CINXE.COM
left adjoint in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> left adjoint in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> left adjoint </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/12367/#Item_8" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="category_theory">Category theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a></strong></p> <h2 id="sidebar_concepts">Concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category">category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/functor">functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/natural+transformation">natural transformation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Cat">Cat</a></p> </li> </ul> <h2 id="sidebar_universal_constructions">Universal constructions</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+construction">universal construction</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/representable+functor">representable functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+functor">adjoint functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/limit">limit</a>/<a class="existingWikiWord" href="/nlab/show/colimit">colimit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/weighted+limit">weighted limit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/end">end</a>/<a class="existingWikiWord" href="/nlab/show/coend">coend</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kan+extension">Kan extension</a></p> </li> </ul> </li> </ul> <h2 id="sidebar_theorems">Theorems</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Yoneda+lemma">Yoneda lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Isbell+duality">Isbell duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Grothendieck+construction">Grothendieck construction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+functor+theorem">adjoint functor theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monadicity+theorem">monadicity theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+lifting+theorem">adjoint lifting theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tannaka+duality">Tannaka duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gabriel-Ulmer+duality">Gabriel-Ulmer duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/small+object+argument">small object argument</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Freyd-Mitchell+embedding+theorem">Freyd-Mitchell embedding theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/relation+between+type+theory+and+category+theory">relation between type theory and category theory</a></p> </li> </ul> <h2 id="sidebar_extensions">Extensions</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/sheaf+and+topos+theory">sheaf and topos theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+category+theory">enriched category theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+category+theory">higher category theory</a></p> </li> </ul> <h2 id="sidebar_applications">Applications</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/applications+of+%28higher%29+category+theory">applications of (higher) category theory</a></li> </ul> <div> <p> <a href="/nlab/edit/category+theory+-+contents">Edit this sidebar</a> </p> </div></div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definitions'>Definitions</a></li> <ul> <li><a href='#section_For_categories'>For categories</a></li> <li><a href='#section_For_enriched_categories'>For enriched categories</a></li> <li><a href='#section_In_a_2-category'>In a 2-category</a></li> <li><a href='#section_For_preorders_and_posets'>For preorders and posets</a></li> </ul> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#InHomotopyTypeTheory'>In homotopy type theory</a></li> </ul> <li><a href='#section_Examples'>Examples</a></li> <li><a href='#related_entries'>Related entries</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>The left part of a pair of <a class="existingWikiWord" href="/nlab/show/adjoint+functor">adjoint functor</a>s is one of two best approximations to a <a class="existingWikiWord" href="/nlab/show/weak+inverse">weak inverse</a> of the other functor of the pair. (The other best approximation is the functor’s <a class="existingWikiWord" href="/nlab/show/right+adjoint">right adjoint</a>, if it exists.) Note that a weak inverse itself, if it exists, must be a left adjoint, forming an <a class="existingWikiWord" href="/nlab/show/adjoint+equivalence">adjoint equivalence</a>.</p> <p>A left adjoint to a <a class="existingWikiWord" href="/nlab/show/forgetful+functor">forgetful functor</a> is called a <a class="existingWikiWord" href="/nlab/show/free+functor">free functor</a>. Many left adjoints can be constructed as quotients of free functors.</p> <p>The concept generalises immediately to <a class="existingWikiWord" href="/nlab/show/enriched+category">enriched categories</a> and in <a class="existingWikiWord" href="/nlab/show/2-category">2-categories</a>.</p> <h2 id="definitions">Definitions</h2> <p><h3 id='section_For_categories'>For categories</h3></p> <p> <div class='num_defn' id='DefinitionLeftAdjointForCategories'> <h6>Definition</h6> <p>Given categories <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒟</mi></mrow><annotation encoding="application/x-tex">\mathcal{D}</annotation></semantics></math> and a functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi><mo>:</mo><mi>𝒟</mi><mo>→</mo><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">R: \mathcal{D} \to \mathcal{C}</annotation></semantics></math>, a <em>left adjoint</em> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is a functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi><mo>:</mo><mi>𝒞</mi><mo>→</mo><mi>𝒟</mi></mrow><annotation encoding="application/x-tex">L: \mathcal{C} \to \mathcal{D}</annotation></semantics></math> together with <a class="existingWikiWord" href="/nlab/show/natural+transformation">natural transformations</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ι</mi><mo>:</mo><msub><mi>id</mi> <mi>𝒞</mi></msub><mo>→</mo><mi>R</mi><mo>∘</mo><mi>L</mi></mrow><annotation encoding="application/x-tex">\iota: id_\mathcal{C} \to R \circ L</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϵ</mi><mo>:</mo><mi>L</mi><mo>∘</mo><mi>R</mi><mo>→</mo><msub><mi>id</mi> <mi>𝒟</mi></msub></mrow><annotation encoding="application/x-tex">\epsilon: L \circ R \to id_\mathcal{D} </annotation></semantics></math> such that the following diagrams (known as the <a class="existingWikiWord" href="/nlab/show/triangle+identities">triangle identities</a>) commute, where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⋅</mo></mrow><annotation encoding="application/x-tex">\cdot</annotation></semantics></math> denotes <a class="existingWikiWord" href="/nlab/show/whiskering">whiskering</a> of a functor with a natural transformation.</p> <div style="text-align: center"> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="151.28" height="86.037" viewBox="0 0 151.28 86.037"> <defs> <g> <g id="-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-0-0"> </g> <g id="-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-0-1"> <path d="M 5.484375 -9.046875 C 5.609375 -9.625 5.65625 -9.765625 6.96875 -9.765625 C 7.375 -9.765625 7.484375 -9.765625 7.484375 -10.046875 C 7.484375 -10.203125 7.3125 -10.203125 7.265625 -10.203125 C 6.953125 -10.203125 6.625 -10.171875 6.3125 -10.171875 L 4.3125 -10.171875 C 4.03125 -10.171875 3.703125 -10.203125 3.421875 -10.203125 C 3.296875 -10.203125 3.140625 -10.203125 3.140625 -9.921875 C 3.140625 -9.765625 3.265625 -9.765625 3.5 -9.765625 C 4.40625 -9.765625 4.40625 -9.65625 4.40625 -9.484375 C 4.40625 -9.453125 4.40625 -9.359375 4.34375 -9.140625 L 2.328125 -1.109375 C 2.203125 -0.578125 2.171875 -0.4375 1.125 -0.4375 C 0.84375 -0.4375 0.6875 -0.4375 0.6875 -0.171875 C 0.6875 0 0.78125 0 1.078125 0 L 7.765625 0 C 8.09375 0 8.109375 -0.015625 8.21875 -0.28125 L 9.359375 -3.46875 C 9.390625 -3.546875 9.421875 -3.625 9.421875 -3.671875 C 9.421875 -3.765625 9.34375 -3.828125 9.28125 -3.828125 C 9.265625 -3.828125 9.1875 -3.828125 9.15625 -3.765625 C 9.125 -3.75 9.125 -3.71875 9 -3.4375 C 8.53125 -2.125 7.859375 -0.4375 5.328125 -0.4375 L 3.90625 -0.4375 C 3.6875 -0.4375 3.65625 -0.4375 3.5625 -0.453125 C 3.40625 -0.46875 3.390625 -0.5 3.390625 -0.609375 C 3.390625 -0.71875 3.421875 -0.8125 3.453125 -0.9375 Z M 5.484375 -9.046875 "></path> </g> <g id="-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-0-2"> <path d="M 5.5 -9.1875 C 5.625 -9.734375 5.6875 -9.765625 6.28125 -9.765625 L 7.34375 -9.765625 C 8.640625 -9.765625 9.59375 -9.375 9.59375 -8.21875 C 9.59375 -7.453125 9.203125 -5.265625 6.203125 -5.265625 L 4.515625 -5.265625 Z M 7.578125 -5.078125 C 9.421875 -5.484375 10.875 -6.671875 10.875 -7.96875 C 10.875 -9.125 9.6875 -10.203125 7.625 -10.203125 L 3.5625 -10.203125 C 3.265625 -10.203125 3.140625 -10.203125 3.140625 -9.921875 C 3.140625 -9.765625 3.234375 -9.765625 3.53125 -9.765625 C 4.421875 -9.765625 4.421875 -9.65625 4.421875 -9.484375 C 4.421875 -9.453125 4.421875 -9.359375 4.359375 -9.140625 L 2.34375 -1.109375 C 2.203125 -0.578125 2.1875 -0.4375 1.15625 -0.4375 C 0.8125 -0.4375 0.703125 -0.4375 0.703125 -0.15625 C 0.703125 0 0.859375 0 0.90625 0 C 1.1875 0 1.5 -0.03125 1.78125 -0.03125 L 3.546875 -0.03125 C 3.8125 -0.03125 4.125 0 4.390625 0 C 4.515625 0 4.671875 0 4.671875 -0.28125 C 4.671875 -0.4375 4.546875 -0.4375 4.3125 -0.4375 C 3.40625 -0.4375 3.40625 -0.546875 3.40625 -0.703125 C 3.40625 -0.71875 3.40625 -0.828125 3.4375 -0.9375 L 4.4375 -4.953125 L 6.234375 -4.953125 C 7.640625 -4.953125 7.921875 -4.0625 7.921875 -3.5625 C 7.921875 -3.34375 7.765625 -2.765625 7.65625 -2.375 C 7.5 -1.6875 7.453125 -1.53125 7.453125 -1.234375 C 7.453125 -0.171875 8.3125 0.3125 9.328125 0.3125 C 10.53125 0.3125 11.046875 -1.171875 11.046875 -1.375 C 11.046875 -1.484375 10.984375 -1.53125 10.890625 -1.53125 C 10.765625 -1.53125 10.734375 -1.4375 10.703125 -1.3125 C 10.359375 -0.25 9.734375 0.015625 9.359375 0.015625 C 9 0.015625 8.75 -0.15625 8.75 -0.828125 C 8.75 -1.1875 8.9375 -2.546875 8.953125 -2.609375 C 9.015625 -3.171875 9.015625 -3.21875 9.015625 -3.34375 C 9.015625 -4.4375 8.140625 -4.90625 7.578125 -5.078125 Z M 7.578125 -5.078125 "></path> </g> <g id="-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-1-0"> </g> <g id="-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-1-1"> <path d="M 6.625 -3.734375 C 6.625 -5.328125 5.296875 -6.625 3.734375 -6.625 C 2.125 -6.625 0.828125 -5.296875 0.828125 -3.734375 C 0.828125 -2.15625 2.125 -0.84375 3.734375 -0.84375 C 5.296875 -0.84375 6.625 -2.140625 6.625 -3.734375 Z M 3.734375 -1.4375 C 2.4375 -1.4375 1.421875 -2.484375 1.421875 -3.734375 C 1.421875 -4.984375 2.453125 -6.03125 3.734375 -6.03125 C 4.96875 -6.03125 6.03125 -5.015625 6.03125 -3.734375 C 6.03125 -2.453125 4.96875 -1.4375 3.734375 -1.4375 Z M 3.734375 -1.4375 "></path> </g> <g id="-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-2-0"> </g> <g id="-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-2-1"> <path d="M 3.875 -6.03125 C 3.953125 -6.375 3.984375 -6.484375 4.890625 -6.484375 C 5.171875 -6.484375 5.28125 -6.484375 5.28125 -6.671875 C 5.28125 -6.6875 5.25 -6.8125 5.109375 -6.8125 C 4.890625 -6.8125 4.59375 -6.78125 4.390625 -6.78125 L 3.671875 -6.78125 C 2.625 -6.78125 2.390625 -6.8125 2.328125 -6.8125 C 2.28125 -6.8125 2.125 -6.8125 2.125 -6.625 C 2.125 -6.484375 2.25 -6.484375 2.40625 -6.484375 C 2.734375 -6.484375 3.03125 -6.484375 3.03125 -6.3125 C 3.03125 -6.28125 3.015625 -6.265625 2.984375 -6.140625 L 1.65625 -0.78125 C 1.5625 -0.40625 1.546875 -0.328125 0.8125 -0.328125 C 0.625 -0.328125 0.5 -0.328125 0.5 -0.140625 C 0.5 0 0.625 0 0.796875 0 L 5.609375 0 C 5.859375 0 5.875 -0.015625 5.953125 -0.203125 C 6.046875 -0.484375 6.78125 -2.359375 6.78125 -2.453125 C 6.78125 -2.546875 6.703125 -2.59375 6.625 -2.59375 C 6.515625 -2.59375 6.5 -2.515625 6.4375 -2.375 C 6.078125 -1.453125 5.640625 -0.328125 3.859375 -0.328125 L 2.59375 -0.328125 C 2.5 -0.34375 2.46875 -0.34375 2.46875 -0.421875 C 2.46875 -0.5 2.5 -0.578125 2.515625 -0.640625 Z M 3.875 -6.03125 "></path> </g> <g id="-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-2-2"> <path d="M 1.03125 -2.296875 C 0.921875 -1.890625 1 -2.25 0.890625 -1.828125 C 0.796875 -1.46875 0.5625 -1.09375 0.5625 -0.75 C 0.5625 -0.21875 0.984375 0.09375 1.484375 0.09375 C 1.828125 0.09375 2.359375 -0.015625 2.84375 -0.453125 C 3.34375 -0.90625 3.421875 -1.421875 3.421875 -1.421875 C 3.421875 -1.53125 3.34375 -1.5625 3.28125 -1.5625 C 3.171875 -1.5625 3.15625 -1.5 3.109375 -1.359375 C 2.859375 -0.640625 2.109375 -0.171875 1.515625 -0.171875 C 1.421875 -0.171875 1.25 -0.1875 1.25 -0.515625 C 1.25 -0.734375 1.34375 -0.96875 1.390625 -1.09375 C 1.90625 -2.46875 2.265625 -4.03125 2.265625 -4.09375 C 2.265625 -4.296875 2.109375 -4.390625 1.9375 -4.390625 C 1.859375 -4.390625 1.640625 -4.34375 1.53125 -4.109375 C 1.46875 -3.921875 1.359375 -3.421875 1.3125 -3.21875 Z M 1.03125 -2.296875 "></path> </g> <g id="-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-2-3"> <path d="M 2.96875 -6.21875 C 2.96875 -6.4375 2.8125 -6.59375 2.578125 -6.59375 C 2.328125 -6.59375 2.03125 -6.359375 2.03125 -6.0625 C 2.03125 -5.84375 2.1875 -5.6875 2.421875 -5.6875 C 2.6875 -5.6875 2.96875 -5.921875 2.96875 -6.21875 Z M 1.515625 -2.5625 L 0.984375 -1.1875 C 0.921875 -1.03125 0.875 -0.921875 0.875 -0.75 C 0.875 -0.265625 1.25 0.09375 1.78125 0.09375 C 2.75 0.09375 3.15625 -1.296875 3.15625 -1.421875 C 3.15625 -1.53125 3.078125 -1.5625 3.015625 -1.5625 C 2.890625 -1.5625 2.875 -1.484375 2.84375 -1.390625 C 2.609375 -0.59375 2.203125 -0.171875 1.796875 -0.171875 C 1.6875 -0.171875 1.5625 -0.234375 1.5625 -0.5 C 1.5625 -0.734375 1.640625 -0.921875 1.765625 -1.21875 C 1.859375 -1.5 1.96875 -1.765625 2.078125 -2.03125 L 2.375 -2.84375 C 2.46875 -3.078125 2.59375 -3.375 2.59375 -3.546875 C 2.59375 -4.046875 2.1875 -4.390625 1.6875 -4.390625 C 0.71875 -4.390625 0.296875 -3 0.296875 -2.875 C 0.296875 -2.78125 0.375 -2.734375 0.453125 -2.734375 C 0.578125 -2.734375 0.59375 -2.796875 0.625 -2.90625 C 0.890625 -3.84375 1.359375 -4.109375 1.65625 -4.109375 C 1.796875 -4.109375 1.890625 -4.0625 1.890625 -3.78125 C 1.890625 -3.6875 1.890625 -3.546875 1.78125 -3.25 Z M 1.515625 -2.5625 "></path> </g> <g id="-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-2-4"> <path d="M 5.359375 -6.625 C 5.375 -6.640625 5.40625 -6.765625 5.40625 -6.78125 C 5.40625 -6.828125 5.359375 -6.921875 5.25 -6.921875 C 5.203125 -6.921875 4.890625 -6.890625 4.671875 -6.875 L 4.109375 -6.828125 C 3.890625 -6.8125 3.78125 -6.796875 3.78125 -6.625 C 3.78125 -6.484375 3.921875 -6.484375 4.046875 -6.484375 C 4.53125 -6.484375 4.53125 -6.421875 4.53125 -6.328125 C 4.53125 -6.265625 4.453125 -5.9375 4.390625 -5.734375 L 3.90625 -3.796875 C 3.8125 -3.96875 3.53125 -4.390625 2.921875 -4.390625 C 1.734375 -4.390625 0.421875 -3.015625 0.421875 -1.53125 C 0.421875 -0.5 1.09375 0.09375 1.859375 0.09375 C 2.5 0.09375 3.046875 -0.40625 3.234375 -0.609375 C 3.40625 0.078125 4.09375 0.09375 4.203125 0.09375 C 4.671875 0.09375 4.890625 -0.28125 4.96875 -0.453125 C 5.171875 -0.8125 5.3125 -1.390625 5.3125 -1.421875 C 5.3125 -1.484375 5.28125 -1.5625 5.15625 -1.5625 C 5.03125 -1.5625 5.015625 -1.5 4.953125 -1.25 C 4.8125 -0.703125 4.625 -0.171875 4.234375 -0.171875 C 4 -0.171875 3.921875 -0.375 3.921875 -0.640625 C 3.921875 -0.84375 3.953125 -0.953125 3.984375 -1.078125 Z M 3.234375 -1.078125 C 2.734375 -0.390625 2.21875 -0.171875 1.890625 -0.171875 C 1.4375 -0.171875 1.203125 -0.59375 1.203125 -1.109375 C 1.203125 -1.578125 1.46875 -2.65625 1.6875 -3.09375 C 1.984375 -3.703125 2.46875 -4.109375 2.9375 -4.109375 C 3.578125 -4.109375 3.765625 -3.390625 3.765625 -3.265625 C 3.765625 -3.234375 3.515625 -2.25 3.453125 -2 C 3.328125 -1.53125 3.328125 -1.5 3.234375 -1.078125 Z M 3.234375 -1.078125 "></path> </g> <g id="-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-2-5"> <path d="M 3.1875 -2.25 C 3.34375 -2.25 3.515625 -2.25 3.515625 -2.40625 C 3.515625 -2.578125 3.390625 -2.578125 3.203125 -2.578125 L 1.484375 -2.578125 C 1.640625 -3.046875 2.03125 -3.96875 3.265625 -3.96875 L 3.609375 -3.96875 C 3.78125 -3.96875 3.953125 -3.96875 3.953125 -4.140625 C 3.953125 -4.296875 3.8125 -4.296875 3.625 -4.296875 L 3.234375 -4.296875 C 1.984375 -4.296875 0.5 -3.40625 0.5 -1.828125 C 0.5 -0.640625 1.359375 0.09375 2.453125 0.09375 C 3.125 0.09375 3.84375 -0.296875 3.84375 -0.4375 C 3.84375 -0.453125 3.84375 -0.609375 3.71875 -0.609375 C 3.671875 -0.609375 3.65625 -0.59375 3.625 -0.5625 C 3.4375 -0.453125 2.984375 -0.171875 2.46875 -0.171875 C 1.875 -0.171875 1.3125 -0.578125 1.3125 -1.484375 C 1.3125 -1.53125 1.3125 -1.8125 1.40625 -2.25 Z M 3.1875 -2.25 "></path> </g> <g id="-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-3-0"> </g> <g id="-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-3-1"> <path d="M 2.03125 -2.5 C 2.03125 -2.828125 1.75 -3.046875 1.46875 -3.046875 C 1.15625 -3.046875 0.921875 -2.796875 0.921875 -2.5 C 0.921875 -2.15625 1.203125 -1.9375 1.46875 -1.9375 C 1.78125 -1.9375 2.03125 -2.203125 2.03125 -2.5 Z M 2.03125 -2.5 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-0-1" x="6.434" y="17.276"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-0-1" x="85.447" y="17.276"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-1-1" x="98.72325" y="17.276"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-0-2" x="109.51575" y="17.276"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-1-1" x="124.09825" y="17.276"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-0-1" x="134.89075" y="17.276"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-0-1" x="110.169" y="80.568"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -52.569688 30.276938 L 2.645156 30.276938 " transform="matrix(1, 0, 0, -1, 75.64, 43.816)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.485388 2.867865 C -2.032263 1.149115 -1.020544 0.336615 -0.0010125 0.0006775 C -1.020544 -0.33526 -2.032263 -1.14776 -2.485388 -2.870416 " transform="matrix(1, 0, 0, -1, 78.52445, 13.53974)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-2-1" x="43.975" y="10.024"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-3-1" x="51.17375" y="10.024"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-2-2" x="54.11375" y="10.024"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -52.569688 23.163656 L 27.438125 -25.656656 " transform="matrix(1, 0, 0, -1, 75.64, 43.816)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.48666 2.866966 C -2.032968 1.148544 -1.019251 0.334747 -0.000406801 0.0000138941 C -1.018944 -0.333208 -2.031869 -1.148095 -2.487982 -2.867962 " transform="matrix(0.85358, 0.52087, 0.52087, -0.85358, 103.28159, 69.59788)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-2-3" x="50.713" y="55.623"></use> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-2-4" x="54.316481" y="55.623"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 39.508437 20.823813 L 39.508437 -20.344156 " transform="matrix(1, 0, 0, -1, 75.64, 43.816)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.484965 2.868573 C -2.031796 1.145891 -1.020041 0.333395 -0.000482537 0.00137752 C -1.020027 -0.334587 -2.03175 -1.147124 -2.48485 -2.869823 " transform="matrix(-0.00002, 0.99998, 0.99998, 0.00002, 115.14706, 64.39892)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-2-5" x="118.663" y="47.22"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-3-1" x="122.943" y="47.22"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-2-1" x="125.883" y="47.22"></use> </g> </svg> </div><div style="text-align: center"> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="153.89" height="86.037" viewBox="0 0 153.89 86.037"> <defs> <g> <g id="bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-0-0"> </g> <g id="bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-0-1"> <path d="M 5.5 -9.1875 C 5.625 -9.734375 5.6875 -9.765625 6.28125 -9.765625 L 7.34375 -9.765625 C 8.640625 -9.765625 9.59375 -9.375 9.59375 -8.21875 C 9.59375 -7.453125 9.203125 -5.265625 6.203125 -5.265625 L 4.515625 -5.265625 Z M 7.578125 -5.078125 C 9.421875 -5.484375 10.875 -6.671875 10.875 -7.96875 C 10.875 -9.125 9.6875 -10.203125 7.625 -10.203125 L 3.5625 -10.203125 C 3.265625 -10.203125 3.140625 -10.203125 3.140625 -9.921875 C 3.140625 -9.765625 3.234375 -9.765625 3.53125 -9.765625 C 4.421875 -9.765625 4.421875 -9.65625 4.421875 -9.484375 C 4.421875 -9.453125 4.421875 -9.359375 4.359375 -9.140625 L 2.34375 -1.109375 C 2.203125 -0.578125 2.1875 -0.4375 1.15625 -0.4375 C 0.8125 -0.4375 0.703125 -0.4375 0.703125 -0.15625 C 0.703125 0 0.859375 0 0.90625 0 C 1.1875 0 1.5 -0.03125 1.78125 -0.03125 L 3.546875 -0.03125 C 3.8125 -0.03125 4.125 0 4.390625 0 C 4.515625 0 4.671875 0 4.671875 -0.28125 C 4.671875 -0.4375 4.546875 -0.4375 4.3125 -0.4375 C 3.40625 -0.4375 3.40625 -0.546875 3.40625 -0.703125 C 3.40625 -0.71875 3.40625 -0.828125 3.4375 -0.9375 L 4.4375 -4.953125 L 6.234375 -4.953125 C 7.640625 -4.953125 7.921875 -4.0625 7.921875 -3.5625 C 7.921875 -3.34375 7.765625 -2.765625 7.65625 -2.375 C 7.5 -1.6875 7.453125 -1.53125 7.453125 -1.234375 C 7.453125 -0.171875 8.3125 0.3125 9.328125 0.3125 C 10.53125 0.3125 11.046875 -1.171875 11.046875 -1.375 C 11.046875 -1.484375 10.984375 -1.53125 10.890625 -1.53125 C 10.765625 -1.53125 10.734375 -1.4375 10.703125 -1.3125 C 10.359375 -0.25 9.734375 0.015625 9.359375 0.015625 C 9 0.015625 8.75 -0.15625 8.75 -0.828125 C 8.75 -1.1875 8.9375 -2.546875 8.953125 -2.609375 C 9.015625 -3.171875 9.015625 -3.21875 9.015625 -3.34375 C 9.015625 -4.4375 8.140625 -4.90625 7.578125 -5.078125 Z M 7.578125 -5.078125 "></path> </g> <g id="bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-0-2"> <path d="M 5.484375 -9.046875 C 5.609375 -9.625 5.65625 -9.765625 6.96875 -9.765625 C 7.375 -9.765625 7.484375 -9.765625 7.484375 -10.046875 C 7.484375 -10.203125 7.3125 -10.203125 7.265625 -10.203125 C 6.953125 -10.203125 6.625 -10.171875 6.3125 -10.171875 L 4.3125 -10.171875 C 4.03125 -10.171875 3.703125 -10.203125 3.421875 -10.203125 C 3.296875 -10.203125 3.140625 -10.203125 3.140625 -9.921875 C 3.140625 -9.765625 3.265625 -9.765625 3.5 -9.765625 C 4.40625 -9.765625 4.40625 -9.65625 4.40625 -9.484375 C 4.40625 -9.453125 4.40625 -9.359375 4.34375 -9.140625 L 2.328125 -1.109375 C 2.203125 -0.578125 2.171875 -0.4375 1.125 -0.4375 C 0.84375 -0.4375 0.6875 -0.4375 0.6875 -0.171875 C 0.6875 0 0.78125 0 1.078125 0 L 7.765625 0 C 8.09375 0 8.109375 -0.015625 8.21875 -0.28125 L 9.359375 -3.46875 C 9.390625 -3.546875 9.421875 -3.625 9.421875 -3.671875 C 9.421875 -3.765625 9.34375 -3.828125 9.28125 -3.828125 C 9.265625 -3.828125 9.1875 -3.828125 9.15625 -3.765625 C 9.125 -3.75 9.125 -3.71875 9 -3.4375 C 8.53125 -2.125 7.859375 -0.4375 5.328125 -0.4375 L 3.90625 -0.4375 C 3.6875 -0.4375 3.65625 -0.4375 3.5625 -0.453125 C 3.40625 -0.46875 3.390625 -0.5 3.390625 -0.609375 C 3.390625 -0.71875 3.421875 -0.8125 3.453125 -0.9375 Z M 5.484375 -9.046875 "></path> </g> <g id="bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-1-0"> </g> <g id="bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-1-1"> <path d="M 6.625 -3.734375 C 6.625 -5.328125 5.296875 -6.625 3.734375 -6.625 C 2.125 -6.625 0.828125 -5.296875 0.828125 -3.734375 C 0.828125 -2.15625 2.125 -0.84375 3.734375 -0.84375 C 5.296875 -0.84375 6.625 -2.140625 6.625 -3.734375 Z M 3.734375 -1.4375 C 2.4375 -1.4375 1.421875 -2.484375 1.421875 -3.734375 C 1.421875 -4.984375 2.453125 -6.03125 3.734375 -6.03125 C 4.96875 -6.03125 6.03125 -5.015625 6.03125 -3.734375 C 6.03125 -2.453125 4.96875 -1.4375 3.734375 -1.4375 Z M 3.734375 -1.4375 "></path> </g> <g id="bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-2-0"> </g> <g id="bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-2-1"> <path d="M 1.03125 -2.296875 C 0.921875 -1.890625 1 -2.25 0.890625 -1.828125 C 0.796875 -1.46875 0.5625 -1.09375 0.5625 -0.75 C 0.5625 -0.21875 0.984375 0.09375 1.484375 0.09375 C 1.828125 0.09375 2.359375 -0.015625 2.84375 -0.453125 C 3.34375 -0.90625 3.421875 -1.421875 3.421875 -1.421875 C 3.421875 -1.53125 3.34375 -1.5625 3.28125 -1.5625 C 3.171875 -1.5625 3.15625 -1.5 3.109375 -1.359375 C 2.859375 -0.640625 2.109375 -0.171875 1.515625 -0.171875 C 1.421875 -0.171875 1.25 -0.1875 1.25 -0.515625 C 1.25 -0.734375 1.34375 -0.96875 1.390625 -1.09375 C 1.90625 -2.46875 2.265625 -4.03125 2.265625 -4.09375 C 2.265625 -4.296875 2.109375 -4.390625 1.9375 -4.390625 C 1.859375 -4.390625 1.640625 -4.34375 1.53125 -4.109375 C 1.46875 -3.921875 1.359375 -3.421875 1.3125 -3.21875 Z M 1.03125 -2.296875 "></path> </g> <g id="bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-2-2"> <path d="M 3.875 -6.109375 C 3.953125 -6.453125 3.96875 -6.484375 4.375 -6.484375 L 5.1875 -6.484375 C 6 -6.484375 6.765625 -6.265625 6.765625 -5.46875 C 6.765625 -5.03125 6.546875 -4.328125 6.078125 -4 C 5.609375 -3.65625 5.03125 -3.546875 4.453125 -3.546875 L 3.234375 -3.546875 Z M 5.5625 -3.390625 C 6.78125 -3.703125 7.75 -4.453125 7.75 -5.296875 C 7.75 -6.15625 6.765625 -6.8125 5.390625 -6.8125 L 2.4375 -6.8125 C 2.265625 -6.8125 2.140625 -6.8125 2.140625 -6.625 C 2.140625 -6.484375 2.265625 -6.484375 2.421875 -6.484375 C 2.75 -6.484375 3.046875 -6.484375 3.046875 -6.3125 C 3.046875 -6.28125 3.03125 -6.265625 3 -6.140625 L 1.671875 -0.78125 C 1.578125 -0.40625 1.5625 -0.328125 0.8125 -0.328125 C 0.625 -0.328125 0.515625 -0.328125 0.515625 -0.140625 C 0.515625 -0.09375 0.53125 0 0.671875 0 C 0.859375 0 1.09375 -0.015625 1.28125 -0.03125 L 1.90625 -0.03125 C 2.828125 -0.03125 3.125 0 3.1875 0 C 3.234375 0 3.375 0 3.375 -0.1875 C 3.375 -0.328125 3.25 -0.328125 3.078125 -0.328125 C 3.046875 -0.328125 2.875 -0.328125 2.703125 -0.34375 C 2.5 -0.375 2.46875 -0.40625 2.46875 -0.484375 C 2.46875 -0.53125 2.5 -0.59375 2.5 -0.640625 L 3.15625 -3.265625 L 4.453125 -3.265625 C 5.34375 -3.265625 5.625 -2.796875 5.625 -2.375 C 5.625 -2.25 5.546875 -1.96875 5.5 -1.75 C 5.421875 -1.46875 5.328125 -1.0625 5.328125 -0.890625 C 5.328125 -0.125 5.984375 0.203125 6.71875 0.203125 C 7.59375 0.203125 8 -0.765625 8 -0.953125 C 8 -1 7.96875 -1.09375 7.828125 -1.09375 C 7.71875 -1.09375 7.703125 -1 7.6875 -0.96875 C 7.46875 -0.28125 7.03125 -0.0625 6.75 -0.0625 C 6.375 -0.0625 6.34375 -0.34375 6.34375 -0.671875 C 6.34375 -1 6.40625 -1.453125 6.4375 -1.78125 C 6.484375 -2.078125 6.484375 -2.140625 6.484375 -2.234375 C 6.484375 -2.828125 6.09375 -3.1875 5.5625 -3.390625 Z M 5.5625 -3.390625 "></path> </g> <g id="bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-2-3"> <path d="M 2.96875 -6.21875 C 2.96875 -6.4375 2.8125 -6.59375 2.578125 -6.59375 C 2.328125 -6.59375 2.03125 -6.359375 2.03125 -6.0625 C 2.03125 -5.84375 2.1875 -5.6875 2.421875 -5.6875 C 2.6875 -5.6875 2.96875 -5.921875 2.96875 -6.21875 Z M 1.515625 -2.5625 L 0.984375 -1.1875 C 0.921875 -1.03125 0.875 -0.921875 0.875 -0.75 C 0.875 -0.265625 1.25 0.09375 1.78125 0.09375 C 2.75 0.09375 3.15625 -1.296875 3.15625 -1.421875 C 3.15625 -1.53125 3.078125 -1.5625 3.015625 -1.5625 C 2.890625 -1.5625 2.875 -1.484375 2.84375 -1.390625 C 2.609375 -0.59375 2.203125 -0.171875 1.796875 -0.171875 C 1.6875 -0.171875 1.5625 -0.234375 1.5625 -0.5 C 1.5625 -0.734375 1.640625 -0.921875 1.765625 -1.21875 C 1.859375 -1.5 1.96875 -1.765625 2.078125 -2.03125 L 2.375 -2.84375 C 2.46875 -3.078125 2.59375 -3.375 2.59375 -3.546875 C 2.59375 -4.046875 2.1875 -4.390625 1.6875 -4.390625 C 0.71875 -4.390625 0.296875 -3 0.296875 -2.875 C 0.296875 -2.78125 0.375 -2.734375 0.453125 -2.734375 C 0.578125 -2.734375 0.59375 -2.796875 0.625 -2.90625 C 0.890625 -3.84375 1.359375 -4.109375 1.65625 -4.109375 C 1.796875 -4.109375 1.890625 -4.0625 1.890625 -3.78125 C 1.890625 -3.6875 1.890625 -3.546875 1.78125 -3.25 Z M 1.515625 -2.5625 "></path> </g> <g id="bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-2-4"> <path d="M 5.359375 -6.625 C 5.375 -6.640625 5.40625 -6.765625 5.40625 -6.78125 C 5.40625 -6.828125 5.359375 -6.921875 5.25 -6.921875 C 5.203125 -6.921875 4.890625 -6.890625 4.671875 -6.875 L 4.109375 -6.828125 C 3.890625 -6.8125 3.78125 -6.796875 3.78125 -6.625 C 3.78125 -6.484375 3.921875 -6.484375 4.046875 -6.484375 C 4.53125 -6.484375 4.53125 -6.421875 4.53125 -6.328125 C 4.53125 -6.265625 4.453125 -5.9375 4.390625 -5.734375 L 3.90625 -3.796875 C 3.8125 -3.96875 3.53125 -4.390625 2.921875 -4.390625 C 1.734375 -4.390625 0.421875 -3.015625 0.421875 -1.53125 C 0.421875 -0.5 1.09375 0.09375 1.859375 0.09375 C 2.5 0.09375 3.046875 -0.40625 3.234375 -0.609375 C 3.40625 0.078125 4.09375 0.09375 4.203125 0.09375 C 4.671875 0.09375 4.890625 -0.28125 4.96875 -0.453125 C 5.171875 -0.8125 5.3125 -1.390625 5.3125 -1.421875 C 5.3125 -1.484375 5.28125 -1.5625 5.15625 -1.5625 C 5.03125 -1.5625 5.015625 -1.5 4.953125 -1.25 C 4.8125 -0.703125 4.625 -0.171875 4.234375 -0.171875 C 4 -0.171875 3.921875 -0.375 3.921875 -0.640625 C 3.921875 -0.84375 3.953125 -0.953125 3.984375 -1.078125 Z M 3.234375 -1.078125 C 2.734375 -0.390625 2.21875 -0.171875 1.890625 -0.171875 C 1.4375 -0.171875 1.203125 -0.59375 1.203125 -1.109375 C 1.203125 -1.578125 1.46875 -2.65625 1.6875 -3.09375 C 1.984375 -3.703125 2.46875 -4.109375 2.9375 -4.109375 C 3.578125 -4.109375 3.765625 -3.390625 3.765625 -3.265625 C 3.765625 -3.234375 3.515625 -2.25 3.453125 -2 C 3.328125 -1.53125 3.328125 -1.5 3.234375 -1.078125 Z M 3.234375 -1.078125 "></path> </g> <g id="bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-2-5"> <path d="M 3.1875 -2.25 C 3.34375 -2.25 3.515625 -2.25 3.515625 -2.40625 C 3.515625 -2.578125 3.390625 -2.578125 3.203125 -2.578125 L 1.484375 -2.578125 C 1.640625 -3.046875 2.03125 -3.96875 3.265625 -3.96875 L 3.609375 -3.96875 C 3.78125 -3.96875 3.953125 -3.96875 3.953125 -4.140625 C 3.953125 -4.296875 3.8125 -4.296875 3.625 -4.296875 L 3.234375 -4.296875 C 1.984375 -4.296875 0.5 -3.40625 0.5 -1.828125 C 0.5 -0.640625 1.359375 0.09375 2.453125 0.09375 C 3.125 0.09375 3.84375 -0.296875 3.84375 -0.4375 C 3.84375 -0.453125 3.84375 -0.609375 3.71875 -0.609375 C 3.671875 -0.609375 3.65625 -0.59375 3.625 -0.5625 C 3.4375 -0.453125 2.984375 -0.171875 2.46875 -0.171875 C 1.875 -0.171875 1.3125 -0.578125 1.3125 -1.484375 C 1.3125 -1.53125 1.3125 -1.8125 1.40625 -2.25 Z M 3.1875 -2.25 "></path> </g> <g id="bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-3-0"> </g> <g id="bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-3-1"> <path d="M 2.03125 -2.5 C 2.03125 -2.828125 1.75 -3.046875 1.46875 -3.046875 C 1.15625 -3.046875 0.921875 -2.796875 0.921875 -2.5 C 0.921875 -2.15625 1.203125 -1.9375 1.46875 -1.9375 C 1.78125 -1.9375 2.03125 -2.203125 2.03125 -2.5 Z M 2.03125 -2.5 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-0-1" x="6.434" y="17.276"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-0-1" x="86.752" y="17.276"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-1-1" x="101.33325" y="17.276"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-0-2" x="112.12575" y="17.276"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-1-1" x="125.40325" y="17.276"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-0-1" x="136.19575" y="17.276"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-0-1" x="111.474" y="80.568"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -52.566094 30.276938 L 2.644844 30.276938 " transform="matrix(1, 0, 0, -1, 76.945, 43.816)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.48571 2.867865 C -2.032585 1.149115 -1.020866 0.336615 -0.001335 0.0006775 C -1.020866 -0.33526 -2.032585 -1.14776 -2.48571 -2.870416 " transform="matrix(1, 0, 0, -1, 79.82946, 13.53974)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-2-1" x="44.862" y="10.024"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-3-1" x="48.6095" y="10.024"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-2-2" x="51.55075" y="10.024"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -52.566094 22.862875 L 27.437812 -25.355875 " transform="matrix(1, 0, 0, -1, 76.945, 43.816)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.487066 2.870181 C -2.032065 1.146671 -1.018156 0.33473 0.000155193 -0.000204207 C -1.019487 -0.336552 -2.031478 -1.147201 -2.486262 -2.867179 " transform="matrix(0.85643, 0.5162, 0.5162, -0.85643, 104.58591, 69.29662)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-2-3" x="52.018" y="55.621"></use> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-2-4" x="55.621481" y="55.621"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 40.160469 20.823813 L 40.160469 -20.344156 " transform="matrix(1, 0, 0, -1, 76.945, 43.816)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.484965 2.868084 C -2.031796 1.149309 -1.020041 0.332906 -0.000482527 0.000888758 C -1.020027 -0.335076 -2.03175 -1.147612 -2.48485 -2.870312 " transform="matrix(-0.00002, 0.99998, 0.99998, 0.00002, 117.10458, 64.39892)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-2-2" x="120.621" y="47.22"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-3-1" x="128.65475" y="47.22"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-2-5" x="131.59475" y="47.22"></use> </g> </svg> </div> <p></p> </div> </p> <p> <div class='num_remark' id='RemarkEquivalentDefinitionLeftAdjointForCategories'> <h6>Remark</h6> <p>Definition <a class="maruku-ref" href="#DefinitionLeftAdjointForCategories"></a> is equivalent to requiring that there is a <a class="existingWikiWord" href="/nlab/show/natural+isomorphism">natural isomorphism</a> between the <a class="existingWikiWord" href="/nlab/show/hom-functor">Hom functors</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>Hom</mi> <mi>𝒞</mi></msub><mrow><mo>(</mo><mi>L</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>)</mo></mrow><mo>,</mo><msub><mi>Hom</mi> <mi>𝒟</mi></msub><mrow><mo>(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>R</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>)</mo></mrow><mo>:</mo><msup><mi>D</mi> <mi>op</mi></msup><mo>×</mo><mi>C</mi><mo>→</mo><mstyle mathvariant="sans-serif"><mi>Set</mi></mstyle><mo>.</mo></mrow><annotation encoding="application/x-tex"> Hom_\mathcal{C}\left(L(-),-\right), Hom_\mathcal{D}\left(-,R(-)\right): D^{op} \times C \to \mathsf{Set}. </annotation></semantics></math></div> <p>Depending upon one’s interpretation of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="sans-serif"><mi>Set</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathsf{Set}</annotation></semantics></math>, the <a class="existingWikiWord" href="/nlab/show/category+of+sets">category of sets</a>, one may strictly speaking need to restrict to <a class="existingWikiWord" href="/nlab/show/locally+small+category">locally small</a> categories for this equivalence to parse.</p> </div> </p> <p><h3 id='section_For_enriched_categories'>For enriched categories</h3></p> <p>The equivalent formulation of Definition <a class="maruku-ref" href="#DefinitionLeftAdjointForCategories"></a> given in Remark <a class="maruku-ref" href="#RemarkEquivalentDefinitionLeftAdjointForCategories"></a> generalises immediately to the setting of <a class="existingWikiWord" href="/nlab/show/enriched+category">enriched categories</a>.</p> <p> <div class='num_defn'> <h6>Definition</h6> <p>Given <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝕍</mi></mrow><annotation encoding="application/x-tex">\mathbb{V}</annotation></semantics></math>-enriched categories <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒟</mi></mrow><annotation encoding="application/x-tex">\mathcal{D}</annotation></semantics></math> and a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝕍</mi></mrow><annotation encoding="application/x-tex">\mathbb{V}</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/enriched+functor">enriched functor</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi><mo>:</mo><mi>𝒟</mi><mo>→</mo><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">R: \mathcal{D} \to \mathcal{C}</annotation></semantics></math>, a <em>left adjoint</em> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝕍</mi></mrow><annotation encoding="application/x-tex">\mathbb{V}</annotation></semantics></math>-enriched functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi><mo>:</mo><mi>𝒞</mi><mo>→</mo><mi>𝒟</mi></mrow><annotation encoding="application/x-tex">L: \mathcal{C} \to \mathcal{D}</annotation></semantics></math> together with a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝕍</mi></mrow><annotation encoding="application/x-tex">\mathbb{V}</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/enriched+natural+transformation">enriched natural isomorphism</a> between the <a class="existingWikiWord" href="/nlab/show/hom-functor">Hom functors</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>Hom</mi> <mi>𝒞</mi></msub><mrow><mo>(</mo><mo stretchy="false">(</mo><mi>L</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>)</mo></mrow><mo>,</mo><msub><mi>Hom</mi> <mi>𝒟</mi></msub><mrow><mo>(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>R</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>)</mo></mrow><mo>:</mo><msup><mi>D</mi> <mi>op</mi></msup><mo>×</mo><mi>C</mi><mo>→</mo><mi>𝕍</mi><mo>.</mo></mrow><annotation encoding="application/x-tex"> Hom_\mathcal{C}\left((L(-),-\right), Hom_\mathcal{D}\left(-,R(-)\right): D^{op} \times C \to \mathbb{V}. </annotation></semantics></math></div> <p></p> </div> </p> <p><h3 id='section_In_a_2-category'>In a 2-category</h3></p> <p>Definition <a class="maruku-ref" href="#DefinitionLeftAdjointForCategories"></a> generalises immediately from <a class="existingWikiWord" href="/nlab/show/CAT">CAT</a>, the 2-category of (large) categories, to any <a class="existingWikiWord" href="/nlab/show/2-category">2-category</a>.</p> <p> <div class='num_defn' id='DefinitionLeftAdjointInA2Category'> <h6>Definition</h6> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒜</mi></mrow><annotation encoding="application/x-tex">\mathcal{A}</annotation></semantics></math> be a 2-category. Given objects <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒟</mi></mrow><annotation encoding="application/x-tex">\mathcal{D}</annotation></semantics></math> and a 1-arrow <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi><mo>:</mo><mi>𝒟</mi><mo>→</mo><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">R: \mathcal{D} \to \mathcal{C}</annotation></semantics></math> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒜</mi></mrow><annotation encoding="application/x-tex">\mathcal{A}</annotation></semantics></math>, a <em>left adjoint</em> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is a 1-arrow <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi><mo>:</mo><mi>𝒞</mi><mo>→</mo><mi>𝒟</mi></mrow><annotation encoding="application/x-tex">L: \mathcal{C} \to \mathcal{D}</annotation></semantics></math> together with 2-arrows <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ι</mi><mo>:</mo><msub><mi>id</mi> <mi>𝒞</mi></msub><mo>→</mo><mi>R</mi><mo>∘</mo><mi>L</mi></mrow><annotation encoding="application/x-tex">\iota: id_\mathcal{C} \to R \circ L</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϵ</mi><mo>:</mo><mi>L</mi><mo>∘</mo><mi>R</mi><mo>→</mo><msub><mi>id</mi> <mi>𝒟</mi></msub></mrow><annotation encoding="application/x-tex">\epsilon: L \circ R \to id_\mathcal{D} </annotation></semantics></math> such that the following diagrams commute, where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⋅</mo></mrow><annotation encoding="application/x-tex">\cdot</annotation></semantics></math> denotes <a class="existingWikiWord" href="/nlab/show/whiskering">whiskering</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒜</mi></mrow><annotation encoding="application/x-tex">\mathcal{A}</annotation></semantics></math>.</p> <div style="text-align: center"> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="151.28" height="86.037" viewBox="0 0 151.28 86.037"> <defs> <g> <g id="-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-0-0"> </g> <g id="-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-0-1"> <path d="M 5.484375 -9.046875 C 5.609375 -9.625 5.65625 -9.765625 6.96875 -9.765625 C 7.375 -9.765625 7.484375 -9.765625 7.484375 -10.046875 C 7.484375 -10.203125 7.3125 -10.203125 7.265625 -10.203125 C 6.953125 -10.203125 6.625 -10.171875 6.3125 -10.171875 L 4.3125 -10.171875 C 4.03125 -10.171875 3.703125 -10.203125 3.421875 -10.203125 C 3.296875 -10.203125 3.140625 -10.203125 3.140625 -9.921875 C 3.140625 -9.765625 3.265625 -9.765625 3.5 -9.765625 C 4.40625 -9.765625 4.40625 -9.65625 4.40625 -9.484375 C 4.40625 -9.453125 4.40625 -9.359375 4.34375 -9.140625 L 2.328125 -1.109375 C 2.203125 -0.578125 2.171875 -0.4375 1.125 -0.4375 C 0.84375 -0.4375 0.6875 -0.4375 0.6875 -0.171875 C 0.6875 0 0.78125 0 1.078125 0 L 7.765625 0 C 8.09375 0 8.109375 -0.015625 8.21875 -0.28125 L 9.359375 -3.46875 C 9.390625 -3.546875 9.421875 -3.625 9.421875 -3.671875 C 9.421875 -3.765625 9.34375 -3.828125 9.28125 -3.828125 C 9.265625 -3.828125 9.1875 -3.828125 9.15625 -3.765625 C 9.125 -3.75 9.125 -3.71875 9 -3.4375 C 8.53125 -2.125 7.859375 -0.4375 5.328125 -0.4375 L 3.90625 -0.4375 C 3.6875 -0.4375 3.65625 -0.4375 3.5625 -0.453125 C 3.40625 -0.46875 3.390625 -0.5 3.390625 -0.609375 C 3.390625 -0.71875 3.421875 -0.8125 3.453125 -0.9375 Z M 5.484375 -9.046875 "></path> </g> <g id="-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-0-2"> <path d="M 5.5 -9.1875 C 5.625 -9.734375 5.6875 -9.765625 6.28125 -9.765625 L 7.34375 -9.765625 C 8.640625 -9.765625 9.59375 -9.375 9.59375 -8.21875 C 9.59375 -7.453125 9.203125 -5.265625 6.203125 -5.265625 L 4.515625 -5.265625 Z M 7.578125 -5.078125 C 9.421875 -5.484375 10.875 -6.671875 10.875 -7.96875 C 10.875 -9.125 9.6875 -10.203125 7.625 -10.203125 L 3.5625 -10.203125 C 3.265625 -10.203125 3.140625 -10.203125 3.140625 -9.921875 C 3.140625 -9.765625 3.234375 -9.765625 3.53125 -9.765625 C 4.421875 -9.765625 4.421875 -9.65625 4.421875 -9.484375 C 4.421875 -9.453125 4.421875 -9.359375 4.359375 -9.140625 L 2.34375 -1.109375 C 2.203125 -0.578125 2.1875 -0.4375 1.15625 -0.4375 C 0.8125 -0.4375 0.703125 -0.4375 0.703125 -0.15625 C 0.703125 0 0.859375 0 0.90625 0 C 1.1875 0 1.5 -0.03125 1.78125 -0.03125 L 3.546875 -0.03125 C 3.8125 -0.03125 4.125 0 4.390625 0 C 4.515625 0 4.671875 0 4.671875 -0.28125 C 4.671875 -0.4375 4.546875 -0.4375 4.3125 -0.4375 C 3.40625 -0.4375 3.40625 -0.546875 3.40625 -0.703125 C 3.40625 -0.71875 3.40625 -0.828125 3.4375 -0.9375 L 4.4375 -4.953125 L 6.234375 -4.953125 C 7.640625 -4.953125 7.921875 -4.0625 7.921875 -3.5625 C 7.921875 -3.34375 7.765625 -2.765625 7.65625 -2.375 C 7.5 -1.6875 7.453125 -1.53125 7.453125 -1.234375 C 7.453125 -0.171875 8.3125 0.3125 9.328125 0.3125 C 10.53125 0.3125 11.046875 -1.171875 11.046875 -1.375 C 11.046875 -1.484375 10.984375 -1.53125 10.890625 -1.53125 C 10.765625 -1.53125 10.734375 -1.4375 10.703125 -1.3125 C 10.359375 -0.25 9.734375 0.015625 9.359375 0.015625 C 9 0.015625 8.75 -0.15625 8.75 -0.828125 C 8.75 -1.1875 8.9375 -2.546875 8.953125 -2.609375 C 9.015625 -3.171875 9.015625 -3.21875 9.015625 -3.34375 C 9.015625 -4.4375 8.140625 -4.90625 7.578125 -5.078125 Z M 7.578125 -5.078125 "></path> </g> <g id="-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-1-0"> </g> <g id="-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-1-1"> <path d="M 6.625 -3.734375 C 6.625 -5.328125 5.296875 -6.625 3.734375 -6.625 C 2.125 -6.625 0.828125 -5.296875 0.828125 -3.734375 C 0.828125 -2.15625 2.125 -0.84375 3.734375 -0.84375 C 5.296875 -0.84375 6.625 -2.140625 6.625 -3.734375 Z M 3.734375 -1.4375 C 2.4375 -1.4375 1.421875 -2.484375 1.421875 -3.734375 C 1.421875 -4.984375 2.453125 -6.03125 3.734375 -6.03125 C 4.96875 -6.03125 6.03125 -5.015625 6.03125 -3.734375 C 6.03125 -2.453125 4.96875 -1.4375 3.734375 -1.4375 Z M 3.734375 -1.4375 "></path> </g> <g id="-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-2-0"> </g> <g id="-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-2-1"> <path d="M 3.875 -6.03125 C 3.953125 -6.375 3.984375 -6.484375 4.890625 -6.484375 C 5.171875 -6.484375 5.28125 -6.484375 5.28125 -6.671875 C 5.28125 -6.6875 5.25 -6.8125 5.109375 -6.8125 C 4.890625 -6.8125 4.59375 -6.78125 4.390625 -6.78125 L 3.671875 -6.78125 C 2.625 -6.78125 2.390625 -6.8125 2.328125 -6.8125 C 2.28125 -6.8125 2.125 -6.8125 2.125 -6.625 C 2.125 -6.484375 2.25 -6.484375 2.40625 -6.484375 C 2.734375 -6.484375 3.03125 -6.484375 3.03125 -6.3125 C 3.03125 -6.28125 3.015625 -6.265625 2.984375 -6.140625 L 1.65625 -0.78125 C 1.5625 -0.40625 1.546875 -0.328125 0.8125 -0.328125 C 0.625 -0.328125 0.5 -0.328125 0.5 -0.140625 C 0.5 0 0.625 0 0.796875 0 L 5.609375 0 C 5.859375 0 5.875 -0.015625 5.953125 -0.203125 C 6.046875 -0.484375 6.78125 -2.359375 6.78125 -2.453125 C 6.78125 -2.546875 6.703125 -2.59375 6.625 -2.59375 C 6.515625 -2.59375 6.5 -2.515625 6.4375 -2.375 C 6.078125 -1.453125 5.640625 -0.328125 3.859375 -0.328125 L 2.59375 -0.328125 C 2.5 -0.34375 2.46875 -0.34375 2.46875 -0.421875 C 2.46875 -0.5 2.5 -0.578125 2.515625 -0.640625 Z M 3.875 -6.03125 "></path> </g> <g id="-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-2-2"> <path d="M 1.03125 -2.296875 C 0.921875 -1.890625 1 -2.25 0.890625 -1.828125 C 0.796875 -1.46875 0.5625 -1.09375 0.5625 -0.75 C 0.5625 -0.21875 0.984375 0.09375 1.484375 0.09375 C 1.828125 0.09375 2.359375 -0.015625 2.84375 -0.453125 C 3.34375 -0.90625 3.421875 -1.421875 3.421875 -1.421875 C 3.421875 -1.53125 3.34375 -1.5625 3.28125 -1.5625 C 3.171875 -1.5625 3.15625 -1.5 3.109375 -1.359375 C 2.859375 -0.640625 2.109375 -0.171875 1.515625 -0.171875 C 1.421875 -0.171875 1.25 -0.1875 1.25 -0.515625 C 1.25 -0.734375 1.34375 -0.96875 1.390625 -1.09375 C 1.90625 -2.46875 2.265625 -4.03125 2.265625 -4.09375 C 2.265625 -4.296875 2.109375 -4.390625 1.9375 -4.390625 C 1.859375 -4.390625 1.640625 -4.34375 1.53125 -4.109375 C 1.46875 -3.921875 1.359375 -3.421875 1.3125 -3.21875 Z M 1.03125 -2.296875 "></path> </g> <g id="-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-2-3"> <path d="M 2.96875 -6.21875 C 2.96875 -6.4375 2.8125 -6.59375 2.578125 -6.59375 C 2.328125 -6.59375 2.03125 -6.359375 2.03125 -6.0625 C 2.03125 -5.84375 2.1875 -5.6875 2.421875 -5.6875 C 2.6875 -5.6875 2.96875 -5.921875 2.96875 -6.21875 Z M 1.515625 -2.5625 L 0.984375 -1.1875 C 0.921875 -1.03125 0.875 -0.921875 0.875 -0.75 C 0.875 -0.265625 1.25 0.09375 1.78125 0.09375 C 2.75 0.09375 3.15625 -1.296875 3.15625 -1.421875 C 3.15625 -1.53125 3.078125 -1.5625 3.015625 -1.5625 C 2.890625 -1.5625 2.875 -1.484375 2.84375 -1.390625 C 2.609375 -0.59375 2.203125 -0.171875 1.796875 -0.171875 C 1.6875 -0.171875 1.5625 -0.234375 1.5625 -0.5 C 1.5625 -0.734375 1.640625 -0.921875 1.765625 -1.21875 C 1.859375 -1.5 1.96875 -1.765625 2.078125 -2.03125 L 2.375 -2.84375 C 2.46875 -3.078125 2.59375 -3.375 2.59375 -3.546875 C 2.59375 -4.046875 2.1875 -4.390625 1.6875 -4.390625 C 0.71875 -4.390625 0.296875 -3 0.296875 -2.875 C 0.296875 -2.78125 0.375 -2.734375 0.453125 -2.734375 C 0.578125 -2.734375 0.59375 -2.796875 0.625 -2.90625 C 0.890625 -3.84375 1.359375 -4.109375 1.65625 -4.109375 C 1.796875 -4.109375 1.890625 -4.0625 1.890625 -3.78125 C 1.890625 -3.6875 1.890625 -3.546875 1.78125 -3.25 Z M 1.515625 -2.5625 "></path> </g> <g id="-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-2-4"> <path d="M 5.359375 -6.625 C 5.375 -6.640625 5.40625 -6.765625 5.40625 -6.78125 C 5.40625 -6.828125 5.359375 -6.921875 5.25 -6.921875 C 5.203125 -6.921875 4.890625 -6.890625 4.671875 -6.875 L 4.109375 -6.828125 C 3.890625 -6.8125 3.78125 -6.796875 3.78125 -6.625 C 3.78125 -6.484375 3.921875 -6.484375 4.046875 -6.484375 C 4.53125 -6.484375 4.53125 -6.421875 4.53125 -6.328125 C 4.53125 -6.265625 4.453125 -5.9375 4.390625 -5.734375 L 3.90625 -3.796875 C 3.8125 -3.96875 3.53125 -4.390625 2.921875 -4.390625 C 1.734375 -4.390625 0.421875 -3.015625 0.421875 -1.53125 C 0.421875 -0.5 1.09375 0.09375 1.859375 0.09375 C 2.5 0.09375 3.046875 -0.40625 3.234375 -0.609375 C 3.40625 0.078125 4.09375 0.09375 4.203125 0.09375 C 4.671875 0.09375 4.890625 -0.28125 4.96875 -0.453125 C 5.171875 -0.8125 5.3125 -1.390625 5.3125 -1.421875 C 5.3125 -1.484375 5.28125 -1.5625 5.15625 -1.5625 C 5.03125 -1.5625 5.015625 -1.5 4.953125 -1.25 C 4.8125 -0.703125 4.625 -0.171875 4.234375 -0.171875 C 4 -0.171875 3.921875 -0.375 3.921875 -0.640625 C 3.921875 -0.84375 3.953125 -0.953125 3.984375 -1.078125 Z M 3.234375 -1.078125 C 2.734375 -0.390625 2.21875 -0.171875 1.890625 -0.171875 C 1.4375 -0.171875 1.203125 -0.59375 1.203125 -1.109375 C 1.203125 -1.578125 1.46875 -2.65625 1.6875 -3.09375 C 1.984375 -3.703125 2.46875 -4.109375 2.9375 -4.109375 C 3.578125 -4.109375 3.765625 -3.390625 3.765625 -3.265625 C 3.765625 -3.234375 3.515625 -2.25 3.453125 -2 C 3.328125 -1.53125 3.328125 -1.5 3.234375 -1.078125 Z M 3.234375 -1.078125 "></path> </g> <g id="-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-2-5"> <path d="M 3.1875 -2.25 C 3.34375 -2.25 3.515625 -2.25 3.515625 -2.40625 C 3.515625 -2.578125 3.390625 -2.578125 3.203125 -2.578125 L 1.484375 -2.578125 C 1.640625 -3.046875 2.03125 -3.96875 3.265625 -3.96875 L 3.609375 -3.96875 C 3.78125 -3.96875 3.953125 -3.96875 3.953125 -4.140625 C 3.953125 -4.296875 3.8125 -4.296875 3.625 -4.296875 L 3.234375 -4.296875 C 1.984375 -4.296875 0.5 -3.40625 0.5 -1.828125 C 0.5 -0.640625 1.359375 0.09375 2.453125 0.09375 C 3.125 0.09375 3.84375 -0.296875 3.84375 -0.4375 C 3.84375 -0.453125 3.84375 -0.609375 3.71875 -0.609375 C 3.671875 -0.609375 3.65625 -0.59375 3.625 -0.5625 C 3.4375 -0.453125 2.984375 -0.171875 2.46875 -0.171875 C 1.875 -0.171875 1.3125 -0.578125 1.3125 -1.484375 C 1.3125 -1.53125 1.3125 -1.8125 1.40625 -2.25 Z M 3.1875 -2.25 "></path> </g> <g id="-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-3-0"> </g> <g id="-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-3-1"> <path d="M 2.03125 -2.5 C 2.03125 -2.828125 1.75 -3.046875 1.46875 -3.046875 C 1.15625 -3.046875 0.921875 -2.796875 0.921875 -2.5 C 0.921875 -2.15625 1.203125 -1.9375 1.46875 -1.9375 C 1.78125 -1.9375 2.03125 -2.203125 2.03125 -2.5 Z M 2.03125 -2.5 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-0-1" x="6.434" y="17.276"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-0-1" x="85.447" y="17.276"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-1-1" x="98.72325" y="17.276"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-0-2" x="109.51575" y="17.276"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-1-1" x="124.09825" y="17.276"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-0-1" x="134.89075" y="17.276"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-0-1" x="110.169" y="80.568"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -52.569688 30.276938 L 2.645156 30.276938 " transform="matrix(1, 0, 0, -1, 75.64, 43.816)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.485388 2.867865 C -2.032263 1.149115 -1.020544 0.336615 -0.0010125 0.0006775 C -1.020544 -0.33526 -2.032263 -1.14776 -2.485388 -2.870416 " transform="matrix(1, 0, 0, -1, 78.52445, 13.53974)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-2-1" x="43.975" y="10.024"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-3-1" x="51.17375" y="10.024"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-2-2" x="54.11375" y="10.024"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -52.569688 23.163656 L 27.438125 -25.656656 " transform="matrix(1, 0, 0, -1, 75.64, 43.816)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.48666 2.866966 C -2.032968 1.148544 -1.019251 0.334747 -0.000406801 0.0000138941 C -1.018944 -0.333208 -2.031869 -1.148095 -2.487982 -2.867962 " transform="matrix(0.85358, 0.52087, 0.52087, -0.85358, 103.28159, 69.59788)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-2-3" x="50.713" y="55.623"></use> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-2-4" x="54.316481" y="55.623"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 39.508437 20.823813 L 39.508437 -20.344156 " transform="matrix(1, 0, 0, -1, 75.64, 43.816)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.484965 2.868573 C -2.031796 1.145891 -1.020041 0.333395 -0.000482537 0.00137752 C -1.020027 -0.334587 -2.03175 -1.147124 -2.48485 -2.869823 " transform="matrix(-0.00002, 0.99998, 0.99998, 0.00002, 115.14706, 64.39892)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-2-5" x="118.663" y="47.22"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-3-1" x="122.943" y="47.22"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#-cNYzK5COHyJvbPPKJAVGoo0pwo=-glyph-2-1" x="125.883" y="47.22"></use> </g> </svg> </div><div style="text-align: center"> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="153.89" height="86.037" viewBox="0 0 153.89 86.037"> <defs> <g> <g id="bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-0-0"> </g> <g id="bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-0-1"> <path d="M 5.5 -9.1875 C 5.625 -9.734375 5.6875 -9.765625 6.28125 -9.765625 L 7.34375 -9.765625 C 8.640625 -9.765625 9.59375 -9.375 9.59375 -8.21875 C 9.59375 -7.453125 9.203125 -5.265625 6.203125 -5.265625 L 4.515625 -5.265625 Z M 7.578125 -5.078125 C 9.421875 -5.484375 10.875 -6.671875 10.875 -7.96875 C 10.875 -9.125 9.6875 -10.203125 7.625 -10.203125 L 3.5625 -10.203125 C 3.265625 -10.203125 3.140625 -10.203125 3.140625 -9.921875 C 3.140625 -9.765625 3.234375 -9.765625 3.53125 -9.765625 C 4.421875 -9.765625 4.421875 -9.65625 4.421875 -9.484375 C 4.421875 -9.453125 4.421875 -9.359375 4.359375 -9.140625 L 2.34375 -1.109375 C 2.203125 -0.578125 2.1875 -0.4375 1.15625 -0.4375 C 0.8125 -0.4375 0.703125 -0.4375 0.703125 -0.15625 C 0.703125 0 0.859375 0 0.90625 0 C 1.1875 0 1.5 -0.03125 1.78125 -0.03125 L 3.546875 -0.03125 C 3.8125 -0.03125 4.125 0 4.390625 0 C 4.515625 0 4.671875 0 4.671875 -0.28125 C 4.671875 -0.4375 4.546875 -0.4375 4.3125 -0.4375 C 3.40625 -0.4375 3.40625 -0.546875 3.40625 -0.703125 C 3.40625 -0.71875 3.40625 -0.828125 3.4375 -0.9375 L 4.4375 -4.953125 L 6.234375 -4.953125 C 7.640625 -4.953125 7.921875 -4.0625 7.921875 -3.5625 C 7.921875 -3.34375 7.765625 -2.765625 7.65625 -2.375 C 7.5 -1.6875 7.453125 -1.53125 7.453125 -1.234375 C 7.453125 -0.171875 8.3125 0.3125 9.328125 0.3125 C 10.53125 0.3125 11.046875 -1.171875 11.046875 -1.375 C 11.046875 -1.484375 10.984375 -1.53125 10.890625 -1.53125 C 10.765625 -1.53125 10.734375 -1.4375 10.703125 -1.3125 C 10.359375 -0.25 9.734375 0.015625 9.359375 0.015625 C 9 0.015625 8.75 -0.15625 8.75 -0.828125 C 8.75 -1.1875 8.9375 -2.546875 8.953125 -2.609375 C 9.015625 -3.171875 9.015625 -3.21875 9.015625 -3.34375 C 9.015625 -4.4375 8.140625 -4.90625 7.578125 -5.078125 Z M 7.578125 -5.078125 "></path> </g> <g id="bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-0-2"> <path d="M 5.484375 -9.046875 C 5.609375 -9.625 5.65625 -9.765625 6.96875 -9.765625 C 7.375 -9.765625 7.484375 -9.765625 7.484375 -10.046875 C 7.484375 -10.203125 7.3125 -10.203125 7.265625 -10.203125 C 6.953125 -10.203125 6.625 -10.171875 6.3125 -10.171875 L 4.3125 -10.171875 C 4.03125 -10.171875 3.703125 -10.203125 3.421875 -10.203125 C 3.296875 -10.203125 3.140625 -10.203125 3.140625 -9.921875 C 3.140625 -9.765625 3.265625 -9.765625 3.5 -9.765625 C 4.40625 -9.765625 4.40625 -9.65625 4.40625 -9.484375 C 4.40625 -9.453125 4.40625 -9.359375 4.34375 -9.140625 L 2.328125 -1.109375 C 2.203125 -0.578125 2.171875 -0.4375 1.125 -0.4375 C 0.84375 -0.4375 0.6875 -0.4375 0.6875 -0.171875 C 0.6875 0 0.78125 0 1.078125 0 L 7.765625 0 C 8.09375 0 8.109375 -0.015625 8.21875 -0.28125 L 9.359375 -3.46875 C 9.390625 -3.546875 9.421875 -3.625 9.421875 -3.671875 C 9.421875 -3.765625 9.34375 -3.828125 9.28125 -3.828125 C 9.265625 -3.828125 9.1875 -3.828125 9.15625 -3.765625 C 9.125 -3.75 9.125 -3.71875 9 -3.4375 C 8.53125 -2.125 7.859375 -0.4375 5.328125 -0.4375 L 3.90625 -0.4375 C 3.6875 -0.4375 3.65625 -0.4375 3.5625 -0.453125 C 3.40625 -0.46875 3.390625 -0.5 3.390625 -0.609375 C 3.390625 -0.71875 3.421875 -0.8125 3.453125 -0.9375 Z M 5.484375 -9.046875 "></path> </g> <g id="bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-1-0"> </g> <g id="bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-1-1"> <path d="M 6.625 -3.734375 C 6.625 -5.328125 5.296875 -6.625 3.734375 -6.625 C 2.125 -6.625 0.828125 -5.296875 0.828125 -3.734375 C 0.828125 -2.15625 2.125 -0.84375 3.734375 -0.84375 C 5.296875 -0.84375 6.625 -2.140625 6.625 -3.734375 Z M 3.734375 -1.4375 C 2.4375 -1.4375 1.421875 -2.484375 1.421875 -3.734375 C 1.421875 -4.984375 2.453125 -6.03125 3.734375 -6.03125 C 4.96875 -6.03125 6.03125 -5.015625 6.03125 -3.734375 C 6.03125 -2.453125 4.96875 -1.4375 3.734375 -1.4375 Z M 3.734375 -1.4375 "></path> </g> <g id="bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-2-0"> </g> <g id="bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-2-1"> <path d="M 1.03125 -2.296875 C 0.921875 -1.890625 1 -2.25 0.890625 -1.828125 C 0.796875 -1.46875 0.5625 -1.09375 0.5625 -0.75 C 0.5625 -0.21875 0.984375 0.09375 1.484375 0.09375 C 1.828125 0.09375 2.359375 -0.015625 2.84375 -0.453125 C 3.34375 -0.90625 3.421875 -1.421875 3.421875 -1.421875 C 3.421875 -1.53125 3.34375 -1.5625 3.28125 -1.5625 C 3.171875 -1.5625 3.15625 -1.5 3.109375 -1.359375 C 2.859375 -0.640625 2.109375 -0.171875 1.515625 -0.171875 C 1.421875 -0.171875 1.25 -0.1875 1.25 -0.515625 C 1.25 -0.734375 1.34375 -0.96875 1.390625 -1.09375 C 1.90625 -2.46875 2.265625 -4.03125 2.265625 -4.09375 C 2.265625 -4.296875 2.109375 -4.390625 1.9375 -4.390625 C 1.859375 -4.390625 1.640625 -4.34375 1.53125 -4.109375 C 1.46875 -3.921875 1.359375 -3.421875 1.3125 -3.21875 Z M 1.03125 -2.296875 "></path> </g> <g id="bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-2-2"> <path d="M 3.875 -6.109375 C 3.953125 -6.453125 3.96875 -6.484375 4.375 -6.484375 L 5.1875 -6.484375 C 6 -6.484375 6.765625 -6.265625 6.765625 -5.46875 C 6.765625 -5.03125 6.546875 -4.328125 6.078125 -4 C 5.609375 -3.65625 5.03125 -3.546875 4.453125 -3.546875 L 3.234375 -3.546875 Z M 5.5625 -3.390625 C 6.78125 -3.703125 7.75 -4.453125 7.75 -5.296875 C 7.75 -6.15625 6.765625 -6.8125 5.390625 -6.8125 L 2.4375 -6.8125 C 2.265625 -6.8125 2.140625 -6.8125 2.140625 -6.625 C 2.140625 -6.484375 2.265625 -6.484375 2.421875 -6.484375 C 2.75 -6.484375 3.046875 -6.484375 3.046875 -6.3125 C 3.046875 -6.28125 3.03125 -6.265625 3 -6.140625 L 1.671875 -0.78125 C 1.578125 -0.40625 1.5625 -0.328125 0.8125 -0.328125 C 0.625 -0.328125 0.515625 -0.328125 0.515625 -0.140625 C 0.515625 -0.09375 0.53125 0 0.671875 0 C 0.859375 0 1.09375 -0.015625 1.28125 -0.03125 L 1.90625 -0.03125 C 2.828125 -0.03125 3.125 0 3.1875 0 C 3.234375 0 3.375 0 3.375 -0.1875 C 3.375 -0.328125 3.25 -0.328125 3.078125 -0.328125 C 3.046875 -0.328125 2.875 -0.328125 2.703125 -0.34375 C 2.5 -0.375 2.46875 -0.40625 2.46875 -0.484375 C 2.46875 -0.53125 2.5 -0.59375 2.5 -0.640625 L 3.15625 -3.265625 L 4.453125 -3.265625 C 5.34375 -3.265625 5.625 -2.796875 5.625 -2.375 C 5.625 -2.25 5.546875 -1.96875 5.5 -1.75 C 5.421875 -1.46875 5.328125 -1.0625 5.328125 -0.890625 C 5.328125 -0.125 5.984375 0.203125 6.71875 0.203125 C 7.59375 0.203125 8 -0.765625 8 -0.953125 C 8 -1 7.96875 -1.09375 7.828125 -1.09375 C 7.71875 -1.09375 7.703125 -1 7.6875 -0.96875 C 7.46875 -0.28125 7.03125 -0.0625 6.75 -0.0625 C 6.375 -0.0625 6.34375 -0.34375 6.34375 -0.671875 C 6.34375 -1 6.40625 -1.453125 6.4375 -1.78125 C 6.484375 -2.078125 6.484375 -2.140625 6.484375 -2.234375 C 6.484375 -2.828125 6.09375 -3.1875 5.5625 -3.390625 Z M 5.5625 -3.390625 "></path> </g> <g id="bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-2-3"> <path d="M 2.96875 -6.21875 C 2.96875 -6.4375 2.8125 -6.59375 2.578125 -6.59375 C 2.328125 -6.59375 2.03125 -6.359375 2.03125 -6.0625 C 2.03125 -5.84375 2.1875 -5.6875 2.421875 -5.6875 C 2.6875 -5.6875 2.96875 -5.921875 2.96875 -6.21875 Z M 1.515625 -2.5625 L 0.984375 -1.1875 C 0.921875 -1.03125 0.875 -0.921875 0.875 -0.75 C 0.875 -0.265625 1.25 0.09375 1.78125 0.09375 C 2.75 0.09375 3.15625 -1.296875 3.15625 -1.421875 C 3.15625 -1.53125 3.078125 -1.5625 3.015625 -1.5625 C 2.890625 -1.5625 2.875 -1.484375 2.84375 -1.390625 C 2.609375 -0.59375 2.203125 -0.171875 1.796875 -0.171875 C 1.6875 -0.171875 1.5625 -0.234375 1.5625 -0.5 C 1.5625 -0.734375 1.640625 -0.921875 1.765625 -1.21875 C 1.859375 -1.5 1.96875 -1.765625 2.078125 -2.03125 L 2.375 -2.84375 C 2.46875 -3.078125 2.59375 -3.375 2.59375 -3.546875 C 2.59375 -4.046875 2.1875 -4.390625 1.6875 -4.390625 C 0.71875 -4.390625 0.296875 -3 0.296875 -2.875 C 0.296875 -2.78125 0.375 -2.734375 0.453125 -2.734375 C 0.578125 -2.734375 0.59375 -2.796875 0.625 -2.90625 C 0.890625 -3.84375 1.359375 -4.109375 1.65625 -4.109375 C 1.796875 -4.109375 1.890625 -4.0625 1.890625 -3.78125 C 1.890625 -3.6875 1.890625 -3.546875 1.78125 -3.25 Z M 1.515625 -2.5625 "></path> </g> <g id="bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-2-4"> <path d="M 5.359375 -6.625 C 5.375 -6.640625 5.40625 -6.765625 5.40625 -6.78125 C 5.40625 -6.828125 5.359375 -6.921875 5.25 -6.921875 C 5.203125 -6.921875 4.890625 -6.890625 4.671875 -6.875 L 4.109375 -6.828125 C 3.890625 -6.8125 3.78125 -6.796875 3.78125 -6.625 C 3.78125 -6.484375 3.921875 -6.484375 4.046875 -6.484375 C 4.53125 -6.484375 4.53125 -6.421875 4.53125 -6.328125 C 4.53125 -6.265625 4.453125 -5.9375 4.390625 -5.734375 L 3.90625 -3.796875 C 3.8125 -3.96875 3.53125 -4.390625 2.921875 -4.390625 C 1.734375 -4.390625 0.421875 -3.015625 0.421875 -1.53125 C 0.421875 -0.5 1.09375 0.09375 1.859375 0.09375 C 2.5 0.09375 3.046875 -0.40625 3.234375 -0.609375 C 3.40625 0.078125 4.09375 0.09375 4.203125 0.09375 C 4.671875 0.09375 4.890625 -0.28125 4.96875 -0.453125 C 5.171875 -0.8125 5.3125 -1.390625 5.3125 -1.421875 C 5.3125 -1.484375 5.28125 -1.5625 5.15625 -1.5625 C 5.03125 -1.5625 5.015625 -1.5 4.953125 -1.25 C 4.8125 -0.703125 4.625 -0.171875 4.234375 -0.171875 C 4 -0.171875 3.921875 -0.375 3.921875 -0.640625 C 3.921875 -0.84375 3.953125 -0.953125 3.984375 -1.078125 Z M 3.234375 -1.078125 C 2.734375 -0.390625 2.21875 -0.171875 1.890625 -0.171875 C 1.4375 -0.171875 1.203125 -0.59375 1.203125 -1.109375 C 1.203125 -1.578125 1.46875 -2.65625 1.6875 -3.09375 C 1.984375 -3.703125 2.46875 -4.109375 2.9375 -4.109375 C 3.578125 -4.109375 3.765625 -3.390625 3.765625 -3.265625 C 3.765625 -3.234375 3.515625 -2.25 3.453125 -2 C 3.328125 -1.53125 3.328125 -1.5 3.234375 -1.078125 Z M 3.234375 -1.078125 "></path> </g> <g id="bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-2-5"> <path d="M 3.1875 -2.25 C 3.34375 -2.25 3.515625 -2.25 3.515625 -2.40625 C 3.515625 -2.578125 3.390625 -2.578125 3.203125 -2.578125 L 1.484375 -2.578125 C 1.640625 -3.046875 2.03125 -3.96875 3.265625 -3.96875 L 3.609375 -3.96875 C 3.78125 -3.96875 3.953125 -3.96875 3.953125 -4.140625 C 3.953125 -4.296875 3.8125 -4.296875 3.625 -4.296875 L 3.234375 -4.296875 C 1.984375 -4.296875 0.5 -3.40625 0.5 -1.828125 C 0.5 -0.640625 1.359375 0.09375 2.453125 0.09375 C 3.125 0.09375 3.84375 -0.296875 3.84375 -0.4375 C 3.84375 -0.453125 3.84375 -0.609375 3.71875 -0.609375 C 3.671875 -0.609375 3.65625 -0.59375 3.625 -0.5625 C 3.4375 -0.453125 2.984375 -0.171875 2.46875 -0.171875 C 1.875 -0.171875 1.3125 -0.578125 1.3125 -1.484375 C 1.3125 -1.53125 1.3125 -1.8125 1.40625 -2.25 Z M 3.1875 -2.25 "></path> </g> <g id="bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-3-0"> </g> <g id="bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-3-1"> <path d="M 2.03125 -2.5 C 2.03125 -2.828125 1.75 -3.046875 1.46875 -3.046875 C 1.15625 -3.046875 0.921875 -2.796875 0.921875 -2.5 C 0.921875 -2.15625 1.203125 -1.9375 1.46875 -1.9375 C 1.78125 -1.9375 2.03125 -2.203125 2.03125 -2.5 Z M 2.03125 -2.5 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-0-1" x="6.434" y="17.276"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-0-1" x="86.752" y="17.276"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-1-1" x="101.33325" y="17.276"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-0-2" x="112.12575" y="17.276"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-1-1" x="125.40325" y="17.276"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-0-1" x="136.19575" y="17.276"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-0-1" x="111.474" y="80.568"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -52.566094 30.276938 L 2.644844 30.276938 " transform="matrix(1, 0, 0, -1, 76.945, 43.816)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.48571 2.867865 C -2.032585 1.149115 -1.020866 0.336615 -0.001335 0.0006775 C -1.020866 -0.33526 -2.032585 -1.14776 -2.48571 -2.870416 " transform="matrix(1, 0, 0, -1, 79.82946, 13.53974)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-2-1" x="44.862" y="10.024"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-3-1" x="48.6095" y="10.024"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-2-2" x="51.55075" y="10.024"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -52.566094 22.862875 L 27.437812 -25.355875 " transform="matrix(1, 0, 0, -1, 76.945, 43.816)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.487066 2.870181 C -2.032065 1.146671 -1.018156 0.33473 0.000155193 -0.000204207 C -1.019487 -0.336552 -2.031478 -1.147201 -2.486262 -2.867179 " transform="matrix(0.85643, 0.5162, 0.5162, -0.85643, 104.58591, 69.29662)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-2-3" x="52.018" y="55.621"></use> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-2-4" x="55.621481" y="55.621"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 40.160469 20.823813 L 40.160469 -20.344156 " transform="matrix(1, 0, 0, -1, 76.945, 43.816)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.484965 2.868084 C -2.031796 1.149309 -1.020041 0.332906 -0.000482527 0.000888758 C -1.020027 -0.335076 -2.03175 -1.147612 -2.48485 -2.870312 " transform="matrix(-0.00002, 0.99998, 0.99998, 0.00002, 117.10458, 64.39892)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-2-2" x="120.621" y="47.22"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-3-1" x="128.65475" y="47.22"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#bjE8U6L_4s9O6W56nVURPf5MLn4=-glyph-2-5" x="131.59475" y="47.22"></use> </g> </svg> </div> <p></p> </div> </p> <p> <div class='num_remark'> <h6>Remark</h6> <p>If one assumes that one’s ambient 2-category has more structure, bringing it closer to being a <a class="existingWikiWord" href="/nlab/show/2-topos">2-topos</a>, for example a <a class="existingWikiWord" href="/nlab/show/Yoneda+structure">Yoneda structure</a>, one should be able to give an equivalent formulation of Definition <a class="maruku-ref" href="#DefinitionLeftAdjointInA2Category"></a> akin to that of Remark <a class="maruku-ref" href="#RemarkEquivalentDefinitionLeftAdjointForCategories"></a>.</p> </div> </p> <p><h3 id='section_For_preorders_and_posets'>For preorders and posets</h3></p> <p>Restricted to <a class="existingWikiWord" href="/nlab/show/preorder">preorders</a> or <a class="existingWikiWord" href="/nlab/show/poset">posets</a>, Definition <a class="maruku-ref" href="#DefinitionLeftAdjointForCategories"></a> in its equivalent formulation of Remark <a class="maruku-ref" href="#RemarkEquivalentDefinitionLeftAdjointForCategories"></a> can be expressed in the following terminology.</p> <p> <div class='num_defn'> <h6>Definition</h6> <p>Given <a class="existingWikiWord" href="/nlab/show/partial+order">posets</a> or <a class="existingWikiWord" href="/nlab/show/preorder">preorders</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒟</mi></mrow><annotation encoding="application/x-tex">\mathcal{D}</annotation></semantics></math> and a <a class="existingWikiWord" href="/nlab/show/monotone+function">monotone function</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi><mo>:</mo><mi>𝒟</mi><mo>→</mo><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">R: \mathcal{D} \to \mathcal{C}</annotation></semantics></math>, a <em>left adjoint</em> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is a monotone function <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi><mo>:</mo><mi>𝒞</mi><mo>→</mo><mi>𝒟</mi></mrow><annotation encoding="application/x-tex">L: \mathcal{C} \to \mathcal{D}</annotation></semantics></math> such that, for all <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒟</mi></mrow><annotation encoding="application/x-tex">\mathcal{D}</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math>, we have that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>≤</mo><mi>y</mi></mrow><annotation encoding="application/x-tex">L(x) \leq y</annotation></semantics></math> holds if and only if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>≤</mo><mi>R</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x \leq R(y) </annotation></semantics></math> holds.</p> </div> </p> <h2 id="properties">Properties</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/left+adjoints+preserve+colimits">left adjoints preserve colimits</a></p> </li> <li> <p>left adjoints preserve <a class="existingWikiWord" href="/nlab/show/epimorphisms">epimorphisms</a>.</p> </li> </ul> <h3 id="InHomotopyTypeTheory">In homotopy type theory</h3> <p>Note: the <a class="existingWikiWord" href="/nlab/show/HoTT+book">HoTT book</a> calls a <a class="existingWikiWord" href="/nlab/show/internal+category+in+HoTT">internal category in HoTT</a> a “precategory” and a <a class="existingWikiWord" href="/nlab/show/univalent+category">univalent category</a> a “category”, but here we shall refer to the standard terminology of “category” and “univalent category” respectively.</p> <p> <div class='num_lemma' id='Lemma932'> <h6>Lemma</h6> <p><strong>(Lemma 9.3.2 in the <a class="existingWikiWord" href="/nlab/show/HoTT+book">HoTT book</a>)</strong> <br /> If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/univalent+category">univalent category</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/category">category</a> then the type “<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math> is a left adjoint” is a <a class="existingWikiWord" href="/nlab/show/mere+proposition">mere proposition</a>.</p> </div> </p> <p> <div class='proof'> <h6>Proof</h6> <p>Suppose we are given <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>η</mi><mo>,</mo><mi>ϵ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(G, \eta, \epsilon)</annotation></semantics></math> with the triangle identities and also <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>G</mi><mo>′</mo><mo>,</mo><mi>η</mi><mo>′</mo><mo>,</mo><mi>ϵ</mi><mo>′</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(G', \eta', \epsilon')</annotation></semantics></math>. Define <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>γ</mi><mo>:</mo><mi>G</mi><mo>→</mo><mi>G</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">\gamma: G \to G'</annotation></semantics></math> to be <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>G</mi><mo>′</mo><mi>ϵ</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>η</mi><mi>G</mi><mo>′</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(G' \epsilon )(\eta G')</annotation></semantics></math>. Then</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable displaystyle="true" columnalign="right left right left right left right left right left" columnspacing="0em"><mtr><mtd><mi>δ</mi><mi>γ</mi></mtd> <mtd><mo>=</mo><mo stretchy="false">(</mo><mi>G</mi><mi>ϵ</mi><mo>′</mo><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>η</mi><mi>G</mi><mo>′</mo><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>G</mi><mo>′</mo><mi>ϵ</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>η</mi><mo>′</mo><mi>G</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><mo stretchy="false">(</mo><mi>G</mi><mi>ϵ</mi><mo>′</mo><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>G</mi><mi>F</mi><mi>G</mi><mo>′</mo><msub><mi>ϵ</mi> <mo stretchy="false">)</mo></msub><mo stretchy="false">)</mo><mi>η</mi><mi>G</mi><mo>′</mo><mi>F</mi><mi>G</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>η</mi><mo>′</mo><mi>G</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><mo stretchy="false">(</mo><mi>G</mi><mi>ϵ</mi><mo>′</mo><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>G</mi><mi>ϵ</mi><mo>′</mo><mi>F</mi><mi>G</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>G</mi><mi>F</mi><mi>η</mi><mo>′</mo><mi>G</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>η</mi><mi>G</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><mo stretchy="false">(</mo><mi>G</mi><mi>ϵ</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>η</mi><mi>G</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><msub><mn>1</mn> <mi>G</mi></msub></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \begin{aligned} \delta \gamma &= (G \epsilon')(\eta G')(G' \epsilon) (\eta' G)\\ &= (G \epsilon')(G F G' \epsilon_))\eta G' F G)(\eta' G)\\ &= (G \epsilon ')(G \epsilon' F G)(G F \eta' G)(\eta G)\\ &= (G \epsilon)(\eta G)\\ &= 1_G \end{aligned} </annotation></semantics></math></div> <p>using Lemma 9.2.8 (see <a class="existingWikiWord" href="/nlab/show/natural+transformation">natural transformation</a>) and the triangle identities. Similarly, we show <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>γ</mi><mi>δ</mi><mo>=</mo><msub><mn>1</mn> <mrow><mi>G</mi><mo>′</mo></mrow></msub></mrow><annotation encoding="application/x-tex">\gamma \delta=1_{G'}</annotation></semantics></math>, so <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>γ</mi></mrow><annotation encoding="application/x-tex">\gamma</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/natural+isomorphism">natural isomorphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo>≅</mo><mi>G</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">G \cong G'</annotation></semantics></math>. By Theorem 9.2.5 (see <a class="existingWikiWord" href="/nlab/show/functor+category">functor category</a>), we have an <a class="existingWikiWord" href="/nlab/show/identity">identity</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo>=</mo><mi>G</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">G=G'</annotation></semantics></math>.</p> <p>Now we need to know that when <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>η</mi></mrow><annotation encoding="application/x-tex">\eta</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϵ</mi></mrow><annotation encoding="application/x-tex">\epsilon</annotation></semantics></math> are <span class="newWikiWord">transported<a href="/nlab/new/transported">?</a></span> along this <a class="existingWikiWord" href="/nlab/show/identity">identity</a>, they become equal to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>η</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">\eta'</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϵ</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">\epsilon '</annotation></semantics></math>. By Lemma 9.1.9,</p> <div class="query"> <p>Lemma 9.1.9 needs to be included. For now as transports are not yet written up I didn’t bother including a reference to the page <a class="existingWikiWord" href="/nlab/show/category">category</a>. -Ali</p> </div> <p>this <a class="existingWikiWord" href="/nlab/show/transport">transport</a> is given by composing with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>γ</mi></mrow><annotation encoding="application/x-tex">\gamma</annotation></semantics></math> or <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>δ</mi></mrow><annotation encoding="application/x-tex">\delta</annotation></semantics></math> as appropriate. For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>η</mi></mrow><annotation encoding="application/x-tex">\eta</annotation></semantics></math>, this yields</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>G</mi><mo>′</mo><mi>ϵ</mi><mi>F</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>η</mi><mo>′</mo><mi>G</mi><mi>F</mi><mo stretchy="false">)</mo><mi>η</mi><mo>=</mo><mo stretchy="false">(</mo><mi>G</mi><mo>′</mo><mi>ϵ</mi><mi>F</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>G</mi><mo>′</mo><mi>F</mi><mi>η</mi><mo stretchy="false">)</mo><mi>η</mi><mo>′</mo><mo>=</mo><mi>η</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">(G' \epsilon F)(\eta' G F)\eta = (G' \epsilon F)(G' F \eta)\eta'=\eta'</annotation></semantics></math></div> <p>using Lemma 9.2.8 (see <a class="existingWikiWord" href="/nlab/show/natural+transformation">natural transformation</a>) and the traingle identity. The case of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϵ</mi></mrow><annotation encoding="application/x-tex">\epsilon</annotation></semantics></math> is similar. FInally, the triangle identities transport correctly automatically, since hom-sets are sets.</p> </div> </p> <p><h2 id='section_Examples'>Examples</h2></p> <ul> <li>The left adjoint of the <a class="existingWikiWord" href="/nlab/show/nerve+functor">nerve functor</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>N</mi><mo>:</mo><mstyle mathvariant="sans-serif"><mi>Grpd</mi></mstyle><mo>→</mo><msup><mstyle mathvariant="sans-serif"><mi>Set</mi></mstyle> <mrow><msup><mi>Δ</mi> <mi>op</mi></msup></mrow></msup></mrow><annotation encoding="application/x-tex">N: \mathsf{Grpd} \to \mathsf{Set}^{\Delta^{op}}</annotation></semantics></math> from the <a class="existingWikiWord" href="/nlab/show/category+of+groupoids">category of groupoids</a> to the <a class="existingWikiWord" href="/nlab/show/category+of+simplicial+sets">category of simplicial sets</a> is the <a class="existingWikiWord" href="/nlab/show/fundamental+groupoid">fundamental groupoid</a> functor.</li> </ul> <h2 id="related_entries">Related entries</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/Galois+connection">Galois connection</a> for more on left adjoints of monotone functions.</li> <li><a class="existingWikiWord" href="/nlab/show/adjoint+functor">adjoint functor</a> for more on left adjoints of functors.</li> <li><a class="existingWikiWord" href="/nlab/show/adjunction">adjunction</a> for more on left adjoints in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn></mrow><annotation encoding="application/x-tex">2</annotation></semantics></math>-categories.</li> <li><a class="existingWikiWord" href="/nlab/show/examples+of+adjoint+functors">examples of adjoint functors</a> for examples.</li> <li><a class="existingWikiWord" href="/nlab/show/pro-left+adjoint">pro-left adjoint</a></li> <li><a class="existingWikiWord" href="/nlab/show/2-adjunction">2-adjunction</a> for a categorified notion of adjunction.</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on June 9, 2022 at 08:21:49. See the <a href="/nlab/history/left+adjoint" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/left+adjoint" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/12367/#Item_8">Discuss</a><span class="backintime"><a href="/nlab/revision/left+adjoint/21" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/left+adjoint" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/left+adjoint" accesskey="S" class="navlink" id="history" rel="nofollow">History (21 revisions)</a> <a href="/nlab/show/left+adjoint/cite" style="color: black">Cite</a> <a href="/nlab/print/left+adjoint" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/left+adjoint" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>