CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 57 results for author: <span class="mathjax">Zhan, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&amp;query=Zhan%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zhan, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zhan%2C+M&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zhan, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zhan%2C+M&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zhan%2C+M&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhan%2C+M&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08502">arXiv:2411.08502</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08502">pdf</a>, <a href="https://arxiv.org/format/2411.08502">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A fiber array architecture for atom quantum computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X">Xiao Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hou%2C+J">Jia-Yi Hou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jia-Chao Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+G">Guang-Wei Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+X">Xiao-Dong He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+F">Feng Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yi-Bo Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+M">Min Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+P">Peng Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Ming-Sheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08502v1-abstract-short" style="display: inline;"> Arrays of single atoms trapped in optical tweezers are increasingly recognized as a promising platform for scalable quantum computing. In both the fault-tolerant and NISQ eras, the ability to individually control qubits is essential for the efficient execution of quantum circuits. Time-division multiplexed control schemes based on atom shuttling or beam scanning have been employed to build program&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08502v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08502v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08502v1-abstract-full" style="display: none;"> Arrays of single atoms trapped in optical tweezers are increasingly recognized as a promising platform for scalable quantum computing. In both the fault-tolerant and NISQ eras, the ability to individually control qubits is essential for the efficient execution of quantum circuits. Time-division multiplexed control schemes based on atom shuttling or beam scanning have been employed to build programmable neutral atom quantum processors, but achieving high-rate, highly parallel gate operations remains a challenge. Here, we propose a fiber array architecture for atom quantum computing capable of fully independent control of individual atoms. The trapping and addressing lasers for each individual atom are emitted from the same optical waveguide, enabling robust control through common-mode suppression of beam pointing noise. Using a fiber array, we experimentally demonstrate the trapping and independent control of ten single atoms in two-dimensional optical tweezers, achieving individually addressed single-qubit gate with an average fidelity of 0.9966(3). Moreover, we perform simultaneous arbitrary single-qubit gate on four randomly selected qubits, resulting in an average fidelity of 0.9961(4). Our work paves the way for time-efficient execution of quantum algorithms on neutral atom quantum computers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08502v1-abstract-full').style.display = 'none'; document.getElementById('2411.08502v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.20659">arXiv:2405.20659</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.20659">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Popular Physics">physics.pop-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Realization of cold atom gyroscope in space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+J">Jinting Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+X">Xi Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+D">Danfang Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+W">Wenzhang Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yang Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+M">Meng He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fang%2C+J">Jie Fang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lin Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+C">Chuan He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+J">Junjie Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+H">Huanyao Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Q">Qunfeng Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qin%2C+L">Lei Qin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X">Xiao Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yibo Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X">Xiaowei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+J">Jiaqi Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+R">Runbing Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=An%2C+M">Meizhen An</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+L">Long Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+S">Shuquan Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Z">Zongfeng Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Mingsheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.20659v2-abstract-short" style="display: inline;"> High-precision gyroscopes in space are essential for fundamental physics research and navigation. Due to its potential high precision, the cold atom gyroscope is expected to be the next generation of gyroscopes in space. Here, we report the first realization of a cold atom gyroscope, which was demonstrated by the atom interferometer installed in the China Space Station (CSS) as a payload. By compe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20659v2-abstract-full').style.display = 'inline'; document.getElementById('2405.20659v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.20659v2-abstract-full" style="display: none;"> High-precision gyroscopes in space are essential for fundamental physics research and navigation. Due to its potential high precision, the cold atom gyroscope is expected to be the next generation of gyroscopes in space. Here, we report the first realization of a cold atom gyroscope, which was demonstrated by the atom interferometer installed in the China Space Station (CSS) as a payload. By compensating for CSS&#39;s high dynamic rotation rate using a built-in piezoelectric mirror, spatial interference fringes in the interferometer are successfully obtained. Then, the optimized ratio of the Raman laser&#39;s angles is derived, the coefficients of the piezoelectric mirror are self-calibrated in orbit, and various systemic effects are corrected. We achieve a rotation measurement resolution of 50*10^-6 rad/s for a single shot and 17*10^-6 rad/s for an average number of 32. The measured rotation is (-1142+/-29)*10^-6 rad/s and is compatible with that recorded by the classical gyroscope of the CSS. This study paves the way for developing high-precision cold atom gyroscopes in space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20659v2-abstract-full').style.display = 'none'; document.getElementById('2405.20659v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.01199">arXiv:2404.01199</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.01199">pdf</a>, <a href="https://arxiv.org/format/2404.01199">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Evaluation of the systematic error induced by quadratic Zeeman effect using hyperfine ground state exchange method in a long-baseline dual-species atom interferometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Ji%2C+Y">Yu-Hang Ji</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+C">Chuan He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yan%2C+S">Si-Tong Yan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+J">Jun-Jie Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lei%2C+J">Jia-Qi Lei</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lu Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lin Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+X">Xi Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Ming-Sheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.01199v1-abstract-short" style="display: inline;"> The systematic error induced by the quadratic Zeeman effect is non-negligible in atom interferometers and must be precisely evaluated. We theoretically analyze the phase shift induced by the Zeeman effect, and use a hyperfine ground state exchange (HGSE) method to evaluate the systematic error in the long-baseline $^{85}$Rb-$^{87}$Rb dual-species atom interferometer due to the quadratic Zeeman eff&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01199v1-abstract-full').style.display = 'inline'; document.getElementById('2404.01199v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.01199v1-abstract-full" style="display: none;"> The systematic error induced by the quadratic Zeeman effect is non-negligible in atom interferometers and must be precisely evaluated. We theoretically analyze the phase shift induced by the Zeeman effect, and use a hyperfine ground state exchange (HGSE) method to evaluate the systematic error in the long-baseline $^{85}$Rb-$^{87}$Rb dual-species atom interferometer due to the quadratic Zeeman effect. Compared to the two evaluation methods, mapping the absolute magnetic field in the interference region and performing phase measurements at different bias fields, the HGSE method could obtain the systematic error in real time in case of slow drifts of either the ambient magnetic field or other systematic effects irrelevant to the hyperfine ground states. To validate the effectiveness of the HGSE method, we also employ the mapping magnetic field method and modulating bias field method independently to cross-check and yield consistent results of three methods within an accuracy of $10^{-11}$ level. The HGSE method is helpful in evaluating and suppressing the quadratic Zeeman-effect-induced systematic error in long-baseline atom interferometer-based precision measurements, such as equivalence principle tests. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01199v1-abstract-full').style.display = 'none'; document.getElementById('2404.01199v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.11890">arXiv:2203.11890</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.11890">pdf</a>, <a href="https://arxiv.org/format/2203.11890">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/39/8/083701">10.1088/0256-307X/39/8/083701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient two-dimensional defect-free dual-species atom arrays rearrangement algorithm with near-fewest atom moves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Tao%2C+Z">Zhi-Jin Tao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+L">Li-Geng Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Peng-Xu"> Peng-Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hou%2C+J">Jia-Yi Hou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+X">Xiao-Dong He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Ming-Sheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.11890v3-abstract-short" style="display: inline;"> Dual-species single-atom array in optical tweezers has several advantages over the single-species atom array as a platform for quantum computing and quantum simulation. Thus, creating the defect-free dual-species single-atom array with atom numbers over hundreds is essential. As recent experiments demonstrated, one of the main difficulties lies in designing an efficient algorithm to rearrange the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.11890v3-abstract-full').style.display = 'inline'; document.getElementById('2203.11890v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.11890v3-abstract-full" style="display: none;"> Dual-species single-atom array in optical tweezers has several advantages over the single-species atom array as a platform for quantum computing and quantum simulation. Thus, creating the defect-free dual-species single-atom array with atom numbers over hundreds is essential. As recent experiments demonstrated, one of the main difficulties lies in designing an efficient algorithm to rearrange the stochastically loaded dual-species atoms arrays into arbitrary demanded configurations. We propose a heuristic connectivity optimization algorithm (HCOA) to provide the near-fewest number of atom moves. Our algorithm introduces the concept of using articulation points in an undirected graph to optimize connectivity as a critical consideration for arranging the atom moving paths. Tested in array size of hundreds atoms and various configurations, our algorithm shows a high success rate (&gt; 97%), low extra atom moves ratio, good scalability, and flexibility. Furthermore, we proposed a complementary step to solve the problem of atom loss during the rearrangement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.11890v3-abstract-full').style.display = 'none'; document.getElementById('2203.11890v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.12021">arXiv:2202.12021</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.12021">pdf</a>, <a href="https://arxiv.org/format/2202.12021">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Development of a compact high-resolution absolute gravity gradiometer based on atom interferometers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lyu%2C+W">Wei Lyu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+J">Jia-Qi Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X">Xiao-Wei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+W">Wu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+L">Lei Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+W">Wei-Hao Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+X">Xi Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tang%2C+B">Biao Tang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Ming-Sheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.12021v1-abstract-short" style="display: inline;"> We present a compact high-resolution gravity gradiometer based on dual Rb-85 atom interferometers using stimulated Raman transitions. A baseline L=44.5 cm and an interrogation time T=130 ms are realized in a sensor head with volume of less than 100 liters. Experimental parameters are optimized to improve the short-term sensitivity while a rejection algorithm relying on inversion of the Raman wave&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.12021v1-abstract-full').style.display = 'inline'; document.getElementById('2202.12021v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.12021v1-abstract-full" style="display: none;"> We present a compact high-resolution gravity gradiometer based on dual Rb-85 atom interferometers using stimulated Raman transitions. A baseline L=44.5 cm and an interrogation time T=130 ms are realized in a sensor head with volume of less than 100 liters. Experimental parameters are optimized to improve the short-term sensitivity while a rejection algorithm relying on inversion of the Raman wave vector is implemented to improve the long-term stability. After an averaging time of 17000 s, a phase resolution of 104 渭rad is achieved, which corresponds to a gravity gradient resolution of 0.86 E. As far as we know, this is the sub-E atom gravity gradiometer with the highest level of compactness to date. After the evaluation and correction of system errors induced by light shift, residual Zeeman shift, Coriolis effect and self-attraction effect, the instrument serves as an absolute gravity gradiometer and with it the local gravity gradient is measured to be 3114 (53) E. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.12021v1-abstract-full').style.display = 'none'; document.getElementById('2202.12021v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.02491">arXiv:2109.02491</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.02491">pdf</a>, <a href="https://arxiv.org/format/2109.02491">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.105.042430">10.1103/PhysRevA.105.042430 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High fidelity entanglement of neutral atoms via a Rydberg-mediated single-modulated-pulse controlled-PHASE gate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Fu%2C+Z">Zhuo Fu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+P">Peng Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+Y">Yuan Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yangyang Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+X">Xiaodong He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X">Xiao Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+M">Min Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+R">Runbing Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+L">Liang Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Mingsheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.02491v1-abstract-short" style="display: inline;"> Neutral atom platform has become an attractive choice to study the science of quantum information and quantum simulation, where intense efforts have been devoted to the entangling processes between individual atoms. For the development of this area, two-qubit controlled-PHASE gate via Rydberg blockade is one of the most essential elements. Recent theoretical studies have suggested the advantages o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.02491v1-abstract-full').style.display = 'inline'; document.getElementById('2109.02491v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.02491v1-abstract-full" style="display: none;"> Neutral atom platform has become an attractive choice to study the science of quantum information and quantum simulation, where intense efforts have been devoted to the entangling processes between individual atoms. For the development of this area, two-qubit controlled-PHASE gate via Rydberg blockade is one of the most essential elements. Recent theoretical studies have suggested the advantages of introducing non-trivial waveform modulation into the gate protocol, which is anticipated to improve its performance towards the next stage. We report our recent experimental results in realizing a two-qubit controlled-PHASE($C_Z$) gate via off-resonant modulated driving(ORMD) embedded in two-photon transition for Rb atoms. It relies upon a single modulated driving pulse with a carefully calculated smooth waveform to gain the appropriate phase accumulations required by the two-qubit gate. Combining this $C_Z$ gate with global microwave pulses, two-atom entanglement is generated with the raw fidelity of 0.945(6). Accounting for state preparation and measurement (SPAM) errors, we extract the entanglement operation fidelity to be 0.980(7). Our work features completing the $C_Z$ gate operation within a single pulse to avoid shelved Rydberg population, thus demonstrate another promising route for realizing high-fidelity two-qubit gate for neutral atom platform. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.02491v1-abstract-full').style.display = 'none'; document.getElementById('2109.02491v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.06144">arXiv:2106.06144</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.06144">pdf</a>, <a href="https://arxiv.org/format/2106.06144">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.083202">10.1103/PhysRevLett.128.083202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Defect-free arbitrary-geometry assembly of mixed-species atom arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+C">Cheng Sheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hou%2C+J">Jiayi Hou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+X">Xiaodong He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+K">Kunpeng Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+R">Ruijun Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhuang%2C+J">Jun Zhuang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mamat%2C+B">Bahtiyar Mamat</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+P">Peng Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+M">Min Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Mingsheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.06144v1-abstract-short" style="display: inline;"> Optically trapped mixed-species single atom arrays with arbitrary geometries are an attractive and promising platform for various applications, because tunable quantum systems with multiple components provide extra degrees of freedom for experimental control. Here, we report the first demonstration of two-dimensional $6\times4$ dual-species atom assembly with a filling fraction of 0.88 (0.89) for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.06144v1-abstract-full').style.display = 'inline'; document.getElementById('2106.06144v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.06144v1-abstract-full" style="display: none;"> Optically trapped mixed-species single atom arrays with arbitrary geometries are an attractive and promising platform for various applications, because tunable quantum systems with multiple components provide extra degrees of freedom for experimental control. Here, we report the first demonstration of two-dimensional $6\times4$ dual-species atom assembly with a filling fraction of 0.88 (0.89) for $^{85}$Rb ($^{87}$Rb) atoms. This mixed-species atomic synthetic is achieved via rearranging initially randomly distributed atoms using a sorting algorithm (heuristic heteronuclear algorithm) which is proposed for bottom-up atom assembly with both user-defined geometries and two-species atom number ratios. Our fully tunable hybrid-atom system of scalable advantages is a good starting point for high-fidelity quantum logic, many-body quantum simulation and forming defect-free single molecule arrays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.06144v1-abstract-full').style.display = 'none'; document.getElementById('2106.06144v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 128, 083202 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.12589">arXiv:2012.12589</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.12589">pdf</a>, <a href="https://arxiv.org/format/2012.12589">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.15.054020">10.1103/PhysRevApplied.15.054020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Influence of ground-Rydberg coherence in two-qubit gate based on Rydberg blockade </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yangyang Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+Y">Yuan Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fu%2C+Z">Zhuo Fu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+P">Peng Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+X">Xin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+X">Xiaodong He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Mingsheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.12589v1-abstract-short" style="display: inline;"> For neutral atom qubits, the two-qubit gate is typically realized via the Rydberg blockade effect, which hints about the special status of the Rydberg level besides the regular qubit register states. Here, we carry out experimental and theoretical studies to reveal how the ground-Rydberg coherence of the control qubit atom affects the process of two-qubit Controlled-Z ($C_Z$) gate, such as the com&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12589v1-abstract-full').style.display = 'inline'; document.getElementById('2012.12589v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.12589v1-abstract-full" style="display: none;"> For neutral atom qubits, the two-qubit gate is typically realized via the Rydberg blockade effect, which hints about the special status of the Rydberg level besides the regular qubit register states. Here, we carry out experimental and theoretical studies to reveal how the ground-Rydberg coherence of the control qubit atom affects the process of two-qubit Controlled-Z ($C_Z$) gate, such as the commonly used ground-Rydberg $蟺$-gap-$蟺$ pulse sequence originally proposed in Phys. Rev. Lett. \textbf{85}, 2208 (2000). We measure the decoherence of the control qubit atom after the $蟺$-gap-$蟺$ pulses and make a direct comparison with the typical decoherence time $蟿_{gr}$ extracted from Ramsey fringes of the ground-Rydberg transition. In particular, we observe that the control qubit atom subject to such pulse sequences experiences a process which is essentially similar to the ground-Rydberg Ramsey interference. Furthermore, we build a straightforward theoretical model to link the decoherence process of control qubit subject to $C_Z$ gate $蟺$-gap-$蟺$ pulse sequence and the $蟿_{gr}$, and also analyze the typical origins of decoherence effects. Finally, we discuss the $C_Z$ gate fidelity loss due to the limits imposed by the ground-Rydberg coherence properties and prospective for improving fidelity with new gate protocols. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12589v1-abstract-full').style.display = 'none'; document.getElementById('2012.12589v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.10390">arXiv:2011.10390</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.10390">pdf</a>, <a href="https://arxiv.org/format/2011.10390">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.3.023008">10.1103/PhysRevResearch.3.023008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient preparation of 2D defect-free atom arrays with near-fewest sorting-atom moves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+C">Cheng Sheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hou%2C+J">Jiayi Hou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+X">Xiaodong He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+P">Peng Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+K">Kunpeng Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhuang%2C+J">Jun Zhuang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X">Xiao Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+M">Min Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Mingsheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.10390v2-abstract-short" style="display: inline;"> Sorting atoms stochastically loaded in optical tweezer arrays via an auxiliary mobile tweezer is an efficient approach to preparing intermediate-scale defect-free atom arrays in arbitrary geometries. However, high filling fraction of atom-by-atom assemblers is impeded by redundant sorting moves with imperfect atom transport, especially for scaling the system size to larger atom numbers. Here, we p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.10390v2-abstract-full').style.display = 'inline'; document.getElementById('2011.10390v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.10390v2-abstract-full" style="display: none;"> Sorting atoms stochastically loaded in optical tweezer arrays via an auxiliary mobile tweezer is an efficient approach to preparing intermediate-scale defect-free atom arrays in arbitrary geometries. However, high filling fraction of atom-by-atom assemblers is impeded by redundant sorting moves with imperfect atom transport, especially for scaling the system size to larger atom numbers. Here, we propose a new sorting algorithm (heuristic cluster algorithm, HCA) which provides near-fewest moves in our tailored atom assembler scheme and experimentally demonstrate a $5\times6$ defect-free atom array with 98.4(7)$\%$ filling fraction for one rearrangement cycle. The feature of HCA that the number of moves $N_{m}\approx N$ ($N$ is the number of defect sites to be filled) makes the filling fraction uniform as the size of atom assembler enlarged. Our method is essential to scale hundreds of assembled atoms for bottom-up quantum computation, quantum simulation and precision measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.10390v2-abstract-full').style.display = 'none'; document.getElementById('2011.10390v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 3, 023008 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.12722">arXiv:1907.12722</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.12722">pdf</a>, <a href="https://arxiv.org/ps/1907.12722">ps</a>, <a href="https://arxiv.org/format/1907.12722">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Revealing Energy Dependence of Quantum Defects via Two Heteronuclear Atoms in an Optical Tweezer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+K">Kunpeng Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+X">Xiaodong He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+X">Xiang Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+R">Ruijun Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+P">Peng Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhuang%2C+J">Jun Zhuang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+R">Runbing Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+M">Min Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+J">Jiaming Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Mingsheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.12722v1-abstract-short" style="display: inline;"> As a physically motivated and computationally simple model for cold atomic and molecular collisions, the multichannel quantum defect theory (MQDT) with frame transformation (FT) formalism provides an analytical treatment of scattering resonances in an arbitrary partial wave between alkali-metal atoms, leading to the experimental observation of $p-$ and $d-$wave resonances. However, the inconsisten&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.12722v1-abstract-full').style.display = 'inline'; document.getElementById('1907.12722v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.12722v1-abstract-full" style="display: none;"> As a physically motivated and computationally simple model for cold atomic and molecular collisions, the multichannel quantum defect theory (MQDT) with frame transformation (FT) formalism provides an analytical treatment of scattering resonances in an arbitrary partial wave between alkali-metal atoms, leading to the experimental observation of $p-$ and $d-$wave resonances. However, the inconsistency of quantum defects for describing scattering resonances shows up when compared with experiments. Here, with two heteronuclear atoms in the ground state of an optical tweezer, the energy dependence of quantum defects is obviously revealed by comparing the measured s-wave scattering length with the prediction of MQDT-FT. By dividing the quantum defects into energy sensitive and insensitive categories, the inconsistency is ultimately removed while retaining the analytic structure of MQDT-FT. This study represents a significant improvement in the analytical MQDT-FT and demonstrates that a clean two-particle system is valuable to the test of collisional physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.12722v1-abstract-full').style.display = 'none'; document.getElementById('1907.12722v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages,3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.12716">arXiv:1907.12716</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.12716">pdf</a>, <a href="https://arxiv.org/ps/1907.12716">ps</a>, <a href="https://arxiv.org/format/1907.12716">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.153201">10.1103/PhysRevLett.124.153201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Balanced Coherence Times of Mixed-Species Atomic Qubits in a Dual $3\times3$ Magic-Intensity Optical Dipole Trap Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+R">Ruijun Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+X">Xiaodong He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+C">Cheng Sheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+J">Jiaheng Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+P">Peng Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+K">Kunpeng Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+J">Jiaqi Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+M">Min Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Mingsheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.12716v1-abstract-short" style="display: inline;"> In this work, we construct a polarization-mediated magic-intensity (MI) optical dipole trap (ODT) array, in which the detrimental effects of light shifts on the mixed-species qubits are efficiently mitigated so that the coherence times of the mixed-species qubits are both substantially enhanced and balanced for the first time. This mixed-species magic trapping technique relies on the tunability of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.12716v1-abstract-full').style.display = 'inline'; document.getElementById('1907.12716v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.12716v1-abstract-full" style="display: none;"> In this work, we construct a polarization-mediated magic-intensity (MI) optical dipole trap (ODT) array, in which the detrimental effects of light shifts on the mixed-species qubits are efficiently mitigated so that the coherence times of the mixed-species qubits are both substantially enhanced and balanced for the first time. This mixed-species magic trapping technique relies on the tunability of the coefficient of the third-order cross term and ground state hyperpolarizability, which are inherently dependent on the degree of circular polarization of the trap laser. Experimentally, polarization of the ODT array for $^{85}$Rb qubits is finely adjusted to a definite value so that its working magnetic field required for magic trapping amounts to the one required for magically trapping $^{87}$Rb qubits in another ODT array with fully circular polarization. Ultimately, in such a polarization-mediated MI-ODT array, the coherence times of $^{87}$Rb and $^{85}$Rb qubits are respectively enhanced up to 891$\pm$47 ms and 943$\pm$35 ms. Furthermore, a new source of dephasing effect is revealed, which arises from the noise of the elliptic polarization, and the reduction in corresponding dephasing effect on the $^{85}$Rb qubits is attainable by use of shallow magic intensity. It is anticipated that the novel mixed-species MI-ODT array is a versatile platform for building scalable quantum computers with neutral atoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.12716v1-abstract-full').style.display = 'none'; document.getElementById('1907.12716v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages,4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 153201 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.03867">arXiv:1907.03867</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.03867">pdf</a>, <a href="https://arxiv.org/format/1907.03867">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjd/e2019-100324-6">10.1140/epjd/e2019-100324-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SAGE: A Proposal for a Space Atomic Gravity Explorer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Tino%2C+G+M">G. M. Tino</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bassi%2C+A">A. Bassi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bianco%2C+G">G. Bianco</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bongs%2C+K">K. Bongs</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bouyer%2C+P">P. Bouyer</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cacciapuoti%2C+L">L. Cacciapuoti</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Capozziello%2C+S">S. Capozziello</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+X">X. Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chiofalo%2C+M+L">M. L. Chiofalo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Derevianko%2C+A">A. Derevianko</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ertmer%2C+W">W. Ertmer</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gaaloul%2C+N">N. Gaaloul</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gill%2C+P">P. Gill</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Graham%2C+P+W">P. W. Graham</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hogan%2C+J+M">J. M. Hogan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Iess%2C+L">L. Iess</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kasevich%2C+M+A">M. A. Kasevich</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Katori%2C+H">H. Katori</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Klempt%2C+C">C. Klempt</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+X">X. Lu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+L+-">L. -S. Ma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=M%C3%BCller%2C+H">H. M眉ller</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Newbury%2C+N+R">N. R. Newbury</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Oates%2C+C">C. Oates</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Peters%2C+A">A. Peters</a> , et al. (22 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.03867v2-abstract-short" style="display: inline;"> The proposed mission &#34;Space Atomic Gravity Explorer&#34; (SAGE) has the scientific objective to investigate gravitational waves, dark matter, and other fundamental aspects of gravity as well as the connection between gravitational physics and quantum physics using new quantum sensors, namely, optical atomic clocks and atom interferometers based on ultracold strontium atoms. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.03867v2-abstract-full" style="display: none;"> The proposed mission &#34;Space Atomic Gravity Explorer&#34; (SAGE) has the scientific objective to investigate gravitational waves, dark matter, and other fundamental aspects of gravity as well as the connection between gravitational physics and quantum physics using new quantum sensors, namely, optical atomic clocks and atom interferometers based on ultracold strontium atoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.03867v2-abstract-full').style.display = 'none'; document.getElementById('1907.03867v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Eur. Phys. J. D 73 (2019) 228 in the Topical Issue Quantum Technologies for Gravitational Physics, Guest editors Tanja Mehlstaubler, Yanbei Chen, Guglielmo M. Tino and Hsien-Chi Yeh</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. D 73, 228 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.07096">arXiv:1904.07096</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.07096">pdf</a>, <a href="https://arxiv.org/ps/1904.07096">ps</a>, <a href="https://arxiv.org/format/1904.07096">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.104.022822">10.1103/PhysRevA.104.022822 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> United test of the equivalence principle at $10^{-10}$ level using mass and internal energy specified atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lin Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+C">Chuan He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yan%2C+S">Si-Tong Yan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+X">Xi Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Duan%2C+W">Wei-Tao Duan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+R">Run-Dong Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+C">Chao Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ji%2C+Y">Yu-Hang Ji</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Barthwal%2C+S">Sachin Barthwal</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Q">Qi Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hou%2C+Z">Zhuo Hou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiong%2C+Z">Zong-Yuan Xiong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+D">Dong-Feng Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Y">Yuan-Zhong Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ni%2C+W">Wei-Tou Ni</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Ming-Sheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.07096v2-abstract-short" style="display: inline;"> We use both mass and internal energy specified rubidium atoms to jointly test the weak equivalence principle (WEP). We improve the four-wave double-diffraction Raman transition method (FWDR) we proposed before to select atoms with certain mass and angular momentum state, and perform dual-species atom interferometer. By combining $^{87}$Rb and $^{85}$Rb atoms with different angular momenta, we comp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.07096v2-abstract-full').style.display = 'inline'; document.getElementById('1904.07096v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.07096v2-abstract-full" style="display: none;"> We use both mass and internal energy specified rubidium atoms to jointly test the weak equivalence principle (WEP). We improve the four-wave double-diffraction Raman transition method (FWDR) we proposed before to select atoms with certain mass and angular momentum state, and perform dual-species atom interferometer. By combining $^{87}$Rb and $^{85}$Rb atoms with different angular momenta, we compare the differential gravitational acceleration of them, and determine the value of E枚tv枚s parameter, $畏$, which measures the strength of the violation of WEP. For one case ($^{87}$Rb$|\emph{F}=1\rangle$ - $^{85}$Rb$|\emph{F}=2\rangle$),the statistical uncertainty of $畏$ is $1.8 \times 10^{-10}$ at integration time of 8960 s. With various systematic errors correction, the final value is $畏=(-4.4 \pm 6.7) \times 10^{-10}$. Comparing with the previous WEP test experiments using atoms, this work gives a new upper limit of WEP violation for $^{87}$Rb and $^{85}$Rb atom pairs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.07096v2-abstract-full').style.display = 'none'; document.getElementById('1904.07096v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 104, 022822 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.04284">arXiv:1902.04284</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.04284">pdf</a>, <a href="https://arxiv.org/format/1902.04284">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.100.063429">10.1103/PhysRevA.100.063429 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Preparation of a Heteronuclear Two-atom System in the 3D Motional Ground State in an Optical Tweezer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+K">Kunpeng Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+X">Xiaodong He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+R">Ruijun Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+P">Peng Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+C">Cheng Sheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhuang%2C+J">Jun Zhuang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiong%2C+Z">Zongyuan Xiong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+M">Min Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Mingsheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.04284v2-abstract-short" style="display: inline;"> We report the realization of a heteronuclear two-atom of $^{87}$Rb-$^{85}$Rb in the ground state of an optical tweezer (OT). Starting by trapping two different isotopic single atoms, a $^{87}$Rb and a $^{85}$Rb in two strongly focused and linearly polarized OT with 4 $渭$m apart, we perform simultaneously three dimensional Raman sideband cooling for both atoms and the obtained 3D ground state proba&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.04284v2-abstract-full').style.display = 'inline'; document.getElementById('1902.04284v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.04284v2-abstract-full" style="display: none;"> We report the realization of a heteronuclear two-atom of $^{87}$Rb-$^{85}$Rb in the ground state of an optical tweezer (OT). Starting by trapping two different isotopic single atoms, a $^{87}$Rb and a $^{85}$Rb in two strongly focused and linearly polarized OT with 4 $渭$m apart, we perform simultaneously three dimensional Raman sideband cooling for both atoms and the obtained 3D ground state probabilities of $^{87}$Rb and $^{85}$Rb are 0.91(5) and 0.91(10) respectively. There is no obvious crosstalk observed during the cooling process. We then merge them into one tweezer via a species-dependent transport, where the species-dependent potentials are made by changing the polarization of the OTs for each species from linear polarization to the desired circular polarization. The measurable increment of vibrational quantum due to merging is $0.013(1)$ for the axial dimension. This two-atom system can be used to investigate cold collisional physics, to form quantum logic gates, and to build a single heteronuclear molecule. It can also be scaled up to few-atom regime and extended to other atomic species and molecules, and thus to ultracold chemistry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.04284v2-abstract-full').style.display = 'none'; document.getElementById('1902.04284v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 100, 063429 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.00127">arXiv:1901.00127</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.00127">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Normal-mode splitting of four-level atom-cavity system under collective strong coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+Z">Zheng Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+L">Liyong Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+M">Min Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+Y">Yifu Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Mingsheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.00127v1-abstract-short" style="display: inline;"> We investigate the transmission spectrum of an optical cavity coupled with four-level atoms. Multiple normal-mode splitting peaks of the strongly coupled atom-cavity system are obtained as single cavity mode couples three separated atomic transitions simultaneously. We employ a confocal optical cavity and an ensemble of cold Rb-85 atoms for cavity quantum electrodynamics. We observe four normal-mo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.00127v1-abstract-full').style.display = 'inline'; document.getElementById('1901.00127v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.00127v1-abstract-full" style="display: none;"> We investigate the transmission spectrum of an optical cavity coupled with four-level atoms. Multiple normal-mode splitting peaks of the strongly coupled atom-cavity system are obtained as single cavity mode couples three separated atomic transitions simultaneously. We employ a confocal optical cavity and an ensemble of cold Rb-85 atoms for cavity quantum electrodynamics. We observe four normal-mode splitting peaks of the cavity transmission in the strong coupling regime due to collective enhancement of the atom-cavity coupling strength by ensemble of cold atoms. The experimental observations are consistent with the theoretical analysis. The multiple normal-mode excitation in the strongly coupled multi-level atom-cavity system may lead to practical application for realizing multi-channel all-optical devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.00127v1-abstract-full').style.display = 'none'; document.getElementById('1901.00127v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.06263">arXiv:1806.06263</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.06263">pdf</a>, <a href="https://arxiv.org/format/1806.06263">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.110402">10.1103/PhysRevLett.122.110402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of quantum phase transition in spin-orbital-angular-momentum coupled Bose-Einstein condensate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+D">Dongfang Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+T">Tianyou Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zou%2C+P">Peng Zou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kong%2C+L">Lingran Kong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+R">Ruizong Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+X">Xing Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+X">Xiao-Long Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Peng%2C+S">Shi-Guo Peng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Mingsheng Zhan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pu%2C+H">Han Pu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+K">Kaijun Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.06263v2-abstract-short" style="display: inline;"> Orbital angular momentum (OAM) of light represents a fundamental optical freedom that can be exploited to manipulate quantum state of atoms. In particular, it can be used to realize spin-orbital-angular-momentum (SOAM) coupling in cold atoms by inducing an atomic Raman transition using two laser beams with differing OAM. Rich quantum phases are predicted to exist in many-body systems with SOAM cou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.06263v2-abstract-full').style.display = 'inline'; document.getElementById('1806.06263v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.06263v2-abstract-full" style="display: none;"> Orbital angular momentum (OAM) of light represents a fundamental optical freedom that can be exploited to manipulate quantum state of atoms. In particular, it can be used to realize spin-orbital-angular-momentum (SOAM) coupling in cold atoms by inducing an atomic Raman transition using two laser beams with differing OAM. Rich quantum phases are predicted to exist in many-body systems with SOAM coupling. Their observations in laboratory, however, are often hampered by the limited control of the system parameters. In this work we report, for the first time, the experimental observation of the ground-state quantum phase diagram of the SOAM coupled Bose-Einstein condensate (BEC). The discontinuous variation of the spin polarization as well as the vorticity of the atomic wave function across the phase boundaries provides clear evidence of first-order phase transitions. Our results open up a new way to the study of phase transitions and exotic quantum phases in quantum gases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.06263v2-abstract-full').style.display = 'none'; document.getElementById('1806.06263v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures, correction for the numbers of some references in the main text</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 110402 (2019) - Published 20 March 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.04727">arXiv:1805.04727</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.04727">pdf</a>, <a href="https://arxiv.org/format/1805.04727">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of phonon parametric down-conversion in a spherical Bose-Einstein condensate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+T">Tianyou Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pan%2C+J">Jian-Song Pan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+D">Dongfang Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kong%2C+L">Lingran Kong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+R">Ruizong Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+X">Xing Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+X">Xiaolong Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Peng%2C+S">Shi-Guo Peng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Mingsheng Zhan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+W+V">W. Vincent Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+K">Kaijun Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.04727v2-abstract-short" style="display: inline;"> We report the observation of parametric down-conversion of phonons in a spherical Bose-Einstein condensate. The spherical symmetry, which is crucial for observing this phenomenon, is experimentally demonstrated by measuring the collective mode and expansion behavior of the condensate. The low-energy monopole mode is excited by coupling with a high-energy mode with a nearly twice eigen-frequency. T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.04727v2-abstract-full').style.display = 'inline'; document.getElementById('1805.04727v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.04727v2-abstract-full" style="display: none;"> We report the observation of parametric down-conversion of phonons in a spherical Bose-Einstein condensate. The spherical symmetry, which is crucial for observing this phenomenon, is experimentally demonstrated by measuring the collective mode and expansion behavior of the condensate. The low-energy monopole mode is excited by coupling with a high-energy mode with a nearly twice eigen-frequency. The population of the low-energy mode becomes maximum only when the high-energy mode is resonantly excited. Furthermore, we directly observe the parametric down-conversion process in the driving process, through simultaneously probing the two coupling modes. The experimental observation is consistent with the perturbation theory including the gravity effect. This work opens the challenge in related study of the condensate beyond mean-field theory and has potential applications in quantum information. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.04727v2-abstract-full').style.display = 'none'; document.getElementById('1805.04727v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.06306">arXiv:1712.06306</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.06306">pdf</a>, <a href="https://arxiv.org/ps/1712.06306">ps</a>, <a href="https://arxiv.org/format/1712.06306">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.240501">10.1103/PhysRevLett.121.240501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High Fidelity Single-qubit Gates of a Single Neutral Atom in the Magic-Intensity Optical Dipole Trap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+C">Cheng Sheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+X">Xiaodong He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+R">Ruijun Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+K">Kunpeng Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+P">Peng Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiong%2C+Z">Zongyuan Xiong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+M">Min Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Mingsheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.06306v1-abstract-short" style="display: inline;"> We demonstrate high fidelity single-qubit gate operation in a trapped single neutral atom. The atom is trapped in the recently invented magic-intensity optical dipole trap (MI-ODT) with more stable magnetic field. The MI-ODT efficiently mitigates the detrimental effects of light shifts thus sufficiently improves the performance of single qubit-gates. The gates are driven with microwave, and the fi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.06306v1-abstract-full').style.display = 'inline'; document.getElementById('1712.06306v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.06306v1-abstract-full" style="display: none;"> We demonstrate high fidelity single-qubit gate operation in a trapped single neutral atom. The atom is trapped in the recently invented magic-intensity optical dipole trap (MI-ODT) with more stable magnetic field. The MI-ODT efficiently mitigates the detrimental effects of light shifts thus sufficiently improves the performance of single qubit-gates. The gates are driven with microwave, and the fidelity of gate operation is characterized by using the randomized benchmarking method. We obtain an average error per Clifford gate of $3.0(7)\times10^{-5}$ which is much below the error threshold ($10^{-4}$) for fault-tolerance. This error is found to be dominated by qubit dephasing, and the corresponding coherence time relevant to the Clifford gates is also measured experimentally. This work is an essential step toward the construction of a scalable quantum computer with neutral atoms trapped in an MI-ODT array. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.06306v1-abstract-full').style.display = 'none'; document.getElementById('1712.06306v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 240501 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.00349">arXiv:1702.00349</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.00349">pdf</a>, <a href="https://arxiv.org/ps/1702.00349">ps</a>, <a href="https://arxiv.org/format/1702.00349">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.119.160502">10.1103/PhysRevLett.119.160502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Entangling two atoms of different isotopes via Rydberg blockade </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zeng%2C+Y">Y. Zeng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+P">P. Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+X+D">X. D. He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y+Y">Y. Y. Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+M">M. Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">J. Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Papoular%2C+D+J">D. J. Papoular</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shlyapnikov%2C+G+V">G. V. Shlyapnikov</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M+S">M. S. Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.00349v1-abstract-short" style="display: inline;"> Quantum entanglement is crucial for simulating and understanding exotic physics of strongly correlated many-body systems, such as high--temperature superconductors, or fractional quantum Hall states. The entanglement of non-identical particles exhibits richer physics of strong many-body correlations and offers more opportunities for quantum computation, especially with neutral atoms where in contr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.00349v1-abstract-full').style.display = 'inline'; document.getElementById('1702.00349v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.00349v1-abstract-full" style="display: none;"> Quantum entanglement is crucial for simulating and understanding exotic physics of strongly correlated many-body systems, such as high--temperature superconductors, or fractional quantum Hall states. The entanglement of non-identical particles exhibits richer physics of strong many-body correlations and offers more opportunities for quantum computation, especially with neutral atoms where in contrast to ions the interparticle interaction is widely tunable by Feshbach resonances. Moreover, the inter-species entanglement forms a basis for the properties of various compound systems, ranging from Bose-Bose mixtures to photosynthetic light-harvesting complexes. So far, the inter-species entanglement has only been obtained for trapped ions. Here we report on the experimental realization of entanglement of two neutral atoms of different isotopes. A ${}^{87}\mathrm{Rb}$ atom and a ${}^{85}\mathrm{Rb}$ atom are confined in two single--atom optical traps separated by 3.8 $渭$m. Creating a strong Rydberg blockade, we demonstrate a heteronuclear controlled--NOT (C--NOT) quantum gate and generate a heteronuclear entangled state, with raw fidelities $0.73 \pm 0.01$ and $0.59 \pm 0.03$, respectively. Our work, together with the technologies of single--qubit gate and C--NOT gate developed for identical atoms, can be used for simulating any many--body system with multi-species interactions. It also has applications in quantum computing and quantum metrology, since heteronuclear systems exhibit advantages in low crosstalk and in memory protection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.00349v1-abstract-full').style.display = 'none'; document.getElementById('1702.00349v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 119, 160502 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.05580">arXiv:1606.05580</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.05580">pdf</a>, <a href="https://arxiv.org/ps/1606.05580">ps</a>, <a href="https://arxiv.org/format/1606.05580">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.117.123201">10.1103/PhysRevLett.117.123201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherence preservation of a single neutral atom qubit transferred between magic-intensity optical traps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+J">Jiaheng Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+X">Xiaodong He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+R">Ruijun Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+P">Peng Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+K">Kunpeng Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+C">Cheng Sheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+M">Min Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Derevianko%2C+A">Andrei Derevianko</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Mingsheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.05580v2-abstract-short" style="display: inline;"> We demonstrate that the coherence of a single mobile atomic qubit can be well preserved during a transfer process among different optical dipole traps (ODTs). This is a prerequisite step in realizing a large-scale neutral atom quantum information processing platform. A qubit encoded in the hyperfine manifold of $^{87}$Rb atom is dynamically extracted from the static quantum register by an auxiliar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.05580v2-abstract-full').style.display = 'inline'; document.getElementById('1606.05580v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.05580v2-abstract-full" style="display: none;"> We demonstrate that the coherence of a single mobile atomic qubit can be well preserved during a transfer process among different optical dipole traps (ODTs). This is a prerequisite step in realizing a large-scale neutral atom quantum information processing platform. A qubit encoded in the hyperfine manifold of $^{87}$Rb atom is dynamically extracted from the static quantum register by an auxiliary moving ODT and reinserted into the static ODT. Previous experiments were limited by decoherences induced by the differential light shifts of qubit states. Here we apply a magic-intensity trapping technique which mitigates the detrimental effects of light shifts and substantially enhances the coherence time to $225 \pm 21\,\mathrm{ms}$. The experimentally demonstrated magic trapping technique relies on the previously neglected hyperpolarizability contribution to the light shifts, which makes the light shift dependence on the trapping laser intensity to be parabolic. Because of the parabolic dependence, at a certain &#34;magic&#34; intensity, the first order sensitivity to trapping light intensity variations over ODT volume is eliminated. We experimentally demonstrate the utility of this approach and measure hyperpolarizability for the first time. Our results pave the way for constructing a scalable quantum-computing architectures with single atoms trapped in an array of magic ODTs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.05580v2-abstract-full').style.display = 'none'; document.getElementById('1606.05580v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 117, 123201 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.06053">arXiv:1502.06053</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1502.06053">pdf</a>, <a href="https://arxiv.org/ps/1502.06053">ps</a>, <a href="https://arxiv.org/format/1502.06053">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms8803">10.1038/ncomms8803 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interaction induced decay of a heteronuclear two-atom system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+P">Peng Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+J">Jiaheng Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+M">Min Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+X">Xiaodong He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zeng%2C+Y">Yong Zeng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+K">Kunpeng Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Papoular%2C+D+J">D. J. Papoular</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shlyapnikov%2C+G+V">G. V. Shlyapnikov</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Mingsheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.06053v1-abstract-short" style="display: inline;"> Two-atom systems in small traps are of fundamental interest, first of all for understanding the role of interactions in degenerate cold gases and for the creation of quantum gates in quantum information processing with single-atom traps. One of the key quantities is the inelastic relaxation (decay) time when one of the atoms or both are in a higher hyperfine state. Here we measure this quantity in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.06053v1-abstract-full').style.display = 'inline'; document.getElementById('1502.06053v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.06053v1-abstract-full" style="display: none;"> Two-atom systems in small traps are of fundamental interest, first of all for understanding the role of interactions in degenerate cold gases and for the creation of quantum gates in quantum information processing with single-atom traps. One of the key quantities is the inelastic relaxation (decay) time when one of the atoms or both are in a higher hyperfine state. Here we measure this quantity in a heteronuclear system of $^{87}$Rb and $^{85}$Rb in a micro optical trap and demonstrate experimentally and theoretically the presence of both fast and slow relaxation processes, depending on the choice of the initial hyperfine states. The developed experimental method allows us to single out a particular relaxation process and, in this sense, our experiment is a &#34;superclean platform&#34; for collisional physics studies. Our results have also implications for engineering of quantum states via controlled collisions and creation of two-qubit quantum gates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.06053v1-abstract-full').style.display = 'none'; document.getElementById('1502.06053v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 6, 7803 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1312.7652">arXiv:1312.7652</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1312.7652">pdf</a>, <a href="https://arxiv.org/ps/1312.7652">ps</a>, <a href="https://arxiv.org/format/1312.7652">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-4527/15/3/004">10.1088/1674-4527/15/3/004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Configurations of a new atomic interferometer for gravitational wave detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Tang%2C+B">Biao Tang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+B">Baocheng Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lin Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Mingsheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1312.7652v1-abstract-short" style="display: inline;"> Recently, the configuration using atomic interferometers (AIs) had been suggested for the detection of gravitational waves. A new AI with some additional laser pulses for implementing large momentum transfer was also put forward, in order to improve the influence of shot noise and laser frequency noise. In the paper, we use the sensitivity function to analyze all possible configurations of the new&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.7652v1-abstract-full').style.display = 'inline'; document.getElementById('1312.7652v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1312.7652v1-abstract-full" style="display: none;"> Recently, the configuration using atomic interferometers (AIs) had been suggested for the detection of gravitational waves. A new AI with some additional laser pulses for implementing large momentum transfer was also put forward, in order to improve the influence of shot noise and laser frequency noise. In the paper, we use the sensitivity function to analyze all possible configurations of the new AI and to distinguish how many momenta are transferred in a specific configuration. With the analysis for the new configuration, we explore the detection scheme of gravitational wave further, in particular, for the amelioration of the laser frequency noise. We find that the amelioration is definite in such scheme, but novelly, in some cases the frequency noise can be canceled completely by using a proper data processing method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.7652v1-abstract-full').style.display = 'none'; document.getElementById('1312.7652v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> RAA 15,333-347 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1308.4677">arXiv:1308.4677</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1308.4677">pdf</a>, <a href="https://arxiv.org/ps/1308.4677">ps</a>, <a href="https://arxiv.org/format/1308.4677">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjd/e2013-40146-x">10.1140/epjd/e2013-40146-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transfer of Gravitational Information through a Quantum Channel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+B">Baocheng Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+Q">Qing-yu Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Ming-sheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1308.4677v1-abstract-short" style="display: inline;"> Gravitational information is incorporated into an atomic state by correlation of the internal and external degrees of freedom of the atom, in the present study of the atomic interferometer. Thus it is difficult to transfer information by using a standard teleportation scheme. In this paper, we propose a novel scheme for the transfer of gravitational information through a quantum channel provided b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.4677v1-abstract-full').style.display = 'inline'; document.getElementById('1308.4677v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1308.4677v1-abstract-full" style="display: none;"> Gravitational information is incorporated into an atomic state by correlation of the internal and external degrees of freedom of the atom, in the present study of the atomic interferometer. Thus it is difficult to transfer information by using a standard teleportation scheme. In this paper, we propose a novel scheme for the transfer of gravitational information through a quantum channel provided by the entangled atomic state. Significantly, the existence of a quantum channel suppresses phase noise, improving the sensitivity of the atomic interferometer. Thus our proposal provides novel readout mechanism for the interferometer with an improved signal-to-noise ratio. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.4677v1-abstract-full').style.display = 'none'; document.getElementById('1308.4677v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. D (2013) 67: 184 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1306.5423">arXiv:1306.5423</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1306.5423">pdf</a>, <a href="https://arxiv.org/ps/1306.5423">ps</a>, <a href="https://arxiv.org/format/1306.5423">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Suppressing phase decoherence of a single atom qubit with CPMG sequence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+S">Shi Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+P">Peng Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+X">Xiaodong He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+M">Min Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Mingsheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1306.5423v1-abstract-short" style="display: inline;"> We experimentally demonstrate the strong suppression of dephasing of a qubit stored in a single \textsuperscript{87}Rb atom in an optical dipole trap by using Carr-Purcell-Meiboom-Gill(CPMG) pulse sequences. Regarded as a repetition of spin echo, CPMG sequence is an optimal choice for suppressing both inhomogeneous and homogeneous phase decoherence mechanisms. In the trap with 830 nm wavelength an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.5423v1-abstract-full').style.display = 'inline'; document.getElementById('1306.5423v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1306.5423v1-abstract-full" style="display: none;"> We experimentally demonstrate the strong suppression of dephasing of a qubit stored in a single \textsuperscript{87}Rb atom in an optical dipole trap by using Carr-Purcell-Meiboom-Gill(CPMG) pulse sequences. Regarded as a repetition of spin echo, CPMG sequence is an optimal choice for suppressing both inhomogeneous and homogeneous phase decoherence mechanisms. In the trap with 830 nm wavelength and 0.7 mK potential depth, the spin relaxation time of single atoms is showed to be 830.8 ms. We obtain the reversible inhomogeneous dephasing time of $T_{2}^{\ast}$=1.4 ms. The homogeneous dephasing time is $T_{2}^{\prime}$ =102.7 ms in the spin echo process, by employing CPMG sequence with pulse number n = 6 the homogeneous dephasing is further suppressed by a factor of 3, and its corresponding coherence time is extended to $T_{2}^{\prime}$=304.5 ms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.5423v1-abstract-full').style.display = 'none'; document.getElementById('1306.5423v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1305.6341">arXiv:1305.6341</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1305.6341">pdf</a>, <a href="https://arxiv.org/ps/1305.6341">ps</a>, <a href="https://arxiv.org/format/1305.6341">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S0218271813410149">10.1142/S0218271813410149 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Information conservation is fundamental: recovering the lost information in Hawking radiation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+B">Baocheng Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+Q">Qing-yu Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Ming-sheng Zhan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=You%2C+L">Li You</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1305.6341v1-abstract-short" style="display: inline;"> In both classical and quantum world, information cannot appear or disappear. This fundamental principle, however, is questioned for a black hole, by the acclaimed &#34;information loss paradox&#34;. Based on the conservation laws of energy, charge, and angular momentum, we recently show the total information encoded in the correlations among Hawking radiations equals exactly to the same amount previously&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.6341v1-abstract-full').style.display = 'inline'; document.getElementById('1305.6341v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1305.6341v1-abstract-full" style="display: none;"> In both classical and quantum world, information cannot appear or disappear. This fundamental principle, however, is questioned for a black hole, by the acclaimed &#34;information loss paradox&#34;. Based on the conservation laws of energy, charge, and angular momentum, we recently show the total information encoded in the correlations among Hawking radiations equals exactly to the same amount previously considered lost, assuming the non-thermal spectrum of Parikh and Wilczek. Thus the information loss paradox can be falsified through experiments by detecting correlations, for instance, through measuring the covariances of Hawking radiations from black holes, such as the manmade ones speculated to appear in LHC experiments. The affirmation of information conservation in Hawking radiation will shine new light on the unification of gravity with quantum mechanics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.6341v1-abstract-full').style.display = 'none'; document.getElementById('1305.6341v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">First Award in the 2013 Awards for Essays on Gravitation</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> International Journal of Modern Physics D 22 (2013) 1341014 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1302.1341">arXiv:1302.1341</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1302.1341">pdf</a>, <a href="https://arxiv.org/ps/1302.1341">ps</a>, <a href="https://arxiv.org/format/1302.1341">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.87.044006">10.1103/PhysRevD.87.044006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards experimentally testing the paradox of black hole information loss </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+B">Baocheng Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+Q">Qing-yu Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Ming-sheng Zhan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=You%2C+L">Li You</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1302.1341v1-abstract-short" style="display: inline;"> Information about the collapsed matter in a black hole will be lost if Hawking radiations are truly thermal. Recent studies discover that information can be transmitted from a black hole by Hawking radiations, due to their spectrum deviating from exact thermality when back reaction is considered. In this paper, we focus on the spectroscopic features of Hawking radiation from a Schwarzschild black&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.1341v1-abstract-full').style.display = 'inline'; document.getElementById('1302.1341v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1302.1341v1-abstract-full" style="display: none;"> Information about the collapsed matter in a black hole will be lost if Hawking radiations are truly thermal. Recent studies discover that information can be transmitted from a black hole by Hawking radiations, due to their spectrum deviating from exact thermality when back reaction is considered. In this paper, we focus on the spectroscopic features of Hawking radiation from a Schwarzschild black hole, contrasting the differences between the nonthermal and thermal spectra. Of great interest, we find that the energy covariances of Hawking radiations for the thermal spectrum are exactly zero, while the energy covariances are non-trivial for the nonthermal spectrum. Consequently, the nonthermal spectrum can be distinguished from the thermal one by counting the energy covariances of successive emissions, which provides an avenue towards experimentally testing the long-standing &#34;information loss paradox&#34;. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.1341v1-abstract-full').style.display = 'none'; document.getElementById('1302.1341v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version. 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 87, 044006 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1210.2048">arXiv:1210.2048</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1210.2048">pdf</a>, <a href="https://arxiv.org/ps/1210.2048">ps</a>, <a href="https://arxiv.org/format/1210.2048">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Comment on &#34;What the information loss is {\it not}&#34; </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+Q">Qing-yu Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+B">Baocheng Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Ming-sheng Zhan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=You%2C+L">Li You</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1210.2048v1-abstract-short" style="display: inline;"> A recent article by Mathur attempts a &#34;precise formulation&#34; for the paradox of black hole information loss [S. D. Mathur, arXiv:1108.0302v2 (hep-th)]. We point out that a key component of the above work, which refers to entangled pairs inside and outside of the horizon and their associated entropy gain or information loss during black hole evaporation, is a presumptuous false outcome not backed by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.2048v1-abstract-full').style.display = 'inline'; document.getElementById('1210.2048v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1210.2048v1-abstract-full" style="display: none;"> A recent article by Mathur attempts a &#34;precise formulation&#34; for the paradox of black hole information loss [S. D. Mathur, arXiv:1108.0302v2 (hep-th)]. We point out that a key component of the above work, which refers to entangled pairs inside and outside of the horizon and their associated entropy gain or information loss during black hole evaporation, is a presumptuous false outcome not backed by the very foundation of physics. The very foundation of Mathur&#39;s above work is thus incorrect. We further show that within the framework of Hawking radiation as tunneling the so-called small corrections are sufficient to resolve the information loss problem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.2048v1-abstract-full').style.display = 'none'; document.getElementById('1210.2048v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">We submit this comment in order to prevent any further propagation of the misconceptions of the paradox</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1102.5144">arXiv:1102.5144</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1102.5144">pdf</a>, <a href="https://arxiv.org/ps/1102.5144">ps</a>, <a href="https://arxiv.org/format/1102.5144">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10714-010-1097-y">10.1007/s10714-010-1097-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An interpretation for the entropy of a black hole </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+B">Baocheng Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+Q">Qing-yu Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Ming-sheng Zhan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=You%2C+L">Li You</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1102.5144v1-abstract-short" style="display: inline;"> We investigate the meaning of the entropy carried away by Hawking radiations from a black hole. We propose that the entropy for a black hole measures the uncertainty of the information about the black hole forming matter&#39;s precollapsed configurations, self-collapsed configurations, and inter-collapsed configurations. We find that gravitational wave or gravitational radiation alone cannot carry all&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.5144v1-abstract-full').style.display = 'inline'; document.getElementById('1102.5144v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1102.5144v1-abstract-full" style="display: none;"> We investigate the meaning of the entropy carried away by Hawking radiations from a black hole. We propose that the entropy for a black hole measures the uncertainty of the information about the black hole forming matter&#39;s precollapsed configurations, self-collapsed configurations, and inter-collapsed configurations. We find that gravitational wave or gravitational radiation alone cannot carry all information about the processes of black hole coalescence and collapse, while the total information locked in the hole could be carried away completely by Hawking radiation as tunneling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.5144v1-abstract-full').style.display = 'none'; document.getElementById('1102.5144v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Gen. Relativ. Gravit., 43, 797 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.2687">arXiv:1011.2687</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.20.003711">10.1364/OE.20.003711 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Combining red- and blue-detuned optical potentials to form a Lamb-Dicke trap for a single neutral atom </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+X">Xiaodong He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+P">Peng Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Mingsheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.2687v4-abstract-short" style="display: inline;"> We propose and demonstrate a scheme for strongly radially confining a single neutral atom in a bichromatic far-off resonance optical dipole trap(BFORT) . BFORT is composed of a blue-detuned Laguerre-Gaussian $LG^1_ 0$ beam and a red-detuned Gaussian beam. The trapping radial dimension of a single atom trapped in the Gaussian FORT can be greatly compressed by imposing a blue-detuned Laguerre-Gaussi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.2687v4-abstract-full').style.display = 'inline'; document.getElementById('1011.2687v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.2687v4-abstract-full" style="display: none;"> We propose and demonstrate a scheme for strongly radially confining a single neutral atom in a bichromatic far-off resonance optical dipole trap(BFORT) . BFORT is composed of a blue-detuned Laguerre-Gaussian $LG^1_ 0$ beam and a red-detuned Gaussian beam. The trapping radial dimension of a single atom trapped in the Gaussian FORT can be greatly compressed by imposing a blue-detuned Laguerre-Gaussian $LG^1_ 0$ beam with moderate potential depth. By modulating the potential depth of the Gaussian FORT we observed that the resonant and parametric excitation of the oscillatory motion of a single atom in this BFORT and obtained the oscillation frequency that well fits prediction from the theoretical model. The frequency measurement shows that effective trapping dimension can be greatly sharper than that diffraction limited of microscopic objective we used. Then we show that the excess scattering rate due to imposing blue detuned light can be eliminated when single atoms is close to ground-state theoretically. So BFORT suits the purpose of acting as a Lamb-Dicke trap for further cooling a single neutral atom to motion ground-state and finding application in quantum information progressing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.2687v4-abstract-full').style.display = 'none'; document.getElementById('1011.2687v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Opt. Express 20, 3711-3724 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1006.1295">arXiv:1006.1295</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1006.1295">pdf</a>, <a href="https://arxiv.org/ps/1006.1295">ps</a>, <a href="https://arxiv.org/format/1006.1295">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.105.220404">10.1103/PhysRevLett.105.220404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of a red-blue detuning asymmetry in matter-wave superradiance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Deng%2C+L">L. Deng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hagley%2C+E+W">E. W. Hagley</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cao%2C+Q">Qiang Cao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+X">Xiaorui Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Luo%2C+X">Xinyu Luo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+R">Ruquan Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+F">Fan Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+X">Xiaoji Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+X">Xuzong Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Payne%2C+M+G">M. G. Payne</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Mingsheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1006.1295v3-abstract-short" style="display: inline;"> We report the first experimental observations of strong suppression of matter-wave superradiance using blue-detuned pump light and demonstrate a pump-laser detuning asymmetry in the collective atomic recoil motion. In contrast to all previous theoretical frameworks, which predict that the process should be symmetric with respect to the sign of the pump-laser detuning, we find that for condensates&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1006.1295v3-abstract-full').style.display = 'inline'; document.getElementById('1006.1295v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1006.1295v3-abstract-full" style="display: none;"> We report the first experimental observations of strong suppression of matter-wave superradiance using blue-detuned pump light and demonstrate a pump-laser detuning asymmetry in the collective atomic recoil motion. In contrast to all previous theoretical frameworks, which predict that the process should be symmetric with respect to the sign of the pump-laser detuning, we find that for condensates the symmetry is broken. With high condensate densities and red-detuned light, the familiar distinctive multi-order, matter-wave scattering pattern is clearly visible, whereas with blue-detuned light superradiance is strongly suppressed. In the limit of a dilute atomic gas, however, symmetry is restored. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1006.1295v3-abstract-full').style.display = 'none'; document.getElementById('1006.1295v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Phys. Rev. Lett</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0912.3979">arXiv:0912.3979</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0912.3979">pdf</a>, <a href="https://arxiv.org/ps/0912.3979">ps</a>, <a href="https://arxiv.org/format/0912.3979">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/11/11/113035">10.1088/1367-2630/11/11/113035 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> From quantum to classical description of intense laser-atom physics with Bohmian trajectories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lai%2C+X+Y">X. Y. Lai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+Q">Qing-yu Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M+S">M. S. Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0912.3979v1-abstract-short" style="display: inline;"> In this paper, Bohmian mechanics is introduced to the intense laser-atom physics. The motion of atomic electron in intense laser field is obtained from the Bohm-Newton equation. We find the quantum potential that dominates the quantum effect of a physical system becomes negligible as the electron is driven far away from the parent ion by the intense laser field, i.e. the behavior of the electron&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0912.3979v1-abstract-full').style.display = 'inline'; document.getElementById('0912.3979v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0912.3979v1-abstract-full" style="display: none;"> In this paper, Bohmian mechanics is introduced to the intense laser-atom physics. The motion of atomic electron in intense laser field is obtained from the Bohm-Newton equation. We find the quantum potential that dominates the quantum effect of a physical system becomes negligible as the electron is driven far away from the parent ion by the intense laser field, i.e. the behavior of the electron smoothly trends to be classical soon after the electron was ionized. Our numerical calculations present a direct positive evidence for the semiclassical trajectory methods in the intense laser-atom physics where the motion of the ionized electron is treated by the classical mechanics, while quantum mechanics is needed before the ionization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0912.3979v1-abstract-full').style.display = 'none'; document.getElementById('0912.3979v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J.Phys.11:113035,2009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0906.5033">arXiv:0906.5033</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0906.5033">pdf</a>, <a href="https://arxiv.org/ps/0906.5033">ps</a>, <a href="https://arxiv.org/format/0906.5033">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.aop.2010.11.015">10.1016/j.aop.2010.11.015 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Entropy is Conserved in Hawking Radiation as Tunneling: a Revisit of the Black Hole Information Loss Paradox </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+B">Baocheng Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+Q">Qing-yu Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Ming-sheng Zhan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=You%2C+L">Li You</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0906.5033v3-abstract-short" style="display: inline;"> We revisit in detail the paradox of black hole information loss due to Hawking radiation as tunneling. We compute the amount of information encoded in correlations among Hawking radiations for a variety of black holes, including the Schwarzchild black hole, the Reissner-Nordstr枚m black hole, the Kerr black hole, and the Kerr-Newman black hole. The special case of tunneling through a quantum horizo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0906.5033v3-abstract-full').style.display = 'inline'; document.getElementById('0906.5033v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0906.5033v3-abstract-full" style="display: none;"> We revisit in detail the paradox of black hole information loss due to Hawking radiation as tunneling. We compute the amount of information encoded in correlations among Hawking radiations for a variety of black holes, including the Schwarzchild black hole, the Reissner-Nordstr枚m black hole, the Kerr black hole, and the Kerr-Newman black hole. The special case of tunneling through a quantum horizon is also considered. Within a phenomenological treatment based on the accepted emission probability spectrum from a black hole, we find that information is leaked out hidden in the correlations of Hawking radiation. The recovery of this previously unaccounted for information helps to conserve the total entropy of a system composed of a black hole plus its radiations. We thus conclude, irrespective of the microscopic picture for black hole collapsing, the associated radiation process: Hawking radiation as tunneling, is consistent with unitarity as required by quantum mechanics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0906.5033v3-abstract-full').style.display = 'none'; document.getElementById('0906.5033v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The published version. It has been revised as required by the referees</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Annals Phys.326:350-363,2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0906.3344">arXiv:0906.3344</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0906.3344">pdf</a>, <a href="https://arxiv.org/ps/0906.3344">ps</a>, <a href="https://arxiv.org/format/0906.3344">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjd/e2009-00131-8">10.1140/epjd/e2009-00131-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Above-threshold ionization photoelectron spectrum from quantum trajectory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lai%2C+X+Y">X. Y. Lai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+Q+Y">Q. Y. Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M+S">M. S. Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0906.3344v1-abstract-short" style="display: inline;"> Many nonlinear quantum phenomena of intense laser-atom physics can be intuitively explained with the concept of trajectory. In this paper, Bohmian mechanics (BM) is introduced to study a multiphoton process of atoms interacting with the intense laser field: above-threshold ionization (ATI). Quantum trajectory of an atomic electron in intense laser field is obtained from the Bohm-Newton equation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0906.3344v1-abstract-full').style.display = 'inline'; document.getElementById('0906.3344v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0906.3344v1-abstract-full" style="display: none;"> Many nonlinear quantum phenomena of intense laser-atom physics can be intuitively explained with the concept of trajectory. In this paper, Bohmian mechanics (BM) is introduced to study a multiphoton process of atoms interacting with the intense laser field: above-threshold ionization (ATI). Quantum trajectory of an atomic electron in intense laser field is obtained from the Bohm-Newton equation first and then the energy of the photoelectron is gained from its trajectory. With energies of an ensemble of photoelectrons, we obtain the ATI spectrum which is consistent with the previous theoretical and experimental results. Comparing BM with the classical trajectory Monte-Carlo method, we conclude that quantum potential may play a key role to reproduce the spectrum of ATI. Our work may present a new approach to understanding quantum phenomena in intense laser-atom physics with the image of trajectory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0906.3344v1-abstract-full').style.display = 'none'; document.getElementById('0906.3344v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur.Phys.J.D53:393-396,2009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0903.0893">arXiv:0903.0893</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0903.0893">pdf</a>, <a href="https://arxiv.org/ps/0903.0893">ps</a>, <a href="https://arxiv.org/format/0903.0893">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2009.03.082">10.1016/j.physletb.2009.03.082 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hidden Messenger Revealed in Hawking Radiation: a Resolution to the Paradox of Black Hole Information Loss </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+B">Baocheng Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+Q">Qing-yu Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=You%2C+L">Li You</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M+S">M S Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0903.0893v1-abstract-short" style="display: inline;"> Using standard statistical method, we discover the existence of correlations among Hawking radiations (of tunneled particles) from a black hole. The information carried by such correlations is quantified by mutual information between sequential emissions. Through a careful counting of the entropy taken out by the emitted particles, we show that the black hole radiation as tunneling is an entropy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0903.0893v1-abstract-full').style.display = 'inline'; document.getElementById('0903.0893v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0903.0893v1-abstract-full" style="display: none;"> Using standard statistical method, we discover the existence of correlations among Hawking radiations (of tunneled particles) from a black hole. The information carried by such correlations is quantified by mutual information between sequential emissions. Through a careful counting of the entropy taken out by the emitted particles, we show that the black hole radiation as tunneling is an entropy conservation process. While information is leaked out through the radiation, the total entropy is conserved. Thus, we conclude the black hole evaporation process is unitary. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0903.0893v1-abstract-full').style.display = 'none'; document.getElementById('0903.0893v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Any comment are welcome! A long paper showing how this calculation can be done for other types of black holes will be submitted soon</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Lett.B675:98-101,2009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0802.0232">arXiv:0802.0232</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0802.0232">pdf</a>, <a href="https://arxiv.org/ps/0802.0232">ps</a>, <a href="https://arxiv.org/format/0802.0232">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum mechanical NMR implementation of DNA algorithm for satisfiability problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+T+T">T. T. Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Feng%2C+M">M. Feng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chang%2C+W+-">W. -L. Chang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Luo%2C+J">J. Luo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M+S">M. S. Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0802.0232v1-abstract-short" style="display: inline;"> DNA computation could in principle solve the satisfiability (SAT) problem due to the operations in parallel on extremely large numbers of strands. We demonstrate some quantum gates corresponding to the DNA ones, based on which an implementation of DNA algorithm for SAT problem is available by quantum mechanical way. Since quantum computation owns the favorable feature of operations in parallel o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0802.0232v1-abstract-full').style.display = 'inline'; document.getElementById('0802.0232v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0802.0232v1-abstract-full" style="display: none;"> DNA computation could in principle solve the satisfiability (SAT) problem due to the operations in parallel on extremely large numbers of strands. We demonstrate some quantum gates corresponding to the DNA ones, based on which an implementation of DNA algorithm for SAT problem is available by quantum mechanical way. Since quantum computation owns the favorable feature of operations in parallel on 2$^{n}$ states by using only n qubits, instead of 2$^{n}$ strands in DNA computation, computational complexity is much reduced in treating the SAT problem quantum mechanically. We take a three-clause SAT problem with two variables as an example, and carry out a NMR experiment for solving a one-variable SAT problem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0802.0232v1-abstract-full').style.display = 'none'; document.getElementById('0802.0232v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures, but one figure is missed in this submission due to too big size</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/quant-ph/0610143">arXiv:quant-ph/0610143</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/quant-ph/0610143">pdf</a>, <a href="https://arxiv.org/ps/quant-ph/0610143">ps</a>, <a href="https://arxiv.org/format/quant-ph/0610143">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Scheme for conditional generation of photon-added coherent state and optical entangled $W$ state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Y">Yan Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jing%2C+H">Hui Jing</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Ming-Sheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="quant-ph/0610143v1-abstract-short" style="display: inline;"> We propose a simple scheme to generate an arbitrary photon-added coherent state of a travelling optical field by using only a set of degenerate parametric amplifiers and single-photon detectors. Particularly, when the single-photon-added coherent state (SPACS) is observed by following, e.g., the novel technique of Zavatta \emph{$et al.$} (Science 306, 660 (2004)), we also obtain the generalized&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0610143v1-abstract-full').style.display = 'inline'; document.getElementById('quant-ph/0610143v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="quant-ph/0610143v1-abstract-full" style="display: none;"> We propose a simple scheme to generate an arbitrary photon-added coherent state of a travelling optical field by using only a set of degenerate parametric amplifiers and single-photon detectors. Particularly, when the single-photon-added coherent state (SPACS) is observed by following, e.g., the novel technique of Zavatta \emph{$et al.$} (Science 306, 660 (2004)), we also obtain the generalized optical entangled $W$ state. Finally, a qualitative analysis of possible losses in our scheme is given. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0610143v1-abstract-full').style.display = 'none'; document.getElementById('quant-ph/0610143v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/quant-ph/0610137">arXiv:quant-ph/0610137</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/quant-ph/0610137">pdf</a>, <a href="https://arxiv.org/ps/quant-ph/0610137">ps</a>, <a href="https://arxiv.org/format/quant-ph/0610137">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Simultaneous creations of discrete-variable entangle state and single-photon-added coherent state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Y">Yan Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jing%2C+H">Hui Jing</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Ming-Sheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="quant-ph/0610137v1-abstract-short" style="display: inline;"> The single-photon-added coherent state (SPACS), as an intermediate classical-to-purely-quantum state, was first realized recently by Zavatta \emph{$et al.$} (Science 306, 660 (2004)). We show here that the success probability of their SPACS generation can be enhanced by a simple method which leads to simultaneous creations of a discrete-variable entangled state and a SPACS or even a hybrid-varia&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0610137v1-abstract-full').style.display = 'inline'; document.getElementById('quant-ph/0610137v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="quant-ph/0610137v1-abstract-full" style="display: none;"> The single-photon-added coherent state (SPACS), as an intermediate classical-to-purely-quantum state, was first realized recently by Zavatta \emph{$et al.$} (Science 306, 660 (2004)). We show here that the success probability of their SPACS generation can be enhanced by a simple method which leads to simultaneous creations of a discrete-variable entangled state and a SPACS or even a hybrid-variable entangled SPACS in two different channels. The impacts of the input thermal noise are also analyzed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0610137v1-abstract-full').style.display = 'none'; document.getElementById('quant-ph/0610137v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/quant-ph/0512234">arXiv:quant-ph/0512234</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/quant-ph/0512234">pdf</a>, <a href="https://arxiv.org/ps/quant-ph/0512234">ps</a>, <a href="https://arxiv.org/format/quant-ph/0512234">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Spatially Separated and Correlated Atom-molecule Lasers from a Bose Condensate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Jing%2C+H">Hui Jing</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+W">Wei Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+J">Jing-Jun Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Ming-Sheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="quant-ph/0512234v1-abstract-short" style="display: inline;"> We propose a feasible scheme to create two spatially separated atomic and molecular beams from an atomic Bose-Einstein condensate by combining the Raman-type atom laser output and the two-color photo-association processes. We examine the quantum dynamics and statistical properties of the system under short-time limits, especially the quadrature-squeezed and mode-correlated behaviors of two outpu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0512234v1-abstract-full').style.display = 'inline'; document.getElementById('quant-ph/0512234v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="quant-ph/0512234v1-abstract-full" style="display: none;"> We propose a feasible scheme to create two spatially separated atomic and molecular beams from an atomic Bose-Einstein condensate by combining the Raman-type atom laser output and the two-color photo-association processes. We examine the quantum dynamics and statistical properties of the system under short-time limits, especially the quadrature-squeezed and mode-correlated behaviors of two output beams for different initial state of the condensate. The possibility to generate the entangled atom-molecule lasers by an optical technique was also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0512234v1-abstract-full').style.display = 'none'; document.getElementById('quant-ph/0512234v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 December, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/quant-ph/0512149">arXiv:quant-ph/0512149</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/quant-ph/0512149">pdf</a>, <a href="https://arxiv.org/ps/quant-ph/0512149">ps</a>, <a href="https://arxiv.org/format/quant-ph/0512149">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum state transfer from light to molecules via coherent two-color photo-association in an atomic Bose-Einstein condensate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Jing%2C+H">Hui Jing</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Ming-Sheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="quant-ph/0512149v2-abstract-short" style="display: inline;"> By using a quantized input light, we theoretically revisit the coherent two-color photo-association process in an atomic Bose-Einstein condensate. Under the single-mode approximations, we show two interesting regimes of the light transmission and the molecular generation. The quantum state transfer from light to molecules is exhibited, without or with the depletion of trapped atoms. </span> <span class="abstract-full has-text-grey-dark mathjax" id="quant-ph/0512149v2-abstract-full" style="display: none;"> By using a quantized input light, we theoretically revisit the coherent two-color photo-association process in an atomic Bose-Einstein condensate. Under the single-mode approximations, we show two interesting regimes of the light transmission and the molecular generation. The quantum state transfer from light to molecules is exhibited, without or with the depletion of trapped atoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0512149v2-abstract-full').style.display = 'none'; document.getElementById('quant-ph/0512149v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2006; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1 figure, accepted by Eur.Phys.J.D on Dec.15,2006</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/quant-ph/0511083">arXiv:quant-ph/0511083</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/quant-ph/0511083">pdf</a>, <a href="https://arxiv.org/ps/quant-ph/0511083">ps</a>, <a href="https://arxiv.org/format/quant-ph/0511083">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-4075/39/9/001">10.1088/0953-4075/39/9/001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical generation of hybrid entangled state via entangling single-photon-added coherent state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Y">Yan Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jing%2C+H">Hui Jing</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Ming-Sheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="quant-ph/0511083v2-abstract-short" style="display: inline;"> We propose a feasible scheme to realize the optical entanglement of single-photon-added coherent state (SPACS) and show that, besides the Sanders entangled coherent state, the entangled SPACS also leads to new forms of hybrid entanglement of quantum Fock state and classical coherent state. We probe the essential difference of two types of hybrid entangled state (HES). This HES provides a novel l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0511083v2-abstract-full').style.display = 'inline'; document.getElementById('quant-ph/0511083v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="quant-ph/0511083v2-abstract-full" style="display: none;"> We propose a feasible scheme to realize the optical entanglement of single-photon-added coherent state (SPACS) and show that, besides the Sanders entangled coherent state, the entangled SPACS also leads to new forms of hybrid entanglement of quantum Fock state and classical coherent state. We probe the essential difference of two types of hybrid entangled state (HES). This HES provides a novel link between the discrete- and the continuous-variable entanglement in a natural way. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0511083v2-abstract-full').style.display = 'none'; document.getElementById('quant-ph/0511083v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2005; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 November, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/quant-ph/0509158">arXiv:quant-ph/0509158</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/quant-ph/0509158">pdf</a>, <a href="https://arxiv.org/ps/quant-ph/0509158">ps</a>, <a href="https://arxiv.org/format/quant-ph/0509158">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Comprehensive proof of the Greenberger-Horne-Zeilinger Theorem for the four-qubit system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Tang%2C+L">Li Tang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+J">Jie Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+Y">Yaofeng Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Mingsheng Zhan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Z">Zeqian Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="quant-ph/0509158v1-abstract-short" style="display: inline;"> Greenberger-Horne-Zeilinger (GHZ) theorem asserts that there is a set of mutually commuting nonlocal observables with a common eigenstate on which those observables assume values that refute the attempt to assign values only required to have them by the local realism of Einstein, Podolsky, and Rosen (EPR). It is known that for a three-qubit system there is only one form of the GHZ-Mermin-like ar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0509158v1-abstract-full').style.display = 'inline'; document.getElementById('quant-ph/0509158v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="quant-ph/0509158v1-abstract-full" style="display: none;"> Greenberger-Horne-Zeilinger (GHZ) theorem asserts that there is a set of mutually commuting nonlocal observables with a common eigenstate on which those observables assume values that refute the attempt to assign values only required to have them by the local realism of Einstein, Podolsky, and Rosen (EPR). It is known that for a three-qubit system there is only one form of the GHZ-Mermin-like argument with equivalence up to a local unitary transformation, which is exactly Mermin&#39;s version of the GHZ theorem. In this paper, however, for a four-qubit system which was originally studied by GHZ, we show that there are nine distinct forms of the GHZ-Mermin-like argument. The proof is obtained by using some geometric invariants to characterize the sets of mutually commuting nonlocal spin observables on the four-qubit system. It is proved that there are at most nine elements (except for a different sign) in a set of mutually commuting nonlocal spin observables in the four-qubit system, and each GHZ-Mermin-like argument involves a set of at least five mutually commuting four-qubit nonlocal spin observables with a GHZ state as a common eigenstate in GHZ&#39;s theorem. Therefore, we present a complete construction of the GHZ theorem for the four-qubit system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0509158v1-abstract-full').style.display = 'none'; document.getElementById('quant-ph/0509158v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0507354">arXiv:cond-mat/0507354</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0507354">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0507354">ps</a>, <a href="https://arxiv.org/format/cond-mat/0507354">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Density expectation value of two independent interacting Bose-Einstein condensates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Xiong%2C+H">Hongwei Xiong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+S">Shujuan Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Mingsheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0507354v2-abstract-short" style="display: inline;"> After removing the double-well potential trapping two initially independent Bose condensates, the density expectation value is calculated when both the exchange symmetry of identical bosons and interatomic interaction are considered. After the overlapping, it is shown that there is a nonzero interference term in the density expectation value. This nonzero interference term physically arises from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0507354v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0507354v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0507354v2-abstract-full" style="display: none;"> After removing the double-well potential trapping two initially independent Bose condensates, the density expectation value is calculated when both the exchange symmetry of identical bosons and interatomic interaction are considered. After the overlapping, it is shown that there is a nonzero interference term in the density expectation value. This nonzero interference term physically arises from the exchange symmetry of identical bosons and interatomic interaction which make two initially independent condensates become coherent after the overlapping. It is found that the calculated density expectation value with this model agrees with the interference pattern observed in the experiment by Andrews et al (Science 275, 637 (1997)). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0507354v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0507354v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2005; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures. We consider in the present work a quite challenging problem. Any comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/quant-ph/0503240">arXiv:quant-ph/0503240</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/quant-ph/0503240">pdf</a>, <a href="https://arxiv.org/ps/quant-ph/0503240">ps</a>, <a href="https://arxiv.org/format/quant-ph/0503240">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A Scheme of Generating and Spatially Separating Two-Component Entangled Atom Lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+X">Xiong-Jun Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jing%2C+H">Hui Jing</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+X">Xin Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Ming-Sheng Zhan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ge%2C+M">Mo-Lin Ge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="quant-ph/0503240v7-abstract-short" style="display: inline;"> Entanglement of remote atom lasers is obtained via quantum state transfer technique from lights to matter waves in a five-level $M$-type system. The considered atom-atom collisions can yield an effective Kerr susceptibility for this system and lead to the self- and cross- phase modulation between the two output atom lasers. This effect results in generation of entangled states of output fields.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0503240v7-abstract-full').style.display = 'inline'; document.getElementById('quant-ph/0503240v7-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="quant-ph/0503240v7-abstract-full" style="display: none;"> Entanglement of remote atom lasers is obtained via quantum state transfer technique from lights to matter waves in a five-level $M$-type system. The considered atom-atom collisions can yield an effective Kerr susceptibility for this system and lead to the self- and cross- phase modulation between the two output atom lasers. This effect results in generation of entangled states of output fields. Particularly, under different conditions of space-dependent control fields, the entanglement of atom lasers and of atom-light fields can be obtained, respectively. Furthermore, based on the Bell-state measurement, an useful scheme is proposed to spatially separate the generated entangled atom lasers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0503240v7-abstract-full').style.display = 'none'; document.getElementById('quant-ph/0503240v7-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2005; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/quant-ph/0410140">arXiv:quant-ph/0410140</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/quant-ph/0410140">pdf</a>, <a href="https://arxiv.org/ps/quant-ph/0410140">ps</a>, <a href="https://arxiv.org/format/quant-ph/0410140">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.95.020501">10.1103/PhysRevLett.95.020501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Realization of decoherence-free subspace using Multiple-Quantum coherences </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wei%2C+D">Daxiu Wei</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Luo%2C+J">Jun Luo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+X">Xianping Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zeng%2C+X">Xizhi Zeng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Mingsheng Zhan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+M">Maili Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="quant-ph/0410140v3-abstract-short" style="display: inline;"> This letter presents a two-dimensional nuclear magnetic resonance(NMR) approach for constructing a two-logical-qubit decoherence-free subspace (DFS) based on the fact that the three protons in a CH3 spin system can not be resolved in one-dimension NMR spectroscopy, but to a certain extent, can be distinguished by two-dimensional multiple-quantum NMR. We used four noisy physical nuclear spins, in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0410140v3-abstract-full').style.display = 'inline'; document.getElementById('quant-ph/0410140v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="quant-ph/0410140v3-abstract-full" style="display: none;"> This letter presents a two-dimensional nuclear magnetic resonance(NMR) approach for constructing a two-logical-qubit decoherence-free subspace (DFS) based on the fact that the three protons in a CH3 spin system can not be resolved in one-dimension NMR spectroscopy, but to a certain extent, can be distinguished by two-dimensional multiple-quantum NMR. We used four noisy physical nuclear spins, including three protons and one carbon in the CH3 spin system, to generate two decoherence-free logical quantum bits. It made full use of the unaddressed spins which could not be used in one-dimensional spectrum. Furthermore, we have experimentally demonstrated such an approach. Our experimental results have shown that our DFS can protect against far more types of decoherence than the one composed of four noisy physical qubits all with different chemical shifts. More importantly, this idea may provide new insights into extending qubit systems in the sense that it effectively utilizes the magnetically equivalent nuclei. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0410140v3-abstract-full').style.display = 'none'; document.getElementById('quant-ph/0410140v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2004; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures. Add more referrences</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/quant-ph/0410038">arXiv:quant-ph/0410038</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/quant-ph/0410038">pdf</a>, <a href="https://arxiv.org/ps/quant-ph/0410038">ps</a>, <a href="https://arxiv.org/format/quant-ph/0410038">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.71.062336">10.1103/PhysRevA.71.062336 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correlated Quantum Memory: Manipulating Atomic Entanglement via Electromagnetically Induced Transparency </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Jing%2C+H">H. Jing</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+X+-">X. -J. Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ge%2C+M+-">M. -L. Ge</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M+-">M. -S. Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="quant-ph/0410038v3-abstract-short" style="display: inline;"> We propose a feasible scheme of quantum state storage and manipulation via electromagnetically induced transparency (EIT) in flexibly $united$ multi-ensembles of three-level atoms. For different atomic array configurations, one can properly steer the signal and the control lights to generate different forms of atomic entanglement within the framework of linear optics. These results shed new ligh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0410038v3-abstract-full').style.display = 'inline'; document.getElementById('quant-ph/0410038v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="quant-ph/0410038v3-abstract-full" style="display: none;"> We propose a feasible scheme of quantum state storage and manipulation via electromagnetically induced transparency (EIT) in flexibly $united$ multi-ensembles of three-level atoms. For different atomic array configurations, one can properly steer the signal and the control lights to generate different forms of atomic entanglement within the framework of linear optics. These results shed new light on designing the versatile quantum memory devices by using, e.g., an atomic grid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0410038v3-abstract-full').style.display = 'none'; document.getElementById('quant-ph/0410038v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2004; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 October, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0409349">arXiv:cond-mat/0409349</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0409349">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0409349">ps</a>, <a href="https://arxiv.org/format/cond-mat/0409349">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjd/e2005-00081-1">10.1140/epjd/e2005-00081-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interference of Bose-Einstein condensates and entangled single-atom state in a spin-dependent optical lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wen%2C+L">Linghua Wen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+M">Min Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiong%2C+H">Hongwei Xiong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Mingsheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0409349v4-abstract-short" style="display: inline;"> We present a theoretical model to investigate the interference of an array of Bose-Einstein condensates loaded in a one-dimensional spin-dependent optical lattice, which is based on an assumption that for the atoms in the entangled single-atom state between the internal and the external degrees of freedom each atom interferes only with itself. Our theoretical results agree well with the interfer&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0409349v4-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0409349v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0409349v4-abstract-full" style="display: none;"> We present a theoretical model to investigate the interference of an array of Bose-Einstein condensates loaded in a one-dimensional spin-dependent optical lattice, which is based on an assumption that for the atoms in the entangled single-atom state between the internal and the external degrees of freedom each atom interferes only with itself. Our theoretical results agree well with the interference patterns observed in a recent experiment by Mandel et al. [Phys. Rev. Lett. 91, 010407 (2003)]. In addition, an experimental suggestion of nonuniform phase distribution is proposed to test further our theoretical model and prediction. The present work shows that the entanglement of a single atom is sufficient for the interference of the condensates confined in a spin-dependent optical lattice and this interference is irrelevant with the phases of individual condensates, i.e., this interference arises only between each condensate and itself and there is no interference effect between two arbitrary different condensates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0409349v4-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0409349v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2005; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 September, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages,5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> European Physical Journal D 36, 89(2005) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/quant-ph/0402075">arXiv:quant-ph/0402075</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/quant-ph/0402075">pdf</a>, <a href="https://arxiv.org/ps/quant-ph/0402075">ps</a>, <a href="https://arxiv.org/format/quant-ph/0402075">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physleta.2004.06.049">10.1016/j.physleta.2004.06.049 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electromagnetically induced transparency in multi-level cascade scheme of cold rubidium atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">J. Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kong%2C+L+B">L. B. Kong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+K+J">K. J. Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+K">K. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tu%2C+X+H">X. H. Tu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiong%2C+H+W">H. W. Xiong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+Y">Yifu Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M+S">M. S. Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="quant-ph/0402075v1-abstract-short" style="display: inline;"> We report an experimental investigation of electromagnetically induced transparency in a multi-level cascade system of cold atoms. The absorption spectral profiles of the probe light in the multi-level cascade system were observed in cold Rb-85 atoms confined in a magneto-optical trap, and the dependence of the spectral profile on the intensity of the coupling laser was investigated. The experim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0402075v1-abstract-full').style.display = 'inline'; document.getElementById('quant-ph/0402075v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="quant-ph/0402075v1-abstract-full" style="display: none;"> We report an experimental investigation of electromagnetically induced transparency in a multi-level cascade system of cold atoms. The absorption spectral profiles of the probe light in the multi-level cascade system were observed in cold Rb-85 atoms confined in a magneto-optical trap, and the dependence of the spectral profile on the intensity of the coupling laser was investigated. The experimental measurements agree with the theoretical calculations based on the density matrix equations of the rubidium cascade system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0402075v1-abstract-full').style.display = 'none'; document.getElementById('quant-ph/0402075v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics Letters A, 328, 437(2004) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/quant-ph/0312195">arXiv:quant-ph/0312195</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/quant-ph/0312195">pdf</a>, <a href="https://arxiv.org/ps/quant-ph/0312195">ps</a>, <a href="https://arxiv.org/format/quant-ph/0312195">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.68.063810">10.1103/PhysRevA.68.063810 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bichromatic electromagnetically induced transparency in cold rubidium atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">J. Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+Y">Yifu Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+K+J">K. J. Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M+S">M. S. Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="quant-ph/0312195v1-abstract-short" style="display: inline;"> In a three-level atomic system coupled by two equal-amplitude laser fields with a frequency separation 2$未$, a weak probe field exhibits a multiple-peaked absorption spectrum with a constant peak separation $未$. The corresponding probe dispersion exhibits steep normal dispersion near the minimum absorption between the multiple absorption peaks, which leads to simultaneous slow group velocities f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0312195v1-abstract-full').style.display = 'inline'; document.getElementById('quant-ph/0312195v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="quant-ph/0312195v1-abstract-full" style="display: none;"> In a three-level atomic system coupled by two equal-amplitude laser fields with a frequency separation 2$未$, a weak probe field exhibits a multiple-peaked absorption spectrum with a constant peak separation $未$. The corresponding probe dispersion exhibits steep normal dispersion near the minimum absorption between the multiple absorption peaks, which leads to simultaneous slow group velocities for probe photons at multiple frequencies separated by $未$. We report an experimental study in such a bichromatically coupled three-level $螞$ system in cold $^{87}$Rb atoms. The multiple-peaked probe absorption spectra under various experimental conditions have been observed and compared with the theoretical calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0312195v1-abstract-full').style.display = 'none'; document.getElementById('quant-ph/0312195v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2003. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">RevTex, 4 pages, 6 figures, Email address: wangjin@wipm.ac.cn</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review A 68, 063810 (2003) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/quant-ph/0302170">arXiv:quant-ph/0302170</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/quant-ph/0302170">pdf</a>, <a href="https://arxiv.org/ps/quant-ph/0302170">ps</a>, <a href="https://arxiv.org/format/quant-ph/0302170">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/S0375-9601(03)00465-1">10.1016/S0375-9601(03)00465-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Preparing remotely two instances of quantum state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+Y">Yafei Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Feng%2C+J">Jian Feng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Mingsheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="quant-ph/0302170v2-abstract-short" style="display: inline;"> In this short note, we propose a scheme, in which two instances of an equatorial state (or a polar state) can be remotely prepared in one-shot operation to different receivers with prior entanglement and 1 bit of broadcasting. The trade-off curve between the amount of entanglement and the achievable fidelity is derived. </span> <span class="abstract-full has-text-grey-dark mathjax" id="quant-ph/0302170v2-abstract-full" style="display: none;"> In this short note, we propose a scheme, in which two instances of an equatorial state (or a polar state) can be remotely prepared in one-shot operation to different receivers with prior entanglement and 1 bit of broadcasting. The trade-off curve between the amount of entanglement and the achievable fidelity is derived. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0302170v2-abstract-full').style.display = 'none'; document.getElementById('quant-ph/0302170v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2003; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 February, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2003. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/quant-ph/0301041">arXiv:quant-ph/0301041</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/quant-ph/0301041">pdf</a>, <a href="https://arxiv.org/ps/quant-ph/0301041">ps</a>, <a href="https://arxiv.org/format/quant-ph/0301041">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> NMR experimental realization of seventh-order coupling transformations and the seven-qubit modified Deutsch-Jozsa algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wei%2C+D">Daxiu Wei</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Luo%2C+J">Jun Luo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+X">Xiaodong Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+X">Xianping Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zeng%2C+X">Xizhi Zeng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+M">Maili Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ding%2C+S">Shangwu Ding</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+M">Mingsheng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="quant-ph/0301041v1-abstract-short" style="display: inline;"> We propose a scalable method on the basis of nth-order coupling operators to construct f-dependent phase transformations in the n-qubit modified Deutsch-Jozsa (D-J) quantum algorithm. The novel n-qubit entangling transformations are easily implemented via J-couplings between neighboring spins. The seven-qubit modified D-J quantum algorithm and seventh-order coupling transformations are then expe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0301041v1-abstract-full').style.display = 'inline'; document.getElementById('quant-ph/0301041v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="quant-ph/0301041v1-abstract-full" style="display: none;"> We propose a scalable method on the basis of nth-order coupling operators to construct f-dependent phase transformations in the n-qubit modified Deutsch-Jozsa (D-J) quantum algorithm. The novel n-qubit entangling transformations are easily implemented via J-couplings between neighboring spins. The seven-qubit modified D-J quantum algorithm and seventh-order coupling transformations are then experimentally demonstrated with liquid state nuclear magnetic resonance (NMR) techniques. The method may offer the possibility of creating generally entangled states of n qubits and simulating n-body interactions on n-qubit NMR quantum computers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0301041v1-abstract-full').style.display = 'none'; document.getElementById('quant-ph/0301041v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2003. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zhan%2C+M&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zhan%2C+M&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhan%2C+M&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10