CINXE.COM

Search results for: Virginie Pommelet

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Virginie Pommelet</title> <meta name="description" content="Search results for: Virginie Pommelet"> <meta name="keywords" content="Virginie Pommelet"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Virginie Pommelet" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Virginie Pommelet"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Virginie Pommelet</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Risk Factors for Severe Typhoid Fever in Children: A French Retrospective Study about 78 Cases from 2000-2017 in Six Parisian Hospitals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Soliman">Jonathan Soliman</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Cavasino"> Thomas Cavasino</a>, <a href="https://publications.waset.org/abstracts/search?q=Virginie%20Pommelet"> Virginie Pommelet</a>, <a href="https://publications.waset.org/abstracts/search?q=Lahouari%20Amor"> Lahouari Amor</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Mornand"> Pierre Mornand</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Escoda"> Simon Escoda</a>, <a href="https://publications.waset.org/abstracts/search?q=Nina%20Droz"> Nina Droz</a>, <a href="https://publications.waset.org/abstracts/search?q=Soraya%20Matczak"> Soraya Matczak</a>, <a href="https://publications.waset.org/abstracts/search?q=Julie%20Toubiana"> Julie Toubiana</a>, <a href="https://publications.waset.org/abstracts/search?q=Fran%C3%A7ois%20Angoulvant"> François Angoulvant</a>, <a href="https://publications.waset.org/abstracts/search?q=Etienne%20Carbonnelle"> Etienne Carbonnelle</a>, <a href="https://publications.waset.org/abstracts/search?q=Albert%20Faye"> Albert Faye</a>, <a href="https://publications.waset.org/abstracts/search?q=Loic%20de%20Pontual"> Loic de Pontual</a>, <a href="https://publications.waset.org/abstracts/search?q=Luu-Ly%20Pham"> Luu-Ly Pham </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Typhoid and paratyphoid fever are systemic infections caused by Salmonella enterica serovar Typhi or paratyphi (A, B, C). Children traveling to tropical areas are at risk to contract these diseases which can be complicated. Methods: Clinical, biological and bacteriological data were collected from 78 pediatric cases reported between 2000 and 2017 in six Parisian hospitals. Children aged 0 to 18 years old, with a diagnosis of typhoid or paratyphoid fever confirmed by bacteriological exams, were included. Epidemiologic, clinical, biological features and presence of multidrug-resistant (MDR) bacteria or intermediate susceptibility to ciprofloxacin (nalidixic acid resistant) were examined by univariate analysis and by logistic regression analysis to identify risk factors of severe typhoid in children. Results: 84,6% of the children were imported cases of typhoid fever (n=66/78) and 15,4% were autochthonous cases (n=12/78). 89,7% were caused by S.typhi (n=70/78) and 12,8% by S.paratyphi (n=10/78) including 2 co-infections. 19,2% were intrafamilial cases (n=15/78). Median age at diagnosis was 6,4 years-old [6 months-17,9 years]. 28,2% of the cases were complicated forms (n=22/78): digestive (n=8; 10,3%), neurological (n=7; 9%), pulmonary complications (n=4; 5,1%) and hemophagocytic syndrome (n=4; 5,1%). Only 5% of the children had prior immunization with typhoid non-conjugated vaccine (n=4/78). 28% of the cases (n=22/78) were caused by resistant bacteria. Thrombocytopenia and diagnosis delay was significantly associated with severe infection (p= 0.029 and p=0,01). Complicated forms were more common with MDR (p=0,1) and not statistically associated with a young age or sex in this study. Conclusions: Typhoid and paratyphoid fever are not rare in children back from tropical areas. This multicentric pediatric study seems to show that thrombocytopenia, diagnosis delay, and multidrug resistant bacteria are associated with severe typhoid fever and complicated forms in children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20resistance" title="antimicrobial resistance">antimicrobial resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a>, <a href="https://publications.waset.org/abstracts/search?q=Salmonella%20enterica%20typhi%20and%20paratyphi" title=" Salmonella enterica typhi and paratyphi"> Salmonella enterica typhi and paratyphi</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20typhoid" title=" severe typhoid"> severe typhoid</a> </p> <a href="https://publications.waset.org/abstracts/97365/risk-factors-for-severe-typhoid-fever-in-children-a-french-retrospective-study-about-78-cases-from-2000-2017-in-six-parisian-hospitals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> The Influence of Water on the Properties of Cellulose Fibre Insulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pablo%20Lopez%20Hurtado">Pablo Lopez Hurtado</a>, <a href="https://publications.waset.org/abstracts/search?q=Antroine%20Rouilly"> Antroine Rouilly</a>, <a href="https://publications.waset.org/abstracts/search?q=Virginie%20Vandenbossche"> Virginie Vandenbossche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cellulose fibre insulation is an eco-friendly building material made from recycled paper fibres, treated with borates for fungal and fire resistance. It is comparable in terms of thermal and acoustic performance to mineral wool insulation and other insulation materials based on non-renewable resources. The main method of application consists in separating and blowing the fibres in attics or closed wall cavities. Another method, known as the “wet spray method” is gaining interest. With this method the fibres are projected with pulverized water, which stick to the wall cavities. The issue with the wet spray technique is that the water dosage could be difficult to control. A high water dosage implies not only a longer drying time, depending on ambient conditions, but also a change in the performance of the material itself. In our work we studied the thermal and mechanical properties of wet spray-cellulose insulation in order to understand how water dosage could affect these properties. The material was first characterized to study the chemical and physical properties of the fibres. Then representative samples of wet sprayed cellulose with varying applied water dosage were subject to thermal conductivity and compression testing in order to better understand how changes in the fibres induced by drying can affect these properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose%20fibre" title="cellulose fibre">cellulose fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20paper" title=" recycled paper"> recycled paper</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20sorption" title=" moisture sorption"> moisture sorption</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulation" title=" thermal insulation"> thermal insulation</a> </p> <a href="https://publications.waset.org/abstracts/36337/the-influence-of-water-on-the-properties-of-cellulose-fibre-insulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Effect of Moisture Content Compaction in the Geometry Definition of Earth Dams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Julian%20B.%20Garc%C3%ADa">Julian B. García</a>, <a href="https://publications.waset.org/abstracts/search?q=Virginie%20Q.%20R.%20Pinto"> Virginie Q. R. Pinto</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20P.%20Assis"> André P. Assis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents numerical flow and slope stability simulations in three typical sections of earth dams built in tropical regions, two homogeneous with different slope inclinations, and the other one heterogeneous with impermeable core. The geotechnical material parameters used in this work were obtained from a lab testing of physical characterization, compaction, consolidation, variable load permeability and saturated triaxial type CD for compacted soil samples with standard proctor energy at optimum moisture content (23%), optimum moisture content + 2% and optimum moisture content +5%. The objective is to analyze the general behavior of earth dams built in rainy regions where optimum moisture is exceeded. The factor of safety is satisfactory for the three sections compacted in all moisture content during the stages of operation and end of construction. On The other hand, the rapid drawdown condition is the critical phase for homogeneus dams configuration, the factor of safety obtained were unsatisfactory. In general, the heterogeneous dam behavior is more efficient due to the fact that the slopes are made up of gravel, which favors the dissipation of pore pressures during the rapid drawdown. For the critical phase, the slopes should have lower inclinations of the upstream and downstream slopes to guarantee stability, although it increases the costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earth%20dams" title="earth dams">earth dams</a>, <a href="https://publications.waset.org/abstracts/search?q=flow" title=" flow"> flow</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20content" title=" moisture content"> moisture content</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20stability" title=" slope stability"> slope stability</a> </p> <a href="https://publications.waset.org/abstracts/70363/effect-of-moisture-content-compaction-in-the-geometry-definition-of-earth-dams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Application of Homer Optimization to Investigate the Prospects of Hybrid Renewable Energy System in Rural Area: Case of Rwanda</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emile%20Niringiyimana">Emile Niringiyimana</a>, <a href="https://publications.waset.org/abstracts/search?q=LI%20Ji%20Qing"> LI Ji Qing</a>, <a href="https://publications.waset.org/abstracts/search?q=Giovanni%20Dushimimana"> Giovanni Dushimimana</a>, <a href="https://publications.waset.org/abstracts/search?q=Virginie%20Umwere"> Virginie Umwere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development and utilization of renewable energy (RE) can not only effectively reduce carbon dioxide (CO2) emissions, but also became a solution to electricity shortage mitigation in rural areas. Hybrid RE systems are promising ways to provide consistent and continuous power for isolated areas. This work investigated the prospect and cost effectiveness of hybrid system complementarity between a 100kW solar PV system and a small-scale 200kW hydropower station in the South of Rwanda. In order to establish the optimal size of a RE system with adequate sizing of system components, electricity demand, solar radiation, hydrology, climate data are utilized as system input. The average daily solar radiation in Rukarara is 5.6 kWh/m2 and average wind speed is 3.5 m/s. The ideal integrated RE system, according to Homer optimization, consists of 91.21kW PV, 146kW hydropower, 12 x 24V li-ion batteries with a 20kW converter. The method of enhancing such hybrid systems control, sizing and choice of components is to reduce the Net present cost (NPC) of the system, unmet load, the cost of energy and reduction of CO2. The power consumption varies according to dominant source of energy in the system by controlling the energy compensation depending on the generation capacity of each power source. The initial investment of the RE system is $977,689.25, and its operation and maintenance expenses is $142,769.39 over a 25-year period. Although the investment is very high, the targeted profits in future are huge, taking into consideration of high investment in rural electrification structure implementations, tied with an increase of electricity cost and the 5 years payback period. The study outcomes suggest that the standalone hybrid PV-Hydropower system is feasible with zero pollution in Rukara community. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HOMER%20optimization" title="HOMER optimization">HOMER optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20power%20system" title=" hybrid power system"> hybrid power system</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=NPC%20and%20solar%20pv%20systems" title=" NPC and solar pv systems"> NPC and solar pv systems</a> </p> <a href="https://publications.waset.org/abstracts/178977/application-of-homer-optimization-to-investigate-the-prospects-of-hybrid-renewable-energy-system-in-rural-area-case-of-rwanda" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Computational Fluid Dynamicsfd Simulations of Air Pollutant Dispersion: Validation of Fire Dynamic Simulator Against the Cute Experiments of the Cost ES1006 Action </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Virginie%20Hergault">Virginie Hergault</a>, <a href="https://publications.waset.org/abstracts/search?q=Siham%20Chebbah"> Siham Chebbah</a>, <a href="https://publications.waset.org/abstracts/search?q=Bertrand%20Frere"> Bertrand Frere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Following in-house objectives, Central laboratory of Paris police Prefecture conducted a general review on models and Computational Fluid Dynamics (CFD) codes used to simulate pollutant dispersion in the atmosphere. Starting from that review and considering main features of Large Eddy Simulation, Central Laboratory Of Paris Police Prefecture (LCPP) postulates that the Fire Dynamics Simulator (FDS) model, from National Institute of Standards and Technology (NIST), should be well suited for air pollutant dispersion modeling. This paper focuses on the implementation and the evaluation of FDS in the frame of the European COST ES1006 Action. This action aimed at quantifying the performance of modeling approaches. In this paper, the CUTE dataset carried out in the city of Hamburg, and its mock-up has been used. We have performed a comparison of FDS results with wind tunnel measurements from CUTE trials on the one hand, and, on the other, with the models results involved in the COST Action. The most time-consuming part of creating input data for simulations is the transfer of obstacle geometry information to the format required by SDS. Thus, we have developed Python codes to convert automatically building and topographic data to the FDS input file. In order to evaluate the predictions of FDS with observations, statistical performance measures have been used. These metrics include the fractional bias (FB), the normalized mean square error (NMSE) and the fraction of predictions within a factor of two of observations (FAC2). As well as the CFD models tested in the COST Action, FDS results demonstrate a good agreement with measured concentrations. Furthermore, the metrics assessment indicate that FB and NMSE meet the tolerance acceptable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulations" title="numerical simulations">numerical simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20dispersion" title=" atmospheric dispersion"> atmospheric dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20ES1006%20action" title=" cost ES1006 action"> cost ES1006 action</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20model" title=" CFD model"> CFD model</a>, <a href="https://publications.waset.org/abstracts/search?q=cute%20experiments" title=" cute experiments"> cute experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20data" title=" wind tunnel data"> wind tunnel data</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20results" title=" numerical results"> numerical results</a> </p> <a href="https://publications.waset.org/abstracts/107593/computational-fluid-dynamicsfd-simulations-of-air-pollutant-dispersion-validation-of-fire-dynamic-simulator-against-the-cute-experiments-of-the-cost-es1006-action" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Double Functionalization of Magnetic Colloids with Electroactive Molecules and Antibody for Platelet Detection and Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feixiong%20Chen">Feixiong Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Naoufel%20%20Haddour"> Naoufel Haddour</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie%20Frenea-Robin"> Marie Frenea-Robin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yves%20%20M%C3%A9Rieux"> Yves MéRieux</a>, <a href="https://publications.waset.org/abstracts/search?q=Yann%20Chevolot"> Yann Chevolot</a>, <a href="https://publications.waset.org/abstracts/search?q=Virginie%20Monnier"> Virginie Monnier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neonatal thrombopenia occurs when the mother generates antibodies against her baby’s platelet antigens. It is particularly critical for newborns because it can cause coagulation troubles leading to intracranial hemorrhage. In this case, diagnosis must be done quickly to make platelets transfusion immediately after birth. Before transfusion, platelet antigens must be tested carefully to avoid rejection. The majority of thrombopenia (95 %) are caused by antibodies directed against Human Platelet Antigen 1a (HPA-1a) or 5b (HPA-5b). The common method for antigen platelets detection is polymerase chain reaction allowing for identification of gene sequence. However, it is expensive, time-consuming and requires significant blood volume which is not suitable for newborns. We propose to develop a point-of-care device based on double functionalized magnetic colloids with 1) antibodies specific to antigen platelets and 2) highly sensitive electroactive molecules in order to be detected by an electrochemical microsensor. These magnetic colloids will be used first to isolate platelets from other blood components, then to capture specifically platelets bearing HPA-1a and HPA-5b antigens and finally to attract them close to sensor working electrode for improved electrochemical signal. The expected advantages are an assay time lower than 20 min starting from blood volume smaller than 100 µL. Our functionalization procedure based on amine dendrimers and NHS-ester modification of initial carboxyl colloids will be presented. Functionalization efficiency was evaluated by colorimetric titration of surface chemical groups, zeta potential measurements, infrared spectroscopy, fluorescence scanning and cyclic voltammetry. Our results showed that electroactive molecules and antibodies can be immobilized successfully onto magnetic colloids. Application of a magnetic field onto working electrode increased the detected electrochemical signal. Magnetic colloids were able to capture specific purified antigens extracted from platelets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magnetic%20Nanoparticles" title="Magnetic Nanoparticles ">Magnetic Nanoparticles </a>, <a href="https://publications.waset.org/abstracts/search?q=Electroactive%20Molecules" title=" Electroactive Molecules"> Electroactive Molecules</a>, <a href="https://publications.waset.org/abstracts/search?q=Antibody" title=" Antibody"> Antibody</a>, <a href="https://publications.waset.org/abstracts/search?q=Platelet" title=" Platelet"> Platelet</a> </p> <a href="https://publications.waset.org/abstracts/66772/double-functionalization-of-magnetic-colloids-with-electroactive-molecules-and-antibody-for-platelet-detection-and-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> The Bidirectional Effect between Parental Burnout and the Child’s Internalized and/or Externalized Behaviors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aline%20Woine">Aline Woine</a>, <a href="https://publications.waset.org/abstracts/search?q=Mo%C3%AFra%20Mikolajczak"> Moïra Mikolajczak</a>, <a href="https://publications.waset.org/abstracts/search?q=Virginie%20Dardier"> Virginie Dardier</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabelle%20Roskam"> Isabelle Roskam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background information: Becoming a parent is said to be the happiest event one can ever experience in one’s life. This popular (and almost absolute) truth–which no reasonable and decent human being would ever dare question on pain of being singled out as a bad parent–contrasts with the nuances that reality offers. Indeed, while many parents do thrive in their parenting role, some others falter and become progressively overwhelmed by their parenting role, ineluctably caught in a spiral of exhaustion. Parental burnout (henceforth PB) sets in when parental demands (stressors) exceed parental resources. While it is now generally acknowledged that PB affects the parent’s behavior in terms of neglect and violence toward their offspring, little is known about the impact that the syndrome might have on the children’s internalized (anxious and depressive symptoms, somatic complaints, etc.) and/or externalized (irritability, violence, aggressiveness, conduct disorder, oppositional disorder, etc.) behaviors. Furthermore, at the time of writing, to our best knowledge, no research has yet tested the reverse effect, namely, that of the child's internalized and/or externalized behaviors on the onset and/or maintenance of parental burnout symptoms. Goals and hypotheses: The present pioneering research proposes to fill an important gap in the existing literature related to PB by investigating the bidirectional effect between PB and the child’s internalized and/or externalized behaviors. Relying on a cross-lagged longitudinal study with three waves of data collection (4 months apart), our study tests a transactional model with bidirectional and recursive relations between observed variables and at the three waves, as well as autoregressive paths and cross-sectional correlations. Methods: As we write this, wave-two data are being collected via Qualtrics, and we expect a final sample of about 600 participants composed of French-speaking (snowball sample) and English-speaking (Prolific sample) parents. Structural equation modeling is employed using Stata version 17. In order to retain as much statistical power as possible, we use all available data and therefore apply the maximum likelihood with a missing value (mlmv) as the method of estimation to compute the parameter estimates. To limit (in so far is possible) the shared method variance bias in the evaluation of the child’s behavior, the study relies on a multi-informant evaluation approach. Expected results: We expect our three-wave longitudinal study to show that PB symptoms (measured at T1) raise the occurrence/intensity of the child’s externalized and/or internalized behaviors (measured at T2 and T3). We further expect the child’s occurrence/intensity of externalized and/or internalized behaviors (measured at T1) to augment the risk for PB (measured at T2 and T3). Conclusion: Should our hypotheses be confirmed, our results will make an important contribution to the understanding of both PB and children’s behavioral issues, thereby opening interesting theoretical and clinical avenues. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exhaustion" title="exhaustion">exhaustion</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20equation%20modeling" title=" structural equation modeling"> structural equation modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-lagged%20longitudinal%20study" title=" cross-lagged longitudinal study"> cross-lagged longitudinal study</a>, <a href="https://publications.waset.org/abstracts/search?q=violence%20and%20neglect" title=" violence and neglect"> violence and neglect</a>, <a href="https://publications.waset.org/abstracts/search?q=child-parent%20relationship" title=" child-parent relationship"> child-parent relationship</a> </p> <a href="https://publications.waset.org/abstracts/168366/the-bidirectional-effect-between-parental-burnout-and-the-childs-internalized-andor-externalized-behaviors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Non-Invasive Characterization of the Mechanical Properties of Arterial Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Rama%C3%ABL">Bruno RamaëL</a>, <a href="https://publications.waset.org/abstracts/search?q=Gwena%C3%ABL%20Page"> GwenaëL Page</a>, <a href="https://publications.waset.org/abstracts/search?q=Catherine%20Knopf-Lenoir"> Catherine Knopf-Lenoir</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Baledent"> Olivier Baledent</a>, <a href="https://publications.waset.org/abstracts/search?q=Anne-Virginie%20Salsac"> Anne-Virginie Salsac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> No routine technique currently exists for clinicians to measure the mechanical properties of vascular walls non-invasively. Most of the data available in the literature come from traction or dilatation tests conducted ex vivo on native blood vessels. The objective of the study is to develop a non-invasive characterization technique based on Magnetic Resonance Imaging (MRI) measurements of the deformation of vascular walls under pulsating blood flow conditions. The goal is to determine the mechanical properties of the vessels by inverse analysis, coupling imaging measurements and numerical simulations of the fluid-structure interactions. The hyperelastic properties are identified using Solidworks and Ansys workbench (ANSYS Inc.) solving an optimization technique. The vessel of interest targeted in the study is the common carotid artery. In vivo MRI measurements of the vessel anatomy and inlet velocity profiles was acquired along the facial vascular network on a cohort of 30 healthy volunteers: - The time-evolution of the blood vessel contours and, thus, of the cross-section surface area was measured by 3D imaging angiography sequences of phase-contrast MRI. - The blood flow velocity was measured using a 2D CINE MRI phase contrast (PC-MRI) method. Reference arterial pressure waveforms were simultaneously measured in the brachial artery using a sphygmomanometer. The three-dimensional (3D) geometry of the arterial network was reconstructed by first creating an STL file from the raw MRI data using the open source imaging software ITK-SNAP. The resulting geometry was then transformed with Solidworks into volumes that are compatible with Ansys softwares. Tetrahedral meshes of the wall and fluid domains were built using the ANSYS Meshing software, with a near-wall mesh refinement method in the case of the fluid domain to improve the accuracy of the fluid flow calculations. Ansys Structural was used for the numerical simulation of the vessel deformation and Ansys CFX for the simulation of the blood flow. The fluid structure interaction simulations showed that the systolic and diastolic blood pressures of the common carotid artery could be taken as reference pressures to identify the mechanical properties of the different arteries of the network. The coefficients of the hyperelastic law were identified using Ansys Design model for the common carotid. Under large deformations, a stiffness of 800 kPa is measured, which is of the same order of magnitude as the Young modulus of collagen fibers. Areas of maximum deformations were highlighted near bifurcations. This study is a first step towards patient-specific characterization of the mechanical properties of the facial vessels. The method is currently applied on patients suffering from facial vascular malformations and on patients scheduled for facial reconstruction. Information on the blood flow velocity as well as on the vessel anatomy and deformability will be key to improve surgical planning in the case of such vascular pathologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=identification" title="identification">identification</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=arterial%20walls" title=" arterial walls"> arterial walls</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI%20measurements" title=" MRI measurements"> MRI measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulations" title=" numerical simulations"> numerical simulations</a> </p> <a href="https://publications.waset.org/abstracts/46254/non-invasive-characterization-of-the-mechanical-properties-of-arterial-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10