CINXE.COM

Rayleigh distribution - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Rayleigh distribution - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"e97669a0-2c9c-4272-b337-d81f4e481ed1","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Rayleigh_distribution","wgTitle":"Rayleigh distribution","wgCurRevisionId":1235639507,"wgRevisionId":1235639507,"wgArticleId":262296,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Wikipedia articles needing page number citations from April 2013","Articles with short description","Short description matches Wikidata","All articles with unsourced statements","Articles with unsourced statements from April 2013","Continuous distributions","Exponential family distributions"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Rayleigh_distribution","wgRelevantArticleId":262296, "wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q637150","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"], "GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar", "ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/6/61/Rayleigh_distributionPDF.svg/1200px-Rayleigh_distributionPDF.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="900"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/6/61/Rayleigh_distributionPDF.svg/800px-Rayleigh_distributionPDF.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="600"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/6/61/Rayleigh_distributionPDF.svg/640px-Rayleigh_distributionPDF.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="480"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Rayleigh distribution - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Rayleigh_distribution"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Rayleigh_distribution&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Rayleigh_distribution"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Rayleigh_distribution rootpage-Rayleigh_distribution skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Rayleigh+distribution" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Rayleigh+distribution" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Rayleigh+distribution" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Rayleigh+distribution" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <ul id="toc-Definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relation_to_random_vector_length" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Relation_to_random_vector_length"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Relation to random vector length</span> </div> </a> <ul id="toc-Relation_to_random_vector_length-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Properties</span> </div> </a> <button aria-controls="toc-Properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Properties subsection</span> </button> <ul id="toc-Properties-sublist" class="vector-toc-list"> <li id="toc-Differential_entropy" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Differential_entropy"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Differential entropy</span> </div> </a> <ul id="toc-Differential_entropy-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Parameter_estimation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Parameter_estimation"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Parameter estimation</span> </div> </a> <button aria-controls="toc-Parameter_estimation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Parameter estimation subsection</span> </button> <ul id="toc-Parameter_estimation-sublist" class="vector-toc-list"> <li id="toc-Confidence_intervals" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Confidence_intervals"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Confidence intervals</span> </div> </a> <ul id="toc-Confidence_intervals-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Generating_random_variates" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Generating_random_variates"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Generating random variates</span> </div> </a> <ul id="toc-Generating_random_variates-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Related_distributions" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Related_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Related distributions</span> </div> </a> <ul id="toc-Related_distributions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Applications</span> </div> </a> <ul id="toc-Applications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Rayleigh distribution</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 18 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-18" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">18 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Distribuci%C3%B3_de_Rayleigh" title="Distribució de Rayleigh – Catalan" lang="ca" hreflang="ca" data-title="Distribució de Rayleigh" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Rayleigh-Verteilung" title="Rayleigh-Verteilung – German" lang="de" hreflang="de" data-title="Rayleigh-Verteilung" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Distribuci%C3%B3n_de_Rayleigh" title="Distribución de Rayleigh – Spanish" lang="es" hreflang="es" data-title="Distribución de Rayleigh" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D9%88%D8%B2%DB%8C%D8%B9_%D8%B1%DB%8C%D9%84%DB%8C" title="توزیع ریلی – Persian" lang="fa" hreflang="fa" data-title="توزیع ریلی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Loi_de_Rayleigh" title="Loi de Rayleigh – French" lang="fr" hreflang="fr" data-title="Loi de Rayleigh" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%A0%88%EC%9D%BC%EB%A6%AC_%EB%B6%84%ED%8F%AC" title="레일리 분포 – Korean" lang="ko" hreflang="ko" data-title="레일리 분포" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Distribuzione_di_Rayleigh" title="Distribuzione di Rayleigh – Italian" lang="it" hreflang="it" data-title="Distribuzione di Rayleigh" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%94%D7%AA%D7%A4%D7%9C%D7%92%D7%95%D7%AA_%D7%A8%D7%99%D7%99%D7%9C%D7%99" title="התפלגות ריילי – Hebrew" lang="he" hreflang="he" data-title="התפלגות ריילי" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Rayleigh-eloszl%C3%A1s" title="Rayleigh-eloszlás – Hungarian" lang="hu" hreflang="hu" data-title="Rayleigh-eloszlás" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Rayleighverdeling" title="Rayleighverdeling – Dutch" lang="nl" hreflang="nl" data-title="Rayleighverdeling" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%AC%E3%82%A4%E3%83%AA%E3%83%BC%E5%88%86%E5%B8%83" title="レイリー分布 – Japanese" lang="ja" hreflang="ja" data-title="レイリー分布" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Rayleigha" title="Rozkład Rayleigha – Polish" lang="pl" hreflang="pl" data-title="Rozkład Rayleigha" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Distribu%C8%9Bia_Rayleigh" title="Distribuția Rayleigh – Romanian" lang="ro" hreflang="ro" data-title="Distribuția Rayleigh" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5_%D0%A0%D1%8D%D0%BB%D0%B5%D1%8F" title="Распределение Рэлея – Russian" lang="ru" hreflang="ru" data-title="Распределение Рэлея" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Rayleighjeva_porazdelitev" title="Rayleighjeva porazdelitev – Slovenian" lang="sl" hreflang="sl" data-title="Rayleighjeva porazdelitev" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Rayleighf%C3%B6rdelning" title="Rayleighfördelning – Swedish" lang="sv" hreflang="sv" data-title="Rayleighfördelning" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A0%D0%BE%D0%B7%D0%BF%D0%BE%D0%B4%D1%96%D0%BB_%D0%A0%D0%B5%D0%B9%D0%BB%D1%96" title="Розподіл Рейлі – Ukrainian" lang="uk" hreflang="uk" data-title="Розподіл Рейлі" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%91%9E%E5%88%A9%E5%88%86%E5%B8%83" title="瑞利分布 – Chinese" lang="zh" hreflang="zh" data-title="瑞利分布" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q637150#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Rayleigh_distribution" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Rayleigh_distribution" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Rayleigh_distribution"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Rayleigh_distribution&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Rayleigh_distribution&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Rayleigh_distribution"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Rayleigh_distribution&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Rayleigh_distribution&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Rayleigh_distribution" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Rayleigh_distribution" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Rayleigh_distribution&amp;oldid=1235639507" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Rayleigh_distribution&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Rayleigh_distribution&amp;id=1235639507&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRayleigh_distribution"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRayleigh_distribution"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Rayleigh_distribution&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Rayleigh_distribution&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Rayleigh_distribution" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q637150" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Not to be confused with <a href="/wiki/Rayleigh_mixture_distribution" title="Rayleigh mixture distribution">Rayleigh mixture distribution</a>.</div> <div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Probability distribution</div> <style data-mw-deduplicate="TemplateStyles:r1257001546">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-full-data:not(.notheme)>div:not(.notheme)[style]{background:#1f1f23!important;color:#f8f9fa}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-full-data:not(.notheme) div:not(.notheme){background:#1f1f23!important;color:#f8f9fa}}@media(min-width:640px){body.skin--responsive .mw-parser-output .infobox-table{display:table!important}body.skin--responsive .mw-parser-output .infobox-table>caption{display:table-caption!important}body.skin--responsive .mw-parser-output .infobox-table>tbody{display:table-row-group}body.skin--responsive .mw-parser-output .infobox-table tr{display:table-row!important}body.skin--responsive .mw-parser-output .infobox-table th,body.skin--responsive .mw-parser-output .infobox-table td{padding-left:inherit;padding-right:inherit}}</style><style data-mw-deduplicate="TemplateStyles:r1247679731">.mw-parser-output .ib-prob-dist{border-collapse:collapse;width:20em}.mw-parser-output .ib-prob-dist td,.mw-parser-output .ib-prob-dist th{border:1px solid var(--border-color-base,#a2a9b1)}.mw-parser-output .ib-prob-dist .infobox-subheader{text-align:left}.mw-parser-output .ib-prob-dist-image{background:var(--background-color-neutral,#eaecf0);font-weight:bold;text-align:center}</style><table class="infobox infobox-table ib-prob-dist"><caption class="infobox-title">Rayleigh</caption><tbody><tr><td colspan="4" class="infobox-image"> <div class="ib-prob-dist-image">Probability density function</div><span typeof="mw:File"><a href="/wiki/File:Rayleigh_distributionPDF.svg" class="mw-file-description" title="Plot of the Rayleigh PDF"><img alt="Plot of the Rayleigh PDF" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/61/Rayleigh_distributionPDF.svg/325px-Rayleigh_distributionPDF.svg.png" decoding="async" width="325" height="244" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/61/Rayleigh_distributionPDF.svg/488px-Rayleigh_distributionPDF.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/61/Rayleigh_distributionPDF.svg/650px-Rayleigh_distributionPDF.svg.png 2x" data-file-width="512" data-file-height="384" /></a></span><br /><small></small></td></tr><tr><td colspan="4" class="infobox-image"> <div class="ib-prob-dist-image">Cumulative distribution function</div><span typeof="mw:File"><a href="/wiki/File:Rayleigh_distributionCDF.svg" class="mw-file-description" title="Plot of the Rayleigh CDF"><img alt="Plot of the Rayleigh CDF" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Rayleigh_distributionCDF.svg/325px-Rayleigh_distributionCDF.svg.png" decoding="async" width="325" height="244" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Rayleigh_distributionCDF.svg/488px-Rayleigh_distributionCDF.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Rayleigh_distributionCDF.svg/650px-Rayleigh_distributionCDF.svg.png 2x" data-file-width="512" data-file-height="384" /></a></span><br /><small></small></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Statistical_parameter" title="Statistical parameter">Parameters</a></th><td colspan="3" class="infobox-data"> scale: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma &gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma &gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/762ecd0f0905dd0d4d7a07f80fa8bfb324b9b021" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle \sigma &gt;0}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Support_(mathematics)" title="Support (mathematics)">Support</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in [0,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in [0,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fdcab24f8202e4a37d346b76fd6a80edcddc03f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.242ex; height:2.843ex;" alt="{\displaystyle x\in [0,\infty )}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Probability_density_function" title="Probability density function">PDF</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {x}{\sigma ^{2}}}e^{-x^{2}/\left(2\sigma ^{2}\right)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {x}{\sigma ^{2}}}e^{-x^{2}/\left(2\sigma ^{2}\right)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4b8b27b81a5adf969169741681b18a6852769b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:12.509ex; height:5.009ex;" alt="{\displaystyle {\frac {x}{\sigma ^{2}}}e^{-x^{2}/\left(2\sigma ^{2}\right)}}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">CDF</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1-e^{-x^{2}/\left(2\sigma ^{2}\right)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1-e^{-x^{2}/\left(2\sigma ^{2}\right)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e917279d822b4b47389d7e465e54454bfa875ed0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:13.291ex; height:3.176ex;" alt="{\displaystyle 1-e^{-x^{2}/\left(2\sigma ^{2}\right)}}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Quantile_function" title="Quantile function">Quantile</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q(F;\sigma )=\sigma {\sqrt {-2\ln(1-F)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>F</mi> <mo>;</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>F</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q(F;\sigma )=\sigma {\sqrt {-2\ln(1-F)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddb3504638d9b08beea1ca59013fec27ca5b790d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:27.354ex; height:4.843ex;" alt="{\displaystyle Q(F;\sigma )=\sigma {\sqrt {-2\ln(1-F)}}}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Expected_value" title="Expected value">Mean</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma {\sqrt {\frac {\pi }{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma {\sqrt {\frac {\pi }{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92c8741b0c641935397bc401dc6e6897cff7aa1d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:5.822ex; height:6.343ex;" alt="{\displaystyle \sigma {\sqrt {\frac {\pi }{2}}}}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Median" title="Median">Median</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma {\sqrt {2\ln(2)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma {\sqrt {2\ln(2)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e549b4dec4800cdff713e19e173d005129fe358d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:10.114ex; height:4.843ex;" alt="{\displaystyle \sigma {\sqrt {2\ln(2)}}}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Mode_(statistics)" title="Mode (statistics)">Mode</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Variance" title="Variance">Variance</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {4-\pi }{2}}\sigma ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>4</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {4-\pi }{2}}\sigma ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc199869ca3e59d1e655f9a8b1b2ac78d1550b5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:8.556ex; height:5.176ex;" alt="{\displaystyle {\frac {4-\pi }{2}}\sigma ^{2}}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Skewness" title="Skewness">Skewness</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2{\sqrt {\pi }}(\pi -3)}{(4-\pi )^{3/2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>4</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {2{\sqrt {\pi }}(\pi -3)}{(4-\pi )^{3/2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7abc398e5e3dc51f2cb47e9402dde1d61020beb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:12.411ex; height:6.843ex;" alt="{\displaystyle {\frac {2{\sqrt {\pi }}(\pi -3)}{(4-\pi )^{3/2}}}}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Excess_kurtosis" class="mw-redirect" title="Excess kurtosis">Excess kurtosis</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {6\pi ^{2}-24\pi +16}{(4-\pi )^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>6</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>24</mn> <mi>&#x03C0;<!-- π --></mi> <mo>+</mo> <mn>16</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>4</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {6\pi ^{2}-24\pi +16}{(4-\pi )^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bcd42ad8e7db81c5a4c00ec979c2991dcad8372" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:17.858ex; height:6.509ex;" alt="{\displaystyle -{\frac {6\pi ^{2}-24\pi +16}{(4-\pi )^{2}}}}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Information_entropy" class="mw-redirect" title="Information entropy">Entropy</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+\ln \left({\frac {\sigma }{\sqrt {2}}}\right)+{\frac {\gamma }{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C3;<!-- σ --></mi> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B3;<!-- γ --></mi> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+\ln \left({\frac {\sigma }{\sqrt {2}}}\right)+{\frac {\gamma }{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/074c0bc67dbb029023939280ba79436321c4fece" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:18.237ex; height:6.509ex;" alt="{\displaystyle 1+\ln \left({\frac {\sigma }{\sqrt {2}}}\right)+{\frac {\gamma }{2}}}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Moment-generating_function" title="Moment-generating function">MGF</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+\sigma te^{\sigma ^{2}t^{2}/2}{\sqrt {\frac {\pi }{2}}}\left(\operatorname {erf} \left({\frac {\sigma t}{\sqrt {2}}}\right)+1\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mi>&#x03C3;<!-- σ --></mi> <mi>t</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </msqrt> </mrow> <mrow> <mo>(</mo> <mrow> <mi>erf</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C3;<!-- σ --></mi> <mi>t</mi> </mrow> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+\sigma te^{\sigma ^{2}t^{2}/2}{\sqrt {\frac {\pi }{2}}}\left(\operatorname {erf} \left({\frac {\sigma t}{\sqrt {2}}}\right)+1\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1e4c60426a34dda06ab0d830509dd0486db39ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:34.644ex; height:6.509ex;" alt="{\displaystyle 1+\sigma te^{\sigma ^{2}t^{2}/2}{\sqrt {\frac {\pi }{2}}}\left(\operatorname {erf} \left({\frac {\sigma t}{\sqrt {2}}}\right)+1\right)}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">CF</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1-\sigma te^{-\sigma ^{2}t^{2}/2}{\sqrt {\frac {\pi }{2}}}\left(\operatorname {erfi} \left({\frac {\sigma t}{\sqrt {2}}}\right)-i\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C3;<!-- σ --></mi> <mi>t</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </msqrt> </mrow> <mrow> <mo>(</mo> <mrow> <mi>erfi</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C3;<!-- σ --></mi> <mi>t</mi> </mrow> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1-\sigma te^{-\sigma ^{2}t^{2}/2}{\sqrt {\frac {\pi }{2}}}\left(\operatorname {erfi} \left({\frac {\sigma t}{\sqrt {2}}}\right)-i\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/145c4e8b445d393bccac3a91fa14d3458cc84dc9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:36.209ex; height:6.509ex;" alt="{\displaystyle 1-\sigma te^{-\sigma ^{2}t^{2}/2}{\sqrt {\frac {\pi }{2}}}\left(\operatorname {erfi} \left({\frac {\sigma t}{\sqrt {2}}}\right)-i\right)}"></span></td></tr></tbody></table> <p>In <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a> and <a href="/wiki/Statistics" title="Statistics">statistics</a>, the <b>Rayleigh distribution</b> is a <a href="/wiki/Continuous_probability_distribution" class="mw-redirect" title="Continuous probability distribution">continuous probability distribution</a> for nonnegative-valued <a href="/wiki/Random_variable" title="Random variable">random variables</a>. Up to rescaling, it coincides with the <a href="/wiki/Chi_distribution" title="Chi distribution">chi distribution</a> with two <a href="/wiki/Degrees_of_freedom" title="Degrees of freedom">degrees of freedom</a>. The distribution is named after <a href="/wiki/John_Strutt,_3rd_Baron_Rayleigh" class="mw-redirect" title="John Strutt, 3rd Baron Rayleigh">Lord Rayleigh</a> (<span class="rt-commentedText nowrap"><span class="IPA nopopups noexcerpt" lang="en-fonipa"><a href="/wiki/Help:IPA/English" title="Help:IPA/English">/<span style="border-bottom:1px dotted"><span title="/ˈ/: primary stress follows">ˈ</span><span title="&#39;r&#39; in &#39;rye&#39;">r</span><span title="/eɪ/: &#39;a&#39; in &#39;face&#39;">eɪ</span><span title="&#39;l&#39; in &#39;lie&#39;">l</span><span title="/i/: &#39;y&#39; in &#39;happy&#39;">i</span></span>/</a></span></span>).<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>A Rayleigh distribution is often observed when the overall magnitude of a vector in the plane is related to its directional <a href="/wiki/Euclidean_vector#Decomposition" title="Euclidean vector">components</a>. One example where the Rayleigh distribution naturally arises is when <a href="/wiki/Wind" title="Wind">wind</a> velocity is analyzed in <a href="/wiki/Plane_(geometry)" class="mw-redirect" title="Plane (geometry)">two dimensions</a>. Assuming that each component is <a href="/wiki/Uncorrelated" class="mw-redirect" title="Uncorrelated">uncorrelated</a>, <a href="/wiki/Normal_distribution" title="Normal distribution">normally distributed</a> with equal <a href="/wiki/Variance" title="Variance">variance</a>, and zero <a href="/wiki/Mean" title="Mean">mean</a>, which is infrequent, then the overall wind speed (<a href="/wiki/Euclidean_vector" title="Euclidean vector">vector</a> magnitude) will be characterized by a Rayleigh distribution. A second example of the distribution arises in the case of random complex numbers whose real and imaginary components are independently and identically distributed <a href="/wiki/Normal_distribution" title="Normal distribution">Gaussian</a> with equal variance and zero mean. In that case, the absolute value of the complex number is Rayleigh-distributed. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rayleigh_distribution&amp;action=edit&amp;section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> of the Rayleigh distribution is<sup id="cite_ref-PP_2-0" class="reference"><a href="#cite_note-PP-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x;\sigma )={\frac {x}{\sigma ^{2}}}e^{-x^{2}/(2\sigma ^{2})},\quad x\geq 0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </msup> <mo>,</mo> <mspace width="1em" /> <mi>x</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x;\sigma )={\frac {x}{\sigma ^{2}}}e^{-x^{2}/(2\sigma ^{2})},\quad x\geq 0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a06343fb89f74d188c25aef4931739d6c488467" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:31.756ex; height:5.009ex;" alt="{\displaystyle f(x;\sigma )={\frac {x}{\sigma ^{2}}}e^{-x^{2}/(2\sigma ^{2})},\quad x\geq 0,}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> is the <a href="/wiki/Scale_parameter" title="Scale parameter">scale parameter</a> of the distribution. The <a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">cumulative distribution function</a> is<sup id="cite_ref-PP_2-1" class="reference"><a href="#cite_note-PP-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x;\sigma )=1-e^{-x^{2}/(2\sigma ^{2})}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(x;\sigma )=1-e^{-x^{2}/(2\sigma ^{2})}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4761814d19f798a8d75ee5c6d92b1cf85096dc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.407ex; height:3.509ex;" alt="{\displaystyle F(x;\sigma )=1-e^{-x^{2}/(2\sigma ^{2})}}"></span></dd></dl> <p>for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in [0,\infty ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in [0,\infty ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53dd0498c1940f0f310e0a886a47258918229bcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.889ex; height:2.843ex;" alt="{\displaystyle x\in [0,\infty ).}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Relation_to_random_vector_length">Relation to random vector length</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rayleigh_distribution&amp;action=edit&amp;section=2" title="Edit section: Relation to random vector length"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Consider the two-dimensional vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y=(U,V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>U</mi> <mo>,</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y=(U,V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/571b856834654ef828d4feb8547ad112b27ed4a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.285ex; height:2.843ex;" alt="{\displaystyle Y=(U,V)}"></span> which has components that are <a href="/wiki/Bivariate_normal_distribution" class="mw-redirect" title="Bivariate normal distribution">bivariate normally distributed</a>, centered at zero, with equal variances <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53a5c55e536acf250c1d3e0f754be5692b843ef5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.385ex; height:2.676ex;" alt="{\displaystyle \sigma ^{2}}"></span>, and independent. Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> have density functions </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{U}(x;\sigma )=f_{V}(x;\sigma )={\frac {e^{-x^{2}/(2\sigma ^{2})}}{\sqrt {2\pi \sigma ^{2}}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </msup> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{U}(x;\sigma )=f_{V}(x;\sigma )={\frac {e^{-x^{2}/(2\sigma ^{2})}}{\sqrt {2\pi \sigma ^{2}}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1c19c9c69e91d5c330cb23b34ee2a431ef8c2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:33.014ex; height:7.009ex;" alt="{\displaystyle f_{U}(x;\sigma )=f_{V}(x;\sigma )={\frac {e^{-x^{2}/(2\sigma ^{2})}}{\sqrt {2\pi \sigma ^{2}}}}.}"></span></dd></dl> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> be the length of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span>. That is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X={\sqrt {U^{2}+V^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X={\sqrt {U^{2}+V^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2c4df4c803923ad0b0d19a41a972b1c39bb9957" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.756ex; height:3.509ex;" alt="{\displaystyle X={\sqrt {U^{2}+V^{2}}}.}"></span> Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> has cumulative distribution function </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{X}(x;\sigma )=\iint _{D_{x}}f_{U}(u;\sigma )f_{V}(v;\sigma )\,dA,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>&#x222C;<!-- ∬ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mrow> </msub> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>u</mi> <mo>;</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>v</mi> <mo>;</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>A</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{X}(x;\sigma )=\iint _{D_{x}}f_{U}(u;\sigma )f_{V}(v;\sigma )\,dA,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f58fe6089931332fad7775c95ef08e9e2a754fbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:37.218ex; height:6.009ex;" alt="{\displaystyle F_{X}(x;\sigma )=\iint _{D_{x}}f_{U}(u;\sigma )f_{V}(v;\sigma )\,dA,}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c15427ff95343d483864e9ad5f2f836de676312d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.097ex; height:2.509ex;" alt="{\displaystyle D_{x}}"></span> is the disk </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{x}=\left\{(u,v):{\sqrt {u^{2}+v^{2}}}\leq x\right\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>x</mi> </mrow> <mo>}</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{x}=\left\{(u,v):{\sqrt {u^{2}+v^{2}}}\leq x\right\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/683b628d973e71d2f0557ef994310e02808da438" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:31.726ex; height:4.843ex;" alt="{\displaystyle D_{x}=\left\{(u,v):{\sqrt {u^{2}+v^{2}}}\leq x\right\}.}"></span></dd></dl> <p>Writing the <a href="/wiki/Multiple_integral" title="Multiple integral">double integral</a> in <a href="/wiki/Polar_coordinate_system" title="Polar coordinate system">polar coordinates</a>, it becomes </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{X}(x;\sigma )={\frac {1}{2\pi \sigma ^{2}}}\int _{0}^{2\pi }\int _{0}^{x}re^{-r^{2}/(2\sigma ^{2})}\,dr\,d\theta ={\frac {1}{\sigma ^{2}}}\int _{0}^{x}re^{-r^{2}/(2\sigma ^{2})}\,dr.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </msubsup> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <mi>r</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>r</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03B8;<!-- θ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <mi>r</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>r</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{X}(x;\sigma )={\frac {1}{2\pi \sigma ^{2}}}\int _{0}^{2\pi }\int _{0}^{x}re^{-r^{2}/(2\sigma ^{2})}\,dr\,d\theta ={\frac {1}{\sigma ^{2}}}\int _{0}^{x}re^{-r^{2}/(2\sigma ^{2})}\,dr.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/482eeb858ed53daae29ccbecffad6037cba1de59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:65.899ex; height:6.176ex;" alt="{\displaystyle F_{X}(x;\sigma )={\frac {1}{2\pi \sigma ^{2}}}\int _{0}^{2\pi }\int _{0}^{x}re^{-r^{2}/(2\sigma ^{2})}\,dr\,d\theta ={\frac {1}{\sigma ^{2}}}\int _{0}^{x}re^{-r^{2}/(2\sigma ^{2})}\,dr.}"></span></dd></dl> <p>Finally, the probability density function for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is the derivative of its cumulative distribution function, which by the <a href="/wiki/Fundamental_theorem_of_calculus" title="Fundamental theorem of calculus">fundamental theorem of calculus</a> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{X}(x;\sigma )={\frac {d}{dx}}F_{X}(x;\sigma )={\frac {x}{\sigma ^{2}}}e^{-x^{2}/(2\sigma ^{2})},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{X}(x;\sigma )={\frac {d}{dx}}F_{X}(x;\sigma )={\frac {x}{\sigma ^{2}}}e^{-x^{2}/(2\sigma ^{2})},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24a750a0259e022bef0c01b2e2aa5b8ed1c95950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:39.412ex; height:5.676ex;" alt="{\displaystyle f_{X}(x;\sigma )={\frac {d}{dx}}F_{X}(x;\sigma )={\frac {x}{\sigma ^{2}}}e^{-x^{2}/(2\sigma ^{2})},}"></span></dd></dl> <p>which is the Rayleigh distribution. It is straightforward to generalize to vectors of dimension other than 2. There are also generalizations when the components have <a href="/wiki/Unequal_variance" class="mw-redirect" title="Unequal variance">unequal variance</a> or correlations (<a href="/wiki/Hoyt_distribution" class="mw-redirect" title="Hoyt distribution">Hoyt distribution</a>), or when the vector <i>Y</i> follows a <a href="/wiki/Multivariate_t-distribution" title="Multivariate t-distribution">bivariate Student <i>t</i>-distribution</a> (see also: <a href="/wiki/Hotelling%27s_T-squared_distribution" title="Hotelling&#39;s T-squared distribution">Hotelling's T-squared distribution</a>).<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <style data-mw-deduplicate="TemplateStyles:r1256386598">.mw-parser-output .cot-header-mainspace{background:#F0F2F5;color:inherit}.mw-parser-output .cot-header-other{background:#CCFFCC;color:inherit}@media screen{html.skin-theme-clientpref-night .mw-parser-output .cot-header-mainspace{background:#14181F;color:inherit}html.skin-theme-clientpref-night .mw-parser-output .cot-header-other{background:#003500;color:inherit}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cot-header-mainspace{background:#14181F;color:inherit}html.skin-theme-clientpref-os .mw-parser-output .cot-header-other{background:#003500;color:inherit}}</style> <div style="margin-left:0"> <table class="mw-collapsible mw-archivedtalk mw-collapsed" style="color:inherit; background: transparent; text-align: left; border: 1px solid Silver; margin: 0.2em auto auto; width:100%; clear: both; padding: 1px;"> <tbody><tr> <th class="cot-header-mainspace" style="; font-size:87%; padding:0.2em 0.3em; text-align:center;"><div style="font-size:115%;margin:0 4em">Generalization to bivariate Student's t-distribution</div> </th></tr> <tr> <td style="color:inherit; border: solid 1px Silver; padding: 0.6em; background: var(--background-color-base, #fff);"> <p><span class="anchor" id="Student&#39;s"></span> Suppose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> is a random vector with components <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u,v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo>,</mo> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u,v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e66f4b32a0181923cc1337a5634f38241e5c697" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.491ex; height:2.009ex;" alt="{\displaystyle u,v}"></span> that follows a <a href="/wiki/Multivariate_t-distribution" title="Multivariate t-distribution">multivariate t-distribution</a>. If the components both have mean zero, equal variance and are independent, the bivariate Student's-t distribution takes the form: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(u,v)={1 \over {2\pi \sigma ^{2}}}\left(1+{u^{2}+v^{2} \over {\nu \sigma ^{2}}}\right)^{-\nu /2-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(u,v)={1 \over {2\pi \sigma ^{2}}}\left(1+{u^{2}+v^{2} \over {\nu \sigma ^{2}}}\right)^{-\nu /2-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe00b1dd4b7698f763f7036d53d6eb351b7b68c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:37.186ex; height:6.843ex;" alt="{\displaystyle f(u,v)={1 \over {2\pi \sigma ^{2}}}\left(1+{u^{2}+v^{2} \over {\nu \sigma ^{2}}}\right)^{-\nu /2-1}}"></span></dd></dl> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R={\sqrt {U^{2}+V^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R={\sqrt {U^{2}+V^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f88d044de21b2a2310a12afba1ff3b77ab6ce61a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.893ex; height:3.509ex;" alt="{\displaystyle R={\sqrt {U^{2}+V^{2}}}}"></span> be the magnitude of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span>. Then the <a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">cumulative distribution function</a> (CDF) of the magnitude is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(r)={1 \over {2\pi \sigma ^{2}}}\iint _{D_{r}}\left(1+{u^{2}+v^{2} \over {\nu \sigma ^{2}}}\right)^{-\nu /2-1}du\;dv}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <msub> <mo>&#x222C;<!-- ∬ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>u</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(r)={1 \over {2\pi \sigma ^{2}}}\iint _{D_{r}}\left(1+{u^{2}+v^{2} \over {\nu \sigma ^{2}}}\right)^{-\nu /2-1}du\;dv}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f40b8cc1951dca0a4955d68db2448610eb3cf8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:46.392ex; height:7.009ex;" alt="{\displaystyle F(r)={1 \over {2\pi \sigma ^{2}}}\iint _{D_{r}}\left(1+{u^{2}+v^{2} \over {\nu \sigma ^{2}}}\right)^{-\nu /2-1}du\;dv}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{r}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{r}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8783bccae1e365d5e58cd502bea46ce4eee7fe34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.898ex; height:2.509ex;" alt="{\displaystyle D_{r}}"></span> is the disk defined by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{r}=\left\{(u,v):{\sqrt {u^{2}+v^{2}}}\leq r\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>r</mi> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{r}=\left\{(u,v):{\sqrt {u^{2}+v^{2}}}\leq r\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8cdb9a82807511d1217e53ce6912fe3578551c2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:30.212ex; height:4.843ex;" alt="{\displaystyle D_{r}=\left\{(u,v):{\sqrt {u^{2}+v^{2}}}\leq r\right\}}"></span></dd></dl> <p>Converting to <a href="/wiki/Polar_coordinates" class="mw-redirect" title="Polar coordinates">polar coordinates</a> leads to the CDF becoming: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}F(r)&amp;={1 \over {2\pi \sigma ^{2}}}\int _{0}^{r}\int _{0}^{2\pi }\rho \left(1+{\rho ^{2} \over {\nu \sigma ^{2}}}\right)^{-\nu /2-1}d\theta \;d\rho \\&amp;={1 \over {\sigma ^{2}}}\int _{0}^{r}\rho \left(1+{\rho ^{2} \over {\nu \sigma ^{2}}}\right)^{-\nu /2-1}d\rho \\&amp;=1-\left(1+{r^{2} \over {\nu \sigma ^{2}}}\right)^{-\nu /2}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>F</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msubsup> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </msubsup> <mi>&#x03C1;<!-- ρ --></mi> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>&#x03B8;<!-- θ --></mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>&#x03C1;<!-- ρ --></mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msubsup> <mi>&#x03C1;<!-- ρ --></mi> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>&#x03C1;<!-- ρ --></mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}F(r)&amp;={1 \over {2\pi \sigma ^{2}}}\int _{0}^{r}\int _{0}^{2\pi }\rho \left(1+{\rho ^{2} \over {\nu \sigma ^{2}}}\right)^{-\nu /2-1}d\theta \;d\rho \\&amp;={1 \over {\sigma ^{2}}}\int _{0}^{r}\rho \left(1+{\rho ^{2} \over {\nu \sigma ^{2}}}\right)^{-\nu /2-1}d\rho \\&amp;=1-\left(1+{r^{2} \over {\nu \sigma ^{2}}}\right)^{-\nu /2}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/366b46dd5f8c505f213616f24ae464ba30220e47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.73ex; margin-bottom: -0.275ex; width:47.798ex; height:21.176ex;" alt="{\displaystyle {\begin{aligned}F(r)&amp;={1 \over {2\pi \sigma ^{2}}}\int _{0}^{r}\int _{0}^{2\pi }\rho \left(1+{\rho ^{2} \over {\nu \sigma ^{2}}}\right)^{-\nu /2-1}d\theta \;d\rho \\&amp;={1 \over {\sigma ^{2}}}\int _{0}^{r}\rho \left(1+{\rho ^{2} \over {\nu \sigma ^{2}}}\right)^{-\nu /2-1}d\rho \\&amp;=1-\left(1+{r^{2} \over {\nu \sigma ^{2}}}\right)^{-\nu /2}\end{aligned}}}"></span></dd></dl> <p>Finally, the <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> (PDF) of the magnitude may be derived: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(r)=F'(r)={r \over {\sigma ^{2}}}\left(1+{r^{2} \over {\nu \sigma ^{2}}}\right)^{-\nu /2-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>F</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(r)=F'(r)={r \over {\sigma ^{2}}}\left(1+{r^{2} \over {\nu \sigma ^{2}}}\right)^{-\nu /2-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6701217d850de6c763934fe7bb71ea274fe8b14c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:36.915ex; height:6.843ex;" alt="{\displaystyle f(r)=F&#039;(r)={r \over {\sigma ^{2}}}\left(1+{r^{2} \over {\nu \sigma ^{2}}}\right)^{-\nu /2-1}}"></span></dd></dl> <p>In the limit as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu \rightarrow \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu \rightarrow \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43faeca91ca73b1a56953bc9bff3ec23d26b01e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.17ex; height:1.843ex;" alt="{\displaystyle \nu \rightarrow \infty }"></span>, the Rayleigh distribution is recovered because: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{\nu \rightarrow \infty }\left(1+{r^{2} \over {\nu \sigma ^{2}}}\right)^{-\nu /2-1}=e^{-r^{2}/2\sigma ^{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{\nu \rightarrow \infty }\left(1+{r^{2} \over {\nu \sigma ^{2}}}\right)^{-\nu /2-1}=e^{-r^{2}/2\sigma ^{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d0991c77bde2d10f506a210db9cea5b19094726" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:33.23ex; height:6.843ex;" alt="{\displaystyle \lim _{\nu \rightarrow \infty }\left(1+{r^{2} \over {\nu \sigma ^{2}}}\right)^{-\nu /2-1}=e^{-r^{2}/2\sigma ^{2}}}"></span></dd></dl> </td></tr></tbody></table></div> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rayleigh_distribution&amp;action=edit&amp;section=3" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Moment_(mathematics)" title="Moment (mathematics)">raw moments</a> are given by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{j}=\sigma ^{j}2^{j/2}\,\Gamma \left(1+{\frac {j}{2}}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>j</mi> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{j}=\sigma ^{j}2^{j/2}\,\Gamma \left(1+{\frac {j}{2}}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59c86571f19026ef3eb567a9994723bd9763c50e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:24.05ex; height:6.176ex;" alt="{\displaystyle \mu _{j}=\sigma ^{j}2^{j/2}\,\Gamma \left(1+{\frac {j}{2}}\right),}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma (z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma (z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11ca17f880240539116aac7e6326909299e2a080" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.35ex; height:2.843ex;" alt="{\displaystyle \Gamma (z)}"></span> is the <a href="/wiki/Gamma_function" title="Gamma function">gamma function</a>. </p><p>The <a href="/wiki/Mean" title="Mean">mean</a> of a Rayleigh random variable is thus&#160;: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu (X)=\sigma {\sqrt {\frac {\pi }{2}}}\ \approx 1.253\ \sigma .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </msqrt> </mrow> <mtext>&#xA0;</mtext> <mo>&#x2248;<!-- ≈ --></mo> <mn>1.253</mn> <mtext>&#xA0;</mtext> <mi>&#x03C3;<!-- σ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu (X)=\sigma {\sqrt {\frac {\pi }{2}}}\ \approx 1.253\ \sigma .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/834afb43b166b02571e9965f8d0a77349367c50b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:25.644ex; height:6.343ex;" alt="{\displaystyle \mu (X)=\sigma {\sqrt {\frac {\pi }{2}}}\ \approx 1.253\ \sigma .}"></span></dd></dl> <p>The <a href="/wiki/Standard_deviation" title="Standard deviation">standard deviation</a> of a Rayleigh random variable is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {std} (X)={\sqrt {\left(2-{\frac {\pi }{2}}\right)}}\sigma \approx 0.655\ \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>std</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </msqrt> </mrow> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x2248;<!-- ≈ --></mo> <mn>0.655</mn> <mtext>&#xA0;</mtext> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {std} (X)={\sqrt {\left(2-{\frac {\pi }{2}}\right)}}\sigma \approx 0.655\ \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7190ca1103b3af5b69bf65cb61f82caaff85a5f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:32.907ex; height:6.176ex;" alt="{\displaystyle \operatorname {std} (X)={\sqrt {\left(2-{\frac {\pi }{2}}\right)}}\sigma \approx 0.655\ \sigma }"></span></dd></dl> <p>The <a href="/wiki/Variance" title="Variance">variance</a> of a Rayleigh random variable is&#160;: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {var} (X)=\mu _{2}-\mu _{1}^{2}=\left(2-{\frac {\pi }{2}}\right)\sigma ^{2}\approx 0.429\ \sigma ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>var</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2248;<!-- ≈ --></mo> <mn>0.429</mn> <mtext>&#xA0;</mtext> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {var} (X)=\mu _{2}-\mu _{1}^{2}=\left(2-{\frac {\pi }{2}}\right)\sigma ^{2}\approx 0.429\ \sigma ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b210cb83ae8bead5624bffd0615abbd821a68d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:44.119ex; height:4.843ex;" alt="{\displaystyle \operatorname {var} (X)=\mu _{2}-\mu _{1}^{2}=\left(2-{\frac {\pi }{2}}\right)\sigma ^{2}\approx 0.429\ \sigma ^{2}}"></span></dd></dl> <p>The <a href="/wiki/Mode_(statistics)" title="Mode (statistics)">mode</a> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dec50432d2d0f5329dacde3a76c502563f6bda6c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.977ex; height:2.009ex;" alt="{\displaystyle \sigma ,}"></span> and the maximum pdf is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{\max }=f(\sigma ;\sigma )={\frac {1}{\sigma }}e^{-1/2}\approx {\frac {0.606}{\sigma }}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">max</mo> </mrow> </msub> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mo>;</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03C3;<!-- σ --></mi> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mo>&#x2248;<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>0.606</mn> <mi>&#x03C3;<!-- σ --></mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{\max }=f(\sigma ;\sigma )={\frac {1}{\sigma }}e^{-1/2}\approx {\frac {0.606}{\sigma }}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02fbd3eb376fbbb270b5397a1c05ef8fca6d260d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:34.513ex; height:5.176ex;" alt="{\displaystyle f_{\max }=f(\sigma ;\sigma )={\frac {1}{\sigma }}e^{-1/2}\approx {\frac {0.606}{\sigma }}.}"></span></dd></dl> <p>The <a href="/wiki/Skewness" title="Skewness">skewness</a> is given by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma _{1}={\frac {2{\sqrt {\pi }}(\pi -3)}{(4-\pi )^{3/2}}}\approx 0.631}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>4</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <mn>0.631</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma _{1}={\frac {2{\sqrt {\pi }}(\pi -3)}{(4-\pi )^{3/2}}}\approx 0.631}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17deff9ae19848b5d03cc75052caffa9ba8df39d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:26.163ex; height:6.843ex;" alt="{\displaystyle \gamma _{1}={\frac {2{\sqrt {\pi }}(\pi -3)}{(4-\pi )^{3/2}}}\approx 0.631}"></span></dd></dl> <p>The excess <a href="/wiki/Kurtosis" title="Kurtosis">kurtosis</a> is given by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma _{2}=-{\frac {6\pi ^{2}-24\pi +16}{(4-\pi )^{2}}}\approx 0.245}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>6</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>24</mn> <mi>&#x03C0;<!-- π --></mi> <mo>+</mo> <mn>16</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>4</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <mn>0.245</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma _{2}=-{\frac {6\pi ^{2}-24\pi +16}{(4-\pi )^{2}}}\approx 0.245}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a600ad3ba1d2f9c607e4d6ff928e5365eb88253" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:31.61ex; height:6.509ex;" alt="{\displaystyle \gamma _{2}=-{\frac {6\pi ^{2}-24\pi +16}{(4-\pi )^{2}}}\approx 0.245}"></span></dd></dl> <p>The <a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">characteristic function</a> is given by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (t)=1-\sigma te^{-{\frac {1}{2}}\sigma ^{2}t^{2}}{\sqrt {\frac {\pi }{2}}}\left[\operatorname {erfi} \left({\frac {\sigma t}{\sqrt {2}}}\right)-i\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C3;<!-- σ --></mi> <mi>t</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </msqrt> </mrow> <mrow> <mo>[</mo> <mrow> <mi>erfi</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C3;<!-- σ --></mi> <mi>t</mi> </mrow> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (t)=1-\sigma te^{-{\frac {1}{2}}\sigma ^{2}t^{2}}{\sqrt {\frac {\pi }{2}}}\left[\operatorname {erfi} \left({\frac {\sigma t}{\sqrt {2}}}\right)-i\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81b70a6cdd7e07c2630013560d4d9ca124f1331d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:42.37ex; height:6.509ex;" alt="{\displaystyle \varphi (t)=1-\sigma te^{-{\frac {1}{2}}\sigma ^{2}t^{2}}{\sqrt {\frac {\pi }{2}}}\left[\operatorname {erfi} \left({\frac {\sigma t}{\sqrt {2}}}\right)-i\right]}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {erfi} (z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>erfi</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {erfi} (z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4396113d298fcae39bbdb36269c2fa2dc91ad845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.2ex; height:2.843ex;" alt="{\displaystyle \operatorname {erfi} (z)}"></span> is the imaginary <a href="/wiki/Error_function" title="Error function">error function</a>. The <a href="/wiki/Moment_generating_function" class="mw-redirect" title="Moment generating function">moment generating function</a> is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M(t)=1+\sigma t\,e^{{\frac {1}{2}}\sigma ^{2}t^{2}}{\sqrt {\frac {\pi }{2}}}\left[\operatorname {erf} \left({\frac {\sigma t}{\sqrt {2}}}\right)+1\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mi>&#x03C3;<!-- σ --></mi> <mi>t</mi> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </msqrt> </mrow> <mrow> <mo>[</mo> <mrow> <mi>erf</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C3;<!-- σ --></mi> <mi>t</mi> </mrow> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M(t)=1+\sigma t\,e^{{\frac {1}{2}}\sigma ^{2}t^{2}}{\sqrt {\frac {\pi }{2}}}\left[\operatorname {erf} \left({\frac {\sigma t}{\sqrt {2}}}\right)+1\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/538c6fb6aeafcc35acbf886ff03e7f04df315cab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:42.114ex; height:6.509ex;" alt="{\displaystyle M(t)=1+\sigma t\,e^{{\frac {1}{2}}\sigma ^{2}t^{2}}{\sqrt {\frac {\pi }{2}}}\left[\operatorname {erf} \left({\frac {\sigma t}{\sqrt {2}}}\right)+1\right]}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {erf} (z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>erf</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {erf} (z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c93f59ae3f9052f36a3b2cda8ffb2a64f24f9fa8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.553ex; height:2.843ex;" alt="{\displaystyle \operatorname {erf} (z)}"></span> is the <a href="/wiki/Error_function" title="Error function">error function</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Differential_entropy">Differential entropy</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rayleigh_distribution&amp;action=edit&amp;section=4" title="Edit section: Differential entropy"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Differential_entropy" title="Differential entropy">differential entropy</a> is given by<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (April 2013)">citation needed</span></a></i>&#93;</sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H=1+\ln \left({\frac {\sigma }{\sqrt {2}}}\right)+{\frac {\gamma }{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C3;<!-- σ --></mi> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B3;<!-- γ --></mi> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H=1+\ln \left({\frac {\sigma }{\sqrt {2}}}\right)+{\frac {\gamma }{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ef19038dc0e3a7bc84ca52065c3fcdf092284d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:23.399ex; height:6.509ex;" alt="{\displaystyle H=1+\ln \left({\frac {\sigma }{\sqrt {2}}}\right)+{\frac {\gamma }{2}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> is the <a href="/wiki/Euler%E2%80%93Mascheroni_constant" class="mw-redirect" title="Euler–Mascheroni constant">Euler–Mascheroni constant</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Parameter_estimation">Parameter estimation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rayleigh_distribution&amp;action=edit&amp;section=5" title="Edit section: Parameter estimation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Given a sample of <i>N</i> <a href="/wiki/Independent_and_identically_distributed" class="mw-redirect" title="Independent and identically distributed">independent and identically distributed</a> Rayleigh random variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e87000dd6142b81d041896a30fe58f0c3acb2158" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.129ex; height:2.009ex;" alt="{\displaystyle x_{i}}"></span> with parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {\sigma ^{2}}}=\!\,{\frac {1}{2N}}\sum _{i=1}^{N}x_{i}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>N</mi> </mrow> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {\sigma ^{2}}}=\!\,{\frac {1}{2N}}\sum _{i=1}^{N}x_{i}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35fc556f9679cff03c8c2fa8a79581bc6c77cfe0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:16.059ex; height:7.343ex;" alt="{\displaystyle {\widehat {\sigma ^{2}}}=\!\,{\frac {1}{2N}}\sum _{i=1}^{N}x_{i}^{2}}"></span> is the <a href="/wiki/Maximum_likelihood_estimation" title="Maximum likelihood estimation">maximum likelihood</a> estimate and also is <a href="/wiki/Bias_of_an_estimator" title="Bias of an estimator">unbiased</a>.</dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {\sigma }}\approx {\sqrt {{\frac {1}{2N}}\sum _{i=1}^{N}x_{i}^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>N</mi> </mrow> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {\sigma }}\approx {\sqrt {{\frac {1}{2N}}\sum _{i=1}^{N}x_{i}^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acaab2be12cd04144db3bd772e2b85d7c3255c71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:17.457ex; height:8.009ex;" alt="{\displaystyle {\widehat {\sigma }}\approx {\sqrt {{\frac {1}{2N}}\sum _{i=1}^{N}x_{i}^{2}}}}"></span> is a biased estimator that can be corrected via the formula</dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma ={\widehat {\sigma }}{\frac {\Gamma (N){\sqrt {N}}}{\Gamma \left(N+{\frac {1}{2}}\right)}}={\widehat {\sigma }}{\frac {4^{N}N!(N-1)!{\sqrt {N}}}{(2N)!{\sqrt {\pi }}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>N</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>N</mi> </msqrt> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow> <mi>N</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msup> <mi>N</mi> <mo>!</mo> <mo stretchy="false">(</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>N</mi> </msqrt> </mrow> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>N</mi> <mo stretchy="false">)</mo> <mo>!</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma ={\widehat {\sigma }}{\frac {\Gamma (N){\sqrt {N}}}{\Gamma \left(N+{\frac {1}{2}}\right)}}={\widehat {\sigma }}{\frac {4^{N}N!(N-1)!{\sqrt {N}}}{(2N)!{\sqrt {\pi }}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e73434e6a1a718cd272d5f798eddcd546dec95d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:40.477ex; height:7.509ex;" alt="{\displaystyle \sigma ={\widehat {\sigma }}{\frac {\Gamma (N){\sqrt {N}}}{\Gamma \left(N+{\frac {1}{2}}\right)}}={\widehat {\sigma }}{\frac {4^{N}N!(N-1)!{\sqrt {N}}}{(2N)!{\sqrt {\pi }}}}}"></span><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ={\frac {\hat {\sigma }}{c_{4}(2N+1)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> <mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <mi>N</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ={\frac {\hat {\sigma }}{c_{4}(2N+1)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/772f4de47001fb6c5933a617f23c480a0181eb26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:14.389ex; height:6.176ex;" alt="{\displaystyle ={\frac {\hat {\sigma }}{c_{4}(2N+1)}}}"></span>, where <a href="/wiki/Standard_deviation#Unbiased_sample_standard_deviation" title="Standard deviation">c<sub>4</sub> is the correction factor used to unbias estimates of standard deviation for normal random variables</a>.</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Confidence_intervals">Confidence intervals</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rayleigh_distribution&amp;action=edit&amp;section=6" title="Edit section: Confidence intervals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>To find the (1&#160;&#8722;&#160;<i>α</i>) confidence interval, first find the bounds <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4b788fc5c637e26ee98b45f89a5c08c85f7935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.555ex; height:2.843ex;" alt="{\displaystyle [a,b]}"></span> where: </p> <dl><dd>&#160; <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\left(\chi _{2N}^{2}\leq a\right)=\alpha /2,\quad P\left(\chi _{2N}^{2}\leq b\right)=1-\alpha /2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2264;<!-- ≤ --></mo> <mi>a</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>,</mo> <mspace width="1em" /> <mi>P</mi> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2264;<!-- ≤ --></mo> <mi>b</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\left(\chi _{2N}^{2}\leq a\right)=\alpha /2,\quad P\left(\chi _{2N}^{2}\leq b\right)=1-\alpha /2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/deb61432189cda098ae91bed06aa47c429b68e97" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:46.067ex; height:3.176ex;" alt="{\displaystyle P\left(\chi _{2N}^{2}\leq a\right)=\alpha /2,\quad P\left(\chi _{2N}^{2}\leq b\right)=1-\alpha /2}"></span></dd></dl> <p>then the scale parameter will fall within the bounds </p> <dl><dd>&#160; <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {{N}{\overline {x^{2}}}}{b}}\leq {\widehat {\sigma ^{2}}}\leq {\frac {{N}{\overline {x^{2}}}}{a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mover> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mi>b</mi> </mfrac> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mover> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mi>a</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {{N}{\overline {x^{2}}}}{b}}\leq {\widehat {\sigma ^{2}}}\leq {\frac {{N}{\overline {x^{2}}}}{a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf3c704906b4f459dac96361dcc5ee2ed465d938" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:19.379ex; height:6.343ex;" alt="{\displaystyle {\frac {{N}{\overline {x^{2}}}}{b}}\leq {\widehat {\sigma ^{2}}}\leq {\frac {{N}{\overline {x^{2}}}}{a}}}"></span><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Generating_random_variates">Generating random variates</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rayleigh_distribution&amp;action=edit&amp;section=7" title="Edit section: Generating random variates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Given a random variate <i>U</i> drawn from the <a href="/wiki/Uniform_distribution_(continuous)" class="mw-redirect" title="Uniform distribution (continuous)">uniform distribution</a> in the interval (0,&#160;1), then the variate </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X=\sigma {\sqrt {-2\ln U}}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>U</mi> </msqrt> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X=\sigma {\sqrt {-2\ln U}}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9dedc6a309b27ad4e7c27ddbef28e8070c5aa6b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:16.198ex; height:3.009ex;" alt="{\displaystyle X=\sigma {\sqrt {-2\ln U}}\,}"></span></dd></dl> <p>has a Rayleigh distribution with parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span>. This is obtained by applying the <a href="/wiki/Inverse_transform_sampling" title="Inverse transform sampling">inverse transform sampling</a>-method. </p> <div class="mw-heading mw-heading2"><h2 id="Related_distributions">Related distributions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rayleigh_distribution&amp;action=edit&amp;section=8" title="Edit section: Related distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\sim \mathrm {Rayleigh} (\sigma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">y</mi> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">g</mi> <mi mathvariant="normal">h</mi> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\sim \mathrm {Rayleigh} (\sigma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61490ad995fba138a8f8d2b565e62dd6f37be8d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.883ex; height:2.843ex;" alt="{\displaystyle R\sim \mathrm {Rayleigh} (\sigma )}"></span> is Rayleigh distributed if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R={\sqrt {X^{2}+Y^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R={\sqrt {X^{2}+Y^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/792b0cf17efbdc41091f5d12dc85d3dfd79a57d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.032ex; height:3.509ex;" alt="{\displaystyle R={\sqrt {X^{2}+Y^{2}}}}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim N(0,\sigma ^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>N</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim N(0,\sigma ^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fcc9d266ead89dffe5a5e6fbd91aae935b2ff6d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.533ex; height:3.176ex;" alt="{\displaystyle X\sim N(0,\sigma ^{2})}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y\sim N(0,\sigma ^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>N</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y\sim N(0,\sigma ^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77071e3e8872d0d0c7e8d261e7b6a8a3582774a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.326ex; height:3.176ex;" alt="{\displaystyle Y\sim N(0,\sigma ^{2})}"></span> are independent <a href="/wiki/Normal_distribution" title="Normal distribution">normal random variables</a>.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> This gives motivation to the use of the symbol <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> in the above parametrization of the Rayleigh density.</li> <li>The magnitude <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |z|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |z|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28fd4d7dcabf618d707c21bd08306c7b3aa8b68e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.382ex; height:2.843ex;" alt="{\displaystyle |z|}"></span> of a <a href="/wiki/Standard_complex_normal_distribution" class="mw-redirect" title="Standard complex normal distribution">standard complex normally distributed</a> variable <i>z</i> is Rayleigh distributed.</li> <li>The <a href="/wiki/Chi_distribution" title="Chi distribution">chi distribution</a> with <i>v</i>&#160;=&#160;2 is equivalent to the Rayleigh Distribution with&#160;<i>&#963;</i>&#160;=&#160;1: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R(\sigma )\sim \sigma \chi _{2}^{\,}\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mo>&#x223C;<!-- ∼ --></mo> <mi>&#x03C3;<!-- σ --></mi> <msubsup> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> </mrow> </msubsup> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R(\sigma )\sim \sigma \chi _{2}^{\,}\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2dae443c78432ef0e873f82f3382c052cae53510" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.068ex; height:3.009ex;" alt="{\displaystyle R(\sigma )\sim \sigma \chi _{2}^{\,}\ .}"></span></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\sim \mathrm {Rayleigh} (1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">y</mi> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">g</mi> <mi mathvariant="normal">h</mi> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\sim \mathrm {Rayleigh} (1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e73a200a03a373d325c2d164b2fb32f92505e99d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.716ex; height:2.843ex;" alt="{\displaystyle R\sim \mathrm {Rayleigh} (1)}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ce07e278be3e058a6303de8359f8b4a4288264a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.818ex; height:2.676ex;" alt="{\displaystyle R^{2}}"></span> has a <a href="/wiki/Chi-squared_distribution" title="Chi-squared distribution">chi-squared distribution</a> with 2 degrees of freedom: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [Q=R(\sigma )^{2}]\sim \sigma ^{2}\chi _{2}^{2}\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>Q</mi> <mo>=</mo> <mi>R</mi> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">]</mo> <mo>&#x223C;<!-- ∼ --></mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msubsup> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [Q=R(\sigma )^{2}]\sim \sigma ^{2}\chi _{2}^{2}\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d43e270aa1b589c63a0581f3a29fc93d6ed6050" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.408ex; height:3.343ex;" alt="{\displaystyle [Q=R(\sigma )^{2}]\sim \sigma ^{2}\chi _{2}^{2}\ .}"></span></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\sim \mathrm {Rayleigh} (\sigma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">y</mi> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">g</mi> <mi mathvariant="normal">h</mi> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\sim \mathrm {Rayleigh} (\sigma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61490ad995fba138a8f8d2b565e62dd6f37be8d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.883ex; height:2.843ex;" alt="{\displaystyle R\sim \mathrm {Rayleigh} (\sigma )}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i=1}^{N}R_{i}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i=1}^{N}R_{i}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb54434074eec12254582479caf41c0b5bbf972c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:6.56ex; height:7.343ex;" alt="{\displaystyle \sum _{i=1}^{N}R_{i}^{2}}"></span> has a <a href="/wiki/Gamma_distribution" title="Gamma distribution">gamma distribution</a> with parameters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{2\sigma ^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{2\sigma ^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1d891a61a916699d1f4a1a255fc0ea09896324e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:4.383ex; height:5.509ex;" alt="{\displaystyle {\frac {1}{2\sigma ^{2}}}}"></span> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[Y=\sum _{i=1}^{N}R_{i}^{2}\right]\sim \Gamma \left(N,{\frac {1}{2\sigma ^{2}}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>[</mo> <mrow> <mi>Y</mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mo>]</mo> </mrow> <mo>&#x223C;<!-- ∼ --></mo> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow> <mi>N</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left[Y=\sum _{i=1}^{N}R_{i}^{2}\right]\sim \Gamma \left(N,{\frac {1}{2\sigma ^{2}}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/056eae6f966e439d8a3351521fd7fb62c994a697" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:31.017ex; height:7.509ex;" alt="{\displaystyle \left[Y=\sum _{i=1}^{N}R_{i}^{2}\right]\sim \Gamma \left(N,{\frac {1}{2\sigma ^{2}}}\right).}"></span></dd></dl></li> <li>The <a href="/wiki/Rice_distribution" title="Rice distribution">Rice distribution</a> is a <a href="/wiki/Noncentral_distribution" title="Noncentral distribution">noncentral generalization</a> of the Rayleigh distribution: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Rayleigh} (\sigma )=\mathrm {Rice} (0,\sigma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">y</mi> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">g</mi> <mi mathvariant="normal">h</mi> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Rayleigh} (\sigma )=\mathrm {Rice} (0,\sigma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d01521578c896e2f1f091e10066c82d49c694fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.877ex; height:2.843ex;" alt="{\displaystyle \mathrm {Rayleigh} (\sigma )=\mathrm {Rice} (0,\sigma )}"></span>.</li> <li>The <a href="/wiki/Weibull_distribution" title="Weibull distribution">Weibull distribution</a> with the <a href="/wiki/Shape_parameter" title="Shape parameter">shape parameter</a> <i>k</i>&#160;=&#160;2 yields a Rayleigh distribution. Then the Rayleigh distribution parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> is related to the Weibull scale parameter according to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda =\sigma {\sqrt {2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>=</mo> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda =\sigma {\sqrt {2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ea51ece57bf99e0a2ac26782b46d0f7e0cf0665" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.529ex; height:3.009ex;" alt="{\displaystyle \lambda =\sigma {\sqrt {2}}.}"></span></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> has an <a href="/wiki/Exponential_distribution" title="Exponential distribution">exponential distribution</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \mathrm {Exponential} (\lambda )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">E</mi> <mi mathvariant="normal">x</mi> <mi mathvariant="normal">p</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">l</mi> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim \mathrm {Exponential} (\lambda )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e5579e2850476fbe8c2b2dbe98c892281cd6745" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.487ex; height:2.843ex;" alt="{\displaystyle X\sim \mathrm {Exponential} (\lambda )}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y={\sqrt {X}}\sim \mathrm {Rayleigh} (1/{\sqrt {2\lambda }}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>X</mi> </msqrt> </mrow> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">y</mi> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">g</mi> <mi mathvariant="normal">h</mi> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03BB;<!-- λ --></mi> </msqrt> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y={\sqrt {X}}\sim \mathrm {Rayleigh} (1/{\sqrt {2\lambda }}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65280a80c45f5757b30d9032106a348218c2ce2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.002ex; height:3.176ex;" alt="{\displaystyle Y={\sqrt {X}}\sim \mathrm {Rayleigh} (1/{\sqrt {2\lambda }}).}"></span></li> <li>The <a href="/wiki/Half-normal_distribution" title="Half-normal distribution">half-normal distribution</a> is the one-dimensional equivalent of the Rayleigh distribution.</li> <li>The <a href="/wiki/Maxwell%E2%80%93Boltzmann_distribution" title="Maxwell–Boltzmann distribution">Maxwell–Boltzmann distribution</a> is the three-dimensional equivalent of the Rayleigh distribution.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rayleigh_distribution&amp;action=edit&amp;section=9" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An application of the estimation of σ can be found in <a href="/wiki/Magnetic_resonance_imaging" title="Magnetic resonance imaging">magnetic resonance imaging</a> (MRI). As MRI images are recorded as <a href="/wiki/Complex_numbers" class="mw-redirect" title="Complex numbers">complex</a> images but most often viewed as magnitude images, the background data is Rayleigh distributed. Hence, the above formula can be used to estimate the noise variance in an MRI image from background data.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> <sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p><p>The Rayleigh distribution was also employed in the field of <a href="/wiki/Nutrition" title="Nutrition">nutrition</a> for linking <a href="/wiki/Diet_(nutrition)" title="Diet (nutrition)">dietary</a> <a href="/wiki/Nutrient" title="Nutrient">nutrient</a> levels and <a href="/wiki/Human" title="Human">human</a> and <a href="/wiki/Animal_husbandry" title="Animal husbandry">animal</a> responses. In this way, the <a href="/wiki/Parameter" title="Parameter">parameter</a> σ may be used to calculate nutrient response relationship.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the field of <a href="/wiki/Ballistics" title="Ballistics">ballistics</a>, the Rayleigh distribution is used for calculating the <a href="/wiki/Circular_error_probable" title="Circular error probable">circular error probable</a>—a measure of a gun's precision. </p><p>In <a href="/wiki/Physical_oceanography" title="Physical oceanography">physical oceanography</a>, the distribution of <a href="/wiki/Significant_wave_height" title="Significant wave height">significant wave height</a> approximately follows a Rayleigh distribution.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rayleigh_distribution&amp;action=edit&amp;section=10" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Circular_error_probable" title="Circular error probable">Circular error probable</a></li> <li><a href="/wiki/Rayleigh_fading" title="Rayleigh fading">Rayleigh fading</a></li> <li><a href="/wiki/Rayleigh_mixture_distribution" title="Rayleigh mixture distribution">Rayleigh mixture distribution</a></li> <li><a href="/wiki/Rice_distribution" title="Rice distribution">Rice distribution</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rayleigh_distribution&amp;action=edit&amp;section=11" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">"The Wave Theory of Light", <i>Encyclopedic Britannica</i> 1888; "The Problem of the Random Walk", <i>Nature</i> 1905 vol.72 p.318</span> </li> <li id="cite_note-PP-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-PP_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-PP_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Papoulis, Athanasios; Pillai, S. (2001) <i>Probability, Random Variables and Stochastic Processes</i>. <style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0073660116" title="Special:BookSources/0073660116">0073660116</a>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780073660110" title="Special:BookSources/9780073660110">9780073660110</a> <sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (April 2013)">page&#160;needed</span></a></i>&#93;</sup></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRöver2011" class="citation journal cs1">Röver, C. (2011). "Student-t based filter for robust signal detection". <i>Physical Review D</i>. <b>84</b> (12): 122004. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1109.0442">1109.0442</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011PhRvD..84l2004R">2011PhRvD..84l2004R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2Fphysrevd.84.122004">10.1103/physrevd.84.122004</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+D&amp;rft.atitle=Student-t+based+filter+for+robust+signal+detection&amp;rft.volume=84&amp;rft.issue=12&amp;rft.pages=122004&amp;rft.date=2011&amp;rft_id=info%3Aarxiv%2F1109.0442&amp;rft_id=info%3Adoi%2F10.1103%2Fphysrevd.84.122004&amp;rft_id=info%3Abibcode%2F2011PhRvD..84l2004R&amp;rft.aulast=R%C3%B6ver&amp;rft.aufirst=C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARayleigh+distribution" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://archive.org/details/jresv68Dn9p1005">Siddiqui, M. M. (1964) "Statistical inference for Rayleigh distributions", <i>The Journal of Research of the National Bureau of Standards, Sec. D: Radio Science</i>, Vol. 68D, No. 9, p. 1007</a></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://nvlpubs.nist.gov/nistpubs/jres/66D/jresv66Dn2p167_A1b.pdf">Siddiqui, M. M. (1961) "Some Problems Connected With Rayleigh Distributions", <i>The Journal of Research of the National Bureau of Standards; Sec. D: Radio Propagation</i>, Vol. 66D, No. 2, p. 169</a></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20131105232146/http://home.kpn.nl/jhhogema1966/skeetn/ballist/sgs/sgs.htm#_Toc96439743">Hogema, Jeroen (2005) "Shot group statistics"</a></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSijbersden_DekkerRamanVan_Dyck1999" class="citation journal cs1">Sijbers, J.; den Dekker, A. J.; Raman, E.; Van Dyck, D. (1999). "Parameter estimation from magnitude MR images". <i>International Journal of Imaging Systems and Technology</i>. <b>10</b> (2): 109–114. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.1228">10.1.1.18.1228</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F%28sici%291098-1098%281999%2910%3A2%3C109%3A%3Aaid-ima2%3E3.0.co%3B2-r">10.1002/(sici)1098-1098(1999)10:2&#60;109::aid-ima2&#62;3.0.co&#59;2-r</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Journal+of+Imaging+Systems+and+Technology&amp;rft.atitle=Parameter+estimation+from+magnitude+MR+images&amp;rft.volume=10&amp;rft.issue=2&amp;rft.pages=109-114&amp;rft.date=1999&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.18.1228%23id-name%3DCiteSeerX&amp;rft_id=info%3Adoi%2F10.1002%2F%28sici%291098-1098%281999%2910%3A2%3C109%3A%3Aaid-ima2%3E3.0.co%3B2-r&amp;rft.aulast=Sijbers&amp;rft.aufirst=J.&amp;rft.au=den+Dekker%2C+A.+J.&amp;rft.au=Raman%2C+E.&amp;rft.au=Van+Dyck%2C+D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARayleigh+distribution" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFden_DekkerSijbers2014" class="citation journal cs1">den Dekker, A. J.; Sijbers, J. (2014). "Data distributions in magnetic resonance images: a review". <i>Physica Medica</i>. <b>30</b> (7): 725–741. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ejmp.2014.05.002">10.1016/j.ejmp.2014.05.002</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25059432">25059432</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physica+Medica&amp;rft.atitle=Data+distributions+in+magnetic+resonance+images%3A+a+review&amp;rft.volume=30&amp;rft.issue=7&amp;rft.pages=725-741&amp;rft.date=2014&amp;rft_id=info%3Adoi%2F10.1016%2Fj.ejmp.2014.05.002&amp;rft_id=info%3Apmid%2F25059432&amp;rft.aulast=den+Dekker&amp;rft.aufirst=A.+J.&amp;rft.au=Sijbers%2C+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARayleigh+distribution" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAhmadi2017" class="citation journal cs1">Ahmadi, Hamed (2017-11-21). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5697816">"A mathematical function for the description of nutrient-response curve"</a>. <i>PLOS ONE</i>. <b>12</b> (11): e0187292. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017PLoSO..1287292A">2017PLoSO..1287292A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1371%2Fjournal.pone.0187292">10.1371/journal.pone.0187292</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1932-6203">1932-6203</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5697816">5697816</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/29161271">29161271</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=PLOS+ONE&amp;rft.atitle=A+mathematical+function+for+the+description+of+nutrient-response+curve&amp;rft.volume=12&amp;rft.issue=11&amp;rft.pages=e0187292&amp;rft.date=2017-11-21&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5697816%23id-name%3DPMC&amp;rft_id=info%3Abibcode%2F2017PLoSO..1287292A&amp;rft_id=info%3Apmid%2F29161271&amp;rft_id=info%3Adoi%2F10.1371%2Fjournal.pone.0187292&amp;rft.issn=1932-6203&amp;rft.aulast=Ahmadi&amp;rft.aufirst=Hamed&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5697816&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARayleigh+distribution" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.usna.edu/NAOE/_files/documents/Courses/EN330/Rayleigh-Probability-Distribution-Applied-to-Random-Wave-Heights.pdf">"Rayleigh Probability Distribution Applied to Random Wave Heights"</a> <span class="cs1-format">(PDF)</span>. United States Naval Academy.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Rayleigh+Probability+Distribution+Applied+to+Random+Wave+Heights&amp;rft.pub=United+States+Naval+Academy&amp;rft_id=https%3A%2F%2Fwww.usna.edu%2FNAOE%2F_files%2Fdocuments%2FCourses%2FEN330%2FRayleigh-Probability-Distribution-Applied-to-Random-Wave-Heights.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARayleigh+distribution" class="Z3988"></span></span> </li> </ol></div></div> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r886047488">.mw-parser-output .nobold{font-weight:normal}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"></div><div role="navigation" class="navbox" aria-labelledby="Probability_distributions_(list)" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Probability_distributions" title="Template:Probability distributions"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Probability_distributions" title="Template talk:Probability distributions"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Probability_distributions" title="Special:EditPage/Template:Probability distributions"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Probability_distributions_(list)" style="font-size:114%;margin:0 4em"><a href="/wiki/Probability_distribution" title="Probability distribution">Probability distributions</a> (<a href="/wiki/List_of_probability_distributions" title="List of probability distributions">list</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Discrete <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">with finite <br />support</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Benford%27s_law" title="Benford&#39;s law">Benford</a></li> <li><a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli</a></li> <li><a href="/wiki/Beta-binomial_distribution" title="Beta-binomial distribution">Beta-binomial</a></li> <li><a href="/wiki/Binomial_distribution" title="Binomial distribution">Binomial</a></li> <li><a href="/wiki/Categorical_distribution" title="Categorical distribution">Categorical</a></li> <li><a href="/wiki/Hypergeometric_distribution" title="Hypergeometric distribution">Hypergeometric</a> <ul><li><a href="/wiki/Negative_hypergeometric_distribution" title="Negative hypergeometric distribution">Negative</a></li></ul></li> <li><a href="/wiki/Poisson_binomial_distribution" title="Poisson binomial distribution">Poisson binomial</a></li> <li><a href="/wiki/Rademacher_distribution" title="Rademacher distribution">Rademacher</a></li> <li><a href="/wiki/Soliton_distribution" title="Soliton distribution">Soliton</a></li> <li><a href="/wiki/Discrete_uniform_distribution" title="Discrete uniform distribution">Discrete uniform</a></li> <li><a href="/wiki/Zipf%27s_law" title="Zipf&#39;s law">Zipf</a></li> <li><a href="/wiki/Zipf%E2%80%93Mandelbrot_law" title="Zipf–Mandelbrot law">Zipf–Mandelbrot</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">with infinite <br />support</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Beta_negative_binomial_distribution" title="Beta negative binomial distribution">Beta negative binomial</a></li> <li><a href="/wiki/Borel_distribution" title="Borel distribution">Borel</a></li> <li><a href="/wiki/Conway%E2%80%93Maxwell%E2%80%93Poisson_distribution" title="Conway–Maxwell–Poisson distribution">Conway–Maxwell–Poisson</a></li> <li><a href="/wiki/Discrete_phase-type_distribution" title="Discrete phase-type distribution">Discrete phase-type</a></li> <li><a href="/wiki/Delaporte_distribution" title="Delaporte distribution">Delaporte</a></li> <li><a href="/wiki/Extended_negative_binomial_distribution" title="Extended negative binomial distribution">Extended negative binomial</a></li> <li><a href="/wiki/Flory%E2%80%93Schulz_distribution" title="Flory–Schulz distribution">Flory–Schulz</a></li> <li><a href="/wiki/Gauss%E2%80%93Kuzmin_distribution" title="Gauss–Kuzmin distribution">Gauss–Kuzmin</a></li> <li><a href="/wiki/Geometric_distribution" title="Geometric distribution">Geometric</a></li> <li><a href="/wiki/Logarithmic_distribution" title="Logarithmic distribution">Logarithmic</a></li> <li><a href="/wiki/Mixed_Poisson_distribution" title="Mixed Poisson distribution">Mixed Poisson</a></li> <li><a href="/wiki/Negative_binomial_distribution" title="Negative binomial distribution">Negative binomial</a></li> <li><a href="/wiki/(a,b,0)_class_of_distributions" title="(a,b,0) class of distributions">Panjer</a></li> <li><a href="/wiki/Parabolic_fractal_distribution" title="Parabolic fractal distribution">Parabolic fractal</a></li> <li><a href="/wiki/Poisson_distribution" title="Poisson distribution">Poisson</a></li> <li><a href="/wiki/Skellam_distribution" title="Skellam distribution">Skellam</a></li> <li><a href="/wiki/Yule%E2%80%93Simon_distribution" title="Yule–Simon distribution">Yule–Simon</a></li> <li><a href="/wiki/Zeta_distribution" title="Zeta distribution">Zeta</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Continuous <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">supported on a <br />bounded interval</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Arcsine_distribution" title="Arcsine distribution">Arcsine</a></li> <li><a href="/wiki/ARGUS_distribution" title="ARGUS distribution">ARGUS</a></li> <li><a href="/wiki/Balding%E2%80%93Nichols_model" title="Balding–Nichols model">Balding–Nichols</a></li> <li><a href="/wiki/Bates_distribution" title="Bates distribution">Bates</a></li> <li><a href="/wiki/Beta_distribution" title="Beta distribution">Beta</a> <ul><li><a href="/wiki/Generalized_beta_distribution" title="Generalized beta distribution">Generalized</a></li></ul></li> <li><a href="/wiki/Beta_rectangular_distribution" title="Beta rectangular distribution">Beta rectangular</a></li> <li><a href="/wiki/Continuous_Bernoulli_distribution" title="Continuous Bernoulli distribution">Continuous Bernoulli</a></li> <li><a href="/wiki/Irwin%E2%80%93Hall_distribution" title="Irwin–Hall distribution">Irwin–Hall</a></li> <li><a href="/wiki/Kumaraswamy_distribution" title="Kumaraswamy distribution">Kumaraswamy</a></li> <li><a href="/wiki/Logit-normal_distribution" title="Logit-normal distribution">Logit-normal</a></li> <li><a href="/wiki/Noncentral_beta_distribution" title="Noncentral beta distribution">Noncentral beta</a></li> <li><a href="/wiki/PERT_distribution" title="PERT distribution">PERT</a></li> <li><a href="/wiki/Raised_cosine_distribution" title="Raised cosine distribution">Raised cosine</a></li> <li><a href="/wiki/Reciprocal_distribution" title="Reciprocal distribution">Reciprocal</a></li> <li><a href="/wiki/Triangular_distribution" title="Triangular distribution">Triangular</a></li> <li><a href="/wiki/U-quadratic_distribution" title="U-quadratic distribution">U-quadratic</a></li> <li><a href="/wiki/Continuous_uniform_distribution" title="Continuous uniform distribution">Uniform</a></li> <li><a href="/wiki/Wigner_semicircle_distribution" title="Wigner semicircle distribution">Wigner semicircle</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">supported on a <br />semi-infinite <br />interval</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Benini_distribution" title="Benini distribution">Benini</a></li> <li><a href="/wiki/Benktander_type_I_distribution" title="Benktander type I distribution">Benktander 1st kind</a></li> <li><a href="/wiki/Benktander_type_II_distribution" title="Benktander type II distribution">Benktander 2nd kind</a></li> <li><a href="/wiki/Beta_prime_distribution" title="Beta prime distribution">Beta prime</a></li> <li><a href="/wiki/Burr_distribution" title="Burr distribution">Burr</a></li> <li><a href="/wiki/Chi_distribution" title="Chi distribution">Chi</a></li> <li><a href="/wiki/Chi-squared_distribution" title="Chi-squared distribution">Chi-squared</a> <ul><li><a href="/wiki/Noncentral_chi-squared_distribution" title="Noncentral chi-squared distribution">Noncentral</a></li> <li><a href="/wiki/Inverse-chi-squared_distribution" title="Inverse-chi-squared distribution">Inverse</a> <ul><li><a href="/wiki/Scaled_inverse_chi-squared_distribution" title="Scaled inverse chi-squared distribution">Scaled</a></li></ul></li></ul></li> <li><a href="/wiki/Dagum_distribution" title="Dagum distribution">Dagum</a></li> <li><a href="/wiki/Davis_distribution" title="Davis distribution">Davis</a></li> <li><a href="/wiki/Erlang_distribution" title="Erlang distribution">Erlang</a> <ul><li><a href="/wiki/Hyper-Erlang_distribution" title="Hyper-Erlang distribution">Hyper</a></li></ul></li> <li><a href="/wiki/Exponential_distribution" title="Exponential distribution">Exponential</a> <ul><li><a href="/wiki/Hyperexponential_distribution" title="Hyperexponential distribution">Hyperexponential</a></li> <li><a href="/wiki/Hypoexponential_distribution" title="Hypoexponential distribution">Hypoexponential</a></li> <li><a href="/wiki/Exponential-logarithmic_distribution" title="Exponential-logarithmic distribution">Logarithmic</a></li></ul></li> <li><a href="/wiki/F-distribution" title="F-distribution"><i>F</i></a> <ul><li><a href="/wiki/Noncentral_F-distribution" title="Noncentral F-distribution">Noncentral</a></li></ul></li> <li><a href="/wiki/Folded_normal_distribution" title="Folded normal distribution">Folded normal</a></li> <li><a href="/wiki/Fr%C3%A9chet_distribution" title="Fréchet distribution">Fréchet</a></li> <li><a href="/wiki/Gamma_distribution" title="Gamma distribution">Gamma</a> <ul><li><a href="/wiki/Generalized_gamma_distribution" title="Generalized gamma distribution">Generalized</a></li> <li><a href="/wiki/Inverse-gamma_distribution" title="Inverse-gamma distribution">Inverse</a></li></ul></li> <li><a href="/wiki/Gamma/Gompertz_distribution" title="Gamma/Gompertz distribution">gamma/Gompertz</a></li> <li><a href="/wiki/Gompertz_distribution" title="Gompertz distribution">Gompertz</a> <ul><li><a href="/wiki/Shifted_Gompertz_distribution" title="Shifted Gompertz distribution">Shifted</a></li></ul></li> <li><a href="/wiki/Half-logistic_distribution" title="Half-logistic distribution">Half-logistic</a></li> <li><a href="/wiki/Half-normal_distribution" title="Half-normal distribution">Half-normal</a></li> <li><a href="/wiki/Hotelling%27s_T-squared_distribution" title="Hotelling&#39;s T-squared distribution">Hotelling's <i>T</i>-squared</a></li> <li><a href="/wiki/Inverse_Gaussian_distribution" title="Inverse Gaussian distribution">Inverse Gaussian</a> <ul><li><a href="/wiki/Generalized_inverse_Gaussian_distribution" title="Generalized inverse Gaussian distribution">Generalized</a></li></ul></li> <li><a href="/wiki/Kolmogorov%E2%80%93Smirnov_test" title="Kolmogorov–Smirnov test">Kolmogorov</a></li> <li><a href="/wiki/L%C3%A9vy_distribution" title="Lévy distribution">Lévy</a></li> <li><a href="/wiki/Log-Cauchy_distribution" title="Log-Cauchy distribution">Log-Cauchy</a></li> <li><a href="/wiki/Log-Laplace_distribution" title="Log-Laplace distribution">Log-Laplace</a></li> <li><a href="/wiki/Log-logistic_distribution" title="Log-logistic distribution">Log-logistic</a></li> <li><a href="/wiki/Log-normal_distribution" title="Log-normal distribution">Log-normal</a></li> <li><a href="/wiki/Log-t_distribution" title="Log-t distribution">Log-t</a></li> <li><a href="/wiki/Lomax_distribution" title="Lomax distribution">Lomax</a></li> <li><a href="/wiki/Matrix-exponential_distribution" title="Matrix-exponential distribution">Matrix-exponential</a></li> <li><a href="/wiki/Maxwell%E2%80%93Boltzmann_distribution" title="Maxwell–Boltzmann distribution">Maxwell–Boltzmann</a></li> <li><a href="/wiki/Maxwell%E2%80%93J%C3%BCttner_distribution" title="Maxwell–Jüttner distribution">Maxwell–Jüttner</a></li> <li><a href="/wiki/Mittag-Leffler_distribution" title="Mittag-Leffler distribution">Mittag-Leffler</a></li> <li><a href="/wiki/Nakagami_distribution" title="Nakagami distribution">Nakagami</a></li> <li><a href="/wiki/Pareto_distribution" title="Pareto distribution">Pareto</a></li> <li><a href="/wiki/Phase-type_distribution" title="Phase-type distribution">Phase-type</a></li> <li><a href="/wiki/Poly-Weibull_distribution" title="Poly-Weibull distribution">Poly-Weibull</a></li> <li><a class="mw-selflink selflink">Rayleigh</a></li> <li><a href="/wiki/Relativistic_Breit%E2%80%93Wigner_distribution" title="Relativistic Breit–Wigner distribution">Relativistic Breit–Wigner</a></li> <li><a href="/wiki/Rice_distribution" title="Rice distribution">Rice</a></li> <li><a href="/wiki/Truncated_normal_distribution" title="Truncated normal distribution">Truncated normal</a></li> <li><a href="/wiki/Type-2_Gumbel_distribution" title="Type-2 Gumbel distribution">type-2 Gumbel</a></li> <li><a href="/wiki/Weibull_distribution" title="Weibull distribution">Weibull</a> <ul><li><a href="/wiki/Discrete_Weibull_distribution" title="Discrete Weibull distribution">Discrete</a></li></ul></li> <li><a href="/wiki/Wilks%27s_lambda_distribution" title="Wilks&#39;s lambda distribution">Wilks's lambda</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">supported <br />on the whole <br />real line</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cauchy_distribution" title="Cauchy distribution">Cauchy</a></li> <li><a href="/wiki/Generalized_normal_distribution#Version_1" title="Generalized normal distribution">Exponential power</a></li> <li><a href="/wiki/Fisher%27s_z-distribution" title="Fisher&#39;s z-distribution">Fisher's <i>z</i></a></li> <li><a href="/wiki/Kaniadakis_Gaussian_distribution" title="Kaniadakis Gaussian distribution">Kaniadakis κ-Gaussian</a></li> <li><a href="/wiki/Gaussian_q-distribution" title="Gaussian q-distribution">Gaussian <i>q</i></a></li> <li><a href="/wiki/Generalized_normal_distribution" title="Generalized normal distribution">Generalized normal</a></li> <li><a href="/wiki/Generalised_hyperbolic_distribution" title="Generalised hyperbolic distribution">Generalized hyperbolic</a></li> <li><a href="/wiki/Geometric_stable_distribution" title="Geometric stable distribution">Geometric stable</a></li> <li><a href="/wiki/Gumbel_distribution" title="Gumbel distribution">Gumbel</a></li> <li><a href="/wiki/Holtsmark_distribution" title="Holtsmark distribution">Holtsmark</a></li> <li><a href="/wiki/Hyperbolic_secant_distribution" title="Hyperbolic secant distribution">Hyperbolic secant</a></li> <li><a href="/wiki/Johnson%27s_SU-distribution" title="Johnson&#39;s SU-distribution">Johnson's <i>S<sub>U</sub></i></a></li> <li><a href="/wiki/Landau_distribution" title="Landau distribution">Landau</a></li> <li><a href="/wiki/Laplace_distribution" title="Laplace distribution">Laplace</a> <ul><li><a href="/wiki/Asymmetric_Laplace_distribution" title="Asymmetric Laplace distribution">Asymmetric</a></li></ul></li> <li><a href="/wiki/Logistic_distribution" title="Logistic distribution">Logistic</a></li> <li><a href="/wiki/Noncentral_t-distribution" title="Noncentral t-distribution">Noncentral <i>t</i></a></li> <li><a href="/wiki/Normal_distribution" title="Normal distribution">Normal (Gaussian)</a></li> <li><a href="/wiki/Normal-inverse_Gaussian_distribution" title="Normal-inverse Gaussian distribution">Normal-inverse Gaussian</a></li> <li><a href="/wiki/Skew_normal_distribution" title="Skew normal distribution">Skew normal</a></li> <li><a href="/wiki/Slash_distribution" title="Slash distribution">Slash</a></li> <li><a href="/wiki/Stable_distribution" title="Stable distribution">Stable</a></li> <li><a href="/wiki/Student%27s_t-distribution" title="Student&#39;s t-distribution">Student's <i>t</i></a></li> <li><a href="/wiki/Tracy%E2%80%93Widom_distribution" title="Tracy–Widom distribution">Tracy–Widom</a></li> <li><a href="/wiki/Variance-gamma_distribution" title="Variance-gamma distribution">Variance-gamma</a></li> <li><a href="/wiki/Voigt_profile" title="Voigt profile">Voigt</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">with support <br />whose type varies</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Generalized_chi-squared_distribution" title="Generalized chi-squared distribution">Generalized chi-squared</a></li> <li><a href="/wiki/Generalized_extreme_value_distribution" title="Generalized extreme value distribution">Generalized extreme value</a></li> <li><a href="/wiki/Generalized_Pareto_distribution" title="Generalized Pareto distribution">Generalized Pareto</a></li> <li><a href="/wiki/Marchenko%E2%80%93Pastur_distribution" title="Marchenko–Pastur distribution">Marchenko–Pastur</a></li> <li><a href="/wiki/Kaniadakis_Exponential_distribution" class="mw-redirect" title="Kaniadakis Exponential distribution">Kaniadakis <i>κ</i>-exponential</a></li> <li><a href="/wiki/Kaniadakis_Gamma_distribution" title="Kaniadakis Gamma distribution">Kaniadakis <i>κ</i>-Gamma</a></li> <li><a href="/wiki/Kaniadakis_Weibull_distribution" title="Kaniadakis Weibull distribution">Kaniadakis <i>κ</i>-Weibull</a></li> <li><a href="/wiki/Kaniadakis_Logistic_distribution" class="mw-redirect" title="Kaniadakis Logistic distribution">Kaniadakis <i>κ</i>-Logistic</a></li> <li><a href="/wiki/Kaniadakis_Erlang_distribution" title="Kaniadakis Erlang distribution">Kaniadakis <i>κ</i>-Erlang</a></li> <li><a href="/wiki/Q-exponential_distribution" title="Q-exponential distribution"><i>q</i>-exponential</a></li> <li><a href="/wiki/Q-Gaussian_distribution" title="Q-Gaussian distribution"><i>q</i>-Gaussian</a></li> <li><a href="/wiki/Q-Weibull_distribution" title="Q-Weibull distribution"><i>q</i>-Weibull</a></li> <li><a href="/wiki/Shifted_log-logistic_distribution" title="Shifted log-logistic distribution">Shifted log-logistic</a></li> <li><a href="/wiki/Tukey_lambda_distribution" title="Tukey lambda distribution">Tukey lambda</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Mixed <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">continuous-<br />discrete</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Rectified_Gaussian_distribution" title="Rectified Gaussian distribution">Rectified Gaussian</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Joint_probability_distribution" title="Joint probability distribution">Multivariate <br />(joint)</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="nobold"><i>Discrete: </i></span></li> <li><a href="/wiki/Ewens%27s_sampling_formula" title="Ewens&#39;s sampling formula">Ewens</a></li> <li><a href="/wiki/Multinomial_distribution" title="Multinomial distribution">Multinomial</a> <ul><li><a href="/wiki/Dirichlet-multinomial_distribution" title="Dirichlet-multinomial distribution">Dirichlet</a></li> <li><a href="/wiki/Negative_multinomial_distribution" title="Negative multinomial distribution">Negative</a></li></ul></li> <li><span class="nobold"><i>Continuous: </i></span></li> <li><a href="/wiki/Dirichlet_distribution" title="Dirichlet distribution">Dirichlet</a> <ul><li><a href="/wiki/Generalized_Dirichlet_distribution" title="Generalized Dirichlet distribution">Generalized</a></li></ul></li> <li><a href="/wiki/Multivariate_Laplace_distribution" title="Multivariate Laplace distribution">Multivariate Laplace</a></li> <li><a href="/wiki/Multivariate_normal_distribution" title="Multivariate normal distribution">Multivariate normal</a></li> <li><a href="/wiki/Multivariate_stable_distribution" title="Multivariate stable distribution">Multivariate stable</a></li> <li><a href="/wiki/Multivariate_t-distribution" title="Multivariate t-distribution">Multivariate <i>t</i></a></li> <li><a href="/wiki/Normal-gamma_distribution" title="Normal-gamma distribution">Normal-gamma</a> <ul><li><a href="/wiki/Normal-inverse-gamma_distribution" title="Normal-inverse-gamma distribution">Inverse</a></li></ul></li> <li><span class="nobold"><i><a href="/wiki/Random_matrix" title="Random matrix">Matrix-valued: </a></i></span></li> <li><a href="/wiki/Lewandowski-Kurowicka-Joe_distribution" title="Lewandowski-Kurowicka-Joe distribution">LKJ</a></li> <li><a href="/wiki/Matrix_normal_distribution" title="Matrix normal distribution">Matrix normal</a></li> <li><a href="/wiki/Matrix_t-distribution" title="Matrix t-distribution">Matrix <i>t</i></a></li> <li><a href="/wiki/Matrix_gamma_distribution" title="Matrix gamma distribution">Matrix gamma</a> <ul><li><a href="/wiki/Inverse_matrix_gamma_distribution" title="Inverse matrix gamma distribution">Inverse</a></li></ul></li> <li><a href="/wiki/Wishart_distribution" title="Wishart distribution">Wishart</a> <ul><li><a href="/wiki/Normal-Wishart_distribution" title="Normal-Wishart distribution">Normal</a></li> <li><a href="/wiki/Inverse-Wishart_distribution" title="Inverse-Wishart distribution">Inverse</a></li> <li><a href="/wiki/Normal-inverse-Wishart_distribution" title="Normal-inverse-Wishart distribution">Normal-inverse</a></li> <li><a href="/wiki/Complex_Wishart_distribution" title="Complex Wishart distribution">Complex</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Directional_statistics" title="Directional statistics">Directional</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <dl><dt><span class="nobold"><i>Univariate (circular) <a href="/wiki/Directional_statistics" title="Directional statistics">directional</a></i></span></dt> <dd><a href="/wiki/Circular_uniform_distribution" title="Circular uniform distribution">Circular uniform</a></dd> <dd><a href="/wiki/Von_Mises_distribution" title="Von Mises distribution">Univariate von Mises</a></dd> <dd><a href="/wiki/Wrapped_normal_distribution" title="Wrapped normal distribution">Wrapped normal</a></dd> <dd><a href="/wiki/Wrapped_Cauchy_distribution" title="Wrapped Cauchy distribution">Wrapped Cauchy</a></dd> <dd><a href="/wiki/Wrapped_exponential_distribution" title="Wrapped exponential distribution">Wrapped exponential</a></dd> <dd><a href="/wiki/Wrapped_asymmetric_Laplace_distribution" title="Wrapped asymmetric Laplace distribution">Wrapped asymmetric Laplace</a></dd> <dd><a href="/wiki/Wrapped_L%C3%A9vy_distribution" title="Wrapped Lévy distribution">Wrapped Lévy</a></dd> <dt><span class="nobold"><i>Bivariate (spherical)</i></span></dt> <dd><a href="/wiki/Kent_distribution" title="Kent distribution">Kent</a></dd> <dt><span class="nobold"><i>Bivariate (toroidal)</i></span></dt> <dd><a href="/wiki/Bivariate_von_Mises_distribution" title="Bivariate von Mises distribution">Bivariate von Mises</a></dd> <dt><span class="nobold"><i>Multivariate</i></span></dt> <dd><a href="/wiki/Von_Mises%E2%80%93Fisher_distribution" title="Von Mises–Fisher distribution">von Mises–Fisher</a></dd> <dd><a href="/wiki/Bingham_distribution" title="Bingham distribution">Bingham</a></dd></dl> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Degenerate_distribution" title="Degenerate distribution">Degenerate</a> <br />and <a href="/wiki/Singular_distribution" title="Singular distribution">singular</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <dl><dt><span class="nobold"><i>Degenerate</i></span></dt> <dd><a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a></dd> <dt><span class="nobold"><i>Singular</i></span></dt> <dd><a href="/wiki/Cantor_distribution" title="Cantor distribution">Cantor</a></dd></dl> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Families</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Circular_distribution" title="Circular distribution">Circular</a></li> <li><a href="/wiki/Compound_Poisson_distribution" title="Compound Poisson distribution">Compound Poisson</a></li> <li><a href="/wiki/Elliptical_distribution" title="Elliptical distribution">Elliptical</a></li> <li><a href="/wiki/Exponential_family" title="Exponential family">Exponential</a></li> <li><a href="/wiki/Natural_exponential_family" title="Natural exponential family">Natural exponential</a></li> <li><a href="/wiki/Location%E2%80%93scale_family" title="Location–scale family">Location–scale</a></li> <li><a href="/wiki/Maximum_entropy_probability_distribution" title="Maximum entropy probability distribution">Maximum entropy</a></li> <li><a href="/wiki/Mixture_distribution" title="Mixture distribution">Mixture</a></li> <li><a href="/wiki/Pearson_distribution" title="Pearson distribution">Pearson</a></li> <li><a href="/wiki/Tweedie_distribution" title="Tweedie distribution">Tweedie</a></li> <li><a href="/wiki/Wrapped_distribution" title="Wrapped distribution">Wrapped</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Probability_distributions" title="Category:Probability distributions">Category</a></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <a href="https://commons.wikimedia.org/wiki/Category:Probability_distributions" class="extiw" title="commons:Category:Probability distributions">Commons</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐2z5zb Cached time: 20241122140845 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.555 seconds Real time usage: 0.887 seconds Preprocessor visited node count: 2752/1000000 Post‐expand include size: 91043/2097152 bytes Template argument size: 3573/2097152 bytes Highest expansion depth: 19/100 Expensive parser function count: 4/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 43452/5000000 bytes Lua time usage: 0.266/10.000 seconds Lua memory usage: 6749355/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 521.649 1 -total 35.72% 186.337 1 Template:Reflist 19.05% 99.382 4 Template:Navbox 19.03% 99.255 1 Template:ProbDistributions 17.11% 89.250 4 Template:Cite_journal 13.95% 72.753 1 Template:Short_description 9.44% 49.258 2 Template:Isbn 8.06% 42.050 2 Template:Pagetype 7.83% 40.852 1 Template:Probability_distribution 7.30% 38.082 2 Template:Catalog_lookup_link --> <!-- Saved in parser cache with key enwiki:pcache:idhash:262296-0!canonical and timestamp 20241122140845 and revision id 1235639507. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Rayleigh_distribution&amp;oldid=1235639507">https://en.wikipedia.org/w/index.php?title=Rayleigh_distribution&amp;oldid=1235639507</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Continuous_distributions" title="Category:Continuous distributions">Continuous distributions</a></li><li><a href="/wiki/Category:Exponential_family_distributions" title="Category:Exponential family distributions">Exponential family distributions</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Wikipedia_articles_needing_page_number_citations_from_April_2013" title="Category:Wikipedia articles needing page number citations from April 2013">Wikipedia articles needing page number citations from April 2013</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_April_2013" title="Category:Articles with unsourced statements from April 2013">Articles with unsourced statements from April 2013</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 20 July 2024, at 11:03<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Rayleigh_distribution&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-qzp9h","wgBackendResponseTime":122,"wgPageParseReport":{"limitreport":{"cputime":"0.555","walltime":"0.887","ppvisitednodes":{"value":2752,"limit":1000000},"postexpandincludesize":{"value":91043,"limit":2097152},"templateargumentsize":{"value":3573,"limit":2097152},"expansiondepth":{"value":19,"limit":100},"expensivefunctioncount":{"value":4,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":43452,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 521.649 1 -total"," 35.72% 186.337 1 Template:Reflist"," 19.05% 99.382 4 Template:Navbox"," 19.03% 99.255 1 Template:ProbDistributions"," 17.11% 89.250 4 Template:Cite_journal"," 13.95% 72.753 1 Template:Short_description"," 9.44% 49.258 2 Template:Isbn"," 8.06% 42.050 2 Template:Pagetype"," 7.83% 40.852 1 Template:Probability_distribution"," 7.30% 38.082 2 Template:Catalog_lookup_link"]},"scribunto":{"limitreport-timeusage":{"value":"0.266","limit":"10.000"},"limitreport-memusage":{"value":6749355,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-2z5zb","timestamp":"20241122140845","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Rayleigh distribution","url":"https:\/\/en.wikipedia.org\/wiki\/Rayleigh_distribution","sameAs":"http:\/\/www.wikidata.org\/entity\/Q637150","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q637150","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-07-06T18:55:17Z","dateModified":"2024-07-20T11:03:01Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/6\/61\/Rayleigh_distributionPDF.svg","headline":"probability distribution"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10