CINXE.COM
Newton qonunlari - Vikipediya
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="uz" dir="ltr"> <head> <meta charset="UTF-8"> <title>Newton qonunlari - Vikipediya</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )uzwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[".\t,",",\t "],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","yanvar","fevral","mart","aprel","may","iyun","iyul","avgust","sentyabr","oktyabr","noyabr","dekabr"],"wgRequestId":"cc97428b-f524-412b-94ae-81d8130e0ec4","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Newton_qonunlari","wgTitle":"Newton qonunlari","wgCurRevisionId":5231601,"wgRevisionId":5231601,"wgArticleId":959640,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Fizika","Mexanika"],"wgPageViewLanguage":"uz","wgPageContentLanguage":"uz","wgPageContentModel":"wikitext","wgRelevantPageName":"Newton_qonunlari","wgRelevantArticleId":959640,"wgUserVariant":"uz","wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0, "wgVisualEditor":{"pageLanguageCode":"uz","pageLanguageDir":"ltr","pageVariantFallbacks":"uz-latn"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q38433","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready", "ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.refToolbar","ext.gadget.ReferenceTooltips","ext.gadget.HizliBilgi","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints", "ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=uz&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=uz&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=uz&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a8/NASA-Apollo8-Dec24-Earthrise.jpg/1200px-NASA-Apollo8-Dec24-Earthrise.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1200"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a8/NASA-Apollo8-Dec24-Earthrise.jpg/800px-NASA-Apollo8-Dec24-Earthrise.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="800"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a8/NASA-Apollo8-Dec24-Earthrise.jpg/640px-NASA-Apollo8-Dec24-Earthrise.jpg"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="640"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Newton qonunlari - Vikipediya"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//uz.m.wikipedia.org/wiki/Newton_qonunlari"> <link rel="alternate" type="application/x-wiki" title="Tahrir" href="/w/index.php?title=Newton_qonunlari&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Vikipediya (uz)"> <link rel="EditURI" type="application/rsd+xml" href="//uz.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://uz.wikipedia.org/wiki/Newton_qonunlari"> <link rel="alternate" hreflang="uz" href="https://uz.wikipedia.org/wiki/Newton_qonunlari"> <link rel="alternate" hreflang="uz-Cyrl" href="https://uz.wikipedia.org/w/index.php?title=Newton_qonunlari&variant=uz-cyrl"> <link rel="alternate" hreflang="uz-Latn" href="https://uz.wikipedia.org/w/index.php?title=Newton_qonunlari&variant=uz-latn"> <link rel="alternate" hreflang="x-default" href="https://uz.wikipedia.org/wiki/Newton_qonunlari"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.uz"> <link rel="alternate" type="application/atom+xml" title="Vikipediya — Atom-tasma" href="/w/index.php?title=Maxsus:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Newton_qonunlari rootpage-Newton_qonunlari skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Kontent qismiga oʻtish</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Sayt"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Asosiy menyu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Asosiy menyu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Asosiy menyu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">yonqutiga oʻtish</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">yashirish</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Qatnovi </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage" class="mw-list-item"><a href="/wiki/Bosh_Sahifa" title="Bosh sahifaga oʻtish [z]" accesskey="z"><span>Bosh Sahifa</span></a></li><li id="n-Tanlangan-maqolalar" class="mw-list-item"><a href="/wiki/Vikipediya:Tanlangan_maqolalar"><span>Tanlangan maqolalar</span></a></li><li id="n-newpages" class="mw-list-item"><a href="/wiki/Maxsus:NewPages"><span>Yangi sahifalar</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Maxsus:Random" title="Tasodifiy sahifaga oʻtish [x]" accesskey="x"><span>Tasodifiy maqola</span></a></li><li id="n-Maqolalar-indeksi" class="mw-list-item"><a href="/wiki/Vikipediya:Maqolalar_indeksi"><span>Maqolalar indeksi</span></a></li> </ul> </div> </div> <div id="p-Ishtirok" class="vector-menu mw-portlet mw-portlet-Ishtirok" > <div class="vector-menu-heading"> Ishtirok </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-bug_in_article" class="mw-list-item"><a href="/wiki/Vikipediya:Xatolar_haqida_xabarlar" title="Ushbu sahifadagi xato haqida xabar berish"><span>Xato haqida xabar berish</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Maxsus:RecentChanges" title="Vikidagi eng so‘nggi o‘zgarishlar ro‘yxati [r]" accesskey="r"><span>Yangi oʻzgarishlar</span></a></li><li id="n-Jamoa-portali" class="mw-list-item"><a href="/wiki/Vikipediya:Jamoa_portali"><span>Jamoa portali</span></a></li><li id="n-Qoidalar" class="mw-list-item"><a href="/wiki/Vikipediya:Qoida_va_ko%CA%BBrsatmalar"><span>Qoidalar</span></a></li><li id="n-Yordam" class="mw-list-item"><a href="/wiki/Vikipediya:Yordam"><span>Yordam</span></a></li><li id="n-Forum" class="mw-list-item"><a href="/wiki/Vikipediya:Forum"><span>Forum</span></a></li><li id="n-Aloqa" class="mw-list-item"><a href="/wiki/Vikipediya:Aloqa"><span>Aloqa</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Bosh_Sahifa" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Vikipediya" src="/static/images/mobile/copyright/wikipedia-wordmark-uz.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="" src="/static/images/mobile/copyright/wikipedia-tagline-uz.svg" width="120" height="14" style="width: 7.5em; height: 0.875em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Maxsus:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Vikipediyadan qidirish [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Qidiruv</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Vikipediyadan qidirish" aria-label="Vikipediyadan qidirish" autocapitalize="sentences" title="Vikipediyadan qidirish [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Maxsus:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Qidirish</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Shaxsiy uskunalar"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Qiyofa"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Qiyofa" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Qiyofa</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_uz.wikipedia.org&uselang=uz" class=""><span>Loyihaga koʻmak</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Maxsus:CreateAccount&returnto=Newton+qonunlari" title="Bu majburiyat mavjud boʻlmasa-da, hisob yaratishingiz va tizimga kirishingiz tavsiya etiladi." class=""><span>Hisob yaratish</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Maxsus:UserLogin&returnto=Newton+qonunlari" title="Bu majburiyat mavjud bo‘lmasa-da, kirishingiz taklif qilinadi. [o]" accesskey="o" class=""><span>Kirish</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Koʻproq opsiyalar" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Shaxsiy uskunalar" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Shaxsiy uskunalar</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Foydalanuvchi menyusi" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_uz.wikipedia.org&uselang=uz"><span>Loyihaga koʻmak</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Maxsus:CreateAccount&returnto=Newton+qonunlari" title="Bu majburiyat mavjud boʻlmasa-da, hisob yaratishingiz va tizimga kirishingiz tavsiya etiladi."><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Hisob yaratish</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Maxsus:UserLogin&returnto=Newton+qonunlari" title="Bu majburiyat mavjud bo‘lmasa-da, kirishingiz taklif qilinadi. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Kirish</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Chiqishni amalga oshirgan tahrirchilar uchun sahifalar <a href="/wiki/Yordam:Mundarija" aria-label="Tahrirlash haqida batafsil maʼlumot"><span>batafsil maʼlumot</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Maxsus:MyContributions" title="Bu IP-manzildan amalga oshirilgan tahrirlar roʻyxati [y]" accesskey="y"><span>Qoʻshilgan hissa</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Maxsus:MyTalk" title="Bu IP-manzildan amalga oshirilgan tahrirlar munozarasi [n]" accesskey="n"><span>Munozara</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Sayt"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Mundarija" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Mundarija</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">yonqutiga oʻtish</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">yashirish</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Kirish</div> </a> </li> <li id="toc-Birinchi_qonun" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Birinchi_qonun"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Birinchi qonun</span> </div> </a> <ul id="toc-Birinchi_qonun-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ikkinchi_qonun" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Ikkinchi_qonun"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Ikkinchi qonun</span> </div> </a> <ul id="toc-Ikkinchi_qonun-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Uchinchi_qonun" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Uchinchi_qonun"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Uchinchi qonun</span> </div> </a> <ul id="toc-Uchinchi_qonun-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Qoʻshimcha_qonunlar_uchun_nomzodlar" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Qoʻshimcha_qonunlar_uchun_nomzodlar"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Qoʻshimcha qonunlar uchun nomzodlar</span> </div> </a> <ul id="toc-Qoʻshimcha_qonunlar_uchun_nomzodlar-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Misollar" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Misollar"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Misollar</span> </div> </a> <ul id="toc-Misollar-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Tekis_tezlanuvchan_harakat" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Tekis_tezlanuvchan_harakat"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Tekis tezlanuvchan harakat</span> </div> </a> <ul id="toc-Tekis_tezlanuvchan_harakat-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Tekis_aylanma_harakat" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Tekis_aylanma_harakat"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Tekis aylanma harakat</span> </div> </a> <ul id="toc-Tekis_aylanma_harakat-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Garmonik_harakat" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Garmonik_harakat"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Garmonik harakat</span> </div> </a> <ul id="toc-Garmonik_harakat-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Oʻzgaruvchan_massaga_ega_ob’ektlar" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Oʻzgaruvchan_massaga_ega_ob’ektlar"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Oʻzgaruvchan massaga ega ob’ektlar</span> </div> </a> <ul id="toc-Oʻzgaruvchan_massaga_ega_ob’ektlar-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Nyuton_qonunlarining_aylanish_analoglari" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Nyuton_qonunlarining_aylanish_analoglari"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Nyuton qonunlarining aylanish analoglari</span> </div> </a> <ul id="toc-Nyuton_qonunlarining_aylanish_analoglari-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Manbalar" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Manbalar"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Manbalar</span> </div> </a> <ul id="toc-Manbalar-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Mundarija" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Newton qonunlari</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Boshqa tildagi maqolaga oʻting. 116 ta tilda mavjud" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-116" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">116 ta til</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Newton_se_bewegingswette" title="Newton se bewegingswette – afrikaans" lang="af" hreflang="af" data-title="Newton se bewegingswette" data-language-autonym="Afrikaans" data-language-local-name="afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Newtonsche_Gesetze" title="Newtonsche Gesetze – nemis (Shveytsariya)" lang="gsw" hreflang="gsw" data-title="Newtonsche Gesetze" data-language-autonym="Alemannisch" data-language-local-name="nemis (Shveytsariya)" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%82%D9%88%D8%A7%D9%86%D9%8A%D9%86_%D9%86%D9%8A%D9%88%D8%AA%D9%86_%D9%84%D9%84%D8%AD%D8%B1%D9%83%D8%A9" title="قوانين نيوتن للحركة – arab" lang="ar" hreflang="ar" data-title="قوانين نيوتن للحركة" data-language-autonym="العربية" data-language-local-name="arab" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%A8%E0%A6%BF%E0%A6%89%E0%A6%9F%E0%A6%A8%E0%A7%B0_%E0%A6%97%E0%A6%A4%E0%A6%BF%E0%A7%B0_%E0%A6%B8%E0%A7%82%E0%A6%A4%E0%A7%8D%E0%A7%B0" title="নিউটনৰ গতিৰ সূত্ৰ – assam" lang="as" hreflang="as" data-title="নিউটনৰ গতিৰ সূত্ৰ" data-language-autonym="অসমীয়া" data-language-local-name="assam" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Lleis_de_Newton" title="Lleis de Newton – asturiy" lang="ast" hreflang="ast" data-title="Lleis de Newton" data-language-autonym="Asturianu" data-language-local-name="asturiy" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Nyuton_qanunlar%C4%B1" title="Nyuton qanunları – ozarbayjon" lang="az" hreflang="az" data-title="Nyuton qanunları" data-language-autonym="Azərbaycanca" data-language-local-name="ozarbayjon" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%D9%86%DB%8C%D9%88%D8%AA%D9%88%D9%86%D9%88%D9%86_%D8%AD%D8%B1%DA%A9%D8%AA_%D9%82%D8%A7%D9%86%D9%88%D9%86%D9%84%D8%A7%D8%B1%DB%8C" title="نیوتونون حرکت قانونلاری – South Azerbaijani" lang="azb" hreflang="azb" data-title="نیوتونون حرکت قانونلاری" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-ban mw-list-item"><a href="https://ban.wikipedia.org/wiki/Hukum_gerak_Newton" title="Hukum gerak Newton – bali" lang="ban" hreflang="ban" data-title="Hukum gerak Newton" data-language-autonym="Basa Bali" data-language-local-name="bali" class="interlanguage-link-target"><span>Basa Bali</span></a></li><li class="interlanguage-link interwiki-bar mw-list-item"><a href="https://bar.wikipedia.org/wiki/Newtonsche_Axiome" title="Newtonsche Axiome – Bavarian" lang="bar" hreflang="bar" data-title="Newtonsche Axiome" data-language-autonym="Boarisch" data-language-local-name="Bavarian" class="interlanguage-link-target"><span>Boarisch</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD%D1%8B_%D0%9D%D1%8C%D1%8E%D1%82%D0%B0%D0%BD%D0%B0" title="Законы Ньютана – belarus" lang="be" hreflang="be" data-title="Законы Ньютана" data-language-autonym="Беларуская" data-language-local-name="belarus" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD%D1%8B_%D0%9D%D1%8C%D1%8E%D1%82%D0%B0%D0%BD%D0%B0" title="Законы Ньютана – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Законы Ньютана" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD%D0%B8_%D0%BD%D0%B0_%D0%9D%D1%8E%D1%82%D0%BE%D0%BD" title="Закони на Нютон – bolgar" lang="bg" hreflang="bg" data-title="Закони на Нютон" data-language-autonym="Български" data-language-local-name="bolgar" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bh mw-list-item"><a href="https://bh.wikipedia.org/wiki/%E0%A4%A8%E0%A5%8D%E0%A4%AF%E0%A5%82%E0%A4%9F%E0%A4%A8_%E0%A4%95%E0%A5%87_%E0%A4%97%E0%A4%A4%E0%A4%BF_%E0%A4%95%E0%A5%87_%E0%A4%A8%E0%A4%BF%E0%A4%AF%E0%A4%AE" title="न्यूटन के गति के नियम – Bhojpuri" lang="bh" hreflang="bh" data-title="न्यूटन के गति के नियम" data-language-autonym="भोजपुरी" data-language-local-name="Bhojpuri" class="interlanguage-link-target"><span>भोजपुरी</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%A8%E0%A6%BF%E0%A6%89%E0%A6%9F%E0%A6%A8%E0%A7%87%E0%A6%B0_%E0%A6%97%E0%A6%A4%E0%A6%BF%E0%A6%B8%E0%A7%82%E0%A6%A4%E0%A7%8D%E0%A6%B0%E0%A6%B8%E0%A6%AE%E0%A7%82%E0%A6%B9" title="নিউটনের গতিসূত্রসমূহ – bengal" lang="bn" hreflang="bn" data-title="নিউটনের গতিসূত্রসমূহ" data-language-autonym="বাংলা" data-language-local-name="bengal" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Newtonovi_zakoni_kretanja" title="Newtonovi zakoni kretanja – bosniy" lang="bs" hreflang="bs" data-title="Newtonovi zakoni kretanja" data-language-autonym="Bosanski" data-language-local-name="bosniy" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-bxr mw-list-item"><a href="https://bxr.wikipedia.org/wiki/%D0%9D%D1%8C%D1%8E%D1%82%D0%BE%D0%BD%D0%BE%D0%B9_%D1%85%D1%83%D1%83%D0%BB%D0%B8%D0%BD%D1%83%D1%83%D0%B4" title="Ньютоной хуулинууд – Russia Buriat" lang="bxr" hreflang="bxr" data-title="Ньютоной хуулинууд" data-language-autonym="Буряад" data-language-local-name="Russia Buriat" class="interlanguage-link-target"><span>Буряад</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Lleis_de_Newton" title="Lleis de Newton – katalan" lang="ca" hreflang="ca" data-title="Lleis de Newton" data-language-autonym="Català" data-language-local-name="katalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cdo mw-list-item"><a href="https://cdo.wikipedia.org/wiki/Newton_%C3%B4ng-d%C3%B4ng_d%C3%AAng-l%C5%ADk" title="Newton ông-dông dêng-lŭk – Mindong" lang="cdo" hreflang="cdo" data-title="Newton ông-dông dêng-lŭk" data-language-autonym="閩東語 / Mìng-dĕ̤ng-ngṳ̄" data-language-local-name="Mindong" class="interlanguage-link-target"><span>閩東語 / Mìng-dĕ̤ng-ngṳ̄</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DB%8C%D8%A7%D8%B3%D8%A7%DA%A9%D8%A7%D9%86%DB%8C_%D8%AC%D9%88%D9%88%DA%B5%DB%95%DB%8C_%D9%86%DB%8C%D9%88%D8%AA%D9%86" title="یاساکانی جووڵەی نیوتن – sorani-kurd" lang="ckb" hreflang="ckb" data-title="یاساکانی جووڵەی نیوتن" data-language-autonym="کوردی" data-language-local-name="sorani-kurd" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Newtonovy_pohybov%C3%A9_z%C3%A1kony" title="Newtonovy pohybové zákony – chex" lang="cs" hreflang="cs" data-title="Newtonovy pohybové zákony" data-language-autonym="Čeština" data-language-local-name="chex" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9D%D1%8C%D1%8E%D1%82%D0%BE%D0%BD_%D1%81%D0%B0%D0%BA%D0%BA%D1%83%D0%BD%C4%95%D1%81%D0%B5%D0%BC" title="Ньютон саккунĕсем – chuvash" lang="cv" hreflang="cv" data-title="Ньютон саккунĕсем" data-language-autonym="Чӑвашла" data-language-local-name="chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Deddfau_mudiant_Newton" title="Deddfau mudiant Newton – valliy" lang="cy" hreflang="cy" data-title="Deddfau mudiant Newton" data-language-autonym="Cymraeg" data-language-local-name="valliy" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Newtons_love" title="Newtons love – dan" lang="da" hreflang="da" data-title="Newtons love" data-language-autonym="Dansk" data-language-local-name="dan" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Newtonsche_Gesetze" title="Newtonsche Gesetze – nemischa" lang="de" hreflang="de" data-title="Newtonsche Gesetze" data-language-autonym="Deutsch" data-language-local-name="nemischa" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9D%CF%8C%CE%BC%CE%BF%CE%B9_%CE%BA%CE%AF%CE%BD%CE%B7%CF%83%CE%B7%CF%82_%CF%84%CE%BF%CF%85_%CE%9D%CE%B5%CF%8D%CF%84%CF%89%CE%BD%CE%B1" title="Νόμοι κίνησης του Νεύτωνα – grek" lang="el" hreflang="el" data-title="Νόμοι κίνησης του Νεύτωνα" data-language-autonym="Ελληνικά" data-language-local-name="grek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion" title="Newton's laws of motion – inglizcha" lang="en" hreflang="en" data-title="Newton's laws of motion" data-language-autonym="English" data-language-local-name="inglizcha" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Le%C4%9Doj_de_Newton_pri_movo" title="Leĝoj de Newton pri movo – esperanto" lang="eo" hreflang="eo" data-title="Leĝoj de Newton pri movo" data-language-autonym="Esperanto" data-language-local-name="esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Leyes_de_Newton" title="Leyes de Newton – ispancha" lang="es" hreflang="es" data-title="Leyes de Newton" data-language-autonym="Español" data-language-local-name="ispancha" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Newtoni_seadused" title="Newtoni seadused – estoncha" lang="et" hreflang="et" data-title="Newtoni seadused" data-language-autonym="Eesti" data-language-local-name="estoncha" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Newtonen_legeak" title="Newtonen legeak – bask" lang="eu" hreflang="eu" data-title="Newtonen legeak" data-language-autonym="Euskara" data-language-local-name="bask" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%82%D9%88%D8%A7%D9%86%DB%8C%D9%86_%D8%AD%D8%B1%DA%A9%D8%AA_%D9%86%DB%8C%D9%88%D8%AA%D9%86" title="قوانین حرکت نیوتن – fors" lang="fa" hreflang="fa" data-title="قوانین حرکت نیوتن" data-language-autonym="فارسی" data-language-local-name="fors" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Newtonin_lait" title="Newtonin lait – fincha" lang="fi" hreflang="fi" data-title="Newtonin lait" data-language-autonym="Suomi" data-language-local-name="fincha" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Lois_du_mouvement_de_Newton" title="Lois du mouvement de Newton – fransuzcha" lang="fr" hreflang="fr" data-title="Lois du mouvement de Newton" data-language-autonym="Français" data-language-local-name="fransuzcha" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-fy mw-list-item"><a href="https://fy.wikipedia.org/wiki/Wetten_fan_Newton" title="Wetten fan Newton – g‘arbiy friz" lang="fy" hreflang="fy" data-title="Wetten fan Newton" data-language-autonym="Frysk" data-language-local-name="g‘arbiy friz" class="interlanguage-link-target"><span>Frysk</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Dl%C3%ADthe_gluaisne_Newton" title="Dlíthe gluaisne Newton – irland" lang="ga" hreflang="ga" data-title="Dlíthe gluaisne Newton" data-language-autonym="Gaeilge" data-language-local-name="irland" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://gcr.wikipedia.org/wiki/Lalwa_di_mouvman_di_Newton" title="Lalwa di mouvman di Newton – Guianan Creole" lang="gcr" hreflang="gcr" data-title="Lalwa di mouvman di Newton" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="Guianan Creole" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Leis_de_Newton" title="Leis de Newton – galisiy" lang="gl" hreflang="gl" data-title="Leis de Newton" data-language-autonym="Galego" data-language-local-name="galisiy" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-gu mw-list-item"><a href="https://gu.wikipedia.org/wiki/%E0%AA%97%E0%AA%A4%E0%AA%BF%E0%AA%A8%E0%AA%BE_%E0%AA%A8%E0%AA%BF%E0%AA%AF%E0%AA%AE%E0%AB%8B" title="ગતિના નિયમો – gujarot" lang="gu" hreflang="gu" data-title="ગતિના નિયમો" data-language-autonym="ગુજરાતી" data-language-local-name="gujarot" class="interlanguage-link-target"><span>ગુજરાતી</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%97%D7%95%D7%A7%D7%99_%D7%94%D7%AA%D7%A0%D7%95%D7%A2%D7%94_%D7%A9%D7%9C_%D7%A0%D7%99%D7%95%D7%98%D7%95%D7%9F" title="חוקי התנועה של ניוטון – ivrit" lang="he" hreflang="he" data-title="חוקי התנועה של ניוטון" data-language-autonym="עברית" data-language-local-name="ivrit" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%A8%E0%A5%8D%E0%A4%AF%E0%A5%82%E0%A4%9F%E0%A4%A8_%E0%A4%95%E0%A5%87_%E0%A4%97%E0%A4%A4%E0%A4%BF_%E0%A4%A8%E0%A4%BF%E0%A4%AF%E0%A4%AE" title="न्यूटन के गति नियम – hind" lang="hi" hreflang="hi" data-title="न्यूटन के गति नियम" data-language-autonym="हिन्दी" data-language-local-name="hind" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Newtonovi_zakoni_gibanja" title="Newtonovi zakoni gibanja – xorvat" lang="hr" hreflang="hr" data-title="Newtonovi zakoni gibanja" data-language-autonym="Hrvatski" data-language-local-name="xorvat" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-ht mw-list-item"><a href="https://ht.wikipedia.org/wiki/Lwa_mouvman_Newton" title="Lwa mouvman Newton – gaityan" lang="ht" hreflang="ht" data-title="Lwa mouvman Newton" data-language-autonym="Kreyòl ayisyen" data-language-local-name="gaityan" class="interlanguage-link-target"><span>Kreyòl ayisyen</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Newton_t%C3%B6rv%C3%A9nyei" title="Newton törvényei – venger" lang="hu" hreflang="hu" data-title="Newton törvényei" data-language-autonym="Magyar" data-language-local-name="venger" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%86%D5%B5%D5%B8%D6%82%D5%BF%D5%B8%D5%B6%D5%AB_%D6%85%D6%80%D5%A5%D5%B6%D6%84%D5%B6%D5%A5%D6%80" title="Նյուտոնի օրենքներ – arman" lang="hy" hreflang="hy" data-title="Նյուտոնի օրենքներ" data-language-autonym="Հայերեն" data-language-local-name="arman" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hyw mw-list-item"><a href="https://hyw.wikipedia.org/wiki/%D5%86%D5%AB%D6%82%D5%A9%D5%B8%D5%B6%D5%AB_%D5%B7%D5%A1%D6%80%D5%AA%D5%B4%D5%A1%D5%B6_%D6%85%D6%80%D5%A7%D5%B6%D6%84%D5%B6%D5%A5%D6%80" title="Նիւթոնի շարժման օրէնքներ – Western Armenian" lang="hyw" hreflang="hyw" data-title="Նիւթոնի շարժման օրէնքներ" data-language-autonym="Արեւմտահայերէն" data-language-local-name="Western Armenian" class="interlanguage-link-target"><span>Արեւմտահայերէն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Leges_de_Newton" title="Leges de Newton – interlingva" lang="ia" hreflang="ia" data-title="Leges de Newton" data-language-autonym="Interlingua" data-language-local-name="interlingva" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Hukum_gerak_Newton" title="Hukum gerak Newton – indonez" lang="id" hreflang="id" data-title="Hukum gerak Newton" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonez" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Legi_di_Newton" title="Legi di Newton – ido" lang="io" hreflang="io" data-title="Legi di Newton" data-language-autonym="Ido" data-language-local-name="ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/L%C3%B6gm%C3%A1l_Newtons" title="Lögmál Newtons – island" lang="is" hreflang="is" data-title="Lögmál Newtons" data-language-autonym="Íslenska" data-language-local-name="island" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Principi_della_dinamica" title="Principi della dinamica – italyan" lang="it" hreflang="it" data-title="Principi della dinamica" data-language-autonym="Italiano" data-language-local-name="italyan" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E5%8A%9B%E5%AD%A6" title="ニュートン力学 – yapon" lang="ja" hreflang="ja" data-title="ニュートン力学" data-language-autonym="日本語" data-language-local-name="yapon" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-jam mw-list-item"><a href="https://jam.wikipedia.org/wiki/Nyuutan_laa_a_muoshan" title="Nyuutan laa a muoshan – Jamaican Creole English" lang="jam" hreflang="jam" data-title="Nyuutan laa a muoshan" data-language-autonym="Patois" data-language-local-name="Jamaican Creole English" class="interlanguage-link-target"><span>Patois</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%9C%E1%83%98%E1%83%A3%E1%83%A2%E1%83%9D%E1%83%9C%E1%83%98%E1%83%A1_%E1%83%99%E1%83%90%E1%83%9C%E1%83%9D%E1%83%9C%E1%83%94%E1%83%91%E1%83%98" title="ნიუტონის კანონები – gruzincha" lang="ka" hreflang="ka" data-title="ნიუტონის კანონები" data-language-autonym="ქართული" data-language-local-name="gruzincha" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kbp mw-list-item"><a href="https://kbp.wikipedia.org/wiki/Newton_ciiduu_pa%C9%A3t%CA%8B_nd%C9%A9_nd%C9%A9" title="Newton ciiduu paɣtʋ ndɩ ndɩ – Kabiye" lang="kbp" hreflang="kbp" data-title="Newton ciiduu paɣtʋ ndɩ ndɩ" data-language-autonym="Kabɩyɛ" data-language-local-name="Kabiye" class="interlanguage-link-target"><span>Kabɩyɛ</span></a></li><li class="interlanguage-link interwiki-ki mw-list-item"><a href="https://ki.wikipedia.org/wiki/Mawatho_matano_ma_Newton" title="Mawatho matano ma Newton – kikuyu" lang="ki" hreflang="ki" data-title="Mawatho matano ma Newton" data-language-autonym="Gĩkũyũ" data-language-local-name="kikuyu" class="interlanguage-link-target"><span>Gĩkũyũ</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9D%D1%8C%D1%8E%D1%82%D0%BE%D0%BD_%D0%B7%D0%B0%D2%A3%D0%B4%D0%B0%D1%80%D1%8B" title="Ньютон заңдары – qozoqcha" lang="kk" hreflang="kk" data-title="Ньютон заңдары" data-language-autonym="Қазақша" data-language-local-name="qozoqcha" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%85%E1%9F%92%E1%9E%94%E1%9E%B6%E1%9E%94%E1%9F%8B%E1%9E%85%E1%9E%9B%E1%9E%93%E1%9E%B6%E1%9E%9A%E1%9E%94%E1%9E%9F%E1%9F%8B%E1%9E%89%E1%9E%BC%E1%9E%8F%E1%9E%BB%E1%9E%93" title="ច្បាប់ចលនារបស់ញូតុន – xmer" lang="km" hreflang="km" data-title="ច្បាប់ចលនារបស់ញូតុន" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="xmer" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%A8%E0%B3%8D%E0%B2%AF%E0%B3%82%E0%B2%9F%E0%B2%A8%E0%B3%8D%E2%80%8D%E0%B2%A8_%E0%B2%9A%E0%B2%B2%E0%B2%A8%E0%B3%86%E0%B2%AF_%E0%B2%A8%E0%B2%BF%E0%B2%AF%E0%B2%AE%E0%B2%97%E0%B2%B3%E0%B3%81" title="ನ್ಯೂಟನ್ನ ಚಲನೆಯ ನಿಯಮಗಳು – kannada" lang="kn" hreflang="kn" data-title="ನ್ಯೂಟನ್ನ ಚಲನೆಯ ನಿಯಮಗಳು" data-language-autonym="ಕನ್ನಡ" data-language-local-name="kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%89%B4%ED%84%B4_%EC%9A%B4%EB%8F%99_%EB%B2%95%EC%B9%99" title="뉴턴 운동 법칙 – koreyscha" lang="ko" hreflang="ko" data-title="뉴턴 운동 법칙" data-language-autonym="한국어" data-language-local-name="koreyscha" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Leges_motus_Newtoni" title="Leges motus Newtoni – lotincha" lang="la" hreflang="la" data-title="Leges motus Newtoni" data-language-autonym="Latina" data-language-local-name="lotincha" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-li mw-list-item"><a href="https://li.wikipedia.org/wiki/W%C3%A8tte_van_Newton" title="Wètte van Newton – limburg" lang="li" hreflang="li" data-title="Wètte van Newton" data-language-autonym="Limburgs" data-language-local-name="limburg" class="interlanguage-link-target"><span>Limburgs</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Niutono_d%C4%97sniai" title="Niutono dėsniai – litva" lang="lt" hreflang="lt" data-title="Niutono dėsniai" data-language-autonym="Lietuvių" data-language-local-name="litva" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/%C5%85%C5%ABtona_likumi" title="Ņūtona likumi – latishcha" lang="lv" hreflang="lv" data-title="Ņūtona likumi" data-language-autonym="Latviešu" data-language-local-name="latishcha" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mai mw-list-item"><a href="https://mai.wikipedia.org/wiki/%E0%A4%A8%E0%A5%8D%E0%A4%AF%E0%A5%81%E0%A4%9F%E0%A4%A8%E0%A4%95_%E0%A4%97%E0%A4%A4%E0%A4%BF_%E0%A4%A8%E0%A4%BF%E0%A4%AF%E0%A4%AE" title="न्युटनक गति नियम – maythili" lang="mai" hreflang="mai" data-title="न्युटनक गति नियम" data-language-autonym="मैथिली" data-language-local-name="maythili" class="interlanguage-link-target"><span>मैथिली</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%8A%D1%83%D1%82%D0%BD%D0%BE%D0%B2%D0%B8_%D0%B7%D0%B0%D0%BA%D0%BE%D0%BD%D0%B8" title="Њутнови закони – makedon" lang="mk" hreflang="mk" data-title="Њутнови закони" data-language-autonym="Македонски" data-language-local-name="makedon" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%A8%E0%B5%8D%E0%B4%AF%E0%B5%82%E0%B4%9F%E0%B5%8D%E0%B4%9F%E0%B4%A8%E0%B5%8D%E0%B4%B1%E0%B5%86_%E0%B4%9A%E0%B4%B2%E0%B4%A8%E0%B4%A8%E0%B4%BF%E0%B4%AF%E0%B4%AE%E0%B4%99%E0%B5%8D%E0%B4%99%E0%B5%BE" title="ന്യൂട്ടന്റെ ചലനനിയമങ്ങൾ – malayalam" lang="ml" hreflang="ml" data-title="ന്യൂട്ടന്റെ ചലനനിയമങ്ങൾ" data-language-autonym="മലയാളം" data-language-local-name="malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%9D%D1%8C%D1%8E%D1%82%D0%BE%D0%BD%D1%8B_%D1%85%D1%83%D1%83%D0%BB%D0%B8%D1%83%D0%B4" title="Ньютоны хуулиуд – mongol" lang="mn" hreflang="mn" data-title="Ньютоны хуулиуд" data-language-autonym="Монгол" data-language-local-name="mongol" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%A8%E0%A5%8D%E0%A4%AF%E0%A5%82%E0%A4%9F%E0%A4%A8%E0%A4%9A%E0%A5%87_%E0%A4%97%E0%A4%A4%E0%A5%80%E0%A4%9A%E0%A5%87_%E0%A4%A8%E0%A4%BF%E0%A4%AF%E0%A4%AE" title="न्यूटनचे गतीचे नियम – maratxi" lang="mr" hreflang="mr" data-title="न्यूटनचे गतीचे नियम" data-language-autonym="मराठी" data-language-local-name="maratxi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Hukum-hukum_gerakan_Newton" title="Hukum-hukum gerakan Newton – malay" lang="ms" hreflang="ms" data-title="Hukum-hukum gerakan Newton" data-language-autonym="Bahasa Melayu" data-language-local-name="malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%94%E1%80%9A%E1%80%B0%E1%80%90%E1%80%94%E1%80%BA%E1%81%8F_%E1%80%9B%E1%80%BD%E1%80%B1%E1%80%B7%E1%80%9C%E1%80%BB%E1%80%AC%E1%80%B8%E1%80%99%E1%80%BE%E1%80%AF%E1%80%86%E1%80%AD%E1%80%AF%E1%80%84%E1%80%BA%E1%80%9B%E1%80%AC_%E1%80%94%E1%80%AD%E1%80%9A%E1%80%AC%E1%80%99%E1%80%99%E1%80%BB%E1%80%AC%E1%80%B8" title="နယူတန်၏ ရွေ့လျားမှုဆိုင်ရာ နိယာမများ – birman" lang="my" hreflang="my" data-title="နယူတန်၏ ရွေ့လျားမှုဆိုင်ရာ နိယာမများ" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="birman" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nds-nl mw-list-item"><a href="https://nds-nl.wikipedia.org/wiki/Newton_zien_wetten" title="Newton zien wetten – quyi sakson" lang="nds-NL" hreflang="nds-NL" data-title="Newton zien wetten" data-language-autonym="Nedersaksies" data-language-local-name="quyi sakson" class="interlanguage-link-target"><span>Nedersaksies</span></a></li><li class="interlanguage-link interwiki-ne mw-list-item"><a href="https://ne.wikipedia.org/wiki/%E0%A4%A8%E0%A5%8D%E0%A4%AF%E0%A5%81%E0%A4%9F%E0%A4%A8%E0%A4%95%E0%A5%8B_%E0%A4%97%E0%A4%A4%E0%A4%BF%E0%A4%95%E0%A4%BE_%E0%A4%A8%E0%A4%BF%E0%A4%AF%E0%A4%AE%E0%A4%B9%E0%A4%B0%E0%A5%82" title="न्युटनको गतिका नियमहरू – nepal" lang="ne" hreflang="ne" data-title="न्युटनको गतिका नियमहरू" data-language-autonym="नेपाली" data-language-local-name="nepal" class="interlanguage-link-target"><span>नेपाली</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Wetten_van_Newton" title="Wetten van Newton – niderland" lang="nl" hreflang="nl" data-title="Wetten van Newton" data-language-autonym="Nederlands" data-language-local-name="niderland" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Newtons_r%C3%B8rslelover" title="Newtons rørslelover – norveg-nyunorsk" lang="nn" hreflang="nn" data-title="Newtons rørslelover" data-language-autonym="Norsk nynorsk" data-language-local-name="norveg-nyunorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Newtons_bevegelseslover" title="Newtons bevegelseslover – norveg-bokmal" lang="nb" hreflang="nb" data-title="Newtons bevegelseslover" data-language-autonym="Norsk bokmål" data-language-local-name="norveg-bokmal" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Leis_de_Newton" title="Leis de Newton – oksitan" lang="oc" hreflang="oc" data-title="Leis de Newton" data-language-autonym="Occitan" data-language-local-name="oksitan" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%A8%E0%A8%BF%E0%A8%8A%E0%A8%9F%E0%A8%A8_%E0%A8%A6%E0%A9%87_%E0%A8%97%E0%A8%A4%E0%A9%80_%E0%A8%A6%E0%A9%87_%E0%A8%A8%E0%A8%BF%E0%A8%AF%E0%A8%AE" title="ਨਿਊਟਨ ਦੇ ਗਤੀ ਦੇ ਨਿਯਮ – panjobcha" lang="pa" hreflang="pa" data-title="ਨਿਊਟਨ ਦੇ ਗਤੀ ਦੇ ਨਿਯਮ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="panjobcha" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Zasady_dynamiki_Newtona" title="Zasady dynamiki Newtona – polyakcha" lang="pl" hreflang="pl" data-title="Zasady dynamiki Newtona" data-language-autonym="Polski" data-language-local-name="polyakcha" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Lej_d%C3%ABl_moviment_%C3%ABd_Newton" title="Lej dël moviment ëd Newton – Piedmontese" lang="pms" hreflang="pms" data-title="Lej dël moviment ëd Newton" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D9%86%DB%8C%D9%88%D9%B9%D9%86_%D8%AF%DB%92_%DA%86%D9%84%D9%86_%D8%AF%DB%92_%D9%82%D9%86%D9%88%D9%86" title="نیوٹن دے چلن دے قنون – Western Punjabi" lang="pnb" hreflang="pnb" data-title="نیوٹن دے چلن دے قنون" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-ps mw-list-item"><a href="https://ps.wikipedia.org/wiki/%D8%AF_%D8%AE%D9%88%DA%81%DA%9A%D8%AA_%D9%BE%D9%87_%D8%A7%DA%93%D9%87_%D8%AF_%D9%86%DB%8C%D9%88%D9%BC%D9%86_%D9%82%D9%88%D8%A7%D9%86%DB%8C%D9%86" title="د خوځښت په اړه د نیوټن قوانین – pushtu" lang="ps" hreflang="ps" data-title="د خوځښت په اړه د نیوټن قوانین" data-language-autonym="پښتو" data-language-local-name="pushtu" class="interlanguage-link-target"><span>پښتو</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Leis_de_Newton" title="Leis de Newton – portugalcha" lang="pt" hreflang="pt" data-title="Leis de Newton" data-language-autonym="Português" data-language-local-name="portugalcha" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Legile_lui_Newton" title="Legile lui Newton – rumincha" lang="ro" hreflang="ro" data-title="Legile lui Newton" data-language-autonym="Română" data-language-local-name="rumincha" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD%D1%8B_%D0%9D%D1%8C%D1%8E%D1%82%D0%BE%D0%BD%D0%B0" title="Законы Ньютона – ruscha" lang="ru" hreflang="ru" data-title="Законы Ньютона" data-language-autonym="Русский" data-language-local-name="ruscha" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-rue mw-list-item"><a href="https://rue.wikipedia.org/wiki/%D0%9D%D1%8C%D1%8E%D1%82%D0%BE%D0%BD%D0%BE%D0%B2%D1%8B_%D0%B7%D0%B0%D0%BA%D0%BE%D0%BD%D1%8B_%D1%80%D1%83%D1%88%D0%B0%D0%BD%D1%8F" title="Ньютоновы законы рушаня – Rusyn" lang="rue" hreflang="rue" data-title="Ньютоновы законы рушаня" data-language-autonym="Русиньскый" data-language-local-name="Rusyn" class="interlanguage-link-target"><span>Русиньскый</span></a></li><li class="interlanguage-link interwiki-sah mw-list-item"><a href="https://sah.wikipedia.org/wiki/%D0%9D%D1%8C%D1%8E%D1%82%D0%BE%D0%BD_%D1%81%D0%BE%D0%BA%D1%83%D0%BE%D0%BD%D0%BD%D0%B0%D1%80%D0%B0" title="Ньютон сокуоннара – saxa" lang="sah" hreflang="sah" data-title="Ньютон сокуоннара" data-language-autonym="Саха тыла" data-language-local-name="saxa" class="interlanguage-link-target"><span>Саха тыла</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Liggi_di_Newton" title="Liggi di Newton – sitsiliya" lang="scn" hreflang="scn" data-title="Liggi di Newton" data-language-autonym="Sicilianu" data-language-local-name="sitsiliya" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-sd mw-list-item"><a href="https://sd.wikipedia.org/wiki/%D9%86%D9%8A%D9%88%D9%BD%D9%86_%D8%AC%D8%A7_%D8%AD%D8%B1%DA%AA%D8%AA_%D8%AC%D8%A7_%D9%82%D8%A7%D9%86%D9%88%D9%86" title="نيوٽن جا حرڪت جا قانون – sindhi" lang="sd" hreflang="sd" data-title="نيوٽن جا حرڪت جا قانون" data-language-autonym="سنڌي" data-language-local-name="sindhi" class="interlanguage-link-target"><span>سنڌي</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Newtonovi_zakoni_kretanja" title="Newtonovi zakoni kretanja – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Newtonovi zakoni kretanja" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-shi mw-list-item"><a href="https://shi.wikipedia.org/wiki/Islgan_n_umussu_n_Nyu%E1%B9%ADun" title="Islgan n umussu n Nyuṭun – tashelxit" lang="shi" hreflang="shi" data-title="Islgan n umussu n Nyuṭun" data-language-autonym="Taclḥit" data-language-local-name="tashelxit" class="interlanguage-link-target"><span>Taclḥit</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%A0%E0%B6%BD%E0%B7%92%E0%B6%AD%E0%B6%BA_%E0%B6%B4%E0%B7%92%E0%B7%85%E0%B7%92%E0%B6%B6%E0%B6%B3_%E0%B6%B1%E0%B7%92%E0%B7%80%E0%B7%8A%E0%B6%A7%E0%B6%B1%E0%B7%8A_%E0%B6%B1%E0%B7%92%E0%B6%BA%E0%B6%B8" title="චලිතය පිළිබඳ නිව්ටන් නියම – singal" lang="si" hreflang="si" data-title="චලිතය පිළිබඳ නිව්ටන් නියම" data-language-autonym="සිංහල" data-language-local-name="singal" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Newton%27s_laws_of_motion" title="Newton's laws of motion – Simple English" lang="en-simple" hreflang="en-simple" data-title="Newton's laws of motion" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Newtonove_pohybov%C3%A9_z%C3%A1kony" title="Newtonove pohybové zákony – slovakcha" lang="sk" hreflang="sk" data-title="Newtonove pohybové zákony" data-language-autonym="Slovenčina" data-language-local-name="slovakcha" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-skr mw-list-item"><a href="https://skr.wikipedia.org/wiki/%D9%86%DB%8C%D9%88%D9%B9%D9%86_%D8%AF%D8%A7_%D9%BE%DB%81%D9%84%D8%A7_%D9%82%D9%86%D9%88%D9%86" title="نیوٹن دا پہلا قنون – Saraiki" lang="skr" hreflang="skr" data-title="نیوٹن دا پہلا قنون" data-language-autonym="سرائیکی" data-language-local-name="Saraiki" class="interlanguage-link-target"><span>سرائیکی</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Newtonovi_zakoni_gibanja" title="Newtonovi zakoni gibanja – slovencha" lang="sl" hreflang="sl" data-title="Newtonovi zakoni gibanja" data-language-autonym="Slovenščina" data-language-local-name="slovencha" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sn mw-list-item"><a href="https://sn.wikipedia.org/wiki/Mitemo_yaNewton_paMuhambo" title="Mitemo yaNewton paMuhambo – shona" lang="sn" hreflang="sn" data-title="Mitemo yaNewton paMuhambo" data-language-autonym="ChiShona" data-language-local-name="shona" class="interlanguage-link-target"><span>ChiShona</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Ligjet_e_Njutonit" title="Ligjet e Njutonit – alban" lang="sq" hreflang="sq" data-title="Ligjet e Njutonit" data-language-autonym="Shqip" data-language-local-name="alban" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%8A%D1%83%D1%82%D0%BD%D0%BE%D0%B2%D0%B8_%D0%B7%D0%B0%D0%BA%D0%BE%D0%BD%D0%B8" title="Њутнови закони – serbcha" lang="sr" hreflang="sr" data-title="Њутнови закони" data-language-autonym="Српски / srpski" data-language-local-name="serbcha" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Hukum_gerak_Newton" title="Hukum gerak Newton – sundan" lang="su" hreflang="su" data-title="Hukum gerak Newton" data-language-autonym="Sunda" data-language-local-name="sundan" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Newtons_r%C3%B6relselagar" title="Newtons rörelselagar – shved" lang="sv" hreflang="sv" data-title="Newtons rörelselagar" data-language-autonym="Svenska" data-language-local-name="shved" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%A8%E0%AE%BF%E0%AE%AF%E0%AF%82%E0%AE%9F%E0%AF%8D%E0%AE%9F%E0%AE%A9%E0%AE%BF%E0%AE%A9%E0%AF%8D_%E0%AE%87%E0%AE%AF%E0%AE%95%E0%AF%8D%E0%AE%95_%E0%AE%B5%E0%AE%BF%E0%AE%A4%E0%AE%BF%E0%AE%95%E0%AE%B3%E0%AF%8D" title="நியூட்டனின் இயக்க விதிகள் – tamil" lang="ta" hreflang="ta" data-title="நியூட்டனின் இயக்க விதிகள்" data-language-autonym="தமிழ்" data-language-local-name="tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%A8%E0%B1%8D%E0%B0%AF%E0%B1%82%E0%B0%9F%E0%B0%A8%E0%B1%8D_%E0%B0%B8%E0%B1%82%E0%B0%A4%E0%B1%8D%E0%B0%B0%E0%B0%BE%E0%B0%B2%E0%B1%81" title="న్యూటన్ సూత్రాలు – telugu" lang="te" hreflang="te" data-title="న్యూటన్ సూత్రాలు" data-language-autonym="తెలుగు" data-language-local-name="telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%81%E0%B8%8E%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B9%80%E0%B8%84%E0%B8%A5%E0%B8%B7%E0%B9%88%E0%B8%AD%E0%B8%99%E0%B8%97%E0%B8%B5%E0%B9%88%E0%B8%82%E0%B8%AD%E0%B8%87%E0%B8%99%E0%B8%B4%E0%B8%A7%E0%B8%95%E0%B8%B1%E0%B8%99" title="กฎการเคลื่อนที่ของนิวตัน – tay" lang="th" hreflang="th" data-title="กฎการเคลื่อนที่ของนิวตัน" data-language-autonym="ไทย" data-language-local-name="tay" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Mga_batas_ng_mosyon_ni_Newton" title="Mga batas ng mosyon ni Newton – Tagalog" lang="tl" hreflang="tl" data-title="Mga batas ng mosyon ni Newton" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Newton%27un_hareket_yasalar%C4%B1" title="Newton'un hareket yasaları – turk" lang="tr" hreflang="tr" data-title="Newton'un hareket yasaları" data-language-autonym="Türkçe" data-language-local-name="turk" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%9D%D1%8C%D1%8E%D1%82%D0%BE%D0%BD_%D0%B7%D0%B0%D0%BA%D0%BE%D0%BD%D0%BD%D0%B0%D1%80%D1%8B" title="Ньютон законнары – tatar" lang="tt" hreflang="tt" data-title="Ньютон законнары" data-language-autonym="Татарча / tatarça" data-language-local-name="tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD%D0%B8_%D0%9D%D1%8C%D1%8E%D1%82%D0%BE%D0%BD%D0%B0" title="Закони Ньютона – ukrain" lang="uk" hreflang="uk" data-title="Закони Ньютона" data-language-autonym="Українська" data-language-local-name="ukrain" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%86%DB%8C%D9%88%D9%B9%D9%86_%DA%A9%DB%92_%D9%82%D9%88%D8%A7%D9%86%DB%8C%D9%86_%D8%AD%D8%B1%DA%A9%D8%AA" title="نیوٹن کے قوانین حرکت – urdu" lang="ur" hreflang="ur" data-title="نیوٹن کے قوانین حرکت" data-language-autonym="اردو" data-language-local-name="urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/C%C3%A1c_%C4%91%E1%BB%8Bnh_lu%E1%BA%ADt_v%E1%BB%81_chuy%E1%BB%83n_%C4%91%E1%BB%99ng_c%E1%BB%A7a_Newton" title="Các định luật về chuyển động của Newton – vyetnam" lang="vi" hreflang="vi" data-title="Các định luật về chuyển động của Newton" data-language-autonym="Tiếng Việt" data-language-local-name="vyetnam" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Balaod_nga_mosyon_ha_Newton" title="Balaod nga mosyon ha Newton – varay" lang="war" hreflang="war" data-title="Balaod nga mosyon ha Newton" data-language-autonym="Winaray" data-language-local-name="varay" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E7%89%9B%E9%A1%BF%E8%BF%90%E5%8A%A8%E5%AE%9A%E5%BE%8B" title="牛顿运动定律 – vu xitoy" lang="wuu" hreflang="wuu" data-title="牛顿运动定律" data-language-autonym="吴语" data-language-local-name="vu xitoy" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yo mw-list-item"><a href="https://yo.wikipedia.org/wiki/%C3%80w%E1%BB%8Dn_%C3%B2fin_%C3%ACm%C3%BAr%C3%ACn_Newton" title="Àwọn òfin ìmúrìn Newton – yoruba" lang="yo" hreflang="yo" data-title="Àwọn òfin ìmúrìn Newton" data-language-autonym="Yorùbá" data-language-local-name="yoruba" class="interlanguage-link-target"><span>Yorùbá</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%89%9B%E9%A1%BF%E8%BF%90%E5%8A%A8%E5%AE%9A%E5%BE%8B" title="牛顿运动定律 – xitoy" lang="zh" hreflang="zh" data-title="牛顿运动定律" data-language-autonym="中文" data-language-local-name="xitoy" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E7%89%9B%E9%A0%93%E5%AE%9A%E5%BE%8B" title="牛頓定律 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="牛頓定律" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E7%89%9B%E9%A0%93%E9%81%8B%E5%8B%95%E5%AE%9A%E5%BE%8B" title="牛頓運動定律 – kanton" lang="yue" hreflang="yue" data-title="牛頓運動定律" data-language-autonym="粵語" data-language-local-name="kanton" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zu mw-list-item"><a href="https://zu.wikipedia.org/wiki/Imithetho_yomdiki_kaNewton" title="Imithetho yomdiki kaNewton – zulu" lang="zu" hreflang="zu" data-title="Imithetho yomdiki kaNewton" data-language-autonym="IsiZulu" data-language-local-name="zulu" class="interlanguage-link-target"><span>IsiZulu</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q38433#sitelinks-wikipedia" title="Tillararo ishoratlarni tahrirlash" class="wbc-editpage">Ishoratlarni tahrirla</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Nomfazolar"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Newton_qonunlari" title="Sahifani ko‘rish [c]" accesskey="c"><span>Maqola</span></a></li><li id="ca-talk" class="new vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Munozara:Newton_qonunlari&action=edit&redlink=1" rel="discussion" class="new" title="Sahifa matni borasida munozara (sahifa yaratilmagan) [t]" accesskey="t"><span>Munozara</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown " > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Til variantini oʻzgartirish" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">lotin/кирилл</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-varlang-0" class="selected ca-variants-uz mw-list-item"><a href="/w/index.php?title=Newton_qonunlari&variant=uz" lang="uz" hreflang="uz"><span>lotin/кирилл</span></a></li><li id="ca-varlang-1" class="ca-variants-uz-Latn mw-list-item"><a href="/w/index.php?title=Newton_qonunlari&variant=uz-latn" lang="uz-Latn" hreflang="uz-Latn"><span>lotin</span></a></li><li id="ca-varlang-2" class="ca-variants-uz-Cyrl mw-list-item"><a href="/w/index.php?title=Newton_qonunlari&variant=uz-cyrl" lang="uz-Cyrl" hreflang="uz-Cyrl"><span>кирилл</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Koʻrinishlar<!--Views-->"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Newton_qonunlari"><span>Mutolaa</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Newton_qonunlari&veaction=edit" title="Bu sahifani tahrirlash [v]" accesskey="v"><span>Tahrirlash</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Newton_qonunlari&action=edit" title="Sahifa manba kodini tahrirlash [e]" accesskey="e"><span>Manbasini tahrirlash</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Newton_qonunlari&action=history" title="Bu sahifaning oʻzgarishlar tarixi [h]" accesskey="h"><span>Tarix</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Asboblar" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Asboblar</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Asboblar</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">yonqutiga oʻtish</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">yashirish</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Koʻproq opsiyalar" > <div class="vector-menu-heading"> Amallar </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Newton_qonunlari"><span>Mutolaa</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Newton_qonunlari&veaction=edit" title="Bu sahifani tahrirlash [v]" accesskey="v"><span>Tahrirlash</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Newton_qonunlari&action=edit" title="Sahifa manba kodini tahrirlash [e]" accesskey="e"><span>Manbasini tahrirlash</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Newton_qonunlari&action=history"><span>Tarix</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Umumiy </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Maxsus:WhatLinksHere/Newton_qonunlari" title="Ushbu sahifaga bogʻlangan sahifalar roʻyxati [j]" accesskey="j"><span>Bu yerga ishoratlar</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Maxsus:RecentChangesLinked/Newton_qonunlari" rel="nofollow" title="Bu sahifaga bogʻlangan sahifalardagi yangi oʻzgarishlar [k]" accesskey="k"><span>Bogʻliq oʻzgarishlar</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Maxsus:SpecialPages" title="Maxsus sahifalar ro‘yxati [q]" accesskey="q"><span>Maxsus sahifalar</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Newton_qonunlari&oldid=5231601" title="Sahifaning ushbu versiyasiga doimiy ishorat"><span>Doimiy havola</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Newton_qonunlari&action=info" title="Bu sahifa haqida koʻproq maʼlumot"><span>Sahifa haqida maʼlumot</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Maxsus:CiteThisPage&page=Newton_qonunlari&id=5231601&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Sahifadan matn parchasi ajratish</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Maxsus:UrlShortener&url=https%3A%2F%2Fuz.wikipedia.org%2Fwiki%2FNewton_qonunlari"><span>Qisqartirilgan URL-manzilni olish</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Maxsus:QrCode&url=https%3A%2F%2Fuz.wikipedia.org%2Fwiki%2FNewton_qonunlari"><span>QR-kodni yuklab olish</span></a></li> </ul> </div> </div> <div id="p-electronpdfservice-sidebar-portlet-heading" class="vector-menu mw-portlet mw-portlet-electronpdfservice-sidebar-portlet-heading" > <div class="vector-menu-heading"> Nashr/eksport qilish </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="electron-print_pdf" class="mw-list-item"><a href="/w/index.php?title=Maxsus:DownloadAsPdf&page=Newton_qonunlari&action=show-download-screen"><span>PDF sifatida yuklash</span></a></li><li id="t-print" class="mw-list-item"><a href="javascript:print();" rel="alternate" title="Ushbu sahifaning bosma uchun versiyasi [p]" accesskey="p"><span>Bosma uchun versiya</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Boshqa loyihalarda </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Newton%27s_laws_of_motion" hreflang="en"><span>Vikiombor</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q38433" title="Link to connected data repository item [g]" accesskey="g"><span>Vikimaʼlumotlar bandi</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Qiyofa"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Qiyofa</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">yonqutiga oʻtish</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">yashirish</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Vikipediya, ochiq ensiklopediya</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="uz" dir="ltr"><figure typeof="mw:File/Thumb"><a href="/wiki/Fayl:NASA-Apollo8-Dec24-Earthrise.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a8/NASA-Apollo8-Dec24-Earthrise.jpg/300px-NASA-Apollo8-Dec24-Earthrise.jpg" decoding="async" width="300" height="300" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a8/NASA-Apollo8-Dec24-Earthrise.jpg/450px-NASA-Apollo8-Dec24-Earthrise.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a8/NASA-Apollo8-Dec24-Earthrise.jpg/600px-NASA-Apollo8-Dec24-Earthrise.jpg 2x" data-file-width="2400" data-file-height="2400" /></a><figcaption> Nyutonning harakat qonunlari uning tortishish qonuni bilan birgalikda <a href="/wiki/Sayyora" title="Sayyora">sayyoralar</a>, <a href="/wiki/Tabiiy_yo%CA%BBldosh" title="Tabiiy yoʻldosh">oylar</a> va boshqa jismlarning <a href="/wiki/Quyosh_tizimi" title="Quyosh tizimi">Quyosh tizimi</a> boʻylab qanday aylanishlarini bashorat qilishga imkon beradi va ular kosmik sayohatni rejalashtirishning muhim qismidir. 1968-yilgi Apollon 8 missiyasi davomida astronavt <a href="/wiki/William_Anders" title="William Anders">Bill Anders</a> ushbu suratni oldi, <i>Earthrise</i> ; Yerga qaytib ketayotganda, Anders shunday dedi: „Menimcha, hozirda <a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaak Nyuton</a> koʻp mashinani boshqarmoqda“<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup></figcaption></figure><p>. </p><p><b>Nyutonning harakat qonunlari</b> <a href="/wiki/Klassik_mexanika" title="Klassik mexanika">klassik mexanikaning</a> uchta asosiy qonuni boʻlib, jismning <a href="/wiki/Mexanik_harakat" title="Mexanik harakat">harakati</a> va unga taʼsir qiluvchi <a href="/wiki/Kuch" title="Kuch">kuchlar</a> oʻrtasidagi munosabatni tavsiflaydi. Harakatning uchta qonuni birinchi boʻlib <a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaak Nyuton</a> tomonidan 1687-yilda chop etilgan <i><a href="/wiki/Naturfalsafaning_matematik_tamoyillari" title="Naturfalsafaning matematik tamoyillari">"Philosophiæ Naturalis Principia Mathematica"</a></i> (<i>"Tabiiy falsafaning matematik asoslari</i> ") asarida bayon etilgan<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup>. </p><p>Ushbu qonunlarni quyidagicha izohlash mumkin: </p> <ol><li>Agar kuch taʼsir qilmasa, tana tinch holatda yoki toʻgʻri chiziqli tekis harakat qiladi.</li> <li>Jismga kuch taʼsir qilganda, uning <a href="/wiki/Impuls" title="Impuls">impulsining</a> oʻzgarish tezligi kuchga teng boʻladi.</li> <li>Agar ikkita jism bir-biriga kuch taʼsir qilsa, bu kuchlar bir xil kattalikka ega, ammo qarama-qarshi yoʻnalishga ega<sup id="cite_ref-Thornton_3-0" class="reference"><a href="#cite_note-Thornton-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup>.</li></ol> <p>Nyuton ulardan klassik mexanikaga asos solgan koʻplab jismoniy ob’ektlar va tizimlarning harakatini tadqiq qilish va tushuntirish uchun foydalangan. Nyutondan keyin klassik fizikaning kontseptual mazmuni turli xil matematik yondashuvlarni oʻz ichiga olgan muqobil usullar bilan qayta ishlab chiqilgan boʻlib, ular asl Nyuton formulasida yashiringan tushunchalarni keltirib chiqardi. Nyuton qonunlarining cheklanishi ham aniqlangan; Ob’ektlar juda yuqori tezlikda harakat qilganda (<a href="/wiki/Maxsus_nisbiylik_nazariyasi" title="Maxsus nisbiylik nazariyasi">maxsus nisbiylik</a>), juda massiv (<a href="/wiki/Umumiy_nisbiylik_nazariyasi" title="Umumiy nisbiylik nazariyasi">umumiy nisbiylik</a>) yoki juda kichik (<a href="/wiki/Kvant_mexanika" title="Kvant mexanika">kvant mexanikasi</a>) boʻlganda yangi nazariyalar zarur. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading3"><h3 id="Birinchi_qonun">Birinchi qonun</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Newton_qonunlari&veaction=edit&section=1" title="Boʻlimni tahrirlash: Birinchi qonun" class="mw-editsection-visualeditor"><span>tahrir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Newton_qonunlari&action=edit&section=1" title="Edit section's source code: Birinchi qonun"><span>manbasini tahrirlash</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Fayl:Skylab_and_Earth_Limb_-_GPN-2000-001055.jpg" class="mw-file-description"><img alt="see caption" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/92/Skylab_and_Earth_Limb_-_GPN-2000-001055.jpg/220px-Skylab_and_Earth_Limb_-_GPN-2000-001055.jpg" decoding="async" width="220" height="221" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/92/Skylab_and_Earth_Limb_-_GPN-2000-001055.jpg/330px-Skylab_and_Earth_Limb_-_GPN-2000-001055.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/92/Skylab_and_Earth_Limb_-_GPN-2000-001055.jpg/440px-Skylab_and_Earth_Limb_-_GPN-2000-001055.jpg 2x" data-file-width="3856" data-file-height="3870" /></a><figcaption> Sunʼiy yoʻldoshlar Yerning <a href="/wiki/Jismning_og%E2%80%98irlik_kuchi" title="Jismning og‘irlik kuchi">tortishish kuchi</a> tufayli toʻgʻri chiziqda emas, balki egri <a href="/wiki/Orbitalar_haqida" title="Orbitalar haqida">orbita</a> boʻylab harakatlanadi.</figcaption></figure> <p>Lotin tilidan tarjima qilingan Nyutonning birinchi qonunida shunday deyilgan: </p> <dl><dd><i>Har bir jism oʻzining tinch holatida yoki toʻgʻri chiziqda bir tekis harakatda davom etadi, agar unga taʼsir qiladigan kuchlar bu holatni oʻzgartirishga majbur boʻlmasa</i><sup id="cite_ref-:0_4-0" class="reference"><a href="#cite_note-:0-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup>.</dd></dl> <p>Nyutonning birinchi qonuni <a href="/wiki/Inersiya" title="Inersiya">inersiya</a> prinsipini ifodalaydi: tananing tabiiy harakati toʻgʻri chiziqda doimiy tezlikda harakat qilishdir. Tashqi taʼsirlar boʻlmasa, tananing harakati hozirgi holatini saqlab qoladi. </p> <div class="mw-heading mw-heading3"><h3 id="Ikkinchi_qonun">Ikkinchi qonun</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Newton_qonunlari&veaction=edit&section=2" title="Boʻlimni tahrirlash: Ikkinchi qonun" class="mw-editsection-visualeditor"><span>tahrir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Newton_qonunlari&action=edit&section=2" title="Edit section's source code: Ikkinchi qonun"><span>manbasini tahrirlash</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><i>Jismning harakatining oʻzgarishi taʼsirlangan kuchga proportsionaldir; va kuch taʼsirlangan toʻgʻri chiziq yoʻnalishi boʻyicha amalga oshiriladi</i><sup id="cite_ref-:0_4-1" class="reference"><a href="#cite_note-:0-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup>.</dd></dl> <p>„Harakat“ deganda Nyuton hozirgi <a href="/wiki/Impuls" title="Impuls">impuls</a> deb ataladigan miqdorni nazarda tutgan, bu jismdagi materiya miqdoriga, bu jismning harakat tezligiga va harakat yoʻnalishiga bogʻliq. Zamonaviy yozuvda jismning impulsi uning massasi va tezligining mahsulotidir: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {p}}=m{\vec {v}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {p}}=m{\vec {v}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6921ecba6789b31dbddab6e2b6fbc21de2af2f8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:8.763ex; height:2.676ex;" alt="{\displaystyle {\vec {p}}=m{\vec {v}}\,.}"></span> </p><p>Nyutonning ikkinchi qonuni, zamonaviy shaklda, impulsning vaqt hosilasi kuch ekanligini aytadi: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {F}}={\frac {d{\vec {p}}}{dt}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {F}}={\frac {d{\vec {p}}}{dt}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cda3d17bb0fd8e98da7cbfe31a1e505e6cbc00e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:9.28ex; height:5.676ex;" alt="{\displaystyle {\vec {F}}={\frac {d{\vec {p}}}{dt}}\,.}"></span> </p><p>Agar massa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> vaqt oʻtishi bilan oʻzgarmaydi, keyin hosila faqat tezlikka taʼsir qiladi va shuning uchun kuch massa va tezlikning vaqt hosilasi koʻpaytmasiga teng boʻladi, bu tezlanishdir: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {F}}=m{\frac {d{\vec {v}}}{dt}}=m{\vec {a}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {F}}=m{\frac {d{\vec {v}}}{dt}}=m{\vec {a}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f21d3cba6d7c9e225fc98531a44025b00452647" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:17.54ex; height:5.509ex;" alt="{\displaystyle {\vec {F}}=m{\frac {d{\vec {v}}}{dt}}=m{\vec {a}}\,.}"></span> </p><p>Tezlanish vaqtga nisbatan pozitsiyaning ikkinchi hosilasi boʻlgani sababli, buni ham yozish mumkin: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {F}}=m{\frac {d^{2}}{dt^{2}}}{\vec {s}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>s</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {F}}=m{\frac {d^{2}}{dt^{2}}}{\vec {s}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1977cc4fb8a2dad5c4adadf36d0ba6c3fae402bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:13.113ex; height:6.009ex;" alt="{\displaystyle {\vec {F}}=m{\frac {d^{2}}{dt^{2}}}{\vec {s}}\,.}"></span> </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Fayl:Free_body1.3.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Free_body1.3.svg/220px-Free_body1.3.svg.png" decoding="async" width="220" height="147" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Free_body1.3.svg/330px-Free_body1.3.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Free_body1.3.svg/440px-Free_body1.3.svg.png 2x" data-file-width="512" data-file-height="342" /></a><figcaption> Nishabli tekislikdagi blok uchun erkin tana diagrammasi, tekislikka perpendikulyar boʻlgan <a href="/wiki/Reaksiya_va_qarshilik_kuchi" title="Reaksiya va qarshilik kuchi">normal kuchni</a> (<i>N</i>), pastga qarab tortishish kuchini (<i>mg</i>) va qoʻllanishi mumkin boʻlgan tekislik yoʻnalishi boʻylab <i>f</i> kuchini tasvirlaydi., qator orqali.</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Uchinchi_qonun">Uchinchi qonun</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Newton_qonunlari&veaction=edit&section=3" title="Boʻlimni tahrirlash: Uchinchi qonun" class="mw-editsection-visualeditor"><span>tahrir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Newton_qonunlari&action=edit&section=3" title="Edit section's source code: Uchinchi qonun"><span>manbasini tahrirlash</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><i>Har bir harakatga har doim teng reaktsiya qarshi boʻladi; yoki, ikki jismning bir-biriga oʻzaro harakatlari doimo teng boʻlib, qarama-qarshi qismlarga qaratilgan</i><sup id="cite_ref-:0_4-2" class="reference"><a href="#cite_note-:0-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup>.</dd></dl> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Fayl:Iridium-1_Launch_(32312419215).jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Iridium-1_Launch_%2832312419215%29.jpg/220px-Iridium-1_Launch_%2832312419215%29.jpg" decoding="async" width="220" height="330" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Iridium-1_Launch_%2832312419215%29.jpg/330px-Iridium-1_Launch_%2832312419215%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Iridium-1_Launch_%2832312419215%29.jpg/440px-Iridium-1_Launch_%2832312419215%29.jpg 2x" data-file-width="2000" data-file-height="3000" /></a><figcaption> <a href="/wiki/Raketa" title="Raketa">Raketalar</a> <a href="/wiki/Raketa_dvigateli" title="Raketa dvigateli">raketa dvigatellari</a> yordamida pastga qarab kuchli reaktsiya kuchi ishlab chiqarish orqali ishlaydi. Bu yer yoki atmosferadan qatʼi nazar, raketani yuqoriga suradi.</figcaption></figure> <p>Uchinchi qonunning „harakat reaksiyaga teng“ kabi haddan tashqari qisqacha ifodalari oʻquvchilar avlodlari orasida chalkashliklarga sabab boʻlishi mumkin edi: „harakat“ va „reaktsiya“ turli organlarga tegishli. Masalan, stol ustida dam olayotgan kitobni koʻrib chiqing. Yerning tortishish kuchi kitobni pastga tortadi. Oʻsha „harakat“ ga „reaktsiya“ kitobni ushlab turgan stoldan tayanch kuchi <i>emas</i>, balki kitobning Yerga taʼsir qiladigan tortishish kuchidir. </p><p>Nyutonning uchinchi qonuni koʻproq asosiy printsipga, <a href="/wiki/Impuls" title="Impuls">impulsning saqlanishiga</a> tegishli. Ikkinchisi Nyutonning bayonoti boʻlmagan hollarda ham, masalan, <a href="/wiki/Kuchlar_maydoni" title="Kuchlar maydoni">kuch maydonlari</a>, shuningdek, moddiy jismlar impulsga ega boʻlganda va impuls toʻgʻri aniqlanganda, <a href="/wiki/Kvant_mexanika" title="Kvant mexanika">kvant mexanikasida</a> ham toʻgʻri boʻladi. Nyuton mexanikasida ikkita jism momentiga ega boʻlsa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {p}}_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {p}}_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8f5e7f0b930776fa2f8682cf5dffcb276abe79e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:2.469ex; height:2.843ex;" alt="{\displaystyle {\vec {p}}_{1}}"></span> va <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {p}}_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {p}}_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ddf1b0b8b941b9b7e0c70e5595c6bcd4f8d9ee3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:2.469ex; height:2.843ex;" alt="{\displaystyle {\vec {p}}_{2}}"></span> mos ravishda, u holda juftlikning umumiy impulsi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {p}}={\vec {p}}_{1}+{\vec {p}}_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {p}}={\vec {p}}_{1}+{\vec {p}}_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa0666d7ac67454f5cdb1f330797f427ac47138d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:12.112ex; height:2.843ex;" alt="{\displaystyle {\vec {p}}={\vec {p}}_{1}+{\vec {p}}_{2}}"></span>, va oʻzgarish tezligi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84fee53c81592db54e0fe6c6f9eba002bb1dc74b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.415ex; height:2.676ex;" alt="{\displaystyle {\vec {p}}}"></span> hisoblanadi: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d{\vec {p}}}{dt}}={\frac {d{\vec {p}}_{1}}{dt}}+{\frac {d{\vec {p}}_{2}}{dt}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d{\vec {p}}}{dt}}={\frac {d{\vec {p}}_{1}}{dt}}+{\frac {d{\vec {p}}_{2}}{dt}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4564ea6a303a5e096f9282135a2102ddad1ba64f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:18.826ex; height:5.676ex;" alt="{\displaystyle {\frac {d{\vec {p}}}{dt}}={\frac {d{\vec {p}}_{1}}{dt}}+{\frac {d{\vec {p}}_{2}}{dt}}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Qoʻshimcha_qonunlar_uchun_nomzodlar"><span id="Qo.CA.BBshimcha_qonunlar_uchun_nomzodlar"></span>Qoʻshimcha qonunlar uchun nomzodlar</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Newton_qonunlari&veaction=edit&section=4" title="Boʻlimni tahrirlash: Qoʻshimcha qonunlar uchun nomzodlar" class="mw-editsection-visualeditor"><span>tahrir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Newton_qonunlari&action=edit&section=4" title="Edit section's source code: Qoʻshimcha qonunlar uchun nomzodlar"><span>manbasini tahrirlash</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Turli manbalar klassik mexanikada qoʻllaniladigan boshqa gʻoyalarni Nyuton qonunlari maqomiga koʻtarishni taklif qildilar. Masalan, Nyuton mexanikasida ikkita kichikroq jismni birlashtirish natijasida hosil boʻlgan jismning umumiy massasi ularning alohida massalarining yigʻindisidir. Frank Vilchek ushbu farazni „Nyutonning nolinchi qonuni“ deb belgilash orqali eʼtiborni jalb qilishni taklif qildi<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup>. „Nolinchi qonun“ga yana bir nomzod — bu har qanday lahzada tananing oʻsha lahzada unga qoʻllaniladigan kuchlarga munosabat bildirishidir<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup>. Xuddi shunday, kuchlarning vektorlarga oʻxshash qoʻshilishi (yoki boshqacha aytganda, <a href="/wiki/Superpozitsiya_prinsipi" title="Superpozitsiya prinsipi">superpozitsiya prinsipiga</a> boʻysunadi) va kuchlar jismning energiyasini oʻzgartirishi haqidagi gʻoyalar ikkalasi ham „toʻrtinchi qonun“ sifatida tavsiflangan. Butun olam tortishish qonuni haqida ham shunday deyish mumkin. </p> <div class="mw-heading mw-heading2"><h2 id="Misollar">Misollar</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Newton_qonunlari&veaction=edit&section=5" title="Boʻlimni tahrirlash: Misollar" class="mw-editsection-visualeditor"><span>tahrir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Newton_qonunlari&action=edit&section=5" title="Edit section's source code: Misollar"><span>manbasini tahrirlash</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading2"><h2 id="Tekis_tezlanuvchan_harakat">Tekis tezlanuvchan harakat</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Newton_qonunlari&veaction=edit&section=6" title="Boʻlimni tahrirlash: Tekis tezlanuvchan harakat" class="mw-editsection-visualeditor"><span>tahrir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Newton_qonunlari&action=edit&section=6" title="Edit section's source code: Tekis tezlanuvchan harakat"><span>manbasini tahrirlash</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Fayl:Bouncing_ball_strobe_edit.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3c/Bouncing_ball_strobe_edit.jpg/220px-Bouncing_ball_strobe_edit.jpg" decoding="async" width="220" height="142" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3c/Bouncing_ball_strobe_edit.jpg/330px-Bouncing_ball_strobe_edit.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3c/Bouncing_ball_strobe_edit.jpg/440px-Bouncing_ball_strobe_edit.jpg 2x" data-file-width="1800" data-file-height="1159" /></a><figcaption> <a href="/wiki/Stroboskop" title="Stroboskop">Stroboskopik chirogʻi</a> yordamida soniyasiga 25 kadr tezlikda suratga olingan sakrab turgan toʻp . Sakrashlar oraligʻida toʻpning balandligi vaqtga bogʻliq boʻlgan <a href="/wiki/Parabola_(chiziq)" title="Parabola (chiziq)">parabolaga</a> yaqin boʻlib, havo qarshiligi, aylanish va zarba natijasida sharsimon boʻlmagan shaklga oʻtishi tufayli parabolik yoydan chetga chiqadi.</figcaption></figure> <p>Agar jism Yer yuzasiga yaqin joyda dam olishdan yiqilsa, u holda havo qarshiligi boʻlmasa, u doimiy tezlikda tezlashadi. Bu <a href="/wiki/Erkin_tushish" title="Erkin tushish">erkin tushish</a> deb nomlanadi. Erkin tushish vaqtida erishilgan tezlik oʻtgan vaqtga, bosib oʻtgan masofa esa oʻtgan vaqtning kvadratiga proportsionaldir<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup>. Muhimi, tezlanish barcha jismlar uchun, ularning massasidan qatʼi nazar, bir xil boʻladi. Bu Nyutonning ikkinchi harakat qonuni bilan uning universal tortishish qonunini birlashtirishdan kelib chiqadi. Ikkinchisi, Yerdan tanaga taʼsir qiladigan tortishish kuchining kattaligi ekanligini taʼkidlaydi: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F={\frac {GMm}{r^{2}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>G</mi> <mi>M</mi> <mi>m</mi> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F={\frac {GMm}{r^{2}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa486837554264344fb8f4dff3106f1a0715054f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:12.632ex; height:5.676ex;" alt="{\displaystyle F={\frac {GMm}{r^{2}}},}"></span> </p><p>bu yerda <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> tushgan jismning massasi, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> Yerning massasi, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> Nyuton doimiysi va <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> Yerning markazidan tananing joylashuvigacha boʻlgan masofa, bu Yerning radiusiga juda yaqin. Buni sozlash <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ma}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ma}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f38bd3876d01199d10b88b0b5c2eb64bbc86b3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.27ex; height:1.676ex;" alt="{\displaystyle ma}"></span>, tananing massasi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> ga bogʻliq boʻlgan tezlanishni qoldirib, tenglamaning har ikki tomonidan bekor qilinadi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span>, va <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span>, va <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> doimiy deb qabul qilish mumkin. Tezlashtirishning bu maxsus qiymati odatda belgilanadi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> : </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g={\frac {GM}{r^{2}}}\approx \mathrm {9.8~m/s^{2}} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>G</mi> <mi>M</mi> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>≈<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>9.8</mn> <mtext> </mtext> <mi mathvariant="normal">m</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi mathvariant="normal">s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g={\frac {GM}{r^{2}}}\approx \mathrm {9.8~m/s^{2}} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f81f4af29f49765f29efaebacbc32b896b542485" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:21.686ex; height:5.676ex;" alt="{\displaystyle g={\frac {GM}{r^{2}}}\approx \mathrm {9.8~m/s^{2}} .}"></span> </p><p>Agar tana dam olishdan boʻshatilmasa, aksincha, yuqoriga va/yoki gorizontal ravishda nol boʻlmagan tezlikda uchilsa, erkin tushish <a href="/wiki/Burchak_ostida_otilgan_jismning_harakati" title="Burchak ostida otilgan jismning harakati">snaryad harakati</a> boʻladi<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup>. Havoning qarshiligini eʼtiborsiz qoldirish mumkin boʻlsa, snaryadlar <a href="/wiki/Parabola_(chiziq)" title="Parabola (chiziq)">parabola</a> shaklidagi traektoriyalarni kuzatib boradi, chunki tortishish tananing gorizontal emas, balki vertikal harakatiga taʼsir qiladi. Snaryad traektoriyasining eng yuqori nuqtasida uning vertikal tezligi nolga teng, lekin tezlashishi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> har doimgidek pastga qarab. Notoʻgʻri vektorni nolga tenglashtirish fizika talabalari orasida keng tarqalgan chalkashlikdir<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup>. </p><p><br /> </p> <div class="mw-heading mw-heading2"><h2 id="Tekis_aylanma_harakat">Tekis aylanma harakat</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Newton_qonunlari&veaction=edit&section=7" title="Boʻlimni tahrirlash: Tekis aylanma harakat" class="mw-editsection-visualeditor"><span>tahrir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Newton_qonunlari&action=edit&section=7" title="Edit section's source code: Tekis aylanma harakat"><span>manbasini tahrirlash</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Fayl:Binary_system_orbit_q%3D3_e%3D0.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/a/ae/Binary_system_orbit_q%3D3_e%3D0.gif" decoding="async" width="220" height="220" class="mw-file-element" data-file-width="220" data-file-height="220" /></a><figcaption> Barisentr atrofida aylanib yuruvchi bir xil aylanma harakatdagi ikkita jism (har ikkala jismning massa markazi)</figcaption></figure> <p>Jism bir tekis aylanma harakatda boʻlsa, unga taʼsir qiladigan kuch uning harakat yoʻnalishini oʻzgartiradi, lekin tezligini oʻzgartirmaydi. Radiusli aylana boʻylab harakatlanuvchi tana uchun <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> doimiy tezlikda <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span>, uning tezlashuvi kattalikka ega: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a={\frac {v^{2}}{r}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>r</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a={\frac {v^{2}}{r}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0220b1356204c98557a8b60d275196be3e9cf0c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:7.346ex; height:5.676ex;" alt="{\displaystyle a={\frac {v^{2}}{r}}}"></span> </p><p>va aylananing markaziga yoʻnaltirilgan. Ushbu tezlanishni ushlab turish uchun zarur boʻlgan <a href="/wiki/Markazga_intilma_kuch" title="Markazga intilma kuch">markazga tortish kuchi</a> deb ataladigan kuch ham aylananing markaziga yoʻnaltirilgan va kattalikka ega. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle mv^{2}/r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle mv^{2}/r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/778e7247959c5af93ea3197b7cf7569826979e12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.433ex; height:3.176ex;" alt="{\displaystyle mv^{2}/r}"></span> . Koʻpgina <a href="/wiki/Orbitalar_haqida" title="Orbitalar haqida">orbitalar</a>, masalan, Oyning Yer atrofidagi orbitalari, bir xil aylana harakati bilan yaqinlashishi mumkin. Bunday hollarda markazga tortish kuchi tortishish hisoblanadi va Nyutonning universal tortishish qonuniga koʻra kattalikka ega. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle GMm/r^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mi>M</mi> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle GMm/r^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0f4258974f3b3e076be88d9948712ef36b986cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.575ex; height:3.176ex;" alt="{\displaystyle GMm/r^{2}}"></span>, bu yerda <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> orbitada aylanayotgan katta jismning massasi. Shuning uchun jismning massasini uning atrofida aylanayotgan boshqa jismni kuzatishlar asosida hisoblash mumkin<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup>. </p> <div class="mw-heading mw-heading2"><h2 id="Garmonik_harakat">Garmonik harakat</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Newton_qonunlari&veaction=edit&section=8" title="Boʻlimni tahrirlash: Garmonik harakat" class="mw-editsection-visualeditor"><span>tahrir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Newton_qonunlari&action=edit&section=8" title="Edit section's source code: Garmonik harakat"><span>manbasini tahrirlash</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:356px;max-width:356px"><div class="trow"><div class="tsingle" style="width:77px;max-width:77px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/Fayl:Animated-mass-spring-faster.gif" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d5/Animated-mass-spring-faster.gif/75px-Animated-mass-spring-faster.gif" decoding="async" width="75" height="131" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d5/Animated-mass-spring-faster.gif/112px-Animated-mass-spring-faster.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d5/Animated-mass-spring-faster.gif/149px-Animated-mass-spring-faster.gif 2x" data-file-width="160" data-file-height="280" /></a></span>Garmonik osilator</div></div><div class="tsingle" style="width:275px;max-width:275px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/Fayl:Simple_harmonic_motion_animation.gif" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/74/Simple_harmonic_motion_animation.gif/273px-Simple_harmonic_motion_animation.gif" decoding="async" width="273" height="129" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/74/Simple_harmonic_motion_animation.gif/410px-Simple_harmonic_motion_animation.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/7/74/Simple_harmonic_motion_animation.gif 2x" data-file-width="512" data-file-height="242" /></a></span></div><div class="thumbcaption">Oddiy garmonik harakat</div></div></div></div></div><p>Massa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> trayektoriya boʻylab harakatlana oladi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> oʻqni va pozitsiyada muvozanat nuqtasi mavjud deb faraz qilaylik <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953917eaf52f2e1baad54c8c9e3d6f9bb3710cdc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle x=0}"></span> . Yaʼni, at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953917eaf52f2e1baad54c8c9e3d6f9bb3710cdc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle x=0}"></span>, jismga aniq kuch nol vektor va Nyutonning ikkinchi qonuniga koʻra, tana tezlashmaydi. Agar tanaga taʼsir qiladigan kuch muvozanat nuqtasidan siljish bilan mutanosib boʻlsa va muvozanat nuqtasiga yoʻnaltirilgan boʻlsa, u holda tana oddiy garmonik harakatni amalga oshiradi. Kuchni quyidagicha yozish <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F=-kx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi>k</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F=-kx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aace79ea36db4ebc9f83a00c4198f4c054f5b4fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.188ex; height:2.343ex;" alt="{\displaystyle F=-kx}"></span>, Nyutonning ikkinchi qonuni boʻladi: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m{\frac {d^{2}x}{dt^{2}}}=-kx\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>x</mi> </mrow> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mi>k</mi> <mi>x</mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m{\frac {d^{2}x}{dt^{2}}}=-kx\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b90b9df5b7569e73835a019b647950437b46b52d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:14.96ex; height:6.009ex;" alt="{\displaystyle m{\frac {d^{2}x}{dt^{2}}}=-kx\,.}"></span> Bu differensial tenglama yechimga ega: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x(t)=A\cos \omega t+B\sin \omega t\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>A</mi> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>ω<!-- ω --></mi> <mi>t</mi> <mo>+</mo> <mi>B</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>ω<!-- ω --></mi> <mi>t</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x(t)=A\cos \omega t+B\sin \omega t\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d211558e31c7d28cb619cd78ba81210c676023e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.898ex; height:2.843ex;" alt="{\displaystyle x(t)=A\cos \omega t+B\sin \omega t\,}"></span> </p><p>chastota bu yerda <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ω<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> ga teng <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {k/m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>m</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {k/m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16585c1e039075df0261172c0f8aa08fdc09dc68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:6.738ex; height:4.843ex;" alt="{\displaystyle {\sqrt {k/m}}}"></span>, va doimiylar <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> va <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> Masalan, tananing maʼlum bir vaqtda ega boʻlgan pozitsiyasi va tezligini bilib, hisoblash mumkin <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43469ec032d858feae5aa87029e22eaaf0109e9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.101ex; height:2.176ex;" alt="{\displaystyle t=0}"></span> . </p><p><br /> </p> <div class="mw-heading mw-heading2"><h2 id="Oʻzgaruvchan_massaga_ega_ob’ektlar"><span id="O.CA.BBzgaruvchan_massaga_ega_ob.E2.80.99ektlar"></span>Oʻzgaruvchan massaga ega ob’ektlar</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Newton_qonunlari&veaction=edit&section=9" title="Boʻlimni tahrirlash: Oʻzgaruvchan massaga ega ob’ektlar" class="mw-editsection-visualeditor"><span>tahrir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Newton_qonunlari&action=edit&section=9" title="Edit section's source code: Oʻzgaruvchan massaga ega ob’ektlar"><span>manbasini tahrirlash</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Fayl:Space_Shuttle_Atlantis_launches_from_KSC_on_STS-132_side_view.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2a/Space_Shuttle_Atlantis_launches_from_KSC_on_STS-132_side_view.jpg/220px-Space_Shuttle_Atlantis_launches_from_KSC_on_STS-132_side_view.jpg" decoding="async" width="220" height="176" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2a/Space_Shuttle_Atlantis_launches_from_KSC_on_STS-132_side_view.jpg/330px-Space_Shuttle_Atlantis_launches_from_KSC_on_STS-132_side_view.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2a/Space_Shuttle_Atlantis_launches_from_KSC_on_STS-132_side_view.jpg/440px-Space_Shuttle_Atlantis_launches_from_KSC_on_STS-132_side_view.jpg 2x" data-file-width="3424" data-file-height="2739" /></a><figcaption> Raketalar, xuddi <i id="mwAXc">Atlantis</i> kosmik kemasi kabi, materiyani boshqa tomonga surish uchun bir yoʻnalishda harakat qiladi. Bu shuni anglatadiki, itarilayotgan massa, raketa va uning bortdagi qolgan yoqilgʻi taʼminoti doimo oʻzgarib turadi.</figcaption></figure> <p>Nyuton fizikasi materiyani yaratilmagan yoki yoʻq qilinmagan deb hisoblaydi, garchi u qayta tartibga solinsa ham. Qiziqarli ob’ekt massasini oshirishi yoki yoʻqotishi mumkin, chunki unga materiya qoʻshiladi yoki undan chiqariladi. Bunday vaziyatda Nyuton qonunlari materiyaning alohida qismlariga nisbatan qoʻllanishi mumkin, vaqt oʻtishi bilan qaysi qismlar qiziqish ob’ektiga tegishli ekanligini kuzatib boradi. Masalan, agar massali raketa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fec7adc70ea0e1d365e5f7244b6f7ddad9fbf485" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.091ex; height:2.843ex;" alt="{\displaystyle M(t)}"></span>, tezlikda harakatlanadi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4550679b673f2c3ce8d8041e6b6e17a85a69ec3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.824ex; height:2.843ex;" alt="{\displaystyle {\vec {v}}(t)}"></span>, materiyani tezlikda chiqarib yuboradi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {u}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>u</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {u}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89c41e9cf70c5e5b56e2128a136985a75f90ba43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:2.343ex;" alt="{\displaystyle {\vec {u}}}"></span> raketaga nisbatan, keyin </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {F}}=M{\frac {d{\vec {v}}}{dt}}-{\vec {u}}{\frac {dM}{dt}}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>u</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>M</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {F}}=M{\frac {d{\vec {v}}}{dt}}-{\vec {u}}{\frac {dM}{dt}}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e69197365d4af785fdb276691d1045f8d0ffd5bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:19.59ex; height:5.509ex;" alt="{\displaystyle {\vec {F}}=M{\frac {d{\vec {v}}}{dt}}-{\vec {u}}{\frac {dM}{dt}}\,}"></span> </p><p>bu yerda <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef40edff397a115ecdce7d3518001dfcc7f37d9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.771ex; height:2.843ex;" alt="{\displaystyle {\vec {F}}}"></span> aniq tashqi kuch (masalan, sayyoraning tortishish kuchi) </p> <div class="mw-heading mw-heading2"><h2 id="Nyuton_qonunlarining_aylanish_analoglari">Nyuton qonunlarining aylanish analoglari</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Newton_qonunlari&veaction=edit&section=10" title="Boʻlimni tahrirlash: Nyuton qonunlarining aylanish analoglari" class="mw-editsection-visualeditor"><span>tahrir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Newton_qonunlari&action=edit&section=10" title="Edit section's source code: Nyuton qonunlarining aylanish analoglari"><span>manbasini tahrirlash</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Nyuton qonunlari aylanuvchi kengaytirilgan jismlarga qoʻllanilganda, ular dastlabki qonunlarda chaqirilganlarga oʻxshash yangi miqdorlarga olib keladi. Massaning analogi <a href="/wiki/Inersiya_momenti" title="Inersiya momenti">inersiya momentidir</a>, momentumning oʻxshashi burchak momentidir va kuchning oʻxshashi momentdir . </p><p>Burchak momenti mos yozuvlar nuqtasiga nisbatan hisoblanadi<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup>. Agar mos yozuvlar nuqtasidan jismga siljish vektori boʻlsa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {r}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {r}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aec3c9ce13b53e9e24c98e7cce4212627884c91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.223ex; height:2.343ex;" alt="{\displaystyle {\vec {r}}}"></span> va tana impulsga ega <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84fee53c81592db54e0fe6c6f9eba002bb1dc74b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.415ex; height:2.676ex;" alt="{\displaystyle {\vec {p}}}"></span>, u holda tananing oʻsha nuqtaga nisbatan burchak momenti vektor <a href="/wiki/Vektor_ko%CA%BBpaytma" title="Vektor koʻpaytma">oʻzaro koʻpaytmasidan</a> foydalangan holda, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {L}}={\vec {r}}\times {\vec {p}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>L</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {L}}={\vec {r}}\times {\vec {p}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05605e20db3c5f1b2f389efabfd37a9c112bdc20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.717ex; height:3.176ex;" alt="{\displaystyle {\vec {L}}={\vec {r}}\times {\vec {p}}.}"></span> </p><p><br /> Burchak momentining vaqt hosilasi olinadi: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d{\vec {L}}}{dt}}=\left({\frac {d{\vec {r}}}{dt}}\right)\times {\vec {p}}+{\vec {r}}\times {\frac {d{\vec {p}}}{dt}}={\vec {v}}\times m{\vec {v}}+{\vec {r}}\times {\vec {F}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>L</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>×<!-- × --></mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d{\vec {L}}}{dt}}=\left({\frac {d{\vec {r}}}{dt}}\right)\times {\vec {p}}+{\vec {r}}\times {\frac {d{\vec {p}}}{dt}}={\vec {v}}\times m{\vec {v}}+{\vec {r}}\times {\vec {F}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d2b528a05bbeee90ed8910ca9ccf9c697e9d1ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:47.528ex; height:6.676ex;" alt="{\displaystyle {\frac {d{\vec {L}}}{dt}}=\left({\frac {d{\vec {r}}}{dt}}\right)\times {\vec {p}}+{\vec {r}}\times {\frac {d{\vec {p}}}{dt}}={\vec {v}}\times m{\vec {v}}+{\vec {r}}\times {\vec {F}}.}"></span> </p><p>Birinchi atama yoʻqoladi, chunki <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85820588abd7333ef4d0c56539cb31c20e730753" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.175ex; height:2.343ex;" alt="{\displaystyle {\vec {v}}}"></span> va <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m{\vec {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m{\vec {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9ba72a9adf1628cf3cc08aa66ca2142dd27cc07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.216ex; height:2.343ex;" alt="{\displaystyle m{\vec {v}}}"></span> bir xil yoʻnalishda ishora qiling. Qolgan atama moment, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\tau }}={\vec {r}}\times {\vec {F}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>τ<!-- τ --></mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {\tau }}={\vec {r}}\times {\vec {F}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ae2d69a31eea3296b30ecace045616dc6746f23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.913ex; height:2.843ex;" alt="{\displaystyle {\vec {\tau }}={\vec {r}}\times {\vec {F}}.}"></span> </p><p>Moment nolga teng boʻlganda, burchak impulsi doimiy boʻladi, xuddi kuch nolga teng boʻlganda, impuls doimiy boʻladi<sup id="cite_ref-:2_12-0" class="reference"><a href="#cite_note-:2-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup>. </p><p> Agar tana mos yozuvlar nuqtasida joylashgan boʻlsa, kuch nolga teng boʻlmaganda ham moment yoʻqolishi mumkin (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {r}}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {r}}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3019dd91691a543b774831d8c257144327e6eb8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.484ex; height:2.343ex;" alt="{\displaystyle {\vec {r}}=0}"></span>) yoki kuch boʻlsa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef40edff397a115ecdce7d3518001dfcc7f37d9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.771ex; height:2.843ex;" alt="{\displaystyle {\vec {F}}}"></span> va siljish vektori <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {r}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {r}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aec3c9ce13b53e9e24c98e7cce4212627884c91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.223ex; height:2.343ex;" alt="{\displaystyle {\vec {r}}}"></span> bir xil chiziq boʻylab yoʻnaltiriladi. </p><p>Nuqta massalari yigʻindisining burchak impulsi va shuning uchun choʻzilgan jismning har bir nuqtasining hissalarini qoʻshish orqali topiladi. Bu tananing alohida qismlarining burchak momentlarini qoʻshish orqali oʻq atrofida aylanishini tavsiflash uchun vositani beradi. Natija tanlangan oʻqga, tananing shakliga va aylanish tezligiga bogʻliq<sup id="cite_ref-:2_12-1" class="reference"><a href="#cite_note-:2-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup>. </p> <div class="mw-heading mw-heading2"><h2 id="Manbalar">Manbalar</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Newton_qonunlari&veaction=edit&section=11" title="Boʻlimni tahrirlash: Manbalar" class="mw-editsection-visualeditor"><span>tahrir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Newton_qonunlari&action=edit&section=11" title="Edit section's source code: Manbalar"><span>manbasini tahrirlash</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Chakrabarty, Deepto; Dourmashkin, Peter; Tomasik, Michelle; Frebel, Anna; Vuletic, Vladan (2016). „Classical Mechanics“. MIT OpenCourseWare. Retrieved 17 January 2022.</li> <li>Thomson, W.; Tait, P. G. (1867). „242, Newtonʼs laws of motion“. Treatise on natural philosophy. Vol. 1.</li></ul> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text">See, for example:</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">↑</a></span> <span class="reference-text"><span class="citation" id="CITEREFNewton1846">Newton, Isaac<i>. <a rel="nofollow" class="external text" href="http://archive.org/details/newtonspmathema00newtrich">Newton's Principia: The Mathematical Principles of Natural Philosophy</a></i>, University of California Libraries, Daniel Adee, 1846.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Newton%27s+Principia%3A+The+Mathematical+Principles+of+Natural+Philosophy&rft.aulast=Newton&rft.aufirst=Isaac&rft.date=1846&rft.pub=Daniel+Adee &rft_id=http%3A%2F%2Farchive.org%2Fdetails%2Fnewtonspmathema00newtrich"> </span></span> </li> <li id="cite_note-Thornton-3"><span class="mw-cite-backlink"><a href="#cite_ref-Thornton_3-0">↑</a></span> <span class="reference-text"><span class="citation" id="CITEREFThornton2004">Thornton, Stephen T.<i>. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=emI4EAAAQBAJ&pg=PA49">Classical Dynamics of Particles and Systems</a></i>, 5th, Brooke Cole, 2004 — 49-bet. <a href="/wiki/Maxsus:BookSources/0-534-40896-6" title="Maxsus:BookSources/0-534-40896-6">ISBN <span style="white-space: nowrap;">0-534-40896-6</span></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Classical+Dynamics+of+Particles+and+Systems&rft.aulast=Thornton&rft.aufirst=Stephen+T.&rft.edition=5th&rft.pub=Brooke+Cole&rft.pages=49 &rft.isbn=0-534-40896-6&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DemI4EAAAQBAJ%26pg%3DPA49"> </span></span> </li> <li id="cite_note-:0-4"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-:0_4-0">4,0</a></sup> <sup><a href="#cite_ref-:0_4-1">4,1</a></sup> <sup><a href="#cite_ref-:0_4-2">4,2</a></sup></span> <span class="reference-text"><span class="citation" id="CITEREFFrautschi2007"><a href="/w/index.php?title=Steven_Frautschi&action=edit&redlink=1" class="new" title="Steven Frautschi (sahifa yaratilmagan)">Frautschi, Steven C.</a><i>. The Mechanical Universe: Mechanics and Heat</i>, Advanced, Cambridge [Cambridgeshire]: Cambridge University Press, 2007. <a href="/wiki/Maxsus:BookSources/978-0-521-71590-4" title="Maxsus:BookSources/978-0-521-71590-4">ISBN <span style="white-space: nowrap;">978-0-521-71590-4</span></a>. <a href="https://en.wikipedia.org/wiki/OCLC" class="extiw" title="en:OCLC">OCLC</a> <a rel="nofollow" class="external text" href="http://worldcat.org/oclc/227002144">227002144</a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Mechanical+Universe%3A+Mechanics+and+Heat&rft.aulast=Frautschi&rft.aufirst=Steven+C.&rft.date=2007&rft.edition=Advanced&rft.pub=Cambridge+University+Press&rft.place=Cambridge+%5BCambridgeshire%5D &rft.isbn=978-0-521-71590-4&rft_id=info:oclcnum/227002144"> </span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><a href="#cite_ref-5">↑</a></span> <span class="reference-text"><span class="citation"><span class="citation"><i><a href="/w/index.php?title=Frank_Wilczek&action=edit&redlink=1" class="new" title="Frank Wilczek (sahifa yaratilmagan)">Wilczek.</a></i> <span lang="aniqlanmagan"><a rel="nofollow" class="external text" href="https://physics.mit.edu/wp-content/uploads/2021/01/physicsatmit_03_wilczek_originofmass.pdf">„The Origin of Mass“</a></span>. <i>MIT Physics Annual 2003</i> (2003). Qaraldi: 2022-yil 13-yanvar.</span></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><a href="#cite_ref-6">↑</a></span> <span class="reference-text"><span class="citation Journal"><a href="/w/index.php?title=Rachel_Scherr&action=edit&redlink=1" class="new" title="Rachel Scherr (sahifa yaratilmagan)">Scherr, Rachel E.</a>; Redish, Edward F. (2005-01-01). <a rel="nofollow" class="external text" href="https://aapt.scitation.org/doi/10.1119/1.1845990">"Newton's Zeroth Law: Learning from Listening to Our Students"</a>. <i><a href="/w/index.php?title=The_Physics_Teacher&action=edit&redlink=1" class="new" title="The Physics Teacher (sahifa yaratilmagan)">The Physics Teacher</a></i> <b>43</b> (1): 41–45. <a href="/wiki/Doi" class="mw-redirect" title="Doi">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1119%2F1.1845990">10.1119/1.1845990</a>. <a href="/wiki/ISSN" class="mw-redirect" title="ISSN">ISSN</a> <a rel="nofollow" class="external text" href="//www.worldcat.org/issn/0031-921X">0031-921X</a><span class="printonly">. <a rel="nofollow" class="external free" href="https://aapt.scitation.org/doi/10.1119/1.1845990">https://aapt.scitation.org/doi/10.1119/1.1845990</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Newton%27s+Zeroth+Law%3A+Learning+from+Listening+to+Our+Students&rft.jtitle=%5B%5BThe+Physics+Teacher%5D%5D&rft.aulast=Scherr&rft.aufirst=Rachel+E.&rft.au=Scherr%2C%26%2332%3BRachel+E.&rft.au=Redish%2C%26%2332%3BEdward+F.&rft.date=2005-01-01&rft.volume=43&rft.issue=1&rft.pages=41%E2%80%9345&rft_id=info:doi/10.1119%2F1.1845990&rft.issn=0031-921X&rft_id=https%3A%2F%2Faapt.scitation.org%2Fdoi%2F10.1119%2F1.1845990&rfr_id=info:sid/en.wikipedia.org:Newton_qonunlari"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><a href="#cite_ref-7">↑</a></span> <span class="reference-text"><span class="citation Journal"><a href="/w/index.php?title=Olympia_Nicodemi&action=edit&redlink=1" class="new" title="Olympia Nicodemi (sahifa yaratilmagan)">Nicodemi, Olympia</a> (2010-02-01). <a rel="nofollow" class="external text" href="https://doi.org/10.4169/002557010X479965">"Galileo and Oresme: Who Is Modern? Who Is Medieval?"</a>. <i><a href="/w/index.php?title=Mathematics_Magazine&action=edit&redlink=1" class="new" title="Mathematics Magazine (sahifa yaratilmagan)">Mathematics Magazine</a></i> <b>83</b> (1): 24–32. <a href="/wiki/Doi" class="mw-redirect" title="Doi">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.4169%2F002557010X479965">10.4169/002557010X479965</a>. <a href="/wiki/ISSN" class="mw-redirect" title="ISSN">ISSN</a> <a rel="nofollow" class="external text" href="//www.worldcat.org/issn/0025-570X">0025-570X</a><span class="printonly">. <a rel="nofollow" class="external free" href="https://doi.org/10.4169/002557010X479965">https://doi.org/10.4169/002557010X479965</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Galileo+and+Oresme%3A+Who+Is+Modern%3F+Who+Is+Medieval%3F&rft.jtitle=%5B%5BMathematics+Magazine%5D%5D&rft.aulast=Nicodemi&rft.aufirst=Olympia&rft.au=Nicodemi%2C%26%2332%3BOlympia&rft.date=2010-02-01&rft.volume=83&rft.issue=1&rft.pages=24%E2%80%9332&rft_id=info:doi/10.4169%2F002557010X479965&rft.issn=0025-570X&rft_id=https%3A%2F%2Fdoi.org%2F10.4169%2F002557010X479965&rfr_id=info:sid/en.wikipedia.org:Newton_qonunlari"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><a href="#cite_ref-8">↑</a></span> <span class="reference-text"><span class="citation"><span class="citation"><i><a href="/w/index.php?title=Kate_Scholberg&action=edit&redlink=1" class="new" title="Kate Scholberg (sahifa yaratilmagan)">Scholberg.</a></i> <span lang="aniqlanmagan"><a rel="nofollow" class="external text" href="https://webhome.phy.duke.edu/~schol/phy361/faqs/faq3/">„Frequently Asked Questions: Projectile Motion“</a></span>. <i>Physics 361</i> (2020). Qaraldi: 2022-yil 16-yanvar.</span></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><a href="#cite_ref-9">↑</a></span> <span class="reference-text"><span class="citation Journal">Carli, Marta; Lippiello, Stefania; Pantano, Ornella; Perona, Mario; Tormen, Giuseppe (2020-03-19). "Testing students ability to use derivatives, integrals, and vectors in a purely mathematical context and in a physical context" (en). <i><a href="/w/index.php?title=Physical_Review_Physics_Education_Research&action=edit&redlink=1" class="new" title="Physical Review Physics Education Research (sahifa yaratilmagan)">Physical Review Physics Education Research</a></i> <b>16</b> (1): 010111. <a href="/wiki/Doi" class="mw-redirect" title="Doi">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1103%2FPhysRevPhysEducRes.16.010111">10.1103/PhysRevPhysEducRes.16.010111</a>. <a href="/wiki/ISSN" class="mw-redirect" title="ISSN">ISSN</a> <a rel="nofollow" class="external text" href="//www.worldcat.org/issn/2469-9896">2469-9896</a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Testing+students+ability+to+use+derivatives%2C+integrals%2C+and+vectors+in+a+purely+mathematical+context+and+in+a+physical+context&rft.jtitle=%5B%5BPhysical+Review+Physics+Education+Research%5D%5D&rft.aulast=Carli&rft.aufirst=Marta&rft.au=Carli%2C%26%2332%3BMarta&rft.au=Lippiello%2C%26%2332%3BStefania&rft.au=Pantano%2C%26%2332%3BOrnella&rft.au=Perona%2C%26%2332%3BMario&rft.au=Tormen%2C%26%2332%3BGiuseppe&rft.date=2020-03-19&rft.volume=16&rft.issue=1&rft.pages=010111&rft_id=info:doi/10.1103%2FPhysRevPhysEducRes.16.010111&rft.issn=2469-9896&rfr_id=info:sid/en.wikipedia.org:Newton_qonunlari"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><a href="#cite_ref-10">↑</a></span> <span class="reference-text"><span class="citation" id="CITEREFBrown2010"><a href="/w/index.php?title=Mike_Brown_(astronomer)&action=edit&redlink=1" class="new" title="Mike Brown (astronomer) (sahifa yaratilmagan)">Brown, Mike</a><i>. <a rel="nofollow" class="external text" href="https://archive.org/details/howikilledplutow0000brow">How I Killed Pluto and Why It Had It Coming</a></i>, 1st, New York: Spiegel & Grau, 2010. <a href="/wiki/Maxsus:BookSources/978-0-385-53108-5" title="Maxsus:BookSources/978-0-385-53108-5">ISBN <span style="white-space: nowrap;">978-0-385-53108-5</span></a>. <a href="https://en.wikipedia.org/wiki/OCLC" class="extiw" title="en:OCLC">OCLC</a> <a rel="nofollow" class="external text" href="http://worldcat.org/oclc/495271396">495271396</a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=How+I+Killed+Pluto+and+Why+It+Had+It+Coming&rft.aulast=Brown&rft.aufirst=Mike&rft.date=2010&rft.edition=1st&rft.pub=Spiegel+%26+Grau&rft.place=New+York &rft.isbn=978-0-385-53108-5&rft_id=info:oclcnum/495271396&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhowikilledplutow0000brow"> </span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><a href="#cite_ref-11">↑</a></span> <span class="reference-text"><span class="citation Journal">Close, Hunter G.; Heron, Paula R. L. (October 2011). <a rel="nofollow" class="external text" href="http://aapt.scitation.org/doi/10.1119/1.3579141">"Student understanding of the angular momentum of classical particles"</a> (en). <i><a href="/w/index.php?title=American_Journal_of_Physics&action=edit&redlink=1" class="new" title="American Journal of Physics (sahifa yaratilmagan)">American Journal of Physics</a></i> <b>79</b> (10): 1068–1078. <a href="/wiki/Doi" class="mw-redirect" title="Doi">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1119%2F1.3579141">10.1119/1.3579141</a>. <a href="/wiki/ISSN" class="mw-redirect" title="ISSN">ISSN</a> <a rel="nofollow" class="external text" href="//www.worldcat.org/issn/0002-9505">0002-9505</a><span class="printonly">. <a rel="nofollow" class="external free" href="http://aapt.scitation.org/doi/10.1119/1.3579141">http://aapt.scitation.org/doi/10.1119/1.3579141</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Student+understanding+of+the+angular+momentum+of+classical+particles&rft.jtitle=%5B%5BAmerican+Journal+of+Physics%5D%5D&rft.aulast=Close&rft.aufirst=Hunter+G.&rft.au=Close%2C%26%2332%3BHunter+G.&rft.au=Heron%2C%26%2332%3BPaula+R.+L.&rft.date=October+2011&rft.volume=79&rft.issue=10&rft.pages=1068%E2%80%931078&rft_id=info:doi/10.1119%2F1.3579141&rft.issn=0002-9505&rft_id=http%3A%2F%2Faapt.scitation.org%2Fdoi%2F10.1119%2F1.3579141&rfr_id=info:sid/en.wikipedia.org:Newton_qonunlari"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-:2-12"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-:2_12-0">12,0</a></sup> <sup><a href="#cite_ref-:2_12-1">12,1</a></sup></span> <span class="reference-text"><span class="citation" id="CITEREFJosé1998"><a href="/w/index.php?title=Jorge_V._Jos%C3%A9&action=edit&redlink=1" class="new" title="Jorge V. José (sahifa yaratilmagan)">José, Jorge V.</a><i>. <a rel="nofollow" class="external text" href="https://www.worldcat.org/oclc/857769535">Classical dynamics: A Contemporary Approach</a></i>. Cambridge [England]: Cambridge University Press, 1998. <a href="/wiki/Maxsus:BookSources/978-1-139-64890-5" title="Maxsus:BookSources/978-1-139-64890-5">ISBN <span style="white-space: nowrap;">978-1-139-64890-5</span></a>. <a href="https://en.wikipedia.org/wiki/OCLC" class="extiw" title="en:OCLC">OCLC</a> <a rel="nofollow" class="external text" href="http://worldcat.org/oclc/857769535">857769535</a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Classical+dynamics%3A+A+Contemporary+Approach&rft.aulast=Jos%C3%A9&rft.aufirst=Jorge+V.&rft.date=1998&rft.pub=Cambridge+University+Press&rft.place=Cambridge+%5BEngland%5D &rft.isbn=978-1-139-64890-5&rft_id=info:oclcnum/857769535&rft_id=https%3A%2F%2Fwww.worldcat.org%2Foclc%2F857769535"> </span></span> </li> </ol> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐6d555f5f66‐p42rw Cached time: 20241202105841 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.221 seconds Real time usage: 0.684 seconds Preprocessor visited node count: 5534/1000000 Post‐expand include size: 37412/2097152 bytes Template argument size: 13130/2097152 bytes Highest expansion depth: 17/100 Expensive parser function count: 0/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 4565/5000000 bytes Lua time usage: 0.008/10.000 seconds Lua memory usage: 920082/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 119.488 1 -total 47.16% 56.352 4 Andoza:Cite_journal 43.37% 51.821 4 Andoza:Citation/core 32.47% 38.800 5 Andoza:Kitob_manbasi 20.66% 24.682 8 Andoza:Citation/identifier 18.52% 22.126 2 Andoza:Veb_manbasi 14.79% 17.678 5 Andoza:Replace 5.34% 6.382 4 Andoza:ISBN 4.83% 5.769 2 Andoza:Sana 4.32% 5.162 16 Andoza:Hide_in_print --> <!-- Saved in parser cache with key uzwiki:pcache:959640:|#|:idhash:canonical!uz and timestamp 20241202105841 and revision id 5231601. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet=""><pre>"<a dir="ltr" href="https://uz.wikipedia.org/w/index.php?title=Newton_qonunlari&oldid=5231601">https://uz.wikipedia.org/w/index.php?title=Newton_qonunlari&oldid=5231601</a>" dan olindi </pre></div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Maxsus:Categories" title="Maxsus:Categories">Turkum</a>: <ul><li><a href="/wiki/Turkum:Fizika" title="Turkum:Fizika">Fizika</a></li><li><a href="/wiki/Turkum:Mexanika" title="Turkum:Mexanika">Mexanika</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Bu sahifa oxirgi marta 2024-yil 24-sentyabr, 04:30 da tahrir qilingan.</li> <li id="footer-info-copyright">Matn <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.ru">Creative Commons Attribution-ShareAlike litsenziyasi</a> boʻyicha ommalashtirilmoqda, alohida holatlarda qoʻshimcha shartlar amal qilishi mumkin (<a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">batafsil</a>).</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Maxfiylik siyosati</a></li> <li id="footer-places-about"><a href="/wiki/Vikipediya:Haqida">Vikipediya haqida</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Vikipediya:Mas%CA%BCuliyatdan_voz_kechish">Masʼuliyatdan voz kechish</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Dasturchilar</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/uz.wikipedia.org">Statistika</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie bayonoti</a></li> <li id="footer-places-mobileview"><a href="//uz.m.wikipedia.org/w/index.php?title=Newton_qonunlari&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobil versiya</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5f58cd8b6-6f24j","wgBackendResponseTime":232,"wgPageParseReport":{"limitreport":{"cputime":"0.221","walltime":"0.684","ppvisitednodes":{"value":5534,"limit":1000000},"postexpandincludesize":{"value":37412,"limit":2097152},"templateargumentsize":{"value":13130,"limit":2097152},"expansiondepth":{"value":17,"limit":100},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":4565,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 119.488 1 -total"," 47.16% 56.352 4 Andoza:Cite_journal"," 43.37% 51.821 4 Andoza:Citation/core"," 32.47% 38.800 5 Andoza:Kitob_manbasi"," 20.66% 24.682 8 Andoza:Citation/identifier"," 18.52% 22.126 2 Andoza:Veb_manbasi"," 14.79% 17.678 5 Andoza:Replace"," 5.34% 6.382 4 Andoza:ISBN"," 4.83% 5.769 2 Andoza:Sana"," 4.32% 5.162 16 Andoza:Hide_in_print"]},"scribunto":{"limitreport-timeusage":{"value":"0.008","limit":"10.000"},"limitreport-memusage":{"value":920082,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-6d555f5f66-p42rw","timestamp":"20241202105841","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Newton qonunlari","url":"https:\/\/uz.wikipedia.org\/wiki\/Newton_qonunlari","sameAs":"http:\/\/www.wikidata.org\/entity\/Q38433","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q38433","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2023-07-30T02:50:47Z","dateModified":"2024-09-24T04:30:43Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/a\/a8\/NASA-Apollo8-Dec24-Earthrise.jpg"}</script> </body> </html>