CINXE.COM

Key Engineering Materials Vol. 972 | Scientific.Net

<!DOCTYPE html> <html lang="iv" dir="ltr"> <head> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="description" content="The special issue contains articles that are dedicated to the analysis of the latest research results in the area of structural and functional materials and their processing and synthesis technologies, including methods of their applications in machinery and construction. This special edition will be helpful to specialists in machinery, construction and environmental engineering." /> <link rel="canonical" href="https://www.scientific.net/KEM.972" /> <meta property="og:title" content="Key Engineering Materials Vol. 972 | Scientific.Net" /> <meta property="og:type" content="website" /> <meta property="og:url" content="https://www.scientific.net/KEM.972" /> <meta property="og:image" content="/Content/app/scinet5/images/metadata_logo.png" /> <meta property="og:image:type" content="image/png" /> <meta property="og:image:width" content="261" /> <meta property="og:image:height" content="260" /> <meta property="og:image:alt" content="Scientific.Net Logo" /> <title>Key Engineering Materials Vol. 972 | Scientific.Net</title> <link href="/Content/app/scinet5/images/favicon.ico" rel="shortcut icon" /> <link href="/Content/public.min.css?v=sTzmHAq2zYw3fxGTHUWq0SNFP1rKhxuSRAanqS9YOY0" rel="stylesheet" /> <link rel="preconnect" href="https://www.google-analytics.com"> <link rel="preconnect" href="https://www.gstatic.com"> <link rel="preconnect" href="https://www.googletagmanager.com"> <link rel="icon" href="/Content/app/scinet5/images/favicon.ico"> <link rel="apple-touch-icon" href="/Content/app/scinet5/images/apple-touch-icon.png"> <link rel="preconnect" href="https://fonts.googleapis.com"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link href="https://fonts.googleapis.com/css?family=Open&#x2B;Sans&#x2B;Condensed:300,700%7COpen&#x2B;Sans:300i,400,400i,600,600i,700&amp;display=swap" rel="stylesheet"> <!-- HTML5 shim support of HTML5 elements and media queries --> <!--[if lte IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <![endif]--> <!-- Google Tag Manager --> <script> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-T3VDKWV');</script> <!-- End Google Tag Manager --> </head> <body> <noscript> <!-- Google Tag Manager (noscript) --> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-T3VDKWV" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <div class="sc-content-container"> <div class="sc-content"> <div class="header-menu-container"> <div class="identity-menu-container header-menu-container-not-logged-in"> <div class="container"> <div class="row"> <ul class="role-menu"> <li class="user-menu between normal-user-menu"> <div class="hdivider-100"></div> <div class="cart-info"> <a href="https://main.scientific.net/Payment/Cart"> <i class="inline-icon cart-icon-white"></i> <span id="cartInfoTotalItemsCount"></span> </a> </div> <div class="user-menu-login-or-register"> <a href="https://main.scientific.net/Account/Registration?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FKEM.972" rel="nofollow"> Registration </a> <a href="https://main.scientific.net/Account/Login?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FKEM.972" rel="nofollow"> Log In </a> </div> </li> </ul> </div> </div> </div> <div class="header-fluid"> <div class="container"> <div class="row"> <div class="block-header"> <div class="logo-block"> <a href="/" class="application-logo inline-icon logo-icon"></a> <div class="burger-menu-button visible-xs"> <div class="hamburger-box"> <div class="hamburger-inner"></div> </div> </div> </div> <div class="menu-and-search-block"> <div class="burger-menu"> <nav class="burger-menu-items"> <div class="public-menu"> <ul> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/open-access-partners">Open Access</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> </ul> </div> </nav> </div> <div class="header-menu-top"> <div class="header-menu-list"> <a href="/ForLibraries">For Libraries</a> <a href="/ForPublication/Paper">For Publication</a> <a href="/open-access-partners">Open Access</a> <a href="/DocuCenter">Downloads</a> <a href="/Home/AboutUs">About Us</a> <a href="/Home/Contacts">Contact Us</a> </div> </div> <div class="search-block"> <input class="search-control" type="search" placeholder="Search" data-url="/Search"> <button class="button button-95 button-grey search-btn button-simple"> <span class="hidden-xs">Search</span> <i class="inline-icon search-icon-grey visible-xs"></i> </button> </div> </div> </div> </div> </div> </div> </div> <div class="container-fluid"> <div class="row"> <div class="banner-new"></div> </div> </div> <div class="content"> <div class="container"> <div class="row content-container"> <div class="left-content col-md-4 col-sm-5"> <div class="left-content-first-line icon-container mobile-collapse-button"> <div class="page-name-block underline-begin sibling-name-block"> <div class="page-name-block-text"> Volumes <a class="left-content-expand-button"><i class="inline-icon arrow-right-black no-hover-icon on-focus-arrow-down-black"></i></a> </div> </div> </div> <div class="row mobile-collapse-content"> <a href="/KEM.978" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 978</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.977" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 977</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.976" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 976</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.975" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 975</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.974" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 974</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.973" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 973</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.972" class="normal-large-text icon-container active-element active"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 972</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.971" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 971</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.970" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 970</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.969" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 969</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.968" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 968</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.967" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 967</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.966" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 966</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> </div> </div> <div class="right-content col-md-8 col-sm-7 col-xs-12"> <div class="bread-crumbs hidden-xs"> <a class="bread-crumbs-first" href="/">Home</a><i class="inline-icon arrow-breadcrumbs"></i><a class="bread-crumbs-first" href="/KEM">Key Engineering Materials</a><i class="inline-icon arrow-breadcrumbs"></i><span class="bread-crumbs-second">Key Engineering Materials Vol. 972</span></div> <div class="page-name-block underline-begin"> <h1 class="page-name-block-text">Key Engineering Materials Vol. 972</h1> </div> <div class="clearfix title-details"> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>DOI:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="https://doi.org/10.4028/v-hCx6gI">https://doi.org/10.4028/v-hCx6gI</a></p> </div> </div> </div> </div> <div id="titleMarcXmlLink" style="display: none" class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Export:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/KEM.972/marc.xml">MARCXML</a></p> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>ToC:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/KEM.972_toc.pdf">Table of Contents</a></p> </div> </div> </div> </div> </div> <div class="volume-tabs"> </div> <div class=""> <div class="volume-papers-page"> <div class="block-search-pagination clearfix"> <div class="block-search-volume"> <input id="paper-search" type="search" placeholder="Search" maxlength="65"> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/KEM.972/2">2</a></li><li><a href="/KEM.972/3">3</a></li><li class="PagedList-skipToNext"><a href="/KEM.972/2" rel="next">></a></li></ul></div> </div> <div class="block-volume-title normal-text-gray"> <p> Paper Title <span>Page</span> </p> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.972.-1">Preface</a> </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.972.3">Surface Roughness Improvement of PBF-LB Manufactured 316L with Dry Electropolishing</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Timo Rautio, Matias Jaskari, Antti J&#xE4;rvenp&#xE4;&#xE4; </div> </div> <div id="abstractTextBlock600346" class="volume-info volume-info-text volume-info-description"> Abstract: Laser powder bed fusion (PBF-LB) technique can currently offer the lowest surface roughness among all available techniques for metal additive manufacturing. Still the measured values for R<sub>a </sub>can easily be over 10 μm depending on the used layer thickness and printing parameters. The current work focuses on improving the surface roughness by utilizing dry electropolishing machine. While suitable for many materials, the material selected for this study is one of the most used in PBF-LB manufacturing, stainless steel 316L. In addition, multistep pre-grinding with the grade of the final finish varied was used to investigate what is the most efficient way to distribute manual preparation work and automated polishing to reach the desired surface roughness. Furthermore, severe shot peening was used before the polishing to study the effect on residual stresses and fatigue life of the material. Laser optical microscopy was used to investigate the surface properties and it was found that dry electropolishing with pre-grinding could be succesfully used to obtain average roughness levels as low as 0.13 μm. The highest reductions in surface roughness were reached with the rougher initial surfaces where it could be reduced by 80% at best. Residual stresses measured after the severe shot peening were preserved after the polishing but did not result in increased fatigue strength. </div> <div> <a data-readmore="{ block: '#abstractTextBlock600346', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 3 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.972.13">Prediction of Melt Pool Dimension, Porosity Generation and Thermal Behavior of Ti-6Al-4V during Powder Bed Fusion at Various Scan Speeds and Laser Powers</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Nada Hassine, Sami Chatti, Mouna Ben Slama, Lioua Kolsi </div> </div> <div id="abstractTextBlock602207" class="volume-info volume-info-text volume-info-description"> Abstract: The additive manufacturing technology called laser powder bed fusion enables to manufacture complex parts based on the fusion of a metallic powder layer by layer. In laser powder bed fusion, the produced component quality relies significantly on the parameters of the process. In this study, the powder titanium alloy Ti-6Al-4V is employed for the purpose of predicting the melt pool dimensions. To manufacture a single bead, several combinations of scan speed and laser power are used. This research studies the influence of the scan speed and the laser power on the melt pool dimensions and on the thermal history of a specified layer of powder. The results reveal that the geometry of the melt pool is considerably responsive to the scan speed and the laser power. Furthermore, unfavorable effects such as porosity defects are analyzed in detail. Suggestions are presented to employ optimal settings to prevent these undesirable outcomes. To validate the numerical results, a comparison with experimental results from the literature is carried out. Our numerical analysis proves a satisfactory correlation with the experimental investigations. The beam power and the scanning speed effects on the average temperature of the desired layers are discussed as well. </div> <div> <a data-readmore="{ block: '#abstractTextBlock602207', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 13 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.972.31">Improvement of Safety and Reliability of SCM440 Steel with Induction Hardening</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Gum Hwa Lee, Jong Kyu Park, Ki Woo Nam </div> </div> <div id="abstractTextBlock602209" class="volume-info volume-info-text volume-info-description"> Abstract: In this study, structural SCM440 steel was used to investigate harmless crack size using compressive residual stresses by induction hardening (IH). The fatigue limits of base metal (BM), quenching–tempering (QT), and IH specimens were obtained. The harmless crack size (<i>a<sub>hml</sub></i>) was evaluated using the fatigue limits, threshold stress intensity factor using the Ando equation, and the sum of the stress intensity factor using the Newman-Raju and API-RP579 equations. Because as the crack depth increases, the compressive residual stress rapidly decreases, the harmless crack was determined from the intersection of depth for all aspect ratios (<i>As</i>). However, the outermost surface crack did not intersect because the compressive residual stress (<i>σ<sub>r,s</sub></i>) on the surface is always present. The <i>a<sub>hml</sub></i> values based on BM and QT are 1.04−1.45 and 1.02−1.39 mm, respectively. These values can be evaluated as the<i> ∆K<sub>th(l)</sub></i> of a long crack. <i>a<sub>hml</sub></i> did not significantly depend on <i>As</i>. If the crack detected after nondestructive inspection (NDI) is not surface modified after repair, then NDI1 with a very high resolution must be performed. </div> <div> <a data-readmore="{ block: '#abstractTextBlock602209', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 31 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.972.45">Thermoelectric Properties of Annealed Bilayer SnSe/PbTe and SnSe/PbSe Thin Films by Thermal Evaporation Method</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: R. Tamilarasi, C. Joelin, R. Magesh, A. Brusly Solomon, J. Suryakanth, S. Rajesh </div> </div> <div id="abstractTextBlock600859" class="volume-info volume-info-text volume-info-description"> Abstract: Tin Selenide, Lead Selenide, and Lead Telluride are known best thermoelectric materials for mid and high-temperature electric generation applications. The bilayer of these materials could enhance the quality of a thermoelectric generation. The present work deals with bilayer deposition of SnSe/PbTe and SnSe/PbSe in glass substrates using physical vapor deposition followed by annealing at 323K, 423K, and 523K. The structure and morphology of the films have been investigated by XRD, SEM, and FESEM studies. The thermoelectric pursuance of both bilayer thin films was studied with the temperature as a function in the range of 300K to 623K. Both films exhibit the maximum Seebeck coefficient. The electrical Conductivity and Power factor increased gradually for SnSe/PbTe thin films and SnSe/PbSe thin films for the samples annealed up to 573K and then decreases. The electronic thermal conductivity of both films was very low compared to the total thermal conductivity. The absolute thermal conductivity at room temperature was calculated by Transient Hot Wire (THW) method. The maximum Figure of Merit (ZT) value obtained for SnSe/PbTe and SnSe/PbSe at room temperature was 0.81 and 1.3 for 573K annealed thin films respectively. </div> <div> <a data-readmore="{ block: '#abstractTextBlock600859', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 45 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.972.55">Structural Aspects of Soft Ferromagnetic Mg-Zn Based Intermetallics Prepared by Die Casting</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: S.M. Nasim Rokon, Ayeman Mazdi Nahin, Md Mahmudul Hasan, Ahmed Sharif </div> </div> <div id="abstractTextBlock602780" class="volume-info volume-info-text volume-info-description"> Abstract: In this research, different types of Mg-Zn based intermetallics that appear in the Mg-Zn alloy system were synthesized by conventional casting route. Consequently, the structural, mechanical, electrical, and magnetic properties of these Mg-Zn intermetallics were thoroughly studied. Every casting underwent a trivial loss of Mg by oxidation which resulted in slightly higher weight percentages of Zn. X-ray Diffraction (XRD) analysis confirmed the coexistence of several intermetallics in each sample. The morphology of the samples was studied under Optical and Field Emission Scanning Electron Microscopes and the phases were identified by Energy Dispersive Spectroscopy (EDS). Differential Scanning Calorimetry (DSC) analysis further confirmed many of the available phases found. Mainly five intermetallics i.e., Mg<sub>51</sub>Zn<sub>20</sub>, MgZn, Mg<sub>4</sub>Zn<sub>7</sub>, MgZn<sub>2 </sub>and Mg<sub>2</sub>Zn<sub>11</sub> were observed in the structures. The cast sample which is rich in Mg<sub>2</sub>Zn<sub>11</sub> showed the highest compressive strength (122.6 MPa) and electrical conductivity of 10.47 S/m. From Vibrating Sample Magnetometry (VSM) analysis it was found that three of the samples are soft ferromagnets whereas only the samples abundant in MgZn<sub>2</sub> content showed paramagnetic behavior with maximum magnetization of 0.66 emu/gm. </div> <div> <a data-readmore="{ block: '#abstractTextBlock602780', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 55 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.972.73">Determination of Air Pollutants Removal Efficiency by Wet Packed Scrubber System</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Leakhena Hang, Dalin Um, Aun Srean, Sela Kong, Phalla Try, Dalin Chhe, Chanreaksey Taing, Raksmey Yim, Mitsuhiko Hata, Muhammad Amin, Worradorn Phairuang, Masami Furuuchi </div> </div> <div id="abstractTextBlock603663" class="volume-info volume-info-text volume-info-description"> Abstract: Wet packed scrubber system is one of the considering air pollution control technology. Its high removal efficiency has been recognized by many studies. However, different type of biomass sources and different type of wet scrubber may produce different desirable result. Considering on the emission of biomass burning type in Cambodia, this study aims to investigate the performance removal efficiency of particulate matter from biomass burning using wet packed scrubber system. The laboratory scale of wet packed scrubber system was designed to meet the current requirement of Cambodia’s biomass emission. One kilogram of each type of biomasses (wood, rice straw, mango seed and mango skin) were burning for 15 minutes in an open burning combustion chamber, designed of 1m×1m steel sample tray, by which the exhaust smoke was treated in the wet packed scrubber system. To study the optimization removal efficiency of the system, three scenarios are proposed. T0 is the condition of biomass burning without treatment. T1 is the condition that exhaust smoke is treated with spray water in the system. T2 is the condition that exhaust smoke is treated with spray water combined with the activated carbon as a packing material in the system. The result show that the removal efficiency is great in T3 scenario in mango seed sample. For other samples, the result was not conclusive as the removal efficiency in each sample was not consistency. The high removal efficiency of particulate matter in mango seed was 70.12% for PM<sub>10</sub>, 69.79% for PM<sub>2.5</sub>, and 71.53% for PM<sub>1</sub>. To enhance the quality of research, some aspects require further improvement to achieve the optimal outcome. Since biomass burning remains the main source of boiler energy, there is a need to develop more-cost effective and simpler emission control technologies that can diminish air contaminant before release. </div> <div> <a data-readmore="{ block: '#abstractTextBlock603663', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 73 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.972.79">Groundwater Purification Using Bio-Sand Filter Modified with Iron Oxide-Coated Sand and Activated Carbon</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Bovathanak Leng, May Phue Wai, Leanggek Menh, Chheng Im Si, Rina Heu </div> </div> <div id="abstractTextBlock603799" class="volume-info volume-info-text volume-info-description"> Abstract: Groundwater is the most used natural resource which serves different diverse purposes and alternative water supply for households mainly in rural areas. However, it is polluted by contaminants such as heavy metals, total hardness and coliform bacteria. One such promising water treatment technology for households in rural areas is the Bio-sand Filter (BSF) because of its low cost and efficient removal of contaminants. Although BSF is efficient to remove contaminants, there is still needed to improve the flow rate and the performance of removing pollutants from groundwater. Therefore, this study focused on the development of a laboratory-scale Modified Bio-sand Filter (MBSF) that was combined with Iron-oxide Coated Sand (IOCS) with Granular Activated Carbon (GAC) made from coconut shells to purify groundwater. Laboratory scale of filters were performed in this study. Groundwater was collected from household’s well water in Kean Svay district, Kandal province. The filters were operated by filling the water source with 10 liters per day and operated for 20 days. Heavy metals were measured by Atomic Absorption Spectroscopy (AAS) and Arsenator. Total hardness was analyzed by Ion Chromatography (IC). Target coliform bacteria such as E. coli and total coliform were cultured by spread plate method. Flow rate was observed by setting time for 1 minute and measure the volume of effluent water. By the results, all physicochemical parameters of MBSF were within the standard limit of drinking water. MBSF showed significantly better removal efficiency for arsenic with 100% than BSF while MBSF can also remove Mn and Fe which was under the drinking water standard of WHO and MIME. Total hardness was achieved more than 80% in MBSF, while BSF with only 40%. MBSF also performed slightly better than BSF as well in removing both E. coli and total coliform with more than 90% reduction. The flow rate of the MBSF was faster about two and a half times than the flow rate of BSF with the average of 0.15 L/min for MBFS and 0.06 L/min for BSF. The results from this study contributed to the improvement of household water treatment method for purifying groundwater efficiently in rural areas. </div> <div> <a data-readmore="{ block: '#abstractTextBlock603799', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 79 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.972.89">Growth in the Worldwide Stock of E-Mobility Vehicles (by Technology and by Transport Mode) and the Worldwide Stock of Hydrogen Refueling Stations and Electric Charging Points between 2020 and 2022</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Osama Ahmad Marzouk </div> </div> <div id="abstractTextBlock601994" class="volume-info volume-info-text volume-info-description"> Abstract: This study discusses the portion of fuel cell electric vehicles (FCEVs) in the worldwide stock of vehicles on roads, particularly when compared to plug-in electric vehicles (PEVs), which comprise battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). The study considers the overall number of these e-mobility (electric mobility) vehicles, as well as within each of 4 transport modes, namely: (1) passenger light-duty vehicles (PLDVs or simply “cars”), (2) light commercial vehicles (LCVs or simply “vans”), (3) buses, and (4) trucks. The study also investigates the progress in the number of hydrogen refueling stations (HRSs) for FCEVs, and contrasts that with electric charging points (ECPs) for PEVs; during the years 2020, 2021, and 2022. While the number of worldwide FCEVs nearly doubled in 2022 compared to 2020, the ratio of FCEVs to PEVs declined from 0.3348% in 2020 to 0.2738% (less than 0.3%) in 2022. In 2022 also, the number of FCEVs was 0.3914% (less than 0.4%) of the number of BEVs, and 0.9113% (less than 1%) of the number of PHEVs. The worldwide fraction of PEVs with respect to the total vehicles (both electric and non-electric) in 2022 was approximately 1.816% (split into 1.2704% for BEVs and 0.5456% for PHEVs), while the fraction of FCEVs was approximately 0.0050% (only 5 FCEVs per 100,000 vehicles). In terms of the convenience to supply the vehicles with energy, the number of worldwide hydrogen refueling stations nearly doubled in 2022 compared to 2020. Similarly, the worldwide number of electric charging points for use with PEVs nearly doubled in 2022 compared to 2020. However, the ratio of HRSs to ECPs declined from 0.0415% in 2020 to 0.0378% in 2022. The worldwide average FCEVs per HRS in 2022 was 70.69, while the worldwide average PEVs per ECP in 2022 was 9.75. Thus, PEVs are much more attractive than FCEVs for a driver concerned about the network of hydrogen stations. Furthermore, owners of PEVs have an additional option of recharging their vehicles at home (which is not applicable for FCEVs). Between 2020 and 2022, PEVs were dominated by BEVs, with 69.95% of PEVs being BEVs in 2022. This 2022 fraction of BEVs in PEVs reflects a consistent increase from the 2021 fraction (68.34%) and from the 2020 fraction (67.23%). Considering the worldwide increase in these e-mobility vehicles from 2020 to 2022, the number of FCEVs increased by a factor of 2.072, PHEVs increased by a factor of 2.322, and BEVs increased by a factor of 2.636, PEVs increased by a factor of 2.533. Thus, out of the 3 e-mobility vehicle technologies (FCEVs, PHEVs, and BEVs), BEVs had the strongest presence as well as the fastest growth. </div> <div> <a data-readmore="{ block: '#abstractTextBlock601994', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 89 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.972.99">Development of Recurrent Neural Network Model for Bridge Effect Detection by Various Fibers Incorporated in Fiber-Reinforced Concrete</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Dongwook Kim, Sung Gul Hong </div> </div> <div id="abstractTextBlock605017" class="volume-info volume-info-text volume-info-description"> Abstract: The purpose of this study is to detect the bridging effect formed at cracks after external forces act on various types of fiber-reinforced concrete reinforced with microfibers ranging in size from 10 μm up to 40 μm using a recurrent neural network (RNN). The bridge effect, which is an advantage of fiber-reinforced concrete(FRC) and a criterion for judging usability, can prevent cracks and brittle failure of concrete by forming a net with fibers from cracks formed in concrete to transmit stress. In this study, concrete surface image data taken from crack sections of various fiber-reinforced concrete were collected to create a crack and bridge effect exploration model based on RNN. Afterwards, the features of the part where the bridge effect appeared were directly labeled to enable high accuracy detection in the data added after model production. As a result of detecting surface cracks and bridge effects after modeling, the more sophisticated the labeling, the more accurate image data analysis was possible.<i></i> </div> <div> <a data-readmore="{ block: '#abstractTextBlock605017', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 99 </div> </div> <div class="block-bottom-pagination"> <div class="pager-info"> <p>Showing 1 to 10 of 21 Paper Titles</p> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/KEM.972/2">2</a></li><li><a href="/KEM.972/3">3</a></li><li class="PagedList-skipToNext"><a href="/KEM.972/2" rel="next">></a></li></ul></div> </div> </div> </div> </div> </div> </div> </div> <div class="social-icon-popup"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-popup-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-popup-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-popup-icon social-icon"></i></a> </div> </div> <div class="sc-footer"> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="footer-menu col-md-12 col-sm-12 col-xs-12"> <ul class="list-inline menu-font"> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/insights" target="_blank">Insights</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/PolicyAndEthics/PublishingPolicies">Policy &amp; Ethics</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> <li><a href="/Home/Imprint">Imprint</a></li> <li><a href="/Home/PrivacyPolicy">Privacy Policy</a></li> <li><a href="/Home/Sitemap">Sitemap</a></li> <li><a href="/Conferences">All Conferences</a></li> <li><a href="/special-issues">All Special Issues</a></li> <li><a href="/news/all">All News</a></li> <li><a href="/open-access-partners">Open Access Partners</a></li> </ul> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-footer-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-footer-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-footer-icon social-icon"></i></a> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12 footer-copyright"> <p> &#169; 2025 Trans Tech Publications Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For open access content, terms of the Creative Commons licensing CC-BY are applied. <br />Scientific.Net is a registered trademark of Trans Tech Publications Ltd. </p> </div> </div> </div> </div> </div> <a class="scrollTop inline-icon scroll-top-icon" href="#" style="display: none"></a> </div> <script src="/Scripts/public.min.js?v=RxM_FbfHCcsoT4U-BoPCKYjCQ67x2cooj7su0mYkWQ4"></script> <script> $(function () { $("#paper-search").autocomplete({ minLength: 1, source: '/Title/Search?kurzel=KEM&volumeBegin=972&volumeEnd=972', delay: 200, select: function (event, ui) { window.location.href = ui.item.url; } }); }); </script> <script asp-render-component-scripts> $(function () { $.get("/Title/ShowMarcXmlLink") .done(function (showMarcXmlLink) { if (showMarcXmlLink) { $("#titleMarcXmlLink").show(); } }); }); Scinet.public = (function () { function loadCartInfo(onLoad) { var formatCartItemCount = function (count) { var format = (count > 1 || count === 0) ? "{0} items" : "{0} item"; $("#cartInfoTotalItemsCount").html(Scinet.stringFormat(format, count)); }, cookieCartItemCount = Cookies.get("Scinet5.CartItemsCount"); if (onLoad && cookieCartItemCount != null) { formatCartItemCount(parseInt(cookieCartItemCount, 10)); } else { $.ajax({ url: "/Cart/GetItemsCount", cache: false }) .done( function (count) { Cookies.set("Scinet5.CartItemsCount", count, { domain: ".scientific.net", secure: true }); formatCartItemCount(count); }); } } return { loadCartInfo: loadCartInfo }; })(); $(function () { Scinet.public.loadCartInfo(true); $("[data-add-book-to-cart]").on("click", function (e) { e.preventDefault(); var data = $(this).data("add-book-to-cart"); console.log(data); var url = "/Cart/AddBook"; $.post(url, data) .done( function () { Scinet.public.loadCartInfo(); $("#addToCart").modal(); }) .fail( function (xhr) { Scinet.error(xhr.responseText); }); }) }); </script> <script> var $buoop = { required: { e: 11, f: -6, o: -6, s: -3, c: -6 }, insecure: false, unsupported: false, api: 2019.11, reminder: 0, onshow: function () { window.browserUpdateOutdated = true; } }; function $buo_f() { var e = document.createElement("script"); e.src = "//browser-update.org/update.min.js"; document.body.appendChild(e); }; try { document.addEventListener("DOMContentLoaded", $buo_f, false) } catch (e) { window.attachEvent("onload", $buo_f) } </script> <!-- IE polyfills--> <!--[if lt IE 10]> <script src="/Scripts/lib/flexibility/flexibility.js"></script> <script> flexibility(document.documentElement); </script> <![endif]--> <script> window.clientErrorLogActionUrl = "/Errors/LogClientError"; </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10