CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 205 results for author: <span class="mathjax">Yang, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&query=Yang%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Yang, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Yang%2C+J&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Yang, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Yang%2C+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Yang%2C+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Yang%2C+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Yang%2C+J&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Yang%2C+J&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Yang%2C+J&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07632">arXiv:2502.07632</a> <span> [<a href="https://arxiv.org/pdf/2502.07632">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Optical spin readout of a silicon color center in the telecom L-band </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wen%2C+S">Shuyu Wen</a>, <a href="/search/quant-ph?searchtype=author&query=Pieplow%2C+G">Gregor Pieplow</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Junchun Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Jamshidi%2C+K">Kambiz Jamshidi</a>, <a href="/search/quant-ph?searchtype=author&query=Helm%2C+M">Manfred Helm</a>, <a href="/search/quant-ph?searchtype=author&query=Luo%2C+J">Jun-Wei Luo</a>, <a href="/search/quant-ph?searchtype=author&query=Schr%C3%B6der%2C+T">Tim Schr枚der</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+S">Shengqiang Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Berenc%C3%A9n%2C+Y">Yonder Berenc茅n</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07632v1-abstract-short" style="display: inline;"> Silicon-based quantum technologies have gained increasing attention due to their potential for large-scale photonic integration, long spin coherence times, and compatibility with CMOS fabrication. Efficient spin-photon interfaces are crucial for quantum networks, enabling entanglement distribution and information transfer over long distances. While several optically active quantum emitters in sili… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07632v1-abstract-full').style.display = 'inline'; document.getElementById('2502.07632v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07632v1-abstract-full" style="display: none;"> Silicon-based quantum technologies have gained increasing attention due to their potential for large-scale photonic integration, long spin coherence times, and compatibility with CMOS fabrication. Efficient spin-photon interfaces are crucial for quantum networks, enabling entanglement distribution and information transfer over long distances. While several optically active quantum emitters in silicon have been investigated, no spin-active defect with optical transitions in the telecom L-band-a key wavelength range for low-loss fiber-based communication-has been experimentally demonstrated. Here, we demonstrate the optical detection of spin states in the C center, a carbon-oxygen defect in silicon that exhibits a zero-phonon line at 1571 nm. By combining optical excitation with microwave driving, we achieve optically detected magnetic resonance, enabling spin-state readout via telecom-band optical transitions. These findings provide experimental validation of recent theoretical predictions and mark a significant step toward integrating spin-based quantum functionalities into silicon photonic platforms, paving the way for scalable quantum communication and memory applications in the telecom L-band. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07632v1-abstract-full').style.display = 'none'; document.getElementById('2502.07632v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.09079">arXiv:2501.09079</a> <span> [<a href="https://arxiv.org/pdf/2501.09079">pdf</a>, <a href="https://arxiv.org/format/2501.09079">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Demonstrating quantum error mitigation on logical qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Xie%2C+H">Haipeng Xie</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+Y">Yu Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jia-Nan Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+N">Ning Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+S">Shibo Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+K">Ke Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Jin%2C+F">Feitong Jin</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/quant-ph?searchtype=author&query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/quant-ph?searchtype=author&query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/quant-ph?searchtype=author&query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+T">Tingting Li</a>, <a href="/search/quant-ph?searchtype=author&query=Han%2C+Y">Yihang Han</a>, <a href="/search/quant-ph?searchtype=author&query=He%2C+Y">Yiyang He</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+G">Gongyu Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Shen%2C+J">Jiayuan Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+H">Han Wang</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.09079v1-abstract-short" style="display: inline;"> A long-standing challenge in quantum computing is developing technologies to overcome the inevitable noise in qubits. To enable meaningful applications in the early stages of fault-tolerant quantum computing, devising methods to suppress post-correction logical failures is becoming increasingly crucial. In this work, we propose and experimentally demonstrate the application of zero-noise extrapola… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09079v1-abstract-full').style.display = 'inline'; document.getElementById('2501.09079v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.09079v1-abstract-full" style="display: none;"> A long-standing challenge in quantum computing is developing technologies to overcome the inevitable noise in qubits. To enable meaningful applications in the early stages of fault-tolerant quantum computing, devising methods to suppress post-correction logical failures is becoming increasingly crucial. In this work, we propose and experimentally demonstrate the application of zero-noise extrapolation, a practical quantum error mitigation technique, to error correction circuits on state-of-the-art superconducting processors. By amplifying the noise on physical qubits, the circuits yield outcomes that exhibit a predictable dependence on noise strength, following a polynomial function determined by the code distance. This property enables the effective application of polynomial extrapolation to mitigate logical errors. Our experiments demonstrate a universal reduction in logical errors across various quantum circuits, including fault-tolerant circuits of repetition and surface codes. We observe a favorable performance in multi-round error correction circuits, indicating that this method remains effective when the circuit depth increases. These results advance the frontier of quantum error suppression technologies, opening a practical way to achieve reliable quantum computing in the early fault-tolerant era. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09079v1-abstract-full').style.display = 'none'; document.getElementById('2501.09079v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04688">arXiv:2501.04688</a> <span> [<a href="https://arxiv.org/pdf/2501.04688">pdf</a>, <a href="https://arxiv.org/format/2501.04688">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Observation of topological prethermal strong zero modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Jin%2C+F">Feitong Jin</a>, <a href="/search/quant-ph?searchtype=author&query=Jiang%2C+S">Si Jiang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/quant-ph?searchtype=author&query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+K">Ke Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+S">Shibo Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Song%2C+Z">Zixuan Song</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+Y">Yu Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+N">Ning Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+T">Tingting Li</a>, <a href="/search/quant-ph?searchtype=author&query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/quant-ph?searchtype=author&query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/quant-ph?searchtype=author&query=Han%2C+Y">Yihang Han</a>, <a href="/search/quant-ph?searchtype=author&query=He%2C+Y">Yiyang He</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+H">Han Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jianan Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Y">Yanzhe Wang</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04688v1-abstract-short" style="display: inline;"> Symmetry-protected topological phases cannot be described by any local order parameter and are beyond the conventional symmetry-breaking paradigm for understanding quantum matter. They are characterized by topological boundary states robust against perturbations that respect the protecting symmetry. In a clean system without disorder, these edge modes typically only occur for the ground states of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04688v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04688v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04688v1-abstract-full" style="display: none;"> Symmetry-protected topological phases cannot be described by any local order parameter and are beyond the conventional symmetry-breaking paradigm for understanding quantum matter. They are characterized by topological boundary states robust against perturbations that respect the protecting symmetry. In a clean system without disorder, these edge modes typically only occur for the ground states of systems with a bulk energy gap and would not survive at finite temperatures due to mobile thermal excitations. Here, we report the observation of a distinct type of topological edge modes, which are protected by emergent symmetries and persist even up to infinite temperature, with an array of 100 programmable superconducting qubits. In particular, through digital quantum simulation of the dynamics of a one-dimensional disorder-free "cluster" Hamiltonian, we observe robust long-lived topological edge modes over up to 30 cycles at a wide range of temperatures. By monitoring the propagation of thermal excitations, we show that despite the free mobility of these excitations, their interactions with the edge modes are substantially suppressed in the dimerized regime due to an emergent U(1)$\times$U(1) symmetry, resulting in an unusually prolonged lifetime of the topological edge modes even at infinite temperature. In addition, we exploit these topological edge modes as logical qubits and prepare a logical Bell state, which exhibits persistent coherence in the dimerized and off-resonant regime, despite the system being disorder-free and far from its ground state. Our results establish a viable digital simulation approach to experimentally exploring a variety of finite-temperature topological phases and demonstrate a potential route to construct long-lived robust boundary qubits that survive to infinite temperature in disorder-free systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04688v1-abstract-full').style.display = 'none'; document.getElementById('2501.04688v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04679">arXiv:2501.04679</a> <span> [<a href="https://arxiv.org/pdf/2501.04679">pdf</a>, <a href="https://arxiv.org/format/2501.04679">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Exploring nontrivial topology at quantum criticality in a superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+K">Ke Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+S">Sheng Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Jin%2C+F">Feitong Jin</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Ji%2C+Y">Yujie Ji</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+S">Shibo Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+Y">Yu Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+N">Ning Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+T">Tingting Li</a>, <a href="/search/quant-ph?searchtype=author&query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/quant-ph?searchtype=author&query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/quant-ph?searchtype=author&query=Han%2C+Y">Yihang Han</a>, <a href="/search/quant-ph?searchtype=author&query=He%2C+Y">Yiyang He</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+H">Han Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jianan Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Y">Yanzhe Wang</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04679v1-abstract-short" style="display: inline;"> The discovery of nontrivial topology in quantum critical states has introduced a new paradigm for classifying quantum phase transitions and challenges the conventional belief that topological phases are typically associated with a bulk energy gap. However, realizing and characterizing such topologically nontrivial quantum critical states with large particle numbers remains an outstanding experimen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04679v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04679v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04679v1-abstract-full" style="display: none;"> The discovery of nontrivial topology in quantum critical states has introduced a new paradigm for classifying quantum phase transitions and challenges the conventional belief that topological phases are typically associated with a bulk energy gap. However, realizing and characterizing such topologically nontrivial quantum critical states with large particle numbers remains an outstanding experimental challenge in statistical and condensed matter physics. Programmable quantum processors can directly prepare and manipulate exotic quantum many-body states, offering a powerful path for exploring the physics behind these states. Here, we present an experimental exploration of the critical cluster Ising model by preparing its low-lying critical states on a superconducting processor with up to $100$ qubits. We develop an efficient method to probe the boundary $g$-function based on prepared low-energy states, which allows us to uniquely identify the nontrivial topology of the critical systems under study. Furthermore, by adapting the entanglement Hamiltonian tomography technique, we recognize two-fold topological degeneracy in the entanglement spectrum under periodic boundary condition, experimentally verifying the universal bulk-boundary correspondence in topological critical systems. Our results demonstrate the low-lying critical states as useful quantum resources for investigating the interplay between topology and quantum criticality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04679v1-abstract-full').style.display = 'none'; document.getElementById('2501.04679v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.20925">arXiv:2412.20925</a> <span> [<a href="https://arxiv.org/pdf/2412.20925">pdf</a>, <a href="https://arxiv.org/format/2412.20925">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Active Learning with Variational Quantum Circuits for Quantum Process Tomography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jiaqi Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xiaohua Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Xie%2C+W">Wei Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.20925v1-abstract-short" style="display: inline;"> Quantum process tomography (QPT), used for reconstruction of an unknown quantum process from measurement data, is a fundamental tool for the diagnostic and full characterization of quantum systems. It relies on querying a set of quantum states as input to the quantum process. Previous works commonly use a straightforward strategy to select a set of quantum states randomly, overlooking differences… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20925v1-abstract-full').style.display = 'inline'; document.getElementById('2412.20925v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.20925v1-abstract-full" style="display: none;"> Quantum process tomography (QPT), used for reconstruction of an unknown quantum process from measurement data, is a fundamental tool for the diagnostic and full characterization of quantum systems. It relies on querying a set of quantum states as input to the quantum process. Previous works commonly use a straightforward strategy to select a set of quantum states randomly, overlooking differences in informativeness among quantum states. Since querying the quantum system requires multiple experiments that can be prohibitively costly, it is always the case that there are not enough quantum states for high-quality reconstruction. In this paper, we propose a general framework for active learning (AL) to adaptively select a set of informative quantum states that improves the reconstruction most efficiently. In particular, we introduce a learning framework that leverages the widely-used variational quantum circuits (VQCs) to perform the QPT task and integrate our AL algorithms into the query step. We design and evaluate three various types of AL algorithms: committee-based, uncertainty-based, and diversity-based, each exhibiting distinct advantages in terms of performance and computational cost. Additionally, we provide a guideline for selecting algorithms suitable for different scenarios. Numerical results demonstrate that our algorithms achieve significantly improved reconstruction compared to the baseline method that selects a set of quantum states randomly. Moreover, these results suggest that active learning based approaches are applicable to other complicated learning tasks in large-scale quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20925v1-abstract-full').style.display = 'none'; document.getElementById('2412.20925v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03939">arXiv:2412.03939</a> <span> [<a href="https://arxiv.org/pdf/2412.03939">pdf</a>, <a href="https://arxiv.org/format/2412.03939">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> </div> </div> <p class="title is-5 mathjax"> A robust quantum nonlinear solver based on the asymptotic numerical method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Y">Yongchun Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Kuang%2C+Z">Zengtao Kuang</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+Q">Qun Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jie Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Zahrouni%2C+H">Hamid Zahrouni</a>, <a href="/search/quant-ph?searchtype=author&query=Potier-Ferry%2C+M">Michel Potier-Ferry</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+K">Kaixuan Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+J">Jia-Chi Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Fan%2C+H">Heng Fan</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+H">Heng Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03939v2-abstract-short" style="display: inline;"> Quantum computing offers a promising new avenue for advancing computational methods in science and engineering. In this work, we introduce the quantum asymptotic numerical method, a novel quantum nonlinear solver that combines Taylor series expansions with quantum linear solvers to efficiently address nonlinear problems. By linearizing nonlinear problems using the Taylor series, the method transfo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03939v2-abstract-full').style.display = 'inline'; document.getElementById('2412.03939v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03939v2-abstract-full" style="display: none;"> Quantum computing offers a promising new avenue for advancing computational methods in science and engineering. In this work, we introduce the quantum asymptotic numerical method, a novel quantum nonlinear solver that combines Taylor series expansions with quantum linear solvers to efficiently address nonlinear problems. By linearizing nonlinear problems using the Taylor series, the method transforms them into sequences of linear equations solvable by quantum algorithms, thus extending the convergence region for solutions and simultaneously leveraging quantum computational advantages. Numerical tests on the quantum simulator Qiskit confirm the convergence and accuracy of the method in solving nonlinear problems. Additionally, we apply the proposed method to a beam buckling problem, demonstrating its robustness in handling strongly nonlinear problems and its potential advantages in quantum resource requirements. Furthermore, we perform experiments on a superconducting quantum processor from Quafu, successfully achieving up to 98% accuracy in the obtained nonlinear solution path. We believe this work contributes to the utility of quantum computing in scientific computing applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03939v2-abstract-full').style.display = 'none'; document.getElementById('2412.03939v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 19 figures, 1 table, submitted to Elsevier</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01038">arXiv:2412.01038</a> <span> [<a href="https://arxiv.org/pdf/2412.01038">pdf</a>, <a href="https://arxiv.org/format/2412.01038">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Using Reinforcement Learning to Guide Graph State Generation for Photonic Quantum Computers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Li%2C+Y">Yingheng Li</a>, <a href="/search/quant-ph?searchtype=author&query=Dai%2C+Y">Yue Dai</a>, <a href="/search/quant-ph?searchtype=author&query=Pawar%2C+A">Aditya Pawar</a>, <a href="/search/quant-ph?searchtype=author&query=Dong%2C+R">Rongchao Dong</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jun Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+Y">Youtao Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+X">Xulong Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01038v1-abstract-short" style="display: inline;"> Photonic quantum computer (PQC) is an emerging and promising quantum computing paradigm that has gained momentum in recent years. In PQC, which leverages the measurement-based quantum computing (MBQC) model, computations are executed by performing measurements on photons in graph states (i.e., sets of entangled photons) that are generated before measurements. The graph state in PQC is generated de… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01038v1-abstract-full').style.display = 'inline'; document.getElementById('2412.01038v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01038v1-abstract-full" style="display: none;"> Photonic quantum computer (PQC) is an emerging and promising quantum computing paradigm that has gained momentum in recent years. In PQC, which leverages the measurement-based quantum computing (MBQC) model, computations are executed by performing measurements on photons in graph states (i.e., sets of entangled photons) that are generated before measurements. The graph state in PQC is generated deterministically by quantum emitters. The generation process is achieved by applying a sequence of quantum gates to quantum emitters. In this process, i) the time required to complete the process, ii) the number of quantum emitters used, and iii) the number of CZ gates performed between emitters greatly affect the fidelity of the generated graph state. However, prior work for determining the generation sequence only focuses on optimizing the number of quantum emitters. Moreover, identifying the optimal generation sequence has vast search space. To this end, we propose RLGS, a novel compilation framework to identify optimal generation sequences that optimize the three metrics. Experimental results show that RLGS achieves an average reduction in generation time of 31.1%, 49.6%, and 57.5% for small, medium, and large graph states compared to the baseline. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01038v1-abstract-full').style.display = 'none'; document.getElementById('2412.01038v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.00803">arXiv:2412.00803</a> <span> [<a href="https://arxiv.org/pdf/2412.00803">pdf</a>, <a href="https://arxiv.org/format/2412.00803">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Quantum simulation of the phase transition of the massive Thirring model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Gong%2C+J">Jia-Qi Gong</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Ji-Chong Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.00803v1-abstract-short" style="display: inline;"> The rapid development of quantum computing technology has made it possible to study the thermodynamic properties of fermionic systems at finite temperatures through quantum simulations on a quantum computer. This provides a novel approach to the study of the chiral phase transition of fermionic systems. Among these, the quantum minimally entangled typical thermal states (QMETTS) algorithm has rece… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00803v1-abstract-full').style.display = 'inline'; document.getElementById('2412.00803v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.00803v1-abstract-full" style="display: none;"> The rapid development of quantum computing technology has made it possible to study the thermodynamic properties of fermionic systems at finite temperatures through quantum simulations on a quantum computer. This provides a novel approach to the study of the chiral phase transition of fermionic systems. Among these, the quantum minimally entangled typical thermal states (QMETTS) algorithm has recently attracted considerable interest. The massive Thirring model, which exhibits a variety of phenomena at low temperatures, includes both a chiral phase transition and a topologically non-trivial ground state. It therefore raises the intriguing question of whether its phase transition can be studied using a quantum simulation approach. In this study, the chiral phase transition of the massive Thirring model and its dual topological phase transition are studied using the QMETTS algorithm. The results show that QMETTS is able to accurately reproduce the phase transition and thermodynamic properties of the massive Thirring model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00803v1-abstract-full').style.display = 'none'; document.getElementById('2412.00803v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23202">arXiv:2410.23202</a> <span> [<a href="https://arxiv.org/pdf/2410.23202">pdf</a>, <a href="https://arxiv.org/format/2410.23202">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Deterministic generation of frequency-bin-encoded microwave photons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jiaying Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Khanahmadi%2C+M">Maryam Khanahmadi</a>, <a href="/search/quant-ph?searchtype=author&query=Strandberg%2C+I">Ingrid Strandberg</a>, <a href="/search/quant-ph?searchtype=author&query=Gaikwad%2C+A">Akshay Gaikwad</a>, <a href="/search/quant-ph?searchtype=author&query=Castillo-Moreno%2C+C">Claudia Castillo-Moreno</a>, <a href="/search/quant-ph?searchtype=author&query=Kockum%2C+A+F">Anton Frisk Kockum</a>, <a href="/search/quant-ph?searchtype=author&query=Ullah%2C+M+A">Muhammad Asad Ullah</a>, <a href="/search/quant-ph?searchtype=author&query=Johansson%2C+G">G枚ran Johansson</a>, <a href="/search/quant-ph?searchtype=author&query=Eriksson%2C+A+M">Axel Martin Eriksson</a>, <a href="/search/quant-ph?searchtype=author&query=Gasparinetti%2C+S">Simone Gasparinetti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23202v1-abstract-short" style="display: inline;"> A distributed quantum computing network requires a quantum communication channel between spatially separated processing units. In superconducting circuits, such a channel can be implemented based on propagating microwave photons to encode and transfer quantum information between an emitter and a receiver. However, traveling microwave photons can be lost during the transmission, leading to the fail… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23202v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23202v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23202v1-abstract-full" style="display: none;"> A distributed quantum computing network requires a quantum communication channel between spatially separated processing units. In superconducting circuits, such a channel can be implemented based on propagating microwave photons to encode and transfer quantum information between an emitter and a receiver. However, traveling microwave photons can be lost during the transmission, leading to the failure of information transfer. Heralding protocols can be used to detect such photon losses. In this work, we propose such a protocol and experimentally demonstrate a frequency-bin encoding method of microwave photonic modes using superconducting circuits. We deterministically encode the quantum information from a superconducting qubit by simultaneously emitting its information into two photonic modes at different frequencies, with a process fidelity of 90.4%. The frequency-bin-encoded photonic modes can be used, at the receiver processor, to detect the occurrence of photon loss. Our work thus provides a reliable method to implement high-fidelity quantum state transfer in a distributed quantum computing network, incorporating error detection to enhance performance and accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23202v1-abstract-full').style.display = 'none'; document.getElementById('2410.23202v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18847">arXiv:2410.18847</a> <span> [<a href="https://arxiv.org/pdf/2410.18847">pdf</a>, <a href="https://arxiv.org/format/2410.18847">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A novel quantum machine learning classifier to search for new physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Ji-Chong Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+S">Shuai Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Yue%2C+C">Chong-Xing Yue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18847v2-abstract-short" style="display: inline;"> Due to the success of the Standard Model~(SM), it is reasonable to anticipate that, the signal of new physics~(NP) beyond the SM is small, and future searches for NP and precision tests of the SM will require high luminosity collider experiments. Moreover, as the precision tests of the SM advances, rarer processes with a greater number of final-state particles will require consideration, which wil… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18847v2-abstract-full').style.display = 'inline'; document.getElementById('2410.18847v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18847v2-abstract-full" style="display: none;"> Due to the success of the Standard Model~(SM), it is reasonable to anticipate that, the signal of new physics~(NP) beyond the SM is small, and future searches for NP and precision tests of the SM will require high luminosity collider experiments. Moreover, as the precision tests of the SM advances, rarer processes with a greater number of final-state particles will require consideration, which will in turn require the analysis of a multitude of observables. As an inherent consequence of the high luminosity, the generation of a large amount of experimental data in a large feature space presents a significant challenge for data processing. In recent years, quantum machine learning has emerged as a promising approach for processing large amounts of complex data on a quantum computer. In this study, we propose quantum searching neighbor~(QSN) and variational QSN~(VQSN) algorithms to search for NP. The QSN is a classification algorithm; the VQSN, however, introduces variation to the QSN to process classical data. As an example, we apply the (V)QSN in the phenomenological study of the gluon quartic gauge couplings~(gQGCs) at the Large Hadron Collider. The results suggest that VQSN demonstrates superior efficiency to a classical counterpart k-nearest neighbor algorithm, even when dealing with classical data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18847v2-abstract-full').style.display = 'none'; document.getElementById('2410.18847v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.13713">arXiv:2408.13713</a> <span> [<a href="https://arxiv.org/pdf/2408.13713">pdf</a>, <a href="https://arxiv.org/format/2408.13713">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.optcom.2025.131474">10.1016/j.optcom.2025.131474 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Verifiable cloud-based variational quantum algorithms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Junhong Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+B">Banghai Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Quan%2C+J">Junyu Quan</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Q">Qin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.13713v3-abstract-short" style="display: inline;"> Variational quantum algorithms (VQAs) have shown potential for quantum advantage with noisy intermediate-scale quantum (NISQ) devices for quantum machine learning (QML). However, given the high cost and limited availability of quantum resources, delegating VQAs via cloud networks is a more practical solution for clients with limited quantum capabilities. Recently, Shingu et al.[Physical Review A,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13713v3-abstract-full').style.display = 'inline'; document.getElementById('2408.13713v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.13713v3-abstract-full" style="display: none;"> Variational quantum algorithms (VQAs) have shown potential for quantum advantage with noisy intermediate-scale quantum (NISQ) devices for quantum machine learning (QML). However, given the high cost and limited availability of quantum resources, delegating VQAs via cloud networks is a more practical solution for clients with limited quantum capabilities. Recently, Shingu et al.[Physical Review A, 105, 022603 (2022)] proposed a variational secure cloud quantum computing protocol, utilizing ancilla-driven quantum computation (ADQC) for cloud-based VQAs with minimal quantum resource consumption. However, their protocol lacks verifiability, which exposes it to potential malicious behaviors by the server. Additionally, channel loss requires frequent re-delegation as the size of the delegated variational circuit grows, complicating verification due to increased circuit complexity. This paper introduces a new protocol to address these challenges and enhance both verifiability and tolerance to channel loss in cloud-based VQAs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13713v3-abstract-full').style.display = 'none'; document.getElementById('2408.13713v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 131474 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Communications, Vol. 578, Article 131474 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.13590">arXiv:2408.13590</a> <span> [<a href="https://arxiv.org/pdf/2408.13590">pdf</a>, <a href="https://arxiv.org/format/2408.13590">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Engineering biphoton spectral wavefunction in a silicon micro-ring resonator with split resonances </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Ye%2C+L">Liao Ye</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+H">Haoran Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+X">Xiaoqing Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Ruan%2C+F">Fanjie Ruan</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Y">Yuehai Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jianyi Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.13590v1-abstract-short" style="display: inline;"> Frequency-time is a degree of freedom suitable for photonic high-dimensional entanglement, with advantages such as compatibility with single-mode devices and insensitivity to dispersion. The engineering control of the frequency-time amplitude of a photon's electric field has been demonstrated on platforms with second-order optical nonlinearity. For integrated photonic platforms with only third-ord… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13590v1-abstract-full').style.display = 'inline'; document.getElementById('2408.13590v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.13590v1-abstract-full" style="display: none;"> Frequency-time is a degree of freedom suitable for photonic high-dimensional entanglement, with advantages such as compatibility with single-mode devices and insensitivity to dispersion. The engineering control of the frequency-time amplitude of a photon's electric field has been demonstrated on platforms with second-order optical nonlinearity. For integrated photonic platforms with only third-order optical nonlinearity, the engineered generation of the state remains unexplored. Here, we demonstrate a cavity-enhanced photon-pair source on the silicon-on-insulator (SOI) platform that can generate both separable states and controllable entangled states in the frequency domain without post-manipulation. By choosing different resonance combinations and employing on-chip optical field differentiation, we achieve independent control over two functions that affect the joint spectral intensity (JSI) of the state. A semi-analytical model is derived to simulate the biphoton spectral wavefunction in the presence of resonance splitting and pump differentiation, and its parameters can be fully determined through fitting-based parameter extraction from the resonator's measured linear response. The measured spectral purity for the separable state is $95.5\pm 1.2\%$, while the measured JSIs for the entangled states show two- or four-peaked functions in two-dimensional frequency space. The experiments and simulations demonstrate the capacity to manipulate the frequency-domain wavefunction in a silicon-based device, which is promising for applications like quantum information processing using pulsed temporal-mode encoding or long-distance quantum key distribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13590v1-abstract-full').style.display = 'none'; document.getElementById('2408.13590v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16432">arXiv:2407.16432</a> <span> [<a href="https://arxiv.org/pdf/2407.16432">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Integrated high-performance error correction for continuous-variable quantum key distribution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+C">Chuang Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Y">Yang Li</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+L">Li Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jie Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+W">Wei Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+A">Ao Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+H">Heng Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Luo%2C+Y">Yujie Luo</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Y">Yong Li</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Z">Ziyang Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Lau%2C+F+C+M">Francis C. M. Lau</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+Y">Yichen Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+S">Song Yu</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+H">Hong Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+B">Bingjie Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16432v1-abstract-short" style="display: inline;"> An integrated error-correction scheme with high throughput, low frame errors rate (FER) and high reconciliation efficiency under low signal to noise ratio (SNR) is one of the major bottlenecks to realize high-performance and low-cost continuous variable quantum key distribution (CV-QKD). To solve this long-standing problem, a novel two-stage error correction method with limited precision that is s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16432v1-abstract-full').style.display = 'inline'; document.getElementById('2407.16432v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16432v1-abstract-full" style="display: none;"> An integrated error-correction scheme with high throughput, low frame errors rate (FER) and high reconciliation efficiency under low signal to noise ratio (SNR) is one of the major bottlenecks to realize high-performance and low-cost continuous variable quantum key distribution (CV-QKD). To solve this long-standing problem, a novel two-stage error correction method with limited precision that is suitable for integration given limited on-chip hardware resource while maintaining excellent decoding performance is proposed, and experimentally verified on a commercial FPGA. Compared to state-of-art results, the error-correction throughput can be improved more than one order of magnitude given FER<0.1 based on the proposed method, where 544.03 Mbps and 393.33 Mbps real-time error correction is achieved for typical 0.2 and 0.1 code rate, respectively. Besides, compared with traditional decoding method, the secure key rate (SKR) for CV-QKD under composable security framework can be improved by 140.09% and 122.03% by using the proposed two-stage decoding method for codes rate 0.2 and 0.1, which can support 32.70 Mbps and 5.66 Mbps real-time SKR under typical transmission distances of 25 km and 50 km, correspondingly. The record-breaking results paves the way for large-scale deployment of high-rate integrated CV-QKD systems in metropolitan quantum secure network. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16432v1-abstract-full').style.display = 'none'; document.getElementById('2407.16432v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11775">arXiv:2407.11775</a> <span> [<a href="https://arxiv.org/pdf/2407.11775">pdf</a>, <a href="https://arxiv.org/format/2407.11775">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-50333-w">10.1038/s41467-024-50333-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A cryogenic on-chip microwave pulse generator for large-scale superconducting quantum computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Bao%2C+Z">Zenghui Bao</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Y">Yan Li</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Z">Zhiling Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+J">Jiahui Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jize Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Xiong%2C+H">Haonan Xiong</a>, <a href="/search/quant-ph?searchtype=author&query=Song%2C+Y">Yipu Song</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+Y">Yukai Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+H">Hongyi Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Duan%2C+L">Luming Duan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11775v1-abstract-short" style="display: inline;"> For superconducting quantum processors, microwave signals are delivered to each qubit from room-temperature electronics to the cryogenic environment through coaxial cables. Limited by the heat load of cabling and the massive cost of electronics, such an architecture is not viable for millions of qubits required for fault-tolerant quantum computing. Monolithic integration of the control electronics… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11775v1-abstract-full').style.display = 'inline'; document.getElementById('2407.11775v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11775v1-abstract-full" style="display: none;"> For superconducting quantum processors, microwave signals are delivered to each qubit from room-temperature electronics to the cryogenic environment through coaxial cables. Limited by the heat load of cabling and the massive cost of electronics, such an architecture is not viable for millions of qubits required for fault-tolerant quantum computing. Monolithic integration of the control electronics and the qubits provides a promising solution, which, however, requires a coherent cryogenic microwave pulse generator that is compatible with superconducting quantum circuits. Here, we report such a signal source driven by digital-like signals, generating pulsed microwave emission with well-controlled phase, intensity, and frequency directly at millikelvin temperatures. We showcase high-fidelity readout of superconducting qubits with the microwave pulse generator. The device demonstrated here has a small footprint, negligible heat load, great flexibility to operate, and is fully compatible with today's superconducting quantum circuits, thus providing an enabling technology for large-scale superconducting quantum computers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11775v1-abstract-full').style.display = 'none'; document.getElementById('2407.11775v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 15, 5958 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09932">arXiv:2407.09932</a> <span> [<a href="https://arxiv.org/pdf/2407.09932">pdf</a>, <a href="https://arxiv.org/format/2407.09932">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Clock Synchronization Network with Silicon-chip Dual-Pumped Entangled Photon Source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Li%2C+J+A">J. A. Li</a>, <a href="/search/quant-ph?searchtype=author&query=Han%2C+H">H. Han</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+X+P">X. P. Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+B+Y">B. Y. Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+K">K. Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+J+Q">J. Q. Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Xiong%2C+S+Y">S. Y. Xiong</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+W+R">W. R. Yu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+Z+J">Z. J. Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J+B">J. B. Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+B">B. Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+H">H. Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+Z+K">Z. K. Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09932v1-abstract-short" style="display: inline;"> In this paper, we propose a quantum clock synchronization (QCS) network scheme with silicon-chip dual-pumped entangled photon source. This scheme couples two pump beams into the silicon-based waveguide, where degenerate and non-degenerate spontaneous four-wave mixing (SFWM) occurs, generating entanglement between one signal channel and three idler channels. The entangled photons are distributed to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09932v1-abstract-full').style.display = 'inline'; document.getElementById('2407.09932v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09932v1-abstract-full" style="display: none;"> In this paper, we propose a quantum clock synchronization (QCS) network scheme with silicon-chip dual-pumped entangled photon source. This scheme couples two pump beams into the silicon-based waveguide, where degenerate and non-degenerate spontaneous four-wave mixing (SFWM) occurs, generating entanglement between one signal channel and three idler channels. The entangled photons are distributed to remote users through the wavelength division multiplexing strategy to construct an entanglement distribution network, and the round-trip QCS is adopted to realize a QCS network that can serve multiple users. A proof-of-principle QCS network experiment is implemented among the server and multiple users (Alice, Bob, and Charlie) for 11.1 hours, where Alice and Charlie are 10 km away from the server and Bob is 25 km away from the server. The lowest time deviations (TDEV) between the server and each user (Alice, Bob, and Charlie) are 1.57 ps, 0.82 ps and 2.57 ps at the average time of 8000 s, 8000 s and 800 s respectively. The results show that the QCS network scheme with dual-pumped SFWM photon source proposed by us achieves high accuracy, and the channel resources used by n users are reduced by about 30% compared with other round-trip QCS schemes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09932v1-abstract-full').style.display = 'none'; document.getElementById('2407.09932v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07991">arXiv:2407.07991</a> <span> [<a href="https://arxiv.org/pdf/2407.07991">pdf</a>, <a href="https://arxiv.org/format/2407.07991">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Entanglement of photonic modes from a continuously driven two-level system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jiaying Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Strandberg%2C+I">Ingrid Strandberg</a>, <a href="/search/quant-ph?searchtype=author&query=Vivas-Viana%2C+A">Alejandro Vivas-Viana</a>, <a href="/search/quant-ph?searchtype=author&query=Gaikwad%2C+A">Akshay Gaikwad</a>, <a href="/search/quant-ph?searchtype=author&query=Castillo-Moreno%2C+C">Claudia Castillo-Moreno</a>, <a href="/search/quant-ph?searchtype=author&query=Kockum%2C+A+F">Anton Frisk Kockum</a>, <a href="/search/quant-ph?searchtype=author&query=Ullah%2C+M+A">Muhammad Asad Ullah</a>, <a href="/search/quant-ph?searchtype=author&query=Munoz%2C+C+S">Carlos Sanchez Munoz</a>, <a href="/search/quant-ph?searchtype=author&query=Eriksson%2C+A+M">Axel Martin Eriksson</a>, <a href="/search/quant-ph?searchtype=author&query=Gasparinetti%2C+S">Simone Gasparinetti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07991v1-abstract-short" style="display: inline;"> The ability to generate entangled states of light is a key primitive for quantum communication and distributed quantum computation. Continuously driven sources, including those based on spontaneous parametric downconversion, are usually probabilistic, whereas deterministic sources require accurate timing of the control fields. Here, we experimentally generate entangled photonic modes by continuous… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07991v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07991v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07991v1-abstract-full" style="display: none;"> The ability to generate entangled states of light is a key primitive for quantum communication and distributed quantum computation. Continuously driven sources, including those based on spontaneous parametric downconversion, are usually probabilistic, whereas deterministic sources require accurate timing of the control fields. Here, we experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive, taking advantage of mode matching in the time and frequency domain. Using joint quantum state tomography and logarithmic negativity, we show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum. Because the entangled photonic modes are perfectly orthogonal, they can be transferred into distinct quantum memories. Our approach can be utilized to distribute entanglement at a high rate in various physical platforms, with applications in waveguide quantum electrodynamics, distributed quantum computing, and quantum networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07991v1-abstract-full').style.display = 'none'; document.getElementById('2407.07991v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.15024">arXiv:2406.15024</a> <span> [<a href="https://arxiv.org/pdf/2406.15024">pdf</a>, <a href="https://arxiv.org/format/2406.15024">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Thermal activated detection of dark particles in a weakly coupled quantum Ising ladder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Gao%2C+Y">Yunjing Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jiahao Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Lin%2C+H">Huihang Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+R">Rong Yu</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+J">Jianda Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.15024v1-abstract-short" style="display: inline;"> The Ising$_h^2$ integrable field theory, which emerges when two quantum critical Ising chains are weakly coupled, possesses eight types of relativistic particles whose mass spectrum and scattering matrices are organized by the $\mathcal{D}_8^{(1)}$ algebra. It is predicted that all odd-parity particles are dark and cannot be directly excited from the ground state. This makes these dark particles h… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15024v1-abstract-full').style.display = 'inline'; document.getElementById('2406.15024v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.15024v1-abstract-full" style="display: none;"> The Ising$_h^2$ integrable field theory, which emerges when two quantum critical Ising chains are weakly coupled, possesses eight types of relativistic particles whose mass spectrum and scattering matrices are organized by the $\mathcal{D}_8^{(1)}$ algebra. It is predicted that all odd-parity particles are dark and cannot be directly excited from the ground state. This makes these dark particles hard to be detected. Here, we study the local dynamical spin structure factor of the model at low-frequencies and low-temperatures. In contrast to the invisibility of the dark particles in THz spectroscopy or inelastic neutron scattering measurement, we find that the lightest dark particle is detectable, manifested as a thermal activation gap in nuclear magnetic resonance measurements. Our results provide a practical criterion for verifying the existence of dark particles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15024v1-abstract-full').style.display = 'none'; document.getElementById('2406.15024v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.14127">arXiv:2406.14127</a> <span> [<a href="https://arxiv.org/pdf/2406.14127">pdf</a>, <a href="https://arxiv.org/format/2406.14127">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Variational-Cartan Quantum Dynamics Simulations of Excitation Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wan%2C+L">Linyun Wan</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+J">Jie Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Z">Zhenyu Li</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jinlong Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.14127v2-abstract-short" style="display: inline;"> Quantum dynamics simulations (QDSs) are one of the most highly anticipated applications of quantum computing. Quantum circuit depth for implementing Hamiltonian simulation algorithms is commonly time dependent so that long time dynamics simulations become impratical on near-term quantum processors. The Hamiltonian simulation algorithm based on Cartan decomposition (CD) provides an appealing scheme… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14127v2-abstract-full').style.display = 'inline'; document.getElementById('2406.14127v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.14127v2-abstract-full" style="display: none;"> Quantum dynamics simulations (QDSs) are one of the most highly anticipated applications of quantum computing. Quantum circuit depth for implementing Hamiltonian simulation algorithms is commonly time dependent so that long time dynamics simulations become impratical on near-term quantum processors. The Hamiltonian simulation algorithm based on Cartan decomposition (CD) provides an appealing scheme for QDSs with fixed-depth circuits while limited to time-independent case. In this work, we generalize this CD-based Hamiltonian simulation algorithm for studying time-dependent systems by combining it with variational Hamiltonian simulation. The time-dependent and time-independent parts of the Hamiltonian are treated with the variational approach and the CD-based Hamiltonian simulation algorithms, respectively. As such, only fixed-depth quantum circuits are required in this hybrid Hamiltonian simulation algorithm while still maintaining high accuracy. We apply this new algorithm to study the response of spin and molecular systems to $未$-kick electric fields and obtain accurate spectra for these excitation processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14127v2-abstract-full').style.display = 'none'; document.getElementById('2406.14127v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.11699">arXiv:2406.11699</a> <span> [<a href="https://arxiv.org/pdf/2406.11699">pdf</a>, <a href="https://arxiv.org/format/2406.11699">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Circuit-Efficient Qubit-Excitation-based Variational Quantum Eigensolver </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Sun%2C+Z">Zhijie Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+J">Jie Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Z">Zhenyu Li</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jinlong Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.11699v1-abstract-short" style="display: inline;"> The wave function Ansatze are crucial in the context of the Variational Quantum Eigensolver (VQE). In the Noisy Intermediate-Scale Quantum era, the design of low-depth wave function Ansatze is of great importance for executing quantum simulations of electronic structure on noisy quantum devices. In this work, we present a circuit-efficient implementation of two-body Qubit-Excitation-Based (QEB) op… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11699v1-abstract-full').style.display = 'inline'; document.getElementById('2406.11699v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.11699v1-abstract-full" style="display: none;"> The wave function Ansatze are crucial in the context of the Variational Quantum Eigensolver (VQE). In the Noisy Intermediate-Scale Quantum era, the design of low-depth wave function Ansatze is of great importance for executing quantum simulations of electronic structure on noisy quantum devices. In this work, we present a circuit-efficient implementation of two-body Qubit-Excitation-Based (QEB) operator for building shallow-circuit wave function Ansatze within the framework of Adaptive Derivative-Assembled Pseudo-Trotter (ADAPT) VQE. This new algorithm is applied to study ground- and excited-sate problems for small molecules, demonstrating significant reduction of circuit depths compared to fermionic excitation-based and QEB ADAPT-VQE algorithms. This circuit-efficient algorithm shows great promise for quantum simulations of electronic structures, leading to improved performance on current quantum hardware. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11699v1-abstract-full').style.display = 'none'; document.getElementById('2406.11699v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.10680">arXiv:2406.10680</a> <span> [<a href="https://arxiv.org/pdf/2406.10680">pdf</a>, <a href="https://arxiv.org/format/2406.10680">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Equation-of-Motion Method with Single, Double, and Triple Excitations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zheng%2C+Y">Yuhan Zheng</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+J">Jie Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Z">Zhenyu Li</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jinlong Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.10680v1-abstract-short" style="display: inline;"> The quantum equation-of-motion (qEOM) method with singles and doubles has been suggested to study electronically excited states while it fails to predict the excitation energies dominated by double excitations. In this work, we present an efficient implementation of the qEOM method with single, double and triple excitations. In order to reduce the computational complexity, we utilize the point gro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10680v1-abstract-full').style.display = 'inline'; document.getElementById('2406.10680v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.10680v1-abstract-full" style="display: none;"> The quantum equation-of-motion (qEOM) method with singles and doubles has been suggested to study electronically excited states while it fails to predict the excitation energies dominated by double excitations. In this work, we present an efficient implementation of the qEOM method with single, double and triple excitations. In order to reduce the computational complexity, we utilize the point group symmetry and perturbation theory to screen triple excitation operators, and the scaling is reduced from $N_o^6N_v^6$ to $N_o^5N_v^5$. Furthermore, we introduce a perturbation correction to the excitation energy to account for the effect of ignored triple excitation operators. We apply this method to study challenging cases, for which the qEOM-SD method exhibits large errors, such as the 2 $^1螖$ excited state of $\rm{CH}^+$ and the 2 $^1危$ state of $\rm{H}_8$ molecule. Our new method yields the energy errors less than 0.18 eV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10680v1-abstract-full').style.display = 'none'; document.getElementById('2406.10680v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.19821">arXiv:2405.19821</a> <span> [<a href="https://arxiv.org/pdf/2405.19821">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Sub-meV Linewidths in Polarized Low-Temperature Photoluminescence of 2D PbS Nanoplatelets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Li%2C+P">Pengji Li</a>, <a href="/search/quant-ph?searchtype=author&query=Biesterfeld%2C+L">Leon Biesterfeld</a>, <a href="/search/quant-ph?searchtype=author&query=Klepzig%2C+L">Lars Klepzig</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jingzhong Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Ngo%2C+H+T">Huu Thoai Ngo</a>, <a href="/search/quant-ph?searchtype=author&query=Addad%2C+A">Ahmed Addad</a>, <a href="/search/quant-ph?searchtype=author&query=Rakow%2C+T+N">Tom N. Rakow</a>, <a href="/search/quant-ph?searchtype=author&query=Guan%2C+R">Ruolin Guan</a>, <a href="/search/quant-ph?searchtype=author&query=Rugeramigabo%2C+E+P">Eddy P. Rugeramigabo</a>, <a href="/search/quant-ph?searchtype=author&query=Zaluzhnyy%2C+I">Ivan Zaluzhnyy</a>, <a href="/search/quant-ph?searchtype=author&query=Schreiber%2C+F">Frank Schreiber</a>, <a href="/search/quant-ph?searchtype=author&query=Biadala%2C+L">Louis Biadala</a>, <a href="/search/quant-ph?searchtype=author&query=Lauth%2C+J">Jannika Lauth</a>, <a href="/search/quant-ph?searchtype=author&query=Zopf%2C+M">Michael Zopf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.19821v2-abstract-short" style="display: inline;"> Colloidal semiconductor nanocrystals are promising materials for classical and quantum light sources due to their versatile chemistry and efficient photoluminescence (PL) properties. While visible emitters are well-established, the pursuit of excellent (near-)infrared sources continues. One notable candidate in this regard are photoluminescent two-dimensional (2D) PbS nanoplatelets (NPLs) exhibiti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19821v2-abstract-full').style.display = 'inline'; document.getElementById('2405.19821v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.19821v2-abstract-full" style="display: none;"> Colloidal semiconductor nanocrystals are promising materials for classical and quantum light sources due to their versatile chemistry and efficient photoluminescence (PL) properties. While visible emitters are well-established, the pursuit of excellent (near-)infrared sources continues. One notable candidate in this regard are photoluminescent two-dimensional (2D) PbS nanoplatelets (NPLs) exhibiting excitonic emission at 720 nm (1.7 eV) directly tying to the typical emission range limit of CdSe NPLs. Here, we present the first comprehensive analysis of low-temperature PL from this material class. Ultrathin 2D PbS NPLs exhibit high crystallinity confirmed by scanning transmission electron microscopy, and revealing Moire patterns in overlapping structures. At 4K, we observe unique PL features in single PbS NPLs, including narrow zero-phonon lines with line widths down to 0.6 meV and a linear degree of polarization up to 90%. Time-resolved measurements identify trions as the dominant emission source with a 2.3 ns decay time. Sub-meV spectral diffusion and no immanent blinking over minutes is observed, as well as discrete spectral jumps without memory effects. These findings advance the understanding and underpin the potential of colloidal PbS NPLs for optical and quantum technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19821v2-abstract-full').style.display = 'none'; document.getElementById('2405.19821v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09164">arXiv:2405.09164</a> <span> [<a href="https://arxiv.org/pdf/2405.09164">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Rapidly Achieving Chemical Accuracy with Quantum Computing Enforced Language Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Shang%2C+H">Honghui Shang</a>, <a href="/search/quant-ph?searchtype=author&query=Zeng%2C+X">Xiongzhi Zeng</a>, <a href="/search/quant-ph?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+Y">Yangju Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+S">Shaojun Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Qian%2C+H">Haoran Qian</a>, <a href="/search/quant-ph?searchtype=author&query=Zha%2C+C">Chen Zha</a>, <a href="/search/quant-ph?searchtype=author&query=Fan%2C+Z">Zhijie Fan</a>, <a href="/search/quant-ph?searchtype=author&query=Yan%2C+K">Kai Yan</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+X">Xiaobo Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Z">Zhenyu Li</a>, <a href="/search/quant-ph?searchtype=author&query=Luo%2C+Y">Yi Luo</a>, <a href="/search/quant-ph?searchtype=author&query=Pan%2C+J">Jian-Wei Pan</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jinlong Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09164v1-abstract-short" style="display: inline;"> Finding accurate ground state energy of a many-body system has been a major challenge in quantum chemistry. The integration of classic and quantum computers has shed new light on resolving this outstanding problem. Here we propose QiankunNet-VQE, a transformer based language models enforced with quantum computing to learn and generate quantum states. It has been implemented using up to 12 qubits a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09164v1-abstract-full').style.display = 'inline'; document.getElementById('2405.09164v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09164v1-abstract-full" style="display: none;"> Finding accurate ground state energy of a many-body system has been a major challenge in quantum chemistry. The integration of classic and quantum computers has shed new light on resolving this outstanding problem. Here we propose QiankunNet-VQE, a transformer based language models enforced with quantum computing to learn and generate quantum states. It has been implemented using up to 12 qubits and attaining an accuracy level competitive with state-of-the-art classical methods. By leveraging both quantum and classical resources, this scheme overcomes the limitations of variational quantum eigensolver(VQE) without the need for cumbersome error mitigation. Moreover, QiankunNet-VQE provides a different route to achieve a practical quantum advantage for solving many-electron Schr枚dinger equation without requiring extremely precise preparation and measurement of the ground-state wavefunction on quantum computer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09164v1-abstract-full').style.display = 'none'; document.getElementById('2405.09164v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.00405">arXiv:2405.00405</a> <span> [<a href="https://arxiv.org/pdf/2405.00405">pdf</a>, <a href="https://arxiv.org/format/2405.00405">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Pure State Inspired Lossless Post-selected Quantum Metrology of Mixed States </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jing Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.00405v1-abstract-short" style="display: inline;"> Given an ensemble of identical pure quantum states that depend on an unknown parameter, recently it was shown that the quantum Fisher information can be losslessly compressed into a subensemble with a much smaller number of samples. However, generalization to mixed states leads to a technical challenge that is formidable to overcome directly. In this work, we avoid such technicality by unveiling t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00405v1-abstract-full').style.display = 'inline'; document.getElementById('2405.00405v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.00405v1-abstract-full" style="display: none;"> Given an ensemble of identical pure quantum states that depend on an unknown parameter, recently it was shown that the quantum Fisher information can be losslessly compressed into a subensemble with a much smaller number of samples. However, generalization to mixed states leads to a technical challenge that is formidable to overcome directly. In this work, we avoid such technicality by unveiling the physics of a featured lossless post-selection measurement: while the post-selected quantum state is unchanged, the parametric derivative of the density operator is amplified by a large factor equal to the square root of the inverse of the post-selection success probability. This observation not only clarifies the intuition and essence of post-selected quantum metrology but also allows us to develop a mathematically compact theory for the lossless post-selection of mixed states. We find that if the parametric derivative of the density operator of a mixed state, or alternatively the symmetric logarithmic derivative, vanishes on the support of the density matrix, lossless post-selection can be achieved with an arbitrarily large amplification factor. We exemplify with the examples of superresolution imaging and unitary encoding of mixed initial states. Our results are useful for realistic post-selected quantum metrology in the presence of decoherence and of foundational interests to several problems in quantum information theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00405v1-abstract-full').style.display = 'none'; document.getElementById('2405.00405v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.14038">arXiv:2404.14038</a> <span> [<a href="https://arxiv.org/pdf/2404.14038">pdf</a>, <a href="https://arxiv.org/format/2404.14038">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Accurate Chemical Reaction Modeling on Noisy Intermediate-Scale Quantum Computers Using a Noise-Resilient Wavefunction Ansatz </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zeng%2C+X">Xiongzhi Zeng</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+H">Huili Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+S">Shizheng Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+P">Pei Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Linghu%2C+K">Kehuan Linghu</a>, <a href="/search/quant-ph?searchtype=author&query=Cui%2C+J">Jiangyu Cui</a>, <a href="/search/quant-ph?searchtype=author&query=Cai%2C+X">Xiaoxia Cai</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+J">Jie Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Z">Zhenyu Li</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jinlong Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.14038v1-abstract-short" style="display: inline;"> Quantum computing is of great potential for chemical system simulations. In this study, we propose an efficient protocol of quantum computer based simulation of chemical systems which enables accurate chemical reaction modeling on noisy intermediate-scale quantum (NISQ) devices. In this protocol, we combine an correlation energy-based active orbital selection, an effective Hamiltonian from the dri… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14038v1-abstract-full').style.display = 'inline'; document.getElementById('2404.14038v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.14038v1-abstract-full" style="display: none;"> Quantum computing is of great potential for chemical system simulations. In this study, we propose an efficient protocol of quantum computer based simulation of chemical systems which enables accurate chemical reaction modeling on noisy intermediate-scale quantum (NISQ) devices. In this protocol, we combine an correlation energy-based active orbital selection, an effective Hamiltonian from the driven similarity renormalization group (DSRG) method, and a noise-resilient wavefunction ansatz. Such a combination gives a quantum resource-efficient way to accurately simulate chemical systems. The power of this protocol is demonstrated by numerical results for systems with up to tens of atoms. Modeling of a Diels-Alder (DA) reaction is also performed on a cloud-based superconducting quantum computer. These results represent an important step forward in realizing quantum utility in the NISQ era. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14038v1-abstract-full').style.display = 'none'; document.getElementById('2404.14038v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.05921">arXiv:2404.05921</a> <span> [<a href="https://arxiv.org/pdf/2404.05921">pdf</a>, <a href="https://arxiv.org/format/2404.05921">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/qute.202400171">10.1002/qute.202400171 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Generative Adversarial Networks in a Silicon Photonic Chip with Maximum Expressibility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Ma%2C+H">Haoran Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Ye%2C+L">Liao Ye</a>, <a href="/search/quant-ph?searchtype=author&query=Ruan%2C+F">Fanjie Ruan</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+Z">Zichao Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+M">Maohui Li</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Y">Yuehai Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jianyi Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.05921v1-abstract-short" style="display: inline;"> Generative adversarial networks (GANs) have achieved remarkable success with realistic tasks such as creating realistic images, texts, and audio. Combining GANs and quantum computing, quantum GANs are thought to have an exponential advantage over their classical counterparts due to the stronger expressibility of quantum circuits. In this research, a two-qubit silicon quantum photonic chip is creat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05921v1-abstract-full').style.display = 'inline'; document.getElementById('2404.05921v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.05921v1-abstract-full" style="display: none;"> Generative adversarial networks (GANs) have achieved remarkable success with realistic tasks such as creating realistic images, texts, and audio. Combining GANs and quantum computing, quantum GANs are thought to have an exponential advantage over their classical counterparts due to the stronger expressibility of quantum circuits. In this research, a two-qubit silicon quantum photonic chip is created, capable of executing arbitrary controlled-unitary (CU) operations and generating any 2-qubit pure state, thus making it an excellent platform for quantum GANs. To capture complex data patterns, a hybrid generator is proposed to inject nonlinearity into quantum GANs. As a demonstration, three generative tasks, covering both pure quantum versions of GANs (PQ-GAN) and hybrid quantum-classical GANs (HQC-GANs), are successfully carried out on the chip, including high-fidelity single-qubit state learning, classical distributions loading, and compressed image production. The experiment results prove that silicon quantum photonic chips have great potential in generative learning applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05921v1-abstract-full').style.display = 'none'; document.getElementById('2404.05921v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Quantum Technologies (2024): 2400171 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.08496">arXiv:2403.08496</a> <span> [<a href="https://arxiv.org/pdf/2403.08496">pdf</a>, <a href="https://arxiv.org/format/2403.08496">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Universal and robust quantum coherent control based on a chirped-pulse driving protocol </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yin%2C+Y">Yue-Hao Yin</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jin-Xin Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Cen%2C+L">Li-Xiang Cen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.08496v2-abstract-short" style="display: inline;"> We propose a chirped-pulse driving protocol and reveal its exceptional property for quantum coherent control. The nonadiabatic passage generated by the driving protocol, which includes the population inversion and the nonadiabaticity-induced transition as its ingredients, is shown to be robust against pulse truncation. We further demonstrate that the protocol allows for universal manipulation on t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08496v2-abstract-full').style.display = 'inline'; document.getElementById('2403.08496v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.08496v2-abstract-full" style="display: none;"> We propose a chirped-pulse driving protocol and reveal its exceptional property for quantum coherent control. The nonadiabatic passage generated by the driving protocol, which includes the population inversion and the nonadiabaticity-induced transition as its ingredients, is shown to be robust against pulse truncation. We further demonstrate that the protocol allows for universal manipulation on the qubit system through designing pulse sequences with either properly adjusted sweeping frequency or pulsing intensity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08496v2-abstract-full').style.display = 'none'; document.getElementById('2403.08496v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 109, 042430 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02585">arXiv:2403.02585</a> <span> [<a href="https://arxiv.org/pdf/2403.02585">pdf</a>, <a href="https://arxiv.org/format/2403.02585">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> High-Rate 16-node quantum access network based on passive optical network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Pan%2C+Y">Yan Pan</a>, <a href="/search/quant-ph?searchtype=author&query=Bian%2C+Y">Yiming Bian</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Y">Yang Li</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+X">Xuesong Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+L">Li Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+H">Heng Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Luo%2C+Y">Yujie Luo</a>, <a href="/search/quant-ph?searchtype=author&query=Dou%2C+J">Jiayi Dou</a>, <a href="/search/quant-ph?searchtype=author&query=Pi%2C+Y">Yaodi Pi</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jie Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+W">Wei Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+S">Song Yu</a>, <a href="/search/quant-ph?searchtype=author&query=Pirandola%2C+S">Stefano Pirandola</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+Y">Yichen Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+B">Bingjie Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02585v1-abstract-short" style="display: inline;"> Quantum key distribution can provide information-theoretical secure communication, which is now heading towards building the quantum secure network for real-world applications. In most built quantum secure networks, point-to-multipoint (PTMP) topology is one of the most popular schemes, especially for quantum access networks. However, due to the lack of custom protocols with high secret key rate a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02585v1-abstract-full').style.display = 'inline'; document.getElementById('2403.02585v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02585v1-abstract-full" style="display: none;"> Quantum key distribution can provide information-theoretical secure communication, which is now heading towards building the quantum secure network for real-world applications. In most built quantum secure networks, point-to-multipoint (PTMP) topology is one of the most popular schemes, especially for quantum access networks. However, due to the lack of custom protocols with high secret key rate and compatible with classical optical networks for PTMP scheme, there is still no efficient way for a high-performance quantum access network with a multitude of users. Here, we report an experimental demonstration of a high-rate 16-nodes quantum access network based on passive optical network, where a high-efficient coherent-state PTMP protocol is novelly designed to allow independent secret key generation between one transmitter and multiple receivers concurrently. Such accomplishment is attributed to a well-designed real-time shot-noise calibration method, a series of advanced digital signal processing algorithms and a flexible post-processing strategy with high success probability. Finally, the experimental results show that the average secret key rate is around 2.086 Mbps between the transmitter and each user, which is two orders of magnitude higher than previous demonstrations. With the advantages of low cost, excellent compatibility, and wide bandwidth, our work paves the way for building practical PTMP quantum access networks, thus constituting an important step towards scalable quantum secure networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02585v1-abstract-full').style.display = 'none'; document.getElementById('2403.02585v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.11623">arXiv:2402.11623</a> <span> [<a href="https://arxiv.org/pdf/2402.11623">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Filter-free high-performance single photon emission from a quantum dot in a Fabry-Perot microcavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Rao%2C+Z">Zhixuan Rao</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jiawei Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Song%2C+C">Changkun Song</a>, <a href="/search/quant-ph?searchtype=author&query=Rao%2C+M">Mujie Rao</a>, <a href="/search/quant-ph?searchtype=author&query=Zheng%2C+Z">Ziyang Zheng</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+L">Luyu Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Peng%2C+X">Xuebin Peng</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+Y">Ying Yu</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+S">Siyuan Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.11623v2-abstract-short" style="display: inline;"> Combining resonant excitation with Purcell-enhanced single quantum dots (QDs) stands out as a prominent strategy for realizing high performance solid-state single photon sources. However, optimizing photon efficiency requires addressing challenges associated with effectively separating the excitation laser from QDs' emission. Traditionally, this involves polarization filtering, which limits the ac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11623v2-abstract-full').style.display = 'inline'; document.getElementById('2402.11623v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.11623v2-abstract-full" style="display: none;"> Combining resonant excitation with Purcell-enhanced single quantum dots (QDs) stands out as a prominent strategy for realizing high performance solid-state single photon sources. However, optimizing photon efficiency requires addressing challenges associated with effectively separating the excitation laser from QDs' emission. Traditionally, this involves polarization filtering, which limits the achievable polarization directions and the scalability of photonic states. In this study, we have successfully tackled this challenge by employing spatially-orthogonal resonant excitation of QDs, deterministically coupled to monolithic Fabry-Perot microcavities. Leveraging the membrane cavity structures, we have achieved filter-free single photon resonant fluorescence. The resulting source produces single photons with a simultaneous high extraction efficiency of 0.87, purity of 0.9045(4), and indistinguishability of 0.963(4). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11623v2-abstract-full').style.display = 'none'; document.getElementById('2402.11623v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.15622">arXiv:2401.15622</a> <span> [<a href="https://arxiv.org/pdf/2401.15622">pdf</a>, <a href="https://arxiv.org/format/2401.15622">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.043084">10.1103/PhysRevResearch.6.043084 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Measurement Encoding for Quantum Metrology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jing Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.15622v2-abstract-short" style="display: inline;"> Preserving the precision of the parameter of interest in the presence of environmental decoherence is an important yet challenging task in dissipative quantum sensing. In this work, we study quantum metrology when the decoherence effect is unraveled by a set of quantum measurements,dubbed quantum measurement encoding. In our case, the estimation parameter is encoded into a quantum state through a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15622v2-abstract-full').style.display = 'inline'; document.getElementById('2401.15622v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.15622v2-abstract-full" style="display: none;"> Preserving the precision of the parameter of interest in the presence of environmental decoherence is an important yet challenging task in dissipative quantum sensing. In this work, we study quantum metrology when the decoherence effect is unraveled by a set of quantum measurements,dubbed quantum measurement encoding. In our case, the estimation parameter is encoded into a quantum state through a quantum measurement, unlike the parameter encoding through a unitary channel in the decoherence-free case or trace-preserving quantum channels in the case of decoherence. We identify conditions for a precision-preserving measurement encoding. These conditions can be employed to transfer metrological information from one subsystem to another through quantum measurements. Furthermore, postselected non-Hermitian sensing can also be viewed as quantum sensing with measurement encoding. When the precision-preserving conditions are violated in non-Hermitian sensing, we derive a universal formula for the loss of precision. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15622v2-abstract-full').style.display = 'none'; document.getElementById('2401.15622v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised manuscript with a changed title. 6+9 pages, 3 figures. Comments welcome!</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 6, 043084 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.06984">arXiv:2401.06984</a> <span> [<a href="https://arxiv.org/pdf/2401.06984">pdf</a>, <a href="https://arxiv.org/format/2401.06984">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Perturbative variational quantum algorithms for material simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liu%2C+J">Jie Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Z">Zhenyu Li</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jinlong Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.06984v1-abstract-short" style="display: inline;"> Reducing circuit depth is essential for implementing quantum simulations of electronic structure on near-term quantum devices. In this work, we propose a variational quantum eigensolver (VQE) based perturbation theory algorithm to accurately simulate electron correlation of periodic materials with shallow ansatz circuits, which are generated from Adaptive Derivative-Assembled Pseudo-Trotter or Qub… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06984v1-abstract-full').style.display = 'inline'; document.getElementById('2401.06984v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.06984v1-abstract-full" style="display: none;"> Reducing circuit depth is essential for implementing quantum simulations of electronic structure on near-term quantum devices. In this work, we propose a variational quantum eigensolver (VQE) based perturbation theory algorithm to accurately simulate electron correlation of periodic materials with shallow ansatz circuits, which are generated from Adaptive Derivative-Assembled Pseudo-Trotter or Qubit-Excitation-based VQE calculations using a loose convergence criteria. Here, the major part of the electron correlation is described using the VQE ansatz circuit and the remaining correlation energy is described by either multireference or similarity transformation-based perturbation theory. Numerical results demonstrate that the new algorithms are able to accurately describe electron correlation of the LiH crystal with only one circuit parameter, in contrast with ~30 parameters required in the adaptive VQE to achieve the same accuracy. Meanwhile, for fixed-depth Ansatze, e.g. unitary coupled cluster, we demonstrate that the VQE-base perturbation theory provides an appealing scheme to improve their accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06984v1-abstract-full').style.display = 'none'; document.getElementById('2401.06984v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01447">arXiv:2401.01447</a> <span> [<a href="https://arxiv.org/pdf/2401.01447">pdf</a>, <a href="https://arxiv.org/format/2401.01447">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.517758">10.1364/OE.517758 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Circular photonic crystal grating design for charge-tunable quantum light sources in the telecom C-band </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Ma%2C+C">Chenxi Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jingzhong Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+P">Pengji Li</a>, <a href="/search/quant-ph?searchtype=author&query=Rugeramigabo%2C+E+P">Eddy P. Rugeramigabo</a>, <a href="/search/quant-ph?searchtype=author&query=Zopf%2C+M">Michael Zopf</a>, <a href="/search/quant-ph?searchtype=author&query=Ding%2C+F">Fei Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01447v2-abstract-short" style="display: inline;"> Efficient generation of entangled photon pairs at telecom wavelengths is a key ingredient for long-range quantum networks. While embedding semiconductor quantum dots into hybrid circular Bragg gratings has proven effective, it conflicts with $p$-$i$-$n$ diode heterostructures which offer superior coherence. We propose and analyze hybrid circular photonic crystal gratings, incorporating air holes t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01447v2-abstract-full').style.display = 'inline'; document.getElementById('2401.01447v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01447v2-abstract-full" style="display: none;"> Efficient generation of entangled photon pairs at telecom wavelengths is a key ingredient for long-range quantum networks. While embedding semiconductor quantum dots into hybrid circular Bragg gratings has proven effective, it conflicts with $p$-$i$-$n$ diode heterostructures which offer superior coherence. We propose and analyze hybrid circular photonic crystal gratings, incorporating air holes to facilitate charge carrier transport without compromising optical properties. Through numerical simulations, a broad cavity mode with a Purcell factor of 23 enhancing both exciton and biexciton transitions, and exceptional collection efficiency of 92.4% into an objective with numerical aperture of 0.7 are achieved. Furthermore, our design demonstrates direct coupling efficiency over 90% into a single-mode fiber over the entire telecom C-band. The hybrid circular photonic crystal grating thereby emerges as a promising solution for the efficient generation of highly coherent, polarization-entangled photon pairs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01447v2-abstract-full').style.display = 'none'; document.getElementById('2401.01447v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Opt. Express 32, 14789-14800 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01162">arXiv:2401.01162</a> <span> [<a href="https://arxiv.org/pdf/2401.01162">pdf</a>, <a href="https://arxiv.org/format/2401.01162">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Can Bell inequalities be tested via scattering cross-section at colliders ? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Li%2C+S">Song Li</a>, <a href="/search/quant-ph?searchtype=author&query=Shen%2C+W">Wei Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J+M">Jin Min Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01162v3-abstract-short" style="display: inline;"> In current studies for testing Bell inequalities at colliders, the reconstruction of spin correlations from scattering cross-sections relies on the bilinear form of the spin correlations, but not all local hidden variable models (LHVMs) have such a property. To demonstrate that a general LHVM cannot be rule out via scattering cross-section data, we propose a specific LHVM, which can exactly duplic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01162v3-abstract-full').style.display = 'inline'; document.getElementById('2401.01162v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01162v3-abstract-full" style="display: none;"> In current studies for testing Bell inequalities at colliders, the reconstruction of spin correlations from scattering cross-sections relies on the bilinear form of the spin correlations, but not all local hidden variable models (LHVMs) have such a property. To demonstrate that a general LHVM cannot be rule out via scattering cross-section data, we propose a specific LHVM, which can exactly duplicate the same scattering cross-section for particle production and decay as the standard quantum theory, making it indistinguishable at colliders in principle. Despite of this, we find that reconstructing spin correlations through scattering cross-sections can still exclude a broad class of LHVMs, e.g., those models employing classical spin correlations as a surrogate for quantum spin correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01162v3-abstract-full').style.display = 'none'; document.getElementById('2401.01162v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.14181">arXiv:2312.14181</a> <span> [<a href="https://arxiv.org/pdf/2312.14181">pdf</a>, <a href="https://arxiv.org/format/2312.14181">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.155407">10.1103/PhysRevB.109.155407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reversal of Orbital Hall Conductivity and Emergence of Tunable Topological Quantum States in Orbital Hall Insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Ji%2C+S">Shilei Ji</a>, <a href="/search/quant-ph?searchtype=author&query=Quan%2C+C">Chuye Quan</a>, <a href="/search/quant-ph?searchtype=author&query=Yao%2C+R">Ruijia Yao</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jianping Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+X">Xing'ao Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.14181v2-abstract-short" style="display: inline;"> Recent findings indicate that orbital angular momentum (OAM) has the capability to induce the intrinsic orbital Hall effect (OHE), which is characterized by orbital Chern number in the orbital Hall insulator. Unlike the spin-polarized channel in Quantum anomalous Hall insulator, the OAM is valley-locked, posing challenges in manipulating the corresponding edge state. Here we demonstrate the sign-r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14181v2-abstract-full').style.display = 'inline'; document.getElementById('2312.14181v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.14181v2-abstract-full" style="display: none;"> Recent findings indicate that orbital angular momentum (OAM) has the capability to induce the intrinsic orbital Hall effect (OHE), which is characterized by orbital Chern number in the orbital Hall insulator. Unlike the spin-polarized channel in Quantum anomalous Hall insulator, the OAM is valley-locked, posing challenges in manipulating the corresponding edge state. Here we demonstrate the sign-reversal orbital Chern number through strain engineering by combing the $k \cdot p$ model and first-principles calculation. Under the manipulation of strain, we observe the transfer of non-zero OAM from the valence band to the conduction band, aligning with the orbital contribution in the electronic structure. Our investigation reveals that electrons and holes with OAM exhibit opposing trajectories, resulting in a reversal of the orbital Hall conductivity. Furthermore, we explore the topological quantum state between the sign-reversible OHE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14181v2-abstract-full').style.display = 'none'; document.getElementById('2312.14181v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.10865">arXiv:2312.10865</a> <span> [<a href="https://arxiv.org/pdf/2312.10865">pdf</a>, <a href="https://arxiv.org/format/2312.10865">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> </div> <p class="title is-5 mathjax"> Minimizing Photonic Cluster State Depth in Measurement-Based Quantum Computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Li%2C+Y">Yingheng Li</a>, <a href="/search/quant-ph?searchtype=author&query=Pawar%2C+A">Aditya Pawar</a>, <a href="/search/quant-ph?searchtype=author&query=Mo%2C+Z">Zewei Mo</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+Y">Youtao Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jun Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+X">Xulong Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.10865v1-abstract-short" style="display: inline;"> Measurement-based quantum computing (MBQC) is a promising quantum computing paradigm that performs computation through ``one-way'' measurements on entangled quantum qubits. It is widely used in photonic quantum computing (PQC), where the computation is carried out on photonic cluster states (i.e., a 2-D mesh of entangled photons). In MBQC-based PQC, the cluster state depth (i.e., the length of one… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10865v1-abstract-full').style.display = 'inline'; document.getElementById('2312.10865v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.10865v1-abstract-full" style="display: none;"> Measurement-based quantum computing (MBQC) is a promising quantum computing paradigm that performs computation through ``one-way'' measurements on entangled quantum qubits. It is widely used in photonic quantum computing (PQC), where the computation is carried out on photonic cluster states (i.e., a 2-D mesh of entangled photons). In MBQC-based PQC, the cluster state depth (i.e., the length of one-way measurements) to execute a quantum circuit plays an important role in the overall execution time and error. Thus, it is important to reduce the cluster state depth. In this paper, we propose FMCC, a compilation framework that employs dynamic programming to efficiently minimize the cluster state depth. Experimental results on five representative quantum algorithms show that FMCC achieves 53.6%, 60.6%, and 60.0% average depth reductions in small, medium, and large qubit counts compared to the state-of-the-art MBQC compilation frameworks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10865v1-abstract-full').style.display = 'none'; document.getElementById('2312.10865v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.10298">arXiv:2312.10298</a> <span> [<a href="https://arxiv.org/pdf/2312.10298">pdf</a>, <a href="https://arxiv.org/format/2312.10298">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> Integrated Qubit Reuse and Circuit Cutting for Large Quantum Circuit Evaluation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Pawar%2C+A">Aditya Pawar</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Y">Yingheng Li</a>, <a href="/search/quant-ph?searchtype=author&query=Mo%2C+Z">Zewei Mo</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+Y">Yanan Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+Y">Youtao Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+X">Xulong Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jun Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.10298v1-abstract-short" style="display: inline;"> Quantum computing has recently emerged as a promising computing paradigm for many application domains. However, the size of quantum circuits that can run with high fidelity is constrained by the limited quantity and quality of physical qubits. Recently proposed schemes, such as wire cutting and qubit reuse, mitigate the problem but produce sub-optimal results as they address the problem individual… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10298v1-abstract-full').style.display = 'inline'; document.getElementById('2312.10298v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.10298v1-abstract-full" style="display: none;"> Quantum computing has recently emerged as a promising computing paradigm for many application domains. However, the size of quantum circuits that can run with high fidelity is constrained by the limited quantity and quality of physical qubits. Recently proposed schemes, such as wire cutting and qubit reuse, mitigate the problem but produce sub-optimal results as they address the problem individually. In addition, gate cutting, an alternative circuit-cutting strategy, has not been fully explored in the field. In this paper, we propose IQRC, an integrated approach that exploits qubit reuse and circuit cutting (including wire cutting and gate cutting) to run large circuits on small quantum computers. Circuit-cutting techniques introduce non-negligible post-processing overhead, which increases exponentially with the number of cuts. IQRC exploits qubit reuse to find better cutting solutions to minimize the cut numbers and thus the post-processing overhead. Our evaluation results show that on average we reduce the number of cuts by 34\% and additional reduction when considering gate cuts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10298v1-abstract-full').style.display = 'none'; document.getElementById('2312.10298v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.00256">arXiv:2312.00256</a> <span> [<a href="https://arxiv.org/pdf/2312.00256">pdf</a>, <a href="https://arxiv.org/format/2312.00256">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-024-07457-2">10.1038/s41586-024-07457-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Titanium:Sapphire-on-insulator for broadband tunable lasers and high-power amplifiers on chip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Joshua Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Van+Gasse%2C+K">Kasper Van Gasse</a>, <a href="/search/quant-ph?searchtype=author&query=Lukin%2C+D+M">Daniil M. Lukin</a>, <a href="/search/quant-ph?searchtype=author&query=Guidry%2C+M+A">Melissa A. Guidry</a>, <a href="/search/quant-ph?searchtype=author&query=Ahn%2C+G+H">Geun Ho Ahn</a>, <a href="/search/quant-ph?searchtype=author&query=White%2C+A+D">Alexander D. White</a>, <a href="/search/quant-ph?searchtype=author&query=Vu%C4%8Dkovi%C4%87%2C+J">Jelena Vu膷kovi膰</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.00256v1-abstract-short" style="display: inline;"> Titanium:Sapphire (Ti:Sa) lasers have been essential for advancing fundamental research and technological applications. Ti:Sa lasers are unmatched in bandwidth and tuning range, yet their use is severely restricted due to their large size, cost, and need for high optical pump powers. Here, we demonstrate a monocrystalline Ti:Sa-on-insulator (Ti:SaOI) photonics platform which enables dramatic minia… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00256v1-abstract-full').style.display = 'inline'; document.getElementById('2312.00256v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.00256v1-abstract-full" style="display: none;"> Titanium:Sapphire (Ti:Sa) lasers have been essential for advancing fundamental research and technological applications. Ti:Sa lasers are unmatched in bandwidth and tuning range, yet their use is severely restricted due to their large size, cost, and need for high optical pump powers. Here, we demonstrate a monocrystalline Ti:Sa-on-insulator (Ti:SaOI) photonics platform which enables dramatic miniaturization, cost-reduction, and scalability of Ti:Sa technology. First, through fabrication of low-loss whispering gallery mode resonators, we realize a Ti:Sa laser operating with an ultra-low lasing threshold of 290 $渭$W. Then, through orders-of-magnitude improvement in mode confinement in Ti:SaOI waveguides, we realize the first integrated solid-state (i.e., non-semiconductor) optical amplifier operating below 1 $渭$m, with an ultra-wide bandwidth of 700 - 950 nm and peak gain of 64 dB/cm. We demonstrate unprecedented 17 dB distortion-free amplification of picosecond pulses to up to 2.3 nJ pulse energy, corresponding to a peak power of 1.0 kW. Finally, we demonstrate the first tunable integrated Ti:Sa laser, featuring narrow linewidths and a 24.7 THz tuning range, which, for the first time, can be pumped with low-cost, miniature, off-the-shelf green laser diodes. This opens doors to new modalities of Ti:Sa lasers (now occupying a footprint less than 0.15 mm$^2$), such as massively-scalable Ti:Sa laser array systems for a variety of applications. As a proof-of-concept demonstration, we employ a Ti:SaOI laser array as the sole optical control for a cavity quantum electrodynamics experiment with artificial atoms in silicon carbide. This work is a key step towards the democratization of Ti:Sa technology through a three orders-of-magnitude reduction in cost and footprint, as well as the introduction of solid-state broadband amplification of sub-micron wavelength light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00256v1-abstract-full').style.display = 'none'; document.getElementById('2312.00256v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.17380">arXiv:2311.17380</a> <span> [<a href="https://arxiv.org/pdf/2311.17380">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> An Ultra-fast Quantum Random Number Generation Scheme Based on Laser Phase Noise </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jie Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+M">Mei Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+Y">Yichen Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+J">Jinlu Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Fan%2C+F">Fan Fan</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Y">Yang Li</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+W">Wei Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+H">Heng Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Pan%2C+Y">Yan Pan</a>, <a href="/search/quant-ph?searchtype=author&query=Su%2C+Q">Qi Su</a>, <a href="/search/quant-ph?searchtype=author&query=Bian%2C+Y">Yiming Bian</a>, <a href="/search/quant-ph?searchtype=author&query=Jiang%2C+H">Haoyuan Jiang</a>, <a href="/search/quant-ph?searchtype=author&query=Dou%2C+J">Jiayi Dou</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+S">Song Yu</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+B">Bingjie Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+B+L+H">Bin Luoand Hong Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.17380v1-abstract-short" style="display: inline;"> Based on the intrinsic random property of quantum mechanics, quantum random number generators allow for access of truly unpredictable random sequence and are now heading towards high performance and small miniaturization, among which a popular scheme is based on the laser phase noise. However, this scheme is generally limited in speed and implementation complexity, especially for chip integration.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17380v1-abstract-full').style.display = 'inline'; document.getElementById('2311.17380v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.17380v1-abstract-full" style="display: none;"> Based on the intrinsic random property of quantum mechanics, quantum random number generators allow for access of truly unpredictable random sequence and are now heading towards high performance and small miniaturization, among which a popular scheme is based on the laser phase noise. However, this scheme is generally limited in speed and implementation complexity, especially for chip integration. In this work, a general physical model based on wiener process for such schemes is introduced, which provides an approach to clearly explain the limitation on the generation rate and comprehensively optimize the system performance. We present an insight to exploit the potential bandwidth of the quantum entropy source that contains plentiful quantum randomness with a simple spectral filtering method and experimentally boost the bandwidth of the corresponding quantum entropy source to 20 GHz, based on which an ultra-fast generation rate of 218 Gbps is demonstrated, setting a new record for laser phase noise based schemes by one order of magnitude. Our proposal significantly enhances the ceiling speed of such schemes without requiring extra complex hardware, thus effectively benefits the corresponding chip integration with high performance and low implementation cost, which paves the way for its large-scale applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17380v1-abstract-full').style.display = 'none'; document.getElementById('2311.17380v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.08420">arXiv:2311.08420</a> <span> [<a href="https://arxiv.org/pdf/2311.08420">pdf</a>, <a href="https://arxiv.org/ps/2311.08420">ps</a>, <a href="https://arxiv.org/format/2311.08420">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> On the Preservation and Manifestation of Quantum Entanglement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J+M">Jianhao M. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.08420v2-abstract-short" style="display: inline;"> Bell experiments have confirmed that quantum entanglement is an inseparable correlation but there is no faster-than-light influence between two entangled particles when a local measurement is performed. However, how such an inseparable correlation is maintained and manifested when the two entangled particle are space-like separated is still not well understood. The recently proposed extended least… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08420v2-abstract-full').style.display = 'inline'; document.getElementById('2311.08420v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.08420v2-abstract-full" style="display: none;"> Bell experiments have confirmed that quantum entanglement is an inseparable correlation but there is no faster-than-light influence between two entangled particles when a local measurement is performed. However, how such an inseparable correlation is maintained and manifested when the two entangled particle are space-like separated is still not well understood. The recently proposed extended least action principle for quantum mechanics brings new insights to this question. By applying this principle, we show here that even though the inseparable correlation may be initially created by previous physical interaction between the two particles, the preservation and manifestation of such inseparable correlation are achieved through extremizing an information metric that measures the additional observable information of the bipartite system due to vacuum fluctuations. This is physically realized even though there is no further interaction when the two particles move apart, and the underlying vacuum fluctuations are local. In other words, the propagation of inseparable correlation in quantum theory is realized by an information requirement and through a local mechanism. An example of two entangled free particles described by Gaussian wave packets is provided to illustrate these results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08420v2-abstract-full').style.display = 'none'; document.getElementById('2311.08420v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 3 figures. This paper is related to arXiv:2302.14619 and arXiv:2310.02274</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.06679">arXiv:2311.06679</a> <span> [<a href="https://arxiv.org/pdf/2311.06679">pdf</a>, <a href="https://arxiv.org/format/2311.06679">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistics Theory">math.ST</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.250802">10.1103/PhysRevLett.132.250802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Theory of Compression Channels for Postselected Quantum Metrology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jing Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.06679v3-abstract-short" style="display: inline;"> Postselected quantum metrological scheme is especially advantageous when the final measurements are either very noisy or expensive in practical experiments. In this work, we put forward a general theory on the compression channels in postselected quantum metrology. We define the basic notions characterizing the compression quality and illuminate the underlying structure of lossless compression cha… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.06679v3-abstract-full').style.display = 'inline'; document.getElementById('2311.06679v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.06679v3-abstract-full" style="display: none;"> Postselected quantum metrological scheme is especially advantageous when the final measurements are either very noisy or expensive in practical experiments. In this work, we put forward a general theory on the compression channels in postselected quantum metrology. We define the basic notions characterizing the compression quality and illuminate the underlying structure of lossless compression channels. Previous experiments on Postselected optical phase estimation and weak-value amplification are shown to be particular cases of this general theory. Furthermore, for two categories of bipartite systems, we show that the compression loss can be made arbitrarily small even when the compression channel acts only on one subsystem. These findings can be employed to distribute quantum measurements so that the measurement noise and cost are dramatically reduced. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.06679v3-abstract-full').style.display = 'none'; document.getElementById('2311.06679v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Close to the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 250802(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.02592">arXiv:2311.02592</a> <span> [<a href="https://arxiv.org/pdf/2311.02592">pdf</a>, <a href="https://arxiv.org/ps/2311.02592">ps</a>, <a href="https://arxiv.org/format/2311.02592">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Realizing the controllable excitation transfer based on the atom coupling the finite-size Su-Schrieffer-Heeger model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+D">Da-Wei Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+C">Chengsong Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Junya Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Yan%2C+Y">Ye-Ting Yan</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+L">Ling Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.02592v1-abstract-short" style="display: inline;"> In this paper, we study the interaction between atom and the finite-size Su-Schrieffer-Heeger (SSH) model. We find that when the finite SSH model in the trivial phase, it can be viewed as the atom coupling with the waveguide with the finite bandwidths and non-linear dispersion relation. However, for the SSH model in the topological phase, when we consider the frequency of the atom is resonant with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02592v1-abstract-full').style.display = 'inline'; document.getElementById('2311.02592v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.02592v1-abstract-full" style="display: none;"> In this paper, we study the interaction between atom and the finite-size Su-Schrieffer-Heeger (SSH) model. We find that when the finite SSH model in the trivial phase, it can be viewed as the atom coupling with the waveguide with the finite bandwidths and non-linear dispersion relation. However, for the SSH model in the topological phase, when we consider the frequency of the atom is resonant with the edge mode of the SSH model, we find that the atom state couples to the two edge states. In this case, we find that there exists a special channel that can be utilized to transfer the atomic excitation to the ends of the SSH model using adiabatic processes. When the atom couples to the different sub-lattice, the excitation of the atom can be transferred to the leftmost or rightmost end of the chain, which provides the potential application toward quantum information processing. Furthermore, The excitation transfer of excited states of atoms to the ends of the chain can also be realized without the adiabatic process. Our work provides a pathway for realizing controllable quantum information transfer based on the atom couples topological matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02592v1-abstract-full').style.display = 'none'; document.getElementById('2311.02592v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.07528">arXiv:2310.07528</a> <span> [<a href="https://arxiv.org/pdf/2310.07528">pdf</a>, <a href="https://arxiv.org/format/2310.07528">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Non-asymptotic Approximation Error Bounds of Parameterized Quantum Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yu%2C+Z">Zhan Yu</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Q">Qiuhao Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Jiao%2C+Y">Yuling Jiao</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Y">Yinan Li</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+X">Xiliang Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+X">Xin Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J+Z">Jerry Zhijian Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.07528v2-abstract-short" style="display: inline;"> Parameterized quantum circuits (PQCs) have emerged as a promising approach for quantum neural networks. However, understanding their expressive power in accomplishing machine learning tasks remains a crucial question. This paper investigates the expressivity of PQCs for approximating general multivariate function classes. Unlike previous Universal Approximation Theorems for PQCs, which are either… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07528v2-abstract-full').style.display = 'inline'; document.getElementById('2310.07528v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.07528v2-abstract-full" style="display: none;"> Parameterized quantum circuits (PQCs) have emerged as a promising approach for quantum neural networks. However, understanding their expressive power in accomplishing machine learning tasks remains a crucial question. This paper investigates the expressivity of PQCs for approximating general multivariate function classes. Unlike previous Universal Approximation Theorems for PQCs, which are either nonconstructive or rely on parameterized classical data processing, we explicitly construct data re-uploading PQCs for approximating multivariate polynomials and smooth functions. We establish the first non-asymptotic approximation error bounds for these functions in terms of the number of qubits, quantum circuit depth, and number of trainable parameters. Notably, we demonstrate that for approximating functions that satisfy specific smoothness criteria, the quantum circuit size and number of trainable parameters of our proposed PQCs can be smaller than those of deep ReLU neural networks. We further validate the approximation capability of PQCs through numerical experiments. Our results provide a theoretical foundation for designing practical PQCs and quantum neural networks for machine learning tasks that can be implemented on near-term quantum devices, paving the way for the advancement of quantum machine learning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07528v2-abstract-full').style.display = 'none'; document.getElementById('2310.07528v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages including appendix. To appear at NeurIPS 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.02274">arXiv:2310.02274</a> <span> [<a href="https://arxiv.org/pdf/2310.02274">pdf</a>, <a href="https://arxiv.org/ps/2310.02274">ps</a>, <a href="https://arxiv.org/format/2310.02274">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10773-023-05540-4">10.1007/s10773-023-05540-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Scalar Field Theory Based On Principle of Least Observability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J+M">Jianhao M. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.02274v2-abstract-short" style="display: inline;"> Recently it is shown that the non-relativistic quantum formulations can be derived from a least observability principle [36]. In this paper, we apply the principle to massive scalar fields, and derive the Schr枚dinger equation of the wave functional for the scalar fields. The principle extends the least action principle in classical field theory by factoring in two assumptions. First, the Planck co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02274v2-abstract-full').style.display = 'inline'; document.getElementById('2310.02274v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.02274v2-abstract-full" style="display: none;"> Recently it is shown that the non-relativistic quantum formulations can be derived from a least observability principle [36]. In this paper, we apply the principle to massive scalar fields, and derive the Schr枚dinger equation of the wave functional for the scalar fields. The principle extends the least action principle in classical field theory by factoring in two assumptions. First, the Planck constant defines the minimal amount of action a field needs to exhibit in order to be observable. Second, there are constant random field fluctuations. A novel method is introduced to define the information metrics to measure additional observable information due to the field fluctuations, \added{which is then converted to the additional action through the first assumption.} Applying the variation principle to minimize the total actions allows us to elegantly derive the transition probability of field fluctuations, the uncertainty relation, and the Schr枚dinger equation of the wave functional. Furthermore, by defining the information metrics for field fluctuations using general definitions of relative entropy, we obtain a generalized Schr枚dinger equation of the wave functional that depends on the order of relative entropy. Our results demonstrate that the extended least action principle can be applied to derive both non-relativistic quantum mechanics and relativistic quantum scalar field theory. We expect it can be further used to obtain quantum theory for non-scalar fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02274v2-abstract-full').style.display = 'none'; document.getElementById('2310.02274v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages. Add journal reference. This is a companion paper to arXiv:2302.14619. It extends the applicability of the least observability principle introduced in arXiv:2302.14619 to quantum scalar field theory</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Int. J. Theor. Phys. 63,15 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.00285">arXiv:2310.00285</a> <span> [<a href="https://arxiv.org/pdf/2310.00285">pdf</a>, <a href="https://arxiv.org/format/2310.00285">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Optimal Local Measurements in Many-body Quantum Metrology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liu%2C+J">Jia-Xuan Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jing Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Shi%2C+H">Hai-Long Shi</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+S">Sixia Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.00285v1-abstract-short" style="display: inline;"> Quantum measurements are key to quantum metrology. Constrained by experimental capabilities, collective measurements on a large number of copies of metrological probes can pose significant challenges. Therefore, the locality in quantum measurements must be considered. In this work, we propose a method dubbed as the "iterative matrix partition" approach to elucidate the underlying structures of opt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.00285v1-abstract-full').style.display = 'inline'; document.getElementById('2310.00285v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.00285v1-abstract-full" style="display: none;"> Quantum measurements are key to quantum metrology. Constrained by experimental capabilities, collective measurements on a large number of copies of metrological probes can pose significant challenges. Therefore, the locality in quantum measurements must be considered. In this work, we propose a method dubbed as the "iterative matrix partition" approach to elucidate the underlying structures of optimal local measurements, with and without classical communications, that saturate the quantum Cram茅r-Rao Bound (qCRB). Furthermore, we find that while exact saturation is possible for all two-qubit pure states, it is generically restrictive for multi-qubit pure states. However, we demonstrate that the qCRB can be universally saturated in an approximate manner through adaptive coherent controls, as long as the initial state is separable and the Hamiltonian allows for interaction. Our results bridge the gap between theoretical proposals and experiments in many-body metrology and can find immediate applications in noisy intermediate-scale quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.00285v1-abstract-full').style.display = 'none'; document.getElementById('2310.00285v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+13 pages, 3 figures. Comments are welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.13661">arXiv:2309.13661</a> <span> [<a href="https://arxiv.org/pdf/2309.13661">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Tunable quantum dots in monolithic Fabry-Perot microcavities for high-performance single-photon sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jiawei Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yan Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Rao%2C+Z">Zixuan Rao</a>, <a href="/search/quant-ph?searchtype=author&query=Zheng%2C+Z">Ziyang Zheng</a>, <a href="/search/quant-ph?searchtype=author&query=Song%2C+C">Changkun Song</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yujie Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Xiong%2C+K">Kaili Xiong</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+P">Pingxing Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+C">Chaofan Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+W">Wei Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+Y">Ying Yu</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+S">Siyuan Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.13661v1-abstract-short" style="display: inline;"> Cavity-enhanced single quantum dots (QDs) are the main approach towards ultra-high-performance solid-state quantum light sources for scalable photonic quantum technologies. Nevertheless, harnessing the Purcell effect requires precise spectral and spatial alignment of the QDs' emission with the cavity mode, which is challenging for most cavities. Here we have successfully integrated miniaturized Fa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.13661v1-abstract-full').style.display = 'inline'; document.getElementById('2309.13661v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.13661v1-abstract-full" style="display: none;"> Cavity-enhanced single quantum dots (QDs) are the main approach towards ultra-high-performance solid-state quantum light sources for scalable photonic quantum technologies. Nevertheless, harnessing the Purcell effect requires precise spectral and spatial alignment of the QDs' emission with the cavity mode, which is challenging for most cavities. Here we have successfully integrated miniaturized Fabry-Perot microcavities with a piezoelectric actuator, and demonstrated a bright single photon source derived from a deterministically coupled QD within this microcavity. Leveraging the cavity-membrane structures, we have achieved large spectral-tunability via strain tuning. On resonance, we have obtained a high Purcell factor of approximately 9. The source delivers single photons with simultaneous high extraction efficiency of 0.58, high purity of 0.956(2) and high indistinguishability of 0.922(4). Together with a small footprint, our scheme facilitates the scalable integration of indistinguishable quantum light sources on-chip, and therefore removes a major barrier to the solid-state quantum information platforms based on QDs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.13661v1-abstract-full').style.display = 'none'; document.getElementById('2309.13661v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.12605">arXiv:2309.12605</a> <span> [<a href="https://arxiv.org/pdf/2309.12605">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.32604/cmc.2019.03551">10.32604/cmc.2019.03551 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Privacy-Preserving Quantum Two-Party Geometric Intersection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liu%2C+W">Wen-Jie Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Y">Yong Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J+C+N">James C. N. Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+W">Wen-Bin Yu</a>, <a href="/search/quant-ph?searchtype=author&query=Chi%2C+L">Lian-Hua Chi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.12605v1-abstract-short" style="display: inline;"> Privacy-preserving computational geometry is the research area on the intersection of the domains of secure multi-party computation (SMC) and computational geometry. As an important field, the privacy-preserving geometric intersection (PGI) problem is when each of the multiple parties has a private geometric graph and seeks to determine whether their graphs intersect or not without revealing their… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.12605v1-abstract-full').style.display = 'inline'; document.getElementById('2309.12605v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.12605v1-abstract-full" style="display: none;"> Privacy-preserving computational geometry is the research area on the intersection of the domains of secure multi-party computation (SMC) and computational geometry. As an important field, the privacy-preserving geometric intersection (PGI) problem is when each of the multiple parties has a private geometric graph and seeks to determine whether their graphs intersect or not without revealing their private information. In this study, through representing Alice's (Bob's) private geometric graph G_A (G_B) as the set of numbered grids S_A (S_B), an efficient privacy-preserving quantum two-party geometric intersection (PQGI) protocol is proposed. In the protocol, the oracle operation O_A (O_B) is firstly utilized to encode the private elements of S_A=(a_0, a_1, ..., a_(M-1)) (S_B=(b_0, b_1, ..., b_(N-1))) into the quantum states, and then the oracle operation O_f is applied to obtain a new quantum state which includes the XOR results between each element of S_A and S_B. Finally, the quantum counting is introduced to get the amount (t) of the states |a_i+b_j> equaling to |0>, and the intersection result can be obtained by judging t>0 or not. Compared with classical PGI protocols, our proposed protocol not only has higher security, but also holds lower communication complexity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.12605v1-abstract-full').style.display = 'none'; document.getElementById('2309.12605v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> CMC: Computers, Materials & Continua, 2019. 60(3): p. 1237-1250 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.03663">arXiv:2309.03663</a> <span> [<a href="https://arxiv.org/pdf/2309.03663">pdf</a>, <a href="https://arxiv.org/ps/2309.03663">ps</a>, <a href="https://arxiv.org/format/2309.03663">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Interaction between giant atoms in a one-dimensional topological waveguide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+D">Da-Wei Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+C">Chengsong Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Junya Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Yan%2C+Y">Ye-Ting Yan</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+Z+L">Zhihai-Wang Ling Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.03663v2-abstract-short" style="display: inline;"> In this paper, we consider giant atoms coupled to a one-dimensional topological waveguide reservoir. We studied the following two cases. In the bandgap regime, where the giant-atom frequency lies outside the band, we study the generation and distribution of giant atom-photon bound states and the difference between the topological waveguide in topological and trivial phases. When the strengths of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.03663v2-abstract-full').style.display = 'inline'; document.getElementById('2309.03663v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.03663v2-abstract-full" style="display: none;"> In this paper, we consider giant atoms coupled to a one-dimensional topological waveguide reservoir. We studied the following two cases. In the bandgap regime, where the giant-atom frequency lies outside the band, we study the generation and distribution of giant atom-photon bound states and the difference between the topological waveguide in topological and trivial phases. When the strengths of the giant atoms coupled to the two sub-lattice points are equal, the photons distribution is symmetrical and the chiral photon distribution is exhibited when the coupling is different. The coherent interactions between giant atoms are induced by virtual photons, or can be understood as an overlap of photon bound-state wave functions, and decay exponentially with increasing distance between the giant atoms. We also find that the coherent interactions induced by the topological phase are larger than those induced by the trivial phase for the same bandgap width. In the band regime, the giant-atom frequency lies in the band, under the Born-Markov approximation, we obtained effective coherence and correlated dissipative interactions between the giant atoms mediated by topological waveguide reservoirs, which depend on the giant-atom coupling nodes. We analyze the effect of the form of the giant-atom coupling point on the decay, and on the associated dissipation. The results show that we can design the coupling form as well as the frequency of the giant atoms to achieve zero decay and correlation dissipation and non-zero coherent interactions. Finally we used this scheme to realize the excitation transfer of giant atoms. Our work will promote the study of topological matter coupled to giant atoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.03663v2-abstract-full').style.display = 'none'; document.getElementById('2309.03663v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.15922">arXiv:2308.15922</a> <span> [<a href="https://arxiv.org/pdf/2308.15922">pdf</a>, <a href="https://arxiv.org/ps/2308.15922">ps</a>, <a href="https://arxiv.org/format/2308.15922">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41377-024-01488-0">10.1038/s41377-024-01488-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-rate intercity quantum key distribution with a semiconductor single-photon source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jingzhong Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Jiang%2C+Z">Zenghui Jiang</a>, <a href="/search/quant-ph?searchtype=author&query=Benthin%2C+F">Frederik Benthin</a>, <a href="/search/quant-ph?searchtype=author&query=Hanel%2C+J">Joscha Hanel</a>, <a href="/search/quant-ph?searchtype=author&query=Fandrich%2C+T">Tom Fandrich</a>, <a href="/search/quant-ph?searchtype=author&query=Joos%2C+R">Raphael Joos</a>, <a href="/search/quant-ph?searchtype=author&query=Bauer%2C+S">Stephanie Bauer</a>, <a href="/search/quant-ph?searchtype=author&query=Kolatschek%2C+S">Sascha Kolatschek</a>, <a href="/search/quant-ph?searchtype=author&query=Hreibi%2C+A">Ali Hreibi</a>, <a href="/search/quant-ph?searchtype=author&query=Rugeramigabo%2C+E+P">Eddy Patrick Rugeramigabo</a>, <a href="/search/quant-ph?searchtype=author&query=Jetter%2C+M">Michael Jetter</a>, <a href="/search/quant-ph?searchtype=author&query=Portalupi%2C+S+L">Simone Luca Portalupi</a>, <a href="/search/quant-ph?searchtype=author&query=Zopf%2C+M">Michael Zopf</a>, <a href="/search/quant-ph?searchtype=author&query=Michler%2C+P">Peter Michler</a>, <a href="/search/quant-ph?searchtype=author&query=K%C3%BCck%2C+S">Stefan K眉ck</a>, <a href="/search/quant-ph?searchtype=author&query=Ding%2C+F">Fei Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.15922v2-abstract-short" style="display: inline;"> Quantum key distribution (QKD) enables the transmission of information that is secure against general attacks by eavesdroppers. The use of on-demand quantum light sources in QKD protocols is expected to help improve security and maximum tolerable loss. Semiconductor quantum dots (QDs) are a promising building block for quantum communication applications because of the deterministic emission of sin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15922v2-abstract-full').style.display = 'inline'; document.getElementById('2308.15922v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.15922v2-abstract-full" style="display: none;"> Quantum key distribution (QKD) enables the transmission of information that is secure against general attacks by eavesdroppers. The use of on-demand quantum light sources in QKD protocols is expected to help improve security and maximum tolerable loss. Semiconductor quantum dots (QDs) are a promising building block for quantum communication applications because of the deterministic emission of single photons with high brightness and low multiphoton contribution. Here we report on the first intercity QKD experiment using a bright deterministic single photon source. A BB84 protocol based on polarisation encoding is realised using the high-rate single photons in the telecommunication C-band emitted from a semiconductor QD embedded in a circular Bragg grating structure. Utilising the 79 km long link with 25.49 dB loss (equivalent to 130 km for the direct-connected optical fibre) between the German cities of Hannover and Braunschweig, a record-high secret key bits per pulse of 4.8 * 10^{-5} with an average quantum bit error ratio of ~ 0.65 % are demonstrated. An asymptotic maximum tolerable loss of 28.11 dB is found, corresponding to a length of 144 km of standard telecommunication fibre. Deterministic semiconductor sources therefore challenge state-of-the-art QKD protocols and have the potential to excel in measurement device independent protocols and quantum repeater applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15922v2-abstract-full').style.display = 'none'; document.getElementById('2308.15922v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Light Sci Appl 13, 150 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.15320">arXiv:2308.15320</a> <span> [<a href="https://arxiv.org/pdf/2308.15320">pdf</a>, <a href="https://arxiv.org/format/2308.15320">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-46507-1">10.1038/s41467-024-46507-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universal control of a bosonic mode via drive-activated native cubic interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Eriksson%2C+A+M">Axel M. Eriksson</a>, <a href="/search/quant-ph?searchtype=author&query=S%C3%A9pulcre%2C+T">Th茅o S茅pulcre</a>, <a href="/search/quant-ph?searchtype=author&query=Kervinen%2C+M">Mikael Kervinen</a>, <a href="/search/quant-ph?searchtype=author&query=Hillmann%2C+T">Timo Hillmann</a>, <a href="/search/quant-ph?searchtype=author&query=Kudra%2C+M">Marina Kudra</a>, <a href="/search/quant-ph?searchtype=author&query=Dupouy%2C+S">Simon Dupouy</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+Y">Yong Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Khanahmadi%2C+M">Maryam Khanahmadi</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jiaying Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Moreno%2C+C+C">Claudia Castillo Moreno</a>, <a href="/search/quant-ph?searchtype=author&query=Delsing%2C+P">Per Delsing</a>, <a href="/search/quant-ph?searchtype=author&query=Gasparinetti%2C+S">Simone Gasparinetti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.15320v2-abstract-short" style="display: inline;"> Linear bosonic modes offer a hardware-efficient alternative for quantum information processing but require access to some nonlinearity for universal control. The lack of nonlinearity in photonics has led to encoded measurement-based quantum computing, which rely on linear operations but requires access to resourceful ('nonlinear') quantum states, such as cubic phase states. In contrast, supercondu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15320v2-abstract-full').style.display = 'inline'; document.getElementById('2308.15320v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.15320v2-abstract-full" style="display: none;"> Linear bosonic modes offer a hardware-efficient alternative for quantum information processing but require access to some nonlinearity for universal control. The lack of nonlinearity in photonics has led to encoded measurement-based quantum computing, which rely on linear operations but requires access to resourceful ('nonlinear') quantum states, such as cubic phase states. In contrast, superconducting microwave circuits offer engineerable nonlinearities but suffer from static Kerr nonlinearity. Here, we demonstrate universal control of a bosonic mode composed of a superconducting nonlinear asymmetric inductive element (SNAIL) resonator, enabled by native nonlinearities in the SNAIL element. We suppress static nonlinearities by operating the SNAIL in the vicinity of its Kerr-free point and dynamically activate nonlinearities up to third order by fast flux pulses. We experimentally realize a universal set of generalized squeezing operations, as well as the cubic phase gate, and exploit them to deterministically prepare a cubic phase state in 60 ns. Our results initiate the experimental field of universal continuous-variables quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15320v2-abstract-full').style.display = 'none'; document.getElementById('2308.15320v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures and supplementary materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.03696">arXiv:2308.03696</a> <span> [<a href="https://arxiv.org/pdf/2308.03696">pdf</a>, <a href="https://arxiv.org/format/2308.03696">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.100803">10.1103/PhysRevLett.132.100803 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universal shot-noise limit for quantum metrology with local Hamiltonians </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Shi%2C+H">Hai-Long Shi</a>, <a href="/search/quant-ph?searchtype=author&query=Guan%2C+X">Xi-Wen Guan</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jing Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.03696v2-abstract-short" style="display: inline;"> Quantum many-body interactions can induce quantum entanglement among particles, rendering them valuable resources for quantum-enhanced sensing. In this work, we derive a universal and fundamental bound for the growth of the quantum Fisher information. We apply our bound to the metrological protocol requiring only separable initial states, which can be readily prepared in experiments. By establishi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03696v2-abstract-full').style.display = 'inline'; document.getElementById('2308.03696v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.03696v2-abstract-full" style="display: none;"> Quantum many-body interactions can induce quantum entanglement among particles, rendering them valuable resources for quantum-enhanced sensing. In this work, we derive a universal and fundamental bound for the growth of the quantum Fisher information. We apply our bound to the metrological protocol requiring only separable initial states, which can be readily prepared in experiments. By establishing a link between our bound and the Lieb-Robinson bound, which characterizes the operator growth in locally interacting quantum many-body systems, we prove that the precision cannot surpass the shot noise limit at all times in locally interacting quantum systems. This conclusion also holds for an initial state that is the non-degenerate ground state of a local and gapped Hamiltonian. These findings strongly hint that when one can only prepare separable initial states, nonlocal and long-range interactions are essential resources for surpassing the shot noise limit. This observation is confirmed through numerical analysis on the long-range Ising model. Our results bridge the field of many-body quantum sensing and operator growth in many-body quantum systems and open the possibility to investigate the interplay between quantum sensing and control, many-body physics and information scrambling <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03696v2-abstract-full').style.display = 'none'; document.getElementById('2308.03696v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Close to the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 100803 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.09343">arXiv:2307.09343</a> <span> [<a href="https://arxiv.org/pdf/2307.09343">pdf</a>, <a href="https://arxiv.org/format/2307.09343">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Solving Schr枚dinger Equation with a Language Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Shang%2C+H">Honghui Shang</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+C">Chu Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+Y">Yangjun Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Z">Zhenyu Li</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+J">Jinlong Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.09343v4-abstract-short" style="display: inline;"> Accurately solving the Schr枚dinger equation for intricate systems remains a prominent challenge in physical sciences. A paradigm-shifting approach to address this challenge involves the application of artificial intelligence techniques. In this study, we introduce a machine-learning model named QiankunNet, based on the transformer architecture employed in language models. By incorporating the atte… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09343v4-abstract-full').style.display = 'inline'; document.getElementById('2307.09343v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.09343v4-abstract-full" style="display: none;"> Accurately solving the Schr枚dinger equation for intricate systems remains a prominent challenge in physical sciences. A paradigm-shifting approach to address this challenge involves the application of artificial intelligence techniques. In this study, we introduce a machine-learning model named QiankunNet, based on the transformer architecture employed in language models. By incorporating the attention mechanism, QiankunNet adeptly captures intricate quantum correlations, which enhances its expressive power. The autoregressive attribute of QiankunNet allows for the adoption of an exceedingly efficient sampling technique to estimate the total energy, facilitating the model training process. Additionally, performance of QiankunNet can be further improved via a pre-training process. This work not only demonstrates the power of artificial intelligence in quantum mechanics but also signifies a pivotal advancement in extending the boundary of systems which can be studied with a full-configuration-interaction accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09343v4-abstract-full').style.display = 'none'; document.getElementById('2307.09343v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Yang%2C+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Yang%2C+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Yang%2C+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Yang%2C+J&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Yang%2C+J&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Yang%2C+J&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>