CINXE.COM
Search results for: shoreline
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: shoreline</title> <meta name="description" content="Search results for: shoreline"> <meta name="keywords" content="shoreline"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="shoreline" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="shoreline"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 51</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: shoreline</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Analyze Long-Term Shoreline Change at Yi-Lan Coast, Taiwan Using Multiple Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geng-Gui%20Wang">Geng-Gui Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Hao%20Chang"> Chia-Hao Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jee-Cheng%20Wu"> Jee-Cheng Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A shoreline is a line where a body of water and the shore meet. It provides economic and social security to coastal habitations. However, shorelines face multiple threats due to both natural processes and man-made effects because of disasters, rapid urbanization, industrialization, and sand deposition and erosion, etc. In this study, we analyzed multi-temporal satellite images of the Yilan coast, Taiwan from 1978 to 2016, using the United States Geological Survey (USGS) Digital Shoreline Analysis System (DSAS), weather information (as rainfall records and typhoon routes), and man-made construction project data to explore the causes of shoreline changes. The results showed that the shoreline at Yilan coast is greatly influenced by typhoons and anthropogenic interventions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shoreline%20change" title="shoreline change">shoreline change</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-temporal%20satellite" title=" multi-temporal satellite"> multi-temporal satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20shoreline%20analysis%20system" title=" digital shoreline analysis system"> digital shoreline analysis system</a>, <a href="https://publications.waset.org/abstracts/search?q=DSAS" title=" DSAS"> DSAS</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Lan%20coast" title=" Yi-Lan coast"> Yi-Lan coast</a> </p> <a href="https://publications.waset.org/abstracts/94949/analyze-long-term-shoreline-change-at-yi-lan-coast-taiwan-using-multiple-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Comparison of Prognostic Models in Different Scenarios of Shoreline Position on Ponta Negra Beach in Northeastern Brazil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D%C3%A9bora%20V.%20Busman">Débora V. Busman</a>, <a href="https://publications.waset.org/abstracts/search?q=Venerando%20E.%20Amaro"> Venerando E. Amaro</a>, <a href="https://publications.waset.org/abstracts/search?q=Mattheus%20da%20C.%20Prud%C3%AAncio"> Mattheus da C. Prudêncio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prognostic studies of the shoreline are of utmost importance for Ponta Negra Beach, located in Natal, Northeastern Brazil, where the infrastructure recently built along the shoreline is severely affected by flooding and erosion. This study compares shoreline predictions using three linear regression methods (LMS, LRR and WLR) and tries to discern the best method for different shoreline position scenarios. The methods have shown erosion on the beach in each of the scenarios tested, even in less intense dynamic conditions. The WLA_A with confidence interval of 95% was the well-adjusted model and calculated a retreat of -1.25 m/yr to -2.0 m/yr in hot spot areas. The change of the shoreline on Ponta Negra Beach can be measured as a negative exponential curve. Analysis of these methods has shown a correlation with the morphodynamic stage of the beach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coastal%20erosion" title="coastal erosion">coastal erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=prognostic%20model" title=" prognostic model"> prognostic model</a>, <a href="https://publications.waset.org/abstracts/search?q=DSAS" title=" DSAS"> DSAS</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20safety" title=" environmental safety"> environmental safety</a> </p> <a href="https://publications.waset.org/abstracts/6334/comparison-of-prognostic-models-in-different-scenarios-of-shoreline-position-on-ponta-negra-beach-in-northeastern-brazil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Towards Effective Public Consultation and Participation in Nigeria: Lessons from Shoreline Management Plans (SMPs) Activities in England</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taye%20O.%20Famuditi">Taye O. Famuditi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Potts"> Jonathan Potts</a>, <a href="https://publications.waset.org/abstracts/search?q=Malcolm%20Bray"> Malcolm Bray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the shoreline management planning policy in England and its suitability for ameliorating the diverse environmental problems associated with Nigeria’s coastal zones. It examines the success of SMPs in England since the mid-1990s and progress achieved, with the aim of understudying the current management approach that can be transferred to Nigeria to strengthen its adoption, and as a necessary corollary, implementation of the SMPs. This paper also examines key elements of the shoreline management frameworks in England and provides answers to the question: Would shoreline management planning approach in England be appropriate and feasible in Nigeria? It further concludes that many of the action plans and principles of participation should be adoptable provided that a participatory approach that involves all stakeholders including community members and relevant sectorial ministries as well as appropriate legal framework is encouraged. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shoreline%20management%20plans" title="shoreline management plans">shoreline management plans</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20zone%20management" title=" coastal zone management"> coastal zone management</a>, <a href="https://publications.waset.org/abstracts/search?q=stakeholder%20engagement" title=" stakeholder engagement"> stakeholder engagement</a>, <a href="https://publications.waset.org/abstracts/search?q=participatory%20approach" title=" participatory approach"> participatory approach</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/9729/towards-effective-public-consultation-and-participation-in-nigeria-lessons-from-shoreline-management-plans-smps-activities-in-england" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Shoreline Variation with Construction of a Pair of Training Walls, Ponnani Inlet, Kerala, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jhoga%20Parth">Jhoga Parth</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Nasar"> T. Nasar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20V.%20Anand"> K. V. Anand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An idealized definition of shoreline is that it is the zone of coincidence of three spheres such as atmosphere, lithosphere, and hydrosphere. Despite its apparent simplicity, this definition in practice a challenge to apply. In reality, the shoreline location deviates continually through time, because of various dynamic factors such as wave characteristics, currents, coastal orientation and the bathymetry, which makes the shoreline volatile. This necessitates us to monitor the shoreline in a temporal basis. If shoreline’s nature is understood at particular coastal stretch, it need not be the same trend at the other location, though belonging to the same sea front. Shoreline change is hence a local phenomenon and has to be studied with great intensity considering as many factors involved as possible. Erosion and accretion of sediment are such natures of a shoreline, which needs to be quantified by comparing with its predeceasing variations and understood before implementing any coastal projects. In recent years, advent of Global Positioning System (GPS) and Geographic Information System (GIS) acts as an emerging tool to quantify the intra and inter annual sediment rate getting accreted or deposited compared to other conventional methods in regards with time was taken and man power. Remote sensing data, on the other hand, paves way to acquire historical sets of data where field data is unavailable with a higher resolution. Short term and long term period shoreline change can be accurately tracked and monitored using a software residing in GIS - Digital Shoreline Analysis System (DSAS) developed by United States Geological Survey (USGS). In the present study, using DSAS, End Point Rate (EPR) is calculated analyze the intra-annual changes, and Linear Rate Regression (LRR) is adopted to study inter annual changes of shoreline. The shoreline changes are quantified for the scenario during the construction of breakwater in Ponnani river inlet along Kerala coast, India. Ponnani is a major fishing and landing center located 10°47’12.81”N and 75°54’38.62”E in Malappuram district of Kerala, India. The rate of erosion and accretion is explored using satellite and field data. The full paper contains the rate of change of shoreline, and its analysis would provide us understanding the behavior of the inlet at the study area during the construction of the training walls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DSAS" title="DSAS">DSAS</a>, <a href="https://publications.waset.org/abstracts/search?q=end%20point%20rate" title=" end point rate"> end point rate</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20measurements" title=" field measurements"> field measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=geo-informatics" title=" geo-informatics"> geo-informatics</a>, <a href="https://publications.waset.org/abstracts/search?q=shoreline%20variation" title=" shoreline variation"> shoreline variation</a> </p> <a href="https://publications.waset.org/abstracts/61158/shoreline-variation-with-construction-of-a-pair-of-training-walls-ponnani-inlet-kerala-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Shoreline Change Estimation from Survey Image Coordinates and Neural Network Approximation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tienfuan%20Kerh">Tienfuan Kerh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsienchang%20Lu"> Hsienchang Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Rob%20Saunders"> Rob Saunders</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shoreline erosion problems caused by global warming and sea level rising may result in losing of land areas, so it should be examined regularly to reduce possible negative impacts. Initially in this study, three sets of survey images obtained from the years of 1990, 2001, and 2010, respectively, are digitalized by using graphical software to establish the spatial coordinates of six major beaches around the island of Taiwan. Then, by overlaying the known multi-period images, the change of shoreline can be observed from their distribution of coordinates. In addition, the neural network approximation is used to develop a model for predicting shoreline variation in the years of 2015 and 2020. The comparison results show that there is no significant change of total sandy area for all beaches in the three different periods. However, the prediction results show that two beaches may exhibit an increasing of total sandy areas under a statistical 95% confidence interval. The proposed method adopted in this study may be applicable to other shorelines of interest around the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digitalized%20shoreline%20coordinates" title="digitalized shoreline coordinates">digitalized shoreline coordinates</a>, <a href="https://publications.waset.org/abstracts/search?q=survey%20image%20overlaying" title=" survey image overlaying"> survey image overlaying</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network%20approximation" title=" neural network approximation"> neural network approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20beach%20sandy%20areas" title=" total beach sandy areas"> total beach sandy areas</a> </p> <a href="https://publications.waset.org/abstracts/3651/shoreline-change-estimation-from-survey-image-coordinates-and-neural-network-approximation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Sea-Level Rise and Shoreline Retreat in Tainan Coast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen-Juinn%20Chen">Wen-Juinn Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Phei%20Chou"> Yi-Phei Chou</a>, <a href="https://publications.waset.org/abstracts/search?q=Jou-Han%20Wang"> Jou-Han Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tainan coast is suffering from beach erosion, wave overtopping, and lowland flooding; though most of the shoreline has been protected by seawalls, they still threatened by sea level rise. For coastal resources developing, coastal land utilization, and to draft an appropriate mitigate strategy. Firstly; we must assess the impact of beach erosion under a different scenario of climate change. Here, we have used the meteorological data since 1898 to 2012 to prove that the Tainan area did suffer the impact of climate change. The result shows the temperature has been raised to about 1.7 degrees since 1989. Also, we analyzed the tidal data near the Tainan coast (Anpin site and Junjunn site), it shows sea level rising with a rate about 4.1~4.8 mm/year, this phenomenon will have serious impacts on Tainan coastal area, especially it will worsen coastal erosion. So we have used Bruun rule to calculate the shoreline retreated rate at every two decade period since 2012. Wave data and bottom sand diameter D50 were used to calculate the closure depth that will be used in Bruun formula and the active length of the profile is computed by the beach slope and Dean's equilibrium concept. After analysis, we found that in 2020, the shoreline will be retreated about 3.0 to 12 meters. The maximum retreat is happening at Chigu coast. In 2060, average shoreline retreated distance is 22m, but at Chigu and Tsenwen, shoreline may be backward retreat about 70m and will be reached about 130m at 2100, this will cause a lot of coastal land loss to the sea, protect and mitigate project must be quickly performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sea%20level%20rise" title="sea level rise">sea level rise</a>, <a href="https://publications.waset.org/abstracts/search?q=shoreline" title=" shoreline"> shoreline</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20erosion" title=" coastal erosion"> coastal erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a> </p> <a href="https://publications.waset.org/abstracts/34138/sea-level-rise-and-shoreline-retreat-in-tainan-coast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Case Studies of Mitigation Methods against the Impacts of High Water Levels in the Great Lakes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20M.%20Penton">Jennifer M. Penton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Record high lake levels in 2017 and 2019 (2017 max lake level = 75.81 m; 2018 max lake level = 75.26 m; 2019 max lake level = 75.92 m) combined with a number of severe storms in the Great Lakes region, have resulted in significant wave generation across Lake Ontario. The resulting large wave heights have led to erosion of the natural shoreline, overtopping of existing revetments, backshore erosion, and partial and complete failure of several coastal structures, which in turn have led to further erosion of the shoreline and damaged existing infrastructure. Such impacts can be seen all along the coast of Lake Ontario. Three specific locations have been chosen as case studies for this paper, each addressing erosion and/or flood mitigation methods, such as revetments and sheet piling with increased land levels. Varying site conditions and the resulting shoreline damage are compared herein. The results are reflected in the case-specific design components of the mitigation and adaptation methods and are presented in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erosion%20mitigation" title="erosion mitigation">erosion mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20mitigation" title=" flood mitigation"> flood mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=great%20lakes" title=" great lakes"> great lakes</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20water%20levels" title=" high water levels"> high water levels</a> </p> <a href="https://publications.waset.org/abstracts/139692/case-studies-of-mitigation-methods-against-the-impacts-of-high-water-levels-in-the-great-lakes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Coastline Change at Koh Tao Island, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cherdvong%20Saengsupavanich">Cherdvong Saengsupavanich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human utilizes coastal resources as well as deteriorates them. Coastal tourism may degrade the environment if poorly managed. This research investigated the shoreline change at Koa Toa Island, one of the most famous tourist destinations. Aerial photographs and satellite images from three different periods were collected and analyzed. The results showed that the noticeable shoreline change before and after the tourism on the island had expanded. Between 1995 and 2002 when the tourism on Koh Toa Island was not intensive, sediment deposition occurred along most of the coastline. However, after the tourism had grown during 2002 to 2015, the coast evidently experienced less deposition and more erosion. The erosion resulted from less land-based sediment being provided to the littoral system. If the coastline of Koh Toa Island is not carefully sustained, the tourism will disappear along with the beautiful beach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coastal%20engineering%20and%20management" title="coastal engineering and management">coastal engineering and management</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20erosion" title=" coastal erosion"> coastal erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20tourism" title=" coastal tourism"> coastal tourism</a>, <a href="https://publications.waset.org/abstracts/search?q=Koh%20Toa%20Island" title=" Koh Toa Island"> Koh Toa Island</a>, <a href="https://publications.waset.org/abstracts/search?q=Thailand" title=" Thailand"> Thailand</a> </p> <a href="https://publications.waset.org/abstracts/45746/coastline-change-at-koh-tao-island-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> A 3D Numerical Environmental Modeling Approach For Assessing Transport of Spilled Oil in Porous Beach Conditions under a Meso-Scale Tank Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20X.%20Dong">J. X. Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20J.%20An"> C. J. An</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Chen"> Z. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20H.%20Owens"> E. H. Owens</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Boufadel"> M. C. Boufadel</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Taylor"> E. Taylor</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Lee"> K. Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shorelines are vulnerable to significant environmental impacts from oil spills. Stranded oil can cause potential short- to long-term detrimental effects along beaches that include injuries to the ecosystem, socio-economic and cultural resources. In this study, a three-dimensional (3D) numerical modeling approach is developed to evaluate the fate and transport of spilled oil for hypothetical oiled shoreline cases under various combinations of beach geomorphology and environmental conditions. The developed model estimates the spatial and temporal distribution of spilled oil for the various test conditions, using the finite volume method and considering the physical transport (dispersion and advection), sinks, and sorption processes. The model includes a user-friendly interface for data input on variables such as beach properties, environmental conditions, and physical-chemical properties of spilled oil. An experimental mesoscale tank design was used to test the developed model for dissolved petroleum hydrocarbon within shorelines. The simulated results for effects of different sediment substrates, oil types, and shoreline features for the transport of spilled oil are comparable to those obtained with a commercially available model. Results show that the properties of substrates and the oil removal by shoreline effects have significant impacts on oil transport in the beach area. Sensitivity analysis, through the application of the one-step-at-a-time method (OAT), for the 3D model identified hydraulic conductivity as the most sensitive parameter. The 3D numerical model allows users to examine the behavior of oil on and within beaches, assess potential environmental impacts, and provide technical support for decisions related to shoreline clean-up operations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissolved%20petroleum%20hydrocarbons" title="dissolved petroleum hydrocarbons">dissolved petroleum hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20multimedia%20model" title=" environmental multimedia model"> environmental multimedia model</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20petroleum%20hydrocarbons" title=" total petroleum hydrocarbons"> total petroleum hydrocarbons</a> </p> <a href="https://publications.waset.org/abstracts/139219/a-3d-numerical-environmental-modeling-approach-for-assessing-transport-of-spilled-oil-in-porous-beach-conditions-under-a-meso-scale-tank-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Impacts and Management of Oil Spill Pollution along the Chabahar Bay by ESI Mapping, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sanjarani">M. Sanjarani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Danehkar"> A. Danehkar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mashincheyan"> A. Mashincheyan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Javid"> A. H. Javid</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20R.%20Fatemi"> S. M. R. Fatemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The oil spill in marine water has direct impact on coastal resources and community. Environmental Sensitivity Index (ESI) map is the first step to assess the potential impact of an oil spill and minimize the damage of coastal resources. In order to create Environmental Sensitivity Maps for the Chabahar bay (Iran), information has been collected in three different layers (Shoreline Classification, Biological and Human- uses resources) by means of field observations and measurements of beach morphology, personal interviews with professionals of different areas and the collection of bibliographic information. In this paper an attempt made to prepare an ESI map for sensitivity to oil spills of Chabahar bay coast. The Chabahar bay is subjected to high threaten to oil spill because of port, dense mangrove forest,only coral spot in Oman Sea and many industrial activities. Mapping the coastal resources, shoreline and coastal structures was carried out using Satellite images and GIS technology. The coastal features classified into three major categories as: Shoreline Classification, Biological and Human uses resources. The important resources classified into mangrove, Exposed tidal flats, sandy beach, etc. The sensitivity of shore was ranked as low to high (1 = low sensitivity,10 = high sensitivity) based on geomorphology of Chabahar bay coast using NOAA standards (sensitivity to oil, ease of clean up, etc). Eight ESI types were found in the area namely; ESI 1A, 1C, 3A, 6B, 7, 8B,9A and 10D. Therefore, in the study area, 50% were defined as High sensitivity, less than 1% as Medium, and 49% as low sensitivity areas. The ESI maps are useful to the oil spill responders, coastal managers and contingency planners. The overall ESI mapping product can provide a valuable management tool not only for oil spill response but for better integrated coastal zone management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ESI" title="ESI">ESI</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spill" title=" oil spill"> oil spill</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=Chabahar%20Bay" title=" Chabahar Bay"> Chabahar Bay</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/40151/impacts-and-management-of-oil-spill-pollution-along-the-chabahar-bay-by-esi-mapping-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Tide Contribution in the Flood Event of Jeddah City: Mathematical Modelling and Different Field Measurements of the Groundwater Rise</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A%C3%AFssa%20Rezzoug">Aïssa Rezzoug</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is aimed to bring new elements that demonstrate the tide caused the groundwater to rise in the shoreline band, on which the urban areas occurs, especially in the western coastal cities of the Kingdom of Saudi Arabia like Jeddah. The reason for the last events of Jeddah inundation was the groundwater rise in the city coupled at the same time to a strong precipitation event. This paper will illustrate the tide participation in increasing the groundwater level significantly. It shows that the reason for internal groundwater recharge within the urban area is not only the excess of the water supply coming from surrounding areas, due to the human activity, with lack of sufficient and efficient sewage system, but also due to tide effect. The research study follows a quantitative method to assess groundwater level rise risks through many in-situ measurements and mathematical modelling. The proposed approach highlights groundwater level, in the urban areas of the city on the shoreline band, reaching the high tide level without considering any input from precipitation. Despite the small tide in the Red Sea compared to other oceanic coasts, the groundwater level is considerably enhanced by the tide from the seaside and by the freshwater table from the landside of the city. In these conditions, the groundwater level becomes high in the city and prevents the soil to evacuate quickly enough the surface flow caused by the storm event, as it was observed in the last historical flood catastrophe of Jeddah in 2009. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood" title="flood">flood</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20rise" title=" groundwater rise"> groundwater rise</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeddah" title=" Jeddah"> Jeddah</a>, <a href="https://publications.waset.org/abstracts/search?q=tide" title=" tide"> tide</a> </p> <a href="https://publications.waset.org/abstracts/127467/tide-contribution-in-the-flood-event-of-jeddah-city-mathematical-modelling-and-different-field-measurements-of-the-groundwater-rise" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Identification of Environmental Damage Due to Mining Area Bangka Islands in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aroma%20Elmina%20Martha">Aroma Elmina Martha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environment affects the continuity of life and human well-being and the bodies of other living. Environmental quality is very closely related to the quality of life. Sustainability must be protected from damage due to the use of natural resources, such as tin mining in Bangka island. This research is a descriptive study, which identifies the environmental damage caused by mining land and sea in Bangka district. The approach used is juridical, social and economic. The study uses primary legal materials, secondary, and tertiary, equipped with field research. The analysis technique used is qualitative analysis. The impacts of mining on land among other physical and chemical damage, erosion and widening the depth of the river, a pool of micro-climate, the quality and feasibility, vegetation, wildlife and biodiversity, land values, social and economic. This mining causes damage to the soil structure, and puddles in the former digs which were not backfilled again. The impact of mining on the ocean such as changes in current surge, erosion and abrasion basic coastal waters, shoreline change, marine water quality changes, and changes in marine communities. The findings of the research show that tin mining in the sea also potentially have a significant impact on the life of the reef, populations of marine organisms. However, mining on land needs to consider the impact of the damage, so that the damage can be minimized. In the recovery process needs to be pursued by exploiting the rest of the pile of tin. Thus, mining activities should take into account the distance of beach sediment size, wave height, wave length, wave period, and the acceleration of gravity. The process of the tin washing should be done in a fairly safe area, thus avoiding damage to the coral reefs that will eventually reduce the population of marine life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abration" title="abration">abration</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20damage" title=" environmental damage"> environmental damage</a>, <a href="https://publications.waset.org/abstracts/search?q=mining" title=" mining"> mining</a>, <a href="https://publications.waset.org/abstracts/search?q=shoreline" title=" shoreline"> shoreline</a> </p> <a href="https://publications.waset.org/abstracts/61355/identification-of-environmental-damage-due-to-mining-area-bangka-islands-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Analysis of the Contribution of Coastal and Marine Physical Factors to Oil Slick Movement: Case Study of Misrata, Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abduladim%20Maitieg">Abduladim Maitieg</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Johnson"> Mark Johnson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Developing a coastal oil spill management plan for the Misratah coast is the motivating factor for building a database for coastal and marine systems and energy resources. Wind direction and speed, currents, bathymetry, coastal topography and offshore dynamics influence oil spill deposition in coastal water. Therefore, oceanographic and climatological data can be used to understand oil slick movement and potential oil deposits on shoreline area and the behaviour of oil spill trajectories on the sea surface. The purpose of this study is to investigate the effects of the coastal and marine physical factors under strong wave conditions and various bathymetric and coastal topography gradients in the western coastal area of Libya on the movement of oil slicks. The movement of oil slicks was computed using a GNOME simulation model based on current and wind speed/direction. The results in this paper show that (1) Oil slick might reach the Misratah shoreline area in two days in the summer and winter. Seasons. (2 ) The North coast of Misratah is the potential oil deposit area on the Misratah coast. (3) Tarball pollution was observed along the North coast of Misratah. (4) Two scenarios for the summer and the winter season were run, along the western coast of Libya . (5) The eastern coast is at a lower potential risk due to the influence of wind and current energy in the Gulf of Sidra. (6) The Misratah coastline is more vulnerable to oil spill movement in the summer than in winter seasons. (7) Oil slick takes from 2 to 5 days to reach the saltmarsh in the eastern Misratah coast. (8) Oil slick moves 300 km in 30 days from the spill resource location near the Libyan western border to the Misratah coast.(9) Bathymetric features have a profound effect on oil spill movement. (9)Oil dispersion simulations using GNOME are carried out taking into account high-resolution wind and current data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20spill%20movement" title="oil spill movement">oil spill movement</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20and%20marine%20physical%20factors" title=" coastal and marine physical factors"> coastal and marine physical factors</a>, <a href="https://publications.waset.org/abstracts/search?q=coast%20area" title=" coast area"> coast area</a>, <a href="https://publications.waset.org/abstracts/search?q=Libyan" title=" Libyan "> Libyan </a> </p> <a href="https://publications.waset.org/abstracts/74155/analysis-of-the-contribution-of-coastal-and-marine-physical-factors-to-oil-slick-movement-case-study-of-misrata-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Geochemical and Mineralogical Characters of the Coastal Plain Sediments of the Arabian Gulf, Kuwait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20Ahmed%20Aly%20Elhabab">Adel Ahmed Aly Elhabab</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Adsani"> Ibrahim Adsani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study deals with detailed geochemical and mineralogical studies of the coastal plain sediments formed along the shoreline of the Arabian Gulf area, Kuwait. These deposits are mainly fluviomarine and beach sands. The coastal plain deposits of the central Kuwait shoreline zone were found to consist of average medium-grained sand. The sand composed, on average of about 90% sand, and about 10% or less is mud, and has a unimodal distribution with a mode of medium sand (1-2 ф). The sediments consist mainly quartz, Feldspar, clay minerals with carbonate minerals (detritus calcite and dolomite) and rock fragments (chert). The mineralogy of the clay fractions of the sediments is dominated by illite, palygorskite, mixed layer illite-montmorillonite with minor amounts of chlorite and Kaolinite Heavy minerals are concentrated in the very fine sand fraction and are dominated by opaque minerals, and non opaque minerals which represented by amphiboles, pyroxenes, epidotes, dolomite, zircon, tourmaline, rutile, garnet and other which represented by Staurolite, Kyanite, Andalusite and Sillimenite as a trace amounts. The chemical analysis for the detrital amphibole grains from sandstone of coastal plain sediments shows the following features; the grains which have (Na+K) <0.50 its composition ranges from actino hornblende to magnesio hornblende, but the grains which have (Na+K) >0.50 its composition have wide variation and on the (Na+K)-AlIV diagram can be characterized two association: Association 1 which characterized by low amount of AlIV and low amount of (Na+K), by comparing the chemical composition of this association and the chemical composition of amphibole grains from older basement rock, can be say, these association may be derived from metamorphic source rocks and association 2 which characterized by high amount of AlIV and low amount of (Na+K), may be derived from volcanic source rocks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20composition" title="chemical composition">chemical composition</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20minerals" title=" clay minerals"> clay minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20area" title=" coastal area"> coastal area</a>, <a href="https://publications.waset.org/abstracts/search?q=electro%20probe%20micro%20analyzer%20%28EPMA%29" title=" electro probe micro analyzer (EPMA)"> electro probe micro analyzer (EPMA)</a>, <a href="https://publications.waset.org/abstracts/search?q=fluviomarine%20sediments" title=" fluviomarine sediments"> fluviomarine sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20minerals" title=" heavy minerals"> heavy minerals</a> </p> <a href="https://publications.waset.org/abstracts/38146/geochemical-and-mineralogical-characters-of-the-coastal-plain-sediments-of-the-arabian-gulf-kuwait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Strategies for Urban-Architectural Design for the Sustainable Recovery of the Huayla Stuary in Puerto Bolivar, Machala-Ecuador</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soledad%20Coronel%20Poma">Soledad Coronel Poma</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorena%20Alvarado%20Rodriguez"> Lorena Alvarado Rodriguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this project is to design public space through urban-architectural strategies that help to the sustainable recovery of the Huayla estuary and the revival of tourism in this area. This design considers other sustainable and architectural ideas used in similar cases, along with national and international regulations for saving shorelines in danger. To understand the situation of this location, Puerto Bolivar is the main port of the Province of El Oro and of the south of the country, where 90,000 national and foreign tourists pass through all year round. For that reason, a physical-urban, social, and environmental analysis of the area was carried out through surveys and conversations with the community. This analysis showed that around 70% of people feel unsatisfied and concerned about the estuary and its surroundings. Crime, absence of green areas, bad conservation of shorelines, lack of tourists, poor commercial infrastructure, and the spread of informal commerce are the main issues to be solved. As an intervention project whose main goal is that residents and tourists have contact with native nature and enjoy doing local activities, three main strategies: mobility, ecology, and urban –architectural are proposed to recover the estuary and its surroundings. First of all, the design of this public space is based on turning the estuary location into a linear promenade that could be seen as a tourist corridor, which would help to reduce pollution, increase green spaces and improve tourism. Another strategy aims to improve the economy of the community through some local activities like fishing and sailing and the commerce of fresh seafood, both raw products and in restaurants. Furthermore, in support of the environmental approach, some houses are rebuilt as sustainable houses using local materials and rearranged into blocks closer to the commercial area. Finally, the planning incorporates the use of many plants such as palms, sameness trees, and mangroves around the area to encourage people to get in touch with nature. The results of designing this space showed an increase in the green area per inhabitant index. It went from 1.69 m²/room to 10.48 m²/room, with 12 096 m² of green corridors and the incorporation of 5000 m² of mangroves at the shoreline. Additionally, living zones also increased with the creation of green areas taking advantage of the existing nature and implementing restaurants and recreational spaces. Moreover, the relocation of houses and buildings helped to free estuary's shoreline, so people are now in more comfortable places closer to their workplaces. Finally, dock spaces are increased, reaching the capacity of the boats and canoes, helping to organize the area in the estuary. To sum up, this project searches the improvement of the estuary environment with its shoreline and surroundings that include the vegetation, infrastructure and people with their local activities, achieving a better quality of life, attraction of tourism, reduction of pollution and finally getting a full recovered estuary as a natural ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recover" title="recover">recover</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20space" title=" public space"> public space</a>, <a href="https://publications.waset.org/abstracts/search?q=stuary" title=" stuary"> stuary</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a> </p> <a href="https://publications.waset.org/abstracts/133272/strategies-for-urban-architectural-design-for-the-sustainable-recovery-of-the-huayla-stuary-in-puerto-bolivar-machala-ecuador" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Outwrestling Cataclysmic Tsunamis at Hilo, Hawaii: Using Technical Developments of the past 50 Years to Improve Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mark%20White">Mark White</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The best practices for owners and urban planners to manage tsunami risk have evolved during the last fifty years, and related technical advances have created opportunities for them to obtain better performance than in earlier cataclysmic tsunami inundations. This basic pattern is illustrated at Hilo Bay, the waterfront area of Hilo, Hawaii, an urban seaport which faces the most severe tsunami hazard of the Hawaiian archipelago. Since April 1, 1946, Hilo Bay has endured tsunami waves with a maximum water height exceeding 2.5 meters following four severe earthquakes: Unimak Island (Mw 8.6, 6.1 m) in 1946; Valdiva (Mw 9.5, the largest earthquake of the 20th century, 10.6 m) in 1960; William Prince Sound (Mw 9.2, 3.8 m) in 1964; and Kalapana (Mw 7.7, the largest earthquake in Hawaii since 1868, 2.6 m) in 1975. Ignoring numerous smaller tsunamis during the same time frame, these four cataclysmic tsunamis have caused property losses in Hilo to exceed $1.25 billion and more than 150 deaths. It is reasonable to foresee another cataclysmic tsunami inundating the urban core of Hilo in the next 50 years, which, if unchecked, could cause additional deaths and losses in the hundreds of millions of dollars. Urban planners and individual owners are now in a position to reduce these losses in the next foreseeable tsunami that generates maximum water heights between 2.5 and 10 meters in Hilo Bay. Since 1946, Hilo planners and individual owners have already created buffer zones between the shoreline and its historic downtown area. As these stakeholders make inevitable improvements to the built environment along and adjacent to the shoreline, they should incorporate new methods for better managing the obvious tsunami risk at Hilo. At the planning level, new manmade land forms, such as tsunami parks and inundation reservoirs, should be developed. Individual owners should require their design professionals to include sacrificial seismic and tsunami fuses that will perform well in foreseeable severe events and that can be easily repaired in the immediate aftermath. These investments before the next cataclysmic tsunami at Hilo will yield substantial reductions in property losses and fatalities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hilo" title="hilo">hilo</a>, <a href="https://publications.waset.org/abstracts/search?q=tsunami%20parks" title=" tsunami parks"> tsunami parks</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoirs" title=" reservoirs"> reservoirs</a>, <a href="https://publications.waset.org/abstracts/search?q=fuse%20systems" title=" fuse systems"> fuse systems</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20managment" title=" risk managment"> risk managment</a> </p> <a href="https://publications.waset.org/abstracts/135362/outwrestling-cataclysmic-tsunamis-at-hilo-hawaii-using-technical-developments-of-the-past-50-years-to-improve-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Application of Shore Protective Structures in Optimum Land Using of Defense Sites Located in Coastal Cities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mir%20Ahmad%20Lashteh%20Neshaei">Mir Ahmad Lashteh Neshaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Afsoos%20Biria"> Hamed Afsoos Biria</a>, <a href="https://publications.waset.org/abstracts/search?q=Ata%20Ghabraei"> Ata Ghabraei</a>, <a href="https://publications.waset.org/abstracts/search?q=Mir%20Abdolhamid%20Mehrdad"> Mir Abdolhamid Mehrdad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Awareness of effective land using issues in coastal area including protection of natural ecosystems and coastal environment due to the increasing of human life along the coast is of great importance. There are numerous valuable structures and heritages which are located in defence sites and waterfront area. Marine structures such as groins, sea walls and detached breakwaters are constructed in coast to improve the coast stability against bed erosion due to changing wave and climate pattern. Marine mechanisms and interaction with the shore protection structures need to be intensively studied. Groins are one of the most prominent structures that are used in shore protection to create a safe environment for coastal area by maintaining the land against progressive coastal erosion. The main structural function of a groin is to control the long shore current and littoral sediment transport. This structure can be submerged and provide the necessary beach protection without negative environmental impact. However, for submerged structures adopted for beach protection, the shoreline response to these structures is not well understood at present. Nowadays, modelling and computer simulation are used to assess beach morphology in the vicinity of marine structures to reduce their environmental impact. The objective of this study is to predict the beach morphology in the vicinity of submerged groins and comparison with non-submerged groins with focus on a part of the coast located in Dahane sar Sefidrood, Guilan province, Iran where serious coast erosion has occurred recently. The simulations were obtained using a one-line model which can be used as a first approximation of shoreline prediction in the vicinity of groins. The results of the proposed model are compared with field measurements to determine the shape of the coast. Finally, the results of the present study show that using submerged groins can have a good efficiency to control the beach erosion without causing severe environmental impact to the coast. The important outcome from this study can be employed in optimum designing of defence sites in the coastal cities to improve their efficiency in terms of re-using the heritage lands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=submerged%20structures" title="submerged structures">submerged structures</a>, <a href="https://publications.waset.org/abstracts/search?q=groin" title=" groin"> groin</a>, <a href="https://publications.waset.org/abstracts/search?q=shore%20protective%20structures" title=" shore protective structures"> shore protective structures</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20cities" title=" coastal cities"> coastal cities</a> </p> <a href="https://publications.waset.org/abstracts/51200/application-of-shore-protective-structures-in-optimum-land-using-of-defense-sites-located-in-coastal-cities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Integrated Coastal Management for the Sustainable Development of Coastal Cities: The Case of El-Mina, Tripoli, Lebanon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Ghamrawi">G. Ghamrawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Abunnasr"> Y. Abunnasr</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Fawaz"> M. Fawaz</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Yazigi"> S. Yazigi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coastal cities are constantly exposed to environmental degradation and economic regression fueled by rapid and uncontrolled urban growth as well as continuous resource depletion. This is the case of the City of Mina in Tripoli (Lebanon), where lack of awareness to preserve social, ecological, and historical assets, coupled with the increasing development pressures, are threatening the socioeconomic status of the city residents, the quality of life and accessibility to the coast. To address these challenges, a holistic coastal urban design and planning approach was developed to analyze the environmental, political, legal, and socioeconomic context of the city. This approach aims to investigate the potential of balancing urban development with the protection and enhancement of cultural, ecological, and environmental assets under an integrated coastal zone management approach (ICZM). The analysis of Mina's different sectors adopted several tools that include direct field observation, interviews with stakeholders, analysis of available data, historical maps, and previously proposed projects. The findings from the analysis were mapped and graphically represented, allowing the recognition of character zones that become the design intervention units. Consequently, the thesis proposes an urban, city-scale intervention that identifies 6 different character zones (the historical fishing port, Abdul Wahab island, the abandoned Port Said, Hammam el Makloub, the sand beach, and the new developable area) and proposes context-specific design interventions that capitalize on the main characteristics of each zone. Moreover, the intervention builds on the institutional framework of ICZM as well as other studies previously conducted for the coast and adopts nature-based solutions with hybrid systems for providing better environmental design solutions for developing the coast. This enables the realization of an all-inclusive, well-connected shoreline with easy and free access towards the sea; a developed shoreline with an active local economy, and an improved urban environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blue%20green%20infrastructure" title="blue green infrastructure">blue green infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20cities" title=" coastal cities"> coastal cities</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20solutions" title=" hybrid solutions"> hybrid solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20coastal%20zone%20management" title=" integrated coastal zone management"> integrated coastal zone management</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20planning" title=" urban planning"> urban planning</a> </p> <a href="https://publications.waset.org/abstracts/117336/integrated-coastal-management-for-the-sustainable-development-of-coastal-cities-the-case-of-el-mina-tripoli-lebanon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Modeling the Effects of Leachate-Impacted Groundwater on the Water Quality of a Large Tidal River</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emery%20Coppola%20Jr.">Emery Coppola Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Marwan%20Sadat"> Marwan Sadat</a>, <a href="https://publications.waset.org/abstracts/search?q=Il%20Kim"> Il Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Diane%20Trube"> Diane Trube</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Kurisko"> Richard Kurisko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contamination sites like landfills often pose significant risks to receptors like surface water bodies. Surface water bodies are often a source of recreation, including fishing and swimming, which not only enhances their value but also serves as a direct exposure pathway to humans, increasing their need for protection from water quality degradation. In this paper, a case study presents the potential effects of leachate-impacted groundwater from a large closed sanitary landfill on the surface water quality of the nearby Raritan River, situated in New Jersey. The study, performed over a two year period, included in-depth field evaluation of both the groundwater and surface water systems, and was supplemented by computer modeling. The analysis required delineation of a representative average daily groundwater discharge from the Landfill shoreline into the large, highly tidal Raritan River, with a corresponding estimate of daily mass loading of potential contaminants of concern. The average daily groundwater discharge into the river was estimated from a high-resolution water level study and a 24-hour constant-rate aquifer pumping test. The significant tidal effects induced on groundwater levels during the aquifer pumping test were filtered out using an advanced algorithm, from which aquifer parameter values were estimated using conventional curve match techniques. The estimated hydraulic conductivity values obtained from individual observation wells closely agree with tidally-derived values for the same wells. Numerous models were developed and used to simulate groundwater contaminant transport and surface water quality impacts. MODFLOW with MT3DMS was used to simulate the transport of potential contaminants of concern from the down-gradient edge of the Landfill to the Raritan River shoreline. A surface water dispersion model based upon a bathymetric and flow study of the river was used to simulate the contaminant concentrations over space within the river. The modeling results helped demonstrate that because of natural attenuation, the Landfill does not have a measurable impact on the river, which was confirmed by an extensive surface water quality study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater%20flow%20and%20contaminant%20transport%20modeling" title="groundwater flow and contaminant transport modeling">groundwater flow and contaminant transport modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%2Fsurface%20water%20interaction" title=" groundwater/surface water interaction"> groundwater/surface water interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=landfill%20leachate" title=" landfill leachate"> landfill leachate</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20water%20quality%20modeling" title=" surface water quality modeling"> surface water quality modeling</a> </p> <a href="https://publications.waset.org/abstracts/58502/modeling-the-effects-of-leachate-impacted-groundwater-on-the-water-quality-of-a-large-tidal-river" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Impact of Reclamation on the Water Exchange in Bohai Bay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luyao%20Liu">Luyao Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dekui%20Yuan"> Dekui Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Li"> Xu Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As one of the most important bays of China, the water exchange capacity of Bohai Bay can influence the economic development and urbanization of surrounding cities. However, the rapid reclamation has influenced the weak water exchange capacity of this semi-enclosed bay in recent years. This paper sets two hydrodynamic models of Bohai Bay with two shorelines before and after reclamation. The mean value and distribution of Turn-over Time, the distribution of residual current, and the feature of the tracer path are compared. After comparison, it is found that Bohai Bay keeps these characteristics; the spending time of water exchange in the northern is longer than southern, and inshore is longer than offshore. However, the mean water exchange time becomes longer after reclamation. In addition, the material spreading is blocked because of the inwardly extending shorelines, and the direction changed from along the shoreline to towards the center after reclamation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bohai%20Bay" title="Bohai Bay">Bohai Bay</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20exchange" title=" water exchange"> water exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=reclamation" title=" reclamation"> reclamation</a>, <a href="https://publications.waset.org/abstracts/search?q=turn-over%20time" title=" turn-over time"> turn-over time</a> </p> <a href="https://publications.waset.org/abstracts/158119/impact-of-reclamation-on-the-water-exchange-in-bohai-bay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Effects of Coastal Structure Construction on Ecosystem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Jahangirzadeh">Afshin Jahangirzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shatirah%20Akib"> Shatirah Akib</a>, <a href="https://publications.waset.org/abstracts/search?q=Keyvan%20Kimiaei"> Keyvan Kimiaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Basser"> Hossein Basser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coastal defense structures were built to protect part of shore from beach erosion and flooding by sea water. Effects of coastal defense structures can be negative or positive. Some of the effects are beneficial in socioeconomic aspect, but environment matters should be given more concerns because it can bring bad consequences to the earth landscape and make the ecosystem be unbalanced. This study concerns on the negative impacts as they are dominant. Coastal structures can extremely impact the shoreline configuration. Artificial structures can influence sediment transport, split the coastal space, etc. This can result in habitats loss and lead to noise and visual disturbance of birds. There are two types of coastal defense structures, hard coastal structure and soft coastal structure. Both coastal structures have their own impacts. The impacts are induced during the construction, maintaining, and operation of the structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecosystem" title="ecosystem">ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20coastal%20structures" title=" hard coastal structures"> hard coastal structures</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20coastal%20structures" title=" soft coastal structures"> soft coastal structures</a> </p> <a href="https://publications.waset.org/abstracts/9173/effects-of-coastal-structure-construction-on-ecosystem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Numerical Modeling of Waves and Currents by Using a Hydro-Sedimentary Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Kamel%20Mihoubi">Mustapha Kamel Mihoubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hocine%20Dahmani"> Hocine Dahmani </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over recent years much progress has been achieved in the fields of numerical modeling shoreline processes: waves, currents, waves and current. However, there are still some problems in the existing models to link the on the first, the hydrodynamics of waves and currents and secondly, the sediment transport processes and due to the variability in time, space and interaction and the simultaneous action of wave-current near the shore. This paper is the establishment of a numerical modeling to forecast the sediment transport from development scenarios of harbor structure. It is established on the basis of a numerical simulation of a water-sediment model via a 2D model using a set of codes calculation MIKE 21-DHI software. This is to examine the effect of the sediment transport drivers following the dominant incident wave in the direction to pass input harbor work under different variants planning studies to find the technical and economic limitations to the sediment transport and protection of the harbor structure optimum solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swell" title="swell">swell</a>, <a href="https://publications.waset.org/abstracts/search?q=current" title=" current"> current</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh" title=" mesh"> mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=mike21" title=" mike21"> mike21</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a> </p> <a href="https://publications.waset.org/abstracts/16069/numerical-modeling-of-waves-and-currents-by-using-a-hydro-sedimentary-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Morpho-Dynamic Modelling of the Western 14 Km of the Togolese Coast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sawsan%20Eissa">Sawsan Eissa</a>, <a href="https://publications.waset.org/abstracts/search?q=Omnia%20Kabbany"> Omnia Kabbany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The coastline of Togo has been historically suffering from erosion for decades, which requires a solution to help control and reduce the erosion to allow for the development of the coastal area. A morpho-dynamic model using X-beach software was developed for the Western 14 Km of the Togolese coast. The model was coupled with the hydrodynamic module of DELFT 3D, flow, and the Wave module, SWAN. The data used as input included a recent bathymetric survey, a recent shoreline topographic survey, aerial photographs, ERA 5 water level and wave data, and recent test results of seabed samples. A number of scenarios were modeled: do nothing scenario, groynes, detached breakwaters system with different crest levels and alignments. The findings showed that groynes is not expected to be effective for protection against erosion, and that the best option is a system of detached breakwater, partially emerged-partially submerged couples with periodical maintenance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrodynamics" title="hydrodynamics">hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=Togo" title=" Togo"> Togo</a>, <a href="https://publications.waset.org/abstracts/search?q=Delft3D" title=" Delft3D"> Delft3D</a>, <a href="https://publications.waset.org/abstracts/search?q=SWAN" title=" SWAN"> SWAN</a>, <a href="https://publications.waset.org/abstracts/search?q=XBeach" title=" XBeach"> XBeach</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20erosion" title=" coastal erosion"> coastal erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=detached%20breakwaters" title=" detached breakwaters"> detached breakwaters</a> </p> <a href="https://publications.waset.org/abstracts/182433/morpho-dynamic-modelling-of-the-western-14-km-of-the-togolese-coast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Ichnofacies and Microfacies Analysis of Late Eocene Rocks in Fayum Area, Egypt and Their Paleoenvironmental Implications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soheir%20El-Shazly">Soheir El-Shazly</a>, <a href="https://publications.waset.org/abstracts/search?q=Gouda%20Abdelgawad"> Gouda Abdelgawad</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Salama"> Yasser Salama</a>, <a href="https://publications.waset.org/abstracts/search?q=Dina%20Sayed"> Dina Sayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract- The Late Eocene rocks (Qasr El-Sagha ) Formation, north east of Birket Qarun in Fayum area of Egypt reveals 6 Ichnogenera Thalassinoides Ehrenberg, 1944, Ophiomorpha Lundgren (1891), Skolithos Haldemann (1840), Diplocraterion Torell, 1870, Arenicolites Salter, 1857 and Planolites Nicholson, 1873. These Ichnogenera are related to Skolithos ichnofacies of typical sandy shoreline environment, only the ichnogenus Planolites is related to Cruziana ichnofacies, which occurs in somewhat deeper water than the Skolithos ichnofacies. Four microfacies types have been distinguished from the study sections, Mudstone, Sandy micrite (wackstone), Sandy dolomitic ferruginous biomicrite (Packstone), Sandy glauconitic biomicrite (packstone). The ichnofacies and the microfacies study indicates that the study area was deposited in shelf lagoon with open circulation environment <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Egypt" title="Egypt">Egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=Fayum" title=" Fayum"> Fayum</a>, <a href="https://publications.waset.org/abstracts/search?q=icnofacies" title=" icnofacies"> icnofacies</a>, <a href="https://publications.waset.org/abstracts/search?q=late%20eocene" title=" late eocene"> late eocene</a>, <a href="https://publications.waset.org/abstracts/search?q=microfacies" title=" microfacies"> microfacies</a> </p> <a href="https://publications.waset.org/abstracts/58077/ichnofacies-and-microfacies-analysis-of-late-eocene-rocks-in-fayum-area-egypt-and-their-paleoenvironmental-implications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Towards a Quantification of the Wind Erosion of the Gharb Shoreline Soils in Morocco by the Application of a Mathematical Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Kachtali">Mohammed Kachtali</a>, <a href="https://publications.waset.org/abstracts/search?q=Imad%20Fenjiro"> Imad Fenjiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20Alkarkouri"> Jamal Alkarkouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind erosion is a serious environmental problem in arid and semi-arid regions. Indeed, wind erosion easily removes the finest particles of the soil surface, which also contribute to losing soil fertility. The siltation of infrastructures and cultivated areas and the negative impact on health are additional consequences of wind erosion. In Morocco, wind erosion constitutes the main factor of silting up in coast and Sahara. The aim of our study is to use an equation of wind erosion in order to estimate the soil loses by wind erosion in the coast of Gharb (North of Morocco). The used equation in our model includes the geographic data, climatic data of 30 years and edaphic data collected from area study which contained 11 crossing of 4 stations. Our results have shown that the values of wind erosion are higher and very different between some crossings (p < 0.001). This difference is explained by topography, soil texture, and climate. In conclusion, wind erosion is higher in Gharb coast and varies from station to another; this problem required several methods of control and mitigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gharb%20coast" title="Gharb coast">Gharb coast</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=silting" title=" silting"> silting</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20erosion" title=" wind erosion"> wind erosion</a> </p> <a href="https://publications.waset.org/abstracts/107543/towards-a-quantification-of-the-wind-erosion-of-the-gharb-shoreline-soils-in-morocco-by-the-application-of-a-mathematical-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Environmental Forensic Analysis of the Shoreline Microplastics Debris on the Limbe Coastline, Cameroon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ndumbe%20Eric%20Esongami">Ndumbe Eric Esongami</a>, <a href="https://publications.waset.org/abstracts/search?q=Manga%20Veronica%20Ebot"> Manga Veronica Ebot</a>, <a href="https://publications.waset.org/abstracts/search?q=Foba%20Josepha%20Tendo"> Foba Josepha Tendo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yengong%20Fabrice%20Lamfu"> Yengong Fabrice Lamfu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tiku%20David%20Tambe"> Tiku David Tambe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prevalence and unpleasant nature of plastics pollution constantly observed on beach shore on stormy events has prompt researchers worldwide to thesis on sustainable economic and environmental designs on plastics, especially in Cameroon, a major touristic destination in the Central Africa Region. The inconsistent protocols develop by researchers has added to this burden, thus the morphological nature of microplastic remediation is a call for concerns. The prime aim of the study is to morphologically identify, quantify and forensically understands the distribution of each plastics polymer composition. Duplicates of 2×2 m (4m2) quadrants were sampled in each beach/month over 8 months period across five purposive beaches along the Limbe – Idenau coastline, Cameroon. Collected plastic samples were thoroughly washed and separation done using a 2 mm sieve. Only particles of size, < 2 mm, were considered and forward follow the microplastics laboratory analytical processes. Established step by step methodological procedures of particle filtration, organic matter digestion, density separation, particle extraction and polymer identification including microscope and were applied for the beach microplastics samples. Microplastics were observed in each sample/beach/month with an overall abundance of 241 particles/number weighs 89.15 g in total and with a mean abundance of 2 particles/m2 (0.69 g/m2) and 6 particles/month (2.0 g/m2). The accumulation of beach shoreline MPs rose dramatically towards decreasing size with microbeads and fiber only found in the < 1 mm size fraction. Approximately 75% of beach MPs contamination were found in LDB 2, LDB 1 and IDN beaches/average particles/number while the most dominant polymer type frequently observed also were PP, PE, and PS in all morphologically parameters analysed. Beach MPs accumulation significantly varied temporally and spatially at p = 0.05. ANOVA and Spearman’s rank correlation used shows linear relationships between the sizes categories considered in this study. In terms of polymer MPs analysis, the colour class recorded that white coloured MPs was dominant, 50 particles/number (22.25 g) with recorded abundance/number in PP (25), PE (15) and PS (5). The shape class also revealed that irregularly shaped MPs was dominant, 98 particles/number (30.5 g) with higher abundance/number in PP (39), PE (33), and PS (11). Similarly, MPs type class shows that fragmented MPs type was also dominant, 80 particles/number (25.25 g) with higher abundance/number in PP (30), PE (28) and PS (15). Equally, the sized class forward revealed that 1.5 – 1.99 mm sized ranged MPs had the highest abundance of 102 particles/number (51.77 g) with higher concentration observed in PP (47), PE (41), and PS (7) as well and finally, the weight class also show that 0.01 g weighs MPs was dominated by 98 particles/number (56.57 g) with varied numeric abundance seen in PP (49), PE (29) and PS (13). The forensic investigation of the pollution indicated that majority of the beach microplastic is sourced from the site/nearby area. The investigation could draw useful conclusions regarding the pathways of pollution. The fragmented microplastic, a significant component in the sample, was found to be sourced from recreational activities and partly from fishing boat installations and repairs activities carried out close to the shore. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forensic%20analysis" title="forensic analysis">forensic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=beach%20MPs" title=" beach MPs"> beach MPs</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%2Fnumber" title=" particle/number"> particle/number</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20composition" title=" polymer composition"> polymer composition</a>, <a href="https://publications.waset.org/abstracts/search?q=cameroon" title=" cameroon"> cameroon</a> </p> <a href="https://publications.waset.org/abstracts/160222/environmental-forensic-analysis-of-the-shoreline-microplastics-debris-on-the-limbe-coastline-cameroon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Potential Contribution of Combined High-Resolution and Fluorescence Remote Sensing to Coastal Ecosystem Service Assessments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaner%20Yan">Yaner Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ning%20Li"> Ning Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yajun%20Qiao"> Yajun Qiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuqing%20An"> Shuqing An</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although most studies have focused on assessing and mapping terrestrial ecosystem services, there is still a knowledge gap on coastal ecosystem services and an urgent need to assess them. Lau (2013) clearly defined five types of costal ecosystem services: carbon sequestration, shoreline protection, fish nursery, biodiversity, and water quality. While high-resolution remote sensing can provide the more direct, spatially estimates of biophysical parameters, such as species distribution relating to biodiversity service, and Fluorescence information derived from remote sensing direct relate to photosynthesis, availing in estimation of carbon sequestration and the response to environmental changes in coastal wetland. Here, we review the capabilities of high-resolution and fluorescence remote sesing for describing biodiversity, vegetation condition, ecological processes and highlight how these prodicts may contribute to costal ecosystem service assessment. In so doing, we anticipate rapid progress to combine the high-resolution and fluorescence remote sesing to estimate the spatial pattern of costal ecosystem services. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20services" title="ecosystem services">ecosystem services</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20resolution" title=" high resolution"> high resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorophyll%20fluorescence" title=" chlorophyll fluorescence"> chlorophyll fluorescence</a> </p> <a href="https://publications.waset.org/abstracts/29659/potential-contribution-of-combined-high-resolution-and-fluorescence-remote-sensing-to-coastal-ecosystem-service-assessments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Multi-Criteria Decision-Making Evaluations for Oily Waste Management of Marine Oil Spill</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naznin%20Sultana%20Daisy">Naznin Sultana Daisy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hesam%20Hafezi"> Mohammad Hesam Hafezi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Liu"> Lei Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, oily solid waste management has become an important issue for many countries due to frequent oil spill accidents and the increase of industrial oily wastewater. The historical oil spill data show that marine oil spills that affect the shoreline can, in extreme cases, produce up to 30 or 40 times more waste than the volume of oil initially released. Hence, responsive authorities aim to develop the most effective oily waste management solution in a timely manner to manage and minimize the waste generated. In this study initially, we tried to develop the roadmap of oily waste management for three-tiered spill scenarios for Atlantic Canada. For that purpose, three oily waste disposal scenarios are evaluated via six criteria which are determined according to the opinions of the experts from the field. Consequently, through sustainable response strategies, the most appropriate and feasible scenario is determined. The results of this study will assist to develop an integrated oily waste management system for identifying the optimal waste-generation-allocation-disposal schemes and generating the optimal management alternatives based on the holistic consideration of environmental, technological, economic, social, and regulatory factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oily%20waste%20management" title="oily waste management">oily waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20oil%20spill" title=" marine oil spill"> marine oil spill</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-criteria%20decision%20making" title=" multi-criteria decision making"> multi-criteria decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spill%20response" title=" oil spill response"> oil spill response</a> </p> <a href="https://publications.waset.org/abstracts/107239/multi-criteria-decision-making-evaluations-for-oily-waste-management-of-marine-oil-spill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Recognition of a Stacked Wave-Tide Dominated Fluvio-Marine Depositional System in an Ancient Rock Record, Proterozoic Simla Group, Lesser Himalaya, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ananya%20Mukhopadhyay">Ananya Mukhopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Mazumdar"> Priyanka Mazumdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Tithi%20Banerjee"> Tithi Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Alono%20Thorie"> Alono Thorie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Outcrop-based facies analysis of the Proterozoic rock successions in the Simla Basin, Lesser Himalaya was combined with the application of sequence stratigraphy to delineate the stages of wave-tide dominated fluvio-marine depositional system development. On this basis, a vertical profile depositional model has been developed. Based on lateral and vertical facies transitions, twenty lithofacies have been delineated from the lower-middle-upper part of the Simla Group, which are categorized into four major facies (FA1, FA2, FA3 and FA4) belts. FA1 documented from the Basantpur Formation (lower part of the Simla Group) indicates evolution of a distally steepened carbonate ramp deposits) highly influenced by sea level fluctuations, where outer, mid and inner ramp sub environments were identified. This transition from inner-mid to outer ramp is marked by a distinct slope break that has been widely cited as an example of a distally steepened ramp. The Basantpur carbonate ramp represents two different systems tracts: TST and HST which developed at different stages of sea level fluctuations. FA2 manifested from the Kunihar Formation (uncorformably overlying the Basantpur Formation) indicates deposition in a rimmed shelf (rich in microbial activity) sub-environment and bears the signature of an HST. FA3 delineated from the Chhaosa Formation (unconformably overlying the Kunihar mixed siliciclastic carbonates, middle part of the Simla Group) provides an excellent example of tide- and wave influenced deltaic deposit (FA3) which is characterized by wave dominated shorefacies deposit in the lower part, sharply overlain by fluvio-tidal channel and/or estuarine bay successions in the middle part followed by a tide dominated muddy tidal flat in the upper part. Despite large-scale progradation, the Chhaosa deltaic deposits are volumetrically dominated by transgressive estuarine deposits. The transgressive deposits are overlain by highstand units which are characterized by muddy tidal flat deposit. The Sanjauli Formation (upper part of the Simla Basin) records a major marine regression leading to the shifting of the shoreline basinward thereby resulting in fluvial incision on the top of the Chhaosa deltaic succession. The development of a braided fluvial system (FA4) with prominent fluvial incision is marked by presence of conglomerate-sandstone facies associations. Prominent fluvial incision on top of the delta deposits indicates the presence of sub-aerial TYPE 1 unconformity. The fluvial deposits mark the closure of sedimentation in the Simla basin that evolved during high frequency periods of coastal progradation and retrogradation. Each of the depositional cycles represents shoreline regression followed by transgression which is bounded by flooding surfaces and further followed by regression. The proposed depositional model in the present work deals with lateral facies variation due to shift in shore line along with fluctuations in accommodation space on a wave-tide influenced depositional system owing to fluctuations of sea level. This model will probably find its applicability in similar depositional setups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=proterozoic" title="proterozoic">proterozoic</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonate%20ramp" title=" carbonate ramp"> carbonate ramp</a>, <a href="https://publications.waset.org/abstracts/search?q=tide%20dominated%20delta" title=" tide dominated delta"> tide dominated delta</a>, <a href="https://publications.waset.org/abstracts/search?q=braided%20fluvial%20system" title=" braided fluvial system"> braided fluvial system</a>, <a href="https://publications.waset.org/abstracts/search?q=TYPE%201%20unconformity" title=" TYPE 1 unconformity"> TYPE 1 unconformity</a> </p> <a href="https://publications.waset.org/abstracts/57242/recognition-of-a-stacked-wave-tide-dominated-fluvio-marine-depositional-system-in-an-ancient-rock-record-proterozoic-simla-group-lesser-himalaya-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Determination of the Shear Strength of Wastes Using Back-Analyses from Observed Failures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadek%20Salah">Sadek Salah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The determination of the strength characteristics of waste materials is essential when evaluating the stability of waste fills during initial placement and at the time of closure and rehabilitation of the landfill. Significant efforts, mostly experimental, have been deployed to date in attempts to quantify the mechanical properties of municipal wastes various stages of decomposition. Even though the studies and work done so far have helped in setting baseline parameters and characteristics for waste materials, inherent concerns remain as to the scalability of the findings between the laboratory and the field along with questions as to the suitability of the actual test conditions. These concerns are compounded by the complexity of the problem itself with significant variability in composition, placement conditions, and levels of decay of the various constituents of the waste fills. A complimentary, if not necessarily an alternative approach is to rely on field observations of behavior and instability of such materials. This paper describes an effort at obtaining relevant shear strength parameters from back-analyses of failures which have been observed at a major un-engineered waste fill along the Mediterranean shoreline. Results from the limit-equilibrium failure back-analyses are presented and compared to results from laboratory-scale testing on comparable waste materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20waste" title="solid waste">solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=landfills" title=" landfills"> landfills</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20stability" title=" slope stability"> slope stability</a> </p> <a href="https://publications.waset.org/abstracts/54780/determination-of-the-shear-strength-of-wastes-using-back-analyses-from-observed-failures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shoreline&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shoreline&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>