annotation encoding="application/x-tex">y \colon P \to \hat{P}</annotation></semantics></math> that sends each <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>∈</mo><mi>P</mi></mrow><annotation encoding="application/x-tex">p \in P</annotation></semantics></math> to its principal downset is the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Bool</mi></mrow><annotation encoding="application/x-tex">Bool</annotation></semantics></math>-enriched version of the <a class="existingWikiWord" href="/nlab/show/Yoneda+embedding">Yoneda embedding</a>. So, just as the <a class="existingWikiWord" href="/nlab/show/category+of+presheaves">category of presheaves</a> on a category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/free+cocompletion">free cocomplete category</a> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>P</mi><mo stretchy="false">^</mo></mover></mrow><annotation encoding="application/x-tex">\hat{P}</annotation></semantics></math> is the free cocomplete <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Bool</mi></mrow><annotation encoding="application/x-tex">Bool</annotation></semantics></math>-enriched category on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math>. But a cocomplete <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Bool</mi></mrow><annotation encoding="application/x-tex">Bool</annotation></semantics></math>-enriched category that happens to be a poset is just the same as a suplattice.</p> <h2 id="the_category_of_suplattices">The category of suplattices</h2> <p>The category of suplattices is <a class="existingWikiWord" href="/nlab/show/monadic+adjunction">monadic</a> over the category of posets, and each algebra structure <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ξ</mi><mo>:</mo><mover><mi>P</mi><mo stretchy="false">^</mo></mover><mo>→</mo><mi>P</mi></mrow><annotation encoding="application/x-tex">\xi: \hat{P} \to P</annotation></semantics></math> is left adjoint to the <a class="existingWikiWord" href="/nlab/show/Yoneda+embedding">Yoneda embedding</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>y</mi><mo>:</mo><mi>P</mi><mo>→</mo><mover><mi>P</mi><mo stretchy="false">^</mo></mover></mrow><annotation encoding="application/x-tex">y: P \to \hat{P}</annotation></semantics></math>. This makes suplattices the same thing (up to equivalence) as <a class="existingWikiWord" href="/nlab/show/total+categories">total categories</a> in the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Bool</mi></mrow><annotation encoding="application/x-tex">Bool</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/enriched+category+theory">enriched</a> sense. Notice that algebra structure maps, being left adjoints, are cocontinuous and therefore suplattice morphisms. This makes the monad a <a class="existingWikiWord" href="/nlab/show/commutative+monad">commutative monad</a>, and therefore according to general theory, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>SupLat</mi></mrow><annotation encoding="application/x-tex">SupLat</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+closed+category">symmetric monoidal closed category</a> where the internal hom <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Hom</mi><mo stretchy="false">(</mo><mi>P</mi><mo>,</mo><mi>Q</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Hom(P, Q)</annotation></semantics></math> between two suplattices is the suplattice of cocontinuous maps <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo>→</mo><mi>Q</mi></mrow><annotation encoding="application/x-tex">P \to Q</annotation></semantics></math>, which are the same as left adjoints <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo>→</mo><mi>Q</mi></mrow><annotation encoding="application/x-tex">P \to Q</annotation></semantics></math> according to the poset version of the <a class="existingWikiWord" href="/nlab/show/adjoint+functor+theorem">adjoint functor theorem</a>.</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>SupLat</mi></mrow><annotation encoding="application/x-tex">SupLat</annotation></semantics></math> is also monadic over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Set</mi></mrow><annotation encoding="application/x-tex">Set</annotation></semantics></math>, where the monad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo>:</mo><mi>Set</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">P: Set \to Set</annotation></semantics></math> is the covariant <a class="existingWikiWord" href="/nlab/show/power+set">power set</a> functor. It therefore is a complete and cocomplete <a class="existingWikiWord" href="/nlab/show/Barr-exact+category">Barr-exact category</a>. The <a class="existingWikiWord" href="/nlab/show/Kleisli+category">Kleisli category</a> of this monad is equivalent to <a class="existingWikiWord" href="/nlab/show/Rel">Rel</a>, the category of sets and relations. Thus the objects of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Rel</mi></mrow><annotation encoding="application/x-tex">Rel</annotation></semantics></math> may be thought of as the free suplattices.</p> <p>As stated above, the <a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+closed+category">symmetric monoidal closed category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>SupLat</mi></mrow><annotation encoding="application/x-tex">SupLat</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/star-autonomous+category">star-autonomous category</a> where the star-<a class="existingWikiWord" href="/nlab/show/involution">involution</a> takes a suplattice <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math> to the <a class="existingWikiWord" href="/nlab/show/opposite+category">opposite</a> poset <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>P</mi> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">P^{op}</annotation></semantics></math>. In part this says that a suplattice is also an <a class="existingWikiWord" href="/nlab/show/inflattice">inflattice</a>, a fact which holds internally in any <a class="existingWikiWord" href="/nlab/show/topos">topos</a> (where we use an internal covariant power-object functor to form an appropriate monad). Thus the tensor product <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo>⊗</mo><mi>Q</mi></mrow><annotation encoding="application/x-tex">P \otimes Q</annotation></semantics></math> may be formed as the suplattice <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Hom</mi><mo stretchy="false">(</mo><mi>P</mi><mo>,</mo><msup><mi>Q</mi> <mi>op</mi></msup><msup><mo stretchy="false">)</mo> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">Hom(P, Q^{op})^{op}</annotation></semantics></math>. The presence of the equivalence</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo>*</mo><mo>=</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mo stretchy="false">)</mo> <mi>op</mi></msup><mo>:</mo><msup><mi>SupLat</mi> <mi>op</mi></msup><mo>→</mo><mi>SupLat</mi></mrow><annotation encoding="application/x-tex">\ast = (-)^{op}: SupLat^{op} \to SupLat</annotation></semantics></math></div> <p>(which takes a morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>P</mi><mo>→</mo><mi>Q</mi></mrow><annotation encoding="application/x-tex">f: P \to Q</annotation></semantics></math> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>g</mi> <mi>op</mi></msup><mo>:</mo><msup><mi>Q</mi> <mi>op</mi></msup><mo>→</mo><msup><mi>P</mi> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">g^{op}: Q^{op} \to P^{op}</annotation></semantics></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>g</mi></mrow><annotation encoding="application/x-tex">g</annotation></semantics></math> is right adjoint to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math>) also means that colimits may be formed as appropriate limits, which are in turn formed pointwise by monadicity over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Set</mi></mrow><annotation encoding="application/x-tex">Set</annotation></semantics></math>.</p> <h2 id="references">References</h2> <ul> <li id="JoyalTierney84"><a class="existingWikiWord" href="/nlab/show/Andr%C3%A9+Joyal">André Joyal</a>, <a class="existingWikiWord" href="/nlab/show/Miles+Tierney">Miles Tierney</a>, <em>An extension of the Galois theory of Grothendieck</em>, Mem. Amer. Math. Soc. 51 (1984), no. 309, vii+71 pp. (<a href="https://bookstore.ams.org/memo-51-309/">ISBN: 978-1-4704-0722-3</a>)</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on February 6, 2024 at 12:12:25. See the <a href="/nlab/history/suplattice" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/suplattice" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/9664/#Item_13">Discuss</a><span class="backintime"><a href="/nlab/revision/suplattice/23" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/suplattice" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/suplattice" accesskey="S" class="navlink" id="history" rel="nofollow">History (23 revisions)</a> <a href="/nlab/show/suplattice/cite" style="color: black">Cite</a> <a href="/nlab/print/suplattice" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/suplattice" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10