CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 60 results for author: <span class="mathjax">Arneodo, F</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Arneodo%2C+F">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Arneodo, F"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Arneodo%2C+F&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Arneodo, F"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Arneodo%2C+F&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Arneodo%2C+F&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Arneodo%2C+F&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08778">arXiv:2409.08778</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.08778">pdf</a>, <a href="https://arxiv.org/format/2409.08778">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Ch%C3%A1vez%2C+A+P+C">A. P. Cimental Ch谩vez</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&amp;query=Conrad%2C+J">J. Conrad</a>, <a href="/search/physics?searchtype=author&amp;query=Cuenca-Garc%C3%ADa%2C+J+J">J. J. Cuenca-Garc铆a</a> , et al. (143 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08778v1-abstract-short" style="display: inline;"> The XENONnT experiment, located at the INFN Laboratori Nazionali del Gran Sasso, Italy, features a 5.9 tonne liquid xenon time projection chamber surrounded by an instrumented neutron veto, all of which is housed within a muon veto water tank. Due to extensive shielding and advanced purification to mitigate natural radioactivity, an exceptionally low background level of (15.8 $\pm$ 1.3) events/(to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08778v1-abstract-full').style.display = 'inline'; document.getElementById('2409.08778v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08778v1-abstract-full" style="display: none;"> The XENONnT experiment, located at the INFN Laboratori Nazionali del Gran Sasso, Italy, features a 5.9 tonne liquid xenon time projection chamber surrounded by an instrumented neutron veto, all of which is housed within a muon veto water tank. Due to extensive shielding and advanced purification to mitigate natural radioactivity, an exceptionally low background level of (15.8 $\pm$ 1.3) events/(tonne$\cdot$year$\cdot$keV) in the (1, 30) keV region is reached in the inner part of the TPC. XENONnT is thus sensitive to a wide range of rare phenomena related to Dark Matter and Neutrino interactions, both within and beyond the Standard Model of particle physics, with a focus on the direct detection of Dark Matter in the form of weakly interacting massive particles (WIMPs). From May 2021 to December 2021, XENONnT accumulated data in rare-event search mode with a total exposure of one tonne $\cdot$ year. This paper provides a detailed description of the signal reconstruction methods, event selection procedure, and detector response calibration, as well as an overview of the detector performance in this time frame. This work establishes the foundational framework for the `blind analysis&#39; methodology we are using when reporting XENONnT physics results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08778v1-abstract-full').style.display = 'none'; document.getElementById('2409.08778v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 23 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02877">arXiv:2408.02877</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02877">pdf</a>, <a href="https://arxiv.org/format/2408.02877">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.191002">10.1103/PhysRevLett.133.191002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Indication of Solar $^8$B Neutrinos via Coherent Elastic Neutrino-Nucleus Scattering with XENONnT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Ch%C3%A1vez%2C+A+P+C">A. P. Cimental Ch谩vez</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&amp;query=Conrad%2C+J">J. Conrad</a>, <a href="/search/physics?searchtype=author&amp;query=Cuenca-Garc%C3%ADa%2C+J+J">J. J. Cuenca-Garc铆a</a> , et al. (142 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02877v2-abstract-short" style="display: inline;"> We present the first measurement of nuclear recoils from solar $^8$B neutrinos via coherent elastic neutrino-nucleus scattering with the XENONnT dark matter experiment. The central detector of XENONnT is a low-background, two-phase time projection chamber with a 5.9 t sensitive liquid xenon target. A blind analysis with an exposure of 3.51 t$\times$yr resulted in 37 observed events above 0.5 keV,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02877v2-abstract-full').style.display = 'inline'; document.getElementById('2408.02877v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02877v2-abstract-full" style="display: none;"> We present the first measurement of nuclear recoils from solar $^8$B neutrinos via coherent elastic neutrino-nucleus scattering with the XENONnT dark matter experiment. The central detector of XENONnT is a low-background, two-phase time projection chamber with a 5.9 t sensitive liquid xenon target. A blind analysis with an exposure of 3.51 t$\times$yr resulted in 37 observed events above 0.5 keV, with ($26.4^{+1.4}_{-1.3}$) events expected from backgrounds. The background-only hypothesis is rejected with a statistical significance of 2.73 $蟽$. The measured $^8$B solar neutrino flux of $(4.7_{-2.3}^{+3.6})\times 10^6 \mathrm{cm}^{-2}\mathrm{s}^{-1}$ is consistent with results from the Sudbury Neutrino Observatory. The measured neutrino flux-weighted CE$谓$NS cross section on Xe of $(1.1^{+0.8}_{-0.5})\times10^{-39} \mathrm{cm}^2$ is consistent with the Standard Model prediction. This is the first direct measurement of nuclear recoils from solar neutrinos with a dark matter detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02877v2-abstract-full').style.display = 'none'; document.getElementById('2408.02877v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 191002 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13638">arXiv:2406.13638</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.13638">pdf</a>, <a href="https://arxiv.org/format/2406.13638">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> XENONnT WIMP Search: Signal &amp; Background Modeling and Statistical Inference </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Ch%C3%A1vez%2C+A+P+C">A. P. Cimental Ch谩vez</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&amp;query=Conrad%2C+J">J. Conrad</a>, <a href="/search/physics?searchtype=author&amp;query=Cuenca-Garc%C3%ADa%2C+J+J">J. J. Cuenca-Garc铆a</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Andrea%2C+V">V. D&#39;Andrea</a> , et al. (139 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13638v1-abstract-short" style="display: inline;"> The XENONnT experiment searches for weakly-interacting massive particle (WIMP) dark matter scattering off a xenon nucleus. In particular, XENONnT uses a dual-phase time projection chamber with a 5.9-tonne liquid xenon target, detecting both scintillation and ionization signals to reconstruct the energy, position, and type of recoil. A blind search for nuclear recoil WIMPs with an exposure of 1.1 t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13638v1-abstract-full').style.display = 'inline'; document.getElementById('2406.13638v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13638v1-abstract-full" style="display: none;"> The XENONnT experiment searches for weakly-interacting massive particle (WIMP) dark matter scattering off a xenon nucleus. In particular, XENONnT uses a dual-phase time projection chamber with a 5.9-tonne liquid xenon target, detecting both scintillation and ionization signals to reconstruct the energy, position, and type of recoil. A blind search for nuclear recoil WIMPs with an exposure of 1.1 tonne-years yielded no signal excess over background expectations, from which competitive exclusion limits were derived on WIMP-nucleon elastic scatter cross sections, for WIMP masses ranging from 6 GeV/$c^2$ up to the TeV/$c^2$ scale. This work details the modeling and statistical methods employed in this search. By means of calibration data, we model the detector response, which is then used to derive background and signal models. The construction and validation of these models is discussed, alongside additional purely data-driven backgrounds. We also describe the statistical inference framework, including the definition of the likelihood function and the construction of confidence intervals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13638v1-abstract-full').style.display = 'none'; document.getElementById('2406.13638v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.14878">arXiv:2403.14878</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.14878">pdf</a>, <a href="https://arxiv.org/format/2403.14878">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Offline tagging of radon-induced backgrounds in XENON1T and applicability to other liquid xenon detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Brookes%2C+E+J">E. J. Brookes</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Bui%2C+T+K">T. K. Bui</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Chavez%2C+A+P+C">A. P. Cimental Chavez</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&amp;query=Conrad%2C+J">J. Conrad</a> , et al. (142 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.14878v2-abstract-short" style="display: inline;"> This paper details the first application of a software tagging algorithm to reduce radon-induced backgrounds in liquid noble element time projection chambers, such as XENON1T and XENONnT. The convection velocity field in XENON1T was mapped out using $^{222}\text{Rn}$ and $^{218}\text{Po}$ events, and the root-mean-square convection speed was measured to be $0.30 \pm 0.01$ cm/s. Given this velocity&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.14878v2-abstract-full').style.display = 'inline'; document.getElementById('2403.14878v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.14878v2-abstract-full" style="display: none;"> This paper details the first application of a software tagging algorithm to reduce radon-induced backgrounds in liquid noble element time projection chambers, such as XENON1T and XENONnT. The convection velocity field in XENON1T was mapped out using $^{222}\text{Rn}$ and $^{218}\text{Po}$ events, and the root-mean-square convection speed was measured to be $0.30 \pm 0.01$ cm/s. Given this velocity field, $^{214}\text{Pb}$ background events can be tagged when they are followed by $^{214}\text{Bi}$ and $^{214}\text{Po}$ decays, or preceded by $^{218}\text{Po}$ decays. This was achieved by evolving a point cloud in the direction of a measured convection velocity field, and searching for $^{214}\text{Bi}$ and $^{214}\text{Po}$ decays or $^{218}\text{Po}$ decays within a volume defined by the point cloud. In XENON1T, this tagging system achieved a $^{214}\text{Pb}$ background reduction of $6.2^{+0.4}_{-0.9}\%$ with an exposure loss of $1.8\pm 0.2 \%$, despite the timescales of convection being smaller than the relevant decay times. We show that the performance can be improved in XENONnT, and that the performance of such a software-tagging approach can be expected to be further improved in a diffusion-limited scenario. Finally, a similar method might be useful to tag the cosmogenic $^{137}\text{Xe}$ background, which is relevant to the search for neutrinoless double-beta decay. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.14878v2-abstract-full').style.display = 'none'; document.getElementById('2403.14878v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 19 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.10446">arXiv:2402.10446</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.10446">pdf</a>, <a href="https://arxiv.org/format/2402.10446">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The XENONnT Dark Matter Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Brookes%2C+E+J">E. J. Brookes</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Bui%2C+T+K">T. K. Bui</a> , et al. (170 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.10446v1-abstract-short" style="display: inline;"> The multi-staged XENON program at INFN Laboratori Nazionali del Gran Sasso aims to detect dark matter with two-phase liquid xenon time projection chambers of increasing size and sensitivity. The XENONnT experiment is the latest detector in the program, planned to be an upgrade of its predecessor XENON1T. It features an active target of 5.9 tonnes of cryogenic liquid xenon (8.5 tonnes total mass in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10446v1-abstract-full').style.display = 'inline'; document.getElementById('2402.10446v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.10446v1-abstract-full" style="display: none;"> The multi-staged XENON program at INFN Laboratori Nazionali del Gran Sasso aims to detect dark matter with two-phase liquid xenon time projection chambers of increasing size and sensitivity. The XENONnT experiment is the latest detector in the program, planned to be an upgrade of its predecessor XENON1T. It features an active target of 5.9 tonnes of cryogenic liquid xenon (8.5 tonnes total mass in cryostat). The experiment is expected to extend the sensitivity to WIMP dark matter by more than an order of magnitude compared to XENON1T, thanks to the larger active mass and the significantly reduced background, improved by novel systems such as a radon removal plant and a neutron veto. This article describes the XENONnT experiment and its sub-systems in detail and reports on the detector performance during the first science run. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10446v1-abstract-full').style.display = 'none'; document.getElementById('2402.10446v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 19 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.03073">arXiv:2402.03073</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.03073">pdf</a>, <a href="https://arxiv.org/format/2402.03073">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Dark counts in optical superconducting transition-edge sensors for rare-event searches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Manenti%2C+L">Laura Manenti</a>, <a href="/search/physics?searchtype=author&amp;query=Pepe%2C+C">Carlo Pepe</a>, <a href="/search/physics?searchtype=author&amp;query=Sarnoff%2C+I">Isaac Sarnoff</a>, <a href="/search/physics?searchtype=author&amp;query=Ibrayev%2C+T">Tengiz Ibrayev</a>, <a href="/search/physics?searchtype=author&amp;query=Oikonomou%2C+P">Panagiotis Oikonomou</a>, <a href="/search/physics?searchtype=author&amp;query=Knyazev%2C+A">Artem Knyazev</a>, <a href="/search/physics?searchtype=author&amp;query=Monticone%2C+E">Eugenio Monticone</a>, <a href="/search/physics?searchtype=author&amp;query=Garrone%2C+H">Hobey Garrone</a>, <a href="/search/physics?searchtype=author&amp;query=Alder%2C+F">Fiona Alder</a>, <a href="/search/physics?searchtype=author&amp;query=Fawwaz%2C+O">Osama Fawwaz</a>, <a href="/search/physics?searchtype=author&amp;query=Millar%2C+A+J">Alexander J. Millar</a>, <a href="/search/physics?searchtype=author&amp;query=Mor%C3%A5%2C+K+D">Knut Dundas Mor氓</a>, <a href="/search/physics?searchtype=author&amp;query=Shams%2C+H">Hamad Shams</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">Francesco Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Rajteri%2C+M">Mauro Rajteri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.03073v4-abstract-short" style="display: inline;"> Superconducting transition-edge sensors (TESs) are a type of quantum sensor known for its high single-photon detection efficiency and low background. This makes them ideal for particle physics experiments searching for rare events. In this work, we present a comprehensive characterization of the background in optical TESs, distinguishing three types of events: electrical-noise, high-energy, and ph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.03073v4-abstract-full').style.display = 'inline'; document.getElementById('2402.03073v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.03073v4-abstract-full" style="display: none;"> Superconducting transition-edge sensors (TESs) are a type of quantum sensor known for its high single-photon detection efficiency and low background. This makes them ideal for particle physics experiments searching for rare events. In this work, we present a comprehensive characterization of the background in optical TESs, distinguishing three types of events: electrical-noise, high-energy, and photonlike events. We introduce computational methods to automate the classification of events. For the first time, we experimentally verify and simulate the source of the high-energy events. We also isolate the photonlike events, the expected signal in dielectric haloscopes searching for dark matter dark photons, and achieve a record-low photonlike dark-count rate of $3.6 \times 10^{-4}$ Hz in the 0.8-3.2 eV energy range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.03073v4-abstract-full').style.display = 'none'; document.getElementById('2402.03073v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.12654">arXiv:2310.12654</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.12654">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Optimizing a Broad Energy High Purity Germanium (BEGe) Detector Operated at Shallow Depth in Abu Dhabi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fawwaz%2C+O">O. Fawwaz</a>, <a href="/search/physics?searchtype=author&amp;query=Shams%2C+H">H. Shams</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Giovanni%2C+A">A. Di Giovanni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.12654v1-abstract-short" style="display: inline;"> In this work we present the characterization of a Broad Energy Germanium (BEGe) type High Purity Germanium (HPGe) detector, with a carbon fiber entrance window thickness of 0.6 mm and an active area of 6305 mm2, operated at shallow depth (~ 8m) in Abu Dhabi, UAE. A 1.6 keV Full Width Half Maximum (FWHM) was obtained for the 662 keV peak of 137Cs. A muon veto was applied, reducing the background by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12654v1-abstract-full').style.display = 'inline'; document.getElementById('2310.12654v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.12654v1-abstract-full" style="display: none;"> In this work we present the characterization of a Broad Energy Germanium (BEGe) type High Purity Germanium (HPGe) detector, with a carbon fiber entrance window thickness of 0.6 mm and an active area of 6305 mm2, operated at shallow depth (~ 8m) in Abu Dhabi, UAE. A 1.6 keV Full Width Half Maximum (FWHM) was obtained for the 662 keV peak of 137Cs. A muon veto was applied, reducing the background by 8 % (for energies greater than 100 keV). Flushing the volume around the detector endcap with nitrogen gas, to remove radon and thus its progeny, further reduced the background by ~3 %. A thorough analysis for the shaping filter parameters showed that the detector has better resolution at low rise-time values (2 - 5 us) especially for low energy gamma (&lt;600keV), keeping the flattop value fixed at 1.1 us. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12654v1-abstract-full').style.display = 'none'; document.getElementById('2310.12654v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.11996">arXiv:2309.11996</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.11996">pdf</a>, <a href="https://arxiv.org/format/2309.11996">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-12296-y">10.1140/epjc/s10052-023-12296-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and performance of the field cage for the XENONnT experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Brookes%2C+E+J">E. J. Brookes</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Bui%2C+T+K">T. K. Bui</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a> , et al. (139 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.11996v1-abstract-short" style="display: inline;"> The precision in reconstructing events detected in a dual-phase time projection chamber depends on an homogeneous and well understood electric field within the liquid target. In the XENONnT TPC the field homogeneity is achieved through a double-array field cage, consisting of two nested arrays of field shaping rings connected by an easily accessible resistor chain. Rather than being connected to t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.11996v1-abstract-full').style.display = 'inline'; document.getElementById('2309.11996v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.11996v1-abstract-full" style="display: none;"> The precision in reconstructing events detected in a dual-phase time projection chamber depends on an homogeneous and well understood electric field within the liquid target. In the XENONnT TPC the field homogeneity is achieved through a double-array field cage, consisting of two nested arrays of field shaping rings connected by an easily accessible resistor chain. Rather than being connected to the gate electrode, the topmost field shaping ring is independently biased, adding a degree of freedom to tune the electric field during operation. Two-dimensional finite element simulations were used to optimize the field cage, as well as its operation. Simulation results were compared to ${}^{83m}\mathrm{Kr}$ calibration data. This comparison indicates an accumulation of charge on the panels of the TPC which is constant over time, as no evolution of the reconstructed position distribution of events is observed. The simulated electric field was then used to correct the charge signal for the field dependence of the charge yield. This correction resolves the inconsistent measurement of the drift electron lifetime when using different calibrations sources and different field cage tuning voltages. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.11996v1-abstract-full').style.display = 'none'; document.getElementById('2309.11996v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 84, 138 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.11871">arXiv:2306.11871</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.11871">pdf</a>, <a href="https://arxiv.org/format/2306.11871">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Search for events in XENON1T associated with Gravitational Waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Anto艅 Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Brookes%2C+E+J">E. J. Brookes</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Bui%2C+T+K">T. K. Bui</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a> , et al. (138 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.11871v2-abstract-short" style="display: inline;"> We perform a blind search for particle signals in the XENON1T dark matter detector that occur close in time to gravitational wave signals in the LIGO and Virgo observatories. No particle signal is observed in the nuclear recoil, electronic recoil, CE$谓$NS, and S2-only channels within $\pm$ 500 seconds of observations of the gravitational wave signals GW170104, GW170729, GW170817, GW170818, and GW1&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11871v2-abstract-full').style.display = 'inline'; document.getElementById('2306.11871v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.11871v2-abstract-full" style="display: none;"> We perform a blind search for particle signals in the XENON1T dark matter detector that occur close in time to gravitational wave signals in the LIGO and Virgo observatories. No particle signal is observed in the nuclear recoil, electronic recoil, CE$谓$NS, and S2-only channels within $\pm$ 500 seconds of observations of the gravitational wave signals GW170104, GW170729, GW170817, GW170818, and GW170823. We use this null result to constrain mono-energetic neutrinos and Beyond Standard Model particles emitted in the closest coalescence GW170817, a binary neutron star merger. We set new upper limits on the fluence (time-integrated flux) of coincident neutrinos down to 17 keV at 90% confidence level. Furthermore, we constrain the product of coincident fluence and cross section of Beyond Standard Model particles to be less than $10^{-29}$ cm$^2$/cm$^2$ in the [5.5-210] keV energy range at 90% confidence level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11871v2-abstract-full').style.display = 'none'; document.getElementById('2306.11871v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.05434">arXiv:2305.05434</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.05434">pdf</a>, <a href="https://arxiv.org/format/2305.05434">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> RAAD: LIGHT-1 CubeSat&#39;s Payload for the Detection of Terrestrial Gamma-Ray Flashes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Di+Giovanni%2C+A">A. Di Giovanni</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Qasim%2C+A+A">A. Al Qasim</a>, <a href="/search/physics?searchtype=author&amp;query=Alblooshi%2C+H">H. Alblooshi</a>, <a href="/search/physics?searchtype=author&amp;query=AlKhouri%2C+F">F. AlKhouri</a>, <a href="/search/physics?searchtype=author&amp;query=Alkindi%2C+L">L. Alkindi</a>, <a href="/search/physics?searchtype=author&amp;query=AlMannei%2C+A">A. AlMannei</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Conicella%2C+V">V. Conicella</a>, <a href="/search/physics?searchtype=author&amp;query=Fawwaz%2C+O">O. Fawwaz</a>, <a href="/search/physics?searchtype=author&amp;query=Franchi%2C+G">G. Franchi</a>, <a href="/search/physics?searchtype=author&amp;query=Kalos%2C+S">S. Kalos</a>, <a href="/search/physics?searchtype=author&amp;query=Oikonomou%2C+P">P. Oikonomou</a>, <a href="/search/physics?searchtype=author&amp;query=Perillo%2C+L">L. Perillo</a>, <a href="/search/physics?searchtype=author&amp;query=Pittori%2C+C">C. Pittori</a>, <a href="/search/physics?searchtype=author&amp;query=Roberts%2C+M+S">M. S. Roberts</a>, <a href="/search/physics?searchtype=author&amp;query=Torres%2C+R">R. Torres</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.05434v2-abstract-short" style="display: inline;"> The Rapid Acquisition Atmospheric Detector (RAAD), onboard the LIGHT-1 3U CubeSat, detects photons between hard X-rays and soft gamma-rays, in order to identify and characterize Terrestrial Gamma Ray Flashes (TGFs). Three detector configurations are tested, making use of Cerium Bromide and Lanthanum BromoChloride scintillating crystals coupled to photomultiplier tubes or Multi-Pixel Photon Counter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05434v2-abstract-full').style.display = 'inline'; document.getElementById('2305.05434v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.05434v2-abstract-full" style="display: none;"> The Rapid Acquisition Atmospheric Detector (RAAD), onboard the LIGHT-1 3U CubeSat, detects photons between hard X-rays and soft gamma-rays, in order to identify and characterize Terrestrial Gamma Ray Flashes (TGFs). Three detector configurations are tested, making use of Cerium Bromide and Lanthanum BromoChloride scintillating crystals coupled to photomultiplier tubes or Multi-Pixel Photon Counters, in order to identify the optimal combination for TGF detection. High timing resolution, a short trigger window, and the short decay time of its electronics allow RAAD to perform accurate measurements of prompt, transient events. Here we describe the overview of the detection concept, the development of the front-end acquisition electronics, as well as the ground testing and simulation the payload underwent prior to its launch on December 21st, 2021. We further present an analysis of the detector&#39;s in-orbit system behavior and some preliminary results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05434v2-abstract-full').style.display = 'none'; document.getElementById('2305.05434v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.10931">arXiv:2304.10931</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.10931">pdf</a>, <a href="https://arxiv.org/format/2304.10931">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.261002">10.1103/PhysRevLett.130.261002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Searching for Heavy Dark Matter near the Planck Mass with XENON1T </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Brookes%2C+E+J">E. J. Brookes</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Bui%2C+T+K">T. K. Bui</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a> , et al. (142 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.10931v1-abstract-short" style="display: inline;"> Multiple viable theoretical models predict heavy dark matter particles with a mass close to the Planck mass, a range relatively unexplored by current experimental measurements. We use 219.4 days of data collected with the XENON1T experiment to conduct a blind search for signals from Multiply-Interacting Massive Particles (MIMPs). Their unique track signature allows a targeted analysis with only 0.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10931v1-abstract-full').style.display = 'inline'; document.getElementById('2304.10931v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.10931v1-abstract-full" style="display: none;"> Multiple viable theoretical models predict heavy dark matter particles with a mass close to the Planck mass, a range relatively unexplored by current experimental measurements. We use 219.4 days of data collected with the XENON1T experiment to conduct a blind search for signals from Multiply-Interacting Massive Particles (MIMPs). Their unique track signature allows a targeted analysis with only 0.05 expected background events from muons. Following unblinding, we observe no signal candidate events. This work places strong constraints on spin-independent interactions of dark matter particles with a mass between 1$\times$10$^{12}\,$GeV/c$^2$ and 2$\times$10$^{17}\,$GeV/c$^2$. In addition, we present the first exclusion limits on spin-dependent MIMP-neutron and MIMP-proton cross-sections for dark matter particles with masses close to the Planck scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10931v1-abstract-full').style.display = 'none'; document.getElementById('2304.10931v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 130, 261002 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.14729">arXiv:2303.14729</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.14729">pdf</a>, <a href="https://arxiv.org/format/2303.14729">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.041003">10.1103/PhysRevLett.131.041003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Brookes%2C+E+J">E. J. Brookes</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Bui%2C+T+K">T. K. Bui</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+C">C. Cai</a> , et al. (141 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.14729v2-abstract-short" style="display: inline;"> We report on the first search for nuclear recoils from dark matter in the form of weakly interacting massive particles (WIMPs) with the XENONnT experiment which is based on a two-phase time projection chamber with a sensitive liquid xenon mass of $5.9$ t. During the approximately 1.1 tonne-year exposure used for this search, the intrinsic $^{85}$Kr and $^{222}$Rn concentrations in the liquid targe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14729v2-abstract-full').style.display = 'inline'; document.getElementById('2303.14729v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.14729v2-abstract-full" style="display: none;"> We report on the first search for nuclear recoils from dark matter in the form of weakly interacting massive particles (WIMPs) with the XENONnT experiment which is based on a two-phase time projection chamber with a sensitive liquid xenon mass of $5.9$ t. During the approximately 1.1 tonne-year exposure used for this search, the intrinsic $^{85}$Kr and $^{222}$Rn concentrations in the liquid target were reduced to unprecedentedly low levels, giving an electronic recoil background rate of $(15.8\pm1.3)~\mathrm{events}/(\mathrm{t\cdot y \cdot keV})$ in the region of interest. A blind analysis of nuclear recoil events with energies between $3.3$ keV and $60.5$ keV finds no significant excess. This leads to a minimum upper limit on the spin-independent WIMP-nucleon cross section of $2.58\times 10^{-47}~\mathrm{cm}^2$ for a WIMP mass of $28~\mathrm{GeV}/c^2$ at $90\%$ confidence level. Limits for spin-dependent interactions are also provided. Both the limit and the sensitivity for the full range of WIMP masses analyzed here improve on previous results obtained with the XENON1T experiment for the same exposure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14729v2-abstract-full').style.display = 'none'; document.getElementById('2303.14729v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Limit points are included in the submission file</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 131, 041003 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.11032">arXiv:2212.11032</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.11032">pdf</a>, <a href="https://arxiv.org/format/2212.11032">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/07/P07054">10.1088/1748-0221/18/07/P07054 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Triggerless Data Acquisition System of the XENONnT Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Brookes%2C+E+J">E. J. Brookes</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Bui%2C+T+K">T. K. Bui</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a> , et al. (140 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.11032v1-abstract-short" style="display: inline;"> The XENONnT detector uses the latest and largest liquid xenon-based time projection chamber (TPC) operated by the XENON Collaboration, aimed at detecting Weakly Interacting Massive Particles and conducting other rare event searches. The XENONnT data acquisition (DAQ) system constitutes an upgraded and expanded version of the XENON1T DAQ system. For its operation, it relies predominantly on commerc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11032v1-abstract-full').style.display = 'inline'; document.getElementById('2212.11032v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.11032v1-abstract-full" style="display: none;"> The XENONnT detector uses the latest and largest liquid xenon-based time projection chamber (TPC) operated by the XENON Collaboration, aimed at detecting Weakly Interacting Massive Particles and conducting other rare event searches. The XENONnT data acquisition (DAQ) system constitutes an upgraded and expanded version of the XENON1T DAQ system. For its operation, it relies predominantly on commercially available hardware accompanied by open-source and custom-developed software. The three constituent subsystems of the XENONnT detector, the TPC (main detector), muon veto, and the newly introduced neutron veto, are integrated into a single DAQ, and can be operated both independently and as a unified system. In total, the DAQ digitizes the signals of 698 photomultiplier tubes (PMTs), of which 253 from the top PMT array of the TPC are digitized twice, at $\times10$ and $\times0.5$ gain. The DAQ for the most part is a triggerless system, reading out and storing every signal that exceeds the digitization thresholds. Custom-developed software is used to process the acquired data, making it available within $\mathcal{O}\left(10\text{ s}\right)$ for live data quality monitoring and online analyses. The entire system with all the three subsystems was successfully commissioned and has been operating continuously, comfortably withstanding readout rates that exceed $\sim500$ MB/s during calibration. Livetime during normal operation exceeds $99\%$ and is $\sim90\%$ during most high-rate calibrations. The combined DAQ system has collected more than 2 PB of both calibration and science data during the commissioning of XENONnT and the first science run. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11032v1-abstract-full').style.display = 'none'; document.getElementById('2212.11032v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.14191">arXiv:2211.14191</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.14191">pdf</a>, <a href="https://arxiv.org/format/2211.14191">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-11512-z">10.1140/epjc/s10052-023-11512-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-energy Calibration of XENON1T with an Internal $^{37}$Ar Source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Bui%2C+T+K">T. K. Bui</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a> , et al. (139 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.14191v3-abstract-short" style="display: inline;"> A low-energy electronic recoil calibration of XENON1T, a dual-phase xenon time projection chamber, with an internal $^{37}$Ar source was performed. This calibration source features a 35-day half-life and provides two mono-energetic lines at 2.82 keV and 0.27 keV. The photon yield and electron yield at 2.82 keV are measured to be (32.3$\pm$0.3) photons/keV and (40.6$\pm$0.5) electrons/keV, respecti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.14191v3-abstract-full').style.display = 'inline'; document.getElementById('2211.14191v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.14191v3-abstract-full" style="display: none;"> A low-energy electronic recoil calibration of XENON1T, a dual-phase xenon time projection chamber, with an internal $^{37}$Ar source was performed. This calibration source features a 35-day half-life and provides two mono-energetic lines at 2.82 keV and 0.27 keV. The photon yield and electron yield at 2.82 keV are measured to be (32.3$\pm$0.3) photons/keV and (40.6$\pm$0.5) electrons/keV, respectively, in agreement with other measurements and with NEST predictions. The electron yield at 0.27 keV is also measured and it is (68.0$^{+6.3}_{-3.7}$) electrons/keV. The $^{37}$Ar calibration confirms that the detector is well-understood in the energy region close to the detection threshold, with the 2.82 keV line reconstructed at (2.83$\pm$0.02) keV, which further validates the model used to interpret the low-energy electronic recoil excess previously reported by XENON1T. The ability to efficiently remove argon with cryogenic distillation after the calibration proves that $^{37}$Ar can be considered as a regular calibration source for multi-tonne xenon detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.14191v3-abstract-full').style.display = 'none'; document.getElementById('2211.14191v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.07231">arXiv:2210.07231</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.07231">pdf</a>, <a href="https://arxiv.org/format/2210.07231">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-10913-w">10.1140/epjc/s10052-022-10913-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An approximate likelihood for nuclear recoil searches with XENON1T data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Cimmino%2C+B">B. Cimmino</a> , et al. (129 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.07231v1-abstract-short" style="display: inline;"> The XENON collaboration has published stringent limits on specific dark matter -nucleon recoil spectra from dark matter recoiling on the liquid xenon detector target. In this paper, we present an approximate likelihood for the XENON1T 1 tonne-year nuclear recoil search applicable to any nuclear recoil spectrum. Alongside this paper, we publish data and code to compute upper limits using the method&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07231v1-abstract-full').style.display = 'inline'; document.getElementById('2210.07231v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.07231v1-abstract-full" style="display: none;"> The XENON collaboration has published stringent limits on specific dark matter -nucleon recoil spectra from dark matter recoiling on the liquid xenon detector target. In this paper, we present an approximate likelihood for the XENON1T 1 tonne-year nuclear recoil search applicable to any nuclear recoil spectrum. Alongside this paper, we publish data and code to compute upper limits using the method we present. The approximate likelihood is constructed in bins of reconstructed energy, profiled along the signal expectation in each bin. This approach can be used to compute an approximate likelihood and therefore most statistical results for any nuclear recoil spectrum. Computing approximate results with this method is approximately three orders of magnitude faster than the likelihood used in the original publications of XENON1T, where limits were set for specific families of recoil spectra. Using this same method, we include toy Monte Carlo simulation-derived binwise likelihoods for the upcoming XENONnT experiment that can similarly be used to assess the sensitivity to arbitrary nuclear recoil signatures in its eventual 20 tonne-year exposure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07231v1-abstract-full').style.display = 'none'; document.getElementById('2210.07231v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by European Physical Journal C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.12312">arXiv:2208.12312</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.12312">pdf</a>, <a href="https://arxiv.org/format/2208.12312">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Acoustic detection potential of single minimum ionizing particles in viscous liquids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Oikonomou%2C+P">Panagiotis Oikonomou</a>, <a href="/search/physics?searchtype=author&amp;query=Manenti%2C+L">Laura Manenti</a>, <a href="/search/physics?searchtype=author&amp;query=Sarnoff%2C+I">Isaac Sarnoff</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">Francesco Arneodo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.12312v2-abstract-short" style="display: inline;"> An ionizing particle passing through a liquid generates acoustic signals via local heat deposition. We delve into modeling such acoustic signals in the case of a single particle that interacts with the liquid electromagnetically in a generic way. We present a systematic way of introducing corrections due to viscosity using a perturbative approach so that our solution is valid at large distances fr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.12312v2-abstract-full').style.display = 'inline'; document.getElementById('2208.12312v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.12312v2-abstract-full" style="display: none;"> An ionizing particle passing through a liquid generates acoustic signals via local heat deposition. We delve into modeling such acoustic signals in the case of a single particle that interacts with the liquid electromagnetically in a generic way. We present a systematic way of introducing corrections due to viscosity using a perturbative approach so that our solution is valid at large distances from the interaction point. A computational simulation framework to perform the calculations described is also provided. The methodology developed is then applied to predict the acoustic signal of relativistic muons in various liquids as a toy model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.12312v2-abstract-full').style.display = 'none'; document.getElementById('2208.12312v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures, Submitted for Publication, Calculations and Code can be found in: https://github.com/nyuad-astroparticle/LXe-Phonon</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.02309">arXiv:2203.02309</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.02309">pdf</a>, <a href="https://arxiv.org/format/2203.02309">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6471/ac841a">10.1088/1361-6471/ac841a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Aerne%2C+V">V. Aerne</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&amp;query=Akimov%2C+D+Y">D. Yu. Akimov</a>, <a href="/search/physics?searchtype=author&amp;query=Akshat%2C+J">J. Akshat</a>, <a href="/search/physics?searchtype=author&amp;query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/physics?searchtype=author&amp;query=Alder%2C+F">F. Alder</a>, <a href="/search/physics?searchtype=author&amp;query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Ames%2C+A">A. Ames</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelides%2C+N">N. Angelides</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J">J. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a> , et al. (572 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.02309v1-abstract-short" style="display: inline;"> The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for Weakly Interacting Massive Particles (WIMPs), while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neut&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02309v1-abstract-full').style.display = 'inline'; document.getElementById('2203.02309v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.02309v1-abstract-full" style="display: none;"> The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for Weakly Interacting Massive Particles (WIMPs), while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02309v1-abstract-full').style.display = 'none'; document.getElementById('2203.02309v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">77 pages, 40 figures, 1262 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-22-003 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. G: Nucl. Part. Phys. 50 (2023) 013001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.12231">arXiv:2112.12231</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.12231">pdf</a>, <a href="https://arxiv.org/format/2112.12231">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/ptep/ptac074">10.1093/ptep/ptac074 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Application and modeling of an online distillation method to reduce krypton and argon in XENON1T </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Bernard%2C+A">A. Bernard</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Cimmino%2C+B">B. Cimmino</a> , et al. (129 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.12231v2-abstract-short" style="display: inline;"> A novel online distillation technique was developed for the XENON1T dark matter experiment to reduce intrinsic background components more volatile than xenon, such as krypton or argon, while the detector was operating. The method is based on a continuous purification of the gaseous volume of the detector system using the XENON1T cryogenic distillation column. A krypton-in-xenon concentration of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.12231v2-abstract-full').style.display = 'inline'; document.getElementById('2112.12231v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.12231v2-abstract-full" style="display: none;"> A novel online distillation technique was developed for the XENON1T dark matter experiment to reduce intrinsic background components more volatile than xenon, such as krypton or argon, while the detector was operating. The method is based on a continuous purification of the gaseous volume of the detector system using the XENON1T cryogenic distillation column. A krypton-in-xenon concentration of $(360 \pm 60)$ ppq was achieved. It is the lowest concentration measured in the fiducial volume of an operating dark matter detector to date. A model was developed and fit to the data to describe the krypton evolution in the liquid and gas volumes of the detector system for several operation modes over the time span of 550 days, including the commissioning and science runs of XENON1T. The online distillation was also successfully applied to remove Ar-37 after its injection for a low energy calibration in XENON1T. This makes the usage of Ar-37 as a regular calibration source possible in the future. The online distillation can be applied to next-generation experiments to remove krypton prior to, or during, any science run. The model developed here allows further optimization of the distillation strategy for future large scale detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.12231v2-abstract-full').style.display = 'none'; document.getElementById('2112.12231v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Prog Theor Exp Phys (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.12116">arXiv:2112.12116</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.12116">pdf</a>, <a href="https://arxiv.org/format/2112.12116">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.022001">10.1103/PhysRevD.106.022001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emission of Single and Few Electrons in XENON1T and Limits on Light Dark Matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Bernard%2C+A">A. Bernard</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Cimmino%2C+B">B. Cimmino</a> , et al. (130 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.12116v3-abstract-short" style="display: inline;"> Delayed single- and few-electron emissions plague dual-phase time projection chambers, limiting their potential to search for light-mass dark matter. This paper examines the origins of these events in the XENON1T experiment. Characterization of the intensity of delayed electron backgrounds shows that the resulting emissions are correlated, in time and position, with high-energy events and can effe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.12116v3-abstract-full').style.display = 'inline'; document.getElementById('2112.12116v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.12116v3-abstract-full" style="display: none;"> Delayed single- and few-electron emissions plague dual-phase time projection chambers, limiting their potential to search for light-mass dark matter. This paper examines the origins of these events in the XENON1T experiment. Characterization of the intensity of delayed electron backgrounds shows that the resulting emissions are correlated, in time and position, with high-energy events and can effectively be vetoed. In this work we extend previous S2-only analyses down to a single electron. From this analysis, after removing the correlated backgrounds, we observe rates &lt; 30 events/(electron*kg*day) in the region of interest spanning 1 to 5 electrons. We derive 90% confidence upper limits for dark matter-electron scattering, first direct limits on the electric dipole, magnetic dipole, and anapole interactions, and bosonic dark matter models, where we exclude new parameter space for dark photons and solar dark photons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.12116v3-abstract-full').style.display = 'none'; document.getElementById('2112.12116v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 17 figures, Updated to correct published Solar Dark Photon limit</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 106, 022001 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.05629">arXiv:2112.05629</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.05629">pdf</a>, <a href="https://arxiv.org/format/2112.05629">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-10345-6">10.1140/epjc/s10052-022-10345-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Material radiopurity control in the XENONnT experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Cimmino%2C+B">B. Cimmino</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+M">M. Clark</a> , et al. (128 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.05629v2-abstract-short" style="display: inline;"> The selection of low-radioactive construction materials is of the utmost importance for rare-event searches and thus critical to the XENONnT experiment. Results of an extensive radioassay program are reported, in which material samples have been screened with gamma-ray spectroscopy, mass spectrometry, and $^{222}$Rn emanation measurements. Furthermore, the cleanliness procedures applied to remove&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.05629v2-abstract-full').style.display = 'inline'; document.getElementById('2112.05629v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.05629v2-abstract-full" style="display: none;"> The selection of low-radioactive construction materials is of the utmost importance for rare-event searches and thus critical to the XENONnT experiment. Results of an extensive radioassay program are reported, in which material samples have been screened with gamma-ray spectroscopy, mass spectrometry, and $^{222}$Rn emanation measurements. Furthermore, the cleanliness procedures applied to remove or mitigate surface contamination of detector materials are described. Screening results, used as inputs for a XENONnT Monte Carlo simulation, predict a reduction of materials background ($\sim$17%) with respect to its predecessor XENON1T. Through radon emanation measurements, the expected $^{222}$Rn activity concentration in XENONnT is determined to be 4.2$\,(^{+0.5}_{-0.7})\,渭$Bq/kg, a factor three lower with respect to XENON1T. This radon concentration will be further suppressed by means of the novel radon distillation system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.05629v2-abstract-full').style.display = 'none'; document.getElementById('2112.05629v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.10497">arXiv:2110.10497</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.10497">pdf</a>, <a href="https://arxiv.org/format/2110.10497">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.052010">10.1103/PhysRevD.105.052010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for dark photons using a multilayer dielectric haloscope equipped with a single-photon avalanche diode </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Manenti%2C+L">Laura Manenti</a>, <a href="/search/physics?searchtype=author&amp;query=Mishra%2C+U">Umang Mishra</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">Gianmarco Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Giovanni%2C+A">Adriano Di Giovanni</a>, <a href="/search/physics?searchtype=author&amp;query=Millar%2C+A+J">Alexander John Millar</a>, <a href="/search/physics?searchtype=author&amp;query=Mor%C3%A5%2C+K+D">Knut Dundas Mor氓</a>, <a href="/search/physics?searchtype=author&amp;query=Pasricha%2C+R">Renu Pasricha</a>, <a href="/search/physics?searchtype=author&amp;query=Roberts%2C+H">Henry Roberts</a>, <a href="/search/physics?searchtype=author&amp;query=Oikonomou%2C+P">Panos Oikonomou</a>, <a href="/search/physics?searchtype=author&amp;query=Sarnoff%2C+I">Isaac Sarnoff</a>, <a href="/search/physics?searchtype=author&amp;query=Weston%2C+J">James Weston</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">Francesco Arneodo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.10497v3-abstract-short" style="display: inline;"> We report on the results of the search for dark photons with mass around 1.5$\,\rm eV/c^2$ using a multilayer dielectric haloscope equipped with an affordable and commercially available photosensor. The multilayer stack, which enables the conversion of dark photons (DP) to Standard Model photons, is made of 23 bilayers of alternating SiO$_2$ and Si$_3$N$_4$ thin films with linearly increasing thic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.10497v3-abstract-full').style.display = 'inline'; document.getElementById('2110.10497v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.10497v3-abstract-full" style="display: none;"> We report on the results of the search for dark photons with mass around 1.5$\,\rm eV/c^2$ using a multilayer dielectric haloscope equipped with an affordable and commercially available photosensor. The multilayer stack, which enables the conversion of dark photons (DP) to Standard Model photons, is made of 23 bilayers of alternating SiO$_2$ and Si$_3$N$_4$ thin films with linearly increasing thicknesses through the stack (a configuration known as a &#34;chirped stack&#34;). The thicknesses have been chosen according to an optimisation algorithm in order to maximise the DP-photon conversion in the energy region where the photosensor sensitivity peaks. This prototype experiment, baptised MuDHI (Multilayer Dielectric Haloscope Investigation) by the authors of this paper, has been designed, developed and run at the Astroparticle Laboratory of New York University Abu Dhabi, which marks the first time a dark matter experiment has been operated in the Middle East. No significant signal excess is observed, and the method of maximum log-likelihood is used to set exclusion limits at $90\%$ confidence level on the kinetic mixing coupling constant between dark photons and ordinary photons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.10497v3-abstract-full').style.display = 'none'; document.getElementById('2110.10497v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 105, 052010 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.13981">arXiv:2009.13981</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.13981">pdf</a>, <a href="https://arxiv.org/format/2009.13981">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-020-08777-z">10.1140/epjc/s10052-020-08777-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $^{222}$Rn emanation measurements for the XENON1T experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barge%2C+D">D. Barge</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a> , et al. (118 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.13981v3-abstract-short" style="display: inline;"> The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the $^{222}$Rn emanation me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13981v3-abstract-full').style.display = 'inline'; document.getElementById('2009.13981v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.13981v3-abstract-full" style="display: none;"> The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the $^{222}$Rn emanation measurements performed for the XENON1T dark matter experiment. Together with the bulk impurity screening campaign, the results enabled us to select the radio-purest construction materials, targeting a $^{222}$Rn activity concentration of 10 $渭$Bq/kg in 3.2 t of xenon. The knowledge of the distribution of the $^{222}$Rn sources allowed us to selectively eliminate critical components in the course of the experiment. The predictions from the emanation measurements were compared to data of the $^{222}$Rn activity concentration in XENON1T. The final $^{222}$Rn activity concentration of (4.5 $\pm$ 0.1) $渭$Bq/kg in the target of XENON1T is the lowest ever achieved in a xenon dark matter experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13981v3-abstract-full').style.display = 'none'; document.getElementById('2009.13981v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 81, 337 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.08796">arXiv:2007.08796</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.08796">pdf</a>, <a href="https://arxiv.org/format/2007.08796">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2020/11/031">10.1088/1475-7516/2020/11/031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Projected WIMP Sensitivity of the XENONnT Dark Matter Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+XENON+collaboration"> The XENON collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barge%2C+D">D. Barge</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a> , et al. (115 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.08796v2-abstract-short" style="display: inline;"> XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.08796v2-abstract-full').style.display = 'inline'; document.getElementById('2007.08796v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.08796v2-abstract-full" style="display: none;"> XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to $12.3 \pm 0.6$ (keV t y)$^{-1}$ and $(2.2\pm 0.5)\times 10^{-3}$ (keV t y)$^{-1}$, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t$\,$y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of $1.4\times10^{-48}$ cm$^2$ for a 50 GeV/c$^2$ mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T. In addition, we show that for a 50 GeV/c$^2$ WIMP with cross-sections above $2.6\times10^{-48}$ cm$^2$ ($5.0\times10^{-48}$ cm$^2$) the median XENONnT discovery significance exceeds 3$蟽$ (5$蟽$). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches $2.2\times10^{-43}$ cm$^2$ ($6.0\times10^{-42}$ cm$^2$). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.08796v2-abstract-full').style.display = 'none'; document.getElementById('2007.08796v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP11(2020)031 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.03114">arXiv:2006.03114</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.03114">pdf</a>, <a href="https://arxiv.org/format/2006.03114">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Solar Neutrino Detection Sensitivity in DARWIN via Electron Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+E+M+A">S. E. M. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F">F. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J">J. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Arazi%2C+L">L. Arazi</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Balzer%2C+M">M. Balzer</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baur%2C+D">D. Baur</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+Y">Y. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Bourgeois%2C+C">C. Bourgeois</a>, <a href="/search/physics?searchtype=author&amp;query=Breskin%2C+A">A. Breskin</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Br%C3%BCnner%2C+S">S. Br眉nner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a> , et al. (141 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.03114v2-abstract-short" style="display: inline;"> We detail the sensitivity of the liquid xenon (LXe) DARWIN observatory to solar neutrinos via elastic electron scattering. We find that DARWIN will have the potential to measure the fluxes of five solar neutrino components: $pp$, $^7$Be, $^{13}$N, $^{15}$O and $pep$. The precision of the $^{13}$N, $^{15}$O and $pep$ components is hindered by the double-beta decay of $^{136}$Xe and, thus, would ben&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.03114v2-abstract-full').style.display = 'inline'; document.getElementById('2006.03114v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.03114v2-abstract-full" style="display: none;"> We detail the sensitivity of the liquid xenon (LXe) DARWIN observatory to solar neutrinos via elastic electron scattering. We find that DARWIN will have the potential to measure the fluxes of five solar neutrino components: $pp$, $^7$Be, $^{13}$N, $^{15}$O and $pep$. The precision of the $^{13}$N, $^{15}$O and $pep$ components is hindered by the double-beta decay of $^{136}$Xe and, thus, would benefit from a depleted target. A high-statistics observation of $pp$ neutrinos would allow us to infer the values of the weak mixing angle, $\sin^2胃_w$, and the electron-type neutrino survival probability, $P_e$, in the electron recoil energy region from a few keV up to 200 keV for the first time, with relative precision of 5% and 4%, respectively, at an exposure of 300 ty. An observation of $pp$ and $^7$Be neutrinos would constrain the neutrino-inferred solar luminosity down to 0.2%. A combination of all flux measurements would distinguish between the high (GS98) and low metallicity (AGS09) solar models with 2.1-2.5$蟽$ significance, independent of external measurements from other experiments or a measurement of $^8$B neutrinos through coherent elastic neutrino-nucleus scattering in DARWIN. Finally, we demonstrate that with a depleted target DARWIN may be sensitive to the neutrino capture process of $^{131}$Xe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.03114v2-abstract-full').style.display = 'none'; document.getElementById('2006.03114v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures; for associated data files, see https://github.com/Physik-Institut-UZH/DARWIN-Sensitivity-Studies/tree/master/solar_neutrinos_electron_scattering</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.08187">arXiv:2005.08187</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.08187">pdf</a>, <a href="https://arxiv.org/format/2005.08187">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Performance of different photocathode materials in a liquid argon purity monitor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Manenti%2C+L">Laura Manenti</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+L">Linda Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">Francesco Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Basharina-Freshville%2C+A">Anastasia Basharina-Freshville</a>, <a href="/search/physics?searchtype=author&amp;query=Campanelli%2C+M">Mario Campanelli</a>, <a href="/search/physics?searchtype=author&amp;query=Holin%2C+A">Anna Holin</a>, <a href="/search/physics?searchtype=author&amp;query=Nichol%2C+R">Ryan Nichol</a>, <a href="/search/physics?searchtype=author&amp;query=Saakyan%2C+R">Ruben Saakyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.08187v3-abstract-short" style="display: inline;"> Purity monitor devices are increasingly used in noble gas time projection chambers to measure the lifetime of drifting electrons. Purity monitors work by emitting electrons from a photocathode material via the photoelectric effect. The electrons are then drifted towards an anode by means of an applied electric drift field. By measuring the difference in charge between the cathode and the anode, on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.08187v3-abstract-full').style.display = 'inline'; document.getElementById('2005.08187v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.08187v3-abstract-full" style="display: none;"> Purity monitor devices are increasingly used in noble gas time projection chambers to measure the lifetime of drifting electrons. Purity monitors work by emitting electrons from a photocathode material via the photoelectric effect. The electrons are then drifted towards an anode by means of an applied electric drift field. By measuring the difference in charge between the cathode and the anode, one can extract the lifetime of the drifting electrons in the medium. For the first time, we test the performance of different photocathode materials-- silver, titanium, and aluminium--and compare them to gold, which is the standard photocathode material used for purity monitors. Titanium and aluminium were found to have a worse performance than gold in vacuum, whereas silver showed a signal of the same order of magnitude as gold. Further tests in liquid argon were carried out on silver and gold with the conclusion that the signal produced by silver is about three times stronger than that of gold. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.08187v3-abstract-full').style.display = 'none'; document.getElementById('2005.08187v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.03825">arXiv:2003.03825</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.03825">pdf</a>, <a href="https://arxiv.org/format/2003.03825">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-020-8284-0">10.1140/epjc/s10052-020-8284-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy resolution and linearity of XENON1T in the MeV energy range </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J">J. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barge%2C+D">D. Barge</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a> , et al. (113 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.03825v2-abstract-short" style="display: inline;"> Xenon dual-phase time projection chambers designed to search for Weakly Interacting Massive Particles have so far shown a relative energy resolution which degrades with energy above $\sim$200 keV due to the saturation effects. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of $^{136}$Xe at its $Q$-value, $Q_{尾尾}\simeq$ 2.46 MeV. For the XEN&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.03825v2-abstract-full').style.display = 'inline'; document.getElementById('2003.03825v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.03825v2-abstract-full" style="display: none;"> Xenon dual-phase time projection chambers designed to search for Weakly Interacting Massive Particles have so far shown a relative energy resolution which degrades with energy above $\sim$200 keV due to the saturation effects. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of $^{136}$Xe at its $Q$-value, $Q_{尾尾}\simeq$ 2.46 MeV. For the XENON1T dual-phase time projection chamber, we demonstrate that the relative energy resolution at 1 $蟽/渭$ is as low as (0.80$\pm$0.02) % in its one-ton fiducial mass, and for single-site interactions at $Q_{尾尾}$. We also present a new signal correction method to rectify the saturation effects of the signal readout system, resulting in more accurate position reconstruction and indirectly improving the energy resolution. The very good result achieved in XENON1T opens up new windows for the xenon dual-phase dark matter detectors to simultaneously search for other rare events. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.03825v2-abstract-full').style.display = 'none'; document.getElementById('2003.03825v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 80, 785 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.12813">arXiv:1907.12813</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.12813">pdf</a>, <a href="https://arxiv.org/format/1907.12813">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/14/09/P09017">10.1088/1748-0221/14/09/P09017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterisation of a CeBr$_3$(LB) detector for space application </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Di+Giovanni%2C+A">A. Di Giovanni</a>, <a href="/search/physics?searchtype=author&amp;query=Manenti%2C+L">L. Manenti</a>, <a href="/search/physics?searchtype=author&amp;query=AlKhouri%2C+F">F. AlKhouri</a>, <a href="/search/physics?searchtype=author&amp;query=AlKindi%2C+L+R">L. R. AlKindi</a>, <a href="/search/physics?searchtype=author&amp;query=AlMannaei%2C+A">A. AlMannaei</a>, <a href="/search/physics?searchtype=author&amp;query=Qasim%2C+A+A">A. Al Qasim</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Conicella%2C+V">V. Conicella</a>, <a href="/search/physics?searchtype=author&amp;query=Fawwaz%2C+O">O. Fawwaz</a>, <a href="/search/physics?searchtype=author&amp;query=Marpu%2C+P">P. Marpu</a>, <a href="/search/physics?searchtype=author&amp;query=Panicker%2C+P">P. Panicker</a>, <a href="/search/physics?searchtype=author&amp;query=Pittori%2C+C">C. Pittori</a>, <a href="/search/physics?searchtype=author&amp;query=Vu%2C+M+S+R+T">M. S. Roberts T. Vu</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.12813v1-abstract-short" style="display: inline;"> We describe the performance of a $\mathrm{23\times 23\times30 ~mm^3}$ low background cerium bromide, CeBr$_3$(LB), scintillator crystal coupled to a Hamamatsu R11265U-200 photomultiplier. This detector will be the building block for a gamma-ray detector array designed to be the payload for a CubeSat to be launched in 2020. The aim of the mission is to study flashes of gamma rays of terrestrial ori&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.12813v1-abstract-full').style.display = 'inline'; document.getElementById('1907.12813v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.12813v1-abstract-full" style="display: none;"> We describe the performance of a $\mathrm{23\times 23\times30 ~mm^3}$ low background cerium bromide, CeBr$_3$(LB), scintillator crystal coupled to a Hamamatsu R11265U-200 photomultiplier. This detector will be the building block for a gamma-ray detector array designed to be the payload for a CubeSat to be launched in 2020. The aim of the mission is to study flashes of gamma rays of terrestrial origin. The design of the detector has been tuned for the detection of gamma rays in the 20 keV$-$3 MeV energy range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.12813v1-abstract-full').style.display = 'none'; document.getElementById('1907.12813v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.12771">arXiv:1907.12771</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.12771">pdf</a>, <a href="https://arxiv.org/format/1907.12771">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.241803">10.1103/PhysRevLett.123.241803 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for Light Dark Matter Interactions Enhanced by the Migdal effect or Bremsstrahlung in XENON1T </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barge%2C+D">D. Barge</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a> , et al. (109 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.12771v4-abstract-short" style="display: inline;"> Direct dark matter detection experiments based on a liquid xenon target are leading the search for dark matter particles with masses above $\sim$ 5 GeV/c$^2$, but have limited sensitivity to lighter masses because of the small momentum transfer in dark matter-nucleus elastic scattering. However, there is an irreducible contribution from inelastic processes accompanying the elastic scattering, whic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.12771v4-abstract-full').style.display = 'inline'; document.getElementById('1907.12771v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.12771v4-abstract-full" style="display: none;"> Direct dark matter detection experiments based on a liquid xenon target are leading the search for dark matter particles with masses above $\sim$ 5 GeV/c$^2$, but have limited sensitivity to lighter masses because of the small momentum transfer in dark matter-nucleus elastic scattering. However, there is an irreducible contribution from inelastic processes accompanying the elastic scattering, which leads to the excitation and ionization of the recoiling atom (the Migdal effect) or the emission of a Bremsstrahlung photon. In this letter, we report on a probe of low-mass dark matter with masses down to about 85 MeV/c$^2$ by looking for electronic recoils induced by the Migdal effect and Bremsstrahlung, using data from the XENON1T experiment. Besides the approach of detecting both scintillation and ionization signals, we exploit an approach that uses ionization signals only, which allows for a lower detection threshold. This analysis significantly enhances the sensitivity of XENON1T to light dark matter previously beyond its reach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.12771v4-abstract-full').style.display = 'none'; document.getElementById('1907.12771v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 241803 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.04717">arXiv:1906.04717</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.04717">pdf</a>, <a href="https://arxiv.org/format/1906.04717">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.052014">10.1103/PhysRevD.100.052014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> XENON1T Dark Matter Data Analysis: Signal Reconstruction, Calibration and Event Selection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&amp;query=Conrad%2C+J">J. Conrad</a> , et al. (103 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.04717v2-abstract-short" style="display: inline;"> The XENON1T experiment at the Laboratori Nazionali del Gran Sasso is the most sensitive direct detection experiment for dark matter in the form of weakly interacting particles (WIMPs) with masses above $6\,$GeV/$c^2$ scattering off nuclei. The detector employs a dual-phase time projection chamber with 2.0 metric tons of liquid xenon in the target. A one metric $\mathrm{ton}\times\mathrm{year}$ exp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.04717v2-abstract-full').style.display = 'inline'; document.getElementById('1906.04717v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.04717v2-abstract-full" style="display: none;"> The XENON1T experiment at the Laboratori Nazionali del Gran Sasso is the most sensitive direct detection experiment for dark matter in the form of weakly interacting particles (WIMPs) with masses above $6\,$GeV/$c^2$ scattering off nuclei. The detector employs a dual-phase time projection chamber with 2.0 metric tons of liquid xenon in the target. A one metric $\mathrm{ton}\times\mathrm{year}$ exposure of science data was collected between October 2016 and February 2018. This article reports on the performance of the detector during this period and describes details of the data analysis that led to the most stringent exclusion limits on various WIMP-nucleon interaction models to date. In particular, signal reconstruction, event selection and calibration of the detector response to nuclear and electronic recoils in XENON1T are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.04717v2-abstract-full').style.display = 'none'; document.getElementById('1906.04717v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 052014 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.00819">arXiv:1906.00819</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.00819">pdf</a>, <a href="https://arxiv.org/format/1906.00819">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/14/07/P07016">10.1088/1748-0221/14/07/P07016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The XENON1T Data Acquisition System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barge%2C+D">D. Barge</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a> , et al. (108 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.00819v2-abstract-short" style="display: inline;"> The XENON1T liquid xenon time projection chamber is the most sensitive detector built to date for the measurement of direct interactions of weakly interacting massive particles with normal matter. The data acquisition system (DAQ) is constructed from commercial, open source, and custom components to digitize signals from the detector and store them for later analysis. The system achieves an extrem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.00819v2-abstract-full').style.display = 'inline'; document.getElementById('1906.00819v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.00819v2-abstract-full" style="display: none;"> The XENON1T liquid xenon time projection chamber is the most sensitive detector built to date for the measurement of direct interactions of weakly interacting massive particles with normal matter. The data acquisition system (DAQ) is constructed from commercial, open source, and custom components to digitize signals from the detector and store them for later analysis. The system achieves an extremely low signal threshold below a tenth of a photoelectron using a parallelized readout with the global trigger deferred to a later, software stage. The event identification is based on MongoDB database queries and has over 97% efficiency at recognizing interactions at the analysis energy threshold. A readout bandwidth over 300 MB/s is reached in calibration modes and is further expandable via parallelization. This DAQ system was successfully used during three years of operation of XENON1T. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.00819v2-abstract-full').style.display = 'none'; document.getElementById('1906.00819v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures, submitted to JINST; Version 2 with minor updates to text</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 14 (2019) no.07, P07016 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.11297">arXiv:1902.11297</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.11297">pdf</a>, <a href="https://arxiv.org/format/1902.11297">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.112009">10.1103/PhysRevD.99.112009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> XENON1T Dark Matter Data Analysis: Signal &amp; Background Models, and Statistical Inference </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&amp;query=Conrad%2C+J">J. Conrad</a>, <a href="/search/physics?searchtype=author&amp;query=Cussonneau%2C+J+P">J. P. Cussonneau</a> , et al. (101 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.11297v2-abstract-short" style="display: inline;"> The XENON1T experiment searches for dark matter particles through their scattering off xenon atoms in a 2 tonne liquid xenon target. The detector is a dual-phase time projection chamber, which measures simultaneously the scintillation and ionization signals produced by interactions in target volume, to reconstruct energy and position, as well as the type of the interaction. The background rate in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.11297v2-abstract-full').style.display = 'inline'; document.getElementById('1902.11297v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.11297v2-abstract-full" style="display: none;"> The XENON1T experiment searches for dark matter particles through their scattering off xenon atoms in a 2 tonne liquid xenon target. The detector is a dual-phase time projection chamber, which measures simultaneously the scintillation and ionization signals produced by interactions in target volume, to reconstruct energy and position, as well as the type of the interaction. The background rate in the central volume of XENON1T detector is the lowest achieved so far with a liquid xenon-based direct detection experiment. In this work we describe the response model of the detector, the background and signal models, and the statistical inference procedures used in the dark matter searches with a 1 tonne$\times$year exposure of XENON1T data, that leaded to the best limit to date on WIMP-nucleon spin-independent elastic scatter cross-section for WIMP masses above 6 GeV/c$^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.11297v2-abstract-full').style.display = 'none'; document.getElementById('1902.11297v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 112009 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.12562">arXiv:1805.12562</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.12562">pdf</a>, <a href="https://arxiv.org/format/1805.12562">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.111302">10.1103/PhysRevLett.121.111302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dark Matter Search Results from a One Tonne$\times$Year Exposure of XENON1T </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&amp;query=Conrad%2C+J">J. Conrad</a> , et al. (95 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.12562v2-abstract-short" style="display: inline;"> We report on a search for Weakly Interacting Massive Particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS. XENON1T utilizes a liquid xenon time projection chamber with a fiducial mass of $(1.30 \pm 0.01)$ t, resulting in a 1.0 t$\times$yr exposure. The energy region of interest, [1.4, 10.6] $\mathrm{keV_{ee}}$ ([4.9, 40.9] $\mathrm{keV_{nr}}$), exhibits an ultra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.12562v2-abstract-full').style.display = 'inline'; document.getElementById('1805.12562v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.12562v2-abstract-full" style="display: none;"> We report on a search for Weakly Interacting Massive Particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS. XENON1T utilizes a liquid xenon time projection chamber with a fiducial mass of $(1.30 \pm 0.01)$ t, resulting in a 1.0 t$\times$yr exposure. The energy region of interest, [1.4, 10.6] $\mathrm{keV_{ee}}$ ([4.9, 40.9] $\mathrm{keV_{nr}}$), exhibits an ultra-low electron recoil background rate of $(82\substack{+5 \\ -3}\textrm{ (sys)}\pm3\textrm{ (stat)})$ events/$(\mathrm{t}\times\mathrm{yr}\times\mathrm{keV_{ee}})$. No significant excess over background is found and a profile likelihood analysis parameterized in spatial and energy dimensions excludes new parameter space for the WIMP-nucleon spin-independent elastic scatter cross-section for WIMP masses above 6 GeV/c${}^2$, with a minimum of $4.1\times10^{-47}$ cm$^2$ at 30 GeV/c${}^2$ and 90% confidence level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.12562v2-abstract-full').style.display = 'none'; document.getElementById('1805.12562v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, v2 limit points as csv</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 111302 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.10149">arXiv:1709.10149</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.10149">pdf</a>, <a href="https://arxiv.org/format/1709.10149">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.092007">10.1103/PhysRevD.97.092007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signal Yields of keV Electronic Recoils and Their Discrimination from Nuclear Recoils in Liquid Xenon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calv%C3%A9n%2C+J">J. Calv茅n</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a> , et al. (94 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.10149v2-abstract-short" style="display: inline;"> We report on the response of liquid xenon to low energy electronic recoils below 15 keV from beta decays of tritium at drift fields of 92 V/cm, 154 V/cm and 366 V/cm using the XENON100 detector. A data-to-simulation fitting method based on Markov Chain Monte Carlo is used to extract the photon yields and recombination fluctuations from the experimental data. The photon yields measured at the two l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.10149v2-abstract-full').style.display = 'inline'; document.getElementById('1709.10149v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.10149v2-abstract-full" style="display: none;"> We report on the response of liquid xenon to low energy electronic recoils below 15 keV from beta decays of tritium at drift fields of 92 V/cm, 154 V/cm and 366 V/cm using the XENON100 detector. A data-to-simulation fitting method based on Markov Chain Monte Carlo is used to extract the photon yields and recombination fluctuations from the experimental data. The photon yields measured at the two lower fields are in agreement with those from literature; additional measurements at a higher field of 366 V/cm are presented. The electronic and nuclear recoil discrimination as well as its dependence on the drift field and photon detection efficiency are investigated at these low energies. The results provide new measurements in the energy region of interest for dark matter searches using liquid xenon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.10149v2-abstract-full').style.display = 'none'; document.getElementById('1709.10149v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 092007 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.07051">arXiv:1708.07051</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.07051">pdf</a>, <a href="https://arxiv.org/format/1708.07051">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-017-5326-3">10.1140/epjc/s10052-017-5326-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The XENON1T Dark Matter Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Antunes%2C+B">B. Antunes</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breskin%2C+A">A. Breskin</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calv%C3%A9n%2C+J">J. Calv茅n</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a> , et al. (120 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.07051v1-abstract-short" style="display: inline;"> The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2t liquid xenon inventory, 2.0t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.07051v1-abstract-full').style.display = 'inline'; document.getElementById('1708.07051v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.07051v1-abstract-full" style="display: none;"> The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2t liquid xenon inventory, 2.0t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.07051v1-abstract-full').style.display = 'none'; document.getElementById('1708.07051v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 25 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.03617">arXiv:1708.03617</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.03617">pdf</a>, <a href="https://arxiv.org/format/1708.03617">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-018-5565-y">10.1140/epjc/s10052-018-5565-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intrinsic backgrounds from Rn and Kr in the XENON100 experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calv%C3%A9n%2C+J">J. Calv茅n</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a> , et al. (93 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.03617v2-abstract-short" style="display: inline;"> In this paper, we describe the XENON100 data analyses used to assess the target-intrinsic background sources radon ($^{222}$Rn), thoron ($^{220}$Rn) and krypton ($^{85}$Kr). We detail the event selections of high-energy alpha particles and decay-specific delayed coincidences. We derive distributions of the individual radionuclides inside the detector and quantify their abundances during the main t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03617v2-abstract-full').style.display = 'inline'; document.getElementById('1708.03617v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.03617v2-abstract-full" style="display: none;"> In this paper, we describe the XENON100 data analyses used to assess the target-intrinsic background sources radon ($^{222}$Rn), thoron ($^{220}$Rn) and krypton ($^{85}$Kr). We detail the event selections of high-energy alpha particles and decay-specific delayed coincidences. We derive distributions of the individual radionuclides inside the detector and quantify their abundances during the main three science runs of the experiment over a period of $\sim$ 4 years, from January 2010 to January 2014. We compare our results to external measurements of radon emanation and krypton concentrations where we find good agreement. We report an observed reduction in concentrations of radon daughters that we attribute to the plating-out of charged ions on the negatively biased cathode. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03617v2-abstract-full').style.display = 'none'; document.getElementById('1708.03617v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v1: 11 pages, 5 figures, 4 tables; v2: 12 pages, 5 figures, 4 tables, article updated after referee process</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2018) 78:132 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.08004">arXiv:1707.08004</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.08004">pdf</a>, <a href="https://arxiv.org/format/1707.08004">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2018.03.022">10.1016/j.nima.2018.03.022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cryogenic readout for multiple VUV4 Multi-Pixel Photon Counters in liquid xenon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Conicella%2C+V">V. Conicella</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Giovanni%2C+A">A. Di Giovanni</a>, <a href="/search/physics?searchtype=author&amp;query=Fawwaz%2C+O">O. Fawwaz</a>, <a href="/search/physics?searchtype=author&amp;query=Messina%2C+M">M. Messina</a>, <a href="/search/physics?searchtype=author&amp;query=Candela%2C+A">A. Candela</a>, <a href="/search/physics?searchtype=author&amp;query=Franchi%2C+G">G. Franchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.08004v5-abstract-short" style="display: inline;"> We present the performances and characterization of an array made of S13370-3050CN (VUV4 generation) Multi-Pixel Photon Counters manufactured by Hamamatsu and equipped with a low power consumption preamplifier operating at liquid xenon temperature (~ 175 K). The electronics is designed for the readout of a matrix of maximum dimension of 8 x 8 individual photosensors and it is based on a single ope&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.08004v5-abstract-full').style.display = 'inline'; document.getElementById('1707.08004v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.08004v5-abstract-full" style="display: none;"> We present the performances and characterization of an array made of S13370-3050CN (VUV4 generation) Multi-Pixel Photon Counters manufactured by Hamamatsu and equipped with a low power consumption preamplifier operating at liquid xenon temperature (~ 175 K). The electronics is designed for the readout of a matrix of maximum dimension of 8 x 8 individual photosensors and it is based on a single operational amplifier. The detector prototype presented in this paper utilizes the Analog Devices AD8011 current feedback operational amplifier, but other models can be used depending on the application. A biasing correction circuit has been implemented for the gain equalization of photosensors operating at different voltages. The results show single photon detection capability making this device a promising choice for future generation of large scale dark matter detectors based on liquid xenon, such as DARWIN. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.08004v5-abstract-full').style.display = 'none'; document.getElementById('1707.08004v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.05830">arXiv:1705.05830</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.05830">pdf</a>, <a href="https://arxiv.org/format/1705.05830">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.022008">10.1103/PhysRevD.96.022008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for WIMP Inelastic Scattering off Xenon Nuclei with XENON100 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calv%C3%A9n%2C+J">J. Calv茅n</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a> , et al. (91 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.05830v1-abstract-short" style="display: inline;"> We present the first constraints on the spin-dependent, inelastic scattering cross section of Weakly Interacting Massive Particles (WIMPs) on nucleons from XENON100 data with an exposure of 7.64$\times$10$^3$\,kg\,day. XENON100 is a dual-phase xenon time projection chamber with 62\,kg of active mass, operated at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy and designed to search for nuc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.05830v1-abstract-full').style.display = 'inline'; document.getElementById('1705.05830v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.05830v1-abstract-full" style="display: none;"> We present the first constraints on the spin-dependent, inelastic scattering cross section of Weakly Interacting Massive Particles (WIMPs) on nucleons from XENON100 data with an exposure of 7.64$\times$10$^3$\,kg\,day. XENON100 is a dual-phase xenon time projection chamber with 62\,kg of active mass, operated at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy and designed to search for nuclear recoils from WIMP-nucleus interactions. Here we explore inelastic scattering, where a transition to a low-lying excited nuclear state of $^{129}$Xe is induced. The experimental signature is a nuclear recoil observed together with the prompt de-excitation photon. We see no evidence for such inelastic WIMP-$^{129}$Xe interactions. A profile likelihood analysis allows us to set a 90\% C.L. upper limit on the inelastic, spin-dependent WIMP-nucleon cross section of $3.3 \times 10^{-38}$\,cm$^{2}$ at 100\,GeV/c$^2$. This is the most constraining result to date, and sets the pathway for an analysis of this interaction channel in upcoming, larger dual-phase xenon detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.05830v1-abstract-full').style.display = 'none'; document.getElementById('1705.05830v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 022008 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.01828">arXiv:1705.01828</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.01828">pdf</a>, <a href="https://arxiv.org/format/1705.01828">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-017-5329-0">10.1140/epjc/s10052-017-5329-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Material radioassay and selection for the XENON1T dark matter experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calven%2C+J">J. Calven</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a> , et al. (96 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.01828v1-abstract-short" style="display: inline;"> The XENON1T dark matter experiment aims to detect Weakly Interacting Massive Particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T ex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.01828v1-abstract-full').style.display = 'inline'; document.getElementById('1705.01828v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.01828v1-abstract-full" style="display: none;"> The XENON1T dark matter experiment aims to detect Weakly Interacting Massive Particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T experiment. Using gamma-ray spectroscopy and mass spectrometry techniques, systematic measurements of trace radioactive impurities in over one hundred samples within a wide range of materials were performed. The measured activities allowed for stringent selection and placement of materials during the detector construction phase and provided the input for XENON1T detection sensitivity estimates through Monte Carlo simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.01828v1-abstract-full').style.display = 'none'; document.getElementById('1705.01828v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.05804">arXiv:1704.05804</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.05804">pdf</a>, <a href="https://arxiv.org/format/1704.05804">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2017/10/039">10.1088/1475-7516/2017/10/039 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for magnetic inelastic dark matter with XENON100 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON+collaboration"> XENON collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calv%C3%A9n%2C+J">J. Calv茅n</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a> , et al. (90 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.05804v2-abstract-short" style="display: inline;"> We present the first search for dark matter-induced delayed coincidence signals in a dual-phase xenon time projection chamber, using the 224.6 live days of the XENON100 science run II. This very distinct signature is predicted in the framework of magnetic inelastic dark matter which has been proposed to reconcile the modulation signal reported by the DAMA/LIBRA collaboration with the null results&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.05804v2-abstract-full').style.display = 'inline'; document.getElementById('1704.05804v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.05804v2-abstract-full" style="display: none;"> We present the first search for dark matter-induced delayed coincidence signals in a dual-phase xenon time projection chamber, using the 224.6 live days of the XENON100 science run II. This very distinct signature is predicted in the framework of magnetic inelastic dark matter which has been proposed to reconcile the modulation signal reported by the DAMA/LIBRA collaboration with the null results from other direct detection experiments. No candidate event has been found in the region of interest and upper limits on the WIMP&#39;s magnetic dipole moment are derived. The scenarios proposed to explain the DAMA/LIBRA modulation signal by magnetic inelastic dark matter interactions of WIMPs with masses of 58.0 GeV/c$^2$ and 122.7 GeV/c$^2$ are excluded at 3.3 $蟽$ and 9.3 $蟽$, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.05804v2-abstract-full').style.display = 'none'; document.getElementById('1704.05804v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP10(2017)039 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.06942">arXiv:1702.06942</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.06942">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-017-4902-x">10.1140/epjc/s10052-017-4902-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Online $^{222}$Rn removal by cryogenic distillation in the XENON100 experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calv%C3%A9n%2C+J">J. Calv茅n</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a> , et al. (97 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.06942v2-abstract-short" style="display: inline;"> We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column is integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant $^{222}$Rn background originating from radon emanation. After inserting an auxiliary $^{222}$Rn emanati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.06942v2-abstract-full').style.display = 'inline'; document.getElementById('1702.06942v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.06942v2-abstract-full" style="display: none;"> We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column is integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant $^{222}$Rn background originating from radon emanation. After inserting an auxiliary $^{222}$Rn emanation source in the gas loop, we determined a radon reduction factor of R &gt; 27 (95% C.L.) for the distillation column by monitoring the $^{222}$Rn activity concentration inside the XENON100 detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.06942v2-abstract-full').style.display = 'none'; document.getElementById('1702.06942v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2017) 77: 358 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.00769">arXiv:1701.00769</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.00769">pdf</a>, <a href="https://arxiv.org/format/1701.00769">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.118.101101">10.1103/PhysRevLett.118.101101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+XENON+collaboration"> The XENON collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Butikofer%2C+L">L. Butikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calven%2C+J">J. Calven</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a> , et al. (89 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.00769v1-abstract-short" style="display: inline;"> We report on a search for electronic recoil event rate modulation signatures in the XENON100 data accumulated over a period of 4 years, from January 2010 to January 2014. A profile likelihood method, which incorporates the stability of the XENON100 detector and the known electronic recoil background model, is used to quantify the significance of periodicity in the time distribution of events. Ther&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.00769v1-abstract-full').style.display = 'inline'; document.getElementById('1701.00769v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.00769v1-abstract-full" style="display: none;"> We report on a search for electronic recoil event rate modulation signatures in the XENON100 data accumulated over a period of 4 years, from January 2010 to January 2014. A profile likelihood method, which incorporates the stability of the XENON100 detector and the known electronic recoil background model, is used to quantify the significance of periodicity in the time distribution of events. There is a weak modulation signature at a period of $431^{+16}_{-14}$ days in the low energy region of $(2.0-5.8)$ keV in the single scatter event sample, with a global significance of $1.9\,蟽$, however no other more significant modulation is observed. The expected annual modulation of a dark matter signal is not compatible with this result. Single scatter events in the low energy region are thus used to exclude the DAMA/LIBRA annual modulation as being due to dark matter electron interactions via axial vector coupling at $5.7\,蟽$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.00769v1-abstract-full').style.display = 'none'; document.getElementById('1701.00769v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 118, 101101 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.04284">arXiv:1612.04284</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.04284">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-017-4757-1">10.1140/epjc/s10052-017-4757-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Removing krypton from xenon by cryogenic distillation to the ppq level </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calv%C3%A9n%2C+J">J. Calv茅n</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a> , et al. (97 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.04284v2-abstract-short" style="display: inline;"> The XENON1T experiment aims for the direct detection of dark matter in a cryostat filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the $尾$-emitter $^{85}$Kr which is an intrinsic contamination of the xenon. For the XENON1T experiment a concentratio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.04284v2-abstract-full').style.display = 'inline'; document.getElementById('1612.04284v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.04284v2-abstract-full" style="display: none;"> The XENON1T experiment aims for the direct detection of dark matter in a cryostat filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the $尾$-emitter $^{85}$Kr which is an intrinsic contamination of the xenon. For the XENON1T experiment a concentration of natural krypton in xenon $\rm{^{nat}}$Kr/Xe &lt; 200 ppq (parts per quadrillion, 1 ppq = 10$^{-15}$ mol/mol) is required. In this work, the design of a novel cryogenic distillation column using the common McCabe-Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4$\cdot$10$^5$ with thermodynamic stability at process speeds above 3 kg/h. The resulting concentration of $\rm{^{nat}}$Kr/Xe &lt; 26 ppq is the lowest ever achieved, almost one order of magnitude below the requirements for XENON1T and even sufficient for future dark matter experiments using liquid xenon, such as XENONnT and DARWIN. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.04284v2-abstract-full').style.display = 'none'; document.getElementById('1612.04284v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2017) 77: 275 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.03585">arXiv:1611.03585</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.03585">pdf</a>, <a href="https://arxiv.org/format/1611.03585">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.072008">10.1103/PhysRevD.95.072008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Results from a Calibration of XENON100 Using a Source of Dissolved Radon-220 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+XENON+Collaboration"> The XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Butikofer%2C+L">L. Butikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calven%2C+J">J. Calven</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a> , et al. (96 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.03585v2-abstract-short" style="display: inline;"> A Rn-220 source is deployed on the XENON100 dark matter detector in order to address the challenges in calibration of tonne-scale liquid noble element detectors. We show that the Pb-212 beta emission can be used for low-energy electronic recoil calibration in searches for dark matter. The isotope spreads throughout the entire active region of the detector, and its activity naturally decays below b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.03585v2-abstract-full').style.display = 'inline'; document.getElementById('1611.03585v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.03585v2-abstract-full" style="display: none;"> A Rn-220 source is deployed on the XENON100 dark matter detector in order to address the challenges in calibration of tonne-scale liquid noble element detectors. We show that the Pb-212 beta emission can be used for low-energy electronic recoil calibration in searches for dark matter. The isotope spreads throughout the entire active region of the detector, and its activity naturally decays below background level within a week after the source is closed. We find no increase in the activity of the troublesome Rn-222 background after calibration. Alpha emitters are also distributed throughout the detector and facilitate calibration of its response to Rn-222. Using the delayed coincidence of Rn-220/Po-216, we map for the first time the convective motion of particles in the XENON100 detector. Additionally, we make a competitive measurement of the half-life of Po-212, t = 293.9+-(1.0)+-(0.6) ns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.03585v2-abstract-full').style.display = 'none'; document.getElementById('1611.03585v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 072008 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.06154">arXiv:1609.06154</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.06154">pdf</a>, <a href="https://arxiv.org/format/1609.06154">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.94.122001">10.1103/PhysRevD.94.122001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> XENON100 Dark Matter Results from a Combination of 477 Live Days </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON100+Collaboration"> XENON100 Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calv%C3%A9n%2C+J">J. Calv茅n</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a> , et al. (92 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.06154v3-abstract-short" style="display: inline;"> We report on WIMP search results of the XENON100 experiment, combining three runs summing up to 477 live days from January 2010 to January 2014. Data from the first two runs were already published. A blind analysis was applied to the last run recorded between April 2013 and January 2014 prior to combining the results. The ultra-low electromagnetic background of the experiment, ~$5 \times 10^{-3}$&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.06154v3-abstract-full').style.display = 'inline'; document.getElementById('1609.06154v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.06154v3-abstract-full" style="display: none;"> We report on WIMP search results of the XENON100 experiment, combining three runs summing up to 477 live days from January 2010 to January 2014. Data from the first two runs were already published. A blind analysis was applied to the last run recorded between April 2013 and January 2014 prior to combining the results. The ultra-low electromagnetic background of the experiment, ~$5 \times 10^{-3}$ events/(keV$_{\mathrm{ee}}\times$kg$\times$day) before electronic recoil rejection, together with the increased exposure of 48 kg $\times$ yr improves the sensitivity. A profile likelihood analysis using an energy range of (6.6 - 43.3) keV$_{\mathrm{nr}}$ sets a limit on the elastic, spin-independent WIMP-nucleon scattering cross section for WIMP masses above 8 GeV/$c^2$, with a minimum of 1.1 $\times 10^{-45}$ cm$^2$ at 50 GeV/$c^2$ and 90% confidence level. We also report updated constraints on the elastic, spin-dependent WIMP-nucleon cross sections obtained with the same data. We set upper limits on the WIMP-neutron (proton) cross section with a minimum of 2.0 $\times 10^{-40}$ cm$^2$ (52$\times 10^{-40}$ cm$^2$) at a WIMP mass of 50 GeV/$c^2$, at 90% confidence level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.06154v3-abstract-full').style.display = 'none'; document.getElementById('1609.06154v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 13 figures, 2 tables, Limit data points in TeX</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 94, 122001 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.03354">arXiv:1609.03354</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.03354">pdf</a>, <a href="https://arxiv.org/format/1609.03354">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.95.024605">10.1103/PhysRevC.95.024605 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for Two-Neutrino Double Electron Capture of $^{124}$Xe with XENON100 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+XENON+Collaboration"> The XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calv%C3%A9n%2C+J">J. Calv茅n</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a> , et al. (92 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.03354v2-abstract-short" style="display: inline;"> Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For $^{124}$Xe this process has not yet been observed and its detection would provide a new reference for nuclear matrix element calculations. We have conducted a search for two-neutrino double electron capture from the K-shell of $^{124}$Xe using 7636 kg$\cdot$d of d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.03354v2-abstract-full').style.display = 'inline'; document.getElementById('1609.03354v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.03354v2-abstract-full" style="display: none;"> Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For $^{124}$Xe this process has not yet been observed and its detection would provide a new reference for nuclear matrix element calculations. We have conducted a search for two-neutrino double electron capture from the K-shell of $^{124}$Xe using 7636 kg$\cdot$d of data from the XENON100 dark matter detector. Using a Bayesian analysis we observed no significant excess above background, leading to a lower 90 % credibility limit on the half-life $T_{1/2}&gt;6.5\times10^{20}$ yr. We also evaluated the sensitivity of the XENON1T experiment, which is currently being commissioned, and find a sensitivity of $T_{1/2}&gt;6.1\times10^{22}$ yr after an exposure of 2 t$\cdot$yr. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.03354v2-abstract-full').style.display = 'none'; document.getElementById('1609.03354v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 95, 024605, Published 13 February 2017 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.07001">arXiv:1606.07001</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.07001">pdf</a>, <a href="https://arxiv.org/format/1606.07001">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2016/11/017">10.1088/1475-7516/2016/11/017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> DARWIN: towards the ultimate dark matter detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Amsler%2C+C">C. Amsler</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Arazi%2C+L">L. Arazi</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Beskers%2C+B">B. Beskers</a>, <a href="/search/physics?searchtype=author&amp;query=Breskin%2C+A">A. Breskin</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Buetikofer%2C+L">L. Buetikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calven%2C+J">J. Calven</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a> , et al. (94 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.07001v1-abstract-short" style="display: inline;"> DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.07001v1-abstract-full').style.display = 'inline'; document.getElementById('1606.07001v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.07001v1-abstract-full" style="display: none;"> DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/c2, such a detector with its large mass, low-energy threshold and ultra-low background level will also be sensitive to other rare interactions. It will search for solar axions, galactic axion-like particles and the neutrinoless double-beta decay of 136-Xe, as well as measure the low-energy solar neutrino flux with &lt;1% precision, observe coherent neutrino-nucleus interactions, and detect galactic supernovae. We present the concept of the DARWIN detector and discuss its physics reach, the main sources of backgrounds and the ongoing detector design and R&amp;D efforts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.07001v1-abstract-full').style.display = 'none'; document.getElementById('1606.07001v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 1611 (2016) no.11, 017 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.06262">arXiv:1605.06262</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1605.06262">pdf</a>, <a href="https://arxiv.org/format/1605.06262">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.94.092001">10.1103/PhysRevD.94.092001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A low-mass dark matter search using ionization signals in XENON100 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON100+Collaboration"> XENON100 Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+E+B+S">E. Brown S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Buss%2C+A">A. Buss</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a> , et al. (86 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.06262v4-abstract-short" style="display: inline;"> We perform a low-mass dark matter search using an exposure of 30\,kg$\times$yr with the XENON100 detector. By dropping the requirement of a scintillation signal and using only the ionization signal to determine the interaction energy, we lowered the energy threshold for detection to 0.7\,keV for nuclear recoils. No dark matter detection can be claimed because a complete background model cannot be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.06262v4-abstract-full').style.display = 'inline'; document.getElementById('1605.06262v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.06262v4-abstract-full" style="display: none;"> We perform a low-mass dark matter search using an exposure of 30\,kg$\times$yr with the XENON100 detector. By dropping the requirement of a scintillation signal and using only the ionization signal to determine the interaction energy, we lowered the energy threshold for detection to 0.7\,keV for nuclear recoils. No dark matter detection can be claimed because a complete background model cannot be constructed without a primary scintillation signal. Instead, we compute an upper limit on the WIMP-nucleon scattering cross section under the assumption that every event passing our selection criteria could be a signal event. Using an energy interval from 0.7\,keV to 9.1\,keV, we derive a limit on the spin-independent WIMP-nucleon cross section that excludes WIMPs with a mass of 6\,GeV/$c^2$ above $1.4 \times 10^{-41}$\,cm$^2$ at 90\% confidence level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.06262v4-abstract-full').style.display = 'none'; document.getElementById('1605.06262v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages; 7 figures; PRD. Additional file in source material, s2stot, contains the full list of events passing all selection cuts. Limit data points in TeX; Corrected LUX points used for comparison and respective reference in figure 5</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 94, 092001 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.07501">arXiv:1512.07501</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.07501">pdf</a>, <a href="https://arxiv.org/format/1512.07501">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2016/04/027">10.1088/1475-7516/2016/04/027 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Physics reach of the XENON1T dark matter experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+XENON+collaboration"> The XENON collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arazi%2C+L">L. Arazi</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Balan%2C+C">C. Balan</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P">P. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Breskin%2C+A">A. Breskin</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a> , et al. (91 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.07501v2-abstract-short" style="display: inline;"> The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment&#39;s expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in $1$ tonne fiducial volume and (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.07501v2-abstract-full').style.display = 'inline'; document.getElementById('1512.07501v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.07501v2-abstract-full" style="display: none;"> The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment&#39;s expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in $1$ tonne fiducial volume and ($1$, $12$) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is $(1.80 \pm 0.15) \cdot 10^{-4}$ ($\rm{kg} \cdot day \cdot keV)^{-1}$, mainly due to the decay of $^{222}\rm{Rn}$ daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region ($4$, $50$) keV, is composed of $(0.6 \pm 0.1)$ ($\rm{t} \cdot y)^{-1}$ from radiogenic neutrons, $(1.8 \pm 0.3) \cdot 10^{-2}$ ($\rm{t} \cdot y)^{-1}$ from coherent scattering of neutrinos, and less than $0.01$ ($\rm{t} \cdot y)^{-1}$ from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Profile Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency $\mathcal{L}_\mathrm{eff}$, which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a $2$ y measurement in $1$ t fiducial volume, the sensitivity reaches a minimum cross section of $1.6 \cdot 10^{-47}$ cm$^2$ at m$_蠂$=$50$ GeV/$c^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.07501v2-abstract-full').style.display = 'none'; document.getElementById('1512.07501v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 18 figures, published by JCAP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP04(2016)027 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.07748">arXiv:1507.07748</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.07748">pdf</a>, <a href="https://arxiv.org/format/1507.07748">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.115.091302">10.1103/PhysRevLett.115.091302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for Event Rate Modulation in XENON100 Electronic Recoil Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+XENON+Collaboration"> The XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arazi%2C+L">L. Arazi</a>, <a href="/search/physics?searchtype=author&amp;query=Arisaka%2C+K">K. Arisaka</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Balan%2C+C">C. Balan</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Buetikofer%2C+L">L. Buetikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&amp;query=Contreras%2C+H">H. Contreras</a> , et al. (77 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.07748v1-abstract-short" style="display: inline;"> We have searched for periodic variations of the electronic recoil event rate in the (2-6) keV energy range recorded between February 2011 and March 2012 with the XENON100 detector, adding up to 224.6 live days in total. Following a detailed study to establish the stability of the detector and its background contributions during this run, we performed an un-binned profile likelihood analysis to ide&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.07748v1-abstract-full').style.display = 'inline'; document.getElementById('1507.07748v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.07748v1-abstract-full" style="display: none;"> We have searched for periodic variations of the electronic recoil event rate in the (2-6) keV energy range recorded between February 2011 and March 2012 with the XENON100 detector, adding up to 224.6 live days in total. Following a detailed study to establish the stability of the detector and its background contributions during this run, we performed an un-binned profile likelihood analysis to identify any periodicity up to 500 days. We find a global significance of less than 1 sigma for all periods suggesting no statistically significant modulation in the data. While the local significance for an annual modulation is 2.8 sigma, the analysis of a multiple-scatter control sample and the phase of the modulation disfavor a dark matter interpretation. The DAMA/LIBRA annual modulation interpreted as a dark matter signature with axial-vector coupling of WIMPs to electrons is excluded at 4.8 sigma. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.07748v1-abstract-full').style.display = 'none'; document.getElementById('1507.07748v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 115, 091302 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.07698">arXiv:1503.07698</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.07698">pdf</a>, <a href="https://arxiv.org/format/1503.07698">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-015-3657-5">10.1140/epjc/s10052-015-3657-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Arazi%2C+L">L. Arazi</a>, <a href="/search/physics?searchtype=author&amp;query=Arisaka%2C+K">K. Arisaka</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Auger%2C+M">M. Auger</a>, <a href="/search/physics?searchtype=author&amp;query=Balan%2C+C">C. Balan</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Behrens%2C+A">A. Behrens</a>, <a href="/search/physics?searchtype=author&amp;query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Buetikofer%2C+L">L. Buetikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&amp;query=Contreras%2C+H">H. Contreras</a>, <a href="/search/physics?searchtype=author&amp;query=Cussonneau%2C+J+P">J. P. Cussonneau</a>, <a href="/search/physics?searchtype=author&amp;query=Decowksi%2C+M+P">M. P. Decowksi</a> , et al. (73 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.07698v1-abstract-short" style="display: inline;"> The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company to produce a highly radio-pure photosensor (version R11410-21) for the XENON1T dark matter experime&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.07698v1-abstract-full').style.display = 'inline'; document.getElementById('1503.07698v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.07698v1-abstract-full" style="display: none;"> The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company to produce a highly radio-pure photosensor (version R11410-21) for the XENON1T dark matter experiment. After introducing the photosensor and its components, we show the methods and results of the radioactive contamination measurements of the individual materials employed in the photomultiplier production. We then discuss the adopted strategies to reduce the radioactivity of the various PMT versions. Finally, we detail the results from screening 216 tubes with ultra-low background germanium detectors, as well as their implications for the expected electronic and nuclear recoil background of the XENON1T experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.07698v1-abstract-full').style.display = 'none'; document.getElementById('1503.07698v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Arneodo%2C+F&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Arneodo%2C+F&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Arneodo%2C+F&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10