CINXE.COM
Key Engineering Materials Vol. 969 | Scientific.Net
<!DOCTYPE html> <html lang="iv" dir="ltr"> <head> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="description" content="The special issue contains articles that reflect the modern level of research and development in the area of materials and materials processing technologies and will be useful to specialists in modern machinery." /> <link rel="canonical" href="https://www.scientific.net/KEM.969" /> <meta property="og:title" content="Key Engineering Materials Vol. 969 | Scientific.Net" /> <meta property="og:type" content="website" /> <meta property="og:url" content="https://www.scientific.net/KEM.969" /> <meta property="og:image" content="/Content/app/scinet5/images/metadata_logo.png" /> <meta property="og:image:type" content="image/png" /> <meta property="og:image:width" content="261" /> <meta property="og:image:height" content="260" /> <meta property="og:image:alt" content="Scientific.Net Logo" /> <title>Key Engineering Materials Vol. 969 | Scientific.Net</title> <link href="/Content/app/scinet5/images/favicon.ico" rel="shortcut icon" /> <link href="/Content/public.min.css?v=sTzmHAq2zYw3fxGTHUWq0SNFP1rKhxuSRAanqS9YOY0" rel="stylesheet" /> <link rel="preconnect" href="https://www.google-analytics.com"> <link rel="preconnect" href="https://www.gstatic.com"> <link rel="preconnect" href="https://www.googletagmanager.com"> <link rel="icon" href="/Content/app/scinet5/images/favicon.ico"> <link rel="apple-touch-icon" href="/Content/app/scinet5/images/apple-touch-icon.png"> <link rel="preconnect" href="https://fonts.googleapis.com"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link href="https://fonts.googleapis.com/css?family=Open+Sans+Condensed:300,700%7COpen+Sans:300i,400,400i,600,600i,700&display=swap" rel="stylesheet"> <!-- HTML5 shim support of HTML5 elements and media queries --> <!--[if lte IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <![endif]--> <!-- Google Tag Manager --> <script> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-T3VDKWV');</script> <!-- End Google Tag Manager --> </head> <body> <noscript> <!-- Google Tag Manager (noscript) --> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-T3VDKWV" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <div class="sc-content-container"> <div class="sc-content"> <div class="header-menu-container"> <div class="identity-menu-container header-menu-container-not-logged-in"> <div class="container"> <div class="row"> <ul class="role-menu"> <li class="user-menu between normal-user-menu"> <div class="hdivider-100"></div> <div class="cart-info"> <a href="https://main.scientific.net/Payment/Cart"> <i class="inline-icon cart-icon-white"></i> <span id="cartInfoTotalItemsCount"></span> </a> </div> <div class="user-menu-login-or-register"> <a href="https://main.scientific.net/Account/Registration?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FKEM.969" rel="nofollow"> Registration </a> <a href="https://main.scientific.net/Account/Login?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FKEM.969" rel="nofollow"> Log In </a> </div> </li> </ul> </div> </div> </div> <div class="header-fluid"> <div class="container"> <div class="row"> <div class="block-header"> <div class="logo-block"> <a href="/" class="application-logo inline-icon logo-icon"></a> <div class="burger-menu-button visible-xs"> <div class="hamburger-box"> <div class="hamburger-inner"></div> </div> </div> </div> <div class="menu-and-search-block"> <div class="burger-menu"> <nav class="burger-menu-items"> <div class="public-menu"> <ul> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/open-access-partners">Open Access</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> </ul> </div> </nav> </div> <div class="header-menu-top"> <div class="header-menu-list"> <a href="/ForLibraries">For Libraries</a> <a href="/ForPublication/Paper">For Publication</a> <a href="/open-access-partners">Open Access</a> <a href="/DocuCenter">Downloads</a> <a href="/Home/AboutUs">About Us</a> <a href="/Home/Contacts">Contact Us</a> </div> </div> <div class="search-block"> <input class="search-control" type="search" placeholder="Search" data-url="/Search"> <button class="button button-95 button-grey search-btn button-simple"> <span class="hidden-xs">Search</span> <i class="inline-icon search-icon-grey visible-xs"></i> </button> </div> </div> </div> </div> </div> </div> </div> <div class="container-fluid"> <div class="row"> <div class="banner-new"></div> </div> </div> <div class="content"> <div class="container"> <div class="row content-container"> <div class="left-content col-md-4 col-sm-5"> <div class="left-content-first-line icon-container mobile-collapse-button"> <div class="page-name-block underline-begin sibling-name-block"> <div class="page-name-block-text"> Volumes <a class="left-content-expand-button"><i class="inline-icon arrow-right-black no-hover-icon on-focus-arrow-down-black"></i></a> </div> </div> </div> <div class="row mobile-collapse-content"> <a href="/KEM.975" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 975</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.974" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 974</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.973" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 973</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.972" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 972</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.971" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 971</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.970" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 970</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.969" class="normal-large-text icon-container active-element active"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 969</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.968" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 968</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.967" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 967</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.966" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 966</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.965" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 965</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.964" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 964</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.963" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 963</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> </div> </div> <div class="right-content col-md-8 col-sm-7 col-xs-12"> <div class="bread-crumbs hidden-xs"> <a class="bread-crumbs-first" href="/">Home</a><i class="inline-icon arrow-breadcrumbs"></i><a class="bread-crumbs-first" href="/KEM">Key Engineering Materials</a><i class="inline-icon arrow-breadcrumbs"></i><span class="bread-crumbs-second">Key Engineering Materials Vol. 969</span></div> <div class="page-name-block underline-begin"> <h1 class="page-name-block-text">Key Engineering Materials Vol. 969</h1> </div> <div class="clearfix title-details"> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>DOI:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="https://doi.org/10.4028/v-ksk2Rs">https://doi.org/10.4028/v-ksk2Rs</a></p> </div> </div> </div> </div> <div id="titleMarcXmlLink" style="display: none" class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Export:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/KEM.969/marc.xml">MARCXML</a></p> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>ToC:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/KEM.969_toc.pdf">Table of Contents</a></p> </div> </div> </div> </div> </div> <div class="volume-tabs"> </div> <div class=""> <div class="volume-papers-page"> <div class="block-search-pagination clearfix"> <div class="block-search-volume"> <input id="paper-search" type="search" placeholder="Search" maxlength="65"> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/KEM.969/2">2</a></li><li class="PagedList-skipToNext"><a href="/KEM.969/2" rel="next">></a></li></ul></div> </div> <div class="block-volume-title normal-text-gray"> <p> Paper Title <span>Page</span> </p> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.969.-1">Preface</a> </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.969.3">Development of a Joint Concept for Producing Dissimilar Joints Using a 3D Printing-Supported Technique</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Carlos Miguel Almeida Leitão, Rui M. Leal, Miguel A. Reis Pereira, Luís F. Essacalalo, Ivan Galvão </div> </div> <div id="abstractTextBlock603191" class="volume-info volume-info-text volume-info-description"> Abstract: The joining of metals and polymer-based materials has a very high interest for many industrial sectors, as it allows to achieve components combining the specific characteristics of each material class. Additive manufacturing technologies could boost the production of these joints, allowing the controlled deposition of a polymeric material over the metal substrate. The present research is aimed to study the feasibility of a joint concept that can be used to produce aluminium/polymer-based material joints through a 3D printing-supported technique. The innovative joint concept, which is based on an interlocking mechanism promoted by a deposited pin, was compared to two conventional concepts. The innovative joint concept allows the production of samples with good mechanical behaviour, in which the failure occurs outside the material overlapping zone. This design is very suitable to be tested for the production of dissimilar material joints. </div> <div> <a data-readmore="{ block: '#abstractTextBlock603191', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 3 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.969.11">Comparison of Strength Properties of Common Powder Bed Fusion and Stereolithography Materials</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Thierry Decker, Slawomir Kedziora, Elvin Museyibov </div> </div> <div id="abstractTextBlock603701" class="volume-info volume-info-text volume-info-description"> Abstract: This paper serves as basis for subsequent studies investigating a potential material and manufacturing method selection for producing lattice structures to be used as energy absorption device, such as in novel wearable protective gear. Four additively manufactured plastics from two additive manufacturing methods are examined in detail. Polyamide 12 specimens produced on two Powder Bed Fusion (PBF) machines are compared against specimens produced on a stereolithography (SLA) printer using a standard and an engineering-grade resin. A comprehensive analysis of their mechanical properties is presented by measuring their densities as well as tensile, fatigue, and impact properties. In addition, Poisson鈥檚 ratio of the resin materials is estimated using Digital Image Correlation (DIC). </div> <div> <a data-readmore="{ block: '#abstractTextBlock603701', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 11 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.969.21">Performance-Based Analysis of Mesh Smoothing Methods Combining Topology Optimization and Additive Manufacturing</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Mohammed Afify, Younes Moubachir, Jamila Hassar, Zouhair Guennoun </div> </div> <div id="abstractTextBlock603330" class="volume-info volume-info-text volume-info-description"> Abstract: Most design-to-manufacturing frameworks combining topology optimization (TO) and additive manufacturing (AM) integrate mesh smoothing methods as post-processing techniques to remove discrete irregularities of optimized topologies. Notably, a design framework is proposed incorporating all the CAD development stages within the design phase providing smooth and ready-to-print topologies. The Laplacian-based smoothing algorithms have demonstrated a high capacity in removing surface noise. This study focuses on investigating the smoothing capacity of both HC Laplacian and Taubin methods using mesh quality metrics to assess on their performance in terms of geometric preservation and volume shrinkage. Taubin method was found to produce high-quality smooth meshes with less volume shrinkage compared to HC Laplacian. The Taubin model exhibited an increase of 15.06% in mesh volume whereas the HC Laplacian model had a volume shrinkage of 28.14%. Additionally, finite element analyses of the three-point bending test using ANSYS is set to measure the flexural stiffness of an optimized MBB beam under both HC Laplacian and Taubin smoothing methods. Overall, the flexural stiffness of Taubin is nearly two times the original model with a surplus of 46.91% whereas HC Laplacian exhibited a flexural stiffness that is less with 72.07% than the original model. </div> <div> <a data-readmore="{ block: '#abstractTextBlock603330', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 21 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.969.31">Parametric Study on Manufacturing of Continuous Glass Fibers Reinforced Polylactic Acid (PLA) Filaments for 3D Printing</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Nehal Muchhala, Shruti Desai, Vinod B. Suryawanshi, Raju Tayade </div> </div> <div id="abstractTextBlock605136" class="volume-info volume-info-text volume-info-description"> Abstract: Additively manufactured continuous fibers reinforced composite materials parts have huge potential to replace existing plastics and metal parts in a wide range of industrial applications. However, the continuous fibers reinforced 3D printing technology is still in nascent stages, and commercial 3D printers and raw materials available in the market are less cost effective. In this work, continuous glass fibers reinforced PLA filaments are manufactured through a cost-effective melt impregnation method. The experimental set up for manufacturing the filaments consisting of impregnation mold and yarn spreading mechanism was designed and fabricated in-house. Parametric study was carried out to understand the effect of process parameters on the quality and mechanical properties of the filaments. The input process parameters in this study are impregnation temperature and yarn spreading. While the output parameters are impregnation, fiber-volume fraction, and tensile and flexural behavior of filament. A novel method is proposed for quantitative analysis of impregnation of the filament. The optical images of the filament are used to quantify the impregnation of PLA resin in the glass fiber yarn. It was observed that the yarn spreading has major influence on impregnation, tensile strength, and flexural strength of the filaments. Lastly, finite element-based simulation study was carried out to interpret the experimental results and thus to understand the effect of fibers spreading on tensile and flexural strength of the filament. The simulation results agreed very well with the experimental results. </div> <div> <a data-readmore="{ block: '#abstractTextBlock605136', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 31 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.969.39">Numerical Modeling and Simulation of Microstructure Evolution during Solid-State Sintering: Multiphysics Approach</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Judice Cumbunga, Said Abboudi, Dominique Chamoret </div> </div> <div id="abstractTextBlock604103" class="volume-info volume-info-text volume-info-description"> Abstract: A multiphysics numerical approach based on a coupling of heat conduction equation, mechanical field (effect of gravity), and phase-field equations is proposed as an alternative to predict the microstructure evolution of 316L stainless steel during the pressureless solid-state sintering process. In this context, a numerical model based on the finite element method has shown to be suitable for evaluating the impact of the thermal field, as the activation force of the sintering process, on the microstructure field evolution and, in turn, the impact of the evolution of phase field variables on the material properties. The model was validated by comparison with literature results and applied to simulate the microstructure evolution for different sintering temperatures and particle sizes to evaluate the influence of these parameters on microstructure evolution. The results proved that model can be used to analyze the microstructure evolution, both from a quantitative and quality point of view, which makes it suitable for evaluating the impact of sintering parameters on material properties. </div> <div> <a data-readmore="{ block: '#abstractTextBlock604103', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 39 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.969.49">Model-Based Heat Input Control Validated on Martensitic Steel 1.4313</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Indira Dey, Sergei Egorov, Fabian Soffel, Konrad Wegener </div> </div> <div id="abstractTextBlock604777" class="volume-info volume-info-text volume-info-description"> Abstract: The ability of direct metal deposition (DMD) to fabricate complex geometries is still limited. Especially in thin-walled structures heat accumulation can lead to intolerable geometric deviation and which has to be avoided. Combining thin walls and massive sections in one layer requires parameter adapting for each section within a layer. An existing semi-empirical model predicts the optimal process parameters for the austenitic steel 1.4404. This study demonstrates the validity of the model for martensitic steel 1.4313 by an experimental campaign. The demonstrators are characterized by a massive inner part attached to a thin-walled rib. They were fabricated by DMD using constant and adapted heat input and were qualified by visual inspection, geometrical accuracy, Vickers hardness, and microstructure analysis. The demonstrators built with the adapted laser power showed enhanced geometrical accuracy which is essential for post-processing. The hardness along the symmetry plane was significantly increased, especially in the thin wall section. The study confirms the applicability of the model for martensitic steel in terms of geometrical accuracy but identifies perspectives to integrate microstructural aspects into the model. </div> <div> <a data-readmore="{ block: '#abstractTextBlock604777', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 49 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.969.59">A Study on the Temperature Optimization of Mold and Melt Using Design of Experiments for Children's Chair</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Pham Quang Trung </div> </div> <div id="abstractTextBlock604054" class="volume-info volume-info-text volume-info-description"> Abstract: The quality of the finished product is affected by a number of factors during the plastic injection molding process. Two crucial process variables in the creation of products are melted and mold temperature. The study uses the Design of Experiments tool in Autodesk Moldflow to look at the impact of melt and mold temperatures on injection molding technology. Analytical items are specifically made of polypropylene (PP) using kids' chair mold. According to simulation analysis results, there is a remarkable effect of the melt temperature on both time at end of packing as well as deflection in the range of the analytical temperature at t<sub>mold</sub> of [40, 80]掳C and t<sub>melt</sub> of [180, 220]掳C. Melt temperature also shows a notable influence not only on deflection but also on sink mark depth and volumetric shrinkage, along with the criteria to evaluate the expense of a product (time at end of packing, total part weight). </div> <div> <a data-readmore="{ block: '#abstractTextBlock604054', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 59 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.969.65">Selective Metallization on 3D Substrates for MIMO Antennae</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Man Ning Lu, Min Chieh Chou, Tune Hune Kao, Meng Chi Huang, Fu Ren Hsiao, I Wei Tseng </div> </div> <div id="abstractTextBlock604017" class="volume-info volume-info-text volume-info-description"> Abstract: Multiple-input multiple-output (MIMO) antenna technology owes its low weight and energy-saving electronic applications to the use of polymer substrates. Applying metallization to obtain conductive substrates involves spraying untreated molds with a gel to form a temporary protective coating. The coating is then partially removed with a laser to expose areas for metallization. After that, the exposed areas are modified with a palladium-tin (Pd-Sn) colloidal catalyst to enhance the adhesion between the insulating surface and copper deposition. It鈥檚 with these three steps that the modified areas become selective to metallization. It鈥檚 observed that copper deposited incessantly at a high speed of 5 渭m/hr after above treatment, and formed a dense layer with a low resistivity. The conductive patterns plated on the 3D substrate render the MIMO antenna system applicable to wireless local area network (WLAN) with two switchable frequencies, as evidenced by the simulation tests in which the antennae had ECC values below 0.2, a VSWR of 3 to 1, and a radiation efficiency around 50% at 2.4 GHz and 37% at 5.8 GHz. The electroless plating technology used above adds to a duplicable MIMO-antenna manufacturing process of low temperature and cost. </div> <div> <a data-readmore="{ block: '#abstractTextBlock604017', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 65 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.969.73">A Study of Annealing Effects on the Joints of a Rotary Friction Welds of AISI 1030 Steel</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Pham Quang Trung, Bui Duy Khanh, Dao Duy Qui </div> </div> <div id="abstractTextBlock604083" class="volume-info volume-info-text volume-info-description"> Abstract: This study is concerned with the post-heat treatment of rotational friction welds. AISI 1030 carbon steel parts are welded by rotational friction welding (RFW). The welding process parameters include friction pressure (P1), friction time (T1); Forging pressure (P2), forging time (T2). During the friction phase, the rotational speed is 1450 rpm; after that, the welding parts is stopped immediately and pressed together. The weld samples will be annealed at 650 掳C for 4 hours. The change in the properties of the material of a RFW weld joint such as hardness, tensile strength, bending strength as well as grain size when undergone a heat treatment process was investigated. The obtained results show that the annealing process strongly changes the mechanical properties through altering the microstructure of the weld. Particularly, the weld hardness and tensile strength decrease significantly while the bending strength and elongation increase as a result of the increase in grain size and uniformity of the phase distribution. The annealed weld has a hardness reduction of nearly 20% and a tensile strength reduction of about 24% compared to the original weld. The elongation in the tensile test increases from 1.1% for weld specimens to 2.54% for post-heat-treated welds. In the bending test, the maximum load before the appearance of cracks on the specimen increased by about 42% when comparing the post-heat and original weld specimens. </div> <div> <a data-readmore="{ block: '#abstractTextBlock604083', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 73 </div> </div> <div class="block-bottom-pagination"> <div class="pager-info"> <p>Showing 1 to 10 of 17 Paper Titles</p> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/KEM.969/2">2</a></li><li class="PagedList-skipToNext"><a href="/KEM.969/2" rel="next">></a></li></ul></div> </div> </div> </div> </div> </div> </div> </div> <div class="social-icon-popup"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-popup-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-popup-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-popup-icon social-icon"></i></a> </div> </div> <div class="sc-footer"> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="footer-menu col-md-12 col-sm-12 col-xs-12"> <ul class="list-inline menu-font"> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/insights" target="_blank">Insights</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/PolicyAndEthics/PublishingPolicies">Policy & Ethics</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> <li><a href="/Home/Imprint">Imprint</a></li> <li><a href="/Home/PrivacyPolicy">Privacy Policy</a></li> <li><a href="/Home/Sitemap">Sitemap</a></li> <li><a href="/Conferences">All Conferences</a></li> <li><a href="/special-issues">All Special Issues</a></li> <li><a href="/news/all">All News</a></li> <li><a href="/open-access-partners">Open Access Partners</a></li> </ul> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-footer-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-footer-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-footer-icon social-icon"></i></a> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12 footer-copyright"> <p> © 2025 Trans Tech Publications Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For open access content, terms of the Creative Commons licensing CC-BY are applied. <br />Scientific.Net is a registered trademark of Trans Tech Publications Ltd. </p> </div> </div> </div> </div> </div> <a class="scrollTop inline-icon scroll-top-icon" href="#" style="display: none"></a> </div> <script src="/Scripts/public.min.js?v=RxM_FbfHCcsoT4U-BoPCKYjCQ67x2cooj7su0mYkWQ4"></script> <script> $(function () { $("#paper-search").autocomplete({ minLength: 1, source: '/Title/Search?kurzel=KEM&volumeBegin=969&volumeEnd=969', delay: 200, select: function (event, ui) { window.location.href = ui.item.url; } }); }); </script> <script asp-render-component-scripts> $(function () { $.get("/Title/ShowMarcXmlLink") .done(function (showMarcXmlLink) { if (showMarcXmlLink) { $("#titleMarcXmlLink").show(); } }); }); Scinet.public = (function () { function loadCartInfo(onLoad) { var formatCartItemCount = function (count) { var format = (count > 1 || count === 0) ? "{0} items" : "{0} item"; $("#cartInfoTotalItemsCount").html(Scinet.stringFormat(format, count)); }, cookieCartItemCount = Cookies.get("Scinet5.CartItemsCount"); if (onLoad && cookieCartItemCount != null) { formatCartItemCount(parseInt(cookieCartItemCount, 10)); } else { $.ajax({ url: "/Cart/GetItemsCount", cache: false }) .done( function (count) { Cookies.set("Scinet5.CartItemsCount", count, { domain: ".scientific.net", secure: true }); formatCartItemCount(count); }); } } return { loadCartInfo: loadCartInfo }; })(); $(function () { Scinet.public.loadCartInfo(true); $("[data-add-book-to-cart]").on("click", function (e) { e.preventDefault(); var data = $(this).data("add-book-to-cart"); console.log(data); var url = "/Cart/AddBook"; $.post(url, data) .done( function () { Scinet.public.loadCartInfo(); $("#addToCart").modal(); }) .fail( function (xhr) { Scinet.error(xhr.responseText); }); }) }); </script> <script> var $buoop = { required: { e: 11, f: -6, o: -6, s: -3, c: -6 }, insecure: false, unsupported: false, api: 2019.11, reminder: 0, onshow: function () { window.browserUpdateOutdated = true; } }; function $buo_f() { var e = document.createElement("script"); e.src = "//browser-update.org/update.min.js"; document.body.appendChild(e); }; try { document.addEventListener("DOMContentLoaded", $buo_f, false) } catch (e) { window.attachEvent("onload", $buo_f) } </script> <!-- IE polyfills--> <!--[if lt IE 10]> <script src="/Scripts/lib/flexibility/flexibility.js"></script> <script> flexibility(document.documentElement); </script> <![endif]--> <script> window.clientErrorLogActionUrl = "/Errors/LogClientError"; </script> </body> </html>