CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 57 results for author: <span class="mathjax">Akutsu, T</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/gr-qc" aria-role="search"> Searching in archive <strong>gr-qc</strong>. <a href="/search/?searchtype=author&amp;query=Akutsu%2C+T">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Akutsu, T"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Akutsu%2C+T&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Akutsu, T"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Akutsu%2C+T&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Akutsu%2C+T&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Akutsu%2C+T&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12867">arXiv:2407.12867</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.12867">pdf</a>, <a href="https://arxiv.org/format/2407.12867">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Swift-BAT GUANO follow-up of gravitational-wave triggers in the third LIGO-Virgo-KAGRA observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=Raman%2C+G">Gayathri Raman</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ronchini%2C+S">Samuele Ronchini</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Delaunay%2C+J">James Delaunay</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Tohuvavohu%2C+A">Aaron Tohuvavohu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Kennea%2C+J+A">Jamie A. Kennea</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Parsotan%2C+T">Tyler Parsotan</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ambrosi%2C+E">Elena Ambrosi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bernardini%2C+M+G">Maria Grazia Bernardini</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Campana%2C+S">Sergio Campana</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Cusumano%2C+G">Giancarlo Cusumano</a>, <a href="/search/gr-qc?searchtype=author&amp;query=D%27Ai%2C+A">Antonino D&#39;Ai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=D%27Avanzo%2C+P">Paolo D&#39;Avanzo</a>, <a href="/search/gr-qc?searchtype=author&amp;query=D%27Elia%2C+V">Valerio D&#39;Elia</a>, <a href="/search/gr-qc?searchtype=author&amp;query=De+Pasquale%2C+M">Massimiliano De Pasquale</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Dichiara%2C+S">Simone Dichiara</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Evans%2C+P">Phil Evans</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Hartmann%2C+D">Dieter Hartmann</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Kuin%2C+P">Paul Kuin</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Melandri%2C+A">Andrea Melandri</a>, <a href="/search/gr-qc?searchtype=author&amp;query=O%27Brien%2C+P">Paul O&#39;Brien</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Osborne%2C+J+P">Julian P. Osborne</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Page%2C+K">Kim Page</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Palmer%2C+D+M">David M. Palmer</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Sbarufatti%2C+B">Boris Sbarufatti</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Tagliaferri%2C+G">Gianpiero Tagliaferri</a> , et al. (1797 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12867v1-abstract-short" style="display: inline;"> We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO-Virgo-KAGRA (LVK) network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received in low latency, 86 of which have been confirmed by the offline analysis and included in the third cumulative Gravitational-Wav&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12867v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12867v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12867v1-abstract-full" style="display: none;"> We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO-Virgo-KAGRA (LVK) network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received in low latency, 86 of which have been confirmed by the offline analysis and included in the third cumulative Gravitational-Wave Transient Catalogs (GWTC-3). Targeted searches were carried out on the entire GW sample using the maximum--likelihood NITRATES pipeline on the BAT data made available via the GUANO infrastructure. We do not detect any significant electromagnetic emission that is temporally and spatially coincident with any of the GW candidates. We report flux upper limits in the 15-350 keV band as a function of sky position for all the catalog candidates. For GW candidates where the Swift-BAT false alarm rate is less than 10$^{-3}$ Hz, we compute the GW--BAT joint false alarm rate. Finally, the derived Swift-BAT upper limits are used to infer constraints on the putative electromagnetic emission associated with binary black hole mergers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12867v1-abstract-full').style.display = 'none'; document.getElementById('2407.12867v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">50 pages, 10 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.04248">arXiv:2404.04248</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.04248">pdf</a>, <a href="https://arxiv.org/format/2404.04248">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ad5beb">10.3847/2041-8213/ad5beb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Gravitational Waves from the Coalescence of a $2.5\text{-}4.5~M_\odot$ Compact Object and a Neutron Star </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abac%2C+A+G">A. G. Abac</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abchouyeh%2C+M+A">M. Aghaei Abchouyeh</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguilar%2C+I">I. Aguilar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ak%C3%A7ay%2C+S">S. Ak莽ay</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Al-Jodah%2C+A">A. Al-Jodah</a> , et al. (1771 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.04248v3-abstract-short" style="display: inline;"> We report the observation of a coalescing compact binary with component masses $2.5\text{-}4.5~M_\odot$ and $1.2\text{-}2.0~M_\odot$ (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO-Virgo-KAGRA detector network on 2023 May 29 by the LIGO Livingston Observatory. The primary component of the so&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04248v3-abstract-full').style.display = 'inline'; document.getElementById('2404.04248v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.04248v3-abstract-full" style="display: none;"> We report the observation of a coalescing compact binary with component masses $2.5\text{-}4.5~M_\odot$ and $1.2\text{-}2.0~M_\odot$ (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO-Virgo-KAGRA detector network on 2023 May 29 by the LIGO Livingston Observatory. The primary component of the source has a mass less than $5~M_\odot$ at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We provisionally estimate a merger rate density of $55^{+127}_{-47}~\text{Gpc}^{-3}\,\text{yr}^{-1}$ for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star-black hole merger, GW230529_181500-like sources constitute about 60% of the total merger rate inferred for neutron star-black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star-black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04248v3-abstract-full').style.display = 'none'; document.getElementById('2404.04248v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages (10 pages author list, 13 pages main text, 1 page acknowledgements, 13 pages appendices, 8 pages bibliography), 17 figures, 16 tables. Update to match version published in The Astrophysical Journal Letters. Data products available from https://zenodo.org/records/10845779</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2300352 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJL 970, L34 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03004">arXiv:2403.03004</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.03004">pdf</a>, <a href="https://arxiv.org/format/2403.03004">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultralight vector dark matter search using data from the KAGRA O3GK run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abac%2C+A+G">A. G. Abac</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abe%2C+H">H. Abe</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adamcewicz%2C+C">C. Adamcewicz</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguilar%2C+I">I. Aguilar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a> , et al. (1778 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03004v1-abstract-short" style="display: inline;"> Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we prese&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03004v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03004v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03004v1-abstract-full" style="display: none;"> Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for $U(1)_{B-L}$ gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the $U(1)_{B-L}$ gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03004v1-abstract-full').style.display = 'none'; document.getElementById('2403.03004v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2300250 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.08393">arXiv:2304.08393</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.08393">pdf</a>, <a href="https://arxiv.org/format/2304.08393">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abe%2C+H">H. Abe</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=All%C3%A9n%C3%A9%2C+C">C. All茅n茅</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a> , et al. (1670 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.08393v1-abstract-short" style="display: inline;"> Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08393v1-abstract-full').style.display = 'inline'; document.getElementById('2304.08393v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.08393v1-abstract-full" style="display: none;"> Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08393v1-abstract-full').style.display = 'none'; document.getElementById('2304.08393v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2200031 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.03676">arXiv:2302.03676</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.03676">pdf</a>, <a href="https://arxiv.org/format/2302.03676">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/acdc9f">10.3847/1538-4365/acdc9f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Open data from the third observing run of LIGO, Virgo, KAGRA and GEO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abe%2C+H">H. Abe</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Al-Jodah%2C+A">A. Al-Jodah</a>, <a href="/search/gr-qc?searchtype=author&amp;query=All%C3%A9n%C3%A9%2C+C">C. All茅n茅</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a> , et al. (1719 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.03676v1-abstract-short" style="display: inline;"> The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five months, and O3GK starting in April of 2020 and lasti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.03676v1-abstract-full').style.display = 'inline'; document.getElementById('2302.03676v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.03676v1-abstract-full" style="display: none;"> The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five months, and O3GK starting in April of 2020 and lasting 2 weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main dataset, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.03676v1-abstract-full').style.display = 'none'; document.getElementById('2302.03676v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2200316 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.11561">arXiv:2301.11561</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.11561">pdf</a>, <a href="https://arxiv.org/format/2301.11561">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.084029">10.1103/PhysRevD.107.084029 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Control Scheme for Polarization Circulation Speed Meter Using a Dual-Retardation Waveplate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=Nishino%2C+Y">Yohei Nishino</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">Tomotada Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aso%2C+Y">Yoichi Aso</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Tomaru%2C+T">Takayuki Tomaru</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.11561v3-abstract-short" style="display: inline;"> In interferometric gravitational wave detectors, quantum radiation pressure noise, which is a back action of the measurement, will limit their sensitivities at low frequencies. Speed meters are one of the solutions to reduce the back action noise and improve the sensitivities, and furthermore, they can surpass the standard quantum limit over a wide range of frequencies. The Polarization Circulatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.11561v3-abstract-full').style.display = 'inline'; document.getElementById('2301.11561v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.11561v3-abstract-full" style="display: none;"> In interferometric gravitational wave detectors, quantum radiation pressure noise, which is a back action of the measurement, will limit their sensitivities at low frequencies. Speed meters are one of the solutions to reduce the back action noise and improve the sensitivities, and furthermore, they can surpass the standard quantum limit over a wide range of frequencies. The Polarization Circulation Speed Meter is the latest incarnation of the speed meter concept in the sense that it requires a slight modification in the conventional interferometer designs; however, its control scheme has not been developed. The main difficulty is the length and alignment control of the cavity formed by the polarization circulation mirror and the input test masses, whose round-trip phase shift should be kept to $蟺$. In this article, we propose a new control scheme using a dual-retardation waveplate, called Dual-Retardance Control (DRC). In addition, we compare the shot noise level of the DRC to another simpler scheme by dithering. Finally, we design the experimental setup for the demonstration of the DRC and show the expected results through the transfer function measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.11561v3-abstract-full').style.display = 'none'; document.getElementById('2301.11561v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.05934">arXiv:2210.05934</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.05934">pdf</a>, <a href="https://arxiv.org/format/2210.05934">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Input optics systems of the KAGRA detector during O3GK </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ando%2C+M">M. Ando</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Arai%2C+K">K. Arai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Arai%2C+Y">Y. Arai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Araki%2C+S">S. Araki</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Araya%2C+A">A. Araya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aritomi%2C+N">N. Aritomi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Asada%2C+H">H. Asada</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aso%2C+Y">Y. Aso</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bae%2C+S">S. Bae</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bae%2C+Y">Y. Bae</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Baiotti%2C+L">L. Baiotti</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bajpai%2C+R">R. Bajpai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Barton%2C+M+A">M. A. Barton</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Cannon%2C+K">K. Cannon</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Cao%2C+Z">Z. Cao</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Capocasa%2C+E">E. Capocasa</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chan%2C+M">M. Chan</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+C">C. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+K">K. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chiang%2C+C">C-I. Chiang</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chu%2C+H">H. Chu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chu%2C+Y">Y-K. Chu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Eguchi%2C+S">S. Eguchi</a> , et al. (228 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.05934v1-abstract-short" style="display: inline;"> KAGRA, the underground and cryogenic gravitational-wave detector, was operated for its solo observation from February 25th to March 10th, 2020, and its first joint observation with the GEO 600 detector from April 7th -- 21st, 2020 (O3GK). This study presents an overview of the input optics systems of the KAGRA detector, which consist of various optical systems, such as a laser source, its intensit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05934v1-abstract-full').style.display = 'inline'; document.getElementById('2210.05934v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.05934v1-abstract-full" style="display: none;"> KAGRA, the underground and cryogenic gravitational-wave detector, was operated for its solo observation from February 25th to March 10th, 2020, and its first joint observation with the GEO 600 detector from April 7th -- 21st, 2020 (O3GK). This study presents an overview of the input optics systems of the KAGRA detector, which consist of various optical systems, such as a laser source, its intensity and frequency stabilization systems, modulators, a Faraday isolator, mode-matching telescopes, and a high-power beam dump. These optics were successfully delivered to the KAGRA interferometer and operated stably during the observations. The laser frequency noise was observed to limit the detector sensitivity above a few kHz, whereas the laser intensity did not significantly limit the detector sensitivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05934v1-abstract-full').style.display = 'none'; document.getElementById('2210.05934v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.02863">arXiv:2209.02863</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.02863">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/aca1b0">10.3847/2041-8213/aca1b0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abe%2C+H">H. Abe</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=All%C3%A9n%C3%A9%2C+C">C. All茅n茅</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a> , et al. (1670 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.02863v2-abstract-short" style="display: inline;"> We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO, Advanced Virgo and KAGRA. This is a semicoherent search which uses details of the signal model to coherently combine data separated by less than a specified coherence time, which can be adjusted to bala&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02863v2-abstract-full').style.display = 'inline'; document.getElementById('2209.02863v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.02863v2-abstract-full" style="display: none;"> We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO, Advanced Virgo and KAGRA. This is a semicoherent search which uses details of the signal model to coherently combine data separated by less than a specified coherence time, which can be adjusted to balance sensitivity with computing cost. The search covered a range of gravitational-wave frequencies from 25Hz to 1600Hz, as well as ranges in orbital speed, frequency and phase determined from observational constraints. No significant detection candidates were found, and upper limits were set as a function of frequency. The most stringent limits, between 100Hz and 200Hz, correspond to an amplitude h0 of about 1e-25 when marginalized isotropically over the unknown inclination angle of the neutron star&#39;s rotation axis, or less than 4e-26 assuming the optimal orientation. The sensitivity of this search is now probing amplitudes predicted by models of torque balance equilibrium. For the usual conservative model assuming accretion at the surface of the neutron star, our isotropically-marginalized upper limits are close to the predicted amplitude from about 70Hz to 100Hz; the limits assuming the neutron star spin is aligned with the most likely orbital angular momentum are below the conservative torque balance predictions from 40Hz to 200Hz. Assuming a broader range of accretion models, our direct limits on gravitational-wave amplitude delve into the relevant parameter space over a wide range of frequencies, to 500Hz or more. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02863v2-abstract-full').style.display = 'none'; document.getElementById('2209.02863v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, Open Access Journal PDF</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100110-v13 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal Letters, 941, L30 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.05785">arXiv:2206.05785</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.05785">pdf</a>, <a href="https://arxiv.org/format/2206.05785">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Noise subtraction from KAGRA O3GK data using Independent Component Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=KAGRA+collaboration"> KAGRA collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abe%2C+H">H. Abe</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ando%2C+M">M. Ando</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Araya%2C+A">A. Araya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aritomi%2C+N">N. Aritomi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Asada%2C+H">H. Asada</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aso%2C+Y">Y. Aso</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bae%2C+S">S. Bae</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bae%2C+Y">Y. Bae</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bajpai%2C+R">R. Bajpai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Cannon%2C+K">K. Cannon</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Cao%2C+Z">Z. Cao</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Capocasa%2C+E">E. Capocasa</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chan%2C+M">M. Chan</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+C">C. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+D">D. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+K">K. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chiang%2C+C">C-Y. Chiang</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chu%2C+Y">Y-K. Chu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Eguchi%2C+S">S. Eguchi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Eisenmann%2C+M">M. Eisenmann</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Enomoto%2C+Y">Y. Enomoto</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Flaminio%2C+R">R. Flaminio</a> , et al. (178 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.05785v1-abstract-short" style="display: inline;"> In April 2020, KAGRA conducted its first science observation in combination with the GEO~600 detector (O3GK) for two weeks. According to the noise budget estimation, suspension control noise in the low frequency band and acoustic noise in the middle frequency band are identified as the dominant contribution. In this study, we show that such noise can be reduced in offline data analysis by utilizin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05785v1-abstract-full').style.display = 'inline'; document.getElementById('2206.05785v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.05785v1-abstract-full" style="display: none;"> In April 2020, KAGRA conducted its first science observation in combination with the GEO~600 detector (O3GK) for two weeks. According to the noise budget estimation, suspension control noise in the low frequency band and acoustic noise in the middle frequency band are identified as the dominant contribution. In this study, we show that such noise can be reduced in offline data analysis by utilizing a method called Independent Component Analysis (ICA). Here the ICA model is extended from the one studied in iKAGRA data analysis by incorporating frequency dependence while linearity and stationarity of the couplings are still assumed. By using optimal witness sensors, those two dominant contributions are mitigated in the real observational data. We also analyze the stability of the transfer functions for whole two weeks data in order to investigate how the current subtraction method can be practically used in gravitational wave search. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05785v1-abstract-full').style.display = 'none'; document.getElementById('2206.05785v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JGW-P2214018, RESCEU-5/22 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.04523">arXiv:2204.04523</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.04523">pdf</a>, <a href="https://arxiv.org/format/2204.04523">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.042003">10.1103/PhysRevD.106.042003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO--Virgo data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abe%2C+H">H. Abe</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a> , et al. (1645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.04523v1-abstract-short" style="display: inline;"> We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs. In this search, data from the full O3 LIGO--Virgo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04523v1-abstract-full').style.display = 'inline'; document.getElementById('2204.04523v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.04523v1-abstract-full" style="display: none;"> We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs. In this search, data from the full O3 LIGO--Virgo run in the detector frequency band $[10,2000]\rm~Hz$ have been used. No significant detection was found and 95$\%$ confidence level upper limits on the signal strain amplitude were computed, over the full search band, with the deepest limit of about $7.6\times 10^{-26}$ at $\simeq 142\rm~Hz$. These results are significantly more constraining than those reported in previous searches. We use these limits to put constraints on the fiducial neutron star ellipticity and r-mode amplitude. These limits can be also translated into constraints in the black hole mass -- boson mass plane for a hypothetical population of boson clouds around spinning black holes located in the GC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04523v1-abstract-full').style.display = 'none'; document.getElementById('2204.04523v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07011">arXiv:2203.07011</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.07011">pdf</a>, <a href="https://arxiv.org/format/2203.07011">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/ptep/ptac093">10.1093/ptep/ptac093 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Performance of the KAGRA detector during the first joint observation with GEO 600 (O3GK) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=KAGRA+Collaboration"> KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abe%2C+H">H. Abe</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ando%2C+M">M. Ando</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Araya%2C+A">A. Araya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aritomi%2C+N">N. Aritomi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Asada%2C+H">H. Asada</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aso%2C+Y">Y. Aso</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bae%2C+S">S. Bae</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bae%2C+Y">Y. Bae</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bajpai%2C+R">R. Bajpai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ballmer%2C+S+W">S. W. Ballmer</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Cannon%2C+K">K. Cannon</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Cao%2C+Z">Z. Cao</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Capocasa%2C+E">E. Capocasa</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chan%2C+M">M. Chan</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+C">C. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+D">D. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+K">K. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chiang%2C+C">C-Y. Chiang</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chu%2C+Y">Y-K. Chu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Driggers%2C+J+C">J. C. Driggers</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Dwyer%2C+S+E">S. E. Dwyer</a> , et al. (193 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07011v1-abstract-short" style="display: inline;"> KAGRA, the kilometer-scale underground gravitational-wave detector, is located at Kamioka, Japan. In April 2020, an astrophysics observation was performed at the KAGRA detector in combination with the GEO 600 detector; this observation operation is called O3GK. The optical configuration in O3GK is based on a power recycled Fabry-P茅rot Michelson interferometer; all the mirrors were set at room temp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07011v1-abstract-full').style.display = 'inline'; document.getElementById('2203.07011v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07011v1-abstract-full" style="display: none;"> KAGRA, the kilometer-scale underground gravitational-wave detector, is located at Kamioka, Japan. In April 2020, an astrophysics observation was performed at the KAGRA detector in combination with the GEO 600 detector; this observation operation is called O3GK. The optical configuration in O3GK is based on a power recycled Fabry-P茅rot Michelson interferometer; all the mirrors were set at room temperature. The duty factor of the operation was approximately 53%, and the strain sensitivity was $3\times10^{-22}~/\sqrt{\rm{Hz}}$ at 250 Hz. In addition, the binary-neutron-star (BNS) inspiral range was approximately 0.6 Mpc. The contributions of various noise sources to the sensitivity of O3GK were investigated to understand how the observation range could be improved; this study is called a &#34;noise budget&#34;. According to our noise budget, the measured sensitivity could be approximated by adding up the effect of each noise. The sensitivity was dominated by noise from the sensors used for local controls of the vibration isolation systems, acoustic noise, shot noise, and laser frequency noise. Further, other noise sources that did not limit the sensitivity were investigated. This paper provides a detailed account of the KAGRA detector in O3GK including interferometer configuration, status, and noise budget. In addition, strategies for future sensitivity improvements such as hardware upgrades, are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07011v1-abstract-full').style.display = 'none'; document.getElementById('2203.07011v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JGW-P2113405 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.01270">arXiv:2203.01270</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.01270">pdf</a>, <a href="https://arxiv.org/format/2203.01270">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/ptep/ptac073">10.1093/ptep/ptac073 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First joint observation by the underground gravitational-wave detector, KAGRA, with GEO600 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abe%2C+H">H. Abe</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a> , et al. (1647 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.01270v2-abstract-short" style="display: inline;"> We report the results of the first joint observation of the KAGRA detector with GEO600. KAGRA is a cryogenic and underground gravitational-wave detector consisting of a laser interferometer with three-kilometer arms, and located in Kamioka, Gifu, Japan. GEO600 is a British--German laser interferometer with 600 m arms, and located near Hannover, Germany. GEO600 and KAGRA performed a joint observing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.01270v2-abstract-full').style.display = 'inline'; document.getElementById('2203.01270v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.01270v2-abstract-full" style="display: none;"> We report the results of the first joint observation of the KAGRA detector with GEO600. KAGRA is a cryogenic and underground gravitational-wave detector consisting of a laser interferometer with three-kilometer arms, and located in Kamioka, Gifu, Japan. GEO600 is a British--German laser interferometer with 600 m arms, and located near Hannover, Germany. GEO600 and KAGRA performed a joint observing run from April 7 to 20, 2020. We present the results of the joint analysis of the GEO--KAGRA data for transient gravitational-wave signals, including the coalescence of neutron-star binaries and generic unmodeled transients. We also perform dedicated searches for binary coalescence signals and generic transients associated with gamma-ray burst events observed during the joint run. No gravitational-wave events were identified. We evaluate the minimum detectable amplitude for various types of transient signals and the spacetime volume for which the network is sensitive to binary neutron-star coalescences. We also place lower limits on the distances to the gamma-ray bursts analysed based on the non-detection of an associated gravitational-wave signal for several signal models, including binary coalescences. These analyses demonstrate the feasibility and utility of KAGRA as a member of the global gravitational-wave detector network. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.01270v2-abstract-full').style.display = 'none'; document.getElementById('2203.01270v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Matches with published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100286 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Progress of Theoretical and Experimental Physics, Volume 2022, Issue 6, 063F01 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.10104">arXiv:2201.10104</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.10104">pdf</a>, <a href="https://arxiv.org/format/2201.10104">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.062002">10.1103/PhysRevD.106.062002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abe%2C+H">H. Abe</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a> , et al. (1647 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.10104v1-abstract-short" style="display: inline;"> Results are presented for a semi-coherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using a hidden Markov model (HMM) to allow for spin wandering. This search improves on previous HMM-based searches of Laser Interferometer Gravitational-wave Observatory (LIGO) data by including the orbital period in the search template grid, and by analyzing data from t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10104v1-abstract-full').style.display = 'inline'; document.getElementById('2201.10104v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.10104v1-abstract-full" style="display: none;"> Results are presented for a semi-coherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using a hidden Markov model (HMM) to allow for spin wandering. This search improves on previous HMM-based searches of Laser Interferometer Gravitational-wave Observatory (LIGO) data by including the orbital period in the search template grid, and by analyzing data from the latest (third) observing run (O3). In the frequency range searched, from 60 to 500 Hz, we find no evidence of gravitational radiation. This is the most sensitive search for Scorpius X-1 using a HMM to date. For the most sensitive sub-band, starting at $256.06$Hz, we report an upper limit on gravitational wave strain (at $95 \%$ confidence) of $h_{0}^{95\%}=6.16\times10^{-26}$, assuming the orbital inclination angle takes its electromagnetically restricted value $喂=44^{\circ}$. The upper limits on gravitational wave strain reported here are on average a factor of $\sim 3$ lower than in the O2 HMM search. This is the first Scorpius X-1 HMM search with upper limits that reach below the indirect torque-balance limit for certain sub-bands, assuming $喂=44^{\circ}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10104v1-abstract-full').style.display = 'none'; document.getElementById('2201.10104v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100405 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.00697">arXiv:2201.00697</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.00697">pdf</a>, <a href="https://arxiv.org/format/2201.00697">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.102008">10.1103/PhysRevD.106.102008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abe%2C+H">H. Abe</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a> , et al. (1645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.00697v1-abstract-short" style="display: inline;"> We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band from 10 to 2048 Hz and a first frequency derivativ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.00697v1-abstract-full').style.display = 'inline'; document.getElementById('2201.00697v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.00697v1-abstract-full" style="display: none;"> We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band from 10 to 2048 Hz and a first frequency derivative from $-10^{-8}$ to $10^{-9}$ Hz/s. No statistically-significant periodic gravitational-wave signal is observed by any of the four searches. As a result, upper limits on the gravitational-wave strain amplitude $h_0$ are calculated. The best upper limits are obtained in the frequency range of 100 to 200 Hz and they are ${\sim}1.1\times10^{-25}$ at 95\% confidence-level. The minimum upper limit of $1.10\times10^{-25}$ is achieved at a frequency 111.5 Hz. We also place constraints on the rates and abundances of nearby planetary- and asteroid-mass primordial black holes that could give rise to continuous gravitational-wave signals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.00697v1-abstract-full').style.display = 'none'; document.getElementById('2201.00697v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 main text pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100367 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.10990">arXiv:2112.10990</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.10990">pdf</a>, <a href="https://arxiv.org/format/2112.10990">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac6ad0">10.3847/1538-4357/ac6ad0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Narrowband searches for continuous and long-duration transient gravitational waves from known pulsars in the LIGO-Virgo third observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Amato%2C+A">A. Amato</a> , et al. (1636 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.10990v2-abstract-short" style="display: inline;"> Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully-coherent search for such signals from eighteen pulsars in data from LIGO and Virgo&#39;s third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10990v2-abstract-full').style.display = 'inline'; document.getElementById('2112.10990v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.10990v2-abstract-full" style="display: none;"> Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully-coherent search for such signals from eighteen pulsars in data from LIGO and Virgo&#39;s third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow the frequency and frequency time-derivative of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10990v2-abstract-full').style.display = 'none'; document.getElementById('2112.10990v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 9 figures, submitted to ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100267 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ, 932, 133 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.06861">arXiv:2112.06861</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.06861">pdf</a>, <a href="https://arxiv.org/format/2112.06861">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Tests of General Relativity with GWTC-3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abe%2C+H">H. Abe</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=de+Alarc%C3%B3n%2C+P+F">P. F. de Alarc贸n</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a> , et al. (1657 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.06861v1-abstract-short" style="display: inline;"> The ever-increasing number of detections of gravitational waves (GWs) from compact binaries by the Advanced LIGO and Advanced Virgo detectors allows us to perform ever-more sensitive tests of general relativity (GR) in the dynamical and strong-field regime of gravity. We perform a suite of tests of GR using the compact binary signals observed during the second half of the third observing run of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06861v1-abstract-full').style.display = 'inline'; document.getElementById('2112.06861v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.06861v1-abstract-full" style="display: none;"> The ever-increasing number of detections of gravitational waves (GWs) from compact binaries by the Advanced LIGO and Advanced Virgo detectors allows us to perform ever-more sensitive tests of general relativity (GR) in the dynamical and strong-field regime of gravity. We perform a suite of tests of GR using the compact binary signals observed during the second half of the third observing run of those detectors. We restrict our analysis to the 15 confident signals that have false alarm rates $\leq 10^{-3}\, {\rm yr}^{-1}$. In addition to signals consistent with binary black hole (BH) mergers, the new events include GW200115_042309, a signal consistent with a neutron star--BH merger. We find the residual power, after subtracting the best fit waveform from the data for each event, to be consistent with the detector noise. Additionally, we find all the post-Newtonian deformation coefficients to be consistent with the predictions from GR, with an improvement by a factor of ~2 in the -1PN parameter. We also find that the spin-induced quadrupole moments of the binary BH constituents are consistent with those of Kerr BHs in GR. We find no evidence for dispersion of GWs, non-GR modes of polarization, or post-merger echoes in the events that were analyzed. We update the bound on the mass of the graviton, at 90% credibility, to $m_g \leq 1.27 \times 10^{-23} \mathrm{eV}/c^2$. The final mass and final spin as inferred from the pre-merger and post-merger parts of the waveform are consistent with each other. The studies of the properties of the remnant BHs, including deviations of the quasi-normal mode frequencies and damping times, show consistency with the predictions of GR. In addition to considering signals individually, we also combine results from the catalog of GW signals to calculate more precise population constraints. We find no evidence in support of physics beyond GR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06861v1-abstract-full').style.display = 'none'; document.getElementById('2112.06861v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100275 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.13106">arXiv:2111.13106</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.13106">pdf</a>, <a href="https://arxiv.org/format/2111.13106">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac6acf">10.3847/1538-4357/ac6acf <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Searches for Gravitational Waves from Known Pulsars at Two Harmonics in the Second and Third LIGO-Virgo Observing Runs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abe%2C+H">H. Abe</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a> , et al. (1672 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.13106v2-abstract-short" style="display: inline;"> We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the $l=m=2$ mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic) and the $l=2, m=1,2$ modes with a frequency of both&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.13106v2-abstract-full').style.display = 'inline'; document.getElementById('2111.13106v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.13106v2-abstract-full" style="display: none;"> We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the $l=m=2$ mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic) and the $l=2, m=1,2$ modes with a frequency of both once and twice the rotation frequency (dual harmonic). No evidence of GWs was found so we present 95\% credible upper limits on the strain amplitudes $h_0$ for the single harmonic search along with limits on the pulsars&#39; mass quadrupole moments $Q_{22}$ and ellipticities $\varepsilon$. Of the pulsars studied, 23 have strain amplitudes that are lower than the limits calculated from their electromagnetically measured spin-down rates. These pulsars include the millisecond pulsars J0437\textminus4715 and J0711\textminus6830 which have spin-down ratios of 0.87 and 0.57 respectively. For nine pulsars, their spin-down limits have been surpassed for the first time. For the Crab and Vela pulsars our limits are factors of $\sim 100$ and $\sim 20$ more constraining than their spin-down limits, respectively. For the dual harmonic searches, new limits are placed on the strain amplitudes $C_{21}$ and $C_{22}$. For 23 pulsars we also present limits on the emission amplitude assuming dipole radiation as predicted by Brans-Dicke theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.13106v2-abstract-full').style.display = 'none'; document.getElementById('2111.13106v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100049 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03634">arXiv:2111.03634</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.03634">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.13.011048">10.1103/PhysRevX.13.011048 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The population of merging compact binaries inferred using gravitational waves through GWTC-3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Amato%2C+A">A. Amato</a> , et al. (1612 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03634v5-abstract-short" style="display: inline;"> We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star-black hole mergers. We infer the binary neutron star mer&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03634v5-abstract-full').style.display = 'inline'; document.getElementById('2111.03634v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03634v5-abstract-full" style="display: none;"> We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star-black hole mergers. We infer the binary neutron star merger rate to be between 10 and 1700 Gpc$^{-3} yr$^{-1}$ and the neutron star-black hole merger rate to be between 7.8 and 140 Gpc$^{-3} yr$^{-1}$, assuming a constant rate density in the comoving frame and taking the union of 90% credible intervals for methods used in this work. We infer the binary black hole merger rate, allowing for evolution with redshift, to be between 17.9 and 44 Gpc$^{-3}$ yr$^{-1}$ at a fiducial redshift (z=0.2). The rate of binary black hole mergers is observed to increase with redshift at a rate proportional to $(1+z)^魏$ with $魏=2.9^{+1.7}_{-1.8}$ for $z\lesssim1$. Using both binary neutron star and neutron star-black hole binaries, we obtain a broad, relatively flat neutron star mass distribution extending from $1.2^{+0.1}_{-0.2}$ to $2.0^{+0.3}_{-0.3}\,M_\odot$. We confidently determine that the merger rate as a function of mass sharply declines after the expected maximum neutron star mass, but cannot yet confirm or rule out the existence of a lower mass gap between neutron stars and black holes. We also find the binary black hole mass distribution has localized over- and underdensities relative to a power-law distribution, with peaks emerging at chirp masses of $8.3^{+0.3}_{-0.5}$ and $27.9^{+1.9}_{-1.8}\,M_\odot$. While we continue to find that the mass distribution of a binary&#39;s more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above approximately $60\,M_\odot$ [abridged] <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03634v5-abstract-full').style.display = 'none'; document.getElementById('2111.03634v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2: minor edits, most to Table 1 and caption; v3: rerun with public data; Data release: https://zenodo.org/record/5655785; v4: update Fig 14; v5: updated to match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100239 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review X 13, 011048 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03608">arXiv:2111.03608</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.03608">pdf</a>, <a href="https://arxiv.org/format/2111.03608">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac532b">10.3847/1538-4357/ac532b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift During the LIGO-Virgo Run O3b </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Amato%2C+A">A. Amato</a> , et al. (1610 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03608v1-abstract-short" style="display: inline;"> We search for gravitational-wave signals associated with gamma-ray bursts detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (1 November 2019 15:00 UTC-27 March 2020 17:00 UTC).We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 gamma-ray bursts and an analysis to target bina&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03608v1-abstract-full').style.display = 'inline'; document.getElementById('2111.03608v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03608v1-abstract-full" style="display: none;"> We search for gravitational-wave signals associated with gamma-ray bursts detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (1 November 2019 15:00 UTC-27 March 2020 17:00 UTC).We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 gamma-ray bursts and an analysis to target binary mergers with at least one neutron star as short gamma-ray burst progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these gamma-ray bursts. A weighted binomial test of the combined results finds no evidence for sub-threshold gravitational wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each gamma-ray burst. Finally, we constrain the population of low luminosity short gamma-ray bursts using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03608v1-abstract-full').style.display = 'none'; document.getElementById('2111.03608v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 6 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> P2100091 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03606">arXiv:2111.03606</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.03606">pdf</a>, <a href="https://arxiv.org/format/2111.03606">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.13.041039">10.1103/PhysRevX.13.041039 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akcay%2C+S">S. Akcay</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a> , et al. (1637 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03606v3-abstract-short" style="display: inline;"> The third Gravitational-Wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during the second half of the third observing run (O3b) between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. There ar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03606v3-abstract-full').style.display = 'inline'; document.getElementById('2111.03606v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03606v3-abstract-full" style="display: none;"> The third Gravitational-Wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during the second half of the third observing run (O3b) between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. There are 35 compact binary coalescence candidates identified by at least one of our search algorithms with a probability of astrophysical origin $p_\mathrm{astro} &gt; 0.5$. Of these, 18 were previously reported as low-latency public alerts, and 17 are reported here for the first time. Based upon estimates for the component masses, our O3b candidates with $p_\mathrm{astro} &gt; 0.5$ are consistent with gravitational-wave signals from binary black holes or neutron star-black hole binaries, and we identify none from binary neutron stars. However, from the gravitational-wave data alone, we are not able to measure matter effects that distinguish whether the binary components are neutron stars or black holes. The range of inferred component masses is similar to that found with previous catalogs, but the O3b candidates include the first confident observations of neutron star-black hole binaries. Including the 35 candidates from O3b in addition to those from GWTC-2.1, GWTC-3 contains 90 candidates found by our analysis with $p_\mathrm{astro} &gt; 0.5$ across the first three observing runs. These observations of compact binary coalescences present an unprecedented view of the properties of black holes and neutron stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03606v3-abstract-full').style.display = 'none'; document.getElementById('2111.03606v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">88 pages (10 pages author list, 31 pages main text, 1 page acknowledgements, 24 pages appendices, 22 pages bibliography), 17 figures, 16 tables. Update to match version to be published in Physical Review X. Data products available from https://gwosc.org/GWTC-3/</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2000318 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X; 13(4):041039; 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03604">arXiv:2111.03604</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.03604">pdf</a>, <a href="https://arxiv.org/format/2111.03604">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac74bb">10.3847/1538-4357/ac74bb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraints on the cosmic expansion history from GWTC-3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abe%2C+H">H. Abe</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a> , et al. (1654 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03604v2-abstract-short" style="display: inline;"> We use 47 gravitational-wave sources from the Third LIGO-Virgo-KAGRA Gravitational-Wave Transient Catalog (GWTC-3) to estimate the Hubble parameter $H(z)$, including its current value, the Hubble constant $H_0$. Each gravitational-wave (GW) signal provides the luminosity distance to the source and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03604v2-abstract-full').style.display = 'inline'; document.getElementById('2111.03604v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03604v2-abstract-full" style="display: none;"> We use 47 gravitational-wave sources from the Third LIGO-Virgo-KAGRA Gravitational-Wave Transient Catalog (GWTC-3) to estimate the Hubble parameter $H(z)$, including its current value, the Hubble constant $H_0$. Each gravitational-wave (GW) signal provides the luminosity distance to the source and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and $H(z)$. The source mass distribution displays a peak around $34\, {\rm M_\odot}$, followed by a drop-off. Assuming this mass scale does not evolve with redshift results in a $H(z)$ measurement, yielding $H_0=68^{+12}_{-7} {\rm km\,s^{-1}\,Mpc^{-1}}$ ($68\%$ credible interval) when combined with the $H_0$ measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the $H_0$ estimate from GWTC-1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event&#39;s potential hosts. Assuming a fixed BBH population, we estimate a value of $H_0=68^{+8}_{-6} {\rm km\,s^{-1}\,Mpc^{-1}}$ with the galaxy catalog method, an improvement of 42% with respect to our GWTC-1 result and 20% with respect to recent $H_0$ studies using GWTC-2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about $H_0$) is the well-localized event GW190814. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03604v2-abstract-full').style.display = 'none'; document.getElementById('2111.03604v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main paper: 30 pages, 15 figure, 7 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100185-v6 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.09834">arXiv:2110.09834</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.09834">pdf</a>, <a href="https://arxiv.org/format/2110.09834">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.122001">10.1103/PhysRevD.105.122001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-sky, all-frequency directional search for persistent gravitational-waves from Advanced LIGO&#39;s and Advanced Virgo&#39;s first three observing runs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Amato%2C+A">A. Amato</a> , et al. (1605 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.09834v1-abstract-short" style="display: inline;"> We present the first results from an all-sky all-frequency (ASAF) search for an anisotropic stochastic gravitational-wave background using the data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. Upper limit maps on broadband anisotropies of a persistent stochastic background were published for all observing runs of the LIGO-Virgo detectors. However, a broadb&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.09834v1-abstract-full').style.display = 'inline'; document.getElementById('2110.09834v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.09834v1-abstract-full" style="display: none;"> We present the first results from an all-sky all-frequency (ASAF) search for an anisotropic stochastic gravitational-wave background using the data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. Upper limit maps on broadband anisotropies of a persistent stochastic background were published for all observing runs of the LIGO-Virgo detectors. However, a broadband analysis is likely to miss narrowband signals as the signal-to-noise ratio of a narrowband signal can be significantly reduced when combined with detector output from other frequencies. Data folding and the computationally efficient analysis pipeline, {\tt PyStoch}, enable us to perform the radiometer map-making at every frequency bin. We perform the search at 3072 {\tt{HEALPix}} equal area pixels uniformly tiling the sky and in every frequency bin of width $1/32$~Hz in the range $20-1726$~Hz, except for bins that are likely to contain instrumental artefacts and hence are notched. We do not find any statistically significant evidence for the existence of narrowband gravitational-wave signals in the analyzed frequency bins. Therefore, we place $95\%$ confidence upper limits on the gravitational-wave strain for each pixel-frequency pair, the limits are in the range $(0.030 - 9.6) \times10^{-24}$. In addition, we outline a method to identify candidate pixel-frequency pairs that could be followed up by a more sensitive (and potentially computationally expensive) search, e.g., a matched-filtering-based analysis, to look for fainter nearly monochromatic coherent signals. The ASAF analysis is inherently independent of models describing any spectral or spatial distribution of power. We demonstrate that the ASAF results can be appropriately combined over frequencies and sky directions to successfully recover the broadband directional and isotropic results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.09834v1-abstract-full').style.display = 'none'; document.getElementById('2110.09834v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 6 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100292 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.12197">arXiv:2109.12197</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.12197">pdf</a>, <a href="https://arxiv.org/format/2109.12197">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.061104">10.1103/PhysRevLett.129.061104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for subsolar-mass binaries in the first half of Advanced LIGO and Virgo&#39;s third observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Amato%2C+A">A. Amato</a> , et al. (1612 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.12197v1-abstract-short" style="display: inline;"> We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 $M_\odot$ and 1.0 $M_\odot$ in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend previous analyses in two main ways: we include data from the Virgo detector and we allow for more unequal mass systems, with mass ratio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.12197v1-abstract-full').style.display = 'inline'; document.getElementById('2109.12197v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.12197v1-abstract-full" style="display: none;"> We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 $M_\odot$ and 1.0 $M_\odot$ in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend previous analyses in two main ways: we include data from the Virgo detector and we allow for more unequal mass systems, with mass ratio $q \geq 0.1$. We do not report any gravitational-wave candidates. The most significant trigger has a false alarm rate of 0.14 $\mathrm{yr}^{-1}$. This implies an upper limit on the merger rate of subsolar binaries in the range $[220-24200] \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$, depending on the chirp mass of the binary. We use this upper limit to derive astrophysical constraints on two phenomenological models that could produce subsolar-mass compact objects. One is an isotropic distribution of equal-mass primordial black holes. Using this model, we find that the fraction of dark matter in primordial black holes is $f_\mathrm{PBH} \equiv 惟_\mathrm{PBH} / 惟_\mathrm{DM} \lesssim 6\%$. The other is a dissipative dark matter model, in which fermionic dark matter can collapse and form black holes. The upper limit on the fraction of dark matter black holes depends on the minimum mass of the black holes that can be formed: the most constraining result is obtained at $M_\mathrm{min}=1 M_\odot$, where $f_\mathrm{DBH} \equiv 惟_\mathrm{PBH} / 惟_\mathrm{DM} \lesssim 0.003\%$. These are the tightest limits on spinning subsolar-mass binaries to date. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.12197v1-abstract-full').style.display = 'none'; document.getElementById('2109.12197v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100163-v8 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.09255">arXiv:2109.09255</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.09255">pdf</a>, <a href="https://arxiv.org/format/2109.09255">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.022002">10.1103/PhysRevD.105.022002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for continuous gravitational waves from 20 accreting millisecond X-ray pulsars in O3 LIGO data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Amato%2C+A">A. Amato</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Anand%2C+C">C. Anand</a> , et al. (1612 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.09255v2-abstract-short" style="display: inline;"> Results are presented of searches for continuous gravitational waves from 20 accreting millisecond X-ray pulsars with accurately measured spin frequencies and orbital parameters, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. The search algorithm uses a hidden Markov model, where the transition probabilities allow the frequency to wander according to an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09255v2-abstract-full').style.display = 'inline'; document.getElementById('2109.09255v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.09255v2-abstract-full" style="display: none;"> Results are presented of searches for continuous gravitational waves from 20 accreting millisecond X-ray pulsars with accurately measured spin frequencies and orbital parameters, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. The search algorithm uses a hidden Markov model, where the transition probabilities allow the frequency to wander according to an unbiased random walk, while the $\mathcal{J}$-statistic maximum-likelihood matched filter tracks the binary orbital phase. Three narrow sub-bands are searched for each target, centered on harmonics of the measured spin frequency. The search yields 16 candidates, consistent with a false alarm probability of 30% per sub-band and target searched. These candidates, along with one candidate from an additional target-of-opportunity search done for SAX J1808.4$-$3658, which was in outburst during one month of the observing run, cannot be confidently associated with a known noise source. Additional follow-up does not provide convincing evidence that any are a true astrophysical signal. When all candidates are assumed non-astrophysical, upper limits are set on the maximum wave strain detectable at 95% confidence, $h_0^{95\%}$. The strictest constraint is $h_0^{95\%} = 4.7\times 10^{-26}$ from IGR J17062$-$6143. Constraints on the detectable wave strain from each target lead to constraints on neutron star ellipticity and $r$-mode amplitude, the strictest of which are $蔚^{95\%} = 3.1\times 10^{-7}$ and $伪^{95\%} = 1.8\times 10^{-5}$ respectively. This analysis is the most comprehensive and sensitive search of continuous gravitational waves from accreting millisecond X-ray pulsars to date. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09255v2-abstract-full').style.display = 'none'; document.getElementById('2109.09255v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 6 figures. This version contains minor typographical revisions to match published article</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100221 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 105, 022002 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.13796">arXiv:2107.13796</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.13796">pdf</a>, <a href="https://arxiv.org/format/2107.13796">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.102001">10.1103/PhysRevD.104.102001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Amato%2C+A">A. Amato</a> , et al. (1605 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.13796v1-abstract-short" style="display: inline;"> After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well-suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into &#34;short&#34; $ \lesssim 1~$\,s and &#34;long&#34; $ \gtrsim 1~$\,s duration signals, these signals are expected from a var&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13796v1-abstract-full').style.display = 'inline'; document.getElementById('2107.13796v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.13796v1-abstract-full" style="display: none;"> After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well-suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into &#34;short&#34; $ \lesssim 1~$\,s and &#34;long&#34; $ \gtrsim 1~$\,s duration signals, these signals are expected from a variety of astrophysical processes, including non-axisymmetric deformations in magnetars or eccentric binary black hole coalescences. In this work, we present a search for long-duration gravitational-wave transients from Advanced LIGO and Advanced Virgo&#39;s third observing run from April 2019 to March 2020. For this search, we use minimal assumptions for the sky location, event time, waveform morphology, and duration of the source. The search covers the range of $2~\text{--}~ 500$~s in duration and a frequency band of $24 - 2048$ Hz. We find no significant triggers within this parameter space; we report sensitivity limits on the signal strength of gravitational waves characterized by the root-sum-square amplitude $h_{\mathrm{rss}}$ as a function of waveform morphology. These $h_{\mathrm{rss}}$ limits improve upon the results from the second observing run by an average factor of 1.8. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13796v1-abstract-full').style.display = 'none'; document.getElementById('2107.13796v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> P2100063 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.03701">arXiv:2107.03701</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.03701">pdf</a>, <a href="https://arxiv.org/format/2107.03701">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.122004">10.1103/PhysRevD.104.122004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Amato%2C+A">A. Amato</a> , et al. (1608 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.03701v1-abstract-short" style="display: inline;"> This paper presents the results of a search for generic short-duration gravitational-wave transients in data from the third observing run of Advanced LIGO and Advanced Virgo. Transients with durations of milliseconds to a few seconds in the 24--4096 Hz frequency band are targeted by the search, with no assumptions made regarding the incoming signal direction, polarization or morphology. Gravitatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03701v1-abstract-full').style.display = 'inline'; document.getElementById('2107.03701v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.03701v1-abstract-full" style="display: none;"> This paper presents the results of a search for generic short-duration gravitational-wave transients in data from the third observing run of Advanced LIGO and Advanced Virgo. Transients with durations of milliseconds to a few seconds in the 24--4096 Hz frequency band are targeted by the search, with no assumptions made regarding the incoming signal direction, polarization or morphology. Gravitational waves from compact binary coalescences that have been identified by other targeted analyses are detected, but no statistically significant evidence for other gravitational wave bursts is found. Sensitivities to a variety of signals are presented. These include updated upper limits on the source rate-density as a function of the characteristic frequency of the signal, which are roughly an order of magnitude better than previous upper limits. This search is sensitive to sources radiating as little as $\sim$10$^{-10} M_{\odot} c^2$ in gravitational waves at $\sim$70 Hz from a distance of 10~kpc, with 50\% detection efficiency at a false alarm rate of one per century. The sensitivity of this search to two plausible astrophysical sources is estimated: neutron star f-modes, which may be excited by pulsar glitches, as well as selected core-collapse supernova models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03701v1-abstract-full').style.display = 'none'; document.getElementById('2107.03701v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> P2100045 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.00600">arXiv:2107.00600</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.00600">pdf</a>, <a href="https://arxiv.org/format/2107.00600">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.082004">10.1103/PhysRevD.104.082004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-sky Search for Continuous Gravitational Waves from Isolated Neutron Stars in the Early O3 LIGO Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abraham%2C+S">S. Abraham</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adams%2C+A">A. Adams</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aleman%2C+K+M">K. M. Aleman</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a> , et al. (1566 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.00600v2-abstract-short" style="display: inline;"> We report on an all-sky search for continuous gravitational waves in the frequency band 20-2000\,Hz and with a frequency time derivative in the range of $[-1.0, +0.1]\times10^{-8}$\,Hz/s. Such a signal could be produced by a nearby, spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the LIGO data from the first six months of Advanced LIGO&#39;s and Advanced Vi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.00600v2-abstract-full').style.display = 'inline'; document.getElementById('2107.00600v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.00600v2-abstract-full" style="display: none;"> We report on an all-sky search for continuous gravitational waves in the frequency band 20-2000\,Hz and with a frequency time derivative in the range of $[-1.0, +0.1]\times10^{-8}$\,Hz/s. Such a signal could be produced by a nearby, spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the LIGO data from the first six months of Advanced LIGO&#39;s and Advanced Virgo&#39;s third observational run, O3. No periodic gravitational wave signals are observed, and 95\%\ confidence-level (CL) frequentist upper limits are placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude $h_0$ are $~1.7\times10^{-25}$ near 200\,Hz. For a circularly polarized source (most favorable orientation), the lowest upper limits are $\sim6.3\times10^{-26}$. These strict frequentist upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest 95\%\ CL upper limits on the strain amplitude are $\sim1.\times10^{-25}$. These upper limits improve upon our previously published all-sky results, with the greatest improvement (factor of $\sim$2) seen at higher frequencies, in part because quantum squeezing has dramatically improved the detector noise level relative to the second observational run, O2. These limits are the most constraining to date over most of the parameter space searched. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.00600v2-abstract-full').style.display = 'none'; document.getElementById('2107.00600v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2000334-v9 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 082004 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.13085">arXiv:2105.13085</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.13085">pdf</a>, <a href="https://arxiv.org/format/2105.13085">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.063030">10.1103/PhysRevD.105.063030 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraints on dark photon dark matter using data from LIGO&#39;s and Virgo&#39;s third observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Amato%2C+A">A. Amato</a> , et al. (1605 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.13085v3-abstract-short" style="display: inline;"> We present a search for dark photon dark matter that could couple to gravitational-wave interferometers using data from Advanced LIGO and Virgo&#39;s third observing run. To perform this analysis, we use two methods, one based on cross-correlation of the strain channels in the two nearly aligned LIGO detectors, and one that looks for excess power in the strain channels of the LIGO and Virgo detectors.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13085v3-abstract-full').style.display = 'inline'; document.getElementById('2105.13085v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.13085v3-abstract-full" style="display: none;"> We present a search for dark photon dark matter that could couple to gravitational-wave interferometers using data from Advanced LIGO and Virgo&#39;s third observing run. To perform this analysis, we use two methods, one based on cross-correlation of the strain channels in the two nearly aligned LIGO detectors, and one that looks for excess power in the strain channels of the LIGO and Virgo detectors. The excess power method optimizes the Fourier Transform coherence time as a function of frequency, to account for the expected signal width due to Doppler modulations. We do not find any evidence of dark photon dark matter with a mass between $m_{\rm A} \sim 10^{-14}-10^{-11}$ eV/$c^2$, which corresponds to frequencies between 10-2000 Hz, and therefore provide upper limits on the square of the minimum coupling of dark photons to baryons, i.e. $U(1)_{\rm B}$ dark matter. For the cross-correlation method, the best median constraint on the squared coupling is $\sim2.65\times10^{-46}$ at $m_{\rm A}\sim4.31\times10^{-13}$ eV/$c^2$; for the other analysis, the best constraint is $\sim 2.4\times 10^{-47}$ at $m_{\rm A}\sim 5.7\times 10^{-13}$ eV/$c^2$. These limits improve upon those obtained in direct dark matter detection experiments by a factor of $\sim100$ for $m_{\rm A}\sim [2-4]\times 10^{-13}$ eV/$c^2$, and are, in absolute terms, the most stringent constraint so far in a large mass range $m_A\sim$ $2\times 10^{-13}-8\times 10^{-12}$ eV/$c^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13085v3-abstract-full').style.display = 'none'; document.getElementById('2105.13085v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 7 figures; In the latest version, we integrated the changes reported in the published erratum (DOI: https://doi.org/10.1103/PhysRevD.109.089902). Essentially, we overestimated the sensitivity of the cross-correlation search to a dark photon dark matter signal and have corrected this, making the BSD limits the most stringent in this search at most dark photon masses</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100098 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 105, 063030, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.14417">arXiv:2104.14417</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.14417">pdf</a>, <a href="https://arxiv.org/format/2104.14417">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac0d52">10.3847/1538-4357/ac0d52 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraints from LIGO O3 data on gravitational-wave emission due to r-modes in the glitching pulsar PSR J0537-6910 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abraham%2C+S">S. Abraham</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adams%2C+A">A. Adams</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aleman%2C+K+M">K. M. Aleman</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a> , et al. (1574 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.14417v2-abstract-short" style="display: inline;"> We present a search for continuous gravitational-wave emission due to r-modes in the pulsar PSR J0537-6910 using data from the LIGO-Virgo Collaboration observing run O3. PSR J0537-6910 is a young energetic X-ray pulsar and is the most frequent glitcher known. The inter-glitch braking index of the pulsar suggests that gravitational-wave emission due to r-mode oscillations may play an important role&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.14417v2-abstract-full').style.display = 'inline'; document.getElementById('2104.14417v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.14417v2-abstract-full" style="display: none;"> We present a search for continuous gravitational-wave emission due to r-modes in the pulsar PSR J0537-6910 using data from the LIGO-Virgo Collaboration observing run O3. PSR J0537-6910 is a young energetic X-ray pulsar and is the most frequent glitcher known. The inter-glitch braking index of the pulsar suggests that gravitational-wave emission due to r-mode oscillations may play an important role in the spin evolution of this pulsar. Theoretical models confirm this possibility and predict emission at a level that can be probed by ground-based detectors. In order to explore this scenario, we search for r-mode emission in the epochs between glitches by using a contemporaneous timing ephemeris obtained from NICER data. We do not detect any signals in the theoretically expected band of 86-97 Hz, and report upper limits on the amplitude of the gravitational waves. Our results improve on previous amplitude upper limits from r-modes in J0537-6910 by a factor of up to 3 and place stringent constraints on theoretical models for r-mode driven spin-down in PSR J0537-6910, especially for higher frequencies at which our results reach below the spin-down limit defined by energy conservation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.14417v2-abstract-full').style.display = 'none'; document.getElementById('2104.14417v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 19 figures, accepted in ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100069 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 922 71 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.08520">arXiv:2103.08520</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.08520">pdf</a>, <a href="https://arxiv.org/format/2103.08520">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.022005">10.1103/PhysRevD.104.022005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo&#39;s first three observing runs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abraham%2C+S">S. Abraham</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adams%2C+A">A. Adams</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aleman%2C+K+M">K. M. Aleman</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a> , et al. (1568 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.08520v4-abstract-short" style="display: inline;"> We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called {\tt PyStoch} on data folded over one sidereal day. We use gravitational-wave radiometry (broadban&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.08520v4-abstract-full').style.display = 'inline'; document.getElementById('2103.08520v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.08520v4-abstract-full" style="display: none;"> We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called {\tt PyStoch} on data folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves from point sources. A spherical harmonic decomposition method is employed to look for gravitational-wave emission from spatially-extended sources. Neither technique found evidence of gravitational-wave signals. Hence we derive 95\% confidence-level upper limit sky maps on the gravitational-wave energy flux from broadband point sources, ranging from $F_{伪, 螛} &lt; {\rm (0.013 - 7.6)} \times 10^{-8} {\rm erg \, cm^{-2} \, s^{-1} \, Hz^{-1}},$ and on the (normalized) gravitational-wave energy density spectrum from extended sources, ranging from $惟_{伪, 螛} &lt; {\rm (0.57 - 9.3)} \times 10^{-9} \, {\rm sr^{-1}}$, depending on direction ($螛$) and spectral index ($伪$). These limits improve upon previous limits by factors of $2.9 - 3.5$. We also set 95\% confidence level upper limits on the frequency-dependent strain amplitudes of quasimonochromatic gravitational waves coming from three interesting targets, Scorpius X-1, SN 1987A and the Galactic Center, with best upper limits range from $h_0 &lt; {\rm (1.7-2.1)} \times 10^{-25},$ a factor of $\geq 2.0$ improvement compared to previous stochastic radiometer searches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.08520v4-abstract-full').style.display = 'none'; document.getElementById('2103.08520v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 Pages, 9 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2000500 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 022005 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.12248">arXiv:2101.12248</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.12248">pdf</a>, <a href="https://arxiv.org/format/2101.12248">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.241102">10.1103/PhysRevLett.126.241102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraints on cosmic strings using data from the third Advanced LIGO-Virgo observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abraham%2C+S">S. Abraham</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adams%2C+A">A. Adams</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aleman%2C+K+M">K. M. Aleman</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a> , et al. (1565 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.12248v1-abstract-short" style="display: inline;"> We search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 data set. Search results are presented for gravitational waves produced by cosmic string loop features such as cusps, kinks and, for the first time, kink-kink collisions.cA template-based search for short-duration transient signals does not yield a detection. We also use the stochastic gravit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.12248v1-abstract-full').style.display = 'inline'; document.getElementById('2101.12248v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.12248v1-abstract-full" style="display: none;"> We search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 data set. Search results are presented for gravitational waves produced by cosmic string loop features such as cusps, kinks and, for the first time, kink-kink collisions.cA template-based search for short-duration transient signals does not yield a detection. We also use the stochastic gravitational-wave background energy density upper limits derived from the O3 data to constrain the cosmic string tension, $G渭$, as a function of the number of kinks, or the number of cusps, for two cosmic string loop distribution models.cAdditionally, we develop and test a third model which interpolates between these two models. Our results improve upon the previous LIGO-Virgo constraints on $G渭$ by one to two orders of magnitude depending on the model which is tested. In particular, for one loop distribution model, we set the most competitive constraints to date, $G渭\lesssim 4\times 10^{-15}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.12248v1-abstract-full').style.display = 'none'; document.getElementById('2101.12248v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2000506 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 241102 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.12130">arXiv:2101.12130</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.12130">pdf</a>, <a href="https://arxiv.org/format/2101.12130">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.022004">10.1103/PhysRevD.104.022004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Upper Limits on the Isotropic Gravitational-Wave Background from Advanced LIGO&#39;s and Advanced Virgo&#39;s Third Observing Run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abraham%2C+S">S. Abraham</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adams%2C+A">A. Adams</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aleman%2C+K+M">K. M. Aleman</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a> , et al. (1566 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.12130v1-abstract-short" style="display: inline;"> We report results of a search for an isotropic gravitational-wave background (GWB) using data from Advanced LIGO&#39;s and Advanced Virgo&#39;s third observing run (O3) combined with upper limits from the earlier O1 and O2 runs. Unlike in previous observing runs in the advanced detector era, we include Virgo in the search for the GWB. The results are consistent with uncorrelated noise, and therefore we pl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.12130v1-abstract-full').style.display = 'inline'; document.getElementById('2101.12130v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.12130v1-abstract-full" style="display: none;"> We report results of a search for an isotropic gravitational-wave background (GWB) using data from Advanced LIGO&#39;s and Advanced Virgo&#39;s third observing run (O3) combined with upper limits from the earlier O1 and O2 runs. Unlike in previous observing runs in the advanced detector era, we include Virgo in the search for the GWB. The results are consistent with uncorrelated noise, and therefore we place upper limits on the strength of the GWB. We find that the dimensionless energy density $惟_{\rm GW}\leq 5.8\times 10^{-9}$ at the 95% credible level for a flat (frequency-independent) GWB, using a prior which is uniform in the log of the strength of the GWB, with 99% of the sensitivity coming from the band 20-76.6 Hz; $\leq 3.4 \times 10^{-9}$ at 25 Hz for a power-law GWB with a spectral index of 2/3 (consistent with expectations for compact binary coalescences), in the band 20-90.6 Hz; and $\leq 3.9 \times 10^{-10}$ at 25 Hz for a spectral index of 3, in the band 20-291.6 Hz. These upper limits improve over our previous results by a factor of 6.0 for a flat GWB. We also search for a GWB arising from scalar and vector modes, which are predicted by alternative theories of gravity; we place upper limits on the strength of GWBs with these polarizations. We demonstrate that there is no evidence of correlated noise of magnetic origin by performing a Bayesian analysis that allows for the presence of both a GWB and an effective magnetic background arising from geophysical Schumann resonances. We compare our upper limits to a fiducial model for the GWB from the merger of compact binaries. Finally, we combine our results with observations of individual mergers andshow that, at design sensitivity, this joint approach may yield stronger constraints on the merger rate of binary black holes at $z \lesssim 2$ than can be achieved with individually resolved mergers alone. [abridged] <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.12130v1-abstract-full').style.display = 'none'; document.getElementById('2101.12130v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 7 figures, Abstract abridged for arxiv submission</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-DCC-P2000314 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 022004 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.12926">arXiv:2012.12926</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.12926">pdf</a>, <a href="https://arxiv.org/format/2012.12926">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/abffcd">10.3847/2041-8213/abffcd <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Diving below the spin-down limit: Constraints on gravitational waves from the energetic young pulsar PSR J0537-6910 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Abraham%2C+S">S. Abraham</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adams%2C+A">A. Adams</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aleman%2C+K+M">K. M. Aleman</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allen%2C+G">G. Allen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a> , et al. (1568 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.12926v2-abstract-short" style="display: inline;"> We present a search for continuous gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using NICER data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537-6910 has the larges&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12926v2-abstract-full').style.display = 'inline'; document.getElementById('2012.12926v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.12926v2-abstract-full" style="display: none;"> We present a search for continuous gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using NICER data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537-6910 has the largest spin-down luminosity of any pulsar and is highly active with regards to glitches. Analyses of its long-term and inter-glitch braking indices provided intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz rotation frequency also puts its possible gravitational-wave emission in the most sensitive band of LIGO/Virgo detectors. Motivated by these considerations, we search for gravitational-wave emission at both once and twice the rotation frequency. We find no signal, however, and report our upper limits. Assuming a rigidly rotating triaxial star, our constraints reach below the gravitational-wave spin-down limit for this star for the first time by more than a factor of two and limit gravitational waves from the $l=m=2$ mode to account for less than 14% of the spin-down energy budget. The fiducial equatorial ellipticity is limited to less than about 3e-5, which is the third best constraint for any young pulsar. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12926v2-abstract-full').style.display = 'none'; document.getElementById('2012.12926v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures, published in ApJL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2000407 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.12530">arXiv:2012.12530</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.12530">pdf</a>, <a href="https://arxiv.org/format/2012.12530">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Quantum noise in a Fabry-Perot interferometer including the influence of diffraction loss of light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=Iwaguchi%2C+S">Shoki. Iwaguchi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ishikawa%2C+T">Tomohiro. Ishikawa</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ando%2C+M">Masaki. Ando</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Michimura%2C+Y">Yuta. Michimura</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Komori%2C+K">Kentaro. Komori</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Nagano%2C+K">Koji. Nagano</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">Tomotada. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Musha%2C+M">Mitsuru. Musha</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Yamada%2C+R">Rika. Yamada</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Watanabe%2C+I">Izumi. Watanabe</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Naito%2C+T">Takeo. Naito</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Morimoto%2C+T">Taigen. Morimoto</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Kawamura%2C+S">Seiji. Kawamura</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.12530v2-abstract-short" style="display: inline;"> The DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is designed to detect gravitational waves at frequencies between 0.1 and 10 Hz. In this frequency band, one of the most important science targets is the detection of primordial gravitational waves. DECIGO plans to use a space interferometer with optical cavities to increase its sensitivity. For evaluating its sensitivity, diffra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12530v2-abstract-full').style.display = 'inline'; document.getElementById('2012.12530v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.12530v2-abstract-full" style="display: none;"> The DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is designed to detect gravitational waves at frequencies between 0.1 and 10 Hz. In this frequency band, one of the most important science targets is the detection of primordial gravitational waves. DECIGO plans to use a space interferometer with optical cavities to increase its sensitivity. For evaluating its sensitivity, diffraction of the laser light has to be adequately considered. There are two kinds of diffraction loss: leakage loss outside the mirror and higher-order mode loss. These effects are treated differently inside and outside of the Fabry-Perot (FP) cavity. We estimated them under the conditions that the FP cavity has a relatively high finesse and the higher-order modes do not resonate. As a result, we found that the effects can be represented as a reduction of the effective finesse of the cavity with regard to quantum noise. This result is useful for optimization of the design of DECIGO. This method is also applicable to all FP cavities with a relatively high finesse and significant diffraction loss in any interferometer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12530v2-abstract-full').style.display = 'none'; document.getElementById('2012.12530v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.11859">arXiv:2012.11859</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.11859">pdf</a>, <a href="https://arxiv.org/format/2012.11859">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/galaxies9010014">10.3390/galaxies9010014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improvement of the target sensitivity in DECIGO by optimizing its parameters for quantum noise including the effect of diffraction loss </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=Ishikawa%2C+T">Tomohiro Ishikawa</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Iwaguchi%2C+S">Shoki Iwaguchi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Michimura%2C+Y">Yuta Michimura</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ando%2C+M">Masaki Ando</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Yamada%2C+R">Rika Yamada</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Watanabe%2C+I">Izumi Watanabe</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Nagano%2C+K">Koji Nagano</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">Tomotada Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Komori%2C+K">Kentaro Komori</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Musha%2C+M">Mitsuru Musha</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Naito%2C+T">Takeo Naito</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Morimoto%2C+T">Taigen Morimoto</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Kawamura%2C+S">Seiji Kawamura</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.11859v2-abstract-short" style="display: inline;"> DECIGO is the future Japanese gravitational wave detector in outer space. We previously set the default design parameters to provide a good target sensitivity to detect the primordial gravitational waves (GWs). However, the updated upper limit of the primordial GWs by the Planck observations motivated us for further optimization of the target sensitivity. Previously, we had not considered optical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.11859v2-abstract-full').style.display = 'inline'; document.getElementById('2012.11859v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.11859v2-abstract-full" style="display: none;"> DECIGO is the future Japanese gravitational wave detector in outer space. We previously set the default design parameters to provide a good target sensitivity to detect the primordial gravitational waves (GWs). However, the updated upper limit of the primordial GWs by the Planck observations motivated us for further optimization of the target sensitivity. Previously, we had not considered optical diffraction loss due to the very long cavity length. In this paper, we optimize various DECIGO parameters by maximizing the signal-to-noise ratio (SNR), for the primordial GWs to quantum noise including the effects of diffraction loss. We evaluated the power spectrum density for one cluster in DECIGO utilizing the quantum noise of one differential Fabry-Perot interferometer. Then we calculated the SNR by correlating two clusters in the same position. We performed the optimization for two cases: the constant mirror-thickness case and the constant mirror-mass case. As a result, we obtained the SNR dependence on the mirror radius, which also determines various DECIGO parameters. This result is the first step toward optimizing the DECIGO design by considering the practical constraints on the mirror dimension and implementing other noise sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.11859v2-abstract-full').style.display = 'none'; document.getElementById('2012.11859v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.09305">arXiv:2009.09305</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.09305">pdf</a>, <a href="https://arxiv.org/format/2009.09305">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Overview of KAGRA: Calibration, detector characterization, physical environmental monitors, and the geophysics interferometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ando%2C+M">M. Ando</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Arai%2C+K">K. Arai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Arai%2C+Y">Y. Arai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Araki%2C+S">S. Araki</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Araya%2C+A">A. Araya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aritomi%2C+N">N. Aritomi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Asada%2C+H">H. Asada</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aso%2C+Y">Y. Aso</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bae%2C+S">S. Bae</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bae%2C+Y">Y. Bae</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Baiotti%2C+L">L. Baiotti</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bajpai%2C+R">R. Bajpai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Barton%2C+M+A">M. A. Barton</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Cannon%2C+K">K. Cannon</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Cao%2C+Z">Z. Cao</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Capocasa%2C+E">E. Capocasa</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chan%2C+M">M. Chan</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+C">C. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+K">K. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chiang%2C+C">C-Y. Chiang</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chu%2C+H">H. Chu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chu%2C+Y">Y-K. Chu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Eguchi%2C+S">S. Eguchi</a> , et al. (218 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.09305v2-abstract-short" style="display: inline;"> KAGRA is a newly built gravitational wave observatory, a laser interferometer with a 3 km arm length, located in Kamioka, Gifu, Japan. In this series of articles, we present an overview of the baseline KAGRA, for which we finished installing the designed configuration in 2019. This article describes the method of calibration (CAL) used for reconstructing gravitational wave signals from the detecto&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.09305v2-abstract-full').style.display = 'inline'; document.getElementById('2009.09305v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.09305v2-abstract-full" style="display: none;"> KAGRA is a newly built gravitational wave observatory, a laser interferometer with a 3 km arm length, located in Kamioka, Gifu, Japan. In this series of articles, we present an overview of the baseline KAGRA, for which we finished installing the designed configuration in 2019. This article describes the method of calibration (CAL) used for reconstructing gravitational wave signals from the detector outputs, as well as the characterization of the detector (DET). We also review the physical environmental monitors (PEM) system and the geophysics interferometer (GIF). Both are used for characterizing and evaluating the data quality of the gravitational wave channel. They play important roles in utilizing the detector output for gravitational wave searches. These characterization investigations will be even more important in the near future, once gravitational wave detection has been achieved, and in using KAGRA in the gravitational wave astronomy era. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.09305v2-abstract-full').style.display = 'none'; document.getElementById('2009.09305v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">2021/02/08 Accepted by PTEP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.02921">arXiv:2008.02921</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.02921">pdf</a>, <a href="https://arxiv.org/format/2008.02921">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Overview of KAGRA : KAGRA science </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=KAGRA+Collaboration"> KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ando%2C+M">M. Ando</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Arai%2C+K">K. Arai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Arai%2C+Y">Y. Arai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Araki%2C+S">S. Araki</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Araya%2C+A">A. Araya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aritomi%2C+N">N. Aritomi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Asada%2C+H">H. Asada</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aso%2C+Y">Y. Aso</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bae%2C+S">S. Bae</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bae%2C+Y">Y. Bae</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Baiotti%2C+L">L. Baiotti</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bajpai%2C+R">R. Bajpai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Barton%2C+M+A">M. A. Barton</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Cannon%2C+K">K. Cannon</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Cao%2C+Z">Z. Cao</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Capocasa%2C+E">E. Capocasa</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chan%2C+M">M. Chan</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+C">C. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+K">K. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chiang%2C+C">C-Y. Chiang</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chu%2C+H">H. Chu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chu%2C+Y">Y-K. Chu</a> , et al. (222 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.02921v1-abstract-short" style="display: inline;"> KAGRA is a newly build gravitational-wave observatory, a laser interferometer with 3 km arm length, located in Kamioka, Gifu, Japan. In this paper in the series of KAGRA-featured articles, we discuss the science targets of KAGRA projects, considering not only the baseline KAGRA (current design) but also its future upgrade candidates (KAGRA+) for the near to middle term (~5 years). </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.02921v1-abstract-full" style="display: none;"> KAGRA is a newly build gravitational-wave observatory, a laser interferometer with 3 km arm length, located in Kamioka, Gifu, Japan. In this paper in the series of KAGRA-featured articles, we discuss the science targets of KAGRA projects, considering not only the baseline KAGRA (current design) but also its future upgrade candidates (KAGRA+) for the near to middle term (~5 years). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.02921v1-abstract-full').style.display = 'none'; document.getElementById('2008.02921v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">73 pages, 11 figures, accepted by Progress of Theoretical and Experimental Physics, in the series of KAGRA-featured articles</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.09571">arXiv:2007.09571</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.09571">pdf</a>, <a href="https://arxiv.org/format/2007.09571">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0022242">10.1063/5.0022242 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Compact integrated optical sensors and electromagnetic actuators for vibration isolation systems in the gravitational-wave detector KAGRA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">Tomotada Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Arellano%2C+F+E+P">Fabi谩n Erasmo Pe帽a Arellano</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Shoda%2C+A">Ayaka Shoda</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Fujii%2C+Y">Yoshinori Fujii</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Okutomi%2C+K">Koki Okutomi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Barton%2C+M+A">Mark Andrew Barton</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Takahashi%2C+R">Ryutaro Takahashi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Komori%2C+K">Kentaro Komori</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aritomi%2C+N">Naoki Aritomi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Shimoda%2C+T">Tomofumi Shimoda</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Takano%2C+S">Satoru Takano</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Takeda%2C+H">Hiroki Takeda</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Martin%2C+E+N+T+S">Enzo Nicolas Tapia San Martin</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Kozu%2C+R">Ryohei Kozu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ikenoue%2C+B">Bungo Ikenoue</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Obuchi%2C+Y">Yoshiyuki Obuchi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Fukushima%2C+M">Mitsuhiro Fukushima</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aso%2C+Y">Yoichi Aso</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Michimura%2C+Y">Yuta Michimura</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Miyakawa%2C+O">Osamu Miyakawa</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Kamiizumi%2C+M">Masahiro Kamiizumi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.09571v3-abstract-short" style="display: inline;"> This paper reports on the design and characteristics of a compact module integrating an optical displacement sensor and an electromagnetic actuator for use with vibration-isolation systems installed in KAGRA, the 3-km baseline gravitational-wave detector in Japan. In technical concept, the module belongs to a family tree of similar modules called OSEMs, used in other interferometric gravitational-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.09571v3-abstract-full').style.display = 'inline'; document.getElementById('2007.09571v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.09571v3-abstract-full" style="display: none;"> This paper reports on the design and characteristics of a compact module integrating an optical displacement sensor and an electromagnetic actuator for use with vibration-isolation systems installed in KAGRA, the 3-km baseline gravitational-wave detector in Japan. In technical concept, the module belongs to a family tree of similar modules called OSEMs, used in other interferometric gravitational-wave detector projects. After the initial test run of KAGRA in 2016, the sensor part, which is a type of slot sensor, was modified by increasing the spacing of the slot from 5 mm to 15 mm to avoid the risk of mechanical interference with the sensor flag. We confirm the sensor performance is comparable to that of the previous design despite the modification. We also confirm the sensor noise is consistent with the theoretical noise budget. The noise level is 0.5 nm/rtHz at 1 Hz and 0.1 nm/rtHz at 10 Hz, and the linear range of the sensor is 0.7 mm or more. We measured the response of the actuator to be 1 N/A, and also measured the resistances and inductances of coils of the actuators to confirm consistency with theory. Coupling coefficients among the different degrees of freedom were also measured and shown to be negligible, varying little between designs. A potential concern about thermal noise contribution due to eddy current loss is discussed. As of 2020, 42 of the modules are in operation at the site. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.09571v3-abstract-full').style.display = 'none'; document.getElementById('2007.09571v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JGW-P2011605 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Review of Scientific Instruments 91, 115001 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.13545">arXiv:2006.13545</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.13545">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Current status of space gravitational wave antenna DECIGO and B-DECIGO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=Kawamura%2C+S">Seiji Kawamura</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ando%2C+M">Masaki Ando</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Seto%2C+N">Naoki Seto</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Sato%2C+S">Shuichi Sato</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Musha%2C+M">Mitsuru Musha</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Kawano%2C+I">Isao Kawano</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Yokoyama%2C+J">Jun&#39;ichi Yokoyama</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Tanaka%2C+T">Takahiro Tanaka</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ioka%2C+K">Kunihito Ioka</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">Tomotada Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Takashima%2C+T">Takeshi Takashima</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Agatsuma%2C+K">Kazuhiro Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Araya%2C+A">Akito Araya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aritomi%2C+N">Naoki Aritomi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Asada%2C+H">Hideki Asada</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chiba%2C+T">Takeshi Chiba</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Eguchi%2C+S">Satoshi Eguchi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Enoki%2C+M">Motohiro Enoki</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Fujimoto%2C+M">Masa-Katsu Fujimoto</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Fujita%2C+R">Ryuichi Fujita</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Futamase%2C+T">Toshifumi Futamase</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Harada%2C+T">Tomohiro Harada</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Hayama%2C+K">Kazuhiro Hayama</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Himemoto%2C+Y">Yoshiaki Himemoto</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Hiramatsu%2C+T">Takashi Hiramatsu</a> , et al. (62 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.13545v1-abstract-short" style="display: inline;"> Deci-hertz Interferometer Gravitational Wave Observatory (DECIGO) is the future Japanese space mission with a frequency band of 0.1 Hz to 10 Hz. DECIGO aims at the detection of primordial gravitational waves, which could be produced during the inflationary period right after the birth of the universe. There are many other scientific objectives of DECIGO, including the direct measurement of the acc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.13545v1-abstract-full').style.display = 'inline'; document.getElementById('2006.13545v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.13545v1-abstract-full" style="display: none;"> Deci-hertz Interferometer Gravitational Wave Observatory (DECIGO) is the future Japanese space mission with a frequency band of 0.1 Hz to 10 Hz. DECIGO aims at the detection of primordial gravitational waves, which could be produced during the inflationary period right after the birth of the universe. There are many other scientific objectives of DECIGO, including the direct measurement of the acceleration of the expansion of the universe, and reliable and accurate predictions of the timing and locations of neutron star/black hole binary coalescences. DECIGO consists of four clusters of observatories placed in the heliocentric orbit. Each cluster consists of three spacecraft, which form three Fabry-Perot Michelson interferometers with an arm length of 1,000 km. Three clusters of DECIGO will be placed far from each other, and the fourth cluster will be placed in the same position as one of the three clusters to obtain the correlation signals for the detection of the primordial gravitational waves. We plan to launch B-DECIGO, which is a scientific pathfinder of DECIGO, before DECIGO in the 2030s to demonstrate the technologies required for DECIGO, as well as to obtain fruitful scientific results to further expand the multi-messenger astronomy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.13545v1-abstract-full').style.display = 'none'; document.getElementById('2006.13545v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.05574">arXiv:2005.05574</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.05574">pdf</a>, <a href="https://arxiv.org/ps/2005.05574">ps</a>, <a href="https://arxiv.org/format/2005.05574">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Overview of KAGRA: Detector design and construction history </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ando%2C+M">M. Ando</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Arai%2C+K">K. Arai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Arai%2C+Y">Y. Arai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Araki%2C+S">S. Araki</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Araya%2C+A">A. Araya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aritomi%2C+N">N. Aritomi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aso%2C+Y">Y. Aso</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bae%2C+S+-">S. -W. Bae</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bae%2C+Y+-">Y. -B. Bae</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Baiotti%2C+L">L. Baiotti</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bajpai%2C+R">R. Bajpai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Barton%2C+M+A">M. A. Barton</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Cannon%2C+K">K. Cannon</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Capocasa%2C+E">E. Capocasa</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chan%2C+M+-">M. -L. Chan</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+C+-">C. -S. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+K+-">K. -H. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+Y+-">Y. -R. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chu%2C+H+-">H. -Y. Chu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chu%2C+Y">Y-K. Chu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Eguchi%2C+S">S. Eguchi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Enomoto%2C+Y">Y. Enomoto</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Flaminio%2C+R">R. Flaminio</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Fujii%2C+Y">Y. Fujii</a> , et al. (175 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.05574v2-abstract-short" style="display: inline;"> KAGRA is a newly built gravitational-wave telescope, a laser interferometer comprising arms with a length of 3\,km, located in Kamioka, Gifu, Japan. KAGRA was constructed under the ground and it is operated using cryogenic mirrors that help in reducing the seismic and thermal noise. Both technologies are expected to provide directions for the future of gravitational-wave telescopes. In 2019, KAGRA&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.05574v2-abstract-full').style.display = 'inline'; document.getElementById('2005.05574v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.05574v2-abstract-full" style="display: none;"> KAGRA is a newly built gravitational-wave telescope, a laser interferometer comprising arms with a length of 3\,km, located in Kamioka, Gifu, Japan. KAGRA was constructed under the ground and it is operated using cryogenic mirrors that help in reducing the seismic and thermal noise. Both technologies are expected to provide directions for the future of gravitational-wave telescopes. In 2019, KAGRA finished all installations with the designed configuration, which we call the baseline KAGRA. In this occasion, we present an overview of the baseline KAGRA from various viewpoints in a series of of articles. In this article, we introduce the design configurations of KAGRA with its historical background. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.05574v2-abstract-full').style.display = 'none'; document.getElementById('2005.05574v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.00955">arXiv:1910.00955</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.00955">pdf</a>, <a href="https://arxiv.org/format/1910.00955">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6382/ab5c95">10.1088/1361-6382/ab5c95 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An arm length stabilization system for KAGRA and future gravitational-wave detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ando%2C+M">M. Ando</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Arai%2C+K">K. Arai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Arai%2C+K">K. Arai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Arai%2C+Y">Y. Arai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Araki%2C+S">S. Araki</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Araya%2C+A">A. Araya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aritomi%2C+N">N. Aritomi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aso%2C+Y">Y. Aso</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bae%2C+S">S. Bae</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bae%2C+Y">Y. Bae</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Baiotti%2C+L">L. Baiotti</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bajpai%2C+R">R. Bajpai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Barton%2C+M+A">M. A. Barton</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Cannon%2C+K">K. Cannon</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Capocasa%2C+E">E. Capocasa</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chan%2C+M">M. Chan</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+C">C. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+K">K. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chu%2C+H">H. Chu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chu%2C+Y">Y-K. Chu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Doi%2C+K">K. Doi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Eguchi%2C+S">S. Eguchi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Enomoto%2C+Y">Y. Enomoto</a> , et al. (181 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.00955v2-abstract-short" style="display: inline;"> Modern ground-based gravitational wave (GW) detectors require a complex interferometer configuration with multiple coupled optical cavities. Since achieving the resonances of the arm cavities is the most challenging among the lock acquisition processes, the scheme called arm length stabilization (ALS) had been employed for lock acquisition of the arm cavities. We designed a new type of the ALS, wh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.00955v2-abstract-full').style.display = 'inline'; document.getElementById('1910.00955v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.00955v2-abstract-full" style="display: none;"> Modern ground-based gravitational wave (GW) detectors require a complex interferometer configuration with multiple coupled optical cavities. Since achieving the resonances of the arm cavities is the most challenging among the lock acquisition processes, the scheme called arm length stabilization (ALS) had been employed for lock acquisition of the arm cavities. We designed a new type of the ALS, which is compatible with the interferometers having long arms like the next generation GW detectors. The features of the new ALS are that the control configuration is simpler than those of previous ones and that it is not necessary to lay optical fibers for the ALS along the kilometer-long arms of the detector. Along with simulations of its noise performance, an experimental test of the new ALS was performed utilizing a single arm cavity of KAGRA. This paper presents the first results of the test where we demonstrated that lock acquisition of the arm cavity was achieved using the new ALS and residual noise was measured to be $8.2\,\mathrm{Hz}$ in units of frequency, which is smaller than the linewidth of the arm cavity and thus low enough to lock the full interferometer of KAGRA in a repeatable and reliable manner. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.00955v2-abstract-full').style.display = 'none'; document.getElementById('1910.00955v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 8figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Class. Quantum Grav. 37 (2020) 035004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.03013">arXiv:1908.03013</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.03013">pdf</a>, <a href="https://arxiv.org/format/1908.03013">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/ptep/ptaa056">10.1093/ptep/ptaa056 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Application of the independent component analysis to the iKAGRA data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=KAGRA+Collaboration"> KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ando%2C+M">M. Ando</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Arai%2C+K">K. Arai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Arai%2C+Y">Y. Arai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Araki%2C+S">S. Araki</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Araya%2C+A">A. Araya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aritomi%2C+N">N. Aritomi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Asada%2C+H">H. Asada</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aso%2C+Y">Y. Aso</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Atsuta%2C+S">S. Atsuta</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Awai%2C+K">K. Awai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bae%2C+S">S. Bae</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bae%2C+Y">Y. Bae</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Baiotti%2C+L">L. Baiotti</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bajpai%2C+R">R. Bajpai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Barton%2C+M+A">M. A. Barton</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Cannon%2C+K">K. Cannon</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Capocasa%2C+E">E. Capocasa</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chan%2C+M">M. Chan</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+C">C. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+K">K. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chu%2C+H">H. Chu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chu%2C+Y">Y-K. Chu</a> , et al. (227 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.03013v3-abstract-short" style="display: inline;"> We apply the independent component analysis (ICA) to the real data from a gravitational wave detector for the first time. Specifically we use the iKAGRA data taken in April 2016, and calculate the correlations between the gravitational wave strain channel and 35 physical environmental channels. Using a couple of seismic channels which are found to be strongly correlated with the strain, we perform&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.03013v3-abstract-full').style.display = 'inline'; document.getElementById('1908.03013v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.03013v3-abstract-full" style="display: none;"> We apply the independent component analysis (ICA) to the real data from a gravitational wave detector for the first time. Specifically we use the iKAGRA data taken in April 2016, and calculate the correlations between the gravitational wave strain channel and 35 physical environmental channels. Using a couple of seismic channels which are found to be strongly correlated with the strain, we perform ICA. Injecting a sinusoidal continuous signal in the strain channel, we find that ICA recovers correct parameters with enhanced signal-to-noise ratio, which demonstrates usefulness of this method. Among the two implementations of ICA used here, we find the correlation method yields the optimal result for the case environmental noises act on the strain channel linearly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.03013v3-abstract-full').style.display = 'none'; document.getElementById('1908.03013v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 12 figures : published in PTEP with added discussion about the relation between ICA and Wiener filtering</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JGW-P1910218, RESCEU-4/19 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Progress of Theoretical and Experimental Physics, Volume 2020, Issue 5, May 2020, 053F01 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.03569">arXiv:1901.03569</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.03569">pdf</a>, <a href="https://arxiv.org/ps/1901.03569">ps</a>, <a href="https://arxiv.org/format/1901.03569">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6382/ab28a9">10.1088/1361-6382/ab28a9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First cryogenic test operation of underground km-scale gravitational-wave observatory KAGRA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=KAGRA+Collaboration"> KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ando%2C+M">M. Ando</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Arai%2C+K">K. Arai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Arai%2C+Y">Y. Arai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Araki%2C+S">S. Araki</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Araya%2C+A">A. Araya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aritomi%2C+N">N. Aritomi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Asada%2C+H">H. Asada</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aso%2C+Y">Y. Aso</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Atsuta%2C+S">S. Atsuta</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Awai%2C+K">K. Awai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bae%2C+S">S. Bae</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Baiotti%2C+L">L. Baiotti</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Barton%2C+M+A">M. A. Barton</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Cannon%2C+K">K. Cannon</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Capocasa%2C+E">E. Capocasa</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+C">C-S. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chiu%2C+T">T-W. Chiu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Cho%2C+K">K. Cho</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chu%2C+Y">Y-K. Chu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Craig%2C+K">K. Craig</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Creus%2C+W">W. Creus</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Doi%2C+K">K. Doi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Eda%2C+K">K. Eda</a> , et al. (179 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.03569v1-abstract-short" style="display: inline;"> KAGRA is a second-generation interferometric gravitational-wave detector with 3-km arms constructed at Kamioka, Gifu in Japan. It is now in its final installation phase, which we call bKAGRA (baseline KAGRA), with scientific observations expected to begin in late 2019. One of the advantages of KAGRA is its underground location of at least 200 m below the ground surface, which brings small seismic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.03569v1-abstract-full').style.display = 'inline'; document.getElementById('1901.03569v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.03569v1-abstract-full" style="display: none;"> KAGRA is a second-generation interferometric gravitational-wave detector with 3-km arms constructed at Kamioka, Gifu in Japan. It is now in its final installation phase, which we call bKAGRA (baseline KAGRA), with scientific observations expected to begin in late 2019. One of the advantages of KAGRA is its underground location of at least 200 m below the ground surface, which brings small seismic motion at low frequencies and high stability of the detector. Another advantage is that it cools down the sapphire test mass mirrors to cryogenic temperatures to reduce thermal noise. In April-May 2018, we have operated a 3-km Michelson interferometer with a cryogenic test mass for 10 days, which was the first time that km-scale interferometer was operated at cryogenic temperatures. In this article, we report the results of this &#34;bKAGRA Phase 1&#34; operation. We have demonstrated the feasibility of 3-km interferometer alignment and control with cryogenic mirrors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.03569v1-abstract-full').style.display = 'none'; document.getElementById('1901.03569v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JGW-P1809289 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Classical and Quantum Gravity 36, 165008 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.03053">arXiv:1901.03053</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.03053">pdf</a>, <a href="https://arxiv.org/format/1901.03053">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6382/ab0fcb">10.1088/1361-6382/ab0fcb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vibration isolation system with a compact damping system for power recycling mirrors of KAGRA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=Akiyama%2C+Y">Y. Akiyama</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ando%2C+M">M. Ando</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Arai%2C+K">K. Arai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Arai%2C+Y">Y. Arai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Araki%2C+S">S. Araki</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Araya%2C+A">A. Araya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aritomi%2C+N">N. Aritomi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Asada%2C+H">H. Asada</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aso%2C+Y">Y. Aso</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bae%2C+S">S. Bae</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Baiotti%2C+L">L. Baiotti</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Barton%2C+M+A">M. A. Barton</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Cannon%2C+K">K. Cannon</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Capocasa%2C+E">E. Capocasa</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+C">C-S. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chiu%2C+T">T-W. Chiu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Cho%2C+K">K. Cho</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chu%2C+Y">Y-K. Chu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Craig%2C+K">K. Craig</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Dattilo%2C+V">V. Dattilo</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Doi%2C+K">K. Doi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Enomoto%2C+Y">Y. Enomoto</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Flaminio%2C+R">R. Flaminio</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Fujii%2C+Y">Y. Fujii</a> , et al. (149 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.03053v1-abstract-short" style="display: inline;"> A vibration isolation system called Type-Bp system used for power recycling mirrors has been developed for KAGRA, the interferometric gravitational-wave observatory in Japan. A suspension of the Type-Bp system passively isolates an optic from seismic vibration using three main pendulum stages equipped with two vertical vibration isolation systems. A compact reaction mass around each of the main st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.03053v1-abstract-full').style.display = 'inline'; document.getElementById('1901.03053v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.03053v1-abstract-full" style="display: none;"> A vibration isolation system called Type-Bp system used for power recycling mirrors has been developed for KAGRA, the interferometric gravitational-wave observatory in Japan. A suspension of the Type-Bp system passively isolates an optic from seismic vibration using three main pendulum stages equipped with two vertical vibration isolation systems. A compact reaction mass around each of the main stages allows for achieving sufficient damping performance with a simple feedback as well as vibration isolation ratio. Three Type-Bp systems were installed in KAGRA, and were proved to satisfy the requirements on the damping performance, and also on estimated residual displacement of the optics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.03053v1-abstract-full').style.display = 'none'; document.getElementById('1901.03053v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.08079">arXiv:1811.08079</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.08079">pdf</a>, <a href="https://arxiv.org/ps/1811.08079">ps</a>, <a href="https://arxiv.org/format/1811.08079">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41550-018-0658-y">10.1038/s41550-018-0658-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> KAGRA: 2.5 Generation Interferometric Gravitational Wave Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ando%2C+M">M. Ando</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Arai%2C+K">K. Arai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Arai%2C+Y">Y. Arai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Araki%2C+S">S. Araki</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Araya%2C+A">A. Araya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aritomi%2C+N">N. Aritomi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Asada%2C+H">H. Asada</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aso%2C+Y">Y. Aso</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Atsuta%2C+S">S. Atsuta</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Awai%2C+K">K. Awai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Bae%2C+S">S. Bae</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Baiotti%2C+L">L. Baiotti</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Barton%2C+M+A">M. A. Barton</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Cannon%2C+K">K. Cannon</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Capocasa%2C+E">E. Capocasa</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+C">C-S. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chiu%2C+T">T-W. Chiu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Cho%2C+K">K. Cho</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chu%2C+Y">Y-K. Chu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Craig%2C+K">K. Craig</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Creus%2C+W">W. Creus</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Doi%2C+K">K. Doi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Eda%2C+K">K. Eda</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Enomoto%2C+Y">Y. Enomoto</a> , et al. (169 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.08079v1-abstract-short" style="display: inline;"> The recent detections of gravitational waves (GWs) reported by LIGO/Virgo collaborations have made significant impact on physics and astronomy. A global network of GW detectors will play a key role to solve the unknown nature of the sources in coordinated observations with astronomical telescopes and detectors. Here we introduce KAGRA (former name LCGT; Large-scale Cryogenic Gravitational wave Tel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08079v1-abstract-full').style.display = 'inline'; document.getElementById('1811.08079v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.08079v1-abstract-full" style="display: none;"> The recent detections of gravitational waves (GWs) reported by LIGO/Virgo collaborations have made significant impact on physics and astronomy. A global network of GW detectors will play a key role to solve the unknown nature of the sources in coordinated observations with astronomical telescopes and detectors. Here we introduce KAGRA (former name LCGT; Large-scale Cryogenic Gravitational wave Telescope), a new GW detector with two 3-km baseline arms arranged in the shape of an &#34;L&#34;, located inside the Mt. Ikenoyama, Kamioka, Gifu, Japan. KAGRA&#39;s design is similar to those of the second generations such as Advanced LIGO/Virgo, but it will be operating at the cryogenic temperature with sapphire mirrors. This low temperature feature is advantageous for improving the sensitivity around 100 Hz and is considered as an important feature for the third generation GW detector concept (e.g. Einstein Telescope of Europe or Cosmic Explorer of USA). Hence, KAGRA is often called as a 2.5 generation GW detector based on laser interferometry. The installation and commissioning of KAGRA is underway and its cryogenic systems have been successfully tested in May, 2018. KAGRA&#39;s first observation run is scheduled in late 2019, aiming to join the third observation run (O3) of the advanced LIGO/Virgo network. In this work, we describe a brief history of KAGRA and highlights of main feature. We also discuss the prospects of GW observation with KAGRA in the era of O3. When operating along with the existing GW detectors, KAGRA will be helpful to locate a GW source more accurately and to determine the source parameters with higher precision, providing information for follow-up observations of a GW trigger candidate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08079v1-abstract-full').style.display = 'none'; document.getElementById('1811.08079v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures (quality of some figures has been reduced)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JGW-P1809243 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Astronomy 3, 35 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.02115">arXiv:1810.02115</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.02115">pdf</a>, <a href="https://arxiv.org/ps/1810.02115">ps</a>, <a href="https://arxiv.org/format/1810.02115">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.022003">10.1103/PhysRevD.99.022003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Molecular adsorbed layer formation on cooled mirrors and its impacts on cryogenic gravitational wave telescopes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=Hasegawa%2C+K">Kunihiko Hasegawa</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">Tomotada Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Kimura%2C+N">Nobuhiro Kimura</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Saito%2C+Y">Yoshio Saito</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Suzuki%2C+T">Toshikazu Suzuki</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Tomaru%2C+T">Takayuki Tomaru</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ueda%2C+A">Ayako Ueda</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Miyoki%2C+S">Shinji Miyoki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.02115v2-abstract-short" style="display: inline;"> Cryogenic mirrors have been introduced to the KAGRA gravitational wave telescope in Japan, and are also planned to be used in next-generation gravitational wave telescopes to further improve their sensitivity. Molecular gases inside vacuum chambers adhere to cold mirror surfaces because they lose their kinetic energy when they hit cryogenic surfaces. Finally, a number of adsorbed molecules form an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.02115v2-abstract-full').style.display = 'inline'; document.getElementById('1810.02115v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.02115v2-abstract-full" style="display: none;"> Cryogenic mirrors have been introduced to the KAGRA gravitational wave telescope in Japan, and are also planned to be used in next-generation gravitational wave telescopes to further improve their sensitivity. Molecular gases inside vacuum chambers adhere to cold mirror surfaces because they lose their kinetic energy when they hit cryogenic surfaces. Finally, a number of adsorbed molecules form an adlayer, which will grow with time. The growing adlayer functions as an optical coating and changes the properties of the underlying mirror, such as reflectance, transmittance, and absorption, which are carefully chosen to maximize the detector sensitivity. The adlayer possibly affects the gravitational wave detector sensitivity. In order to characterize these changes, a high-finesse Fabry--Perot cavity was introduced to a KAGRA cryostat and the finesse of the cavity was monitored for 35 days under cryogenic conditions. We confirmed that the molecular adlayer was formed on a cold mirror and caused an oscillation in the finesse. The real and imaginary parts of the refractive index of the adlayer were $1.26 \pm 0.073$ and $2.2 \times 10^{-7} \pm 1.3 \times 10^{-7} $, respectively. These are considered to be that of $\mathrm{H_2O}$ molecules. The formation rate of the molecular adlayer was 27 $\pm$ 1.9 $\mathrm{nm/day}$. In this paper, we describe theoretical and experimental studies of the formation of a molecular adlayer on cryogenic mirrors. Furthermore, the effects of a molecular adlayer on the quantum noise and the input heat to the test mass are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.02115v2-abstract-full').style.display = 'none'; document.getElementById('1810.02115v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 022003 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.00148">arXiv:1712.00148</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.00148">pdf</a>, <a href="https://arxiv.org/ps/1712.00148">ps</a>, <a href="https://arxiv.org/format/1712.00148">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/ptep/ptx180">10.1093/ptep/ptx180 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Construction of KAGRA: an Underground Gravitational Wave Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ando%2C+M">M. Ando</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Araki%2C+S">S. Araki</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Araya%2C+A">A. Araya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Arima%2C+T">T. Arima</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aritomi%2C+N">N. Aritomi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Asada%2C+H">H. Asada</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aso%2C+Y">Y. Aso</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Atsuta%2C+S">S. Atsuta</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Awai%2C+K">K. Awai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Baiotti%2C+L">L. Baiotti</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Barton%2C+M+A">M. A. Barton</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Chen%2C+D">D. Chen</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Cho%2C+K">K. Cho</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Craig%2C+K">K. Craig</a>, <a href="/search/gr-qc?searchtype=author&amp;query=DeSalvo%2C+R">R. DeSalvo</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Doi%2C+K">K. Doi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Eda%2C+K">K. Eda</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Enomoto%2C+Y">Y. Enomoto</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Flaminio%2C+R">R. Flaminio</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Fujibayashi%2C+S">S. Fujibayashi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Fujii%2C+Y">Y. Fujii</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Fujimoto%2C+M+-">M. -K. Fujimoto</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Fukushima%2C+M">M. Fukushima</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Furuhata%2C+T">T. Furuhata</a> , et al. (202 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.00148v2-abstract-short" style="display: inline;"> Major construction and initial-phase operation of a second-generation gravitational-wave detector KAGRA has been completed. The entire 3-km detector is installed underground in a mine in order to be isolated from background seismic vibrations on the surface. This allows us to achieve a good sensitivity at low frequencies and high stability of the detector. Bare-bones equipment for the interferomet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.00148v2-abstract-full').style.display = 'inline'; document.getElementById('1712.00148v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.00148v2-abstract-full" style="display: none;"> Major construction and initial-phase operation of a second-generation gravitational-wave detector KAGRA has been completed. The entire 3-km detector is installed underground in a mine in order to be isolated from background seismic vibrations on the surface. This allows us to achieve a good sensitivity at low frequencies and high stability of the detector. Bare-bones equipment for the interferometer operation has been installed and the first test run was accomplished in March and April of 2016 with a rather simple configuration. The initial configuration of KAGRA is named {\it iKAGRA}. In this paper, we summarize the construction of KAGRA, including the study of the advantages and challenges of building an underground detector and the operation of the iKAGRA interferometer together with the geophysics interferometer that has been constructed in the same tunnel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.00148v2-abstract-full').style.display = 'none'; document.getElementById('1712.00148v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Resolution of some figures has been decreased from its original version submitted to a journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Progress of Theoretical and Experimental Physics, Vol 2018, 1, 013F01 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.04823">arXiv:1710.04823</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.04823">pdf</a>, <a href="https://arxiv.org/ps/1710.04823">ps</a>, <a href="https://arxiv.org/format/1710.04823">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/1342/1/012014">10.1088/1742-6596/1342/1/012014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The status of KAGRA underground cryogenic gravitational wave telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=KAGRA+Collaboration"> KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ando%2C+M">M. Ando</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Araya%2C+A">A. Araya</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aritomi%2C+N">N. Aritomi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Asada%2C+H">H. Asada</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aso%2C+Y">Y. Aso</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Atsuta%2C+S">S. Atsuta</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Awai%2C+K">K. Awai</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Barton%2C+M+A">M. A. Barton</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Cannon%2C+K">K. Cannon</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Craig%2C+K">K. Craig</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Creus%2C+W">W. Creus</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Doi%2C+K">K. Doi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Eda%2C+K">K. Eda</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Enomoto%2C+Y">Y. Enomoto</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Flaminio%2C+R">R. Flaminio</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Fujii%2C+Y">Y. Fujii</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Fujimoto%2C+M+-">M. -K. Fujimoto</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Furuhata%2C+T">T. Furuhata</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Haino%2C+S">S. Haino</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Hasegawa%2C+K">K. Hasegawa</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Hashino%2C+K">K. Hashino</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Hayama%2C+K">K. Hayama</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Hirobayashi%2C+S">S. Hirobayashi</a> , et al. (126 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.04823v1-abstract-short" style="display: inline;"> KAGRA is a 3-km interferometric gravitational wave telescope located in the Kamioka mine in Japan. It is the first km-class gravitational wave telescope constructed underground to reduce seismic noise, and the first km-class telescope to use cryogenic cooling of test masses to reduce thermal noise. The construction of the infrastructure to house the interferometer in the tunnel, and the initial ph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.04823v1-abstract-full').style.display = 'inline'; document.getElementById('1710.04823v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.04823v1-abstract-full" style="display: none;"> KAGRA is a 3-km interferometric gravitational wave telescope located in the Kamioka mine in Japan. It is the first km-class gravitational wave telescope constructed underground to reduce seismic noise, and the first km-class telescope to use cryogenic cooling of test masses to reduce thermal noise. The construction of the infrastructure to house the interferometer in the tunnel, and the initial phase operation of the interferometer with a simple 3-km Michelson configuration have been completed. The first cryogenic operation is expected in 2018, and the observing runs with a full interferometer are expected in 2020s. The basic interferometer configuration and the current status of KAGRA are described. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.04823v1-abstract-full').style.display = 'none'; document.getElementById('1710.04823v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures. Proceedings for XV International Conference on Topics in Astroparticle and Underground Physics (TAUP2017), Sudbury, July 24-28, 2017</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JGW-P1707191 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Conf. Ser. 1342, 012014 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.02574">arXiv:1709.02574</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.02574">pdf</a>, <a href="https://arxiv.org/ps/1709.02574">ps</a>, <a href="https://arxiv.org/format/1709.02574">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6382/aa90e3">10.1088/1361-6382/aa90e3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mirror actuation design for the interferometer control of the KAGRA gravitational wave telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=Michimura%2C+Y">Yuta Michimura</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Shimoda%2C+T">Tomofumi Shimoda</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Miyamoto%2C+T">Takahiro Miyamoto</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Shoda%2C+A">Ayaka Shoda</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Okutomi%2C+K">Koki Okutomi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Fujii%2C+Y">Yoshinori Fujii</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Tanaka%2C+H">Hiroki Tanaka</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Barton%2C+M+A">Mark A. Barton</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Takahashi%2C+R">Ryutaro Takahashi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Aso%2C+Y">Yoichi Aso</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">Tomotada Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ando%2C+M">Masaki Ando</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Enomoto%2C+Y">Yutaro Enomoto</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Flaminio%2C+R">Raffaele Flaminio</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Hayama%2C+K">Kazuhiro Hayama</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Hirose%2C+E">Eiichi Hirose</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Inoue%2C+Y">Yuki Inoue</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Kajita%2C+T">Takaaki Kajita</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Kamiizumi%2C+M">Masahiro Kamiizumi</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Kawamura%2C+S">Seiji Kawamura</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Kokeyama%2C+K">Keiko Kokeyama</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Komori%2C+K">Kentaro Komori</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Kumar%2C+R">Rahul Kumar</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Miyakawa%2C+O">Osamu Miyakawa</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Nagano%2C+K">Koji Nagano</a> , et al. (14 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.02574v3-abstract-short" style="display: inline;"> KAGRA is a 3-km cryogenic interferometric gravitational wave telescope located at an underground site in Japan. In order to achieve its target sensitivity, the relative positions of the mirrors of the interferometer must be finely adjusted with attached actuators. We have developed a model to simulate the length control loops of the KAGRA interferometer with realistic suspension responses and vari&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.02574v3-abstract-full').style.display = 'inline'; document.getElementById('1709.02574v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.02574v3-abstract-full" style="display: none;"> KAGRA is a 3-km cryogenic interferometric gravitational wave telescope located at an underground site in Japan. In order to achieve its target sensitivity, the relative positions of the mirrors of the interferometer must be finely adjusted with attached actuators. We have developed a model to simulate the length control loops of the KAGRA interferometer with realistic suspension responses and various noises for mirror actuation. Using our model, we have designed the actuation parameters to have sufficient force range to acquire lock as well as to control all the length degrees of freedom without introducing excess noise. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.02574v3-abstract-full').style.display = 'none'; document.getElementById('1709.02574v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 7 figures (typo in p.12 on magnetic field gradient fixed for v3)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JGW-P1707051 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Classical and Quantum Gravity 34, 225001(2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.00897">arXiv:1607.00897</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.00897">pdf</a>, <a href="https://arxiv.org/ps/1607.00897">ps</a>, <a href="https://arxiv.org/format/1607.00897">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Pre-DECIGO can get the smoking gun to decide the astrophysical or cosmological origin of GW150914-like binary black holes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&amp;query=Nakamura%2C+T">Takashi Nakamura</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Ando%2C+M">Masaki Ando</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Kinugawa%2C+T">Tomoya Kinugawa</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Nakano%2C+H">Hiroyuki Nakano</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Eda%2C+K">Kazunari Eda</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Sato%2C+S">Shuichi Sato</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Musha%2C+M">Mitsuru Musha</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Akutsu%2C+T">Tomotada Akutsu</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Tanaka%2C+T">Takahiro Tanaka</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Seto%2C+N">Naoki Seto</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Kanda%2C+N">Nobuyuki Kanda</a>, <a href="/search/gr-qc?searchtype=author&amp;query=Itoh%2C+Y">Yousuke Itoh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.00897v2-abstract-short" style="display: inline;"> Pre-DECIGO consists of three spacecraft arranged in an equilateral triangle with 100km arm lengths orbiting 2000km above the surface of the earth. It is hoped that the launch date will be in the late 2020s. Pre-DECIGO has one clear target: binary black holes (BBHs) like GW150914 and GW151226. Pre-DECIGO can detect $\sim 30M_\odot-30M_\odot$ BBH mergers up to redshift $z\sim 30$. The cumulative e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.00897v2-abstract-full').style.display = 'inline'; document.getElementById('1607.00897v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.00897v2-abstract-full" style="display: none;"> Pre-DECIGO consists of three spacecraft arranged in an equilateral triangle with 100km arm lengths orbiting 2000km above the surface of the earth. It is hoped that the launch date will be in the late 2020s. Pre-DECIGO has one clear target: binary black holes (BBHs) like GW150914 and GW151226. Pre-DECIGO can detect $\sim 30M_\odot-30M_\odot$ BBH mergers up to redshift $z\sim 30$. The cumulative event rate is $\sim 1.8\times 10^{5}\,{\rm events~yr^{-1}}$ in the Pop III origin model of BBHs like GW150914, and it saturates at $z\sim 10$, while in the primordial BBH (PBBH) model, the cumulative event rate is $ \sim 3\times 10^{4}\,{\rm events~ yr^{-1}}$ at $z=30$ even if only $0.1\%$ of the dark matter consists of PBHs, and it is still increasing at $z=30$. In the Pop I/II model of BBHs, the cumulative event rate is $(3-10)\times10^{5}\,{\rm events~ yr^{-1}}$ and it saturates at $z \sim 6$. We present the requirements on orbit accuracy, drag free techniques, laser power, frequency stability, and interferometer test mass. For BBHs like GW150914 at 1Gpc, SNR$\sim 90$ is achieved with the definition of Pre-DECIGO in the $0.01-100$Hz band. Pre-DECIGO can measure the mass spectrum and the $z$-dependence of the merger rate to distinguish various models of BBHs like GW150914. Pre-DECIGO can also predict the direction of BBHs at $z=0.1$ with an accuracy of $\sim 0.3\,{\rm deg}^2$ and a merging time accuracy of $\sim 1$s at about a day before the merger so that ground-based GW detectors further developed at that time as well as electromagnetic follow-up observations can prepare for the detection of merger in advance. For intermediate mass BBHs at a large redshift $z &gt; 10$, the QNM frequency after the merger can be within the Pre-DECIGO band so that the ringing tail can also be detectable to confirm the Einstein theory of general relativity with SNR$\sim 35$. [abridged] <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.00897v2-abstract-full').style.display = 'none'; document.getElementById('1607.00897v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures, added some references, modifications to match the published version in PTEP</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Akutsu%2C+T&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Akutsu%2C+T&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Akutsu%2C+T&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10